WO2013066103A1 - Apparatus and method for congestion control for continuity of mbms service - Google Patents

Apparatus and method for congestion control for continuity of mbms service Download PDF

Info

Publication number
WO2013066103A1
WO2013066103A1 PCT/KR2012/009175 KR2012009175W WO2013066103A1 WO 2013066103 A1 WO2013066103 A1 WO 2013066103A1 KR 2012009175 W KR2012009175 W KR 2012009175W WO 2013066103 A1 WO2013066103 A1 WO 2013066103A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
mbms
information
service
terminal
Prior art date
Application number
PCT/KR2012/009175
Other languages
French (fr)
Korean (ko)
Inventor
정명철
권기범
안재현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110114811A external-priority patent/KR20130049663A/en
Priority claimed from KR1020110115411A external-priority patent/KR20130050196A/en
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013066103A1 publication Critical patent/WO2013066103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast

Definitions

  • the present invention relates to wireless communications, and more particularly, to an apparatus and method for congestion control for continuity of MBMS services.
  • Cellular is a concept proposed to overcome the limitations of coverage area, frequency and subscriber capacity. This is a method of providing a call right by replacing a high power single base station with a plurality of low power base stations.
  • adjacent cells are assigned different frequencies, and two cells that are sufficiently far apart from each other and do not cause interference can use the same frequency band to spatially reuse frequencies. To make it possible.
  • Handover or handoff is when the terminal moves away from the current communication service area (source cell) as the terminal moves to an adjacent communication service area (target cell). It is a function that automatically tunes to a new traffic channel of an adjacent communication service area and keeps a call state continuously. That is, a terminal communicating with a specific base station is linked to another neighboring base station (target base station) when the signal strength of the specific base station (hereinafter referred to as a source base station) is weakened. . If a handover is made, the problem of call disconnection occurring when moving to an adjacent cell can be solved.
  • MBMS Multimedia Broadcast / Multicast Service
  • CBS Cell Broadcast Service
  • MBMS is intended for high-speed multimedia data transmission.
  • CBS is not based on IP (internet protocol), but MBMS is based on IP multicast.
  • MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. That is, not one dedicated channel is allocated to one service data, but only one shared channel, as many as the number of terminals to receive the service in one cell. A plurality of terminals simultaneously receive the shared channel, thereby improving the efficiency of radio resources.
  • the base station should be able to solve network congestion for terminals related to the MBMS service.
  • the base station should be able to grasp information on the terminal interested in the MBMS service or receiving the MBMS service.
  • Cellular is a concept proposed to overcome the limitations of coverage area, frequency and subscriber capacity. This is a method of providing a call right by replacing a high power single base station with a plurality of low power base stations.
  • adjacent cells are assigned different frequencies, and two cells that are sufficiently far apart from each other and do not cause interference can use the same frequency band to spatially reuse frequencies. To make it possible.
  • Handover or handoff is when the terminal moves away from the current communication service area (source cell) as the terminal moves to an adjacent communication service area (target cell). It is a function that automatically tunes to a new traffic channel of an adjacent communication service area and keeps a call state continuously. That is, a terminal communicating with a specific base station is linked to another neighboring base station (target base station) when the signal strength of the specific base station (hereinafter referred to as a source base station) is weakened. . If a handover is made, the problem of call disconnection occurring when moving to an adjacent cell can be solved.
  • MBMS Multimedia Broadcast / Multicast Service
  • CBS Cell Broadcast Service
  • MBMS is intended for high-speed multimedia data transmission.
  • CBS is not based on IP (internet protocol), but MBMS is based on IP multicast.
  • MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. That is, not one dedicated channel is allocated to one service data, but only one shared channel, as many as the number of terminals to receive the service in one cell. A plurality of terminals simultaneously receive the shared channel, thereby improving the efficiency of radio resources.
  • the base station should be able to solve network congestion for terminals related to the MBMS service.
  • the base station should be able to grasp information on the terminal interested in the MBMS service or receiving the MBMS service.
  • a base station for continuity of a multimedia broadcast multicast service (MBMS) service recognizing a network congestion in which excessive traffic is introduced into a network; Indicating that network congestion is recognized and transmitting a congestion notification indicator including MBMS related information to a terminal in a connected mode that receives an MBMS service at a specific frequency, and receiving congestion response information from the terminal; And transmitting the congestion resolution information to solve the network congestion to the terminal.
