WO2013067432A1 - Microorganisms and methods for the production of caprolactone - Google Patents
Microorganisms and methods for the production of caprolactone Download PDFInfo
- Publication number
- WO2013067432A1 WO2013067432A1 PCT/US2012/063424 US2012063424W WO2013067432A1 WO 2013067432 A1 WO2013067432 A1 WO 2013067432A1 US 2012063424 W US2012063424 W US 2012063424W WO 2013067432 A1 WO2013067432 A1 WO 2013067432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coa
- caprolactone
- enzyme
- microbial organism
- naturally occurring
- Prior art date
Links
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 title claims abstract description 292
- 238000000034 method Methods 0.000 title claims abstract description 109
- 238000004519 manufacturing process Methods 0.000 title claims description 48
- 244000005700 microbiome Species 0.000 title description 20
- 102000004190 Enzymes Human genes 0.000 claims abstract description 337
- 108090000790 Enzymes Proteins 0.000 claims abstract description 337
- 230000000813 microbial effect Effects 0.000 claims abstract description 189
- 230000037361 pathway Effects 0.000 claims abstract description 175
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 153
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 146
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 146
- 238000012258 culturing Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims description 110
- 102000004316 Oxidoreductases Human genes 0.000 claims description 103
- 108090000854 Oxidoreductases Proteins 0.000 claims description 103
- 108010074122 Ferredoxins Proteins 0.000 claims description 70
- 230000002829 reductive effect Effects 0.000 claims description 60
- 102000004357 Transferases Human genes 0.000 claims description 55
- 108090000992 Transferases Proteins 0.000 claims description 55
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 51
- IWHLYPDWHHPVAA-UHFFFAOYSA-N 6-hydroxyhexanoic acid Chemical compound OCCCCCC(O)=O IWHLYPDWHHPVAA-UHFFFAOYSA-N 0.000 claims description 35
- 102000004157 Hydrolases Human genes 0.000 claims description 33
- 108090000604 Hydrolases Proteins 0.000 claims description 33
- 101710095468 Cyclase Proteins 0.000 claims description 32
- 101710182361 Pyruvate:ferredoxin oxidoreductase Proteins 0.000 claims description 29
- PNPPVRALIYXJBW-UHFFFAOYSA-N 6-oxohexanoic acid Chemical group OC(=O)CCCCC=O PNPPVRALIYXJBW-UHFFFAOYSA-N 0.000 claims description 27
- 102000003960 Ligases Human genes 0.000 claims description 27
- 108090000364 Ligases Proteins 0.000 claims description 27
- 108010031234 carbon monoxide dehydrogenase Proteins 0.000 claims description 26
- 108010020056 Hydrogenase Proteins 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 25
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 claims description 24
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 claims description 23
- HJRJHKRSUDUZAH-HDRQGHTBSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 6-hydroxyhexanethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 HJRJHKRSUDUZAH-HDRQGHTBSA-N 0.000 claims description 22
- 102000019259 Succinate Dehydrogenase Human genes 0.000 claims description 20
- 108010012901 Succinate Dehydrogenase Proteins 0.000 claims description 20
- SPNAEHGLBRRCGL-BIEWRJSYSA-N adipoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 SPNAEHGLBRRCGL-BIEWRJSYSA-N 0.000 claims description 20
- 102000004146 ATP citrate synthases Human genes 0.000 claims description 19
- 108090000662 ATP citrate synthases Proteins 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 102000009836 Aconitate hydratase Human genes 0.000 claims description 18
- 108010009924 Aconitate hydratase Proteins 0.000 claims description 18
- 102000004867 Hydro-Lyases Human genes 0.000 claims description 18
- 108090001042 Hydro-Lyases Proteins 0.000 claims description 18
- IAUWFGNDGKTXSI-UHFFFAOYSA-N phosphono 6-hydroxyhexanoate Chemical compound OCCCCCC(=O)OP(O)(O)=O IAUWFGNDGKTXSI-UHFFFAOYSA-N 0.000 claims description 18
- 108010036781 Fumarate Hydratase Proteins 0.000 claims description 17
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 claims description 17
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 claims description 17
- 108010092060 Acetate kinase Proteins 0.000 claims description 16
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 claims description 16
- 102100036160 Fumarate hydratase, mitochondrial Human genes 0.000 claims description 16
- 108700023175 Phosphate acetyltransferases Proteins 0.000 claims description 16
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 16
- 230000002269 spontaneous effect Effects 0.000 claims description 16
- 108010036824 Citrate (pro-3S)-lyase Proteins 0.000 claims description 15
- 108010026217 Malate Dehydrogenase Proteins 0.000 claims description 15
- 102000013460 Malate Dehydrogenase Human genes 0.000 claims description 15
- 108010075728 Succinate-CoA Ligases Proteins 0.000 claims description 15
- 102000011929 Succinate-CoA Ligases Human genes 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 238000007363 ring formation reaction Methods 0.000 claims description 15
- 102000001253 Protein Kinase Human genes 0.000 claims description 14
- POROIMOHDIEBBO-UHFFFAOYSA-N 2-oxocyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1=O POROIMOHDIEBBO-UHFFFAOYSA-N 0.000 claims description 13
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 claims description 13
- VNFGKLVPBWBFRO-HDRQGHTBSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 6-hydroxyhex-2-enethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=CCCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNFGKLVPBWBFRO-HDRQGHTBSA-N 0.000 claims description 13
- BAMBWCGEVIAQBF-CITAKDKDSA-N 4-hydroxybutyryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 BAMBWCGEVIAQBF-CITAKDKDSA-N 0.000 claims description 12
- 108010049926 Acetate-CoA ligase Proteins 0.000 claims description 12
- OKTJSMMVPCPJKN-IGMARMGPSA-N Carbon-12 Chemical compound [12C] OKTJSMMVPCPJKN-IGMARMGPSA-N 0.000 claims description 12
- 239000001963 growth medium Substances 0.000 claims description 12
- JHCYGWRLBRBSAN-HDRQGHTBSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 6-hydroxy-3-oxohexanethioate Chemical group O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 JHCYGWRLBRBSAN-HDRQGHTBSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 claims description 11
- 229920013724 bio-based polymer Polymers 0.000 claims description 11
- 229930029653 phosphoenolpyruvate Natural products 0.000 claims description 11
- BTOJVFGJBWIGSV-SNIDVWGTSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3,6-dihydroxyhexanethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)CCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 BTOJVFGJBWIGSV-SNIDVWGTSA-N 0.000 claims description 10
- ODZTXUXIYGJLMC-UHFFFAOYSA-N 2-hydroxycyclohexan-1-one Chemical compound OC1CCCCC1=O ODZTXUXIYGJLMC-UHFFFAOYSA-N 0.000 claims description 9
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 108090000489 Carboxy-Lyases Proteins 0.000 claims description 8
- 108010058646 cyclohexanone oxygenase Proteins 0.000 claims description 8
- 108060006633 protein kinase Proteins 0.000 claims description 7
- 229920006025 bioresin Polymers 0.000 claims description 6
- 108010008377 citryl-CoA synthetase Proteins 0.000 claims description 6
- IHVFHZGGMJDGGZ-UHFFFAOYSA-N 2-[2-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethylsulfanyl]-2-oxoethyl]-2-hydroxybutanedioic acid Chemical compound OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCSC(=O)CC(O)(CC(O)=O)C(O)=O)OC1N1C2=NC=NC(N)=C2N=C1 IHVFHZGGMJDGGZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000001413 cellular effect Effects 0.000 claims description 5
- BGLNPJARTQOCKR-OXXAVVHVSA-N 2-oxocyclohexane-1-carbonyl-CoA Chemical group O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)C1CCCCC1=O BGLNPJARTQOCKR-OXXAVVHVSA-N 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims description 2
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 claims 2
- 102000008146 Acetate-CoA ligase Human genes 0.000 claims 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 abstract description 4
- 108090000623 proteins and genes Proteins 0.000 description 277
- 239000000047 product Substances 0.000 description 130
- 102000004169 proteins and genes Human genes 0.000 description 119
- 235000018102 proteins Nutrition 0.000 description 114
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 111
- 241000588724 Escherichia coli Species 0.000 description 108
- 230000000694 effects Effects 0.000 description 92
- 230000015572 biosynthetic process Effects 0.000 description 72
- 239000000543 intermediate Substances 0.000 description 68
- 229910052799 carbon Inorganic materials 0.000 description 57
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 56
- 239000000758 substrate Substances 0.000 description 48
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 43
- 241000894007 species Species 0.000 description 42
- 230000014509 gene expression Effects 0.000 description 40
- 230000002503 metabolic effect Effects 0.000 description 35
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 34
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 34
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 30
- 230000002441 reversible effect Effects 0.000 description 29
- 230000001419 dependent effect Effects 0.000 description 28
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 27
- 238000000855 fermentation Methods 0.000 description 26
- 230000004151 fermentation Effects 0.000 description 26
- 230000012010 growth Effects 0.000 description 26
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 26
- 241000186570 Clostridium kluyveri Species 0.000 description 25
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 25
- 241000252867 Cupriavidus metallidurans Species 0.000 description 24
- 230000009466 transformation Effects 0.000 description 24
- 230000006870 function Effects 0.000 description 23
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- 239000001301 oxygen Substances 0.000 description 21
- 230000009467 reduction Effects 0.000 description 20
- 108010065027 Propanediol Dehydratase Proteins 0.000 description 19
- -1 cyclic ester Chemical class 0.000 description 19
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 18
- 241000589776 Pseudomonas putida Species 0.000 description 18
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 17
- 235000014469 Bacillus subtilis Nutrition 0.000 description 17
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 17
- 239000000306 component Substances 0.000 description 17
- 241000193403 Clostridium Species 0.000 description 16
- 241000605325 Hydrogenobacter thermophilus Species 0.000 description 16
- 241000588625 Acinetobacter sp. Species 0.000 description 15
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 15
- 239000003086 colorant Substances 0.000 description 15
- 229920001971 elastomer Polymers 0.000 description 15
- 239000000806 elastomer Substances 0.000 description 15
- 239000006115 industrial coating Substances 0.000 description 15
- 229920002635 polyurethane Polymers 0.000 description 15
- 239000004814 polyurethane Substances 0.000 description 15
- 239000011253 protective coating Substances 0.000 description 15
- 230000001681 protective effect Effects 0.000 description 15
- VNOYUJKHFWYWIR-ITIYDSSPSA-N succinyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNOYUJKHFWYWIR-ITIYDSSPSA-N 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 244000063299 Bacillus subtilis Species 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 150000001720 carbohydrates Chemical class 0.000 description 14
- 235000014633 carbohydrates Nutrition 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 241000193401 Clostridium acetobutylicum Species 0.000 description 13
- 230000001851 biosynthetic effect Effects 0.000 description 13
- 238000013461 design Methods 0.000 description 13
- 238000002703 mutagenesis Methods 0.000 description 13
- 231100000350 mutagenesis Toxicity 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 13
- 241000894006 Bacteria Species 0.000 description 12
- 241000191363 Chlorobium limicola Species 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 12
- 241000588747 Klebsiella pneumoniae Species 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 150000001299 aldehydes Chemical class 0.000 description 12
- 230000000155 isotopic effect Effects 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 12
- 238000000926 separation method Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 102100035709 Acetyl-coenzyme A synthetase, cytoplasmic Human genes 0.000 description 11
- 241000590002 Helicobacter pylori Species 0.000 description 11
- 241000193459 Moorella thermoacetica Species 0.000 description 11
- 241000589540 Pseudomonas fluorescens Species 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 229940037467 helicobacter pylori Drugs 0.000 description 11
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 11
- 239000003208 petroleum Substances 0.000 description 11
- 239000002243 precursor Substances 0.000 description 11
- 239000002028 Biomass Substances 0.000 description 10
- 101710088194 Dehydrogenase Proteins 0.000 description 10
- 241000282414 Homo sapiens Species 0.000 description 10
- 150000001413 amino acids Chemical group 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 10
- 230000002255 enzymatic effect Effects 0.000 description 10
- 230000004077 genetic alteration Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- LYCRXMTYUZDUGA-UYRKPTJQSA-N pimeloyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LYCRXMTYUZDUGA-UYRKPTJQSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 9
- 241000191382 Chlorobaculum tepidum Species 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 9
- 241000157876 Metallosphaera sedula Species 0.000 description 9
- 101100297400 Rhizobium meliloti (strain 1021) phaAB gene Proteins 0.000 description 9
- 238000007792 addition Methods 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 231100000118 genetic alteration Toxicity 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 9
- 235000006408 oxalic acid Nutrition 0.000 description 9
- DTBNBXWJWCWCIK-UHFFFAOYSA-K phosphonatoenolpyruvate Chemical compound [O-]C(=O)C(=C)OP([O-])([O-])=O DTBNBXWJWCWCIK-UHFFFAOYSA-K 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 238000000844 transformation Methods 0.000 description 9
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 8
- 241000604450 Acidaminococcus fermentans Species 0.000 description 8
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- 241000187562 Rhodococcus sp. Species 0.000 description 8
- 241000190950 Rhodopseudomonas palustris Species 0.000 description 8
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 150000002148 esters Chemical group 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 230000006680 metabolic alteration Effects 0.000 description 8
- 238000006241 metabolic reaction Methods 0.000 description 8
- 238000005457 optimization Methods 0.000 description 8
- 101150110984 phaB gene Proteins 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 description 8
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 8
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 241000589875 Campylobacter jejuni Species 0.000 description 7
- 102000004031 Carboxy-Lyases Human genes 0.000 description 7
- 241000193454 Clostridium beijerinckii Species 0.000 description 7
- 108010023922 Enoyl-CoA hydratase Proteins 0.000 description 7
- 108020002908 Epoxide hydrolase Proteins 0.000 description 7
- 108090000371 Esterases Proteins 0.000 description 7
- 241000233866 Fungi Species 0.000 description 7
- 241000605233 Hydrogenobacter Species 0.000 description 7
- 108090001060 Lipase Proteins 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 108091000080 Phosphotransferase Proteins 0.000 description 7
- 239000000370 acceptor Substances 0.000 description 7
- OJFDKHTZOUZBOS-CITAKDKDSA-N acetoacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OJFDKHTZOUZBOS-CITAKDKDSA-N 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- CRFNGMNYKDXRTN-CITAKDKDSA-N butyryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CRFNGMNYKDXRTN-CITAKDKDSA-N 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 238000012224 gene deletion Methods 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000000126 in silico method Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 239000010452 phosphate Substances 0.000 description 7
- 102000020233 phosphotransferase Human genes 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 241000588624 Acinetobacter calcoaceticus Species 0.000 description 6
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 6
- 241000219195 Arabidopsis thaliana Species 0.000 description 6
- 241000203069 Archaea Species 0.000 description 6
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 6
- 241001611022 Clostridium carboxidivorans Species 0.000 description 6
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 102000011426 Enoyl-CoA hydratase Human genes 0.000 description 6
- 102000005486 Epoxide hydrolase Human genes 0.000 description 6
- 102000005133 Glutamate 5-kinase Human genes 0.000 description 6
- 102100025591 Glycerate kinase Human genes 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 102000004882 Lipase Human genes 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 6
- 241000700157 Rattus norvegicus Species 0.000 description 6
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 6
- 101000693619 Starmerella bombicola Lactone esterase Proteins 0.000 description 6
- 101100280476 Streptococcus pneumoniae (strain ATCC BAA-255 / R6) fabM gene Proteins 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 241000589153 Zoogloea ramigera Species 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 6
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 230000021523 carboxylation Effects 0.000 description 6
- 238000006473 carboxylation reaction Methods 0.000 description 6
- 210000000172 cytosol Anatomy 0.000 description 6
- 230000002950 deficient Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000013604 expression vector Substances 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 108010086476 glycerate kinase Proteins 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004949 mass spectrometry Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000037353 metabolic pathway Effects 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 6
- 101100228725 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) gctA gene Proteins 0.000 description 5
- 241000589291 Acinetobacter Species 0.000 description 5
- 241001148573 Azoarcus sp. Species 0.000 description 5
- 241000588919 Citrobacter freundii Species 0.000 description 5
- 108010050785 Citryl-CoA lyase Proteins 0.000 description 5
- 241000193155 Clostridium botulinum Species 0.000 description 5
- 108030006766 Cyclohexanol dehydrogenases Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 108010046335 Ferredoxin-NADP Reductase Proteins 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- 101001094647 Homo sapiens Serum paraoxonase/arylesterase 1 Proteins 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 108030005634 Myo-inosose-2 dehydratases Proteins 0.000 description 5
- 241000228150 Penicillium chrysogenum Species 0.000 description 5
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 5
- 241001394655 Roseburia inulinivorans Species 0.000 description 5
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 5
- 102100035476 Serum paraoxonase/arylesterase 1 Human genes 0.000 description 5
- 241000205091 Sulfolobus solfataricus Species 0.000 description 5
- 241001303801 Syntrophus aciditrophicus Species 0.000 description 5
- 241000589495 Xanthobacter flavus Species 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 5
- IPBVNPXQWQGGJP-UHFFFAOYSA-N acetic acid phenyl ester Natural products CC(=O)OC1=CC=CC=C1 IPBVNPXQWQGGJP-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 150000001735 carboxylic acids Chemical class 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000000205 computational method Methods 0.000 description 5
- 239000012467 final product Substances 0.000 description 5
- 108010008221 formate C-acetyltransferase Proteins 0.000 description 5
- 238000002309 gasification Methods 0.000 description 5
- SYKWLIJQEHRDNH-CKRMAKSASA-N glutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 SYKWLIJQEHRDNH-CKRMAKSASA-N 0.000 description 5
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 5
- 108010008386 malonyl-Coa reductase Proteins 0.000 description 5
- 210000003470 mitochondria Anatomy 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 229940049953 phenylacetate Drugs 0.000 description 5
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 108010045437 2-oxoglutarate synthase Proteins 0.000 description 4
- 102100035623 ATP-citrate synthase Human genes 0.000 description 4
- 108010002945 Acetoin dehydrogenase Proteins 0.000 description 4
- 101100228726 Acidaminococcus fermentans (strain ATCC 25085 / DSM 20731 / CCUG 9996 / CIP 106432 / VR4) gctB gene Proteins 0.000 description 4
- 241000567139 Aeropyrum pernix Species 0.000 description 4
- 108010053754 Aldehyde reductase Proteins 0.000 description 4
- 241000205042 Archaeoglobus fulgidus Species 0.000 description 4
- 241000186073 Arthrobacter sp. Species 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 108700024126 Butyrate kinases Proteins 0.000 description 4
- 241000222122 Candida albicans Species 0.000 description 4
- 241000193171 Clostridium butyricum Species 0.000 description 4
- 101100326160 Cupriavidus necator (strain ATCC 17699 / DSM 428 / KCTC 22496 / NCIMB 10442 / H16 / Stanier 337) bktB gene Proteins 0.000 description 4
- 241000605747 Desulfovibrio africanus Species 0.000 description 4
- 108700016168 Dihydroxy-acid dehydratases Proteins 0.000 description 4
- 108010025885 Glycerol dehydratase Proteins 0.000 description 4
- 108010044467 Isoenzymes Proteins 0.000 description 4
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 4
- 241000588749 Klebsiella oxytoca Species 0.000 description 4
- 239000004367 Lipase Substances 0.000 description 4
- 241000193386 Lysinibacillus sphaericus Species 0.000 description 4
- 241001607431 Mycobacterium marinum M Species 0.000 description 4
- 241000187480 Mycobacterium smegmatis Species 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 241001197104 Nocardia iowensis Species 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 241000589597 Paracoccus denitrificans Species 0.000 description 4
- 108010031852 Pyruvate Synthase Proteins 0.000 description 4
- 241000190984 Rhodospirillum rubrum Species 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 241000205088 Sulfolobus sp. Species 0.000 description 4
- 241000204666 Thermotoga maritima Species 0.000 description 4
- 241000588902 Zymomonas mobilis Species 0.000 description 4
- 241000193450 [Clostridium] symbiosum Species 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 230000001588 bifunctional effect Effects 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 229940095731 candida albicans Drugs 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 101150019823 chnA gene Proteins 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000006114 decarboxylation reaction Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 101150069125 fadB gene Proteins 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 4
- 235000019162 flavin adenine dinucleotide Nutrition 0.000 description 4
- 239000011714 flavin adenine dinucleotide Substances 0.000 description 4
- 229940093632 flavin-adenine dinucleotide Drugs 0.000 description 4
- 238000012239 gene modification Methods 0.000 description 4
- 230000005017 genetic modification Effects 0.000 description 4
- 235000013617 genetically modified food Nutrition 0.000 description 4
- 108010087331 glutaconate CoA-transferase Proteins 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 101150118781 icd gene Proteins 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 235000019421 lipase Nutrition 0.000 description 4
- 229940049920 malate Drugs 0.000 description 4
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical compound [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000002438 mitochondrial effect Effects 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- UFSCUAXLTRFIDC-UHFFFAOYSA-N oxalosuccinic acid Chemical compound OC(=O)CC(C(O)=O)C(=O)C(O)=O UFSCUAXLTRFIDC-UHFFFAOYSA-N 0.000 description 4
- 101150111581 pflB gene Proteins 0.000 description 4
- 101150046540 phaA gene Proteins 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000004952 protein activity Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- TZBGSHAFWLGWBO-ABLWVSNPSA-N (2s)-2-[[4-[(2-amino-4-oxo-5,6,7,8-tetrahydro-1h-pteridin-6-yl)methylamino]benzoyl]amino]-5-methoxy-5-oxopentanoic acid Chemical compound C1=CC(C(=O)N[C@@H](CCC(=O)OC)C(O)=O)=CC=C1NCC1NC(C(=O)NC(N)=N2)=C2NC1 TZBGSHAFWLGWBO-ABLWVSNPSA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- JQPFYXFVUKHERX-UHFFFAOYSA-N 2-hydroxy-2-cyclohexen-1-one Natural products OC1=CCCCC1=O JQPFYXFVUKHERX-UHFFFAOYSA-N 0.000 description 3
- 108030004150 2-oxoglutarate carboxylases Proteins 0.000 description 3
- GXIURPTVHJPJLF-UHFFFAOYSA-N 2-phosphoglyceric acid Chemical compound OCC(C(O)=O)OP(O)(O)=O GXIURPTVHJPJLF-UHFFFAOYSA-N 0.000 description 3
- 102000052553 3-Hydroxyacyl CoA Dehydrogenase Human genes 0.000 description 3
- 108700020831 3-Hydroxyacyl-CoA Dehydrogenase Proteins 0.000 description 3
- FHSUFDYFOHSYHI-UHFFFAOYSA-N 3-oxopentanoic acid Chemical compound CCC(=O)CC(O)=O FHSUFDYFOHSYHI-UHFFFAOYSA-N 0.000 description 3
- OSJPPGNTCRNQQC-UHFFFAOYSA-L 3-phosphoglycerate(2-) Chemical compound [O-]C(=O)C(O)COP(O)([O-])=O OSJPPGNTCRNQQC-UHFFFAOYSA-L 0.000 description 3
- 108010031096 8-amino-7-oxononanoate synthase Proteins 0.000 description 3
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 description 3
- 102000005345 Acetyl-CoA C-acetyltransferase Human genes 0.000 description 3
- 108700016155 Acyl transferases Proteins 0.000 description 3
- 102000005369 Aldehyde Dehydrogenase Human genes 0.000 description 3
- 108020002663 Aldehyde Dehydrogenase Proteins 0.000 description 3
- 241001136167 Anaerotignum propionicum Species 0.000 description 3
- 241000893512 Aquifex aeolicus Species 0.000 description 3
- 101100452478 Arabidopsis thaliana DHAD gene Proteins 0.000 description 3
- 101100388296 Arabidopsis thaliana DTX51 gene Proteins 0.000 description 3
- 108010055400 Aspartate kinase Proteins 0.000 description 3
- 241000228245 Aspergillus niger Species 0.000 description 3
- 108010089895 Branched-chain-fatty-acid kinase Proteins 0.000 description 3
- 241000222178 Candida tropicalis Species 0.000 description 3
- 241000191366 Chlorobium Species 0.000 description 3
- 241001112696 Clostridia Species 0.000 description 3
- 241001112695 Clostridiales Species 0.000 description 3
- 241001451494 Clostridium carboxidivorans P7 Species 0.000 description 3
- 241000530936 Clostridium novyi NT Species 0.000 description 3
- 241001508458 Clostridium saccharoperbutylacetonicum Species 0.000 description 3
- 241000186226 Corynebacterium glutamicum Species 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 3
- 108010001348 Diacylglycerol O-acyltransferase Proteins 0.000 description 3
- 102000002148 Diacylglycerol O-acyltransferase Human genes 0.000 description 3
- 101100350710 Escherichia coli (strain K12) paaH gene Proteins 0.000 description 3
- 108060002716 Exonuclease Proteins 0.000 description 3
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical class [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000605986 Fusobacterium nucleatum Species 0.000 description 3
- 101710198928 Gamma-glutamyl phosphate reductase Proteins 0.000 description 3
- 241000193419 Geobacillus kaustophilus Species 0.000 description 3
- 108700023479 Glutamate 5-kinases Proteins 0.000 description 3
- 241000205063 Haloarcula marismortui Species 0.000 description 3
- 108010064711 Homoserine dehydrogenase Proteins 0.000 description 3
- 241000155250 Iole Species 0.000 description 3
- 201000008225 Klebsiella pneumonia Diseases 0.000 description 3
- 102000030882 L-Aminoadipate-Semialdehyde Dehydrogenase Human genes 0.000 description 3
- 108010016900 L-aminoadipate-semialdehyde dehydrogenase Proteins 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- 241001468197 Lactobacillus collinoides Species 0.000 description 3
- 241001467552 Mycobacterium bovis BCG Species 0.000 description 3
- 101100030550 Nocardia iowensis npt gene Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 102000016387 Pancreatic elastase Human genes 0.000 description 3
- 108010067372 Pancreatic elastase Proteins 0.000 description 3
- 241000193390 Parageobacillus thermoglucosidasius Species 0.000 description 3
- 206010035717 Pneumonia klebsiella Diseases 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- 241000922540 Pseudomonas knackmussii Species 0.000 description 3
- 241000589755 Pseudomonas mendocina Species 0.000 description 3
- 101100463818 Pseudomonas oleovorans phaC1 gene Proteins 0.000 description 3
- 241000589774 Pseudomonas sp. Species 0.000 description 3
- 241001223147 Pyrobaculum neutrophilum Species 0.000 description 3
- 241000232299 Ralstonia Species 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 3
- 241000398180 Roseburia intestinalis Species 0.000 description 3
- 241000711837 Roseburia sp. Species 0.000 description 3
- 101100215626 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADP1 gene Proteins 0.000 description 3
- 241000405383 Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 Species 0.000 description 3
- 108020004682 Single-Stranded DNA Proteins 0.000 description 3
- 241000589166 Sinorhizobium fredii Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 244000057717 Streptococcus lactis Species 0.000 description 3
- 235000014897 Streptococcus lactis Nutrition 0.000 description 3
- 241000187432 Streptomyces coelicolor Species 0.000 description 3
- 241000187392 Streptomyces griseus Species 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 241000608961 Thauera aromatica Species 0.000 description 3
- 241000235015 Yarrowia lipolytica Species 0.000 description 3
- 102100039169 [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 1, mitochondrial Human genes 0.000 description 3
- WDJHALXBUFZDSR-UHFFFAOYSA-M acetoacetate Chemical compound CC(=O)CC([O-])=O WDJHALXBUFZDSR-UHFFFAOYSA-M 0.000 description 3
- 108091022873 acetoacetate decarboxylase Proteins 0.000 description 3
- LIPOUNRJVLNBCD-UHFFFAOYSA-N acetyl dihydrogen phosphate Chemical compound CC(=O)OP(O)(O)=O LIPOUNRJVLNBCD-UHFFFAOYSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 108010081577 aldehyde dehydrogenase (NAD(P)+) Proteins 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000004716 alpha keto acids Chemical class 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 229960003237 betaine Drugs 0.000 description 3
- 101150016301 bioW gene Proteins 0.000 description 3
- 241001505581 butyrate-producing bacterium L2-50 Species 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- KFWWCMJSYSSPSK-PAXLJYGASA-N crotonoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)/C=C/C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 KFWWCMJSYSSPSK-PAXLJYGASA-N 0.000 description 3
- OILAIQUEIWYQPH-UHFFFAOYSA-N cyclohexane-1,2-dione Chemical compound O=C1CCCCC1=O OILAIQUEIWYQPH-UHFFFAOYSA-N 0.000 description 3
- 230000000911 decarboxylating effect Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 102000013165 exonuclease Human genes 0.000 description 3
- 101150092019 fadJ gene Proteins 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 3
- 108010062385 long-chain-alcohol O-fatty-acyltransferase Proteins 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 239000006225 natural substrate Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 101150023648 pcaF gene Proteins 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 108010054697 propionyl-CoA reductase Proteins 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 101150031436 sucD gene Proteins 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229940070710 valerate Drugs 0.000 description 3
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920001791 ((R)-3-Hydroxybutanoyl)(n-2) Polymers 0.000 description 2
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 2
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 2
- 108091064702 1 family Proteins 0.000 description 2
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 2
- HYPYXGZDOYTYDR-HAJWAVTHSA-N 2-methyl-3-[(2e,6e,10e,14e)-3,7,11,15,19-pentamethylicosa-2,6,10,14,18-pentaenyl]naphthalene-1,4-dione Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 HYPYXGZDOYTYDR-HAJWAVTHSA-N 0.000 description 2
- GCXJINGJZAOJHR-UHFFFAOYSA-N 2-methylacetoacetic acid Chemical compound CC(=O)C(C)C(O)=O GCXJINGJZAOJHR-UHFFFAOYSA-N 0.000 description 2
- 102100039358 3-hydroxyacyl-CoA dehydrogenase type-2 Human genes 0.000 description 2
- QHHKKMYHDBRONY-RMNRSTNRSA-N 3-hydroxybutanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QHHKKMYHDBRONY-RMNRSTNRSA-N 0.000 description 2
- ALRHLSYJTWAHJZ-UHFFFAOYSA-M 3-hydroxypropionate Chemical compound OCCC([O-])=O ALRHLSYJTWAHJZ-UHFFFAOYSA-M 0.000 description 2
- RTGHRDFWYQHVFW-UHFFFAOYSA-N 3-oxoadipic acid Chemical compound OC(=O)CCC(=O)CC(O)=O RTGHRDFWYQHVFW-UHFFFAOYSA-N 0.000 description 2
- VKKKAAPGXHWXOO-BIEWRJSYSA-N 3-oxoadipyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VKKKAAPGXHWXOO-BIEWRJSYSA-N 0.000 description 2
- 108030002571 3-oxoadipyl-CoA thiolases Proteins 0.000 description 2
- 108010027577 3-oxoadipyl-coenzyme A thiolase Proteins 0.000 description 2
- KJXFOFKTZDJLMQ-UYRKPTJQSA-N 3-oxopimeloyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 KJXFOFKTZDJLMQ-UYRKPTJQSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 2
- 108010093796 4-hydroxybutyrate dehydrogenase Proteins 0.000 description 2
- VBKPPDYGFUZOAJ-UHFFFAOYSA-N 5-oxopentanoic acid Chemical compound OC(=O)CCCC=O VBKPPDYGFUZOAJ-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- 101800001241 Acetylglutamate kinase Proteins 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 241000948980 Actinobacillus succinogenes Species 0.000 description 2
- 102000057234 Acyl transferases Human genes 0.000 description 2
- 102100027265 Aldo-keto reductase family 1 member B1 Human genes 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108010006591 Apoenzymes Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- 241000351920 Aspergillus nidulans Species 0.000 description 2
- 241001465318 Aspergillus terreus Species 0.000 description 2
- 241000684265 Aspergillus terreus NIH2624 Species 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000193755 Bacillus cereus Species 0.000 description 2
- 241000194107 Bacillus megaterium Species 0.000 description 2
- 241001557692 Bacillus megaterium WSH-002 Species 0.000 description 2
- 101000695175 Bacillus subtilis (strain 168) Probable phosphate butyryltransferase Proteins 0.000 description 2
- 241000271826 Balnearium lithotrophicum Species 0.000 description 2
- BWKDAAFSXYPQOS-UHFFFAOYSA-N Benzaldehyde glyceryl acetal Chemical compound O1CC(O)COC1C1=CC=CC=C1 BWKDAAFSXYPQOS-UHFFFAOYSA-N 0.000 description 2
- 102100030981 Beta-alanine-activating enzyme Human genes 0.000 description 2
- 101100174521 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) fumC2 gene Proteins 0.000 description 2
- 241000417232 Burkholderia ambifaria AMMD Species 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 108010051152 Carboxylesterase Proteins 0.000 description 2
- 102000013392 Carboxylesterase Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 101100277683 Citrobacter freundii dhaB gene Proteins 0.000 description 2
- 241000920610 Citrobacter youngae Species 0.000 description 2
- 241000286276 Citrobacter youngae ATCC 29220 Species 0.000 description 2
- 241000023502 Clostridium kluyveri DSM 555 Species 0.000 description 2
- 241000193469 Clostridium pasteurianum Species 0.000 description 2
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 241000589518 Comamonas testosteroni Species 0.000 description 2
- 101100054574 Corynebacterium diphtheriae (strain ATCC 700971 / NCTC 13129 / Biotype gravis) acn gene Proteins 0.000 description 2
- 241000366859 Cupriavidus taiwanensis Species 0.000 description 2
- 241000414116 Cyanobium Species 0.000 description 2
- 206010011732 Cyst Diseases 0.000 description 2
- RBNPOMFGQQGHHO-UWTATZPHSA-M D-glycerate Chemical compound OC[C@@H](O)C([O-])=O RBNPOMFGQQGHHO-UWTATZPHSA-M 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 102000007528 DNA Polymerase III Human genes 0.000 description 2
- 108010071146 DNA Polymerase III Proteins 0.000 description 2
- 241001507146 Desulfarculus baarsii DSM 2075 Species 0.000 description 2
- 241000605716 Desulfovibrio Species 0.000 description 2
- 241001071467 Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 Species 0.000 description 2
