WO2013067731A1 - Flexible controllable organic pn joint field emission electron source - Google Patents

Flexible controllable organic pn joint field emission electron source Download PDF

Info

Publication number
WO2013067731A1
WO2013067731A1 PCT/CN2011/083967 CN2011083967W WO2013067731A1 WO 2013067731 A1 WO2013067731 A1 WO 2013067731A1 CN 2011083967 W CN2011083967 W CN 2011083967W WO 2013067731 A1 WO2013067731 A1 WO 2013067731A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic material
layer
material layer
type organic
field emission
Prior art date
Application number
PCT/CN2011/083967
Other languages
French (fr)
Chinese (zh)
Inventor
郭太良
叶芸
胡利勤
张永爱
郭凡
洪春燕
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2013067731A1 publication Critical patent/WO2013067731A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/308Semiconductor cathodes, e.g. cathodes with PN junction layers

Definitions

  • the invention belongs to the technical field of manufacturing field emission display devices, in particular to a flexible controllable organic pn junction field emission electron source, which replaces a conventional cathode gate and a field emission cathode material with an organic pn junction, and realizes a novel field emission of a low voltage regulation electron source.
  • Display structure in particular to a flexible controllable organic pn junction field emission electron source, which replaces a conventional cathode gate and a field emission cathode material with an organic pn junction, and realizes a novel field emission of a low voltage regulation electron source.
  • the cathode emission structure of the field emission flat panel display device mainly has a field emission electron source such as a single cathode, a cathode gate and a multipole structure.
  • the field emission source of a single cathode structure is composed of a glass substrate, a metal bottom electrode, and a cathode-emitting material deposited on the metal bottom electrode or directly grown.
  • the manufacturing process is simple, there are problems such as high voltage driving, unregulated electron emission, and the like, and the concept of low-driving voltage, controllable electron emission and other field emission flat panel display. Not suitable for making good FED displays.
  • the field emission sources of the cathode-gate structure are mainly divided into a front gate structure, a back gate structure, and a parallel gate structure.
  • the cathode gate homopole structure can regulate the electron emission of the cathode through the gate, which reduces the power consumption of the field emission flat panel display.
  • the cathode gate homopolar structure has problems of complicated fabrication process and high cost, especially the front gate structure and the back gate structure. Since the cathode conductive layer and the gate conductive layer of the two structures overlap, the medium layer is separated by the dielectric layer. The short circuit of the conductive layer increases the difficulty and cost of the process.
  • the parallel gate structure is such that the gate conductive layer and the cathode conductive layer are parallel to each other in the same plane. Although it is not necessary to fabricate the dielectric layer, the process is relatively simple, but there are problems such as large electron dispersion and beam spot.
  • the object of the present invention is to provide a flexible controllable organic pn junction field emission electron source, which has the advantages of simple preparation process, low cost, flexibility, low-voltage regulation and emission electrons, and superlattice material, thereby effectively avoiding electrons in the migration process.
  • a flexible controllable organic pn junction field emission electron source which in turn comprises a substrate, a lower electrode layer, an n-type organic material layer, a p-type organic material layer and an upper electrode layer, wherein the substrate is covered by a lower electrode layer, The lower electrode layer is covered by an n-type organic material layer completely overlying the n-type organic material layer, the p-type organic material layer being covered by the upper electrode layer.
  • the p-type organic material layer is a planar, strip, square hole, fishbone, comb or round hole organic layer made of a non-radiative composite and a low work function organic material;
  • the organic materials are copper phthalocyanine, indium phthalocyanine, oligothiophene, polythiophene, poly(3-hexylthiophene), triarylamine, polyparaphenylenevinylene (PPV), polysilane, PEDOT/PSS (poly 3 , 4-ethylenedioxythiophene/polystyrenesulfonic acid); the p-type organic material layer is ultra-thin intact by printing, spraying, coating, solution coating or evaporation coating. Lattice layer.
  • the p-type organic material layer has a thickness of 1-100 nm.
  • the n-type organic material layer is a planar, strip-shaped, square-hole, fishbone, comb or round-hole organic layer made of a low-energy, non-radiative composite, high electron mobility organic material.
  • the organic material is fullerene, fullerene derivative of alkali metal (Li, Na, K), ActivInk N2200 (organic semiconductor material with high electron mobility), 2-(1) of sulfur-doped heterocyclic ring , 3-dithio-2-ylidene) propylenediamine fused naphthalimide derivative, hydrazine, ⁇ '-perylene-3,4,9,10-tetracarboxylic acid diimide, three Nitrofluorenone (TNF), tetracyanoquinodimethane (TCNQ), naphthalic anhydride, phthalic anhydride, hexadecafluorophthalocyanine copper (F 16 CuPc), fluoro oligophene, perfluoro a- He
  • the substrate is a metal foil, a flexible glass, a flexible silicon or an organic polymer; the organic polymer is polycarbonate, polyester, polyimide or polyethylene.
  • the upper and lower electrode layers are planar, strip-shaped, square-hole, fishbone, comb or round hole electrode layers; the upper and lower electrode layers have a thickness of 10-1000 nm;
  • the upper and lower electrode layers are formed by a printing method or a plating method in combination with an etching method; the upper and lower electrode materials are polyphenylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene
  • FIG. 1 is a schematic view showing a structure of a flexible controllable organic pn junction field emission electron source having a strip-shaped upper electrode layer
  • FIG. 2 is a schematic diagram showing a structure of a flexible controllable organic pn junction field emission electron source with upper and lower electrodes strip-shaped crossing
  • Figure 3 is a schematic diagram showing the structure of a flexible controllable organic pn junction field emission electron source with a top electrode in a circular hole shape;
  • a flexible controllable organic pn junction field emission electron source which in turn comprises a substrate, a lower electrode layer, an n-type organic material layer, a p-type organic material layer and an upper electrode layer, wherein the substrate is covered by a lower electrode layer, The lower electrode layer is covered by an n-type organic material layer completely overlying the n-type organic material layer, the p-type organic material layer being covered by the upper electrode layer.