  • MBMS multimedia broadcast multicast service
  • a base station for controlling network congestion for continuity of MBMS service, comprising: a congestion control unit recognizing a network congestion in which excessive traffic flows into a network, and including MBMS-related information by an instruction of the congestion control unit; A message processing unit for generating a congestion notification indicator, transmitting the congestion notification indicator to a terminal in a connected mode that receives an MBMS service at a specific frequency, and sending congestion response information that is a response to the congestion notification indicator from the terminal; And an RF unit configured to transmit congestion resolution information to the terminal to solve the network congestion.
  • a congestion notification indicator including MBMS related information
  • transmitting congestion response information to the base station in response to the congestion notification indicator and congestion to resolve the network congestion Receiving resolution information from the base station.
  • a terminal for controlling network congestion for continuity of an MBMS service network congestion occurs in which an MBMS service is received from a base station at a specific frequency and excessive traffic flows into a network on the specific frequency.
  • Receiving a congestion notification indicator indicating from the base station an RF unit for receiving congestion resolution information for solving the network congestion from the base station, extracting MBMS information from the congestion notification indicator, and based on the MBMS information
  • a message processing unit for generating congestion response information and transmitting the congestion response information to the RF unit, and a communication control unit for controlling the terminal to operate in the idle mode according to the instruction of the congestion resolution information.
  • a network congestion control method of a terminal for continuity of a multimedia broadcast multicast service (MBMS) service includes transmitting a service priority indicator to a base station indicating that one of an MBMS service and a unicast service has priority, and connecting the unicast service based on the MBMS service having the priority. Receiving a radio resource control (RRC) connection release message from the base station indicating that the release.
  • RRC radio resource control
  • the change of the priority may be indicated by the transmission of the service priority indicator, and the change of the priority may be indicated by the non-transmission of the service priority indicator.
  • the network congestion control method of a terminal for continuity of the multimedia broadcast multicast service (MBMS) service indicates that the base station recognizes a network congestion in which excessive traffic flows into a network, and the MBMS service.
  • the method may further include receiving a congestion notification indicator from the base station, the congestion notification indicator including information related to the.
  • the information related to the MBMS service includes frequency information indicating a specific frequency provided by the MBMS service, alternative frequency information indicating another frequency providing the MBMS service, and a type of MBMS service provided through the specific frequency. It may include at least one of the MBMS type list indicating.
  • a network congestion control method of a base station for continuity of MBMS service may further include receiving a service priority indicator from a terminal informing that one of the MBMS service and the unicast service has priority, and disconnecting the unicast service based on the MBMS service having the priority. And transmitting to the terminal an RRC connection release message indicating.
  • the base station may recognize that there is a change in the priority by the reception of the service priority indicator, and may recognize that there is no change in the priority by non-receipt of the service priority indicator.
  • the network congestion control method of the base station for the continuity of the MBMS service includes the steps of recognizing a network congestion in which excessive traffic flows into the network, and instructing the network congestion and including a information related to the MBMS service.
  • the method may further include transmitting to the terminal.
  • the information related to the MBMS service may include frequency information indicating a specific frequency provided by the MBMS service, alternative frequency information indicating another frequency providing the MBMS service, and a type of MBMS service provided through the specific frequency. It may include at least one of the MBMS type list.
  • the network congestion can be solved by transmitting MBMS related information to the terminal in the situation of network congestion, the terminal can continuously receive the MBMS service, the continuity of the MBMS service for the terminal and the quality of service (Quality of Service (QoS) can be guaranteed.
  • QoS Quality of Service
  • the UE may inform the base station of the priority of the MBMS or unicast service to solve the network congestion, the UE may continuously receive the MBMS service, and the continuity and service of the MBMS service for the UE. The quality of can be guaranteed.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane and a radio protocol architecture for a control plane.
  • FIG. 3 shows a mapping between a downlink logical channel and a downlink transport channel.
  • FIG. 5 is a diagram illustrating a core network structure for MBMS to which the present invention is applied.
  • FIG. 6 is an example of a deployment scenario of a system providing a service in an MBMS according to the present invention.
  • FIG. 7 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
  • 11 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
  • 15 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
  • 16 is a flowchart illustrating a method of performing congestion control according to an embodiment of the present invention.