- 101100215150 Dictyostelium discoideum aco1 gene Proteins 0.000 description 2
- 101100378193 Dictyostelium discoideum aco2 gene Proteins 0.000 description 2
- 101100243777 Dictyostelium discoideum phbB gene Proteins 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 108010028143 Dioxygenases Proteins 0.000 description 2
- 102000016680 Dioxygenases Human genes 0.000 description 2
- 108091006149 Electron carriers Proteins 0.000 description 2
- 101100350700 Escherichia coli (strain K12) paaB gene Proteins 0.000 description 2
- 101100350701 Escherichia coli (strain K12) paaC gene Proteins 0.000 description 2
- 101100350708 Escherichia coli (strain K12) paaF gene Proteins 0.000 description 2
- 101100350709 Escherichia coli (strain K12) paaG gene Proteins 0.000 description 2
- 101100082074 Escherichia coli (strain K12) paaZ gene Proteins 0.000 description 2
- 101100099023 Escherichia coli (strain K12) tdcE gene Proteins 0.000 description 2
- 101710082056 Ethanol acetyltransferase 1 Proteins 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108010057366 Flavodoxin Proteins 0.000 description 2
- 102100025413 Formyltetrahydrofolate synthetase Human genes 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 2
- 241001494297 Geobacter sulfurreducens Species 0.000 description 2
- 102000015779 HDL Lipoproteins Human genes 0.000 description 2
- 108010010234 HDL Lipoproteins Proteins 0.000 description 2
- 108010025076 Holoenzymes Proteins 0.000 description 2
- 101001035740 Homo sapiens 3-hydroxyacyl-CoA dehydrogenase type-2 Proteins 0.000 description 2
- 101000773364 Homo sapiens Beta-alanine-activating enzyme Proteins 0.000 description 2
- 101000718476 Homo sapiens L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase Proteins 0.000 description 2
- 101001056308 Homo sapiens Malate dehydrogenase, cytoplasmic Proteins 0.000 description 2
- 101001033820 Homo sapiens Malate dehydrogenase, mitochondrial Proteins 0.000 description 2
- 101000621057 Homo sapiens Serum paraoxonase/lactonase 3 Proteins 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 description 2
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 description 2
- 102100039905 Isocitrate dehydrogenase [NADP] cytoplasmic Human genes 0.000 description 2
- 241000588915 Klebsiella aerogenes Species 0.000 description 2
- 101100236497 Klebsiella aerogenes maoC gene Proteins 0.000 description 2
- 102100026384 L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase Human genes 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 101150072399 LSC1 gene Proteins 0.000 description 2
- 101100433987 Latilactobacillus sakei subsp. sakei (strain 23K) ackA1 gene Proteins 0.000 description 2
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 2
- 101150084262 MDH3 gene Proteins 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 102100026475 Malate dehydrogenase, cytoplasmic Human genes 0.000 description 2
- 102100039742 Malate dehydrogenase, mitochondrial Human genes 0.000 description 2
- LTYOQGRJFJAKNA-KKIMTKSISA-N Malonyl CoA Natural products S(C(=O)CC(=O)O)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@](=O)(O[P@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C LTYOQGRJFJAKNA-KKIMTKSISA-N 0.000 description 2
- 101710159527 Maturation protein A Proteins 0.000 description 2
- 101710091157 Maturation protein A2 Proteins 0.000 description 2
- 101100456321 Metallosphaera sedula (strain ATCC 51363 / DSM 5348 / JCM 9185 / NBRC 15509 / TH2) Msed_0709 gene Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- 241000205290 Methanosarcina thermophila Species 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- AIJULSRZWUXGPQ-UHFFFAOYSA-N Methylglyoxal Chemical compound CC(=O)C=O AIJULSRZWUXGPQ-UHFFFAOYSA-N 0.000 description 2
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 2
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 2
- 102000002568 Multienzyme Complexes Human genes 0.000 description 2
- 108010093369 Multienzyme Complexes Proteins 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 241000186367 Mycobacterium avium Species 0.000 description 2
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 2
- 101710192343 NADPH:adrenodoxin oxidoreductase, mitochondrial Proteins 0.000 description 2
- 102100036777 NADPH:adrenodoxin oxidoreductase, mitochondrial Human genes 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 241000221961 Neurospora crassa Species 0.000 description 2
- 241001503673 Nocardia farcinica Species 0.000 description 2
- 241000194105 Paenibacillus polymyxa Species 0.000 description 2
- 241001343907 Paraburkholderia phymatum Species 0.000 description 2
- 208000026681 Paratuberculosis Diseases 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 241000605862 Porphyromonas gingivalis Species 0.000 description 2
- 101710104207 Probable NADPH:adrenodoxin oxidoreductase, mitochondrial Proteins 0.000 description 2
- 101100350716 Pseudomonas putida paaK gene Proteins 0.000 description 2
- 101710104378 Putative malate oxidoreductase [NAD] Proteins 0.000 description 2
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 2
- 108010042687 Pyruvate Oxidase Proteins 0.000 description 2
- 241000589194 Rhizobium leguminosarum Species 0.000 description 2
- 101100351992 Rhizobium meliloti (strain 1021) phaD gene Proteins 0.000 description 2
- 241000191023 Rhodobacter capsulatus Species 0.000 description 2
- 101100332697 Rhodobacter capsulatus (strain ATCC BAA-309 / NBRC 16581 / SB1003) fadB1 gene Proteins 0.000 description 2
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 2
- 101100069420 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GRE3 gene Proteins 0.000 description 2
- 101100367016 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) LSC2 gene Proteins 0.000 description 2
- 241000235343 Saccharomycetales Species 0.000 description 2
- 241001138501 Salmonella enterica Species 0.000 description 2
- 241000607356 Salmonella enterica subsp. arizonae Species 0.000 description 2
- 108091022908 Serine O-acetyltransferase Proteins 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- 102100022833 Serum paraoxonase/lactonase 3 Human genes 0.000 description 2
- 244000044822 Simmondsia californica Species 0.000 description 2
- 235000004433 Simmondsia californica Nutrition 0.000 description 2
- 241000221950 Sordaria macrospora Species 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 101100083037 Streptococcus mutans serotype c (strain ATCC 700610 / UA159) act gene Proteins 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 241000205098 Sulfolobus acidocaldarius Species 0.000 description 2
- 241000160715 Sulfolobus tokodaii Species 0.000 description 2
- 241000694231 Sulfurihydrogenibium subterraneum Species 0.000 description 2
- 241001533234 Sulfurimonas denitrificans Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 241000964091 Thermocrinis albus Species 0.000 description 2
- 241000589499 Thermus thermophilus Species 0.000 description 2
- 241001509286 Thiobacillus denitrificans Species 0.000 description 2
- 241000223105 Trypanosoma brucei Species 0.000 description 2
- 241000204066 Tsukamurella Species 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 101710159621 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase Proteins 0.000 description 2
- 241000607481 Yersinia intermedia Species 0.000 description 2
- 241000779671 Yersinia intermedia ATCC 29909 Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 241001531188 [Eubacterium] rectale Species 0.000 description 2
- 241000029538 [Mannheimia] succiniciproducens Species 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- 101150006213 ackA gene Proteins 0.000 description 2
- 101150113917 acnA gene Proteins 0.000 description 2
- 101150053555 acnB gene Proteins 0.000 description 2
- POODSGUMUCVRTR-IEXPHMLFSA-N acryloyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 POODSGUMUCVRTR-IEXPHMLFSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 229960001570 ademetionine Drugs 0.000 description 2
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 102000005922 amidase Human genes 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000009604 anaerobic growth Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- JGGLZQUGOKVDGS-VYTIMWRQSA-N aspartate semialdehyde Chemical compound O[C@@H]1[C@@H](NC(=O)C)CO[C@H](CO)[C@H]1O[C@@H]1[C@@H](NC(C)=O)[C@H](O)[C@H](O[C@@H]2[C@H]([C@@H](O[C@@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](CO)O3)O[C@@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](CO)O3)O[C@@H]3[C@H]([C@H](O)[C@@H](O)[C@H](CO)O3)O)[C@@H](O)[C@H](CO[C@@H]3[C@H]([C@H](O[C@@H]4[C@H]([C@H](O)[C@@H](O)[C@H](CO)O4)O)[C@@H](O)[C@H](CO)O3)O)O2)O)[C@H](CO)O1 JGGLZQUGOKVDGS-VYTIMWRQSA-N 0.000 description 2
- 230000001651 autotrophic effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 101150091767 buk2 gene Proteins 0.000 description 2
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 2
- JSHMCUNOMIZJDJ-UHFFFAOYSA-N butanoyl dihydrogen phosphate Chemical compound CCCC(=O)OP(O)(O)=O JSHMCUNOMIZJDJ-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000012219 cassette mutagenesis Methods 0.000 description 2
- 230000006652 catabolic pathway Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-M crotonate Chemical compound C\C=C\C([O-])=O LDHQCZJRKDOVOX-NSCUHMNNSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 208000031513 cyst Diseases 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000009088 enzymatic function Effects 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 101150041588 eutE gene Proteins 0.000 description 2
- 102000005970 fatty acyl-CoA reductase Human genes 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 101150028420 fumC gene Proteins 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 101150094315 glxK gene Proteins 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 101150076548 hcaD gene Proteins 0.000 description 2
- 108090001018 hexadecanal dehydrogenase (acylating) Proteins 0.000 description 2
- 101150003440 hibch gene Proteins 0.000 description 2
- 108010034653 homoserine O-acetyltransferase Proteins 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- AEWHYWSPVRZHCT-NDZSKPAWSA-N isobutyryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(C)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 AEWHYWSPVRZHCT-NDZSKPAWSA-N 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 2
- 101150100620 korB gene Proteins 0.000 description 2
- BSABBBMNWQWLLU-UHFFFAOYSA-N lactaldehyde Chemical compound CC(O)C=O BSABBBMNWQWLLU-UHFFFAOYSA-N 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 101150035025 lysC gene Proteins 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- LTYOQGRJFJAKNA-DVVLENMVSA-N malonyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 LTYOQGRJFJAKNA-DVVLENMVSA-N 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000010742 number 1 fuel oil Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000008723 osmotic stress Effects 0.000 description 2
- 101150037784 paaA gene Proteins 0.000 description 2
- 101150002645 paaJ gene Proteins 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 239000013520 petroleum-based product Substances 0.000 description 2
- 101150049339 pflA gene Proteins 0.000 description 2
- 101150048611 phaC gene Proteins 0.000 description 2
- 108010089113 phenylacetate - CoA ligase Proteins 0.000 description 2
- 125000005642 phosphothioate group Chemical group 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 101150048333 ptb gene Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 108040006686 pyruvate synthase activity proteins Proteins 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 238000001546 stable isotope ratio mass spectrometry Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- YXVCLPJQTZXJLH-UHFFFAOYSA-N thiamine(1+) diphosphate chloride Chemical compound [Cl-].CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N YXVCLPJQTZXJLH-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- UATIGEHITDTAGF-CITAKDKDSA-N vinylacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC=C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 UATIGEHITDTAGF-CITAKDKDSA-N 0.000 description 2
- 235000019143 vitamin K2 Nutrition 0.000 description 2
- 239000011728 vitamin K2 Substances 0.000 description 2
- 229940041603 vitamin k 3 Drugs 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- VYEGBDHSGHXOGT-ZLIBEWLCSA-N (2r,3s,5r,6s)-2,3,4,5,6-pentahydroxycyclohexan-1-one Chemical compound OC1[C@H](O)[C@@H](O)C(=O)[C@@H](O)[C@@H]1O VYEGBDHSGHXOGT-ZLIBEWLCSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-M (R)-lactate Chemical compound C[C@@H](O)C([O-])=O JVTAAEKCZFNVCJ-UWTATZPHSA-M 0.000 description 1
- JVQYSWDUAOAHFM-BYPYZUCNSA-N (S)-3-methyl-2-oxovaleric acid Chemical compound CC[C@H](C)C(=O)C(O)=O JVQYSWDUAOAHFM-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-REOHCLBHSA-M (S)-lactate Chemical compound C[C@H](O)C([O-])=O JVTAAEKCZFNVCJ-REOHCLBHSA-M 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- PDGXJDXVGMHUIR-UHFFFAOYSA-N 2,3-Dihydroxy-3-methylpentanoate Chemical compound CCC(C)(O)C(O)C(O)=O PDGXJDXVGMHUIR-UHFFFAOYSA-N 0.000 description 1
- JTEYKUFKXGDTEU-UHFFFAOYSA-N 2,3-dihydroxy-3-methylbutanoic acid Chemical compound CC(C)(O)C(O)C(O)=O JTEYKUFKXGDTEU-UHFFFAOYSA-N 0.000 description 1
- GMKMEZVLHJARHF-UHFFFAOYSA-N 2,6-diaminopimelic acid Chemical compound OC(=O)C(N)CCCC(N)C(O)=O GMKMEZVLHJARHF-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- UCYNJPYWOSFBAT-CVYQJGLWSA-N 2-deoxy-D-gluc-5-ulosonic acid Chemical compound OCC(=O)[C@@H](O)[C@H](O)CC(O)=O UCYNJPYWOSFBAT-CVYQJGLWSA-N 0.000 description 1
- ITRSBJZNLOYNNR-RMNRSTNRSA-N 2-hydroxyglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ITRSBJZNLOYNNR-RMNRSTNRSA-N 0.000 description 1
- TYEYBOSBBBHJIV-UHFFFAOYSA-N 2-oxobutanoic acid Chemical compound CCC(=O)C(O)=O TYEYBOSBBBHJIV-UHFFFAOYSA-N 0.000 description 1
- WWYDYZMNFQIYPT-UHFFFAOYSA-L 2-phenylpropanedioate Chemical compound [O-]C(=O)C(C([O-])=O)C1=CC=CC=C1 WWYDYZMNFQIYPT-UHFFFAOYSA-L 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- BXBFVCYLJXGOGI-UHFFFAOYSA-N 3-acetamido-4-hydroxybenzoic acid Chemical compound CC(=O)NC1=CC(C(O)=O)=CC=C1O BXBFVCYLJXGOGI-UHFFFAOYSA-N 0.000 description 1
- LMGGPKYAWHDOLR-UHFFFAOYSA-N 3-amino-4-hydroxybenzaldehyde Chemical compound NC1=CC(C=O)=CC=C1O LMGGPKYAWHDOLR-UHFFFAOYSA-N 0.000 description 1
- WWEOGFZEFHPUAM-MIZDRFBCSA-N 3-hydroxy-2-methylpropanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(CO)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 WWEOGFZEFHPUAM-MIZDRFBCSA-N 0.000 description 1
- 102100021834 3-hydroxyacyl-CoA dehydrogenase Human genes 0.000 description 1
- OTEACGAEDCIMBS-FOLKQPSDSA-N 3-hydroxyadipyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OTEACGAEDCIMBS-FOLKQPSDSA-N 0.000 description 1
- DBXBTMSZEOQQDU-UHFFFAOYSA-N 3-hydroxyisobutyric acid Chemical compound OCC(C)C(O)=O DBXBTMSZEOQQDU-UHFFFAOYSA-N 0.000 description 1
- 108010077268 3-hydroxyisobutyryl-CoA hydrolase Proteins 0.000 description 1
- 102100034767 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial Human genes 0.000 description 1
- 101710186512 3-ketoacyl-CoA thiolase Proteins 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-M 3-mercaptopropionate Chemical compound [O-]C(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-M 0.000 description 1
- QHKABHOOEWYVLI-UHFFFAOYSA-N 3-methyl-2-oxobutanoic acid Chemical compound CC(C)C(=O)C(O)=O QHKABHOOEWYVLI-UHFFFAOYSA-N 0.000 description 1
- HXUIDZOMTRMIOE-UHFFFAOYSA-M 3-oxo-3-phenylpropionate Chemical compound [O-]C(=O)CC(=O)C1=CC=CC=C1 HXUIDZOMTRMIOE-UHFFFAOYSA-M 0.000 description 1
- BDCLDNALSPBWPQ-UHFFFAOYSA-M 3-oxohexanoate Chemical compound CCCC(=O)CC([O-])=O BDCLDNALSPBWPQ-UHFFFAOYSA-M 0.000 description 1
- OAKURXIZZOAYBC-UHFFFAOYSA-N 3-oxopropanoic acid Chemical compound OC(=O)CC=O OAKURXIZZOAYBC-UHFFFAOYSA-N 0.000 description 1
- NMEYBPUHJHMRHU-IEXPHMLFSA-N 3-oxopropanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 NMEYBPUHJHMRHU-IEXPHMLFSA-N 0.000 description 1
- KVAQAPQXOXTRAE-HSJNEKGZSA-N 4-(2-carboxyphenyl)-4-oxobutanoyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)CCC(=O)C1=CC=CC=C1C(O)=O KVAQAPQXOXTRAE-HSJNEKGZSA-N 0.000 description 1
- GUQLNGPRYJCYPA-UHFFFAOYSA-N 4-acetylhexane-2,3,5-trione Chemical compound CC(=O)C(C(C)=O)C(=O)C(C)=O GUQLNGPRYJCYPA-UHFFFAOYSA-N 0.000 description 1
- JOOXCMJARBKPKM-UHFFFAOYSA-M 4-oxopentanoate Chemical compound CC(=O)CCC([O-])=O JOOXCMJARBKPKM-UHFFFAOYSA-M 0.000 description 1
- MEANFMOQMXYMCT-OLZOCXBDSA-N 5,10-methenyltetrahydrofolic acid Chemical compound C([C@H]1CNC2=C([N+]1=C1)C(=O)N=C(N2)N)N1C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C([O-])=O)C=C1 MEANFMOQMXYMCT-OLZOCXBDSA-N 0.000 description 1
- YDCRNMJQROAWFT-UHFFFAOYSA-N 5-hydroxyhexanoic acid Chemical compound CC(O)CCCC(O)=O YDCRNMJQROAWFT-UHFFFAOYSA-N 0.000 description 1
- CNRGMQRNYAIBTN-UHFFFAOYSA-N 5-hydroxypentanal Chemical compound OCCCCC=O CNRGMQRNYAIBTN-UHFFFAOYSA-N 0.000 description 1
- PHOJOSOUIAQEDH-UHFFFAOYSA-N 5-hydroxypentanoic acid Chemical compound OCCCCC(O)=O PHOJOSOUIAQEDH-UHFFFAOYSA-N 0.000 description 1
- AMSWDUXCNHIVFP-ZMHDXICWSA-N 5-hydroxypentanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCO)O[C@H]1N1C2=NC=NC(N)=C2N=C1 AMSWDUXCNHIVFP-ZMHDXICWSA-N 0.000 description 1
- 108030006715 6-hydroxyhexanoate dehydrogenases Proteins 0.000 description 1
- 101150105517 ARG5,6 gene Proteins 0.000 description 1
- 108090001107 Acetate-CoA ligase (ADP-forming) Proteins 0.000 description 1
- 102100022523 Acetoacetyl-CoA synthetase Human genes 0.000 description 1
- 244000283763 Acetobacter aceti Species 0.000 description 1
- 235000007847 Acetobacter aceti Nutrition 0.000 description 1
- 241000589218 Acetobacteraceae Species 0.000 description 1
- 108010023941 Acetyl-CoA Hydrolase Proteins 0.000 description 1
- 241001165345 Acinetobacter baylyi Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000606750 Actinobacillus Species 0.000 description 1
- 241000203809 Actinomycetales Species 0.000 description 1
- 108030002253 Acyl phosphate:glycerol-3-phosphate acyltransferases Proteins 0.000 description 1
- 241000947856 Aeromonadales Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010080691 Alcohol O-acetyltransferase Proteins 0.000 description 1
- 102000005751 Alcohol Oxidoreductases Human genes 0.000 description 1
- 108010031132 Alcohol Oxidoreductases Proteins 0.000 description 1
- 102000016912 Aldehyde Reductase Human genes 0.000 description 1
- 102100033816 Aldehyde dehydrogenase, mitochondrial Human genes 0.000 description 1
- 241001203470 Allochromatium vinosum DSM 180 Species 0.000 description 1
- 108020004306 Alpha-ketoglutarate dehydrogenase Proteins 0.000 description 1
- 102000006589 Alpha-ketoglutarate dehydrogenase Human genes 0.000 description 1
- 108700023418 Amidases Proteins 0.000 description 1
- QGZKDVFQNNGYKY-OUBTZVSYSA-N Ammonia-15N Chemical compound [15NH3] QGZKDVFQNNGYKY-OUBTZVSYSA-N 0.000 description 1
- 241000722955 Anaerobiospirillum Species 0.000 description 1
- 241000722954 Anaerobiospirillum succiniciproducens Species 0.000 description 1
- 241000099081 Anoxybacillus sp. Species 0.000 description 1
- 241001142141 Aquificae <phylum> Species 0.000 description 1
- 241000470051 Aromatoleum aromaticum Species 0.000 description 1
- 108010008184 Aryldialkylphosphatase Proteins 0.000 description 1
- 102000006996 Aryldialkylphosphatase Human genes 0.000 description 1
- 241000244188 Ascaris suum Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000589149 Azotobacter vinelandii Species 0.000 description 1
- 241001631439 Azotobacter vinelandii DJ Species 0.000 description 1
- 241001112741 Bacillaceae Species 0.000 description 1
- 241000193833 Bacillales Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 101000779368 Bacillus subtilis (strain 168) Aspartokinase 3 Proteins 0.000 description 1
- 101100326957 Bacillus subtilis (strain 168) catD gene Proteins 0.000 description 1
- 101100098786 Bacillus subtilis (strain 168) tapA gene Proteins 0.000 description 1
- 101100502634 Bacillus subtilis (strain 168) yumC gene Proteins 0.000 description 1
- 102100023006 Basic leucine zipper transcriptional factor ATF-like 2 Human genes 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 241000131971 Bradyrhizobiaceae Species 0.000 description 1
- 241000186312 Brevibacterium sp. Species 0.000 description 1
- 101150116295 CAT2 gene Proteins 0.000 description 1
- 101150010856 CRT gene Proteins 0.000 description 1
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 1
- 101100129088 Caenorhabditis elegans lys-2 gene Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 241001398436 Campylobacter curvus 525.92 Species 0.000 description 1
- 108010031797 Candida antarctica lipase B Proteins 0.000 description 1
- 241000620137 Carboxydothermus hydrogenoformans Species 0.000 description 1
- 108010018424 Carnitine O-palmitoyltransferase Proteins 0.000 description 1
- 102000002666 Carnitine O-palmitoyltransferase Human genes 0.000 description 1
- 244000253759 Carya myristiciformis Species 0.000 description 1
- 241000191368 Chlorobi Species 0.000 description 1
- 241001110480 Chlorobium phaeobacteroides DSM 266 Species 0.000 description 1
- 241000192731 Chloroflexus aurantiacus Species 0.000 description 1
- 101100407403 Citrobacter freundii pduP gene Proteins 0.000 description 1
- 241001430149 Clostridiaceae Species 0.000 description 1
- 241001110912 Clostridium beijerinckii NCIMB 8052 Species 0.000 description 1
- 241000441874 Clostridium botulinum C str. Eklund Species 0.000 description 1
- 241001104879 Clostridium tepidum Species 0.000 description 1
- 241000186520 Clostridium tetanomorphum Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108010077385 Coenzyme A-Transferases Proteins 0.000 description 1
- 102000010079 Coenzyme A-Transferases Human genes 0.000 description 1
- 241000589519 Comamonas Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 241000186031 Corynebacteriaceae Species 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- 102100023033 Cyclic AMP-dependent transcription factor ATF-2 Human genes 0.000 description 1
- 108030006973 Cyclohexane-1,2-diol dehydrogenases Proteins 0.000 description 1
- 102100023044 Cytosolic acyl coenzyme A thioester hydrolase Human genes 0.000 description 1
- 101710152190 Cytosolic acyl coenzyme A thioester hydrolase Proteins 0.000 description 1
- 108010071625 D-arabinose dehydrogenase Proteins 0.000 description 1
- 102100022768 D-beta-hydroxybutyrate dehydrogenase, mitochondrial Human genes 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 241000205117 Desulfobacter hydrogenophilus Species 0.000 description 1
- 241001228605 Desulfovibrio alaskensis G20 Species 0.000 description 1
- 241000605739 Desulfovibrio desulfuricans Species 0.000 description 1
- 241000327878 Desulfovibrio fructosivorans JJ Species 0.000 description 1
- 241000605762 Desulfovibrio vulgaris Species 0.000 description 1
- 241000605758 Desulfovibrio vulgaris str. Hildenborough Species 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 108030000163 Dicarboxylate-CoA ligases Proteins 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 241001053771 Dictyostelium discoideum AX4 Species 0.000 description 1
- 101000836720 Dictyostelium discoideum Aldose reductase A Proteins 0.000 description 1
- 101100059507 Dictyostelium discoideum ccs gene Proteins 0.000 description 1
- 101100391180 Dictyostelium discoideum forG gene Proteins 0.000 description 1
- 101100243766 Dictyostelium discoideum phbA gene Proteins 0.000 description 1
- 108010028127 Dihydrolipoamide Dehydrogenase Proteins 0.000 description 1
- 102000028526 Dihydrolipoamide Dehydrogenase Human genes 0.000 description 1
- 241001480031 Dipodascaceae Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108700035272 EC 1.1.1.5 Proteins 0.000 description 1
- 108700035525 EC 1.2.1.76 Proteins 0.000 description 1
- 208000037595 EN1-related dorsoventral syndrome Diseases 0.000 description 1
- 101150051269 ERG10 gene Proteins 0.000 description 1
- WQXNXVUDBPYKBA-UHFFFAOYSA-N Ectoine Natural products CC1=NCCC(C(O)=O)N1 WQXNXVUDBPYKBA-UHFFFAOYSA-N 0.000 description 1
- 101100498063 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) cysB gene Proteins 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241001379910 Ephemera danica Species 0.000 description 1
- 102100025403 Epoxide hydrolase 1 Human genes 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101000637245 Escherichia coli (strain K12) Endonuclease V Proteins 0.000 description 1
- 101100174518 Escherichia coli (strain K12) fumB gene Proteins 0.000 description 1
- 101100337717 Escherichia coli (strain K12) grcA gene Proteins 0.000 description 1
- 101100350703 Escherichia coli (strain K12) paaE gene Proteins 0.000 description 1
- 101100350712 Escherichia coli (strain K12) paaJ gene Proteins 0.000 description 1
- 101100321116 Escherichia coli (strain K12) yqhD gene Proteins 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241000228427 Eurotiales Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- YPZRHBJKEMOYQH-UYBVJOGSSA-N FADH2 Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-N 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 108090000698 Formate Dehydrogenases Proteins 0.000 description 1
- 108010080982 Formate-tetrahydrofolate ligase Proteins 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 241000690372 Fusarium proliferatum Species 0.000 description 1
- 241000134679 Geobacter metallireducens GS-15 Species 0.000 description 1
- 241000589236 Gluconobacter Species 0.000 description 1
- 241000589232 Gluconobacter oxydans Species 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010038519 Glyoxylate reductase Proteins 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 101100342039 Halobacterium salinarum (strain ATCC 29341 / DSM 671 / R1) kdpQ gene Proteins 0.000 description 1
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 description 1
- 241001674329 Helicobacter pylori 26695 Species 0.000 description 1
- 108091027305 Heteroduplex Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000903615 Homo sapiens Basic leucine zipper transcriptional factor ATF-like 2 Proteins 0.000 description 1
- 101000974934 Homo sapiens Cyclic AMP-dependent transcription factor ATF-2 Proteins 0.000 description 1
- 101000903373 Homo sapiens D-beta-hydroxybutyrate dehydrogenase, mitochondrial Proteins 0.000 description 1
- 101000997829 Homo sapiens Glial cell line-derived neurotrophic factor Proteins 0.000 description 1
- 101000716763 Homo sapiens Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial Proteins 0.000 description 1
- 241000088373 Hydrogenobacter thermophilus TK-6 Species 0.000 description 1
- 101100533888 Hypocrea jecorina (strain QM6a) sor4 gene Proteins 0.000 description 1
- 241000631636 Ishige Species 0.000 description 1
- 235000014072 Juglans neotropica Nutrition 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241001534204 Klebsiella pneumoniae subsp. rhinoscleromatis Species 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N L-pipecolic acid Chemical compound [O-]C(=O)[C@@H]1CCCC[NH2+]1 HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- 241001468155 Lactobacillaceae Species 0.000 description 1
- 241001112724 Lactobacillales Species 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 102100025357 Lipid-phosphate phosphatase Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 102100026665 Malonate-CoA ligase ACSF3, mitochondrial Human genes 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241001293415 Mannheimia Species 0.000 description 1
- 241000134732 Metallosphaera Species 0.000 description 1
- 241001302042 Methanothermobacter thermautotrophicus Species 0.000 description 1
- 108010010685 Methenyltetrahydrofolate cyclohydrolase Proteins 0.000 description 1
- 108010030837 Methylenetetrahydrofolate Reductase (NADPH2) Proteins 0.000 description 1
- 102000005954 Methylenetetrahydrofolate Reductase (NADPH2) Human genes 0.000 description 1
- 241000589308 Methylobacterium extorquens Species 0.000 description 1
- 101100120826 Methylorubrum extorquens (strain ATCC 14718 / DSM 1338 / JCM 2805 / NCIMB 9133 / AM1) fumC gene Proteins 0.000 description 1
- 241001661345 Moesziomyces antarcticus Species 0.000 description 1
- 101000918772 Moorella thermoacetica Carbon monoxide dehydrogenase/acetyl-CoA synthase subunit alpha Proteins 0.000 description 1
- 101000918769 Moorella thermoacetica Carbon monoxide dehydrogenase/acetyl-CoA synthase subunit beta Proteins 0.000 description 1
- 241001480490 Mucoraceae Species 0.000 description 1
- 241000235388 Mucorales Species 0.000 description 1
- 108010047290 Multifunctional Enzymes Proteins 0.000 description 1
- 102000006833 Multifunctional Enzymes Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000052923 Mycobacterium avium subsp. paratuberculosis K-10 Species 0.000 description 1
- 241001025881 Mycobacterium smegmatis str. MC2 155 Species 0.000 description 1
- 101000968511 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Triacylglycerol lipase Proteins 0.000 description 1
- 101100179606 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) ilvB2 gene Proteins 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- 108010072610 N-acetyl-gamma-glutamyl-phosphate reductase Proteins 0.000 description 1
- 101710150975 N-acyl-L-amino acid amidohydrolase Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 108091008747 NR2F3 Proteins 0.000 description 1
- 101100445407 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) erg10B gene Proteins 0.000 description 1
- 101100126846 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) katG gene Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 241001037736 Nocardia farcinica IFM 10152 Species 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 241000192673 Nostoc sp. Species 0.000 description 1
- 108010084311 Novozyme 435 Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101150093941 PORA gene Proteins 0.000 description 1
- 108010035473 Palmitoyl-CoA Hydrolase Proteins 0.000 description 1
- 102000008172 Palmitoyl-CoA Hydrolase Human genes 0.000 description 1
- 102100033359 Pancreatic triacylglycerol lipase Human genes 0.000 description 1
- 241000606752 Pasteurellaceae Species 0.000 description 1
- 241000947860 Pasteurellales Species 0.000 description 1
- 241000413197 Pelobacter carbinolicus DSM 2380 Species 0.000 description 1
- 241001425545 Pelotomaculum Species 0.000 description 1
- 241000142651 Pelotomaculum thermopropionicum Species 0.000 description 1
- ZIGIFDRJFZYEEQ-ZBWAGTGGSA-N Phenylacetyl coenzyme A Natural products S(C(=O)Cc1ccccc1)CCNC(=O)CCNC(=O)[C@H](O)C(CO[P@](=O)(O[P@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C ZIGIFDRJFZYEEQ-ZBWAGTGGSA-N 0.000 description 1
- 101100462488 Phlebiopsis gigantea p2ox gene Proteins 0.000 description 1
- 108700024327 Phosphate butyryltransferases Proteins 0.000 description 1
- OAICVXFJPJFONN-OUBTZVSYSA-N Phosphorus-32 Chemical compound [32P] OAICVXFJPJFONN-OUBTZVSYSA-N 0.000 description 1
- OAICVXFJPJFONN-NJFSPNSNSA-N Phosphorus-33 Chemical compound [33P] OAICVXFJPJFONN-NJFSPNSNSA-N 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 101001071620 Pisum sativum Glutathione reductase, chloroplastic/mitochondrial Proteins 0.000 description 1
- 102000013566 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 241000053208 Porcellio laevis Species 0.000 description 1
- 101710153115 Propionyl-CoA:succinate CoA transferase Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000055027 Protein Methyltransferases Human genes 0.000 description 1
- 108700040121 Protein Methyltransferases Proteins 0.000 description 1
- 241000192142 Proteobacteria Species 0.000 description 1
- 241000947836 Pseudomonadaceae Species 0.000 description 1
- 241001248479 Pseudomonadales Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241001240958 Pseudomonas aeruginosa PAO1 Species 0.000 description 1
- 241000736843 Pyrobaculum aerophilum Species 0.000 description 1
- 241000777575 Pyrobaculum aerophilum str. IM2 Species 0.000 description 1
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 1
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 241000589157 Rhizobiales Species 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 241001148115 Rhizobium etli Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 240000005384 Rhizopus oryzae Species 0.000 description 1
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 1
- 241000191025 Rhodobacter Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 101100173514 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) RPA3954 gene Proteins 0.000 description 1
- 241001420000 Rhodopseudomonas palustris CGA009 Species 0.000 description 1
- 241001185316 Rhodospirillales Species 0.000 description 1
- 244000154511 Rosa hybrid cultivar Species 0.000 description 1
- 235000002315 Rosa hybrid cultivar Nutrition 0.000 description 1
- 241000750876 Roseburia inulinivorans DSM 16841 Species 0.000 description 1
- GBFLZEXEOZUWRN-VKHMYHEASA-M S-carboxylatomethyl-L-cysteine(1-) Chemical compound [O-]C(=O)[C@@H]([NH3+])CSCC([O-])=O GBFLZEXEOZUWRN-VKHMYHEASA-M 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 101000861374 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Fumarate reductase 1 Proteins 0.000 description 1
- 101000983319 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Fumarate reductase 2 Proteins 0.000 description 1
- 101100121588 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GCY1 gene Proteins 0.000 description 1
- 101100394762 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) HFD1 gene Proteins 0.000 description 1
- 101100260088 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TDA10 gene Proteins 0.000 description 1
- 101100053441 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YPR1 gene Proteins 0.000 description 1
- 244000253911 Saccharomyces fragilis Species 0.000 description 1
- 235000018368 Saccharomyces fragilis Nutrition 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241000831652 Salinivibrio sharmensis Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 101100166068 Schizosaccharomyces pombe (strain 972 / ATCC 24843) arg5 gene Proteins 0.000 description 1
- 241001480130 Schizosaccharomycetales Species 0.000 description 1
- 102100021255 Small acidic protein Human genes 0.000 description 1
- 101710174775 Small acidic protein Proteins 0.000 description 1
- 241000131972 Sphingomonadaceae Species 0.000 description 1
- 241001185305 Sphingomonadales Species 0.000 description 1
- 241000194018 Streptococcaceae Species 0.000 description 1
- 241000194019 Streptococcus mutans Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000799398 Streptomyces griseus subsp. griseus NBRC 13350 Species 0.000 description 1
- 241000204060 Streptomycetaceae Species 0.000 description 1
- 102100024241 Succinate-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial Human genes 0.000 description 1
- 241001648303 Succinivibrionaceae Species 0.000 description 1
- 102100020868 Succinyl-CoA:3-ketoacid coenzyme A transferase 1, mitochondrial Human genes 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 241000205101 Sulfolobus Species 0.000 description 1
- NINIDFKCEFEMDL-NJFSPNSNSA-N Sulfur-34 Chemical compound [34S] NINIDFKCEFEMDL-NJFSPNSNSA-N 0.000 description 1
- NINIDFKCEFEMDL-AKLPVKDBSA-N Sulfur-35 Chemical compound [35S] NINIDFKCEFEMDL-AKLPVKDBSA-N 0.000 description 1
- 241000192584 Synechocystis Species 0.000 description 1
- 241001464942 Thauera Species 0.000 description 1
- 101100244556 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) porC gene Proteins 0.000 description 1
- 241000190996 Thiocapsa roseopersicina Species 0.000 description 1
- 102000005488 Thioesterase Human genes 0.000 description 1
- 102000002932 Thiolase Human genes 0.000 description 1
- 108060008225 Thiolase Proteins 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 241001136486 Trichocomaceae Species 0.000 description 1
- 241000224527 Trichomonas vaginalis Species 0.000 description 1
- 241000975677 Trichomonas vaginalis G3 Species 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 241001034637 Tsukamurella paurometabola DSM 20162 Species 0.000 description 1
- 102000006943 Uracil-DNA Glycosidase Human genes 0.000 description 1
- 108010072685 Uracil-DNA Glycosidase Proteins 0.000 description 1
- 239000009466 Valverde Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 241001495153 Xanthobacter sp. Species 0.000 description 1
- 241000589636 Xanthomonas campestris Species 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 241000588901 Zymomonas Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 241000179532 [Candida] cylindracea Species 0.000 description 1
- 241000883281 [Clostridium] cellulolyticum H10 Species 0.000 description 1
- 241000186586 [Clostridium] sporosphaeroides Species 0.000 description 1
- 241000714896 [Eubacterium] rectale ATCC 33656 Species 0.000 description 1