  • the p-type organic material layer is a planar, strip, square hole, fishbone, comb or round hole organic layer made of a non-radiative composite and a low work function organic material;
  • the organic materials are copper phthalocyanine, indium phthalocyanine, oligothiophene, polythiophene, poly(3-hexylthiophene), triarylamine, polyparaphenylenevinylene (PPV), polysilane, PEDOT/PSS (poly 3 , 4-ethylenedioxythiophene/polystyrenesulfonic acid); the p-type organic
  • the material layer is an ultra-thin complete lattice layer made by printing, spraying, coating, solution coating or evaporation coating.
  • the p-type organic material layer has a thickness of 1-100 nm.
  • the n-type organic material layer is a planar, strip-shaped, square-hole, fishbone, comb or round-hole organic layer made of a low-energy, non-radiative composite, high electron mobility organic material.
  • the organic material is fullerene, fullerene derivative of alkali metal (Li, Na, K), ActivInk N2200 (organic semiconductor material with high electron mobility), 2-(1) of sulfur-doped heterocyclic ring , 3-dithio-2-ylidene) propylenediamine fused naphthalimide derivative, hydrazine, ⁇ '-perylene-3,4,9,10-tetracarboxylic acid diimide, three Nitrofluorenone (TNF), tetracyanoquinodimethane (TCNQ), naphthalic anhydride, phthalic anhydride, hexadecafluorophthalocyanine copper (F 16 CuPc), fluoro oligophene, perfluoro a- He
  • the substrate is a metal foil, a flexible glass, a flexible silicon or an organic polymer; the organic polymer is polycarbonate, polyester, polyimide or polyethylene.
  • the upper and lower electrode layers are planar, strip-shaped, square-hole, fishbone, comb or round hole electrode layers; the upper and lower electrode layers have a thickness of 10-1000 nm;
  • the upper and lower electrode layers are formed by a printing method or a plating method in combination with an etching method; the upper and lower electrode materials are polyphenylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene
  • the manufacturing process of the present invention is as follows:
  • the PET substrate is used to clean the PET substrate to obtain a clean substrate surface.
  • the lower electrode layer 112 is prepared.
  • an evaporating coating method is used to evaporate a polycrystalline block doped with an appropriate amount of iodine onto a PET substrate. Forming a strip electrode layer through the reticle;
  • the third step is to prepare an n-type organic material layer 113
  • a slurry of a fullerene derivative is prepared on a strip electrode layer by a screen printing method to form a 400 nm thick n-type organic material layer, and then the n-type organic material layer is at 160 ° C. Insulation in the air for 20 min;
  • the fourth step is to prepare a p-type organic material layer.
  • an evaporation coating method is used to deposit a 20 nm indium chloride phthalocyanine film on the n-type organic material layer, and a strip-shaped p-type organic material layer is formed by evaporation using a mask plate; Preparing the upper electrode layer 115
  • an iodine-doped polyethylene block is vapor-deposited onto a PET substrate by an evaporation coating method, and a strip electrode layer is formed through a reticle to be placed across the lower electrode layer;
  • the manufacturing process of the present invention is as follows:
  • a PC is selected as the substrate, and the PC substrate is first cleaned to obtain a clean substrate surface; and the second step, the metal lower electrode 222 is prepared.
  • a method of magnetron sputtering coating is preferred, a chromium film is sputtered on the glass substrate, and a copper film is sputtered on the chromium film to form a planar double-layer composite conductive film, and the thickness of the electrode layer is lum.
  • a method of magnetron sputtering coating is preferred, a chromium film is sputtered on the glass substrate, and a copper film is sputtered on the chromium film to form a planar double-layer composite conductive film, and the thickness of the electrode layer is lum.
  • an n-type organic material layer is prepared on the lower electrode layer.
  • an appropriate amount of doped PCBM (fullerene derivative) is deposited on the lower electrode layer by an evaporation coating method to form a 500 nm thick n-type superlattice organic material layer, and a layer of ink is printed on one end edge of the lower electrode layer.
  • the protective layer ;
  • the fourth step is to prepare a p-type organic material layer on the n-type organic material layer.
  • a 50 nm copper phthalocyanine film is deposited on the organic n-type organic material layer by using an evaporation coating method as a p-type organic material layer;
  • the upper electrode layer 225 is prepared.
  • a 300 nm thick chromium film is directly sputtered on the p-type organic layer by using a radio frequency sputtering coating method
  • the organic pn junction field emission electron source is used, the upper electrode is applied with a low positive pressure, and the lower electrode is grounded. Since the pn junction is sufficiently thin, a large electric field can be obtained, and under the action of a strong electric field, a large amount of electrons are emitted from the metal.
  • the lower electrode is implanted into the n-type organic material layer and is hopped to the p-type organic material layer in the n-type organic material layer. When the p-type organic material layer is sufficiently thin, electrons can be transported to the surface of the p-type organic material layer.
  • the present invention can control the electron source by applying a regulating voltage to the upper and lower electrodes of the metal.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A flexible controllable organic pn joint field emission electron source, consisting of a substrate (001), a lower electrode layer (002), an n-type organic material layer (003), a p-type organic material layer (004) and an upper electrode layer (005), overlapping each other successively. The substrate (001) employs a flexible material substrate, the upper and lower electrode layers (002, 005) employ an organic or inorganic conductive material, the n-type and p-type organic material layers (003, 004) employ an organic material, the p-type organic material layer (004) is an ultrathin material layer and has the advantages of low voltage regulation, low power consumption and a simple preparation process for the field emission electron source, and at the same time it can be prepared as a superlattice organic material layer, which effectively reduces the dispersion of the electron beam, is flexible and convenient to carry, and is suitable in the field of field emission panel displays of controllable cathodes.