  • 17 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • FIG. 18 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • 19 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • 20 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • 21 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • 22 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
  • FIG. 23 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
  • 24 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • E-UMTS Evolved-Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • LTE-A Advanced
  • Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
  • the E-UTRAN includes at least one base station (BS) 20 that provides a control plane and a user plane to the terminal.
  • the UE 10 may be fixed or mobile and may have other mobile stations, advanced MSs (AMS), user terminals (UTs), subscriber stations (SSs), wireless devices (Wireless Devices), and the like. It may be called a term.
  • the base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an femto-eNB, It may be called other terms such as a pico-eNB, a home eNB, and a relay.
  • the base station 20 may provide at least one cell to the terminal.
  • the cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band.
  • the cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the source base station (Source BS) 21 refers to a base station in which a radio bearer is currently set up with the terminal 10
  • the target base station (Target BS, 22) means that the terminal 10 disconnects the radio bearer from the source base station 21 and renews it. It means a base station to be handed over to establish a radio bearer.
  • the base stations 20 may be connected to each other through an X2 interface, which is used to exchange messages between the base stations 20.
  • the base station 20 is connected to an evolved packet system (EPS), more specifically, a mobility management entity (MME) / serving gateway (S-GW) 30 through an S1 interface.
  • EPS evolved packet system
  • MME mobility management entity
  • S-GW serving gateway
  • the S1 interface supports a many-to-many-relation between base station 20 and MME / S-GW 30.
  • the PDN-GW 40 is used to provide packet data services to the MME / S-GW 30.
  • the PDN-GW 40 varies depending on the purpose or service of communication, and the PDN-GW 40 supporting a specific service can be found using APN information.
  • Inter-E-UTRAN handover is a basic handover mechanism used for handover between E-UTRAN access networks. It is composed of X2 based handover and S1 based handover. X2-based handover is used when the UE wants to handover from the source base station (source BS, 21) to the target base station (target BS, 22) using the X2 interface. At this time, the MME / S-GW 30 is not changed. Do not.
  • the first bearer set between the P-GW 40, the MME / S-GW 30, the source base station 21, and the terminal 10 is released, and the P-GW 40 is released.
  • a new second bearer is established between the GW 40, the MME / S-GW 30, the target base station 22, and the terminal 10.
  • downlink means communication from the base station 20 to the terminal 10
  • uplink means communication from the terminal 10 to the base station 20.
  • the downlink is also called a forward link
  • the uplink is also called a reverse link.
  • the transmitter may be part of the base station 20 and the receiver may be part of the terminal 10.
  • the transmitter may be part of the terminal 10 and the receiver may be part of the base station 20.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane and a radio protocol architecture for a control plane.
  • the data plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to the upper layer Medium Access Control (MAC) layer through a transport channel.
  • Data is moved between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface. Data moves between the physical layers, that is, between the physical layers of the transmitter and the receiver.
  • the physical downlink control channel (PDCCH) informs the terminal of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH.
  • PCH paging channel
  • DL-SCH downlink shared channel
  • HARQ hybrid automatic repeat request
  • the PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • PHICH physical Hybrid ARQ Indicator Channel
  • PHICH physical Hybrid ARQ Indicator Channel
  • HARQ ACK / NAK signal in response to uplink transmission.
  • Physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission.
  • Physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB), DRB (Data RB), and MRB (MBMS PTM RB).
  • the SRB is used as a path for transmitting RRC messages in the control plane
  • the DRB is used as a path for transmitting user data in the user plane.
  • MRB is used as a path for transmitting MBMS data.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • FIG. 3 shows a mapping between a downlink logical channel and a downlink transport channel.
  • a paging control channel is mapped to a paging channel (PCH), and a broadcast control channel (BCCH) is mapped to a broadcast channel (BCH) or a downlink shared channel (DL-SCH).
  • Common Control Channel CCCH
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • Each logical channel type is defined by what kind of information is transmitted. There are two types of logical channels: control channels and traffic channels.
  • BCCH is a downlink channel for broadcasting system control information.
  • PCCH is a downlink channel that transmits paging information and is used when the network does not know the location of the terminal.
  • CCCH is a channel for transmitting control information between the terminal and the network, and is used when the terminal does not have an RRC connection with the network.
  • the MCCH is a point-to-multipoint downlink channel used to transmit MBMS control information and is used for terminals receiving MBMS.
  • DCCH is a point-to-point one-way channel for transmitting dedicated control information between the terminal and the network, and is used by a terminal having an RRC connection.