- 108010065064 acetaldehyde dehydrogenase (acylating) Proteins 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 108091000039 acetoacetyl-CoA reductase Proteins 0.000 description 1
- 108010012842 acetoacetyl-CoA synthetase Proteins 0.000 description 1
- 230000000789 acetogenic effect Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000006518 acidic stress Effects 0.000 description 1
- 229940091179 aconitate Drugs 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 102000045404 acyltransferase activity proteins Human genes 0.000 description 1
- 108700014220 acyltransferase activity proteins Proteins 0.000 description 1
- 101150024743 adhA gene Proteins 0.000 description 1
- 101150014383 adhE gene Proteins 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000009603 aerobic growth Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 101150115889 al gene Proteins 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- DEDGUGJNLNLJSR-UHFFFAOYSA-N alpha-hydroxycinnamic acid Natural products OC(=O)C(O)=CC1=CC=CC=C1 DEDGUGJNLNLJSR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 241000617156 archaeon Species 0.000 description 1
- 101150008194 argB gene Proteins 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 102000028848 arylesterase Human genes 0.000 description 1
- 108010009043 arylesterase Proteins 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 101150063145 atoA gene Proteins 0.000 description 1
- 101150006429 atoB gene Proteins 0.000 description 1
- 101150008413 atoD gene Proteins 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-L azelaate(2-) Chemical compound [O-]C(=O)CCCCCCCC([O-])=O BDJRBEYXGGNYIS-UHFFFAOYSA-L 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- VEVJTUNLALKRNO-TYHXJLICSA-N benzoyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)C1=CC=CC=C1 VEVJTUNLALKRNO-TYHXJLICSA-N 0.000 description 1
- YTCZZXIRLARSET-VJRSQJMHSA-M beraprost sodium Chemical compound [Na+].O([C@H]1C[C@@H](O)[C@@H]([C@@H]21)/C=C/[C@@H](O)C(C)CC#CC)C1=C2C=CC=C1CCCC([O-])=O YTCZZXIRLARSET-VJRSQJMHSA-M 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003570 biosynthesizing effect Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 101150008745 bphG gene Proteins 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 150000005693 branched-chain amino acids Chemical class 0.000 description 1
- 101150054092 buk gene Proteins 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 101150058049 car gene Proteins 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000005586 carbonic acid group Chemical group 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001925 catabolic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 101150051771 ccsA gene Proteins 0.000 description 1
- 101150104736 ccsB gene Proteins 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 101150109048 chlI gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-OUBTZVSYSA-N chlorane Chemical compound [36ClH] VEXZGXHMUGYJMC-OUBTZVSYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-IGMARMGPSA-N chlorine-35 Chemical compound [35ClH] VEXZGXHMUGYJMC-IGMARMGPSA-N 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- FDJOLVPMNUYSCM-WZHZPDAFSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+3].N#[C-].N([C@@H]([C@]1(C)[N-]\C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C(\C)/C1=N/C([C@H]([C@@]1(CC(N)=O)C)CCC(N)=O)=C\C1=N\C([C@H](C1(C)C)CCC(N)=O)=C/1C)[C@@H]2CC(N)=O)=C\1[C@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H](N2C3=CC(C)=C(C)C=C3N=C2)O[C@@H]1CO FDJOLVPMNUYSCM-WZHZPDAFSA-L 0.000 description 1
- ZIHHMGTYZOSFRC-UWWAPWIJSA-M cobamamide Chemical compound C1(/[C@](C)(CCC(=O)NC[C@H](C)OP(O)(=O)OC2[C@H]([C@H](O[C@@H]2CO)N2C3=CC(C)=C(C)C=C3N=C2)O)[C@@H](CC(N)=O)[C@]2(N1[Co+]C[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C3=NC=NC(N)=C3N=C1)O)[H])=C(C)\C([C@H](C/1(C)C)CCC(N)=O)=N\C\1=C/C([C@H]([C@@]\1(CC(N)=O)C)CCC(N)=O)=N/C/1=C(C)\C1=N[C@]2(C)[C@@](C)(CC(N)=O)[C@@H]1CCC(N)=O ZIHHMGTYZOSFRC-UWWAPWIJSA-M 0.000 description 1
- 235000006279 cobamamide Nutrition 0.000 description 1
- 239000011789 cobamamide Substances 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010205 computational analysis Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- PFURGBBHAOXLIO-UHFFFAOYSA-N cyclohexane-1,2-diol Chemical compound OC1CCCCC1O PFURGBBHAOXLIO-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 101150111114 cysE gene Proteins 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- JZXNELIZHJCEFA-PVMJKYSESA-N decanedioyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 JZXNELIZHJCEFA-PVMJKYSESA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 101150060629 def gene Proteins 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- BABWHSBPEIVBBZ-UHFFFAOYSA-N diazete Chemical compound C1=CN=N1 BABWHSBPEIVBBZ-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 108010003123 dihydrolipoamide acyltransferase Proteins 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- AWMCEAXIMVYOKU-HTKIKNFPSA-N dodecanedioyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 AWMCEAXIMVYOKU-HTKIKNFPSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 101150023487 easE gene Proteins 0.000 description 1
- WQXNXVUDBPYKBA-YFKPBYRVSA-N ectoine Chemical compound CC1=[NH+][C@H](C([O-])=O)CCN1 WQXNXVUDBPYKBA-YFKPBYRVSA-N 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 101150032129 egsA gene Proteins 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 230000027721 electron transport chain Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 235000020774 essential nutrients Nutrition 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HYXRUZUPCFVWAH-UHFFFAOYSA-N ethyl 6-hydroxyhexanoate Chemical compound CCOC(=O)CCCCCO HYXRUZUPCFVWAH-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 101150004992 fadA gene Proteins 0.000 description 1
- 101150115959 fadR gene Proteins 0.000 description 1
- 230000004136 fatty acid synthesis Effects 0.000 description 1
- 108020003118 fatty acyl-CoA reductase Proteins 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 101150100173 fdx gene Proteins 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 101150030625 fucO gene Proteins 0.000 description 1
- 101150007729 fum-1 gene Proteins 0.000 description 1
- 101150004244 fumA gene Proteins 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000012246 gene addition Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 101150033931 gldA gene Proteins 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000000902 glycyl radical group Chemical group 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- 125000000755 henicosyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid group Chemical group C(CCCCCC)(=O)O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid group Chemical group C(CCCCC)(=O)O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- OEXFMSFODMQEPE-HDRQGHTBSA-N hexanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OEXFMSFODMQEPE-HDRQGHTBSA-N 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 102000056780 human PON3 Human genes 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 101150033780 ilvB gene Proteins 0.000 description 1
- 101150043028 ilvD gene Proteins 0.000 description 1
- 101150105723 ilvD1 gene Proteins 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BKWBIMSGEOYWCJ-UHFFFAOYSA-L iron;iron(2+);sulfanide Chemical compound [SH-].[SH-].[Fe].[Fe+2] BKWBIMSGEOYWCJ-UHFFFAOYSA-L 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- BTNMPGBKDVTSJY-UHFFFAOYSA-N keto-phenylpyruvic acid Chemical compound OC(=O)C(=O)CC1=CC=CC=C1 BTNMPGBKDVTSJY-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940031154 kluyveromyces marxianus Drugs 0.000 description 1
- HXEACLLIILLPRG-RXMQYKEDSA-N l-pipecolic acid Natural products OC(=O)[C@H]1CCCCN1 HXEACLLIILLPRG-RXMQYKEDSA-N 0.000 description 1
- 108091022889 lactaldehyde reductase Proteins 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229940072205 lactobacillus plantarum Drugs 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229940058352 levulinate Drugs 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000001853 liver microsome Anatomy 0.000 description 1
- 101150039489 lysZ gene Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 108010089734 malonyl-CoA synthetase Proteins 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 101150043924 metXA gene Proteins 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- YDJZXHZRXDLCEH-UHFFFAOYSA-N methyl 6-hydroxyhexanoate Chemical compound COC(=O)CCCCCO YDJZXHZRXDLCEH-UHFFFAOYSA-N 0.000 description 1
- MZFOKIKEPGUZEN-FBMOWMAESA-N methylmalonyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C(C(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MZFOKIKEPGUZEN-FBMOWMAESA-N 0.000 description 1
- 101150091724 mgtA gene Proteins 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 101150111412 npt gene Proteins 0.000 description 1
- DBCRIBJPCBKAME-NOQDIWQESA-N octanedioyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 DBCRIBJPCBKAME-NOQDIWQESA-N 0.000 description 1
- 125000005473 octanoic acid group Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XDUHQPOXLUAVEE-BPMMELMSSA-N oleoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCC\C=C/CCCCCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 XDUHQPOXLUAVEE-BPMMELMSSA-N 0.000 description 1
- 101150047779 ompB gene Proteins 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000065 osmolyte Effects 0.000 description 1
- UWVQIROCRJWDKL-UHFFFAOYSA-N oxadixyl Chemical compound CC=1C=CC=C(C)C=1N(C(=O)COC)N1CCOC1=O UWVQIROCRJWDKL-UHFFFAOYSA-N 0.000 description 1
- 238000005895 oxidative decarboxylation reaction Methods 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- QVGXLLKOCUKJST-OUBTZVSYSA-N oxygen-17 atom Chemical compound [17O] QVGXLLKOCUKJST-OUBTZVSYSA-N 0.000 description 1
- QVGXLLKOCUKJST-NJFSPNSNSA-N oxygen-18 atom Chemical compound [18O] QVGXLLKOCUKJST-NJFSPNSNSA-N 0.000 description 1
- 101150006816 paaH gene Proteins 0.000 description 1
- MNBKLUUYKPBKDU-BBECNAHFSA-N palmitoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCCCCCCCCCCCCCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MNBKLUUYKPBKDU-BBECNAHFSA-N 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 101150004383 pcaJ gene Proteins 0.000 description 1
- 101150096397 pdf1 gene Proteins 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000858 peroxisomal effect Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical class OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 1
- ZIGIFDRJFZYEEQ-CECATXLMSA-N phenylacetyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)CC1=CC=CC=C1 ZIGIFDRJFZYEEQ-CECATXLMSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229940097886 phosphorus 32 Drugs 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 101150100761 pimB gene Proteins 0.000 description 1
- 101150090310 pimF gene Proteins 0.000 description 1
- WLJVNTCWHIRURA-UHFFFAOYSA-M pimelate(1-) Chemical compound OC(=O)CCCCCC([O-])=O WLJVNTCWHIRURA-UHFFFAOYSA-M 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 101150031507 porB gene Proteins 0.000 description 1
- 101150043901 porD gene Proteins 0.000 description 1
- 101150110193 porG gene Proteins 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 101150060030 poxB gene Proteins 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- GFTVKOOSBKTATA-UHFFFAOYSA-N propyl 6-hydroxyhexanoate Chemical compound CCCOC(=O)CCCCCO GFTVKOOSBKTATA-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 101150108780 pta gene Proteins 0.000 description 1
- 108010060146 pyruvate formate-lyase activating enzyme Proteins 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 101150007867 rbfox2 gene Proteins 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 102000037983 regulatory factors Human genes 0.000 description 1
- 108091008025 regulatory factors Proteins 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- WIOQNWTZBOQTEU-ZMHDXICWSA-N s-[2-[3-[[(2r)-4-[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 3-oxopentanethioate Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 WIOQNWTZBOQTEU-ZMHDXICWSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-IGMARMGPSA-N sulfur-32 atom Chemical compound [32S] NINIDFKCEFEMDL-IGMARMGPSA-N 0.000 description 1
- NINIDFKCEFEMDL-OUBTZVSYSA-N sulfur-33 atom Chemical compound [33S] NINIDFKCEFEMDL-OUBTZVSYSA-N 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 101150026728 tesB gene Proteins 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960002363 thiamine pyrophosphate Drugs 0.000 description 1
- 235000008170 thiamine pyrophosphate Nutrition 0.000 description 1
- 239000011678 thiamine pyrophosphate Substances 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-N thiamine(1+) diphosphate(1-) Chemical compound CC1=C(CCO[P@](O)(=O)OP(O)([O-])=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-N 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 108020002982 thioesterase Proteins 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 101150096860 thlA gene Proteins 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- URTLOTISFJPPOU-DEGQQWIJSA-N trans-4-carboxybut-2-enoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C\CC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 URTLOTISFJPPOU-DEGQQWIJSA-N 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940117958 vinyl acetate Drugs 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 101150102457 ybgC gene Proteins 0.000 description 1
- 101150000552 ydbK gene Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
- C12P17/08—Oxygen as only ring hetero atoms containing a hetero ring of at least seven ring members, e.g. zearalenone, macrolide aglycons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D313/00—Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
- C07D313/02—Seven-membered rings
- C07D313/04—Seven-membered rings not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4266—Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
- C08G18/4269—Lactones
- C08G18/4277—Caprolactone and/or substituted caprolactone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
Definitions
- the present invention relates generally to biosynthetic processes, and more specifically to organisms having caprolactone capability.
- Caprolactone ( ⁇ -Caprolactone) is a cyclic ester with a seven-membered ring having the formula (CH 2 ) 5 C0 2 . This colorless liquid is miscible with most organic solvents. It is produced as a precursor to caprolactam.
- the caprolactone monomer is used in the manufacture of highly specialized polymers because of its ring-opening potential. Ring-opening polymerization, for example, results in the production of polycaprolactone.
- Caprolactone is typically prepared by oxidation of cyclohexanone with peracetic acid.
- Caprolactone undergoes reactions typical for primary alcohols. Downstream applications of these product groups include protective and industrial coatings, polyurethanes, cast elastomers, adhesives, colorants, pharmaceuticals and many more. Other useful properties of caprolactone include high resistance to hydrolysis, excellent mechanical properties, and low glass transition temperature.
- the invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone.
- the invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
- Figure 1 shows exemplary pathways from adipate or adipyl-CoA to
- Enzymes are A. adipyl-CoA reductase, B. adipate semialdehyde reductase, C. 6-hydroxyhexanoyl-CoA transferase or synthetase, D. 6-hydroxyhexanoyl-CoA cyclase or spontaneous cyclization, E. adipate reductase, F. adipyl-CoA transferase, synthetase or hydrolase, G. 6-hydroxyhexanoate cyclase, H. 6-hydroxyhexanoate kinase, I. 6- hydroxyhexanoyl phosphate cyclase or spontaneous cyclization, J. phosphotrans-6- hydroxyhexanoylase.
- FIG. 2 shows exemplary pathways from 4-hydroxybutyryl-CoA to caprolactone.
- Enzymes are A. 4-hydroxybutyryl-CoA:acetyl-CoA acyltransferase, B. 3- oxo-6-hydroxyhexanoyl-CoA reductase, C. 3,6-dihydroxyhexanoyl-CoA dehydratase, D. 6-hydroxyhex-2-enoyl-CoA reductase, E. 6-hydroxyhexanoyl-CoA transferase, synthetase or hydrolase, F. 6-hydroxyhexanoate cyclase, G. 6-hydroxyhexanoyl-CoA cyclase or spontaneous, H. phosphotrans-6-hydroxyhexanoylase, I. 6-hydroxyhexanoyl phosphate cyclase or spontaneous, J. 6-hydroxyhexanoate kinase.
- Figure 3 shows conversion of cyclohexanone to caprolactone by
- Figure 4 shows exemplary pathways to cyclohexanone from adipate semialdehyde.
- Enzymes are A. adipate semialdehyde dehydratase, B. cyclohexane-1,2- dione reductase, C. 2 -hydroxy cyclohexanone reductase, D. cyclohexane-l,2-diol dehydratase.
- Figure 5 shows exemplary pathways to cyclohexanone from pimeloyl-CoA.
- Enzymes are A. 2-ketocyclohexane-l-carboxoyl-CoA hydrolase (acting on C-C), B. 2- ketocyclohexane-l-carboxoyl-CoA transferase, synthetase or hydrolase, C. 2- ketocyclohexane- 1 -carboxylate decarboxylase.
- Figure 6 shows the reverse TCA cycle for fixation of C0 2 on carbohydrates as substrates.
- the enzymatic transformations are carried out by the enzymes as shown.
- Figure 7 shows the pathway for the reverse TCA cycle coupled with carbon monoxide dehydrogenase and hydrogenase for the conversion of syngas to acetyl-CoA.
- Figure 8 shows Western blots of 10 micrograms ACS90 (lane 1), ACS91 (lane2), Mta98/99 (lanes 3 and 4) cell extracts with size standards (lane 5) and controls of M. thermoacetica CODH (Moth_1202/1203) or Mtr (Moth l 197) proteins (50, 150, 250, 350, 450, 500, 750, 900, and 1000 ng).
- Figure 9 shows CO oxidation assay results.
- Cells M. thermoacetica or E. coli with the CODH/ACS operon; ACS90 or ACS91 or empty vector: pZA33S
- Assays were performed at 55°C at various times on the day the extracts were prepared. Reduction of methylviologen was followed at 578 nm over a 120 sec time course.
- the present invention is directed to the design and production of cells and organisms having biosynthetic production capabilities for caprolactone.
- the invention in particular, relates to the design of microbial organism capable of producing caprolactone by introducing one or more nucleic acids encoding a caprolactone pathway enzyme.
- the invention utilizes in silico stoichiometric models of Escherichia coli metabolism that identify metabolic designs for biosynthetic production of caprolactone.
- the results described herein indicate that metabolic pathways can be designed and recombinantly engineered to achieve the biosynthesis of caprolactone in Escherichia coli and other cells or organisms.
- Biosynthetic production of caprolactone, for example, for the in silico designs can be confirmed by construction of strains having the designed metabolic genotype.
- These metabolically engineered cells or organisms also can be subjected to adaptive evolution to further augment caprolactone biosynthesis, including under conditions approaching theoretical maximum growth.
- the caprolactone biosynthesis characteristics of the designed strains make them genetically stable and particularly useful in continuous bioprocesses.
- Separate strain design strategies were identified with incorporation of different non-native or heterologous reaction capabilities into E. coli or other host organisms leading to caprolactone producing metabolic pathways from either adipyl-CoA, adipate, 4-hydroxybutyryl-CoA, adipate semialdehyde and pimeloyl-CoA.
- silico metabolic designs were identified that resulted in the biosynthesis of caprolactone in microorganisms from each of these substrates or metabolic intermediates.
- Strains identified via the computational component of the platform can be put into actual production by genetically engineering any of the predicted metabolic alterations, which lead to the biosynthetic production of caprolactone or other intermediate and/or downstream products.
- strains exhibiting biosynthetic production of these compounds can be further subjected to adaptive evolution to further augment product biosynthesis.
- the levels of product biosynthesis yield following adaptive evolution also can be predicted by the computational component of the system.
- non-naturally occurring when used in reference to a microbial organism or microorganism of the invention is intended to mean that the microbial organism has at least one genetic alteration not normally found in a naturally occurring strain of the referenced species, including wild-type strains of the referenced species.
- Genetic alterations include, for example, modifications introducing expressible nucleic acids encoding metabolic polypeptides, other nucleic acid additions, nucleic acid deletions and/or other functional disruption of the microbial organism's genetic material.
- modifications include, for example, coding regions and functional fragments thereof, for heterologous, homologous or both heterologous and homologous polypeptides for the referenced species.
- Additional modifications include, for example, non-coding regulatory regions in which the modifications alter expression of a gene or operon.
- Exemplary metabolic polypeptides include enzymes or proteins within a caprolactone biosynthetic pathway.
- a metabolic modification refers to a biochemical reaction that is altered from its naturally occurring state. Therefore, non-naturally occurring microorganisms can have genetic modifications to nucleic acids encoding metabolic polypeptides, or functional fragments thereof. Exemplary metabolic modifications are disclosed herein.
- isolated when used in reference to a microbial organism is intended to mean an organism that is substantially free of at least one component as the referenced microbial organism is found in nature. The term includes a microbial organism that is removed from some or all components as it is found in its natural environment. The term also includes a microbial organism that is removed from some or all components as the microbial organism is found in non-naturally occurring environments.
- an isolated microbial organism is partly or completely separated from other substances as it is found in nature or as it is grown, stored or subsisted in non- naturally occurring environments.
- Specific examples of isolated microbial organisms include partially pure microbes, substantially pure microbes and microbes cultured in a medium that is non-naturally occurring.
- microbial As used herein, the terms "microbial,” “microbial organism” or
- microorganism are intended to mean any organism that exists as a microscopic cell that is included within the domains of archaea, bacteria or eukarya. Therefore, the term is intended to encompass prokaryotic or eukaryotic cells or organisms having a microscopic size and includes bacteria, archaea and eubacteria of all species as well as eukaryotic microorganisms such as yeast and fungi. The term also includes cell cultures of any species that can be cultured for the production of a biochemical.
- CoA or "coenzyme A” is intended to mean an organic cofactor or prosthetic group (nonprotein portion of an enzyme) whose presence is required for the activity of many enzymes (the apoenzyme) to form an active enzyme system.
- Coenzyme A functions in certain condensing enzymes, acts in acetyl or other acyl group transfer and in fatty acid synthesis and oxidation, pyruvate oxidation and in other acetylation.
- substantially anaerobic when used in reference to a culture or growth condition is intended to mean that the amount of oxygen is less than about 10% of saturation for dissolved oxygen in liquid media.
- the term also is intended to include sealed chambers of liquid or solid medium maintained with an atmosphere of less than about 1% oxygen.
- Exogenous as it is used herein is intended to mean that the referenced molecule or the referenced activity is introduced into the host microbial organism.
- the molecule can be introduced, for example, by introduction of an encoding nucleic acid into the host genetic material such as by integration into a host chromosome or as non- chromosomal genetic material such as a plasmid. Therefore, the term as it is used in reference to expression of an encoding nucleic acid refers to introduction of the encoding nucleic acid in an expressible form into the microbial organism. When used in reference to a biosynthetic activity, the term refers to an activity that is introduced into the host reference organism.
- the source can be, for example, a homologous or heterologous encoding nucleic acid that expresses the referenced activity following introduction into the host microbial organism. Therefore, the term “endogenous” refers to a referenced molecule or activity that is present in the host. Similarly, the term when used in reference to expression of an encoding nucleic acid refers to expression of an encoding nucleic acid contained within the microbial organism. The term “heterologous” refers to a molecule or activity derived from a source other than the referenced species whereas “homologous” refers to a molecule or activity derived from the host microbial organism. Accordingly, exogenous expression of an encoding nucleic acid of the invention can utilize either or both a heterologous or homologous encoding nucleic acid.
- the more than one exogenous nucleic acids refers to the referenced encoding nucleic acid or biosynthetic activity, as discussed above. It is further understood, as disclosed herein, that such more than one exogenous nucleic acids can be introduced into the host microbial organism on separate nucleic acid molecules, on polycistronic nucleic acid molecules, or a combination thereof, and still be considered as more than one exogenous nucleic acid.
- a microbial organism can be engineered to express two or more exogenous nucleic acids encoding a desired pathway enzyme or protein.
- two exogenous nucleic acids encoding a desired activity are introduced into a host microbial organism
- the two exogenous nucleic acids can be introduced as a single nucleic acid, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two exogenous nucleic acids.
- exogenous nucleic acids can be introduced into a host organism in any desired combination, for example, on a single plasmid, on separate plasmids, can be integrated into the host chromosome at a single site or multiple sites, and still be considered as two or more exogenous nucleic acids, for example three exogenous nucleic acids.
- the number of referenced exogenous nucleic acids or biosynthetic activities refers to the number of encoding nucleic acids or the number of biosynthetic activities, not the number of separate nucleic acids introduced into the host organism.
- the non-naturally occurring microbial organisms of the invention can contain stable genetic alterations, which refers to microorganisms that can be cultured for greater than five generations without loss of the alteration.
- stable genetic alterations include modifications that persist greater than 10 generations, particularly stable modifications will persist more than about 25 generations, and more particularly, stable genetic modifications will be greater than 50 generations, including indefinitely.
- An ortholog is a gene or genes that are related by vertical descent and are responsible for substantially the same or identical functions in different organisms.
- mouse epoxide hydrolase and human epoxide hydrolase can be considered orthologs for the biological function of hydrolysis of epoxides.
- Genes are related by vertical descent when, for example, they share sequence similarity of sufficient amount to indicate they are homologous, or related by evolution from a common ancestor.
- Genes can also be considered orthologs if they share three-dimensional structure but not necessarily sequence similarity, of a sufficient amount to indicate that they have evolved from a common ancestor to the extent that the primary sequence similarity is not identifiable.
- Genes that are orthologous can encode proteins with sequence similarity of about 25% to 100% amino acid sequence identity. Genes encoding proteins sharing an amino acid similarity less that 25% can also be considered to have arisen by vertical descent if their three-dimensional structure also shows similarities. Members of the serine protease family of enzymes, including tissue plasminogen activator and elastase, are considered to have arisen by vertical descent from a common ancestor.
- Orthologs include genes or their encoded gene products that through, for example, evolution, have diverged in structure or overall activity. For example, where one species encodes a gene product exhibiting two functions and where such functions have been separated into distinct genes in a second species, the three genes and their corresponding products are considered to be orthologs. For the production of a biochemical product, those skilled in the art will understand that the orthologous gene harboring the metabolic activity to be introduced or disrupted is to be chosen for construction of the non-naturally occurring microorganism. An example of orthologs exhibiting separable activities is where distinct activities have been separated into distinct gene products between two or more species or within a single species.
- a specific example is the separation of elastase proteolysis and plasminogen proteolysis, two types of serine protease activity, into distinct molecules as plasminogen activator and elastase.
- a second example is the separation of mycoplasma 5 '-3' exonuclease and Drosophila DNA polymerase III activity.
- the DNA polymerase from the first species can be considered an ortholog to either or both of the exonuclease or the polymerase from the second species and vice versa.
- paralogs are homologs related by, for example, duplication followed by evolutionary divergence and have similar or common, but not identical functions.
- Paralogs can originate or derive from, for example, the same species or from a different species.
- microsomal epoxide hydrolase epoxide hydrolase I
- soluble epoxide hydrolase epoxide hydrolase II
- Paralogs are proteins from the same species with significant sequence similarity to each other suggesting that they are homologous, or related through co-evolution from a common ancestor.
- Groups of paralogous protein families include HipA homologs, luciferase genes, peptidases, and others.
- a nonorthologous gene displacement is a nonorthologous gene from one species that can substitute for a referenced gene function in a different species.
- Substitution includes, for example, being able to perform substantially the same or a similar function in the species of origin compared to the referenced function in the different species.
- a nonorthologous gene displacement will be identifiable as structurally related to a known gene encoding the referenced function, less structurally related but functionally similar genes and their corresponding gene products nevertheless will still fall within the meaning of the term as it is used herein.
- Functional similarity requires, for example, at least some structural similarity in the active site or binding region of a nonorthologous gene product compared to a gene encoding the function sought to be substituted. Therefore, a nonorthologous gene includes, for example, a paralog or an unrelated gene.
- Orthologs, paralogs and nonorthologous gene displacements can be determined by methods well known to those skilled in the art. For example, inspection of nucleic acid or amino acid sequences for two polypeptides will reveal sequence identity and similarities between the compared sequences. Based on such similarities, one skilled in the art can determine if the similarity is sufficiently high to indicate the proteins are related through evolution from a common ancestor. Algorithms well known to those skilled in the art, such as Align, BLAST, Clustal W and others compare and determine a raw sequence similarity or identity, and also determine the presence or significance of gaps in the sequence which can be assigned a weight or score.
- Such algorithms also are known in the art and are similarly applicable for determining nucleotide sequence similarity or identity. Parameters for sufficient similarity to determine relatedness are computed based on well known methods for calculating statistical similarity, or the chance of finding a similar match in a random polypeptide, and the significance of the match determined. A computer comparison of two or more sequences can, if desired, also be optimized visually by those skilled in the art. Related gene products or proteins can be expected to have a high similarity, for example, 25% to 100% sequence identity. Proteins that are unrelated can have an identity which is essentially the same as would be expected to occur by chance, if a database of sufficient size is scanned (about 5%). Sequences between 5% and 24% may or may not represent sufficient homology to conclude that the compared sequences are related. Additional statistical analysis to determine the significance of such matches given the size of the data set can be carried out to determine the relevance of these sequences.
- Exemplary parameters for determining relatedness of two or more sequences using the BLAST algorithm can be as set forth below. Briefly, amino acid sequence alignments can be performed using BLASTP version 2.0.8 (Jan-05-1999) and the following parameters: Matrix: 0 BLOSUM62; gap open: 11; gap extension: 1;
- Nucleic acid sequence alignments can be performed using BLASTN version 2.0.6 (Sept- 16- 1998) and the following parameters: Match: 1; mismatch: -2; gap open: 5; gap extension: 2; x dropoff: 50; expect: 10.0;
- the invention provides a non-naturally occurring microbial organism having a caprolactone pathway and including at least one exogenous nucleic acid encoding a caprolactone pathway enzyme expressed in a sufficient amount to produce caprolactone.
- the caprolactone pathway includes a pathway selected from: (1) 1A, IB, IC and ID; (2) IE, IB, IC and ID; (3) IF, 1A, IB, IC and ID; (4) IF, IE, IB, IC and ID; (5) 1A, IB and IG; (6) IE, IB and IG; (7) IF, 1A, IB and IG; (8) IF, IE, IB and IG; (9) 1A, IB, IC, 1J and II; (10) IE, IB, IC, 1J and II; (11) IF, 1A, IB, IC, 1J and II; (12) IF, IE, IB, IC, 1J and II; (13) 1A, IB, 1H and II; (14) IE, IB, 1H and II; (15) IF, 1A, IB, 1H and II; (16) IF, IE, IB, 1H and II; (17)
- the invention provides a non-naturally occurring microbial organism as described herein, wherein the microbial organism includes two, three, four, five, six or seven exogenous nucleic acids each encoding a caprolactone pathway enzyme.
- the microbial organism can include exogenous nucleic acids encoding each of the enzymes of at least one of the pathways selected from (l)-(22) as described above.
- At least one exogenous nucleic acid included within the microbial organism is a heterologous nucleic acid.
- the non-naturally occurring microbial organism as disclosed herein is in a substantially anaerobic culture medium.
- the non-naturally occurring microbial organism as disclosed herein further includes (i) a reductive TCA pathway comprising at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme, wherein said at least one exogenous nucleic acid is selected from an ATP-citrate lyase, citrate lyase, a fumarate reductase, and an alpha-ketoglutarate:ferredoxin oxidoreductase; (ii) a reductive TCA pathway comprising at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme, wherein said at least one exogenous nucleic acid is selected from a pyruvate :ferredoxin oxidoreductase, a phosphoenolpyruvate carboxylase, a
- At least one exogenous nucleic acid encodes an enzyme selected from a CO dehydrogenase, an H 2 hydrogenase, and combinations thereof.
- non-naturally occurring microbial organism having (i) above further includes an exogenous nucleic acid encoding an enzyme selected from a pyruvate :ferredoxin oxidoreductase, an aconitase, an isocitrate dehydrogenase, a succinyl-CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate
- an enzyme selected from a pyruvate :ferredoxin oxidoreductase, an aconitase, an isocitrate dehydrogenase, a succinyl-CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate
- the non-naturally occurring microbial organism including (ii) as described above further includes an exogenous nucleic acid encoding an enzyme selected from an aconitase, an isocitrate dehydrogenase, a succinyl-CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate dehydrogenase, and combinations thereof.
- the non-naturally occurring microbial organism having (i) as described above further comprises four exogenous nucleic acids encoding an ATP-citrate lyase, citrate lyase, a fumarate reductase, and an alpha- ketoglutarate: ferredoxin oxidoreductase.
- the non-naturally occurring microbial orgnaism having (ii) as described above further comprises five exogenous nucleic acids encoding a pyruvate: ferredoxin oxidoreductase, a
- the non-naturally occurring microbial orgnaism having (iii) as described above further comprises two exogenous nucleic acids encoding a CO dehydrogenase and an H 2 hydrogenase.