Description

柔性可控有机 pn结场发射电子源  Flexible controllable organic pn junction field emission electron source
技术领域 Technical field
本发明属于场发射显示器件制造技术领域, 特别涉及一种柔性可控有机 pn 结场发射电子源, 利用有机 pn结取代传统阴栅极及场发射阴极材料, 实现低压 调控电子源的新型场发射显示结构。 背景技术  The invention belongs to the technical field of manufacturing field emission display devices, in particular to a flexible controllable organic pn junction field emission electron source, which replaces a conventional cathode gate and a field emission cathode material with an organic pn junction, and realizes a novel field emission of a low voltage regulation electron source. Display structure. Background technique
目前用于场发射平板显示器件阴极发射结构主要有单一阴极、阴栅同极及其 多极结构等场发射电子源。  At present, the cathode emission structure of the field emission flat panel display device mainly has a field emission electron source such as a single cathode, a cathode gate and a multipole structure.
单一阴极结构的场发射源是由玻璃基板、金属底电极以及金属底电极上沉积 的或者是直接生长的阴极发射材料组成。虽然其制作工艺简单, 但存在着高电压 驱动, 电子发射不能调控等问题, 与低驱动电压, 可控电子发射等场发射平板显 示理念相悖。 不适合于制造优良的 FED显示器。  The field emission source of a single cathode structure is composed of a glass substrate, a metal bottom electrode, and a cathode-emitting material deposited on the metal bottom electrode or directly grown. Although the manufacturing process is simple, there are problems such as high voltage driving, unregulated electron emission, and the like, and the concept of low-driving voltage, controllable electron emission and other field emission flat panel display. Not suitable for making good FED displays.
阴栅同极结构的场发射源主要分为前栅结构、 后栅结构以及平行栅结构等。 阴栅同极结构虽然可以通过栅极来调控阴极的电子发射,降低了场发射平板显示 器的功耗。但是阴栅同极结构存在制作工艺复杂, 成本高等问题, 尤其是前栅结 构和后栅结构, 由于这两种结构的阴极导电层和栅极导电层交叠放置, 中间隔以 介质层防止两导电层短路,加大了工艺的制作难度和成本。而平行栅结构是栅极 导电层和阴极导电层在同一平面内相互平行, 虽然不需要制作介质层, 工艺相对 简单, 但是存在较大电子色散和束斑等问题。  The field emission sources of the cathode-gate structure are mainly divided into a front gate structure, a back gate structure, and a parallel gate structure. The cathode gate homopole structure can regulate the electron emission of the cathode through the gate, which reduces the power consumption of the field emission flat panel display. However, the cathode gate homopolar structure has problems of complicated fabrication process and high cost, especially the front gate structure and the back gate structure. Since the cathode conductive layer and the gate conductive layer of the two structures overlap, the medium layer is separated by the dielectric layer. The short circuit of the conductive layer increases the difficulty and cost of the process. The parallel gate structure is such that the gate conductive layer and the cathode conductive layer are parallel to each other in the same plane. Although it is not necessary to fabricate the dielectric layer, the process is relatively simple, but there are problems such as large electron dispersion and beam spot.
综上所述, 有必要提出一种制备工艺简单, 可以实现低压调控, 同时能有 效控制电子色散的新型结构的场发射显示器件。 发明内容  In summary, it is necessary to propose a novel structure field emission display device which is simple in preparation process, can realize low-voltage regulation, and can effectively control electron dispersion. Summary of the invention
本发明的目的在于提供一种柔性可控有机 pn结场发射电子源, 它具有制备 工艺简单, 成本低, 可实现柔性, 低压调控发射电子, 采用超晶格材料, 有效避 免电子在迁移过程中的晶格散射等优点。  The object of the present invention is to provide a flexible controllable organic pn junction field emission electron source, which has the advantages of simple preparation process, low cost, flexibility, low-voltage regulation and emission electrons, and superlattice material, thereby effectively avoiding electrons in the migration process. The advantages of lattice scattering and the like.
为实现上述目的, 本发明采用如下技术方案: 一种柔性可控有机 pn结场发射电子源, 它依次包括基板、 下电极层, n型 有机材料层, p型有机材料层和上电极层, 所述基板被下电极层所覆盖, 所述下 电极层被 n型有机材料层所覆盖,所述 p型有机材料层完全覆盖在 n型有机材料 层上, 所述 p型有机材料层被上电极层所覆盖。 To achieve the above object, the present invention adopts the following technical solutions: A flexible controllable organic pn junction field emission electron source, which in turn comprises a substrate, a lower electrode layer, an n-type organic material layer, a p-type organic material layer and an upper electrode layer, wherein the substrate is covered by a lower electrode layer, The lower electrode layer is covered by an n-type organic material layer completely overlying the n-type organic material layer, the p-type organic material layer being covered by the upper electrode layer.
所述的 p型有机材料层是由非辐射复合和低功函数的有机材料制成的面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的有机层; 所述的有机材料是酞菁铜、氯 化铟酞菁、低聚噻吩、聚噻吩、聚 (3-己基噻吩)、三芳胺、聚对苯撑乙烯撑(PPV)、 聚硅烷、 PEDOT/PSS (聚 3,4-乙撑二氧噻吩 /聚苯乙烯磺酸); 所述的 p型有机 材料层是采用印刷法, 喷涂法, 涂覆法, 溶液甩胶法或蒸发镀膜法制成的超薄的 完整晶格层。 所述的 p型有机材料层的厚度为 1-100 nm。  The p-type organic material layer is a planar, strip, square hole, fishbone, comb or round hole organic layer made of a non-radiative composite and a low work function organic material; The organic materials are copper phthalocyanine, indium phthalocyanine, oligothiophene, polythiophene, poly(3-hexylthiophene), triarylamine, polyparaphenylenevinylene (PPV), polysilane, PEDOT/PSS (poly 3 , 4-ethylenedioxythiophene/polystyrenesulfonic acid); the p-type organic material layer is ultra-thin intact by printing, spraying, coating, solution coating or evaporation coating. Lattice layer. The p-type organic material layer has a thickness of 1-100 nm.