  • the traffic channel is used for transmission of user plane information.
  • DTCH is a point-to-point channel for transmitting user information and exists in both uplink and downlink.
  • MTCH is a point-to-multipoint downlink channel for transmission of traffic data, and is used for a terminal receiving an MBMS.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the BCH has a predefined transmission format that is broadcast and fixed in the entire cell area.
  • DL-SCH supports hybrid automatic repeat request (HARQ).
  • HARQ hybrid automatic repeat request
  • MBMS transmission support PCH is characterized by DRX support for terminal power saving and broadcast to the entire cell area.
  • the MCH is characterized by broadcast to the entire cell and MBMS Single Frequency Network (MBSFN) support.
  • MBSFN uses a common scrambling code and spreading code to simultaneously broadcast the same MBMS channel in a plurality of cells forming an MBMS cell group.
  • a BCH is mapped to a physical broadcast channel (PBCH)
  • an MCH is mapped to a physical multicast channel (PMCH)
  • a PCH and a DL-SCH are mapped to a PDSCH.
  • PBCH carries the BCH transport block
  • PMCH carries the MCH
  • PDSCH carries the DL-SCH and PCH.
  • MBMS uses two logical channels. MCCH as a control channel and MTCH as a traffic channel. User data such as actual voice or video is transmitted on the MTCH, and setting information for receiving the MTCH is transmitted on the MCCH.
  • MTCH and MCCH are a point-to-many downlink channel for a plurality of terminals, and may be referred to as a shared channel.
  • the MBMS does not allocate radio resources as many as the number of terminals receiving a service, but allocates only radio resources for a shared channel, and simultaneously receives a shared channel from a plurality of terminals, thereby improving efficiency of radio resources.
  • the UE may be in a state in which the MBMS service cannot be continuously received. Even in this state, if the UE continuously performs the decoding operation for receiving the MBMS service, it may cause battery consumption.
  • a source cell refers to a cell in which a terminal is currently receiving a service.
  • a base station providing a source cell is called a source base station.
  • a neighbor cell refers to a cell that is geographically adjacent to a source cell or on a frequency band.
  • An adjacent cell using the same carrier frequency with respect to the source cell is called an intra-frequency neighbor cell.
  • adjacent cells using different carrier frequencies based on the source cell are called inter-frequency neighbor cells. That is, not only a cell using the same frequency as the source cell but also a cell using a different frequency, all of the cells adjacent to the source cell may be referred to as adjacent cells.
  • the UE handover from the source cell to the neighboring cell in frequency is called intra-frequency handover.
  • the UE handover from the source cell to the inter-frequency neighbor cell is referred to as inter-frequency handover.
  • An adjacent cell to which the UE moves in handover is called a target cell.
  • the base station providing the target cell is called a target base station.
  • the source cell and the target cell may be provided by one base station or may be provided by different base stations.
  • the source cell and the target cell are provided by different base stations, that is, the source base station and the target base station. Therefore, the source base station and the source cell, the target base station and the target cell can be used interchangeably with each other.
  • FIG. 5 is a diagram illustrating a core network structure for MBMS to which the present invention is applied.
  • a radio access network (EUTRAN) 500 includes a multi-cell coordination entity (hereinafter referred to as MCE) 510 and a base station eNB 520.
  • the MCE 510 is a main entity controlling the MBMS, and plays a role of radio resource allocation or admission control in the MBSFN region.
  • MCE 510 may be implemented within base station 520 or may be implemented independently of base station 520.
  • the interface between the MCE 510 and the base station 520 is called an M2 interface.
  • the M2 interface is an internal control plane interface of the wireless access network 500, and MBMS control information is transmitted. If the MCE 510 is implemented in the base station 520, the M2 interface may only exist logically.
  • An Evolved Packet Core (EPC) 550 includes an MME 560 and an MBMS Gateway (MBMS GW) 570.
  • MME 560 NAS signaling, roaming (authentication), authentication (authentication), PDN gateway and S-GW selection, MME selection for handover by MME change, accessibility to the idle mode terminal, AS security Performs operations such as security control.
  • the MBMS gateway 570 is an entity that transmits MBMS service data and is located between the base station 520 and the BM-SC and performs MBMS packet transmission and broadcast to the base station 520.
  • the MBMS gateway 570 uses PDCP and IP multicast to transmit user data to the base station 520, and performs session control signaling for the radio access network 500.