- the invention provides a non-naturally occurring microbial organism having a caprolactone pathway, wherein the non-naturally occurring microbial organism comprises at least one exogenous nucleic acid encoding an enzyme or protein that converts a substrate to a product selected from the group consisting of adipyl- CoA to adipate, adipyl-CoA to adipate semialdehyde, adipate to adipate semialdehyde, adipate semialdehyde to 6-hydroxyhexanoate, 6-hydroxyhexanoate to 6-hydroxyhexanoyl- CoA, 6-hydroxyhexanoate to 6-hydroxyhexanoyl-phosphate, 6-hydroxyhexanoate to caprolactone, 6-hydroxyhexanoyl-CoA to 6-hydroxyhexanoyl phosphate, 6- hydroxyhexanoyl phosphate to caprolactone, 6-hydroxyhexanoyl-CoA to 6-hydroxyhexanoyl
- the invention provides a non-naturally occurring microbial organism containing at least one exogenous nucleic acid encoding an enzyme or protein, where the enzyme or protein converts the substrates and products of a caprolactone pathway, such as that shown in Figures 1-5.
- a microbial organism that contains a caprolactone pathway While generally described herein as a microbial organism that contains a caprolactone pathway, it is understood that the invention additionally provides a non- naturally occurring microbial organism comprising at least one exogenous nucleic acid encoding a caprolactone pathway enzyme expressed in a sufficient amount to produce an intermediate of a caprolactone pathway.
- a caprolactone pathway is exemplified in Figures 1-5.
- the invention additionally provides a non-naturally occurring microbial organism comprising at least one exogenous nucleic acid encoding a caprolactone pathway enzyme, where the microbial organism produces a caprolactone pathway intermediate, for example, 6-hydroxyhexanoate, 6- hydroxyhexanoyl-CoA, 6-hydroxyhexanoyl phosphate, 3-oxo-6-hydroxy hexanoyl-CoA, 3,6-dihydroxy hexanoyl-CoA, 6-hydroxyhex-2-enoyl-CoA, cyclohexanone, cyclohexane- 1,2-dione, 2-hydroxycyclohexanone, cyclohexane-l,2-diol, 2-ketocyclohexane-l- carboxyoyl-CoA, or 2-ketocyclohexane-l-carboxylate.
- 6-hydroxyhexanoate 6- hydroxyhexanoyl-CoA, 6-hydroxyhexano
- any of the pathways disclosed herein, as described in the Examples and exemplified in the Figures, including the pathways of Figures 1-5, can be utilized to generate a non-naturally occurring microbial organism that produces any pathway intermediate or product, as desired.
- a microbial organism that produces an intermediate can be used in combination with another microbial organism expressing downstream pathway enzymes to produce a desired product.
- This invention is also directed, in part to engineered biosynthetic pathways to improve carbon flux through a central metabolism intermediate en route to caprolactone.
- the present invention provides non-naturally occurring microbial organisms having one or more exogenous genes encoding enzymes that can catalyze various enzymatic
- these enzymatic transformations are part of the reductive tricarboxylic acid (RTCA) cycle and are used to improve product yields, including but not limited to, from carbohydrate-based carbon feedstock.
- RTCA reductive tricarboxylic acid
- the present invention increases the yields of caprolactone by (i) enhancing carbon fixation via the reductive TCA cycle, and/or (ii) accessing additional reducing equivalents from gaseous carbon sources and/or syngas components such as CO, C0 2 , and/or H 2 .
- gaseous carbon sources and/or syngas components such as CO, C0 2 , and/or H 2 .
- syngas other sources of such gases include, but are not limted to, the atmosphere, either as found in nature or generated.
- the C0 2 -fixing reductive tricarboxylic acid (RTCA) cycle is an endergenic anabolic pathway of C0 2 assimilation which uses reducing equivalents and ATP ( Figure 6).
- One turn of the RTCA cycle assimilates two moles of C0 2 into one mole of acetyl- CoA, or four moles of C0 2 into one mole of oxaloacetate.
- This additional availability of acetyl-CoA improves the maximum theoretical yield of product molecules derived from carbohydrate-based carbon feedstock.
- Exemplary carbohydrates include but are not limited to glucose, sucrose, xylose, arabinose and glycerol.
- the reductive TCA cycle coupled with carbon monoxide dehydrogenase and/or hydrogenase enzymes, can be employed to allow syngas, C0 2 , CO, H 2 , and/or other gaseous carbon source utilization by microorganisms.
- Synthesis gas in particular is a mixture of primarily H 2 and CO, sometimes including some amounts of C0 2 , that can be obtained via gasification of any organic feedstock, such as coal, coal oil, natural gas, biomass, or waste organic matter.
- Any organic feedstock such as coal, coal oil, natural gas, biomass, or waste organic matter.
- Numerous gasification processes have been developed, and most designs are based on partial oxidation, where limiting oxygen avoids full combustion, of organic materials at high temperatures (500-1500°C) to provide syngas as a 0.5: 1-3: 1 H 2 /CO mixture.
- biomass of many types has been used for syngas production and represents an inexpensive and flexible feedstock for the biological production of renewable chemicals and fuels.
- Carbon dioxide can be provided from the atmosphere or in condensed from, for example, from a tank cylinder, or via sublimation of solid C0 2 .
- CO and hydrogen gas can be provided in reagent form and/or mixed in any desired ratio.
- Other gaseous carbon forms can include, for example, methanol or similar volatile organic solvents.
- the components of synthesis gas and/or other carbon sources can provide sufficient C0 2 , reducing equivalents, and ATP for the reductive TCA cycle to operate.
- One turn of the RTCA cycle assimilates two moles of C0 2 into one mole of acetyl-CoA and requires 2 ATP and 4 reducing equivalents.
- CO and/or H 2 can provide reducing equivalents by means of carbon monoxide dehydrogenase and hydrogenase enzymes, respectively.
- Reducing equivalents can come in the form of NADH, NADPH, FADH, reduced quinones, reduced ferredoxins, reduced flavodoxins and thioredoxins.
- the reducing equivalents can serve as cofactors for the RTCA cycle enzymes, for example, malate dehydrogenase, fumarate reductase, alpha-ketoglutarate: ferredoxin oxidoreductase (alternatively known as 2- oxoglutarate: ferredoxin oxidoreductase, alpha-ketoglutarate synthase, or 2-oxoglutarate synthase), pyruvate: ferredoxin oxidoreductase and isocitrate dehydrogenase.
- the electrons from these reducing equivalents can alternatively pass through an ion-gradient producing electron transport chain where they are passed to an acceptor such as oxygen, nitrate, oxidized metal ions, protons, or an electrode.
- the ion-gradient can then be used for ATP generation via an ATP synthase or similar enzyme.
- reductive and oxidative (Krebs) TCA cycles are present in the same organism (Hugler et al, supra (2007); Siebers et al, J. Bacteriol. 186:2179-2194 (2004)).
- Some methanogens and obligate anaerobes possess incomplete oxidative or reductive TCA cycles that may function to synthesize biosynthetic intermediates (Ekiel et al, J. Bacteriol. 162:905-908 (1985); Wood et al, FEMS Microbiol. Rev. 28:335-352 (2004)).
- the key carbon-fixing enzymes of the reductive TCA cycle are alpha- ketoglutarate:ferredoxin oxidoreductase, pyruvate :ferredoxin oxidoreductase and isocitrate dehydrogenase. Additional carbon may be fixed during the conversion of
- TCA cycle Many of the enzymes in the TCA cycle are reversible and can catalyze reactions in the reductive and oxidative directions. However, some TCA cycle reactions are irreversible in vivo and thus different enzymes are used to catalyze these reactions in the directions required for the reverse TCA cycle. These reactions are: (1) conversion of citrate to oxaloacetate and acetyl-CoA, (2) conversion of fumarate to succinate, and (3) conversion of succinyl-CoA to alpha-ketoglutarate. In the TCA cycle, citrate is formed from the condensation of oxaloacetate and acetyl-CoA.
- citrate lyase can be coupled to acetyl-CoA synthetase, an acetyl-CoA transferase, or phosphotransacetylase and acetate kinase to form acetyl-CoA and oxaloacetate from citrate.
- succinate dehydrogenase The conversion of succinate to fumarate is catalyzed by succinate dehydrogenase while the reverse reaction is catalyzed by fumarate reductase.
- succinyl-CoA is formed from the NAD(P) + dependent decarboxylation of alpha-ketoglutarate by the alpha-ketoglutarate dehydrogenase complex.
- the reverse reaction is catalyzed by alpha- ketoglutarate : ferredoxin oxidoreductase.
- An organism capable of utilizing the reverse tricarboxylic acid cycle to enable production of acetyl-CoA-derived products on 1) CO, 2) C0 2 and H 2 , 3) CO and C0 2 , 4) synthesis gas comprising CO and H 2 , and 5) synthesis gas or other gaseous carbon sources comprising CO, C0 2 , and H 2 can include any of the following enzyme activities: ATP- citrate lyase, citrate lyase, aconitase, isocitrate dehydrogenase, alpha- ketoglutarate: ferredoxin oxidoreductase, succinyl-CoA synthetase, succinyl-CoA transferase, fumarate reductase, fumarase, malate dehydrogenase, acetate kinase, phosphotransacetylase, acetyl-CoA synthetase, acetyl-CoA transferas
- Carbon from syngas or other gaseous carbon sources can be fixed via the reverse TCA cycle and components thereof. Specifically, the combination of certain carbon gas-utilization pathway components with the pathways for formation of caprolactone from acetyl-CoA results in high yields of these products by providing an efficient mechanism for fixing the carbon present in carbon dioxide, fed exogenously or produced endogenously from CO, into acetyl-CoA.
- a caprolactone pathway in a non-naturally occurring microbial organism of the invention can utilize any combination of (1) CO, (2) C0 2 , (3) H 2 , or mixtures thereof to enhance the yields of biosynthetic steps involving reduction, including addition to driving the reductive TCA cycle.
- a non-naturally occurring microbial organism having an caprolactone pathway includes at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme.
- the at least one exogenous nucleic acid is selected from an ATP- citrate lyase, citrate lyase, a fumarate reductase, isocitrate dehydrogenase, aconitase, and an alpha-ketoglutarate: ferredoxin oxidoreductase; and at least one exogenous enzyme selected from a carbon monoxide dehydrogenase, a hydrogenase, a NAD(P)H: ferredoxin oxidoreductase, and a ferredoxin, expressed in a sufficient amount to allow the utilization of (1) CO, (2) C0 2 , (3) H 2 , (4) C0 2 and H 2 , (5) CO and C0 2 , (6) CO and H 2 , or (7) CO
- a method includes culturing a non-naturally occurring microbial organism having a caprolactone pathway also comprising at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme.
- the at least one exogenous nucleic acid is selected from an ATP-citrate lyase, citrate lyase, a fumarate reductase, isocitrate dehydrogenase, aconitase, and an alpha-ketoglutarate :ferredoxin oxidoreductase.
- such an organism can also include at least one exogenous enzyme selected from a carbon monoxide dehydrogenase, a hydrogenase, a NAD(P)H: ferredoxin oxidoreductase, and a ferredoxin, expressed in a sufficient amount to allow the utilization of (1) CO, (2) C0 2 , (3) H 2 , (4) C0 2 and H 2 , (5) CO and C0 2 , (6) CO and H 2 , or (7) CO, C0 2 , and H 2 to produce a product.
- exogenous enzyme selected from a carbon monoxide dehydrogenase, a hydrogenase, a NAD(P)H: ferredoxin oxidoreductase, and a ferredoxin
- a non-naturally occurring microbial organism having an caprolactone pathway further includes at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme expressed in a sufficient amount to enhance carbon flux through acetyl-CoA.
- the at least one exogenous nucleic acid is selected from an ATP- citrate lyase, citrate lyase, a fumarate reductase, a pyruvate :ferredoxin oxidoreductase, isocitrate dehydrogenase, aconitase and an alpha-ketoglutarate:ferredoxin oxidoreductase.
- a non-naturally occurring microbial organism having an caprolactone pathway includes at least one exogenous nucleic acid encoding an enzyme expressed in a sufficient amount to enhance the availability of reducing equivalents in the presence of carbon monoxide and/or hydrogen, thereby increasing the yield of redox- limited products via carbohydrate -based carbon feedstock.
- the at least one exogenous nucleic acid is selected from a carbon monoxide dehydrogenase, a hydrogenase, an NAD(P)H:ferredoxin oxidoreductase, and a ferredoxin.
- the present invention provides a method for enhancing the availability of reducing equivalents in the presence of carbon monoxide or hydrogen thereby increasing the yield of redox-limited products via carbohydrate-based carbon feedstock, such as sugars or gaseous carbon sources, the method includes culturing this non-naturally occurring microbial organism under conditions and for a sufficient period of time to produce caprolactone.
- the non-naturally occurring microbial organism having an caprolactone pathway includes two exogenous nucleic acids, each encoding a reductive TCA pathway enzyme. In some embodiments, the non-naturally occurring microbial organism having an caprolactone pathway includes three exogenous nucleic acids each encoding a reductive TCA pathway enzyme. In some embodiments, the non- naturally occurring microbial organism includes three exogenous nucleic acids encoding an ATP-citrate lyase, a fumarate reductase, and an alpha-ketoglutarate: ferredoxin oxidoreductase.
- the non-naturally occurring microbial organism includes three exogenous nucleic acids encoding a citrate lyase, a fumarate reductase, and an alpha-ketoglutarate: ferredoxin oxidoreductase.
- the non- naturally occurring microbial organism includes four exogenous nucleic acids encoding a pyruvate: ferredoxin oxidoreductase; a phosphoenolpyruvate carboxylase or a
- the non-naturally occurring microbial organism includes two exogenous nucleic acids encoding a CO dehydrogenase and an H 2 hydrogenase.
- the non-naturally occurring microbial organisms having an caprolactone pathway further include an exogenous nucleic acid encoding an enzyme selected from a pyruvate :ferredoxin oxidoreductase, an aconitase, an isocitrate
- dehydrogenase a succinyl-CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate dehydrogenase, an acetate kinase, a phosphotransacetylase, an acetyl-CoA synthetase, an NAD(P)H:ferredoxin oxidoreductase, and combinations thereof.
- the non-naturally occurring microbial organism having an caprolactone pathway further includes an exogenous nucleic acid encoding an enzyme selected from carbon monoxide dehydrogenase, acetyl-CoA synthase, ferredoxin, NAD(P)H:ferredoxin oxidoreductase and combinations thereof.
- the non-naturally occurring microbial organism having an caprolactone pathway utilizes a carbon feedstock selected from (1) CO, (2) C0 2 , (3) C0 2 and H 2 , (4) CO and H 2 , or (5) CO, C0 2 , and H 2 .
- the non- naturally occurring microbial organism having an caprolactone pathway utilizes hydrogen for reducing equivalents.
- the non-naturally occurring microbial organism having an caprolactone pathway utilizes CO for reducing equivalents.
- the non-naturally occurring microbial organism having an caprolactone pathway utilizes combinations of CO and hydrogen for reducing equivalents.
- the non-naturally occurring microbial organism having an caprolactone pathway further includes one or more nucleic acids encoding an enzyme selected from a phosphoenolpyruvate carboxylase, a phosphoenolpyruvate carboxykinase, a pyruvate carboxylase, and a malic enzyme.
- the non-naturally occurring microbial organism having an caprolactone pathway further includes one or more nucleic acids encoding an enzyme selected from a malate dehydrogenase, a fumarase, a fumarate reductase, a succinyl-CoA synthetase, and a succinyl-CoA transferase.
- the non-naturally occurring microbial organism having an caprolactone pathway further includes at least one exogenous nucleic acid encoding a citrate lyase, an ATP-citrate lyase, a citryl-CoA synthetase, a citryl-CoA lyase an aconitase, an isocitrate dehydrogenase, a succinyl-CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate dehydrogenase, an acetate kinase, a
- phosphotransacetylase an acetyl-CoA synthetase, and a ferredoxin.
- the invention is described herein with general reference to the metabolic reaction, reactant or product thereof, or with specific reference to one or more nucleic acids or genes encoding an enzyme associated with or catalyzing, or a protein associated with, the referenced metabolic reaction, reactant or product. Unless otherwise expressly stated herein, those skilled in the art will understand that reference to a reaction also constitutes reference to the reactants and products of the reaction. Similarly, unless otherwise expressly stated herein, reference to a reactant or product also references the reaction, and reference to any of these metabolic constituents also references the gene or genes encoding the enzymes that catalyze or proteins involved in the referenced reaction, reactant or product.
- reference herein to a gene or encoding nucleic acid also constitutes a reference to the corresponding encoded enzyme and the reaction it catalyzes or a protein associated with the reaction as well as the reactants and products of the reaction.
- the product 6-hydroxyhexanoate or 2-ketocyclohexane-l- carboxylate, as well as other intermediates, are carboxylic acids, which can occur in various ionized forms, including fully protonated, partially protonated, and fully deprotonated forms. Accordingly, the suffix "-ate,” or the acid form, can be used interchangeably to describe both the free acid form as well as any deprotonated form, in particular since the ionized form is known to depend on the pH in which the compound is found. It is understood that carboxylate products or intermediates includes ester forms of carboxylate products or pathway intermediates, such as O-carboxylate and S-carboxylate esters.
- O- and S-carboxylates can include lower alkyl, that is CI to C6, branched or straight chain carboxylates.
- Some such O- or S-carboxylates include, without limitation, methyl, ethyl, n-propyl, n-butyl, i-propyl, sec-butyl, and tert-butyl, pentyl, hexyl O- or S- carboxylates, any of which can further possess an unsaturation, providing for example, propenyl, butenyl, pentyl, and hexenyl O- or S-carboxylates.
- O-carboxylates can be the product of a biosynthetic pathway.
- Exemplary O-carboxylates accessed via biosynthetic pathways can include, without limitation, methyl 6-hydroxyhexanoate, ethyl 6- hydroxyhexanoate, and n-propyl 6-hydroxyhexanoate.
- Other biosynthetically accessible O-carboxylates can include medium to long chain groups, that is C7-C22, O-carboxylate esters derived from fatty alcohols, such heptyl, octyl, nonyl, decyl, undecyl, lauryl, tridecyl, myristyl, pentadecyl, cetyl, palmitolyl, heptadecyl, stearyl, nonadecyl, arachidyl, heneicosyl, and behenyl alcohols, any one of which can be optionally branched and/or contain unsaturations.
- O-carboxylate esters can also be accessed via a bio
- S-carboxylates are exemplified by CoA S- esters, cysteinyl S-esters, alkylthioesters, and various aryl and heteroaryl thioesters.
- the non-naturally occurring microbial organisms of the invention can be produced by introducing expressible nucleic acids encoding one or more of the enzymes or proteins participating in one or more caprolactone biosynthetic pathways.
- nucleic acids for some or all of a particular caprolactone biosynthetic pathway can be expressed. For example, if a chosen host is deficient in one or more enzymes or proteins for a desired biosynthetic pathway, then expressible nucleic acids for the deficient enzyme(s) or protein(s) are introduced into the host for subsequent exogenous expression.
- a non-naturally occurring microbial organism of the invention can be produced by introducing exogenous enzyme or protein activities to obtain a desired biosynthetic pathway or a desired biosynthetic pathway can be obtained by introducing one or more exogenous enzyme or protein activities that, together with one or more endogenous enzymes or proteins, produces a desired product such as caprolactone.
- Host microbial organisms can be selected from, and the non-naturally occurring microbial organisms generated in, for example, bacteria, yeast, fungus or any of a variety of other microorganisms applicable or suitable to fermentation processes.
- Exemplary bacteria include any species selected from the order Enterobacteriales, family Enter obacteriaceae, including the genera Escherichia and Klebsiella; the order
- Aeromonadales family Succinivibrionaceae, including the genus AnaerobiospiriUuni; the order Pasteur ellales, family Pasteur ellaceae, including the genera Actinobacillus and Mannheimia; the order Rhizobiales, family Bradyrhizobiaceae, including the genus Rhizobium; the order Bacillales, family Bacillaceae, including the genus Bacillus; the order Actinomycetales, families Corynebacteriaceae and Streptomycetaceae, including the genus Corynebacterium and the genus Streptomyces, respectively; order Rhodospirillales, family Acetobacteraceae, including the genus Gluconobacter; the order
- Sphingomonadales family Sphingomonadaceae, including the genus Zymomonas
- the order Lactobacillales families Lactobacillaceae and Streptococcaceae, including the genus Lactobacillus and the genus Lactococcus, respectively
- the order Clostridiales family Clostridiaceae, genus Clostridium
- the order Pseudomonadales family Pseudomonadaceae, including the genus Pseudomonas.
- Non-limiting species of host bacteria include Escherichia coli, Klebsiella oxytoca, Anaerobiospirillum
- succiniciproducens Actinobacillus succinogenes, Mannheimia succiniciproducens, Rhizobium etli, Bacillus subtilis, Corynebacterium glutamicum, Gluconobacter oxydans, Zymomonas mobilis, Lactococcus lactis, Lactobacillus plantarum, Streptomyces coelicolor, Clostridium acetobutylicum, Pseudomonas fluorescens, and Pseudomonas putida.
- exemplary species of yeast or fungi species include any species selected from the order Saccharomycetales, family Saccaromycetaceae, including the genera Saccharomyces, Kluyveromyces and Pichia; the order Saccharomycetales, family Dipodascaceae, including the genus Yarrowia; the order Schizosaccharomycetales, family Schizosaccaromycetaceae, including the genus Schizosaccharomyces; the order
- E. coli is a particularly useful host organism since it is a well characterized microbial organism suitable for genetic engineering.
- Other particularly useful host organisms include yeast such as Saccharomyces cerevisiae. It is understood that any suitable microbial host organism can be used to introduce metabolic and/or genetic modifications to produce a desired product.
- the non-naturally occurring microbial organisms of the invention will include at least one exogenously expressed caprolactone pathway-encoding nucleic acid and up to all encoding nucleic acids for one or more caprolactone biosynthetic pathways.
- caprolactone biosynthesis can be established in a host deficient in a pathway enzyme or protein through exogenous expression of the corresponding encoding nucleic acid.
- exogenous expression of all enzyme or proteins in the pathway can be included, although it is understood that all enzymes or proteins of a pathway can be expressed even if the host contains at least one of the pathway enzymes or proteins.
- exogenous expression of all enzymes or proteins in a pathway for production of caprolactone can be included, such as an adipyl-CoA reductase, an adipate semialdehyde reductase, a 6-hydroxyhexanoyl-CoA transferase or synthetase, and a 6-hydroxyhexanoyl- CoA cyclase.
- a non-naturally occurring microbial organism of the invention can have one, two, three, four, five, six, seven up to all nucleic acids encoding the enzymes or proteins constituting a caprolactone biosynthetic pathway disclosed herein.
- the non-naturally occurring microbial organisms also can include other genetic modifications that facilitate or optimize caprolactone biosynthesis or that confer other useful functions onto the host microbial organism.
- One such other functionality can include, for example, augmentation of the synthesis of one or more of the caprolactone pathway precursors such as adipyl-CoA, adipate, adipate semialdehyde, 4-hydroxybutyryl- CoA, cyclohexanone, or pimeloyl-CoA.
- the caprolactone pathway precursors such as adipyl-CoA, adipate, adipate semialdehyde, 4-hydroxybutyryl- CoA, cyclohexanone, or pimeloyl-CoA.
- a host microbial organism is selected such that it produces the precursor of a caprolactone pathway, either as a naturally produced molecule or as an engineered product that either provides de novo production of a desired precursor or increased production of a precursor naturally produced by the host microbial organism.
- adipyl-CoA is produced naturally in a host organism such as E. coli.
- a host organism can be engineered to increase production of a precursor, as disclosed herein.
- a microbial organism that has been engineered to produce a desired precursor can be used as a host organism and further engineered to express enzymes or proteins of a caprolactone pathway.
- a non-naturally occurring microbial organism of the invention is generated from a host that contains the enzymatic capability to synthesize caprolactone.
- it can be useful to increase the synthesis or accumulation of a caprolactone pathway product to, for example, drive caprolactone pathway reactions toward caprolactone production.
- Increased synthesis or accumulation can be accomplished by, for example, overexpression of nucleic acids encoding one or more of the above-described caprolactone pathway enzymes or proteins.
- Overexpression of the enzyme or enzymes and/or protein or proteins of the caprolactone pathway can occur, for example, through exogenous expression of the endogenous gene or genes, or through exogenous expression of the heterologous gene or genes.
- naturally occurring organisms can be readily generated to be non-naturally occurring microbial organisms of the invention, for example, producing caprolactone, through overexpression of one, two, three, four, five, six, seven, that is, up to all nucleic acids encoding caprolactone biosynthetic pathway enzymes or proteins.
- a non-naturally occurring organism can be generated by mutagenesis of an endogenous gene that results in an increase in activity of an enzyme in the caprolactone biosynthetic pathway.
- exogenous expression of the encoding nucleic acids is employed.
- Exogenous expression confers the ability to custom tailor the expression and/or regulatory elements to the host and application to achieve a desired expression level that is controlled by the user.
- endogenous expression also can be utilized in other embodiments such as by removing a negative regulatory effector or induction of the gene's promoter when linked to an inducible promoter or other regulatory element.
- an endogenous gene having a naturally occurring inducible promoter can be up-regulated by providing the appropriate inducing agent, or the regulatory region of an endogenous gene can be engineered to incorporate an inducible regulatory element, thereby allowing the regulation of increased expression of an endogenous gene at a desired time.
- an inducible promoter can be included as a regulatory element for an exogenous gene introduced into a non-naturally occurring microbial organism.
- any of the one or more exogenous nucleic acids can be introduced into a microbial organism to produce a non- naturally occurring microbial organism of the invention.
- the nucleic acids can be introduced so as to confer, for example, a caprolactone biosynthetic pathway onto the microbial organism.
- encoding nucleic acids can be introduced to produce an intermediate microbial organism having the biosynthetic capability to catalyze some of the required reactions to confer caprolactone biosynthetic capability.
- a non- naturally occurring microbial organism having a caprolactone biosynthetic pathway can comprise at least two exogenous nucleic acids encoding desired enzymes or proteins, such as the combination of adipyl-CoA reductase and a 6-hydroxyhexanoate cyclase, or alternatively a 6-hydroxyhexanoate kinase and a 6-hydroxyhexanoyl phosphate cyclase, or alternatively a 3,6-dihydroxyhexanoyl-CoA dehydratase and a 6-hydroxyhex-2-enoyl-CoA reductase, or alternatively a cyclohexane-l,2-diol dehydratase and a cyclohexanone monooxygenase, and the like.
- desired enzymes or proteins such as the combination of adipyl-CoA reductase and a 6-hydroxyhexanoate cyclase, or alternatively a
- any combination of two or more enzymes or proteins of a biosynthetic pathway can be included in a non-naturally occurring microbial organism of the invention.
- any combination of three or more enzymes or proteins of a biosynthetic pathway can be included in a non-naturally occurring microbial organism of the invention, for example, an adipyl-CoA reductase, an adipate semialdehyde reductase and a 6-hydroxyhexanoate cyclase, or alternatively an adipate semialdehyde reductase, a 6-hydroxyhexanoyl-CoA transferase, and a 6-hydroxyhexanoyl-CoA cyclase, or alternatively a 3-oxo-6- hydroxyhexanoyl-CoA reductase, a 6-hydroxyhex-2-enoyl-CoA reductase and a 6- hydroxyhexano
- any combination of four, five, six, seven or more enzymes or proteins of a biosynthetic pathway as disclosed herein can be included in a non-naturally occurring microbial organism of the invention, as desired, so long as the combination of enzymes and/or proteins of the desired biosynthetic pathway results in production of the corresponding desired product.
- the non- naturally occurring microbial organisms and methods of the invention also can be utilized in various combinations with each other and with other microbial organisms and methods well known in the art to achieve product biosynthesis by other routes.
- one alternative to produce caprolactone other than use of the caprolactone producers is through addition of another microbial organism capable of converting a caprolactone pathway intermediate to caprolactone.
- One such procedure includes, for example, the fermentation of a microbial organism that produces a caprolactone pathway intermediate.
- the caprolactone pathway intermediate can then be used as a substrate for a second microbial organism that converts the caprolactone pathway intermediate to caprolactone.
- the caprolactone pathway intermediate can be added directly to another culture of the second organism or the original culture of the caprolactone pathway intermediate producers can be depleted of these microbial organisms by, for example, cell separation, and then subsequent addition of the second organism to the fermentation broth can be utilized to produce the final product without intermediate purification steps.
- the non-naturally occurring microbial organisms and methods of the invention can be assembled in a wide variety of subpathways to achieve biosynthesis of, for example, caprolactone.
- biosynthetic pathways for a desired product of the invention can be segregated into different microbial organisms, and the different microbial organisms can be co-cultured to produce the final product.
- the product of one microbial organism is the substrate for a second microbial organism until the final product is synthesized.
- the biosynthesis of caprolactone can be accomplished by constructing a microbial organism that contains biosynthetic pathways for conversion of one pathway intermediate to another pathway intermediate or the product.
- caprolactone also can be biosynthetically produced from microbial organisms through co-culture or co- fermentation using two organisms in the same vessel, where the first microbial organism produces a caprolactone intermediate and the second microbial organism converts the intermediate to caprolactone.
- Sources of encoding nucleic acids for a caprolactone pathway enzyme or protein can include, for example, any species where the encoded gene product is capable of catalyzing the referenced reaction.
- species include both prokaryotic and eukaryotic organisms including, but not limited to, bacteria, including archaea and eubacteria, and eukaryotes, including yeast, plant, insect, animal, and mammal, including human.
- Exemplary species for such sources include, for example, Escherichia coli, Acinetobacter sp.
- NCIMB9871 Acetobacter aceti, Acidaminococcus fermentans, Acinetobacter baylyi, Acinetobacter calcoaceticus, Acinetobacter sp NCIMB9871, Acinetobacter sp. ADP1, Acinetobacter sp. NCIMB9871, Acinetobacter sp. SE19, Acinetobacter sp. strain M-l, Actinobacillus succinogenes, Aeropyrum pernix,
- Allochromatium vinosum DSM 180 Anaerobio spirillum succiniciproducens, Aquifex aeolicus, Arabidopsis thaliana, Archaeoglobus fulgidus, Aromatoleum aromaticum EbNl, Arthrobacter sp. BP2, Ascaris suum, Aspergillus nidulans, Aspergillus terreus NIH2624, Azoarcus sp. Strain 22Lin, Azoarcus sp.
- T Azotobacter vinelandii DJ Bacillus cereus, Bacillus megaterium, Bacillus megaterium WSH-002, Bacillus sphaericus, Bacillus subtilis, Balnearium lithotrophicum, Bos taurus, Brevibacerium sp.
- HCU Burkholderia ambifaria AMMD, Burkholderia phymatum, butyrate-producing bacterium L2-50, butyr ate-producing bacterium L2-50, Campylobacter curvus 525.92, Campylobacter jejuni, Candida albicans, Candida tropicalis, Carboxydothermus hydrogenoformans, Chlorobium phaeobacteroides DSM 266, Chlorobium limicola, Chlorobium tepidum, Citrobacter freundii, Citrobacter youngae, Citrobacter youngae ATCC 29220,
- Clostridium acetobutylicum Clostridium beijerinckii, Clostridium botulinum, Clostridium butyricum, Clostridium carboxidivorans P7, Clostridium carboxidivorans P7, Clostridium cellulolyticum H10, Clostridium kluyveri, Clostridium kluyveri DSM 555, Clostridium novyi NT, Clostridium pasteurianum, Clostridium propionicum, Clostridium
- Desulfarculus baarsii DSM 2075 Desulfovibrio africanus, DesulfoVibrio desulfuricans G20, Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774, Desulfovibrio fructosovorans JJ, Desulfovibrio vulgaris str. Hildenborough, Dictyostelium discoideum AX4, Escherichia coli K12 sp.
- Methanothermobacter thermautotrophicus Methylob acterium extorquens, Moorella thermoacetica, Mus musculus, Mycobacterium avium subsp. paratuberculosis K-10, Mycobacterium bovis BCG, Mycobacterium marinum M, Mycobacterium smegmatis, Mycobacterium smegmatis MC2 155, Mycobacterium tuberculosis, Neurospora crassa, Nocardia farcinica IFM 10152, Nocardia iowensis, Nostoc sp. PCC 7120, Oryza sativa, Paracoccus denitrificans, Pelobacter carbinolicus DSM 2380, Pelotomaculum
- thermopropionicum Penicillium chrysogenum. Porphyromonas gingivalis, Pseudomonas aeruginosa PA01, Pseudomonas fluorescens, Pseudomonas knackmussii, Pseudomonas knackmussii (B13), Pseudomonas mendocina, Pseudomonas putida, Pseudomonas sp, Pyrobaculum aerophilum str. IM2, Ralstonia eutropha, Ralstonia eutropha HI 6,
- Schizosaccharomyces pombe Sinorhizobium fredii, Sordaria macrospora, Staphylococcus aureus, Streptomyces coelicolor, Streptomyces griseus subsp. griseus NBRC 13350, Sulfolobus acidocalarius, Sulfolobus solfataricus, Sulfolobus sp. strain 7, Sulfolobus tokodaii, Sulfurihydrogenibium subterraneum, Sulfurimonas denitrificans, Synechocystis str.
- PCC 6803 Syntrophus aciditrophicus, Thauera aromatic, Thermocrinis albus, Thermoproteus neutrophilus, Thermotoga maritima, Thermus thermophilus, Thiobacillus denitrificans, Thiocapsa roseopersicina, Trichomonas vaginalis G3, Trypanosoma brucei, Tsukamurella paurometabola DSM 20162, Xanthobacter flavus, Yarrowia lipolytica, Yersinia intermedia, Yersinia intermedia ATCC 29909, Zea mays, Zoogloea ramigera, Zymomonas mobilis, as well as other exemplary species disclosed herein or available as source organisms for corresponding genes.
- coli can be readily applied to other microorganisms, including prokaryotic and eukaryotic organisms alike. Given the teachings and guidance provided herein, those skilled in the art will know that a metabolic alteration exemplified in one organism can be applied equally to other organisms.