所述的 n型有机材料层是由低能级, 非辐射复合, 高电子迁移率的有机材料 制成的面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的有机层; 所述的有机材料 是富勒烯、 掺碱金属 (Li、 Na、 K) 的富勒烯衍生物、 ActivInk N2200 (高电子 迁移率的有机半导体材料)、 掺硫杂环的 2-(1,3-二硫 -2-叶立德)丙二氰稠合的萘 酰亚胺衍生物、 Ν,Ν'-二萘嵌苯 -3,4,9,10-四羧酸二酰亚胺、 三硝基芴酮 (TNF)、 四氰基苯醌二甲烷 (TCNQ)、 萘酐、 茈酐、 十六氟代酞菁铜 (F16CuPc)、 氟代低 聚唆吩、全氟代 a-六噻吩(PF-6T); 所述的 n型有机材料层是采用印刷法、涂覆 法、 喷涂法、溶液甩胶法或蒸发镀膜法制成的。所述的 n型有机材料层的厚度为 l-2000nm。 The n-type organic material layer is a planar, strip-shaped, square-hole, fishbone, comb or round-hole organic layer made of a low-energy, non-radiative composite, high electron mobility organic material. The organic material is fullerene, fullerene derivative of alkali metal (Li, Na, K), ActivInk N2200 (organic semiconductor material with high electron mobility), 2-(1) of sulfur-doped heterocyclic ring , 3-dithio-2-ylidene) propylenediamine fused naphthalimide derivative, hydrazine, Ν'-perylene-3,4,9,10-tetracarboxylic acid diimide, three Nitrofluorenone (TNF), tetracyanoquinodimethane (TCNQ), naphthalic anhydride, phthalic anhydride, hexadecafluorophthalocyanine copper (F 16 CuPc), fluoro oligophene, perfluoro a- Hexathiophene (PF-6T); The n-type organic material layer is formed by a printing method, a coating method, a spray method, a solution gel method or an evaporation coating method. The n-type organic material layer has a thickness of from 1 to 2000 nm.
所述的基板是金属薄片、 柔性玻璃、 柔性硅或有机聚合物; 所述的有机聚 合物是聚碳酸酯、 聚酯、 聚酰亚胺或聚乙烯。  The substrate is a metal foil, a flexible glass, a flexible silicon or an organic polymer; the organic polymer is polycarbonate, polyester, polyimide or polyethylene.
所述的上、 下电极层是面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的电极 层; 所述的上、 下电极层的厚度为 10-1000 nm; 所述的上、 下电极层是采用印 刷法或镀膜法结合刻蚀法制成的; 所述的上、 下电极材料为聚乙块、 聚噻吩、 聚吡咯、 聚苯胺、 聚苯撑、 聚苯撑乙烯、 聚双块、 PEDOT/PSS中的一种或 多种复合的聚合物导电材料, 或者是经过掺杂处理的上述聚合物材料, 或者是 硅层, 或者是银、 铜、 铝、 铁、 镍、 金、 铬、 钛中的一种金属元素的单层薄膜电 极或多种金属元素的多层复合薄膜或者合金薄膜, 或者是具有导电性的 Sn、 Zn、 In的氧化物中的一种或多种组合的氧化物有机薄膜, 或者是银、 铜、 铝、 铁、 镍、 金、 铬、 钛中的一种或多种组合的导电金属颗粒, 或者是 Sn、 Zn、 In的氧化物 中的一种或多种组合的印刷浆料所制备的导电层。 The upper and lower electrode layers are planar, strip-shaped, square-hole, fishbone, comb or round hole electrode layers; the upper and lower electrode layers have a thickness of 10-1000 nm; The upper and lower electrode layers are formed by a printing method or a plating method in combination with an etching method; the upper and lower electrode materials are polyphenylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene One or more composite polymeric conductive materials of ethylene, poly double block, PEDOT/PSS, or the above-mentioned polymer material which is doped, or a silicon layer, or silver, copper, aluminum, iron, a single-layer thin film electrode of one metal element of nickel, gold, chromium, titanium or a multilayer composite film or alloy film of a plurality of metal elements, or one of oxides of Sn, Zn, In having conductivity Or a combination of oxide organic thin films, or silver, copper, aluminum, iron, nickel, A conductive layer prepared by printing a conductive paste of one or more of one or more of gold, chromium, and titanium, or a combination of one or more of oxides of Sn, Zn, and In.
本发明的显著优点在于:  The significant advantages of the present invention are:
1 )利用有机重掺杂 pn结的电子浓度差实现电子的自扩散,当 pn结足够窄, p层足够薄的时候, 在上下电极上施加很小的电压就可以实现大量电子从 n型有 机材料层到 p型有机材料层甚至表面的转移,而且由于 p型有机材料层采用超晶 格及低功函数的材料,只需要较低电压就可以驱动电子脱离 p型有机层发射到真 空中去。  1) Using the electron concentration difference of the organic heavily doped pn junction to achieve self-diffusion of electrons. When the pn junction is sufficiently narrow and the p layer is sufficiently thin, a large amount of electrons can be applied from the upper and lower electrodes to realize a large amount of electrons from the n-type organic The transfer of the material layer to the p-type organic material layer or even the surface, and since the p-type organic material layer uses a superlattice and a low work function material, only a lower voltage is required to drive the electrons out of the p-type organic layer and emit into the vacuum. .
2) 无需介质层隔离, 也无需沉积或生长阴极场发射材料, 采用有机材料, 制备工艺简单, 成本低, 使用柔性基板, 可实现器件柔性化。 电子在移动过程中 也降低了晶格散射的可能,有效地避免因电子色散引起的相邻像素单元干扰的问 题。 附图说明  2) No dielectric layer isolation, no deposition or growth of cathode field emission materials, organic materials, simple preparation process, low cost, flexible substrate, flexible device. The electrons also reduce the possibility of lattice scattering during the movement, effectively avoiding the problem of adjacent pixel unit interference caused by electron dispersion. DRAWINGS
图 1为一种上电极层为带状的柔性可控有机 pn结场发射电子源结构示意图; 图 2为一种上、下电极带状交叉的柔性可控有机 pn结场发射电子源结构示意图; 图 3为一种上电极为圆孔状的柔性可控有机 pn结场发射电子源结构示意图; 图中: 001、 111、 221—基板; 002、 112、 222—下电极层; 003、 113、 223— 型有机材料层; 004、 114、 224~n型有机材料层; 005、 115、 225—上电极层。 具体实施方式 1 is a schematic view showing a structure of a flexible controllable organic pn junction field emission electron source having a strip-shaped upper electrode layer; FIG. 2 is a schematic diagram showing a structure of a flexible controllable organic pn junction field emission electron source with upper and lower electrodes strip-shaped crossing Figure 3 is a schematic diagram showing the structure of a flexible controllable organic pn junction field emission electron source with a top electrode in a circular hole shape; Figure: 001, 111, 221 - substrate; 002, 112, 222 - lower electrode layer; 003, 113 , 223-type organic material layer; 004, 114, 224~n-type organic material layer; 005, 115, 225-upper electrode layer. detailed description