- caprolactone biosynthesis can be conferred onto the host species by, for example, exogenous expression of a paralog or paralogs from the unrelated species that catalyzes a similar, yet non-identical metabolic reaction to replace the referenced reaction. Because certain differences among metabolic networks exist between different organisms, those skilled in the art will understand that the actual gene usage between different organisms may differ.
- Methods for constructing and testing the expression levels of a non-naturally occurring caprolactone -producing host can be performed, for example, by recombinant and detection methods well known in the art. Such methods can be found described in, for example, Sambrook et al, Molecular Cloning: A Laboratory Manual, Third Ed., Cold Spring Harbor Laboratory, New York (2001); and Ausubel et al, Current Protocols in Molecular Biology, John Wiley and Sons, Baltimore, MD (1999).
- Exogenous nucleic acid sequences involved in a pathway for production of caprolactone can be introduced stably or transiently into a host cell using techniques well known in the art including, but not limited to, conjugation, electroporation, chemical transformation, transduction, transfection, and ultrasound transformation.
- some nucleic acid sequences in the genes or cDNAs of eukaryotic nucleic acids can encode targeting signals such as an N-terminal mitochondrial or other targeting signal, which can be removed before transformation into prokaryotic host cells, if desired.
- targeting signals such as an N-terminal mitochondrial or other targeting signal
- genes can be expressed in the cytosol without the addition of leader sequence, or can be targeted to mitochondrion or other organelles, or targeted for secretion, by the addition of a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells.
- a suitable targeting sequence such as a mitochondrial targeting or secretion signal suitable for the host cells.
- An expression vector or vectors can be constructed to include one or more caprolactone biosynthetic pathway encoding nucleic acids as exemplified herein operably linked to expression control sequences functional in the host organism.
- Expression vectors applicable for use in the microbial host organisms of the invention include, for example, plasmids, phage vectors, viral vectors, episomes and artificial chromosomes, including vectors and selection sequences or markers operable for stable integration into a host chromosome.
- the expression vectors can include one or more selectable marker genes and appropriate expression control sequences. Selectable marker genes also can be included that, for example, provide resistance to antibiotics or toxins, complement auxotrophic deficiencies, or supply critical nutrients not in the culture media.
- Expression control sequences can include constitutive and inducible promoters, transcription enhancers, transcription terminators, and the like which are well known in the art.
- both nucleic acids can be inserted, for example, into a single expression vector or in separate expression vectors.
- the encoding nucleic acids can be operationally linked to one common expression control sequence or linked to different expression control sequences, such as one inducible promoter and one constitutive promoter. The transformation of exogenous nucleic acid sequences involved in a metabolic or synthetic pathway can be confirmed using methods well known in the art.
- Such methods include, for example, nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA, or immunoblotting for expression of gene products, or other suitable analytical methods to test the expression of an introduced nucleic acid sequence or its corresponding gene product.
- nucleic acid analysis such as Northern blots or polymerase chain reaction (PCR) amplification of mRNA
- PCR polymerase chain reaction
- immunoblotting for expression of gene products
- the invention provides a method for producing
- the method includes a non-naturally occurring microbial organism having a caprolactone pathway, wherein the microbial organism includes at least one exogenous nucleic acid encoding a caprolactone pathway enzyme expressed in a sufficient amount to produce caprolactone.
- the caprolactone pathway includes a pathway selected from: (1) 1A, IB, 1C and ID; (2) IE, IB, 1C and ID; (3) IF, 1A, IB, IC and ID; (4) IF, IE, IB, IC and ID; (5) 1A, IB and IG; (6) IE, IB and IG; (7) IF, 1A, IB and IG; (8) IF, IE, IB and IG; (9) 1A, IB, IC, 1J and II; (10) IE, IB, IC, 1J and II; (11) IF, 1A, IB, IC, 1J and II; (12) IF, IE, IB, IC, 1J and II; (13) 1A, IB, 1H and II; (14) IE, IB, 1H and II; (15) IF, 1A, IB, 1H and II; (16) IF, IE, IB, 1H and II; (17)
- the invention provides a method for producting
- the invention provides a method for producting
- the non-naturally occurring microbial organism as disclosed herein is in a substantially anaerobic culture medium.
- the invention provides a method for producing
- the non-naturally occurring microbial organism as disclosed herein further includes (i) a reductive TCA pathway comprising at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme, wherein said at least one exogenous nucleic acid is selected from an ATP-citrate lyase, citrate lyase, a fumarate reductase, and an alpha-ketoglutarate:ferredoxin oxidoreductase; (ii) a reductive TCA pathway comprising at least one exogenous nucleic acid encoding a reductive TCA pathway enzyme, wherein said at least one exogenous nucleic acid is selected from a
- pyruvate ferredoxin oxidoreductase, a phosphoenolpyruvate carboxylase, a
- At least one exogenous nucleic acid encodes an enzyme selected from a CO
- dehydrogenase an H 2 hydrogenase, and combinations thereof.
- the invention provides a method for producing
- the non-naturally occurring microbial organism having (i) above further includes an exogenous nucleic acid encoding an enzyme selected from a pyruvate :ferredoxin oxidoreductase, an aconitase, an isocitrate dehydrogenase, a succinyl- CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate dehydrogenase, an acetate kinase, a phosphotransacetylase, an acetyl-CoA synthetase, an enzyme selected from a pyruvate :ferredoxin oxidoreductase, an aconitase, an isocitrate dehydrogenase, a succinyl- CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate dehydrogenase,
- the non-naturally occurring microbial organism including (ii) as described above further includes an exogenous nucleic acid encoding an enzyme selected from an aconitase, an isocitrate dehydrogenase, a succinyl-CoA synthetase, a succinyl-CoA transferase, a fumarase, a malate dehydrogenase, and combinations thereof.
- the invention provides a method for producing
- non-naturally occurring microbial organism having (i) as described above further comprises four exogenous nucleic acids encoding an ATP-citrate lyase, citrate lyase, a fumarate reductase, and an alpha-ketoglutarate: ferredoxin
- the non-naturally occurring microbial organism having (ii) as described above further comprises five exogenous nucleic acids encoding a pyruvate :ferredoxin oxidoreductase, a phosphoenolpyruvate carboxylase, a phosphoenolpyruvate carboxykinase, a CO dehydrogenase, and an H 2 hydrogenase.
- the non-naturally occurring microbial organism having (iii) as described above further comprises two exogenous nucleic acids encoding a CO
- Suitable purification and/or assays to test for the production of caprolactone can be performed using well known methods. Suitable replicates such as triplicate cultures can be grown for each engineered strain to be tested. For example, product and byproduct formation in the engineered production host can be monitored. The final product and intermediates, and other organic compounds, can be analyzed by methods such as HPLC (High Performance Liquid Chromatography), GC-MS (Gas),
- the caprolactone can be separated from other components in the culture using a variety of methods well known in the art.
- separation methods include, for example, extraction procedures as well as methods that include continuous liquid-liquid extraction, pervaporation, membrane filtration, membrane separation, reverse osmosis, electrodialysis, distillation, crystallization, centrifugation, extractive filtration, ion exchange chromatography, size exclusion chromatography, adsorption chromatography, and ultrafiltration. All of the above methods are well known in the art.
- any of the non-naturally occurring microbial organisms described herein can be cultured to produce and/or secrete the biosynthetic products of the invention.
- the caprolactone producers can be cultured for the biosynthetic production of caprolactone.
- the invention provides culture medium having the caprolactone or caprolactone pathway intermediate described herein.
- the culture mediums can also be separated from the non-naturally occurring microbial organisms of the invention that produced the caprolactone or caprolactone pathway intermediate. Methods for separating a microbial organism from culture medium are well known in the art. Exemplary methods include filtration, flocculation,
- the recombinant strains are cultured in a medium with carbon source and other essential nutrients. It is sometimes desirable and can be highly desirable to maintain anaerobic conditions in the fermenter to reduce the cost of the overall process. Such conditions can be obtained, for example, by first sparging the medium with nitrogen and then sealing the flasks with a septum and crimp- cap. For strains where growth is not observed anaerobically, microaerobic or substantially anaerobic conditions can be applied by perforating the septum with a small hole for limited aeration. Exemplary anaerobic conditions have been described previously and are well-known in the art. Exemplary aerobic and anaerobic conditions are described, for example, in United State publication 2009/0047719, filed August 10, 2007. Fermentations can be performed in a batch, fed-batch or continuous manner, as disclosed herein.
- Fermentations can also be conducted in two phases, if desired.
- the first phase can be aerobic to allow for high growth and therefore high productivity, followed by an anaerobic phase of high caprolactone yields.
- the pH of the medium can be maintained at a desired pH, in particular neutral pH, such as a pH of around 7 by addition of a base, such as NaOH or other bases, or acid, as needed to maintain the culture medium at a desirable pH.
- the growth rate can be determined by measuring optical density using a spectrophotometer (600 nm), and the glucose uptake rate by monitoring carbon source depletion over time.
- the growth medium can include, for example, any carbohydrate source which can supply a source of carbon to the non-naturally occurring microorganism.
- Such sources include, for example, sugars such as glucose, xylose, arabinose, galactose, mannose, fructose, sucrose and starch.
- Other sources of carbohydrate include, for example, renewable feedstocks and biomass.
- Exemplary types of biomasses that can be used as feedstocks in the methods of the invention include cellulosic biomass,
- biomass feedstocks contain, for example, carbohydrate substrates useful as carbon sources such as glucose, xylose, arabinose, galactose, mannose, fructose and starch.
- carbohydrate substrates useful as carbon sources such as glucose, xylose, arabinose, galactose, mannose, fructose and starch.
- the caprolactone microbial organisms of the invention also can be modified for growth on syngas as its source of carbon.
- one or more proteins or enzymes are expressed in the caprolactone producing organisms to provide a metabolic pathway for utilization of syngas or other gaseous carbon source.
- Synthesis gas also known as syngas or producer gas
- syngas is the major product of gasification of coal and of carbonaceous materials such as biomass materials, including agricultural crops and residues.
- Syngas is a mixture primarily of H 2 and CO and can be obtained from the gasification of any organic feedstock, including but not limited to coal, coal oil, natural gas, biomass, and waste organic matter. Gasification is generally carried out under a high fuel to oxygen ratio. Although largely H 2 and CO, syngas can also include C0 2 and other gases in smaller quantities.
- synthesis gas provides a cost effective source of gaseous carbon such as CO and, additionally, C0 2 .
- the Wood-Ljungdahl pathway catalyzes the conversion of CO and H 2 to acetyl-CoA and other products such as acetate.
- Organisms capable of utilizing CO and syngas also generally have the capability of utilizing C0 2 and C0 2 /H 2 mixtures through the same basic set of enzymes and transformations encompassed by the Wood-Ljungdahl pathway.
- H 2 -dependent conversion of C0 2 to acetate by microorganisms was recognized long before it was revealed that CO also could be used by the same organisms and that the same pathways were involved.
- the Wood-Ljungdahl pathway is well known in the art and consists of 12 reactions which can be separated into two branches: (1) methyl branch and (2) carbonyl branch.
- the methyl branch converts syngas to methyl-tetrahydrofolate (methyl-THF) whereas the carbonyl branch converts methyl-THF to acetyl-CoA.
- the reactions in the methyl branch are catalyzed in order by the following enzymes or proteins: ferredoxin oxidoreductase, formate dehydrogenase, formyltetrahydrofolate synthetase,
- methenyltetrahydrofolate cyclodehydratase methenyltetrahydrofolate cyclodehydratase, methylenetetrahydrofolate dehydrogenase and methylenetetrahydrofolate reductase.
- the reactions in the carbonyl branch are catalyzed in order by the following enzymes or proteins: methyltetrahydrofolatexorrinoid protein methyltransferase (for example, AcsE), corrinoid iron-sulfur protein, nickel-protein assembly protein (for example, AcsF), ferredoxin, acetyl-CoA synthase, carbon monoxide dehydrogenase and nickel-protein assembly protein (for example, CooC).
- methyltetrahydrofolatexorrinoid protein methyltransferase for example, AcsE
- corrinoid iron-sulfur protein corrinoid iron-sulfur protein
- the reductive (reverse) tricarboxylic acid cycle coupled with carbon monoxide dehydrogenase and/or hydrogenase activities can also be used for the conversion of CO, C0 2 and/or H 2 to acetyl-CoA and other products such as acetate.
- Organisms capable of fixing carbon via the reductive TCA pathway can utilize one or more of the following enzymes: ATP citrate-lyase, citrate lyase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate: ferredoxin oxidoreductase, succinyl-CoA synthetase, succinyl-CoA transferase, fumarate reductase, fumarase, malate dehydrogenase,
- NAD(P)H ferredoxin oxidoreductase, carbon monoxide dehydrogenase, and hydrogenase.
- the reducing equivalents extracted from CO and/or H 2 by carbon monoxide dehydrogenase and hydrogenase are utilized to fix C0 2 via the reductive TCA cycle into acetyl-CoA or acetate.
- Acetate can be converted to acetyl-CoA by enzymes such as acetyl-CoA transferase, acetate kinase/phosphotransacetylase, and acetyl-CoA synthetase.
- Acetyl-CoA can be converted to the caprolactone precursors, glyceraldehyde-3 -phosphate, phosphoenolpyruvate, and pyruvate, by pyruvate: ferredoxin oxidoreductase and the enzymes of gluconeogenesis.
- pyruvate ferredoxin oxidoreductase and the enzymes of gluconeogenesis.
- a non-naturally occurring microbial organism can be produced that secretes the biosynthesized compounds of the invention when grown on a carbon source such as a carbohydrate.
- a carbon source such as a carbohydrate.
- Such compounds include, for example, caprolactone and any of the intermediate metabolites in the caprolactone pathway. All that is required is to engineer in one or more of the required enzyme or protein activities to achieve
- the invention provides a non-naturally occurring microbial organism that produces and/or secretes caprolactone when grown on a carbohydrate or other carbon source and produces and/or secretes any of the intermediate metabolites shown in the caprolactone pathway when grown on a carbohydrate or other carbon source.
- the caprolactone producing microbial organisms of the invention can initiate synthesis from an intermediate, for example, 6- hydroxyhexanoate, 6-hydroxyhexanoyl-CoA, 6-hydroxyhexanoyl phosphate, 3-oxo-6- hydroxy hexanoyl-CoA, 3,6-dihydroxy hexanoyl-CoA, 6-hydroxyhex-2-enoyl-CoA, cyclohexanone, cyclohexane-l,2-dione, 2-hydroxycyclohexanone, cyclohexane-l,2-diol, 2-ketocyclohexane- 1 -carboxyoyl-CoA, or 2-ketocyclohexane- 1 -carboxylate.
- an intermediate for example, 6- hydroxyhexanoate, 6-hydroxyhexanoyl-CoA, 6-hydroxyhexanoyl phosphate, 3-oxo-6- hydroxy hexanoyl-
- the non-naturally occurring microbial organisms of the invention are constructed using methods well known in the art as exemplified herein to exogenously express at least one nucleic acid encoding a caprolactone pathway enzyme or protein in sufficient amounts to produce caprolactone. It is understood that the microbial organisms of the invention are cultured under conditions sufficient to produce caprolactone.
- the non-naturally occurring microbial organisms of the invention can achieve biosynthesis of caprolactone resulting in intracellular concentrations between about 0.1-200 mM or more.
- the intracellular concentration of caprolactone is between about 3-150 mM, particularly between about 5-125 mM and more particularly between about 8-100 mM, including about 10 mM, 20 mM, 50 mM, 80 mM, or more.
- Intracellular concentrations between and above each of these exemplary ranges also can be achieved from the non-naturally occurring microbial organisms of the invention.
- culture conditions include anaerobic or substantially anaerobic growth or maintenance conditions.
- Exemplary anaerobic conditions have been described previously and are well known in the art.
- Exemplary anaerobic conditions for fermentation processes are described herein and are described, for example, in U.S.
- caprolactone producing microbial organisms can produce caprolactone intracellularly and/or secrete the product into the culture medium.
- growth condition for achieving biosynthesis of caprolactone can include the addition of an osmoprotectant to the culturing conditions.
- the non-naturally occurring microbial organisms of the invention can be sustained, cultured or fermented as described herein in the presence of an osmoprotectant.
- an osmoprotectant refers to a compound that acts as an osmolyte and helps a microbial organism as described herein survive osmotic stress.
- Osmoprotectants include, but are not limited to, betaines, amino acids, and the sugar trehalose.
- Non-limiting examples of such are glycine betaine, praline betaine, dimethylthetin, dimethylslfonioproprionate, 3-dimethylsulfonio-2- methylproprionate, pipecolic acid, dimethylsulfonioacetate, choline, L-carnitine and ectoine.
- the osmoprotectant is glycine betaine. It is understood to one of ordinary skill in the art that the amount and type of osmoprotectant suitable for protecting a microbial organism described herein from osmotic stress will depend on the microbial organism used.
- the amount of osmoprotectant in the culturing conditions can be, for example, no more than about 0.1 mM, no more than about 0.5 mM, no more than about 1.0 mM, no more than about 1.5 mM, no more than about 2.0 mM, no more than about 2.5 mM, no more than about 3.0 mM, no more than about 5.0 mM, no more than about 7.0 mM, no more than about lOmM, no more than about 50mM, no more than about lOOmM or no more than about 500mM.
- the carbon feedstock and other cellular uptake sources such as phosphate, ammonia, sulfate, chloride and other halogens can be chosen to alter the isotopic distribution of the atoms present in caprolactone or any caprolactone pathway intermediate.
- uptake sources can provide isotopic enrichment for any atom present in the product caprolactone or caprolactone pathway intermediate, or for side products generated in reactions diverging away from a caprolactone pathway. Isotopic enrichment can be achieved for any target atom including, for example, carbon, hydrogen, oxygen, nitrogen, sulfur, phosphorus, chloride or other halogens.
- the uptake sources can be selected to alter the carbon- 12, carbon-13, and carbon-14 ratios. In some embodiments, the uptake sources can be selected to alter the oxygen-16, oxygen-17, and oxygen-18 ratios. In some embodiments, the uptake sources can be selected to alter the hydrogen, deuterium, and tritium ratios. In some embodiments, the uptake sources can be selected to alter the nitrogen- 14 and nitrogen- 15 ratios. In some embodiments, the uptake sources can be selected to alter the sulfur-32, sulfur-33, sulfur-34, and sulfur-35 ratios. In some embodiments, the uptake sources can be selected to alter the phosphorus-31 , phosphorus-32, and phosphorus-33 ratios. In some embodiments, the uptake sources can be selected to alter the chlorine-35, chlorine-36, and chlorine-37 ratios.
- the isotopic ratio of a target atom can be varied to a desired ratio by selecting one or more uptake sources.
- An uptake source can be derived from a natural source, as found in nature, or from a man-made source, and one skilled in the art can select a natural source, a man-made source, or a combination thereof, to achieve a desired isotopic ratio of a target atom.
- An example of a man-made uptake source includes, for example, an uptake source that is at least partially derived from a chemical synthetic reaction.
- Such isotopically enriched uptake sources can be purchased commercially or prepared in the laboratory and/or optionally mixed with a natural source of the uptake source to achieve a desired isotopic ratio.
- a target atom isotopic ratio of an uptake source can be achieved by selecting a desired origin of the uptake source as found in nature.
- a natural source can be a biobased derived from or synthesized by a biological organism or a source such as petroleum-based products or the atmosphere.
- a source of carbon for example, can be selected from a fossil fuel-derived carbon source, which can be relatively depleted of carbon- 14, or an environmental or atmospheric carbon source, such as C0 2 , which can possess a larger amount of carbon- 14 than its petroleum-derived counterpart.
- the unstable carbon isotope carbon-14 or radiocarbon makes up for roughly 1 in 10 12 carbon atoms in the earth's atmosphere and has a half-life of about 5700 years.
- the stock of carbon is replenished in the upper atmosphere by a nuclear reaction involving cosmic rays and ordinary nitrogen ( 14 N).
- Fossil fuels contain no carbon-14, as it decayed long ago. Burning of fossil fuels lowers the atmospheric carbon-14 fraction, the so-called "Suess effect”.
- Isotopic enrichment is readily assessed by mass spectrometry using techniques known in the art such as accelerated mass spectrometry (AMS), Stable Isotope Ratio Mass Spectrometry (SIRMS) and Site-Specific Natural Isotopic Fractionation by Nuclear Magnetic Resonance (SNIF-NMR).
- AMS accelerated mass spectrometry
- SIRMS Stable Isotope Ratio Mass Spectrometry
- SNIF-NMR Site-Specific Natural Isotopic Fractionation by Nuclear Magnetic Resonance
- mass spectral techniques can be integrated with separation techniques such as liquid chromatography (LC), high performance liquid chromatography (HPLC) and/or gas chromatography, and the like.
- ASTM D6866 was developed in the United States as a standardized analytical method for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon dating by the American Society for Testing and Materials (ASTM) International. The standard is based on the use of radiocarbon dating for the determination of a product's biobased content. ASTM D6866 was first published in 2004, and the current active version of the standard is ASTM D6866-11 (effective April 1, 2011). Radiocarbon dating techniques are well known to those skilled in the art, including those described herein.
- the biobased content of a compound is estimated by the ratio of carbon-14 ( 14 C) to carbon-12 ( 12 C).
- Fraction Modern is a measurement of the deviation of the 14 C/ 12 C ratio of a sample from "Modern.” Modern is defined as 95% of the radiocarbon concentration (in AD 1950) of National Bureau of Standards (NBS) Oxalic Acid I (i.e., standard reference materials (SRM) 4990b) normalized to
- An oxalic acid standard (SRM 4990b or HOx 1) was made from a crop of 1955 sugar beet. Although there were 1000 lbs made, this oxalic acid standard is no longer commercially available.
- the Oxalic Acid II standard (HOx 2; N.I.S.T designation SRM 4990 C) was made from a crop of 1977 French beet molasses. In the early 1980's, a group of 12 laboratories measured the ratios of the two standards. The ratio of the activity of Oxalic acid II to 1 is 1.2933 ⁇ 0.001 (the weighted mean). The isotopic ratio of HOx II is - 17.8 per mille.
- ASTM D6866-11 suggests use of the available Oxalic Acid II standard SRM 4990 C (Hox2) for the modern standard (see discussion of original vs. currently available oxalic acid standards in Mann, Radiocarbon, 25(2):519-527 (1983)).
- a Fm 0% represents the entire lack of carbon- 14 atoms in a material, thus indicating a fossil (for example, petroleum based) carbon source.
- a Fm 100%, after correction for the post- 1950 injection of carbon- 14 into the atmosphere from nuclear bomb testing, indicates an entirely modern carbon source. As described herein, such a "modern" source includes biobased sources.
- the percent modern carbon can be greater than 100% because of the continuing but diminishing effects of the 1950s nuclear testing programs, which resulted in a considerable enrichment of carbon- 14 in the atmosphere as described in ASTM D6866-11. Because all sample carbon- 14 activities are referenced to a "pre-bomb" standard, and because nearly all new biobased products are produced in a post-bomb environment, all pMC values (after correction for isotopic fraction) must be multiplied by 0.95 (as of 2010) to better reflect the true biobased content of the sample. A biobased content that is greater than 103% suggests that either an analytical error has occurred, or that the source of biobased carbon is more than several years old.
- polypropylene terephthalate (PPT) polymers derived from renewable 1,3-propanediol and petroleum-derived terephthalic acid resulted in Fm values near 30% (i.e., since 3/11 of the polymeric carbon derives from renewable 1,3-propanediol and 8/11 from the fossil end member terephthalic acid) (Currie et al., supra, 2000).
- polybutylene terephthalate polymer derived from both renewable 1 ,4-butanediol and renewable terephthalic acid resulted in bio-based content exceeding 90%> (Colonna et al, supra, 2011).
- the present invention provides
- caprolactone or a caprolactone pathway intermediate that has a carbon- 12, carbon- 13, and carbon-14 ratio that reflects an atmospheric carbon, also referred to as environmental carbon, uptake source.
- the caprolactone or a caprolactone pathway intermediate can have an Fm value of at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%), at least 95%, at least 98%> or as much as 100%.
- the uptake source is C0 2 .
- the present invention provides caprolactone or a caprolactone pathway intermediate that has a carbon- 12, carbon- 13, and carbon- 14 ratio that reflects petroleum-based carbon uptake source.
- the caprolactone or a caprolactone pathway intermediate can have an Fm value of less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 45%, less than 40%, less than 35%, less than 30%), less than 25%, less than 20%>, less than 15%, less than 10%, less than 5%, less than 2% or less than 1%.
- the present invention provides caprolactone or a caprolactone pathway intermediate that has a carbon- 12, carbon- 13, and carbon- 14 ratio that is obtained by a combination of an atmospheric carbon uptake source with a petroleum-based uptake source.
- a combination of uptake sources is one way by which the carbon- 12, carbon-13, and carbon- 14 ratio can be varied, and the respective ratios would reflect the proportions of the uptake sources.
- the present invention relates to the biologically produced caprolactone or caprolactone pathway intermediate as disclosed herein, and to the products derived therefrom, wherein the caprolactone or a caprolactone pathway intermediate has a carbon- 12, carbon-13, and carbon- 14 isotope ratio of about the same value as the C0 2 that occurs in the environment.
- the invention provides bioderived caprolactone or a bioderived caprolactone intermediate having a carbon- 12 versus carbon- 13 versus carbon- 14 isotope ratio of about the same value as the C0 2 that occurs in the environment, or any of the other ratios disclosed herein.
- a product can have a carbon- 12 versus carbon-13 versus carbon- 14 isotope ratio of about the same value as the C0 2 that occurs in the environment, or any of the ratios disclosed herein, wherein the product is generated from bioderived caprolactone or a bioderived caprolactone pathway intermediate as disclosed herein, wherein the bioderived product is chemically modified to generate a final product.
- Methods of chemically modifying a bioderived product of caprolactone, or an intermediate thereof, to generate a desired product are well known to those skilled in the art, as described herein.
- the invention further provides a polymer, a resin, a protective or industrial coating, polyurethane, a cast elastomer, an adhesive, a colorant, or a pharmaceutical having a carbon- 12 versus carbon-13 versus carbon- 14 isotope ratio of about the same value as the C0 2 that occurs in the environment, wherein the polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical is generated directly from or in combination with bioderived caprolactone or a bioderived caprolactone pathway intermediate as disclosed herein.
- Caprolactone is a chemical used in commercial and industrial applications.
- Non-limiting examples of such applications include production of a polymer, a resin, a protective or industrial coating, polyurethane, a cast elastomer, an adhesive, a colorant, or a pharmaceutical.
- the invention provides a biobased polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical comprising one or more bioderived caprolactone or bioderived caprolactone pathway intermediate produced by a non-naturally occurring microorganism of the invention or produced using a method disclosed herein.
- bioderived means derived from or synthesized by a biological organism and can be considered a renewable resource since it can be generated by a biological organism.
- a biological organism in particular the microbial organisms of the invention disclosed herein, can utilize feedstock or biomass, such as, sugars or carbohydrates obtained from an agricultural, plant, bacterial, or animal source.
- the biological organism can utilize atmospheric carbon.
- biobased means a product as described above that is composed, in whole or in part, of a bioderived compound of the invention.
- a biobased or bioderived product is in contrast to a petroleum derived product, wherein such a product is derived from or synthesized from petroleum or a petrochemical feedstock.
- the invention provides a polymer, a resin, a protective or industrial coating, polyurethane, a cast elastomer, an adhesive, a colorant, or a pharmaceutical comprising bioderived caprolactone or bioderived caprolactone pathway intermediate, wherein the bioderived caprolactone or bioderived caprolactone pathway intermediate includes all or part of the caprolactone or caprolactone pathway intermediate used in the production of the polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical.
- the final polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical can contain the bioderived caprolactone, caprolactone pathway
- bioderived caprolactone or bioderived caprolactone pathway intermediate e.g. chemical conversion, chemical functionalization, chemical coupling, oxidation, reduction, polymerization, copolymerization and the like
- a portion of bioderived caprolactone can be a repeating unit in the polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical.
- the invention provides a composition including for example, a biobased polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical comprising at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%), at least 95%, at least 98%> or 100% (w/v) bioderived caprolactone or bioderived caprolactone pathway intermediate as disclosed herein.
- a composition including for example, a biobased polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical comprising at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%
- the invention provides a process for producing a biobased polymer or resin disclosed herein by chemically reacting the bioderived caprolactone with itself or another compound in a polymer producing or a resin producting reaction. It is understood that such process are well known in the art.
- the invention provides a composition having a bioderived caprolactone or caprolactone pathway intermediate disclosed herein and a compound other than the bioderived caprolactone or caprolactone pathway intermediate.
- the invention provides a biobased polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical wherein the caprolactone or caprolactone pathway intermediate used in its production is a combination of bioderived and petroleum derived caprolactone or caprolactone pathway intermediate.
- a biobased polymer, resin, protective or industrial coating, polyurethane, cast elastomer, adhesive, colorant, or pharmaceutical can be produced using 50%> bioderived caprolactone and 50%> petroleum derived caprolactone or other desired ratios such as 60%/40%, 70%/30%, 80%/20%, 90%/10%, 95%/5%, 100%/0%, 40%/60%, 30%/70%, 20%/80%, 10%/90% of bioderived/petroleum derived precursors, so long as at least a portion of the product comprises a bioderived product produced by the microbial organisms disclosed herein.
- the compound other than the bioderived caprolactone in a composition of the invention is a trace amount of a cellular portion of a non-naturally occurring microbial organism having a caprolactone pathway of the invention disclosed here.
- a cellular portion of a microbial organism includes without limitation proteins, polypeptides, peptides, amino acids, nucleic acids, polynucleotides, components of the cell wall or a cellular membrane including, for example, peptidoglycans, glycoproteins, and polysaccharides, or any other cellular component.
- a "trace amount" as used herein refers to the presence of a compound or material in the composition, but in a quantity
- Such trace amounts can be so small as to not be accurately measured.
- the invention provides a molded product obtained by molding a biobased polymer or resin disclosed herein.
- Such moled products may be produced in to any number of industrially desireable forms including for example, a pellet.
- the culture conditions can include, for example, liquid culture procedures as well as fermentation and other large scale culture procedures. As described herein, particularly useful yields of the biosynthetic products of the invention can be obtained under anaerobic or substantially anaerobic culture conditions.
- an anaerobic condition refers to an environment devoid of oxygen.
- substantially anaerobic conditions include, for example, a culture, batch fermentation or continuous fermentation such that the dissolved oxygen concentration in the medium remains between 0 and 10% of saturation.
- Substantially anaerobic conditions also includes growing or resting cells in liquid medium or on solid agar inside a sealed chamber maintained with an atmosphere of less than 1% oxygen.
- the percent of oxygen can be maintained by, for example, sparging the culture with an N 2 /C0 2 mixture or other suitable non-oxygen gas or gases.
- the culture conditions described herein can be scaled up and grown continuously for manufacturing of caprolactone.
- Exemplary growth procedures include, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. All of these processes are well known in the art. Fermentation procedures are particularly useful for the biosynthetic production of commercial quantities of caprolactone.
- the continuous and/or near-continuous production of caprolactone will include culturing a non-naturally occurring caprolactone producing organism of the invention in sufficient nutrients and medium to sustain and/or nearly sustain growth in an exponential phase.
- Continuous culture under such conditions can include, for example, growth for 1 day, 2, 3, 4, 5, 6 or 7 days or more. Additionally, continuous culture can include longer time periods of 1 week, 2, 3, 4 or 5 or more weeks and up to several months. Alternatively, organisms of the invention can be cultured for hours, if suitable for a particular application. It is to be understood that the continuous and/or near-continuous culture conditions also can include all time intervals in between these exemplary periods. It is further understood that the time of culturing the microbial organism of the invention is for a sufficient period of time to produce a sufficient amount of product for a desired purpose.
- Fermentation procedures are well known in the art. Briefly, fermentation for the biosynthetic production of caprolactone can be utilized in, for example, fed-batch fermentation and batch separation; fed-batch fermentation and continuous separation, or continuous fermentation and continuous separation. Examples of batch and continuous fermentation procedures are well known in the art.
- the caprolactone producers of the invention also can be, for example, simultaneously subjected to chemical synthesis procedures to convert the product to other compounds or the product can be separated from the fermentation culture and sequentially subjected to chemical or enzymatic conversion to convert the product to other compounds, if desired.
- metabolic modeling can be utilized to optimize growth conditions. Modeling can also be used to design gene knockouts that additionally optimize utilization of the pathway (see, for example, U.S. patent publications US 2002/0012939, US 2003/0224363, US 2004/0029149, US 2004/0072723, US 2003/0059792, US 2002/0168654 and US 2004/0009466, and U.S. Patent No. 7,127,379). Modeling analysis allows reliable predictions of the effects on cell growth of shifting the metabolism towards more efficient production of caprolactone.
- OptKnock is a metabolic modeling and simulation program that suggests gene deletion or disruption strategies that result in genetically stable microorganisms which overproduce the target product.
- the framework examines the complete metabolic and/or biochemical network of a microorganism in order to suggest genetic manipulations that force the desired biochemical to become an obligatory byproduct of cell growth.
- biochemical production By coupling biochemical production with cell growth through strategically placed gene deletions or other functional gene disruption, the growth selection pressures imposed on the engineered strains after long periods of time in a bioreactor lead to improvements in performance as a result of the compulsory growth-coupled biochemical production.
- gene deletions are constructed there is a negligible possibility of the designed strains reverting to their wild- type states because the genes selected by OptKnock are to be completely removed from the genome. Therefore, this computational methodology can be used to either identify alternative pathways that lead to biosynthesis of a desired product or used in connection with the non-naturally occurring microbial organisms for further optimization of biosynthesis of a desired product.
- OptKnock is a term used herein to refer to a computational method and system for modeling cellular metabolism.
- the OptKnock program relates to a framework of models and methods that incorporate particular constraints into flux balance analysis (FBA) models. These constraints include, for example, qualitative kinetic information, qualitative regulatory information, and/or DNA microarray experimental data.
- FBA flux balance analysis
- OptKnock also computes solutions to various metabolic problems by, for example, tightening the flux boundaries derived through flux balance models and subsequently probing the
- OptKnock computational framework allows the construction of model formulations that allow an effective query of the performance limits of metabolic networks and provides methods for solving the resulting mixed-integer linear programming problems.
- the metabolic modeling and simulation methods referred to herein as OptKnock are described in, for example, U.S. publication 2002/0168654, filed January 10, 2002, in International Patent No. PCT/US02/00660, filed January 10, 2002, and U.S. publication 2009/0047719, filed August 10, 2007.