一种柔性可控有机 pn结场发射电子源, 它依次包括基板、 下电极层, n型 有机材料层, p型有机材料层和上电极层, 所述基板被下电极层所覆盖, 所述下 电极层被 n型有机材料层所覆盖,所述 p型有机材料层完全覆盖在 n型有机材料 层上, 所述 p型有机材料层被上电极层所覆盖。  A flexible controllable organic pn junction field emission electron source, which in turn comprises a substrate, a lower electrode layer, an n-type organic material layer, a p-type organic material layer and an upper electrode layer, wherein the substrate is covered by a lower electrode layer, The lower electrode layer is covered by an n-type organic material layer completely overlying the n-type organic material layer, the p-type organic material layer being covered by the upper electrode layer.
所述的 p型有机材料层是由非辐射复合和低功函数的有机材料制成的面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的有机层; 所述的有机材料是酞菁铜、氯 化铟酞菁、低聚噻吩、聚噻吩、聚 (3-己基噻吩)、三芳胺、聚对苯撑乙烯撑(PPV)、 聚硅烷、 PEDOT/PSS (聚 3,4-乙撑二氧噻吩 /聚苯乙烯磺酸); 所述的 p型有机 材料层是采用印刷法, 喷涂法, 涂覆法, 溶液甩胶法或蒸发镀膜法制成的超薄的 完整晶格层。 所述的 p型有机材料层的厚度为 1-100 nm。 The p-type organic material layer is a planar, strip, square hole, fishbone, comb or round hole organic layer made of a non-radiative composite and a low work function organic material; The organic materials are copper phthalocyanine, indium phthalocyanine, oligothiophene, polythiophene, poly(3-hexylthiophene), triarylamine, polyparaphenylenevinylene (PPV), polysilane, PEDOT/PSS (poly 3 , 4-ethylenedioxythiophene/polystyrenesulfonic acid); the p-type organic The material layer is an ultra-thin complete lattice layer made by printing, spraying, coating, solution coating or evaporation coating. The p-type organic material layer has a thickness of 1-100 nm.
所述的 n型有机材料层是由低能级, 非辐射复合, 高电子迁移率的有机材料 制成的面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的有机层; 所述的有机材料 是富勒烯、 掺碱金属 (Li、 Na、 K) 的富勒烯衍生物、 ActivInk N2200 (高电子 迁移率的有机半导体材料)、 掺硫杂环的 2-(1,3-二硫 -2-叶立德)丙二氰稠合的萘 酰亚胺衍生物、 Ν,Ν'-二萘嵌苯 -3,4,9,10-四羧酸二酰亚胺、 三硝基芴酮 (TNF)、 四氰基苯醌二甲烷 (TCNQ)、 萘酐、 茈酐、 十六氟代酞菁铜 (F16CuPc)、 氟代低 聚唆吩、全氟代 a-六噻吩(PF-6T); 所述的 n型有机材料层是采用印刷法、涂覆 法、 喷涂法、溶液甩胶法或蒸发镀膜法制成的。所述的 n型有机材料层的厚度为 l-2000nm。 The n-type organic material layer is a planar, strip-shaped, square-hole, fishbone, comb or round-hole organic layer made of a low-energy, non-radiative composite, high electron mobility organic material. The organic material is fullerene, fullerene derivative of alkali metal (Li, Na, K), ActivInk N2200 (organic semiconductor material with high electron mobility), 2-(1) of sulfur-doped heterocyclic ring , 3-dithio-2-ylidene) propylenediamine fused naphthalimide derivative, hydrazine, Ν'-perylene-3,4,9,10-tetracarboxylic acid diimide, three Nitrofluorenone (TNF), tetracyanoquinodimethane (TCNQ), naphthalic anhydride, phthalic anhydride, hexadecafluorophthalocyanine copper (F 16 CuPc), fluoro oligophene, perfluoro a- Hexathiophene (PF-6T); The n-type organic material layer is formed by a printing method, a coating method, a spray method, a solution gel method or an evaporation coating method. The n-type organic material layer has a thickness of from 1 to 2000 nm.
所述的基板是金属薄片、 柔性玻璃、 柔性硅或有机聚合物; 所述的有机聚 合物是聚碳酸酯、 聚酯、 聚酰亚胺或聚乙烯。  The substrate is a metal foil, a flexible glass, a flexible silicon or an organic polymer; the organic polymer is polycarbonate, polyester, polyimide or polyethylene.
所述的上、 下电极层是面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的电极 层; 所述的上、 下电极层的厚度为 10-1000 nm; 所述的上、 下电极层是采用印 刷法或镀膜法结合刻蚀法制成的; 所述的上、 下电极材料为聚乙块、 聚噻吩、 聚吡咯、 聚苯胺、 聚苯撑、 聚苯撑乙烯、 聚双块、 PEDOT/PSS中的一种或多 种复合的聚合物导电材料, 或者是经过掺杂处理的上述聚合物材料, 或者是硅 层, 或者是银、 铜、 铝、 铁、 镍、 金、 铬、 钛中的一种金属元素的单层薄膜电极 或多种金属元素的多层复合薄膜或者合金薄膜, 或者是具有导电性的 Sn、 Zn、 In的氧化物中的一种或多种组合的氧化物有机薄膜, 或者是银、 铜、 铝、 铁、 镍、 金、 铬、 钛中的一种或多种组合的导电金属颗粒, 或者是 Sn、 Zn、 In的氧化物 中的一种或多种组合的印刷浆料所制备的导电层。  The upper and lower electrode layers are planar, strip-shaped, square-hole, fishbone, comb or round hole electrode layers; the upper and lower electrode layers have a thickness of 10-1000 nm; The upper and lower electrode layers are formed by a printing method or a plating method in combination with an etching method; the upper and lower electrode materials are polyphenylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene One or more composite polymeric conductive materials of ethylene, poly double block, PEDOT/PSS, or the above-mentioned polymer material which is doped, or a silicon layer, or silver, copper, aluminum, iron, a single-layer thin film electrode of one metal element of nickel, gold, chromium, titanium or a multilayer composite film or alloy film of a plurality of metal elements, or one of oxides of Sn, Zn, In having conductivity Or a combination of oxide organic thin films, or conductive metal particles of one or more of silver, copper, aluminum, iron, nickel, gold, chromium, titanium, or oxides of Sn, Zn, In One or more combinations of printing pastes The conductive layer is prepared.
实施例 1 Example 1
如图 2所示, 本发明的制作工艺如下: As shown in FIG. 2, the manufacturing process of the present invention is as follows:
第一步, 基板 111准备 First step, substrate 111 preparation
本实施例采用 PET基板,对 PET基板进行清洗,得到洁净的基板表面; 第二步, 制备下电极层 112  In this embodiment, the PET substrate is used to clean the PET substrate to obtain a clean substrate surface. In the second step, the lower electrode layer 112 is prepared.
本实施例采用蒸发镀膜法, 将掺杂适量碘的聚乙块蒸镀到 PET基板上, 通过掩模版形成带状电极层; In this embodiment, an evaporating coating method is used to evaporate a polycrystalline block doped with an appropriate amount of iodine onto a PET substrate. Forming a strip electrode layer through the reticle;
第三步, 制备 n型有机材料层 113 The third step is to prepare an n-type organic material layer 113
本实施例采用丝网印刷法,将富勒烯衍生物的浆料制备在带状电极层 上, 形成一层 400 nm厚的 n型有机材料层, 之后将 n型有机材料层在 160 °C的空气中保温 20min;  In this embodiment, a slurry of a fullerene derivative is prepared on a strip electrode layer by a screen printing method to form a 400 nm thick n-type organic material layer, and then the n-type organic material layer is at 160 ° C. Insulation in the air for 20 min;
第四步, 制备 p型有机材料层 114 The fourth step is to prepare a p-type organic material layer.
本实施例选用蒸发镀膜法,在 n型有机材料层上蒸镀一层 20 nm的氯 化铟酞菁薄膜, 蒸镀时借助掩模版, 制作成带状 p型有机材料层; 第五步, 制备上电极层 115  In this embodiment, an evaporation coating method is used to deposit a 20 nm indium chloride phthalocyanine film on the n-type organic material layer, and a strip-shaped p-type organic material layer is formed by evaporation using a mask plate; Preparing the upper electrode layer 115
( 1 ) 采用丝网印刷法, 将非晶硅绝缘介质 116填充在带状 p型有机层中 间;  (1) filling an amorphous silicon insulating medium 116 in the middle of the strip-shaped p-type organic layer by screen printing;
(2) 本实施例采用蒸发镀膜法, 将掺杂碘的聚乙块蒸镀到 PET基板上, 通过掩模版形成带状电极层, 与下电极层交叉放置;  (2) In this embodiment, an iodine-doped polyethylene block is vapor-deposited onto a PET substrate by an evaporation coating method, and a strip electrode layer is formed through a reticle to be placed across the lower electrode layer;
( 3 ) 用干法刻蚀法将未被上电极层覆盖的绝缘介质去除。  (3) The insulating medium not covered by the upper electrode layer is removed by dry etching.
实施例 2 Example 2
如图 3所示, 本发明的制作工艺如下: As shown in FIG. 3, the manufacturing process of the present invention is as follows:
第一步, 基板 221清洗 First step, substrate 221 cleaning
本实施例选用 PC作为基板,首先将 PC基板清洗,得到洁净的基板表面; 第二步, 金属下电极 222制备  In this embodiment, a PC is selected as the substrate, and the PC substrate is first cleaned to obtain a clean substrate surface; and the second step, the metal lower electrode 222 is prepared.
形成金属电极层,本实施例优先选用磁控溅射镀膜的方法, 在玻璃基板 上溅射铬膜, 在铬膜上溅射铜膜, 形成面状双层复合导电薄膜, 电极层 厚度为 lum, 镀膜中借助模版, 保护基板的边缘;  In the embodiment, a method of magnetron sputtering coating is preferred, a chromium film is sputtered on the glass substrate, and a copper film is sputtered on the chromium film to form a planar double-layer composite conductive film, and the thickness of the electrode layer is lum. Protecting the edge of the substrate by means of a stencil in the coating;
第三步, 在下电极层上制备 n型有机材料层 223 In the third step, an n-type organic material layer is prepared on the lower electrode layer.
本实施例选用蒸发镀膜法将适量掺杂的 PCBM (富勒烯衍生物) 沉积在 下电极层上, 形成 500nm厚的 n型超晶格有机材料层, 将下电极层一端 边缘处印刷一层油墨保护层;  In this embodiment, an appropriate amount of doped PCBM (fullerene derivative) is deposited on the lower electrode layer by an evaporation coating method to form a 500 nm thick n-type superlattice organic material layer, and a layer of ink is printed on one end edge of the lower electrode layer. The protective layer;
第四步, 在 n型有机材料层上制备 p型有机材料层 224 The fourth step is to prepare a p-type organic material layer on the n-type organic material layer.
本实施例选用蒸发镀膜法在有机 n型有机材料层上沉积一层 50nm的酞 菁铜薄膜, 作为 p型有机材料层; 第五步, 制备上电极层 225 In this embodiment, a 50 nm copper phthalocyanine film is deposited on the organic n-type organic material layer by using an evaporation coating method as a p-type organic material layer; In the fifth step, the upper electrode layer 225 is prepared.
( 1 ) 本实施例选用射频溅射镀膜法直接在 p型有机层上溅射一层 300nm厚 的铬膜;  (1) In this embodiment, a 300 nm thick chromium film is directly sputtered on the p-type organic layer by using a radio frequency sputtering coating method;
(2)在铬膜上用丝网印刷印上抗刻蚀保护油墨, 再经化学腐蚀处理将没有油 墨保护的铬膜腐蚀去掉, 用有机溶剂将油墨清洗去掉, 形成圆孔状铬膜 电极;  (2) printing an anti-etching protective ink on the chrome film by screen printing, and then removing the chromium film without ink protection by chemical etching, and cleaning the ink with an organic solvent to form a circular-hole chromium film electrode;
上述两个实施例有机 pn结场发射电子源在使用时, 上电极加低正压, 下电 极接地, 由于 pn结足够薄, 可获得较大电场, 在强电场的作用下, 大量电子从 金属下电极注入至 n型有机材料层,并在 n型有机材料层中跳跃传输至 p型有机 材料层, 当 p型有机材料层足够薄, 电子可传输至 p型有机材料层表面。本发明 可通过对金属上下电极施加调控电压来控制电子源。  In the above two embodiments, the organic pn junction field emission electron source is used, the upper electrode is applied with a low positive pressure, and the lower electrode is grounded. Since the pn junction is sufficiently thin, a large electric field can be obtained, and under the action of a strong electric field, a large amount of electrons are emitted from the metal. The lower electrode is implanted into the n-type organic material layer and is hopped to the p-type organic material layer in the n-type organic material layer. When the p-type organic material layer is sufficiently thin, electrons can be transported to the surface of the p-type organic material layer. The present invention can control the electron source by applying a regulating voltage to the upper and lower electrodes of the metal.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变 化与修饰, 皆应属本发明的涵盖范围。  The above are only the preferred embodiments of the present invention, and all changes and modifications made by the scope of the present invention should be within the scope of the present invention.