- SimPheny® Another computational method for identifying and designing metabolic alterations favoring biosynthetic production of a product is a metabolic modeling and simulation system termed SimPheny®.
- This computational method and system is described in, for example, U.S. publication 2003/0233218, filed June 14, 2002, and in International Patent Application No. PCT/US03/18838, filed June 13, 2003.
- SimPheny® is a computational system that can be used to produce a network model in silico and to simulate the flux of mass, energy or charge through the chemical reactions of a biological system to define a solution space that contains any and all possible functionalities of the chemical reactions in the system, thereby determining a range of allowed activities for the biological system.
- constraints-based modeling because the solution space is defined by constraints such as the known stoichiometry of the included reactions as well as reaction thermodynamic and capacity constraints associated with maximum fluxes through reactions.
- the space defined by these constraints can be interrogated to determine the phenotypic capabilities and behavior of the biological system or of its biochemical components.
- metabolic modeling and simulation methods include, for example, the computational systems exemplified above as SimPheny® and OptKnock. For illustration of the invention, some methods are described herein with reference to the OptKnock
- a solution to the bilevel OptKnock problem also will provide the associated gene or genes encoding one or more enzymes that catalyze each reaction within the set of reactions. Identification of a set of reactions and their corresponding genes encoding the enzymes participating in each reaction is generally an automated process, accomplished through correlation of the reactions with a reaction database having a relationship between enzymes and encoding genes.
- the set of reactions that are to be disrupted in order to achieve production of a desired product are implemented in the target cell or organism by functional disruption of at least one gene encoding each metabolic reaction within the set.
- One particularly useful means to achieve functional disruption of the reaction set is by deletion of each encoding gene.
- These latter aberrations, resulting in less than total deletion of the gene set can be useful, for example, when rapid assessments of the coupling of a product are desired or when genetic reversion is less likely to occur.
- integer cuts an optimization method, termed integer cuts. This method proceeds by iteratively solving the OptKnock problem exemplified above with the incorporation of an additional constraint referred to as an integer cut at each iteration. Integer cut constraints effectively prevent the solution procedure from choosing the exact same set of reactions identified in any previous iteration that obligatorily couples product biosynthesis to growth. For example, if a previously identified growth-coupled metabolic modification specifies reactions 1, 2, and 3 for disruption, then the following constraint prevents the same reactions from being simultaneously considered in subsequent solutions.
- the methods exemplified herein allow the construction of cells and organisms that biosynthetically produce a desired product, including the obligatory coupling of production of a target biochemical product to growth of the cell or organism engineered to harbor the identified genetic alterations. Therefore, the computational methods described herein allow the identification and implementation of metabolic modifications that are identified by an in silico method selected from OptKnock or SimPheny®.
- the set of metabolic modifications can include, for example, addition of one or more biosynthetic pathway enzymes and/or functional disruption of one or more metabolic reactions including, for example, disruption by gene deletion.
- the OptKnock methodology was developed on the premise that mutant microbial networks can be evolved towards their computationally predicted maximum-growth phenotypes when subjected to long periods of growth selection. In other words, the approach leverages an organism's ability to self-optimize under selective pressures.
- the OptKnock framework allows for the exhaustive enumeration of gene deletion combinations that force a coupling between biochemical production and cell growth based on network stoichiometry.
- the identification of optimal gene/reaction knockouts requires the solution of a bilevel optimization problem that chooses the set of active reactions such that an optimal growth solution for the resulting network
- An in silico stoichiometric model of E. coli metabolism can be employed to identify essential genes for metabolic pathways as exemplified previously and described in, for example, U.S. patent publications US 2002/0012939, US 2003/0224363, US 2004/0029149, US 2004/0072723, US 2003/0059792, US 2002/0168654 and US
- the OptKnock mathematical framework can be applied to pinpoint gene deletions leading to the growth- coupled production of a desired product. Further, the solution of the bilevel OptKnock problem provides only one set of deletions. To enumerate all meaningful solutions, that is, all sets of knockouts leading to growth-coupled production formation, an optimization technique, termed integer cuts, can be implemented. This entails iteratively solving the OptKnock problem with the incorporation of an additional constraint referred to as an integer cut at each iteration, as discussed above.
- nucleic acid encoding a desired activity of a
- caprolactone pathway can be introduced into a host organism. In some cases, it can be desirable to modify an activity of a caprolactone pathway enzyme or protein to increase production of caprolactone. For example, known mutations that increase the activity of a protein or enzyme can be introduced into an encoding nucleic acid molecule.
- optimization methods can be applied to increase the activity of an enzyme or protein and/or decrease an inhibitory activity, for example, decrease the activity of a negative regulator.
- Directed evolution is a powerful approach that involves the introduction of mutations targeted to a specific gene in order to improve and/or alter the properties of an enzyme. Improved and/or altered enzymes can be identified through the development and implementation of sensitive high- throughput screening assays that allow the automated screening of many enzyme variants (for example, >10 4 ). Iterative rounds of mutagenesis and screening typically are performed to afford an enzyme with optimized properties. Computational algorithms that can help to identify areas of the gene for mutagenesis also have been developed and can significantly reduce the number of enzyme variants that need to be generated and screened.
- selectivity/specificity for conversion of non-natural substrates
- temperature stability for robust high temperature processing
- pH stability for bioprocessing under lower or higher H conditions
- substrate or product tolerance so that high product titers can be achieved
- binding (K m ) including broadening substrate binding to include non-natural substrates
- inhibition (K;) to remove inhibition by products, substrates, or key intermediates
- activity (kcat) to increases enzymatic reaction rates to achieve desired flux
- expression levels to increase protein yields and overall pathway flux
- oxygen stability for operation of air sensitive enzymes under aerobic conditions
- anaerobic activity for operation of an aerobic enzyme in the absence of oxygen.
- a number of exemplary methods have been developed for the mutagenesis and diversification of genes to target desired properties of specific enzymes. Such methods are well known to those skilled in the art. Any of these can be used to alter and/or optimize the activity of a caprolactone pathway enzyme or protein. Such methods include, but are not limited to EpPCR, which introduces random point mutations by reducing the fidelity of DNA polymerase in PCR reactions (Pritchard et al, J Theor.Biol.
- epRCA Error-prone Rolling Circle Amplification
- DNA or Family Shuffling typically involves digestion of two or more variant genes with nucleases such as Dnase I or EndoV to generate a pool of random fragments that are reassembled by cycles of annealing and extension in the presence of DNA polymerase to create a library of chimeric genes (Stemmer, Proc Natl Acad Sci USA 91 : 10747-10751 (1994); and Stemmer, Nature 370:389-391 (1994));
- Staggered Extension which entails template priming followed by repeated cycles of 2 step PCR with denaturation and very short duration of annealing/extension (as short as 5 sec) (Zhao et al, Nat. Biotechnol. 16:258-261 (1998)); Random Priming
- RPR Recombination Recombination
- Additional methods include Heteroduplex Recombination, in which linearized plasmid DNA is used to form heteroduplexes that are repaired by mismatch repair (Volkov et al, Nucleic Acids Res. 27:el8 (1999); and Volkov et al, Methods Enzymol. 328:456-463 (2000)); Random Chimeragenesis on Transient Templates (RACHITT), which employs Dnase I fragmentation and size fractionation of single stranded DNA (ssDNA) (Coco et al, Nat. Biotechnol.
- RACHITT Random Chimeragenesis on Transient Templates
- ITCHY Incremental Truncation for the Creation of Hybrid Enzymes
- THIO-ITCHY Thio-Incremental Truncation for the Creation of Hybrid Enzymes
- THIO-ITCHY Thio-Incremental Truncation for the Creation of Hybrid Enzymes
- SCRATCHY which combines two methods for recombining genes, ITCHY and DNA shuffling (Lutz et al, Proc. Natl. Acad. Sci. USA 98: 11248-11253 (2001)); Random Drift Mutagenesis (RNDM), in which mutations made via epPCR are followed by
- Sequence Saturation Mutagenesis (SeSaM), a random mutagenesis method that generates a pool of random length fragments using random incorporation of a phosphothioate nucleotide and cleavage, which is used as a template to extend in the presence of "universal" bases such as inosine, and replication of an inosine-containing complement gives random base incorporation and, consequently, mutagenesis (Wong et al, Biotechnol. J. 3:74-82 (2008); Wong et al, Nucleic Acids Res. 32:e26 (2004); and Wong et al, Anal. Biochem.
- SHIPREC Single-crossover hybrids
- GSSMTM Gene Site Saturation MutagenesisTM
- the starting materials include a supercoiled double stranded DNA (dsDNA) plasmid containing an insert and two primers which are degenerate at the desired site of mutations (Kretz et al., Methods Enzymol.
- CCM Combinatorial Cassette Mutagenesis
- CCM Combinatorial Cassette Mutagenesis
- CMCM Combinatorial Multiple Cassette Mutagenesis
- LTM Look-Through Mutagenesis
- Any of the aforementioned methods for mutagenesis can be used alone or in any combination. Additionally, any one or combination of the directed evolution methods can be used in conjunction with adaptive evolution techniques, as described herein.
- FIG. 1-5 Several pathways for producing caprolactone are depicted in Figures 1-5. Each pathway originates from naturally occurring metabolites.
- Figure 1 shows pathways for converting adipate or adipyl-CoA to caprolactone.
- Adipate is an intermediate produced during the degradation of aromatic and aliphatic ring containing compounds such as cyclohexanol.
- Biosynthetic pathways for forming adipate and adipyl-CoA are well known in the art (for example, see US patent 7799545).
- adipate semialdehyde is formed either from adipate via an adipate reductase (Step E) or adipyl- CoA via adipyl-CoA reductase (Step A).
- Adipate semialdehyde is then reduced to 5- hydroxyhexanoate in Step B.
- the 6-hydroxyhexanoate intermediate is converted to caprolactone by one of several alternate routes. In one route, 6-hydroxyhexanoate is directly converted to caprolactone by a caprolactone hydrolase (step G).
- 6-hydroxyhexanoate is activated to its corresponding acyl-CoA, which then cyclizes to caprolactone (step C/D), or cyclizes via a 6-hydroxyhexanoyl-phosphate intermediate (steps J/I).
- 6-hydroxyhexanote is activated to 6-hydroxyhexanoyl- phoshphate, which is then cyclized to caprolactone (step H/I).
- FIG. 2 A similar series of pathways is shown in Figure 2. These pathways originate from 4-hydroxybutyryl-CoA, an intermediate in the biosynthesis of poly- hydroxyalkanoates and non-naturally occurring chemicals such as 1 ,4-butanediol (see US 7947483, US 7229804).
- 4-hydroxybutyryl-CoA and acetyl-CoA are joined by a beta-ketothiolase to form 3-oxo-6-hydroxyhexanoyl-CoA.
- This intermediate is reduced and dehydrated to 6-hydroxyhex-2-enoyl-CoA (steps B/C).
- 6- Hydroxyhexanoyl-CoA is directly converted to caprolactone either spontaneously or by an enzyme (step G). Alternately, caprolactone is formed via a phosphate intermediate (steps H/I) and/or 6-hydroxyhexanoate (steps E/J/I or steps E/F).
- the caprolactone is derived from cyclohexanone as shown in Figure 3.
- the conversion of cyclohexanone to caprolactone by enzymes with cyclohexanone monooxygenase activity is well known in the art (see for example, US Patent 6790645 and US Patent 7105296).
- Exemplary pathways for biosynthesizing cyclohexanone from metabolic intermediates are shown in Figures 4 and 5.
- Figure 4 shows a pathway for converting adipate semialdehyde to
- cyclohexanone in four enzymatic steps.
- adipate semialdehyde is simultaneously dehydrated and cyclized, forming cyclohexane-l,2-dione.
- Reduction of the two keto groups to alcohol groups is catalyzed by one or more enzymes with cyclohexane- 1,2-dione reductase and 2-hydroxycyclohexanone reductase activities.
- a diol dehydratase converts cyclohexane-l,2-diol to cyclohexanone.
- Cyclohexanone can alternately be synthesized from pimeloyl-CoA as shown in Figure 5.
- Pimeloyl-CoA is a naturally occurring intermediate of metabolic pathways including biotin biosynthesis and degradation pathways of aromatic compounds.
- pimeloyl-CoA is cyclized to 2-ketocyclohexane-l- carboxyl-CoA by 2-ketocyclohexane-l-carboxyl-CoA hydrolase (acting on C-C).
- the CoA ester is then converted to 2-ketocyclohexane-l-carboxylate by a CoA synthetase, hydrolase or transferase.
- decarboxylation of 2-ketocyclohexane-l-carboxylate yields cyclohexanone.
- 6-Hydroxyhexanoate dehydrogenase (adipate semialdehyde reductase) catalyzes the reduction of adipate semialdehyde to 6-hydroxyhexanoate.
- adipate semialdehyde reductase catalyzes the reduction of adipate semialdehyde to 6-hydroxyhexanoate.
- Such an enzyme is required in Step B of Figure 1. Enzymes with this activity are found in organisms that degrade cyclohexanone, and are encoded by chnD of Acinetobacter sp. NCIMB9871 (Iwaki et al, AEM 65:5158-62 (1999)), Rhodococcus sp. Phi2 and Arthrobacter sp. BP2 (Brzostowicz et al, AEM 69:334-42 (2003)).
- AlrA encodes a medium-chain alcohol dehydrogenase for C2-C14 compounds (Tani et al., Appl.Environ.Microbiol. 66:5231-5235 (2000)).
- Other candidates are yqhD and fucO from E. coli (Sulzenbacher et al, 342:489-502 (2004)), and bdh I and bdh II from C.
- acetobutylicum (Walter et al, 174:7149-7158 (1992)).
- YqhD catalyzes the reduction of a wide range of aldehydes using NADPH as the cofactor, with a preference for chain lengths longer than C(3) (Sulzenbacher et al, 342:489-502 (2004);Perez et al, J Biol.Chem. 283:7346-7353 (2008)).
- the adhA gene product from Zymomonas mobilis has been demonstrated to have activity on a number of aldehydes including formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and acrolein (Kinoshita et al, Appl Microbiol Biotechnol 22:249-254 (1985)). Additional aldehyde reductase candidates are encoded by bdh in C. saccharoperbutylacetonicum and Cbei_1722, Cbei_2181 and Cbei_2421 in C. beijerinckii.
- Enzymes exhibiting 4-hydroxybutyrate dehydrogenase activity are also suitable candidates. Such enzymes have been characterized in Ralstonia eutropha (Bravo et al, J For ens Sci, 49:379-387 (2004)), Clostridium kluyveri (Wolff et al, Protein Expr.Purif. 6:206-212 (1995)) and Arabidopsis thaliana (Breitnch et al., J Biol Chem, 278:41552-41556 (2003)). The A. thaliana enzyme was cloned and characterized in yeast. This enzyme also catalyzes the reduction of glutarate semialdehyde to 5-hydroxyvalerate (WO 2010/068953 A2). Yet another gene is the alcohol dehydrogenase adhl from
- thermoglucosidasius (Jeon et al., J Biotechnol 135: 127-133 (2008)).
- An enzyme with similar activity is the glutarate semialdehyde reductase enzyme of
- Aspergillus terreus encoded by ATEG 00539 (WO 2010/068953 A2).
- Aldehyde reductase gene candidates in Saccharomyces cerevisiae include the aldehyde reductases GRE3, ALD2-6 and HFD1, glyoxylate reductases GOR1 and
- YPLl 13C and glycerol dehydrogenase GCYl (WO 2011/022651A1; Atsumi et al, Nature 451 :86-89 (2008)).
- the enzyme candidates described previously for catalyzing the reduction of methylglyoxal to acetol or lactaldehyde are also suitable lactaldehyde reductase enzyme candidates.
- Ketone reductase or alcohol dehydrogenase enzymes that reduce 3-oxoacyl- CoA substrates to their corresponding 3-hyroxyacyl-CoA product are relevant to the pathways depicted in Figure 2.
- 3-Oxoacyl-CoA reductase enzymes (EC 1.1.1.35) convert 3-oxoacyl-CoA molecules into 3-hydroxyacyl-CoA molecules and are often involved in fatty acid beta-oxidation or phenylacetate catabolism. For example, subunits of two fatty acid oxidation complexes in E.
- E. coli encoded by fadB and fadJ, function as 3 -hydroxy acyl- CoA dehydrogenases (Binstock et al, Methods Enzymol. 71 Pt C:403-411 (1981)). Given the proximity in E. coli of paaH to other genes in the phenylacetate degradation operon (Nogales et al., 153:357-365 (2007)) and the fact that paaH mutants cannot grow on phenylacetate (Ismail et al., Eur J Biochem. 270:3047-3054 (2003)), it is expected that the E. coli paaH gene also encodes a 3-hydroxyacyl-CoA dehydrogenase.
- Additional 3- oxoacyl-CoA enzymes include the gene products of phaC in Pseudomonas putida (Olivera et al, Proc.Natl.Acad.Sci U.S.A 95:6419-6424 (1998)) and paaC in Pseudomonas fluorescens (Di et al, 188: 117-125 (2007)). These enzymes catalyze the reversible oxidation of 3-hydroxyadipyl-CoA to 3-oxoadipyl-CoA during the catabolism of phenylacetate or styrene.
- Acetoacetyl-CoA reductase participates in the acetyl-CoA fermentation pathway to butyrate in several species of Clostridia and has been studied in detail (Jones et al, Microbiol Rev. 50:484-524 (1986)).
- the enzyme from Clostridium acetobutylicum, encoded by hbd, has been cloned and functionally expressed in E. coli (Youngleson et al, J Bacteriol. 171 :6800-6807 (1989)).
- the enzyme from Paracoccus denitrificans has been functionally expressed and characterized in E. coli (Yabutani et al, FEMS Microbiol Lett. 133:85-90 (1995)). A number of similar enzymes have been found in other species of Clostridia and in Metallosphaera sedula (Berg et al, Science. 318: 1782-1786 (2007)).
- the enzyme from Candida tropicalis is a component of the peroxisomal fatty acid beta-oxidation multifunctional enzyme type 2 (MFE-2).
- MFE-2 peroxisomal fatty acid beta-oxidation multifunctional enzyme type 2
- acetoacetyl-CoA The domain has been functionally expressed in E. coli, a crystal structure is available, and the catalytic mechanism is well-understood (Ylianttila et al., Biochem Biophys Res Commun 324:25-30 (2004); Ylianttila et al, JMol Biol 358: 1286- 1295 (2006)).
- Cyclohexanol dehydrogenase enzymes from Rhodococcus sp TK6 (Tae-Kang et al, J.Microbiol. Biotechnol. 12:39-45 (2002)), a denitrifying Pseudomonas sp. (Dangel et al, 152:271-279 (1989)), Nocardia sp (Stirling et al, 4:37-40 (1980)) and Xanthobacter sp. (Trower et al, 49: 1282-1289 (1985)) have all been shown to convert cyclohexan-l,2-diol to cyclohexan-l,2-dione.
- the (S)-specific NADPH-dependent diacetyl reductase from this study was later identified as D-arabinose dehydrogenase, the gene product otARAl (Katz et al, 33: 163-172 (2003)).
- the NADH-dependent gene product of BDH1 of S. cerevisiae also has diacetyl reductase functionality (Gonzalez et al, 275:35876-35885 (2000)).
- Several other enzymes with diketone reductase functionality have been identified in yeast, encoded by genes GCY1, YPR1, GRE3, YlR036c (Johanson et al, FEMS Yeast Res. 5:513-525 (2005)).
- GenBank accession numbers The protein sequences for exemplary gene products can be found using the following GenBank accession numbers shown below.
- Oxidoreductase (acyl-CoA to aldehyde)
- adipyl-CoA reductase converts adipyl-CoA to adipate semialdehyde in Step A of Figure 1.
- acyl-CoA reductase enzymes are found in EC class 1.2.1.
- Exemplary enzymes include fatty acyl-CoA reductase, succinyl-CoA reductase (EC 1.2.1.76), acetyl-CoA reductase, butyryl-CoA reductase and propionyl-CoA reductase (EC 1.2.1.3).
- Exemplary fatty acyl-CoA reductases enzymes are encoded by acrl of
- Acinetobacter calcoaceticus (Reiser, Journal of Bacteriology 179:2969-2975 (1997)) and Acinetobacter sp. M-l (Ishige et al, Appl. Environ. Microbiol. 68: 1192-1195 (2002)).
- Enzymes with succinyl-CoA reductase activity are encoded by sucD of Clostridium kluyveri (Sohling, J. Bacteriol. 178:871-880 (1996)) and sucD of P. gingivalis (Takahashi, J. Bacteriol 182:4704-4710 (2000)).
- Thermoproteus neutrophilus (Ramos- Vera et al, J Bacteriol, 191 :4286-4297 (2009)).
- the M. sedula enzyme encoded by Msed_0709, is strictly NADPH-dependent and also has malonyl-CoA reductase activity.
- the T. neutrophilus enzyme is active with both NADPH and NADH.
- the enzyme acylating acetaldehyde dehydrogenase in Pseudomonas sp, encoded by bphG, is yet another as it has been demonstrated to oxidize and acylate acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde and formaldehyde (Powlowski, J. Bacteriol. 175:377-385 (1993)).
- Butyraldehyde dehydrogenase catalyzes a similar reaction, conversion of butyryl-CoA to butyraldehyde, in solventogenic organisms such as Clostridium saccharoperbutylacetonicum (Kosaka et al., Biosci Biotechnol Biochem., 71 :58-68 (2007)).
- Exemplary propionyl-CoA reductase enzymes include pduP of Salmonella typhimurium LT2 ( Leal, Arch. Microbiol. 180:353-361 (2003)) and eutE from E. coli (Skraly, WO Patent No. 2004/024876).
- propionyl-CoA reductase of Salmonella typhimurium LT2 which naturally converts propionyl-CoA to propionaldehyde, also catalyzes the reduction of 5-hydroxyvaleryl-CoA to 5-hydroxypentanal (WO
- An additional enzyme type that converts an acyl-CoA to its corresponding aldehyde is malonyl-CoA reductase which transforms malonyl-CoA to malonic semialdehyde.
- Malonyl-CoA reductase is a key enzyme in autotrophic carbon fixation the 3-hydroxypropionate cycle in thermoacidophilic archaeal bacteria (Berg, Science 318: 1782-1786 (2007); and Thauer, Science 318: 1732-1733 (2007)).
- the enzyme utilizes NADPH as a cofactor and has been characterized in Metallosphaera and Sulfolobus sp. (Alber et al, J. Bacteriol.
- the enzyme is encoded by Msed_0709 in Metallosphaera sedula (Alber et al, J. Bacteriol. 188:8551-8559 (2006); and Berg, Science 318: 1782-1786 (2007)).
- a gene encoding a malonyl-CoA reductase from Sulfolobus tokodaii was cloned and
- dehydrogenase an enzyme catalyzing the reduction and concurrent dephosphorylation of aspartyl-4-phosphate to aspartate semialdehyde. Additional gene candidates can be found by sequence homology to proteins in other organisms including Sulfolobus solfataricus and Sulfolobus acidocaldarius and have been listed below. Yet another candidate for CoA- acylating aldehyde dehydrogenase is the aid gene from Clostridium beijerinckii (Toth, Appl. Environ. Microbiol. 65:4973-4980 (1999). This enzyme has been reported to reduce acetyl-CoA and butyryl-CoA to their corresponding aldehydes.
- This gene is very similar to eutE that encodes acetaldehyde dehydrogenase of Salmonella typhimurium and E. coli (Toth, Appl. Environ. Microbiol. 65:4973-4980 (1999).
- Direct conversion of the acid to aldehyde by a single enzyme is catalyzed by a bifunctional enzyme in the 1.2.1 family.
- Exemplary enzymes that catalyze these transformations include carboxylic acid reductase, alpha-aminoadipate reductase and retinoic acid reductase.
- Carboxylic acid reductase found in Nocardia iowensis, catalyzes the magnesium, ATP and NADPH-dependent reduction of carboxylic acids to their corresponding aldehydes (Venkitasubramanian et al, J Biol.Chem. 282:478-485 (2007)).
- the natural substrate of this enzyme is benzoic acid and the enzyme exhibits broad acceptance of aromatic and aliphatic substrates (Venkitasubramanian et al., Biocatalysis in Pharmaceutical and Biotechnology Industries. CRC press (2006)).
- CAR requires post-translational activation by a phosphopantetheine transferase (PPTase) that converts the inactive apo-enzyme to the active holo-enzyme (Hansen et al., Appl.Environ.Microbiol 75:2765-2774 (2009)).
- PPTase phosphopantetheine transferase
- alpha-aminoadipate reductase AAR, EC 1.2.1.31
- AAR alpha-aminoadipate reductase
- This enzyme naturally reduces alpha-aminoadipate to alpha-aminoadipate semialdehyde.
- the carboxyl group is first activated through the ATP-dependent formation of an adenylate that is then reduced by NAD(P)H to yield the aldehyde and AMP.
- this enzyme utilizes magnesium and requires activation by a PPTase.
- Enzyme candidates for AAR and its corresponding PPTase are found in Saccharomyces cerevisiae (Morris et al, Gene 98: 141-145 (1991)), Candida albicans (Guo et al, Mol. Genet. Genomics 269:271-279 (2003)), and Schizosaccharomyces pombe (Ford et al, Curr.Genet. 28: 131-137 (1995)).
- the AAR from S. pombe exhibited significant activity when expressed in E. coli (Guo et al, Yeast 21 : 1279-1288 (2004)).
- the AAR from Penicillium chrysogenum accepts S- carboxymethyl-L-cysteine as an alternate substrate, but did not react with adipate, L- glutamate or diaminopimelate (Hijarrubia et al., J Biol.Chem. 278:8250-8256 (2003)).
- the gene encoding the P. chrysogenum PPTase has not been identified to date and no high- confidence hits were identified by sequence comparison homology searching. Protein ( ,cn Bank ID GI Number Organism
- AX4 [00173] An additional enzyme candidate found in Streptomyces griseus is encoded by the griC and griD genes. This enzyme is believed to convert 3-amino-4-hydroxybenzoic acid to 3-amino-4-hydroxybenzaldehyde as deletion of either griC or griD led to accumulation of extracellular 3-acetylamino-4-hydroxybenzoic acid, a shunt product of 3- amino-4-hydroxybenzoic acid metabolism (Suzuki, et al, J. Antibiot. 60(6):380-387 (2007)). Co-expression of griC and griD with SGR 665, an enzyme similar in sequence to the Nocardia iowensis npt, can be beneficial.
- Oxidation of cyclohexanone to caprolactone, shown Figure 3, is catalyzed by cyclohexanone monooxygenase (EC 1.14.13.22).
- the enzyme encoded by chnB of Acinetobacter sp. NCIMB9871 has been extensively studied and it has been
- An enzyme with phosphotrans-6-hydroxyhexanoylase activity is required to convert 6-hydroxyhexanoyl-CoA to 6-hydroxyhexanoyl phosphate (Step J of Figure 1 and Step H of Figure 2).
- Exemplary phosphate -transferring acyltransferases include phosphotransacetylase (EC 2.3.1.8) and phosphotransbutyrylase (EC 2.3.1.19).
- the pta gene from E. coli encodes a phosphotransacetylase that reversibly converts acetyl-CoA into acetyl-phosphate (Suzuki, Biochim.Biophys.Acta 191 :559-569 (1969)).
- This enzyme can also utilize propionyl-CoA as a substrate, forming propionate in the process
- the ptb gene from C. acetobutylicum encodes phosphotransbutyrylase, an enzyme that reversibly converts butyryl-CoA into butyryl- phosphate (Wiesenborn et al, Appl Environ.Microbiol 55:317-322 (1989); Walter et al, Gene 134: 107-111 (1993)). Additional ptb genes are found in butyrate-producing bacterium L2-50 (Louis et al, J.Bacteriol. 186:2099-2106 (2004)) and Bacillus megaterium (Vazquez et al, Curr. Microbiol 42:345-349 (2001)).
- Beta-ketothiolase enzymes in the EC class 2.3.1 catalyze the condensation of two acyl-CoA substrates.
- Step A of Figure 2 requires a beta-ketothiolase to catalyze the condensation of 4-hydroxybutyryl-CoA and acetyl-CoA into 3-oxo-6-hydroxyhexanoyl- CoA.
- suitable enzymes include 3-oxoadipyl-CoA thiolase (EC 2.3.1.174), acetoacetyl-CoA thiolase (EC 2.3.1.9) and 3-oxopimeloyl-CoA thiolase (EC 2.3.1.16).
- 3-Oxoadipyl-CoA thiolase (EC 2.3.1.174) converts beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA, and is a key enzyme of the beta-ketoadipate pathway for aromatic compound degradation.
- the enzyme is widespread in soil bacteria and fungi including Pseudomonas putida (Harwood et al, J Bacteriol. 176:6479-6488 (1994)) and Acinetobacter calcoaceticus (Doten et al, J Bacteriol. 169:3168-3174 (1987)).
- Glutaryl-CoA and acetyl-CoA are condensed to form 3-oxopimeloyl-CoA by oxopimeloyl-CoA:glutaryl-CoA acyltransferase, a beta-ketothiolase (EC 2.3.1.16).
- An enzyme catalyzing this transformation is found in Ralstonia eutropha (formerly known as Alcaligenes eutrophus), encoded by genes bktB and bktC (Slater et al, J. Bacteriol.
- Acetoacetyl-CoA thiolase converts two molecules of acetyl-CoA into acetoacetyl-CoA (EC 2.1.3.9). This activity is encoded by atoB from E. coli (Martin et al., Nat.Biotechnol 21 :796-802 (2003)), thlA and MB from Clostridium acetobutylicum (Hanai et al, Appl Environ Microbiol 73:7814-7818 (2007); Winzer et al,
- Beta-ketothiolase enzymes catalyzing the formation of beta-keto valerate from acetyl-CoA and propionyl-CoA may also be able to catalyze the formation of 3-oxo-6- hydroxyhexanoyl-CoA.
- Zoogloea ramigera possesses two ketothiolases that can form 3- ketovaleryl-CoA from propionyl-CoA and acetyl-CoA and R.
- eutropha has a beta- oxidation ketothiolase that is also capable of catalyzing this transformation (Gruys et al., US Patent 5,958,745 (1999)).
- kinase or phosphotransferase enzymes in the EC class 2.7.2 transform carboxylic acids to phosphonic acids with concurrent hydrolysis of one ATP. Such an enzyme is required for the phosphorylation of 6-hydroxyhexanoate depicted in Step H of Figure 1 and Step J of Figure 2.
- Exemplary enzyme candidates include butyrate kinase (EC 2.7.2.7), isobutyrate kinase (EC 2.7.2.14), aspartokinase (EC 2.7.2.4), acetate kinase (EC 2.7.2.1), glycerate kinase (EC 2.7.1.31) and gamma-glutamyl kinase (EC 2.7.2.11).
- Butyrate kinase catalyzes the reversible conversion of butyryl-phosphate to butyrate during acidogenesis in Clostridial species (Cary et al, Appl Environ Microbiol 56: 1576- 1583 (1990)).
- the Clostridium acetobutylicum enzyme is encoded by either of the two buk gene products (Huang et al, J Mol.Microbiol Biotechnol 2:33-38 (2000)).
- Other butyrate kinase enzymes are found in C. butyricum and C. tetanomorphum (Twarog et al, J Bacteriol. 86: 112-117 (1963)).
- isobutyrate kinase from Thermotoga maritima was expressed in E. coli and crystallized (Diao et al, J Bacteriol. 191 :2521- 2529 (2009); Diao et al, Acta Cry stallogr. D.Biol. Cry stallogr. 59: 1100-1102 (2003)).
- Aspartokinase catalyzes the ATP-dependent phosphorylation of aspartate and participates in the synthesis of several amino acids.
- E. coli encoded by lysC, has a broad substrate range and the catalytic residues involved in substrate specificity have been elucidated (Keng et al, Arch Biochem Biophys 335:73-81 (1996)).
- Two additional kinases in E. coli are also acetate kinase and gamma-glutamyl kinase.
- Acetylglutamate kinase phosphorylates acetylated glutamate during arginine biosynthesis.
- This enzyme is not known to accept alternate substrates; however, several residues of the E. coli enzyme involved in substrate binding and phosphorylation have been elucidated by site-directed mutagenesis (Marco-Marin et al, 334:459-476 (2003); Ramon-Maiques et al, Structure. 10:329-342 (2002)).
- the enzyme is encoded by argB in Bacillus subtilis and E. coli (Parsot et al, Gene 68:275-283 (1988)), and ARG5, 6 in S.
- the ARG5,6 gene of S. cerevisiae encodes a polyprotein precursor that is matured in the mitochondrial matrix to become acetylglutamate kinase and acetylglutamylphosphate reductase.
- Glycerate kinase (EC 2.7.1.31) activates glycerate to glycerate-2 -phosphate or glycerate-3 -phosphate.
- Three classes of glycerate kinase have been identified. Enzymes in class I and II produce glycerate-2-phosphate, whereas the class III enzymes found in plants and yeast produce glycerate-3 -phosphate (Bartsch et al, FEB S Lett. 582:3025-3028 (2008)).
- class III glycerate kinase enzymes from Saccharomyces cerevisiae, Oryza sativa and Arabidopsis thaliana were heterologously expressed in E.
- CoA transferases catalyze the reversible transfer of a CoA moiety from one molecule to another.
- Several transformations require a CoA transferase to interconvert carboxylic acids and their corresponding acyl-CoA derivatives, including steps C and F of Figure 1, step E of Figure 2 and step B of Figure 5.
- CoA transferase enzymes have been described in the open literature and represent suitable candidates for these steps. These are described below.
- Transferases have broad specificity and thus can utilize CoA acceptors as diverse as acetate, succinate, propionate, butyrate, 2-methylacetoacetate, 3-ketohexanoate, 3-ketopentanoate, valerate, crotonate, 3-mercaptopropionate, propionate, vinylacetate, butyrate, among others.
- an enzyme from Roseburia sp. A2-183 was shown to have butyryl-CoA:acetate:CoA transferase and propionyl-CoA:acetate:CoA transferase activity (Charrier et al, Microbiology 152, 179-185 (2006)).
- Close homologs can be found in, for example, Clostridium novyi NT, Clostridium beijerinckii NCIMB 8052, and Clostridium botulinum C str. Eklund.
- Ygf encodes a propionyl CoA:succinate CoA transferase in E. coli (Haller et al, Biochemistry, 39(16) 4622-4629).
- Close homologs can be found in, for example, Citrobacter youngae ATCC 29220, Salmonella enterica subsp. arizonae serovar, and Yersinia intermedia ATCC 29909. These proteins are identified below .
- the genes encoding this enzyme are gctA and gctB.
- This enzyme has reduced but detectable activity with other CoA derivatives including glutaryl-CoA, 2-hydroxyglutaryl-CoA, adipyl-CoA, crotonyl-CoA and acrylyl-CoA (Buckel et al., Eur. J Biochem. 118:315-321 (1981)).
- the enzyme has been cloned and expressed in E. coli (Mack et al., supra). Glutaconate CoA-transferase activity has also been detected in Clostridium sporosphaeroides and Clostridium symbiosum. Additional glutaconate CoA-transferase enzymes can be inferred by homology to the
- Acidaminococcus fermentans protein sequence
- a Co A transferase that can utilize acetyl-CoA as the Co A donor is acetoacetyl- CoA transferase, encoded by the E. coli atoA (alpha subunit) and atoD (beta subunit) genes (Korolev et al., Acta Cry stallogr. D.Biol. Cry stallogr. 58:2116-2121 (2002);
- This enzyme has a broad substrate range (Sramek et al., Arch Biochem Biophys 171 : 14-26 (1975)) and has been shown to transfer the CoA moiety to acetate from a variety of branched and linear acyl-CoA substrates, including isobutyrate (Matthies et al, Appl Environ.Microbiol 58:1435-1439 (1992)), valerate (Vanderwinkel et al, Biochem.Biophys.Res.Commun. 33:902-908 (1968)) and butanoate (Vanderwinkel et al, Biochem.Biophys.Res.Commun.
- Beta-ketoadipyl-CoA transferase also known as succinyl-CoA:3:oxoacid-CoA transferase, employs succinate as the CoA acceptor.
- This enzyme is encoded by peal and pcaJ in Pseudomonas putida (Kaschabek et al, J Bacteriol. 184:207-215 (2002)). Similar enzymes are found in Acinetobacter sp. ADP1 (Kowalchuk et al., Gene 146:23-30
- Enzymes in the EC class 3.1.1 catalyze the hydrolysis and synthesis of ester bonds.
- Caprolactone hydrolase enzymes required for step G of Figure 1 and step F of Figure 2 are found in organisms that degrade cyclohexanone.
- the chnC gene product of Acinetobacter sp. NCIMB9871 was found to hydrolyze the ester bond of caprolactone, forming 6-hydroxyhexanote (Iwaki et al, AEM 65:5158-62 (1999)).
- Similar enzymes were identified in Arthrobacter sp. BP2 and Rhodococcus sp. Phi2 (Brzostowicz et al, AEM 69:334-42 (2003)).
- caprolactone may also be catalyzed by enzymes that catalyze the interconversion of cyclic lactones and open chain hydroxycarboxylic acids.
- the L- lactonase from Fusarium proliferatum ECU2002 exhibits lactonase and esterase activities on a variety of lactone substrates (Zhang et al, Appl.Microbiol.Biotechnol. 75: 1087-1094 (2007)).
- the 1,4-lactone hydroxyacylhydrolase (EC 3.1.1.25), also known as 1 ,4-lactonase or gamma-lactonase, is specific for 1,4-lactones with 4-8 carbon atoms.
- the gamma lactonase in human blood and rat liver microsomes was purified (Fishbein et al, J Biol Chem 241 :4835-4841 (1966)) and the lactonase activity was activated and stabilized by calcium ions (Fishbein et al., J Biol Chem 241 :4842-4847 (1966)).
- the optimal lactonase activities were observed at pH 6.0, whereas high pH resulted in hydrolytic activities (Fishbein and Bessman, J Biol Chem 241 :4842-4847 (1966)).
- lipases typically hydrolyze long-chain carboxylic acid esters, whereas esterases (EC 3.1.1.1) hydrolyze short-chain esters.
- esterases EC 3.1.1.1
- the amidase from Brevibacterium sp. R312 (EC 3.5.1.4) is a likely enzyme with caprolactone-forming activity. This enzyme was shown to hydrolyze ethylacrylate (Thiery et al, J. Gen. Microbiol, 132:2205-8, 1986; Soubrier et al, Gene, 116:99-104,1992).
- microsomal epoxide hydrolase from Rattus norvegicus (EC 3.3.2.9) is another suitable enzyme (Guengerich et al, Rev. Biochem. Toxicol. 4:5-30, 1982).
- the protein sequences of these genes are provided below.
- ester synthase genes include the Acinetobacter sp. ADP1 atfA encoding a bifunctional enzyme with both wax ester synthase (WS) and acyl-CoA:
- DGAT diacylglycerol acyltransferase activities
- DGAT activities Kalscheuer et al. AJ Biol Chem 2003, 278: 8075-8082.
- the Simmondsia chinensis gene AAD38041 encoding a enzyme required for the accumulation of waxes in jojoba seeds
- the A lcanivorax borkumensis atfAl and atfA2 encoding bifunctional WS/DGAT enzymes (Kalscheuer et al.
- hydrocarbonoclasticus (Holtzapple,E. and Schmidt-Dannert,C, J. Bacteriol. 189 (10), 3804-3812, 2007).
- a thermostable carboxylesterase from Anoxybacillus sp. PDF1 was recently cloned and characterized (Ay et al, Prot Expr Purif ' 80:74-9 (2011)) but the sequence is not yet available.
- the alcohol O- acetyltransferase from Saccharomyces uvarum converts a wide range of alcohol substrates including branched-chain alcohols to their corresponding acetate esters (Yoshioka and Hashimoto, Agricul and Biol Chem, 45:2183-2191 (1981).
- the gene associated with this activity has not been identified to date.
- the protein sequences of the enzymes encoded by these genes are provided below.
- PON1 The Homo sapiens paraoxonase enzymes PON1 , PON1 (G3C9), and PON3 (EC 3.1.8.1) possess both arylesterase and organophosphatase activities.
- PON1 has a common polymorphic site at residue 192, glutamine (R) or arginine (Q) which results in qualitative differences.
- R glutamine
- Q arginine
- the R isozyme has a higher esterase activity than the S isozyme (Billecke et al, DrugMetab Dispos. 28: 1335-1342 (2000)).
- HDL high-density lipoprotein
- Wild type and recombinant PON1 enzymes have been functionally expressed in other organisms (Rochu et al, Biochem.Soc. Trans. 35: 1616- 1620 (2007); Martin et al, Appl.Environ.Microbiol. (2009)).
- a directed evolution study of PONl yielded several mutant enzymes with improved solubility and catalytic properties in E. coli (nucleotide accession numbers AY499188-AY499199) (Aharoni et al,
- ester synthase candidates include the Candida antarctica lipase B (Efe et al, Biotechnol.Bioeng. 99:1392-1406 (2008)) and EstFl from Pseudomonas fluorescens, encoded by EstFl (Khalameyzer et al, Appl.Environ.Microbiol. 65:477-482 (1999)).
- EstFl from Pseudomonas fluorescens and Bacillus subtilis may also catalyze this transformation.
- the B. subtilis and P. fluorescens genes encode triacylglycerol lipase enzymes which have been cloned and characterized in E. coli (Dartois et al, Biochim.Biophys.Acta 1131 :253-260 (1992); Tan et al,
- Enzymes in the 3.1.2 family hydrolyze acyl-CoA molecules to their corresponding acids. Such an enzyme is depicted in Step F of Figure 1 and Step B of Figure 5.
- Several CoA hydrolases have been demonstrated to hydrolyze adipyl-CoA, or alternately accept a broad range of substrates.
- the enzyme encoded by acotl2 from Rattus norvegicus brain can react with butyryl-CoA, hexanoyl-CoA and malonyl-CoA.
- the human dicarboxylic acid thioesterase encoded by acotS, exhibits activity on glutaryl-CoA, adipyl-CoA, suberyl-CoA, sebacyl-CoA, and dodecanedioyl-CoA (Westin et al,
- coli include ybgC, paal, andybdB (Kuznetsova, et al, FEMS Microbiol Rev, 2005, 29(2):263- 279; Song et al, J Biol Chem, 2006, 281(16): 11028-38). Though its sequence has not been reported, the enzyme from the mitochondrion of the pea leaf has a broad substrate specificity, with demonstrated activity on acetyl-CoA, propionyl-CoA, butyryl-CoA, palmitoyl-CoA, oleoyl-CoA, succinyl-CoA, and crotonyl-CoA (Zeiher et al,
- acetyl-CoA hydrolase from S. cerevisiae represents another candidate hydrolase (Buu et al, J.Biol. Chem. 278: 17203-17209 (2003)).
- Yet another candidate hydrolase is the glutaconate CoA-transferase from Acidaminococcus fermentans. This enzyme was transformed by site-directed mutagenesis into an acyl-CoA hydrolase with activity on glutaryl-CoA, acetyl-CoA and 3-butenoyl- CoA (Mack et al, FEBS.Lett. 405:209-212 (1997)). This suggests that the enzymes encoding succinyl-CoA:3-ketoacid-CoA transferases and acetoacetyl-CoA:acetyl-CoA transferases may also serve as candidates for this reaction step but would require certain mutations to change their function.
- Co A hydrolase enzyme is 3-hydroxyisobutyryl-CoA hydrolase which has been described to efficiently catalyze the conversion of 3-hydroxyisobutyryl-CoA to 3-hydroxyisobutyrate during valine degradation (Shimomura et al., J Biol Chem.
- Genes encoding this enzyme include hibch of Rattus norvegicus (Shimomura et al., Methods Enzymol. 324:229-240 (2000)) and Homo sapiens (Shimomura et al, supra). Similar gene candidates can also be identified by sequence homology, including hibch of Saccharomyces cerevisiae and BC 2292 of Bacillus cereus.
- Cyclohexane-l,2-dione hydrolase is a thiamin-diphosphate and FAD- dependent enzyme (EC 3.7.1.11) catalyzing the conversion of cyclohexane-l,2-dione to adipate semialdehyde.
- This enzyme has been characterized in Azoarcus sp. strain 22Lin, where it participates in cyclohexane-l,2-diol degradation (Steinbeck et al, J Bacteriol, in press (201 l);Harder, J., Arch. Microbiol. 168: 199-203 (1997)).
- the enzyme also oxidizes adipate semialdehyde to adipate.
- a similar transformation is catalyzed in the myo-inositol degradation pathway of organisms such as Bacillus subtilis, in which the cyclic dione 2,3- diketo-4-deoxy-epi-inositol is hydrolyzed to a linear product, 5-dehydro-2-deoxy-D- gluconate, by a diketodeoxyinositol hydrolase (EC 3.7.1.-).
- a partially purified protein catalyzing this reaction has been studied in Klebsiella aerogenes (Berman et al., J. Biol. Chem. 241 :800-806 (1966)). A gene has not been associated with this activity to date.
- the CDH from Azoarcus sp. strain 22Lin and close homo logs are shown in the table below.
- R. palustris enzyme has been expressed in E. coli where it was assayed for enzymatic activity in the ring-opening direction; however, such activity was not observed (Egland et al, Proc. Natl. Acad. Sci U.S.A. 94:6484-6489 (1997)).
- S. aciditrophicus genome bear sequence homology to the badl gene of R. palustris
- Another suitable enzyme candidate for Step A of Figure 5 is napthoyl-CoA synthetase (EC 4.1.3.36), an enzyme participating in menaquinone biosynthesis. This enzyme catalyzes the ring-closing conversion of succinyl-benzoyl-CoA to 1 ,4-dihydroxy- 2-napthoyl-CoA.
- the badl gene product of R. palustris shares as much as 53% sequence identity with 1 ,4-dihydroxynapthoyl-CoA synthetase homo logs in other organisms (Eberhard et al., J. Am. Chem. Soc.
- a decarboxylase enzyme suitable for decarboxylating 2-ketocyclohexane-l- carboxylate is the 3-ketoacid decarboxylase, acetoacetate
- An acetoacetate decarboxylase has also been characterized in Clostridium beijerinckii (Ravagnani et al., Mol.Microbiol 37:1172-1185 (2000)).
- the acetoacetate decarboxylase from Bacillus polymyxa characterized in cell-free extracts, also has a broad substrate specificity for 3- keto acids and can decarboxylate 3-oxopentanoate (Matiasek et al., Curr. Microbiol 42:276-281 (2001)).
- the gene encoding this enzyme has not been identified to date and the genome sequence of B. polymyxa is not yet available. Another adc is found in
- Clostridium saccharoperbutylacetonicum (Kosaka, et al., Biosci.Biotechnol Biochem. 71 :58-68 (2007)).
- Gene candidates in other organisms including Clostridium botulinum and Bacillus amyloliquefaciens, can be identified by sequence homology.
- Step C of Figure 2 the dehydration of 3,6-dihydroxyhexanoyl-CoA to 6- hydroxyhex-2-enoyl-CoA is catalyzed by a 3-hydroxyacyl-CoA dehydratase.
- Step D the conversion of cyclohexane-l,2-diol to cyclohexanone (Step D) is catalyzed by a diol dehydratase in EC class 4.2.1.
- Several relevant dehydratase enzymes have been described in the literature and represent suitable candidates for these steps.
- a 3-hydroxyacyl-CoA dehydratase is required for step C of Figure 2.
- Enoyl- CoA hydratases (EC 4.2.1.17) catalyze the dehydration of a range of 3-hydroxyacyl-CoA substrates (Roberts et al, Arch.Microbiol 117:99-108 (1978); Agnihotri et al,
- E. coli gene products of fadA and fadB encode a
- Diol dehydratase enzymes suitable for converting cyclohexane-l,2-diol to cyclohexanone include dihydroxy-acid dehydratase (EC 4.2.1.9), propanediol dehydratase (EC 4.2.1.28), glycerol dehydratase (EC 4.2.1.30) and myo-inositose dehydratase (EC 4.2.1.44).
- Adenosylcobalamin-dependent diol dehydratases contain alpha, beta and gamma subunits, which are all required for enzyme function.
- Exemplary propanediol dehydratase candidates are found in Klebsiella pneumoniae (Toraya et al,
- Enzymes in the glycerol dehydratase family are also diol dehydratases.
- Exemplary gene candidates are encoded by gldABC and dhaB123 in Klebsiella pneumoniae (World Patent WO 2008/137403) and (Toraya et al,
- B12-dependent diol dehydratase If a B12-dependent diol dehydratase is utilized, heterologous expression of the corresponding reactivating factor is recommended.
- B12-dependent diol dehydratases are subject to mechanism-based suicide activation by substrates and some downstream products. Inactivation, caused by a tight association with inactive cobalamin, can be partially overcome by diol dehydratase reactivating factors in an ATP-dependent process. Regeneration of the B12 cofactor requires an additional ATP.
- Diol dehydratase regenerating factors are two-subunit proteins. Exemplary candidates are found in
- Klebsiella oxytoca (Mori et al, J Biol.Chem. 272:32034-32041 (1997)), Salmonella typhimurium (Bobik et al, J Bacteriol. 179:6633-6639 (1997); Chen et al, J Bacteriol. 176:5474-5482 (1994)), Lactobacillus collinoides (Sauvageot et al, FEMS Microbiol Lett. 209:69-74 (2002)), Klebsiella pneumonia (World Patent WO 2008/137403).
- B12-independent diol dehydratase enzymes are glycyl radicals that utilize S- adenosylmethionine (SAM) as a cofactor and function under strictly anaerobic conditions.
- SAM S- adenosylmethionine
- butyricum encoded by dhaBl and dhaB2, have been well-characterized (O'Brien et al., Biochemistry 43:4635-4645 (2004); Raynaud et al, Proc.Natl.Acad.Sci U.S.A 100:5010- 5015 (2003)).
- This enzyme was recently employed in a 1,3-propanediol overproducing strain of E. coli and was able to achieve very high titers of product (Tang et al.,
- Dihydroxy-acid dehydratase (DHAD, EC 4.2.1.9) is a B12-independent enzyme participating in branched-chain amino acid biosynthesis. In its native role, it converts 2, 3 -dihydroxy-3 -methyl valerate to 2-keto-3-methyl-valerate, a precursor of isoleucine.
- the S. solfataricus enzyme is tolerant of oxygen unlike many diol dehydratase enzymes.
- the E. coli enzyme, encoded by ilvD, is sensitive to oxygen, which inactivates its iron- sulfur cluster (Flint et al, J.Biol.Chem. 268: 14732-14742 (1993)). Similar enzymes have been characterized in Neurospora crassa (Altmiller et al., Arch.Biochem.Biophys.
- the diol dehydratase myo-inosose-2-dehydratase (EC 4.2.1.44) is another exemplary candidate.
- Myo-inosose is a six-membered ring containing adjacent alcohol groups.
- a purified enzyme encoding myo-inosose-2-dehydratase functionality has been studied in Klebsiella aerogenes in the context of myo-inositol degradation (Berman et al., J Biol.Chem. 241 : 800-806 (1966)), but has not been associated with a gene to date.
- the myo-inosose-2-dehydratase of Sinorhizobium fredii was cloned and functionally expressed in E. coli (Yoshida et al, Biosci.Biotechnol.Biochem. 70:2957-2964 (2006)).
- a similar enzyme from B. subtilis, encoded by iolE, has also been studied (Yoshida et al,
- acyl-CoA substrates to their acid products can be catalyzed by a CoA acid-thiol ligase or CoA synthetase in the 6.2.1 family of enzymes.
- Several transformations require a CoA synthetase to interconvert carboxylic acids and their corresponding acyl-CoA derivatives, including steps C and F of Figure 1, step E of Figure 2 and step B of Figure 5. Enzymes catalyzing these exact transformations have not been characterized to date; however, several enzymes with broad substrate specificities have been described in the literature.
- ADP-forming acetyl-CoA synthetase (ACD, EC 6.2.1.13) is an enzyme that couples the conversion of acyl-CoA esters to their corresponding acids with the concomitant synthesis of ATP.
- the enzyme from Haloarcula marismortui (annotated as a succinyl-CoA synthetase) accepts propionate, butyrate, and branched-chain acids (isovalerate and isobutyrate) as substrates, and was shown to operate in the forward and reverse directions (Brasen et al, Arch Microbiol 182:277-287 (2004)).
- the ACD encoded by PAE3250 from hyperthermophilic crenarchaeon Pyrobaculum aerophilum showed the broadest substrate range of all characterized ACDs, reacting with acetyl-CoA, isobutyryl-CoA (preferred substrate) and phenylacetyl-CoA (Brasen et al, supra). Directed evolution or engineering can be used to modify this enzyme to operate at the physiological temperature of the host organism.
- the enzymes from A. fulgidus, H. marismortui and . aerophilum have all been cloned, functionally expressed, and characterized in E. coli (Brasen and Schonheit, supra; Musfeldt and Schonheit, J Bacteriol. 184:636-644 (2002)).
- succinyl-CoA synthetase encoded by sucCD of E. coli and LSC1 and LSC2 genes of Saccharomyces cerevisiae. These enzymes catalyze the formation of succinyl-CoA from succinate with the concomitant consumption of one ATP in a reaction which is reversible in vivo (Buck et al, Biochemistry 24:6245-6252 (1985)).
- acyl CoA ligase from Pseudomonas putida has been demonstrated to work on several aliphatic substrates including acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids and on aromatic compounds such as phenylacetic and phenoxyacetic acids (Fernandez- Valverde et al, Appl.Environ.Microbiol. 59:1149-1154 (1993)).
- malonyl CoA synthetase (6.3.4.9) from Rhizobium leguminosarum could convert several diacids, namely, ethyl-, propyl-, allyl-, isopropyl-, dimethyl-, cyclopropyl-,
- Another candidate enzyme is 6-carboxyhexanoate-CoA ligase, also known as pimeloyl-CoA ligase (EC 6.2.1.14), which naturally activates pimelate to pimeloyl-CoA during biotin biosynthesis in gram-positive bacteria.
- Other candidates are found in Bacillus subtilis (Bower et al, J Bacteriol.
- Lysinibacillus sphaericus (formerly Bacillus sphaericus) (Ploux et al., Biochem. J “287 ( Pt 3):685-690 (1992)).
- Additional CoA-ligases include the rat dicarboxylate-CoA ligase for which the sequence is yet uncharacterized (Vamecq et al, Biochem.J 230:683-693 (1985)), either of the two characterized phenylacetate-CoA ligases from P. chrysogenum (Lamas-Maceiras et al, Biochem.J 395: 141 -155 (2006); Wang et al, 360:453-458 (2007)), the
- step D of Figure 1 and step F of Figure 2 Formation of caprolactone from 6-hydroxyhexanoyl-CoA either occurs spontaneously or is catalyzed by enzymes having 6- hydroxyhexanoyl-CoA cyclase or alcohol transferase activity.
- enzymes having 6- hydroxyhexanoyl-CoA cyclase or alcohol transferase activity were demonstrated in Examples 1-10 of United States Patent No. 7,901,915.
- Novozyme 435 immobilized lipase B from Candida antarctica, Sigma
- Lipase C2 from Candida cylindracea
- lipase from Pseudomonas fluorescens Alphahamerix Ltd
- L-aminoacylase ex Aspergillus spp. L-aminoacylase ex Aspergillus oryzae.
- Such enzymes were shown to form methyl acrylate and ethyl acrylate from acrylyl-CoA and methanol or ethanol, respectively.
- Similar alcohol transferase enzymes can also be used to form cyclic esters such as caprolactone.
- Other suitable candidates include esterase enzymes in EC class 3.1.1, described above.
- O-acyltransferases that transfer acyl groups from acyl-CoA to alcohols.
- Suitable O-acyltransferases include serine O-acetyltransferase (EC 2.3.1.30) such as cysE of E.
- coli homoserine O-acetyltransferase (EC 2.3.1.31) enzymes such as met2 of Saccharomyces cerevisiae, or carnitine O-acyltransferases (EC 2.3.1.21) such as Cptla of Rattus norvegicus (Langin et al Gene 49:283-93 (1986); Denk et al, J Gen Microbiol 133:515-25 (1987); de Vries et al, Biochem 36:5285-92 (1997)).
- enzymes such as met2 of Saccharomyces cerevisiae, or carnitine O-acyltransferases (EC 2.3.1.21) such as Cptla of Rattus norvegicus (Langin et al Gene 49:283-93 (1986); Denk et al, J Gen Microbiol 133:515-25 (1987); de Vries et al, Biochem 36:5285-92 (1997)).
- Cyclization of 6-hydroxyhexanoyl-phosphate to caprolactone can either occur spontaneously or by an enzyme with 6-hydroxyhexanoyl phosphate cyclase activity.
- An exemplary enzyme for this transformation is acyl- phosphate:glycerol-3 -phosphate acyltransferase, encoded by pis ⁇ of Streptococcus pneumoniae (Lu et al, J Biol Chem 282: 11339-46 (2007)). Although this enzyme catalyzes an intermolecular reaction, it could also catalyze the intramolecular ester- forming reaction to caprolactone. Genes encoding similar enzymes are listed in the table below. Alcohol transferase enzymes and esterase enzymes described above are also suitable candidates.
- Enzymes of the reductive TCA cycle useful in the non-naturally occurring microbial organisms of the present invention include one or more of ATP-citrate lyase and three C0 2 -fixing enzymes: isocitrate dehydrogenase, alpha-ketoglutarate:ferredoxin oxidoreductase, pyruvate :ferredoxin oxidoreductase.
- ATP-citrate lyase or citrate lyase and alpha-ketoglutarate:ferredoxin oxidoreductase indicates the presence of an active reductive TCA cycle in an organism. Enzymes for each step of the reductive TCA cycle are shown below.
- ATP-citrate lyase (ACL, EC 2.3.3.8), also called ATP citrate synthase, catalyzes the ATP-dependent cleavage of citrate to oxaloacetate and acetyl-CoA.
- ACL is an enzyme of the RTCA cycle that has been studied in green sulfur bacteria Chlorobium limicola and Chlorobium tepidum. The alpha(4)beta(4) heteromeric enzyme from
- Chlorobium limicola was cloned and characterized in E. coli (Kanao et al., Eur. J.
- the C. limicola enzyme encoded by aclAB, is irreversible and activity of the enzyme is regulated by the ratio of ADP/ATP.
- a recombinant ACL from Chlorobium tepidum was also expressed in E. coli and the holoenzyme was reconstituted in vitro, in a study elucidating the role of the alpha and beta subunits in the catalytic mechanism (Kim and Tabita, J. Bacteriol. 188:6544-6552 (2006).
- ACL enzymes have also been identified in Balnearium lithotrophicum,
- citryl-CoA synthetase EC 6.2.1.18
- citryl-CoA lyase EC 4.1.3.34
- Citryl-CoA synthetase catalyzes the activation of citrate to citryl-CoA.
- the Hydrogenobacter thermophilus enzyme is composed of large and small subunits encoded by ccsA and ccsB, respectively (Aoshima et al, Mol. Micrbiol. 52:751-761 (2004)).
- the citryl-CoA synthetase of Aquifex aeolicus is composed of alpha and beta subunits encoded by sucCI and sucDI (Hugler et al, Environ. Microbiol. 9:81-92 (2007)).
- Citryl-CoA lyase splits citryl-CoA into oxaloacetate and acetyl-CoA. This enzyme is a homotrimer encoded by ccl in Hydrogenobacter
- thermophilus (Aoshima et al, Mol. Microbiol. 52:763-770 (2004)) and aq_150 in Aquifex aeolicus (Hugler et al, supra (2007)).
- the genes for this mechanism of converting citrate to oxaloacetate and citryl-CoA have also been reported recently in Chlorobium tepidum (Eisen et al, PNAS 99(14): 9509-14 (2002).
- Oxaloacetate is converted into malate by malate dehydrogenase (EC 1.1.1.37), an enzyme which functions in both the forward and reverse direction.
- S. cerevisiae possesses three copies of malate dehydrogenase, MDH1 (McAlister-Henn and Thompson, J. Bacteriol. 169:5157-5166 (1987), MDH2 (Minard and McAlister-Henn, Mol. Cell. Biol. 11 :370-380 (1991); Gibson and McAlister-Henn, J. Biol. Chem. 278:25628-25636
- E. coli is known to have an active malate dehydrogenase encoded by mdh.
- Fumarate hydratase catalyzes the reversible hydration of fumarate to malate.
- the three fumarases of E. coli, encoded by fumA,fumB and fumC, are regulated under different conditions of oxygen availability.
- FumB is oxygen sensitive and is active under anaerobic conditions.
- FumA is active under microanaerobic conditions, and FumC is active under aerobic growth conditions (Tseng et al, J. Bacteriol. 183:461-467
- S. cerevisiae contains one copy of a fumarase- encoding gene, FUM1, whose product localizes to both the cytosol and mitochondrion (Sass et al., J. Biol. Chem. 278:45109-45116 (2003)). Additional fumarase enzymes are found in Campylobacter jejuni (Smith et al., Int. J. Biochem. Cell. Biol. 31 :961-975 (1999)), Thermus thermophilus (Mizobata et al., Arch. Biochem. Biophys.
- Pelotomaculum thermopropionicum is another class of fumarase with two subunits (Shimoyama et al, FEMS Microbiol. Lett. 270:207-213 (2007)).
- Fumarate reductase catalyzes the reduction of fumarate to succinate.
- the fumarate reductase of E. coli composed of four subunits encoded by frdABCD, is membrane-bound and active under anaerobic conditions.
- the electron donor for this reaction is menaquinone and the two protons produced in this reaction do not contribute to the proton gradient (Iverson et al, Science 284: 1961-1966 (1999)).
- the yeast genome encodes two soluble fumarate reductase isozymes encoded by FRDS1 (Enomoto et al, DNA Res. 3:263-267 (1996)) and FRDS2 (Muratsubaki et al, Arch. Biochem. Biophys.
- Alpha-ketoglutarate:ferredoxin oxidoreductase (EC 1.2.7.3), also known as
- 2-oxoglutarate synthase or 2-oxoglutarate:ferredoxin oxidoreductase forms alpha-ketoglutarate from C02 and succinyl-CoA with concurrent consumption of two reduced ferredoxin equivalents.
- OFOR and pyruvate :ferredoxin oxidoreductase (PFOR) are members of a diverse family of 2-oxoacid:ferredoxin (flavodoxin) oxidoreductases which utilize thiamine pyrophosphate, CoA and iron-sulfur clusters as cofactors and ferredoxin, flavodoxin and FAD as electron carriers (Adams et al., Archaea. Adv. Protein Chem. 48:101-180 (1996)).
- Enzymes in this class are reversible and function in the carboxylation direction in organisms that fix carbon by the RTCA cycle such as
- thermophilus Hydrogenobacter thermophilus, Desulfobacter hydrogenophilus and Chlorobium species (Shiba et al. 1985; Evans et al, Proc. Natl. Acad. Sci. U.S.A. 55:92934 (1966); Buchanan, 1971).
- the two-subunit enzyme from H. thermophilus, encoded by korAB has been cloned and expressed in E. coli (Yun et al, Biochem. Biophys. Res. Commun. 282:589-594 (2001)).
- thiosulfatophilum has been purified and characterized but the genes encoding this enzyme have not been identified to date.
- Enzyme candidates in Chlorobium species can be inferred by sequence similarity to the H. thermophilus genes.
- the Chlorobium limicola genome encodes two similar proteins.
- Acetogenic bacteria such as Moorella thermoacetica are predicted to encode two OFOR enzymes.
- the enzyme encoded by Moth_0034 is predicted to function in the C02-assimilating direction.
- the genes associated with this enzyme, Moth_0034 have not been experimentally validated to date but can be inferred by sequence similarity to known OFOR enzymes.
- OFOR enzymes that function in the decarboxylation direction under physiological conditions can also catalyze the reverse reaction.
- the OFOR from the thermoacidophilic archaeon Sulfolobus sp. strain 7, encoded by ST2300 has been extensively studied (Zhang et al, supra, 1996).
- a plasmid-based expression system has been developed for efficiently expressing this protein in E. coli (Fukuda et al, Eur. J. Biochem. 268:5639- 5646 (2001)) and residues involved in substrate specificity were determined (Fukuda and Wakagi, Biochim. Biophys. Acta 1597:74-80 (2002)).
- Rhodospirillum rubrum A similar enzyme can be found in Rhodospirillum rubrum by sequence homology. A two subunit enzyme has also been identified in Chlorobium tepidum (Eisen et al, Proc. Natl. Acad. Sci. USA 99(14): 9509-9514 (2002)).
- Isocitrate dehydrogenase catalyzes the reversible decarboxylation of isocitrate to 2-oxoglutarate coupled to the reduction of NAD(P) + .
- IDH enzymes in Saccharomyces cerevisiae and Escherichia coli are encoded by IDPl and icd, respectively (Hahneck and McAlister-Henn, J. Biol. Chem. 266:2339-2345 (1991); Nimmo, Biochem. J. 234:317- 2332 (1986)).
- This enzyme is a large complex composed of two subunits. Biotinylation of the large (A) subunit is required for enzyme function (Aoshima et al., Mol. Microbiol. 51 :791- 798 (2004)).
- Oxalosuccinate reductase (EC 1.1.1.-) catalyzes the NAD-dependent conversion of oxalosuccinate to D-t/zreo-isocitrate.
- the enzyme is a homodimer encoded by icd in H. thermophilus. The kinetic parameters of this enzyme indicate that the enzyme only operates in the reductive carboxylation direction in vivo, in contrast to isocitrate dehydrogenase enzymes in other organisms (Aoshima and Igarashi, J. Bacteriol.
- Aconitase (EC 4.2.1.3) is an iron-sulfur-containing protein catalyzing the reversible isomerization of citrate and iso-citrate via the intermediate czs-aconitate.
- Two aconitase enzymes are encoded in the E. coli genome by acnA and acnB.
- AcnB is the main catabolic enzyme, while AcnA is more stable and appears to be active under conditions of oxidative or acid stress (Cunningham et al, Microbiology 143 (Pt 12):3795-3805 (1997)).
- PFOR Pyruvate :ferredoxin oxidoreductase catalyzes the reversible oxidation of pyruvate to form acetyl-CoA.
- the PFOR from Desulfovibrio africanus has been cloned and expressed in E. coli resulting in an active recombinant enzyme that was stable for several days in the presence of oxygen (Pieulle et al, J. Bacteriol. 179:5684-5692 (1997)). Oxygen stability is relatively uncommon in PFORs and is believed to be conferred by a 60 residue extension in the polypeptide chain of the D. africanus enzyme.
- E. coli possesses an uncharacterized open reading frame, ydbK, encoding a protein that is 51% identical to the M. thermoacetica PFOR.
- Evidence for pyruvate oxidoreductase activity in E. coli has been described (Blaschkowski et al, Eur. J. Biochem. 123:563-569 (1982)).
- Rhodobacter capsulatas Yakunin and Hallenbeck, Biochimica et Biophysica Acta 1409 (1998) 39-49 (1998)) and Choloboum tepidum (Eisen et al, Proc. Natl. Acad. Sci. USA 99(14): 9509-14 (2002)).
- Rhodobacter capsulatas Yakunin and Hallenbeck, Biochimica et Biophysica Acta 1409 (1998) 39-49 (1998)
- Choloboum tepidum Edisen et al, Proc. Natl. Acad. Sci. USA 99(14): 9509-14 (2002).
- thermophilus encoded by porEDABG, was cloned into E. coli and shown to function in both the decarboxylating and C0 2 -assimilating directions (Ikeda et al., Biochem. Biophys. Res. Commun. 340:76-82 (2006) 2006; Yamamoto et al, Extremophiles 14:79-85 (2010)). Homologs also exist in C. carboxidivorans P7. Several additional PFOR enzymes are described in the following review (Ragsdale, S.W., Chem. Rev. 103:2333-2346 (2003)).
- fiavodoxin reductases e.g.,fqrB from Helicobacter pylori or Campylobacter jejuni
- Rnf-type proteins Seedorf et al, Proc. Natl. Acad. Sci. U.S.A. 105:2128-2133 (2008); and Herrmann, J. Bacteriol 190:784-791 (2008)
- pyruvate dehydrogenase can transform pyruvate into acetyl-CoA with the concomitant reduction of a molecule of NAD into NADH. It is a multi-enzyme complex that catalyzes a series of partial reactions which results in acylating oxidative decarboxylation of pyruvate.