Claims

1、 一种柔性可控有机 pn结场发射电子源, 它依次包括基板、 下电极层, n 型有机材料层, p型有机材料层和上电极层, 其特征在于: 所述基板被下电 极层所覆盖, 所述下电极层被 n型有机材料层所覆盖, 所述 p型有机材料 层完全覆盖在 n型有机材料层上, 所述 p型有机材料层被上电极层所覆盖。 A flexible controllable organic pn junction field emission electron source, which in turn comprises a substrate, a lower electrode layer, an n-type organic material layer, a p-type organic material layer and an upper electrode layer, wherein: the substrate is a lower electrode Covered by the layer, the lower electrode layer is covered by an n-type organic material layer completely covering the n-type organic material layer, and the p-type organic material layer is covered by the upper electrode layer.
2、 根据权利要求 1所述的柔性可控有机 pn结场发射电子源, 其特征在于: 所述的 p型有机材料层是由非辐射复合和低功函数的有机材料制成的面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的有机层; 所述的有机材料是酞菁 铜、 氯化铟酞菁、 低聚噻吩、 聚噻吩、 聚 3-己基噻吩、 三芳胺、 聚对苯撑 乙烯撑、 聚硅烷或聚 3,4-乙撑二氧噻吩 /聚苯乙烯磺酸; 所述的 p型有机材 料层是采用印刷法, 喷涂法, 涂覆法, 溶液甩胶法或蒸发镀膜法制成的超 薄的完整晶格层。  2. The flexible controllable organic pn junction field emission electron source according to claim 1, wherein: said p-type organic material layer is a planar surface made of a non-radiative composite and a low work function organic material, An organic layer in the form of a strip, a square hole, a fishbone, a comb or a round hole; the organic material is copper phthalocyanine, indium phthalocyanine, oligothiophene, polythiophene, poly-3-hexylthiophene, a triarylamine, a polyparaphenylenevinylene, a polysilane or a poly 3,4-ethylenedioxythiophene/polystyrenesulfonic acid; the p-type organic material layer is printed, sprayed, coated, An ultra-thin complete lattice layer made by solution gelation or evaporation coating.
3、 根据权利要求 2所述的柔性可控有机 pn结场发射电子源, 其特征在于: 所述的 p型有机材料层的厚度为 1-100 nm。  3. The flexible controllable organic pn junction field emission electron source according to claim 2, wherein: the p-type organic material layer has a thickness of 1-100 nm.
4、 根据权利要求 1所述的柔性可控有机 pn结场发射电子源, 其特征在于: 所述的 n型有机材料层是由低能级, 非辐射复合, 高电子迁移率的有机材 料制成的面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的有机层; 所述的 有机材料是富勒烯及富勒烯的碱金属衍生物、 ActiVInk N2200、 掺硫杂环的 2-(1,3-二硫 -2-叶立德)丙二氰稠合的萘酰亚胺衍生物、 Ν,Ν'-二萘嵌苯 -3,4,9,10-四羧酸二酰亚胺、 2,4,7-三硝基芴酮、 7,7,8,8-四氰基对苯醌二甲 烷 、 1,8- 萘 二 甲 酸 酐 、 3,4,9,10- 茈 四 甲 酸 二 酐 、 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25-十六氟酞菁铜 (I I)、 氟代 低聚唆吩或全氟代 a-六噻吩; 所述的 n型有机材料层是采用印刷法、 涂覆 法、 喷涂法、 溶液甩胶法或蒸发镀膜法制成的。 4. The flexible controllable organic pn junction field emission electron source according to claim 1, wherein: the n-type organic material layer is made of a low energy level, a non-radiative composite, and a high electron mobility organic material. An organic layer of a planar, ribbon, square hole, fishbone, comb or round hole; the organic material is an alkali metal derivative of fullerenes and fullerenes, Acti V Ink N2200, admixture Thioheterocyclic 2-(1,3-dithio-2-ylidene) propylenediamine fused naphthalimide derivative, hydrazine, Ν'-perylene-3,4,9,10-tetra Carboxylic acid diimide, 2,4,7-trinitrofluorenone, 7,7,8,8-tetracyano-p-benzoquinodimethane, 1,8-naphthalic anhydride, 3,4,9 , 10--tetracarboxylic acid dianhydride, 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 24, 24, 25-hexadecafluorophthalocyanine copper (II) The fluorooligospore or the perfluoroa-hexathiophene; the n-type organic material layer is formed by a printing method, a coating method, a spray method, a solution gel method or an evaporation coating method.
5、 根据权利要求 4所述的柔性可控有机 pn结场发射电子源, 其特征在于: 所述的 n型有机材料层的厚度为 l-2000nm。  The flexible controllable organic pn junction field emission electron source according to claim 4, wherein: the n-type organic material layer has a thickness of from 1 to 2000 nm.
6、 根据权利要求 1所述的柔性可控有机 pn结场发射电子源, 其特征在于: 所述的基板是金属薄片、 柔性玻璃、 柔性硅或有机聚合物; 所述的有机聚 合物是聚碳酸酯、 聚酯、 聚酰亚胺或聚乙烯。 6. The flexible controllable organic pn junction field emission electron source according to claim 1, wherein: the substrate is a metal foil, a flexible glass, a flexible silicon or an organic polymer; and the organic polymer is a poly Carbonate, polyester, polyimide or polyethylene.
7、 根据权利要求 1所述的柔性可控有机 pn结场发射电子源, 其特征在于: 所述的上、 下电极层是面状、 带状、 方孔状、 鱼骨状、 梳状或圆孔状的电 极层; 所述的上、 下电极层的厚度为 10-1000 nm; 所述的上、 下电极层是 采用印刷法或镀膜法结合刻蚀法制成的; 所述的上、 下电极材料为聚乙块、 聚噻吩、 聚吡咯、 聚苯胺、 聚苯撑、 聚苯撑乙烯、 聚双块、 PEDOT/PSS中 的一种或多种复合的聚合物导电材料, 或者是经过掺杂处理的上述聚合物 材料, 或者是硅层, 或者是银、 铜、 铝、 铁、 镍、 金、 铬、 钛中的一种金 属元素的单层薄膜电极或多种金属元素的多层复合薄膜或者合金薄膜, 或 者是具有导电性的 Sn、 Zn、 In的氧化物中的一种或多种组合的氧化物有机 薄膜, 或者是银、 铜、 铝、 铁、 镍、 金、 铬、 钛中的一种或多种组合的导 电金属颗粒, 或者是 Sn、 Zn、 In的氧化物中的一种或多种组合的印刷浆料 所制备的导电层。 7. The flexible controllable organic pn junction field emission electron source according to claim 1, wherein: the upper and lower electrode layers are planar, strip-shaped, square-hole, fishbone, comb or a hole-shaped electrode layer; the upper and lower electrode layers have a thickness of 10 to 1000 nm; and the upper and lower electrode layers are formed by a printing method or a coating method in combination with an etching method; The lower electrode material is a polymer conductive material of one or more of polyphenyl block, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene ethylene, poly double block, PEDOT/PSS, or The above-mentioned polymer material doped with a treatment, or a silicon layer, or a single-layer thin film electrode of one metal element of silver, copper, aluminum, iron, nickel, gold, chromium, titanium or a plurality of layers of various metal elements a composite film or an alloy film, or an oxide organic film having one or more combinations of conductive Sn, Zn, In oxides, or silver, copper, aluminum, iron, nickel, gold, chromium, Guide to one or more combinations of titanium Metal particles, a conductive layer or Sn, Zn, and In oxides or various combinations of the printing paste prepared.
PCT/CN2011/083967 2011-11-08 2011-12-14 Flexible controllable organic pn joint field emission electron source WO2013067731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103489853A CN102360999A (en) 2011-11-08 2011-11-08 Flexible controllable organic positive and negative (pn) junction field emission electron source
CN201110348985.3 2011-11-08