- the enzyme comprises of three subunits: the pyruvate decarboxylase (El), dihydrolipoamide acyltransferase (E2) and dihydrolipoamide dehydrogenase (E3).
- This enzyme is naturally present in several organisms, including E. coli and S. cerevisiae.
- specific residues in the El component are responsible for substrate specificity (Bisswanger, J. Biol. Chem. 256:815-82 (1981); Bremer, Eur. J. Biochem. 8:535-540 (1969); Gong et al, J. Biol. Chem. 275: 13645-13653 (2000)).
- Enzyme engineering efforts have improved the E.
- Pyruvate formate lyase is a common enzyme in prokaryotic organisms that is used to help modulate anaerobic redox balance.
- Exemplary enzymes can be found in Escherichia coli encoded by pflB (Knappe and Sawers, FEMS. Microbiol Rev. 6:383-398 (1990)), Lactococcus lactis (Melchiorsen et al, Appl Microbiol Biotechnol 58:338-344 (2002)), and Streptococcus mutans (Takahashi-Abbe et al, Oral.
- E. coli possesses an additional pyruvate formate lyase, encoded by tdcE, that catalyzes the conversion of pyruvate or 2-oxobutanoate to acetyl- CoA or propionyl-CoA, respectively (Hesslinger et al, Mol. Microbiol 27:477-492 (1998)).
- tdcE pyruvate formate lyase activating enzyme
- yfiD a short protein encoded by E.
- coli can associate with and restore activity to oxygen-cleaved pyruvate formate lyase (Vey et al, Proc.Natl. Acad. Sci. U.S.A. 105: 16137-16141 (2008). Note that pflA and pflB from E. coli were expressed in S. cerevisiae as a means to increase cytosolic acetyl-CoA for butanol production as described in WO/2008/080124. Additional pyruvate formate lyase and activating enzyme candidates, encoded by pfl and act, respectively, are found in Clostridium pasteurianum (Weidner et al, J Bacteriol. 178:2440-2444 (1996)).
- acetyl-CoA is obtained in the cytosol by first decarboxylating pyruvate to form acetaldehyde; the latter is oxidized to acetate by acetaldehyde dehydrogenase and subsequently activated to form acetyl-CoA by acetyl- CoA synthetase.
- Acetyl-CoA synthetase is a native enzyme in several other organisms including E. coli (Kumari et al, J. Bacteriol.
- acetate can be activated to form acetyl-CoA by acetate kinase and phosphotransacetylase.
- Acetate kinase first converts acetate into acetyl-phosphate with the accompanying use of an ATP molecule.
- Acetyl-phosphate and CoA are next converted into acetyl-CoA with the release of one phosphate by phosphotransacetylase.
- phosphotransacetlyase are well-studied enzymes in several Clostridia and Methanosarcina thermophila.
- pyruvate oxidase converts pyruvate into acetate, using ubiquione as the electron acceptor. In E. coli, this activity is encoded by poxB. PoxB has similarity to pyruvate decarboxylase of S. cerevisiae and Zymomonas mobilis.
- the enzyme has a thiamin pyrophosphate cofactor (Koland and Gennis, Biochemistry 21 :4438-4442 (1982)); O'Brien et al, Biochemistry 16:3105-3109 (1977); O'Brien and Gennis, J.
- Acetate can then be converted into acetyl-CoA by either acetyl-CoA synthetase or by acetate kinase and
- phosphotransacetylase as described earlier. Some of these enzymes can also catalyze the reverse reaction from acetyl-CoA to pyruvate.
- Ferredoxin:NADP + oxidoreductase (FNR, EC 1.18.1.2) has a noncovalently bound FAD cofactor that facilitates the reversible transfer of electrons from NADPH to low-potential acceptors such as ferredoxins or flavodoxins (Blaschkowski et al, Eur. J. Biochem. 123:563-569 (1982); Fujii et al, 1977).
- the Helicobacter pylori FNR encoded by HP 1164 (fqrB), is coupled to the activity of pyruvate :ferredoxin oxidoreductase (PFOR) resulting in the pyruvate-dependent production of NADPH ( St.
- ferredoxin:NAD + oxidoreductase of E. coli, encoded by hcaD, is a component of the 3-phenylproppionate dioxygenase system involved in involved in aromatic acid utilization (Diaz et al., J. Bacteriol. 180:2915-2923 (1998)).
- NADH ferredoxin reductase activity was detected in cell extracts of Hydrogenobacter thermophilus strain TK-6, although a gene with this activity has not yet been indicated (Yoon et al. 2006).
- the energy-conserving membrane-associated Rnf-type proteins Seedorf et al, Proc. Natl. Acad. Sci. U.S.A.
- Ferredoxins are small acidic proteins containing one or more iron-sulfur clusters that function as intracellular electron carriers with a low reduction potential. Reduced ferredoxins donate electrons to Fe-dependent enzymes such as ferredoxin- NADP + oxidoreductase, pyruvate :ferredoxin oxidoreductase (PFOR) and 2- oxoglutarate:ferredoxin oxidoreductase (OFOR).
- ferredoxin- NADP + oxidoreductase pyruvate :ferredoxin oxidoreductase (PFOR) and 2- oxoglutarate:ferredoxin oxidoreductase (OFOR).
- ferredoxin- NADP + oxidoreductase pyruvate :ferredoxin oxidoreductase (PFOR) and 2- oxoglutarate:ferredoxin oxidoreductase (O
- thermophilus gene fdxl encodes a [4Fe-4S]-type ferredoxin that is required for the reversible carboxylation of 2- oxoglutarate and pyruvate by OFOR and PFOR, respectively (Yamamoto et al,
- ferredoxin associated with the Sulfolobus solfataricus 2-oxoacid:ferredoxin reductase is a monomeric dicluster [3Fe-4S][4Fe-4S] type ferredoxin (Park et al., J Biochem Mol Biol. 39:46-54 (2006)). While the gene associated with this protein has not been fully sequenced, the N-terminal domain shares 93% homology with the zfx ferredoxin from S. acidocaldarius .
- the E. coli genome encodes a soluble ferredoxin of unknown physiological function, fdx.
- Rhodospirillum rubrum are predicted to encode several ferredoxins, listed in the table below.
- Succinyl-CoA transferase catalyzes the conversion of succinyl-CoA to succinate while transferring the CoA moiety to a CoA acceptor molecule.
- Many transferases have broad specificity and can utilize CoA acceptors as diverse as acetate, succinate, propionate, butyrate, 2-methylacetoacetate, 3-ketohexanoate, 3-ketopentanoate, valerate, crotonate, 3-mercaptopropionate, propionate, vinylacetate, and butyrate, among others.
- the conversion of succinate to succinyl-CoA can be carried by a transferase which does not require the direct consumption of an ATP or GTP. This type of reaction is common in a number of organisms.
- the conversion of succinate to succinyl-CoA can also be catalyzed by succinyl-CoA:Acetyl-CoA transferase.
- the gene product of catl of Clostridium kluyveri has been shown to exhibit succinyl-CoA: acetyl-CoA transferase activity (Sohling and Gottschalk, J. Bacteriol. 178:871-880 (1996)).
- An additional exemplary transferase that converts succinate to succinyl-CoA while converting a 3-ketoacyl-CoA to a 3-ketoacid is succinyl-CoA:3:ketoacid-CoA transferase (EC 2.8.3.5).
- succinyl-CoA:3:ketoacid-CoA transferases are present in Helicobacter pylori (Corthesy-Theulaz et al, J. Biol. Chem.
- Converting succinate to succinyl-CoA by succinyl-CoA:3 :ketoacid-CoA transferase requires the simultaneous conversion of a 3-ketoacyl-CoA such as acetoacetyl- CoA to a 3-ketoacid such as acetoacetate. Conversion of a 3-ketoacid back to a 3-ketoacyl- CoA can be catalyzed by an acetoacetyl-CoA:acetate:CoA transferase. Acetoacetyl- CoA:acetate:CoA transferase converts acetoacetyl-CoA and acetate to acetoacetate and acetyl-CoA, or vice versa.
- Exemplary enzymes include the gene products of atoAD from E. coli (Hanai et al, Appl Environ Microbiol 73 :7814-7818 (2007), ctfAB from C.
- acetobutylicum Jojima et al., Appl Microbiol Biotechnol 77: 1219-1224 (2008), and ctfAB from Clostridium saccharoperbutylacetonicum (Kosaka et al, Biosci.Biotechnol Biochem. 71 :58-68 (2007)) are shown below.
- CoA acceptor is benzylsuccinate.
- Succinyl-CoA:(R)- Benzylsuccinate CoA-Transferase functions as part of an anaerobic degradation pathway for toluene in organisms such as Thauera aromatica (Leutwein and Heider, J. Bact.
- Homologs can be found in Azoarcus sp. T, Aromatoleum aromaticum EbNl , and Geobacter metallireducens GS-15. The aforementioned proteins are identified below.
- ygfH encodes a propionyl CoA:succinate CoA transferase in E. coli (Haller et al, Biochemistry, 39(16) 4622-4629). Close homologs can be found in, for example, Citrobacter youngae ATCC 29220, Salmonella enterica subsp. arizonae serovar, and Yersinia intermedia ATCC 29909. The aforementioned proteins are identified below.
- Citrate lyase (EC 4.1.3.6) catalyzes a series of reactions resulting in the cleavage of citrate to acetate and oxaloacetate.
- the enzyme is active under anaerobic conditions and is composed of three subunits: an acyl-carrier protein (ACP, gamma), an ACP transferase (alpha), and a acyl lyase (beta).
- ACP acyl-carrier protein
- alpha alpha
- acyl lyase beta
- Enzyme activation uses covalent binding and acetylation of an unusual prosthetic group, 2'-(5"-phosphoribosyl)-3-'-dephospho- CoA, which is similar in structure to acetyl-CoA.
- citEFD citrate lyase synthetase
- citC citrate lyase synthetase
- the Leuconostoc mesenteroides citrate lyase has been cloned, characterized and expressed in E. coli (Bekal et al, J. Bacteriol. 180:647-654 (1998)).
- Citrate lyase enzymes have also been identified in enterobacteria that utilize citrate as a carbon and energy source, including Salmonella typhimurium and Klebsiella pneumoniae (Bott, Arch. Microbiol. 167: 78-88 (1997); Bott and Dimroth, Mol. Microbiol. 14:347-356 (1994)).
- the aforementioned proteins are tabulated below.
- Acetate kinase (EC 2.7.2.1) catalyzes the reversible ATP-dependent phosphorylation of acetate to acetylphosphate.
- Exemplary acetate kinase enzymes have been characterized in many organisms including E. coli, Clostridium acetobutylicum and Methanosarcina thermophila (Ingram-Smith et al, J. Bacteriol. 187:2386-2394 (2005); Fox and Roseman, J. Biol. Chem. 261 : 13487-13497 (1986); Winzer et al, Microbioloy 143 (Pt 10):3279-3286 (1997)).
- Acetate kinase activity has also been demonstrated in the gene product of E. coli purT (Marolewski et al, Biochemistry 33:2531-2537 (1994).
- Some butyrate kinase enzymes EC 2.7.2.7
- bukl and buk2 from Clostridium acetobutylicum also accept acetate as a substrate (Hartmanis, M.G., J. Biol. Chem.
- acetyl-CoA from acetylphosphate is catalyzed by phosphotransacetylase (EC 2.3.1.8).
- the pta gene from E. coli encodes an enzyme that reversibly converts acetyl-CoA into acetyl-phosphate (Suzuki, T., Biochim. Biophys. Acta 191 :559-569 (969)). Additional acetyltransferase enzymes have been characterized in Bacillus subtilis (Rado and Hoch, Biochim. Biophys. Acta 321 : 114-125 (1973),
- Thermotoga maritima (Bock et al, J. Bacteriol. 181 : 1861-1867 (1999)). This reaction is also catalyzed by some phosphotranbutyrylase enzymes (EC 2.3.1.19) including the ptb gene products from Clostridium acetobutylicum (Wiesenborn et al, App. Environ.
- acylation of acetate to acetyl-CoA is catalyzed by enzymes with acetyl- CoA synthetase activity.
- Two enzymes that catalyze this reaction are AMP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetase (EC 6.2.1.1) and ADP-forming acetyl-CoA synthetas
- AMP-forming acetyl-CoA synthetase is the predominant enzyme for activation of acetate to acetyl-CoA.
- Exemplary ACS enzymes are found in E. coli (Brown et al, J. Gen. Microbiol. 102:327-336 (1977)), Ralstonia eutropha (Priefert and
- synthetases are reversible enzymes with a generally broad substrate range (Musfeldt and Schonheit, J. Bacteriol. 184:636-644 (2002)).
- Two isozymes of ADP-forming acetyl-CoA synthetases are encoded in the Archaeoglobus fulgidus genome by are encoded by AF1211 and AF1983 (Musfeldt and Schonheit, supra (2002)).
- the enzyme from Haloarcula marismortui annotated as a succinyl-CoA synthetase
- crenarchaeon Pyrobaculum aerophilum showed the broadest substrate range of all characterized ACDs, reacting with acetate, isobutyryl-CoA (preferred substrate) and phenylacetyl-CoA (Brasen and Schonheit, supra (2004)). Directed evolution or engineering can be used to modify this enzyme to operate at the physiological temperature of the host organism.
- the enzymes from A. fulgidus, H. marismortui and P. aerophilum have all been cloned, functionally expressed, and characterized in E. coli (Brasen and Schonheit, supra (2004); Musfeldt and Schonheit, supra (2002)). Additional candidates include the succinyl-CoA synthetase encoded by sucCD in E. coli (Buck et al,
- Reducing equivalents, or electrons can be extracted from synthesis gas components such as CO and H 2 using carbon monoxide dehydrogenase (CODH) and hydrogenase enzymes, respectively.
- CODH carbon monoxide dehydrogenase
- the reducing equivalents are then passed to acceptors such as oxidized ferredoxins, oxidized quinones, oxidized cytochromes, NAD(P)+, water, or hydrogen peroxide to form reduced ferredoxin, reduced quinones, reduced cytochromes, NAD(P)H, H 2 , or water, respectively.
- Reduced ferredoxin and NAD(P)H are particularly useful as they can serve as redox carriers for various Wood-Ljungdahl pathway and reductive TCA cycle enzymes.
- a combined feedstock strategy where syngas is combined with a sugar-based feedstock or other carbon substrate can greatly improve the theoretical yields.
- syngas components H 2 and CO can be utilized by the hydrogenase and CO dehydrogenase to generate reducing equivalents, that can be used to power chemical production pathways in which the carbons from sugar or other carbon substrates will be maximally conserved and the theoretical yields improved.
- the theoretical yields improve from XX mol
- caprolactone per mol of glucose to YY mol caprolactone per mol of glucose.
- CODH is a reversible enzyme that interconverts CO and C0 2 at the expense or gain of electrons.
- the natural physiological role of the CODH in ACS/CODH complexes is to convert C0 2 to CO for incorporation into acetyl-CoA by acetyl-CoA synthase. Nevertheless, such CODH enzymes are suitable for the extraction of reducing equivalents from CO due to the reversible nature of such enzymes. Expressing such CODH enzymes in the absence of ACS allows them to operate in the direction opposite to their natural physiological role (i.e., CO oxidation).
- M. thermoacetica C. hydrogenoformans, C. carboxidivorans P7, and several other organisms
- additional CODH encoding genes are located outside of the ACS/CODH operons. These enzymes provide a means for extracting electrons (or reducing equivalents) from the conversion of carbon monoxide to carbon dioxide.
- the M. thermoacetica gene (Genbank Accession Number: YP_430813) is expressed by itself in an operon and is believed to transfer electrons from CO to an external mediator like ferredoxin in a "Ping-pong" reaction.
- the reduced mediator then couples to other reduced nicolinamide adenine dinucleotide phosphate (NAD(P)H) carriers or ferredoxin-dependent cellular processes (Ragsdale, Annals of the New York Academy of Sciences 1125: 129-136 (2008)).
- NAD(P)H reduced nicolinamide adenine dinucleotide phosphate
- ferredoxin-dependent cellular processes Rosdale, Annals of the New York Academy of Sciences 1125: 129-136 (2008).
- Similar ACS-free CODH enzymes can be found in a diverse array of organisms including Geobacter metallireducens GS-15, Chlorobium phaeobacteroides DSM 266, Clostridium cellulolyticum H10, Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 2111 , Pelobacter carbinolicus DSM 2380, and Campylobacter curvus 525.92.
- hydrogenase encoding genes are located adjacent to a CODH.
- the encoded CODH/hydrogenase proteins form a membrane- bound enzyme complex that has been indicated to be a site where energy, in the form of a proton gradient, is generated from the conversion of CO and H 2 0 to C0 2 and H 2 (Fox et al, JBacteriol. 178:6200-6208 (1996)).
- the CODH-I of C. hydrogenoformans and its adjacent genes have been proposed to catalyze a similar functional role based on their similarity to the R. rubrum CODH/hydrogenase gene cluster (Wu et al, PLoS Genet.
- CODH-I The C. hydrogenoformans CODH-I was also shown to exhibit intense CO oxidation and C0 2 reduction activities when linked to an electrode (Parkin et al., J Am.Chem.Soc. 129: 10328-10329 (2007)).
- the protein sequences of exemplary CODH and hydrogenase genes can be identified by the following GenBank accession numbers.
- Hyd-1 is oxygen-tolerant, irreversible, and is coupled to quinone reduction via the hyaC cytochrome.
- Hyd-2 is sensitive to 0 2 , reversible, and transfers electrons to the periplasmic ferredoxin hybA which, in turn, reduces a quinone via the hybB integral membrane protein.
- Reduced quinones can serve as the source of electrons for fumarate reductase in the reductive branch of the TCA cycle.
- Reduced ferredoxins can be used by enzymes such as NAD(P)H: ferredoxin oxidoreductases to generate NADPH or NADH. They can alternatively be used as the electron donor for reactions such as pyruvate ferredoxin oxidoreductase, AKG ferredoxin oxidoreductase, and 5, 10-methylene-H4 folate reductase.
- the hydrogen- lyase systems of E. coli include hydrogenase 3, a membrane- bound enzyme complex using ferredoxin as an acceptor, and hydrogenase 4 that also uses a ferredoxin acceptor.
- Hydrogenase 3 and 4 are encoded by the hyc and hyf gene clusters, respectively. Hydrogenase 3 has been shown to be a reversible enzyme (Maeda et al., Appl Microbiol Biotechnol 76(5): 1035-42 (2007)). Hydrogenase activity in E.
- M. thermoacetica hydrogenases are suitable for a host that lacks sufficient endogenous hydrogenase activity.
- M. thermoacetica can grow with C0 2 as the exclusive carbon source indicating that reducing equivalents are extracted from H 2 to enable acetyl- CoA synthesis via the Wood-Ljungdahl pathway (Drake, H. L., J. Bacteriol. 150:702-709 (1982); Drake and Daniel, Res. Microbiol. 155:869-883 (2004); Kellum and Drake, J. Bacteriol. 160:466-469 (1984)) (see Figure 6).
- M. thermoacetica has homologs to several hyp, hyc, and hyf genes from E. coli. The protein sequences encoded for by these genes are identified by the following GenBank accession numbers.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Cell Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2014701097A MY171760A (en) | 2011-11-02 | 2012-11-02 | Microorganisms and methods for the production of caprolactone |
EP12845401.4A EP2773767A4 (en) | 2011-11-02 | 2012-11-02 | Microorganisms and methods for the production of caprolactone |
BR112014010448A BR112014010448A2 (en) | 2011-11-02 | 2012-11-02 | microorganisms and methods for caprolactone production |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161554920P | 2011-11-02 | 2011-11-02 | |
US61/554,920 | 2011-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013067432A1 true WO2013067432A1 (en) | 2013-05-10 |
Family
ID=48192858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/063424 WO2013067432A1 (en) | 2011-11-02 | 2012-11-02 | Microorganisms and methods for the production of caprolactone |
Country Status (5)
Country | Link |
---|---|
US (6) | US8940509B2 (en) |
EP (1) | EP2773767A4 (en) |
BR (1) | BR112014010448A2 (en) |
MY (2) | MY197970A (en) |
WO (1) | WO2013067432A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015074162A1 (en) | 2013-11-22 | 2015-05-28 | Pontificia Universidad Catolica De Chile | Variants of enzyme phenylacetone monooxygenase (pamo) that are capable of catalysing the conversion of cyclohexanone to caprolactone |
WO2016044713A1 (en) | 2014-09-18 | 2016-03-24 | Genomatica, Inc. | Non-natural microbial organisms with improved energetic efficiency |
WO2016077800A1 (en) * | 2014-11-14 | 2016-05-19 | Invista North America S.á.r.l. | Methods and materials for producing 6-carbon monomers |
WO2019152375A1 (en) | 2018-01-30 | 2019-08-08 | Genomatica, Inc. | Fermentation systems and methods with substantially uniform volumetric uptake rate of a reactive gaseous component |
CN110651047A (en) * | 2017-02-17 | 2020-01-03 | 海牙森生物公司 | Methods and cell lines for producing phytocannabinoids and phytocannabinoid analogs in yeast |
US10597684B2 (en) | 2013-12-27 | 2020-03-24 | Genomatica, Inc. | Methods and organisms with increased carbon flux efficiencies |
US10808262B2 (en) | 2013-12-03 | 2020-10-20 | Genomatica, Inc. | Microorganisms and methods for improving product yields on methanol using acetyl-CoA synthesis |
WO2020219863A1 (en) * | 2019-04-24 | 2020-10-29 | Genomatica, Inc. | Engineered microorganisms and methods for improved aldehyde dehydrogenase activity |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112014010448A2 (en) * | 2011-11-02 | 2017-04-18 | Genomatica Inc | microorganisms and methods for caprolactone production |
CN107404882A (en) | 2015-02-27 | 2017-11-28 | 白狗实验室有限公司 | For producing acetone, isopropanol, butyric acid, other biological product and its mixotrophism fermentation process of mixture |
CN110938663B (en) * | 2019-11-30 | 2022-12-16 | 华南理工大学 | Method for improving yield of epsilon-caprolactone based on modification of ribosome binding site |
NL2025240B1 (en) * | 2020-01-20 | 2021-09-08 | Huhtamaki Molded Fiber Tech Bv | Biodegradable multi-layer packaging element, such as a foil or wrap, for a food product, packaging unit with such packaging element, and method for manufacturing such packaging element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080033138A1 (en) * | 2004-10-15 | 2008-02-07 | Solvay (Societe Anonyme) | Methods Of Producing Amine-Terminated Caprolactone Polymers And Uses Of The Produced Polymers |
US20110008861A1 (en) * | 2008-03-03 | 2011-01-13 | Joule Unlimited, Inc. | Engineered CO2 Fixing Microorganisms Producing Carbon-Based Products of Interest |
US20110091944A1 (en) * | 2008-03-11 | 2011-04-21 | Dsm Ip Assets B.V. | Adipate (ester or thioester) synthesis |
US20110201089A1 (en) * | 2010-02-23 | 2011-08-18 | Burgard Anthony P | Methods for increasing product yields |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5686276A (en) | 1995-05-12 | 1997-11-11 | E. I. Du Pont De Nemours And Company | Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism |
US5958745A (en) | 1996-03-13 | 1999-09-28 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
EP1015565B1 (en) | 1997-09-19 | 2006-04-12 | Metabolix, Inc. | Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids |
EP1147229A2 (en) | 1999-02-02 | 2001-10-24 | Bernhard O. Palsson | Methods for identifying drug targets based on genomic sequence data |
US6365376B1 (en) | 1999-02-19 | 2002-04-02 | E. I. Du Pont De Nemours And Company | Genes and enzymes for the production of adipic acid intermediates |
JP4776146B2 (en) | 2001-01-10 | 2011-09-21 | ザ・ペン・ステート・リサーチ・ファンデーション | Method and system for modeling cellular metabolism |
US7127379B2 (en) | 2001-01-31 | 2006-10-24 | The Regents Of The University Of California | Method for the evolutionary design of biochemical reaction networks |
EP1381860A4 (en) | 2001-03-01 | 2008-10-15 | Univ California | Models and methods for determining systemic properties of regulated reaction networks |
US7105296B2 (en) | 2001-08-29 | 2006-09-12 | E. I. Du Pont De Nemours And Company | Genes encoding Baeyer-Villiger monooxygenases |
US20030224363A1 (en) | 2002-03-19 | 2003-12-04 | Park Sung M. | Compositions and methods for modeling bacillus subtilis metabolism |
AU2003222128A1 (en) | 2002-03-29 | 2003-10-13 | Genomatica, Inc. | Human metabolic models and methods |
US7856317B2 (en) | 2002-06-14 | 2010-12-21 | Genomatica, Inc. | Systems and methods for constructing genomic-based phenotypic models |
US8027821B2 (en) | 2002-07-10 | 2011-09-27 | The Penn State Research Foundation | Method for determining gene knockouts |
EP1581619B1 (en) | 2002-09-12 | 2011-04-13 | Metabolix, Inc. | Polyhydroxyalkanoate production by coenzyme a-dependent aldehyde dehydrogenase pathways |
EP1552472A4 (en) | 2002-10-15 | 2008-02-20 | Univ California | Methods and systems to identify operational reaction pathways |
CN1965088A (en) | 2002-12-16 | 2007-05-16 | 纳幕尔杜邦公司 | B12 dependent dehydratases with improved reaction kinetics |
DE102006025821A1 (en) | 2006-06-02 | 2007-12-06 | Degussa Gmbh | An enzyme for the production of Mehylmalonatsemialdehyd or Malonatsemialdehyd |
US20100062505A1 (en) | 2006-12-21 | 2010-03-11 | Gevo, Inc. | Butanol production by metabolically engineered yeast |
US8426174B2 (en) | 2007-05-02 | 2013-04-23 | Butamax(Tm) Advanced Biofuels Llc | Method for the production of 2-butanol |
US7947483B2 (en) | 2007-08-10 | 2011-05-24 | Genomatica, Inc. | Methods and organisms for the growth-coupled production of 1,4-butanediol |
CN103555643B (en) * | 2008-03-27 | 2016-08-10 | 基因组股份公司 | For producing the microorganism of adipic acid and other compounds |
AU2009242615A1 (en) * | 2008-05-01 | 2009-11-05 | Genomatica, Inc. | Microorganisms for the production of methacrylic acid |
WO2010068953A2 (en) | 2008-12-12 | 2010-06-17 | Metabolix Inc. | Green process and compositions for producing poly(5hv) and 5 carbon chemicals |
WO2010132845A1 (en) * | 2009-05-15 | 2010-11-18 | Genomatica, Inc. | Organisms for the production of cyclohexanone |
AU2010284110B2 (en) | 2009-08-21 | 2015-10-29 | Lallemand Hungary Liquidity Management Llc | Production of propanols, alcohols, and polyols in consolidated bioprocessing organisms |
EP2504422B1 (en) | 2009-11-24 | 2016-01-27 | GEVO, Inc. | Methods of increasing dihydroxy acid dehydratase activity to improve production of fuels, chemicals, and amino acids |
CN109136161A (en) * | 2009-12-10 | 2019-01-04 | 基因组股份公司 | Synthesis gas or other gaseous carbon sources and methanol are converted into the method and organism of 1,3 butylene glycol |
US8445244B2 (en) * | 2010-02-23 | 2013-05-21 | Genomatica, Inc. | Methods for increasing product yields |
BR112014010448A2 (en) * | 2011-11-02 | 2017-04-18 | Genomatica Inc | microorganisms and methods for caprolactone production |
-
2012
- 2012-11-02 BR BR112014010448A patent/BR112014010448A2/en not_active Application Discontinuation
- 2012-11-02 MY MYPI2018001224A patent/MY197970A/en unknown
- 2012-11-02 WO PCT/US2012/063424 patent/WO2013067432A1/en active Application Filing
- 2012-11-02 US US13/668,117 patent/US8940509B2/en active Active
- 2012-11-02 MY MYPI2014701097A patent/MY171760A/en unknown
- 2012-11-02 EP EP12845401.4A patent/EP2773767A4/en not_active Withdrawn
-
2015
- 2015-01-13 US US14/596,072 patent/US9267162B2/en active Active
-
2016
- 2016-01-13 US US14/995,069 patent/US9719118B2/en not_active Expired - Fee Related
-
2017
- 2017-06-27 US US15/634,726 patent/US10351887B2/en active Active
-
2019
- 2019-06-06 US US16/433,804 patent/US20190284592A1/en not_active Abandoned
-
2020
- 2020-12-11 US US17/120,005 patent/US11708592B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080033138A1 (en) * | 2004-10-15 | 2008-02-07 | Solvay (Societe Anonyme) | Methods Of Producing Amine-Terminated Caprolactone Polymers And Uses Of The Produced Polymers |
US20110008861A1 (en) * | 2008-03-03 | 2011-01-13 | Joule Unlimited, Inc. | Engineered CO2 Fixing Microorganisms Producing Carbon-Based Products of Interest |
US20110091944A1 (en) * | 2008-03-11 | 2011-04-21 | Dsm Ip Assets B.V. | Adipate (ester or thioester) synthesis |
US20110201089A1 (en) * | 2010-02-23 | 2011-08-18 | Burgard Anthony P | Methods for increasing product yields |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015074162A1 (en) | 2013-11-22 | 2015-05-28 | Pontificia Universidad Catolica De Chile | Variants of enzyme phenylacetone monooxygenase (pamo) that are capable of catalysing the conversion of cyclohexanone to caprolactone |
EP4296364A2 (en) | 2013-12-03 | 2023-12-27 | Genomatica, Inc. | Microorganisms and methods for improving product yields on methanol using acetyl-coa synthesis |
EP3967747A1 (en) | 2013-12-03 | 2022-03-16 | Genomatica, Inc. | Microorganisms and methods for improving product yields on methanol using acetyl-coa synthesis |
US10808262B2 (en) | 2013-12-03 | 2020-10-20 | Genomatica, Inc. | Microorganisms and methods for improving product yields on methanol using acetyl-CoA synthesis |
EP4407037A2 (en) | 2013-12-27 | 2024-07-31 | Genomatica, Inc. | Methods and organisms with increased carbon flux efficiencies |
EP3744830A1 (en) | 2013-12-27 | 2020-12-02 | Genomatica, Inc. | Methods and organisms with increased carbon flux efficiencies |
US10597684B2 (en) | 2013-12-27 | 2020-03-24 | Genomatica, Inc. | Methods and organisms with increased carbon flux efficiencies |
EP3741865A1 (en) | 2014-09-18 | 2020-11-25 | Genomatica, Inc. | Non-natural microbial organisms with improved energetic efficiency |
WO2016044713A1 (en) | 2014-09-18 | 2016-03-24 | Genomatica, Inc. | Non-natural microbial organisms with improved energetic efficiency |
EP4421181A2 (en) | 2014-09-18 | 2024-08-28 | Genomatica, Inc. | Non-natural microbial organisms with improved energetic efficiency |
WO2016077800A1 (en) * | 2014-11-14 | 2016-05-19 | Invista North America S.á.r.l. | Methods and materials for producing 6-carbon monomers |
CN110651047A (en) * | 2017-02-17 | 2020-01-03 | 海牙森生物公司 | Methods and cell lines for producing phytocannabinoids and phytocannabinoid analogs in yeast |
CN110651047B (en) * | 2017-02-17 | 2024-01-05 | 海牙森生物公司 | Methods and cell lines for producing phytocannabinoids and phytocannabinoid analogs in yeast |
WO2019152375A1 (en) | 2018-01-30 | 2019-08-08 | Genomatica, Inc. | Fermentation systems and methods with substantially uniform volumetric uptake rate of a reactive gaseous component |
WO2020219863A1 (en) * | 2019-04-24 | 2020-10-29 | Genomatica, Inc. | Engineered microorganisms and methods for improved aldehyde dehydrogenase activity |
CN114341344A (en) * | 2019-04-24 | 2022-04-12 | 基因组股份公司 | Engineered microorganisms and methods for improving aldehyde dehydrogenase activity |
Also Published As
Publication number | Publication date |
---|---|
US20130144029A1 (en) | 2013-06-06 |
US8940509B2 (en) | 2015-01-27 |
US20160355855A1 (en) | 2016-12-08 |
BR112014010448A2 (en) | 2017-04-18 |
US20180135087A1 (en) | 2018-05-17 |
US11708592B2 (en) | 2023-07-25 |
US9719118B2 (en) | 2017-08-01 |
MY171760A (en) | 2019-10-28 |
US20190284592A1 (en) | 2019-09-19 |
US20210363556A1 (en) | 2021-11-25 |
US9267162B2 (en) | 2016-02-23 |
EP2773767A4 (en) | 2015-08-05 |
EP2773767A1 (en) | 2014-09-10 |
US20150353975A1 (en) | 2015-12-10 |
MY197970A (en) | 2023-07-25 |
US10351887B2 (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11708592B2 (en) | Microorganisms and methods for the production of caprolactone | |
US20190264242A1 (en) | Methods for increasing product yields | |
EP2744906B1 (en) | Microorganisms and methods for producing 2,4-pentadienoate, butadiene, propylene, 1,3-butanediol and related alcohols | |
US8048661B2 (en) | Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes | |
US9133487B2 (en) | Microorganisms for producing methacrylic acid and methacrylate esters and methods related thereto | |
WO2012177721A1 (en) | Microorganisms for producing 6-aminocaproic acid | |
US8617862B2 (en) | Microorganisms for producing propylene and methods related thereto | |
WO2012177619A2 (en) | Microorganisms for producing 1,3-butanediol and methods related thereto | |
WO2012177710A1 (en) | Microorganisms for producing butadiene and methods related thereto | |
WO2012177599A2 (en) | Microorganisms for producing n-propanol 1, 3-propanediol, 1,2-propanediol or glycerol and methods related thereto | |
WO2013012975A1 (en) | Methods for increasing product yields | |
WO2013003432A1 (en) | Microorganisms for producing succinate and methods related thereto | |
WO2012177983A2 (en) | Microorganisms for producing ethylene glycol and methods related thereto | |
WO2012177601A2 (en) | Microorganisms for producing isobutanol and methods related thereto | |
US20120329111A1 (en) | Microorganisms for Producing Cyclohexanone and Methods Related Thereto | |
AU2013202930B2 (en) | Microorganisms and methods for producing 1,3-butanediol and related alcohols | |
AU2013203166A1 (en) | Microorganisms for producing 1,3-butanediol and methods related thereto |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12845401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012845401 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014010448 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014010448 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140430 |