Publications (1)

Publication Number Publication Date
WO2013067731A1 true WO2013067731A1 (en) 2013-05-16

Family

ID=45586283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083967 WO2013067731A1 (en) 2011-11-08 2011-12-14 Flexible controllable organic pn joint field emission electron source

Country Status (2)

Country Link
CN (1) CN102360999A (en)
WO (1) WO2013067731A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550697A (en) * 2017-10-30 2018-09-18 上海幂方电子科技有限公司 Flexible organic solar batteries and its all print preparation method
CN111074325B (en) * 2019-12-10 2021-05-04 江西科技师范大学 Preparation method of all-organic P-N type composite flexible nanowire film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241549A (en) * 1997-02-27 1998-09-11 New Japan Radio Co Ltd Field emission type negative electrode
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
US6538368B1 (en) * 1999-03-06 2003-03-25 Smiths Group Plc Electron-emitting devices
CN1412805A (en) * 2001-10-12 2003-04-23 惠普公司 Injection cold emitter with nagative electron affinity
JP2005056659A (en) * 2003-08-04 2005-03-03 Hitachi Zosen Corp Thin flexible electron emission member
CN1254839C (en) * 2000-10-26 2006-05-03 松下电工株式会社 Field emission type electron source
CN101375429B (en) * 2005-12-23 2011-02-23 诺瓦莱德公开股份有限公司 Electronic device with a layer structure of organic layers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794805B1 (en) * 1998-05-26 2004-09-21 Matsushita Electric Works, Ltd. Field emission electron source, method of producing the same, and use of the same
JP2009147153A (en) * 2007-12-14 2009-07-02 Sharp Corp Thin-film transistor structure, display device, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818165A (en) * 1995-10-27 1998-10-06 Texas Instruments Incorporated Flexible fed display
JPH10241549A (en) * 1997-02-27 1998-09-11 New Japan Radio Co Ltd Field emission type negative electrode
US6538368B1 (en) * 1999-03-06 2003-03-25 Smiths Group Plc Electron-emitting devices
CN1254839C (en) * 2000-10-26 2006-05-03 松下电工株式会社 Field emission type electron source
CN1412805A (en) * 2001-10-12 2003-04-23 惠普公司 Injection cold emitter with nagative electron affinity
JP2005056659A (en) * 2003-08-04 2005-03-03 Hitachi Zosen Corp Thin flexible electron emission member
CN101375429B (en) * 2005-12-23 2011-02-23 诺瓦莱德公开股份有限公司 Electronic device with a layer structure of organic layers

Also Published As

Publication number Publication date
CN102360999A (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Li et al. ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer
WO2015077629A1 (en) Devices, structures, materials and methods for vertical light emitting transistors and light emitting displays
KR101440607B1 (en) Solar cell module and method of manufacturing the same
Aslan et al. Sol–gel derived In2S3 buffer layers for inverted organic photovoltaic cells
WO2014067233A1 (en) Preparation method for high-conductivity organic transparent conductive film
US11708499B2 (en) Method of manufacturing highly conductive polymer thin film including plurality of conductive treatments
JP4534930B2 (en) Manufacturing method of organic solar cell
Aivali et al. Conducting polymers: towards printable transparent electrodes
WO2013067731A1 (en) Flexible controllable organic pn joint field emission electron source
KR20140115515A (en) Multiple transparent electrode and organic solar cell using the same
KR101565338B1 (en) Organic solar cell and method for manufacturing the same
KR20090014085A (en) Organic solar cell using conductive polymer transparent electrode and fabricating method thereof
KR20180035057A (en) Organic photovoltaics and method for manufacturing the same
KR100794570B1 (en) Vertical type organic thin film field effect transistor
US20150367616A1 (en) Pressure-transferred components
Tanaka et al. Semitransparent organic photovoltaic cell with carbon nanotube-sheet anodes and Ga-doped ZnO cathodes
Zhao et al. Preparation of device-level ZnO-covered silver nanowires films and their applications as sub-electrode for polymer solar cells
CN109378409A (en) A kind of electroluminescent device and its manufacturing method
KR20110089549A (en) Method for the fabrication of organic electric device by patternable brush printing process
JP2010129831A (en) Organic photoelectric conversion element, and method of manufacturing the same
JP5554529B2 (en) Photoelectric conversion device and solar cell
Arisawa et al. Small-molecule organic solar cells with multiple-layer donor
CN109285926A (en) Film for printing LED substrate, printed form film LED device and preparation method thereof
JP5907495B2 (en) Solar cell
JP2016152307A (en) Organic solar battery module and manufacturing method thereof, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875556

Country of ref document: EP

Kind code of ref document: A1