  • the interface between the MME 560 and the MCE 510 is a control plane interface between the radio access network 500 and the EPC 550, which is called an M3 interface, and transmits control information related to MBMS session control.
  • the interface between the base station 520 and the MBMS gateway 570 is an interface of a user plane, which is called an M1 interface, and transmits MBMS service data.
  • FIG. 6 is an example of a deployment scenario of a system providing a service in an MBMS according to the present invention.
  • the MBMS service may be managed based on cell or location.
  • MBMS service area is a general term for the area where a particular MBMS service is provided.
  • the network may be in a state of transmitting an MBMS service A in the MBMS service area A.
  • the terminal may receive the MBMS service A according to the capability of the terminal.
  • the MBMS service area may be defined in terms of applications and services as to whether or not a particular service is provided in a certain area.
  • Cell A, Cell B, Cell C, Cell D, and Cell E are included in MBSFN Region 1, and Cell F is included in MBSFN Region 2.
  • Cell G is a cell serving a frequency band f2 other than a cell in the MBSFN region.
  • the MBSFN region refers to a region in which a particular MBMS service is provided in a single frequency band. For example, in the case of MBSFN region 1, an MBSFN subframe is allocated to frequency f1 to support a specific MBMS service A. At this time, in the MBSFN region, the MBSFN subframe may be allocated to the same frequency f1 to support the MBMS service A.
  • MBMSN region 2 may support MBMS service A, but MBMS service A may be supported using f3 different from frequency resource f1 in MBSFN region 1.
  • the UE may receive the MBMS service based on the same MBMS configuration.
  • MBMS location range can be used to receive MBMS service through MRB only within a specific region or location range within the same MBSFN region, whereas MBMS service can be serviced by MRB in all cells in the MBSFN region. It is the way of management.
  • a management method of the MBMS location range a method of managing by a cell unit and a method of positioning a specific location or region may be considered.
  • Network congestion is a condition in which excessive traffic or data is introduced that the network cannot accept. In general, this may occur when a plurality of terminals are concentrated to use a specific cell or frequency band. This may occur when a specific service or the like is performed in a specific cell or frequency band. For example, when performing communication in an area in which RRC connection mode terminals are concentrated, such as a hot spot, or by rapidly increasing the number of MBMS terminals that want to receive MBMS services provided in the same frequency band, a specific frequency band The lack of resources can cause network congestion.
  • Congestion control is a certain level of congestion in a network congestion situation, by stopping further resource allocation in a network or releasing a call or bearer that is currently maintained. It is a control method that maintains / manages a load.
  • the base station performs congestion control based on Allocation and Retention Priority (ARP), whether MBMS service or unicast service.
  • ARP Allocation and Retention Priority
  • the terminal may receive the service with priority between the MBMS service and the unicast service.
  • the unicast service refers to a dedicated type of service in which a terminal and a base station form a connection and through which a service is performed. For example, voice communication may correspond to this.
  • the terminal may tend to receive the MBMS service in preference to the unicast service at a specific time or in a specific situation. For example, in order to receive a specific program of a specific specific broadcast, the priority may be increased so as to preferentially receive an MBMS service for a predetermined time. In some circumstances, the priority of the unicast service may be set higher than that of the MBMS service. For example, even during reception of an MBMS service, there may be a unicast service preferred by the terminal, such as a service based on a connection request from a specific person. In this case, even though the terminal is receiving the MBMS service, higher priority should be given to the unicast service.
  • the base station Since a severe congestion is placed on resources in a network congestion situation, the base station needs to selectively provide either the MBMS service or the unicast service to the terminal according to the priority. To this end, the base station should be able to properly provide the MBMS service and unicast service, and manage the bearer appropriately. For example, in order to perform a unicast service through a terminal having a high unicast state, the base station needs to handover to a cell or another frequency other than the current cell or frequency. In this case, the MBMS service may not proceed in another cell or frequency that moves, and a problem may occur in the MBMS service continuity.
  • the base station When the network congestion is recognized, the base station should be able to solve the network congestion for the terminals related to the MBMS service. Alternatively, even when network congestion is detected in a communication situation where the MBMS service is not considered, the base station should be able to grasp information on the terminal interested in the MBMS service or receiving the MBMS service.
  • the information about the terminal interested in the MBMS service or receiving the MBMS service may be MBMS related information used in the MBMS counting procedure.
  • the base station may notify the network congestion to the terminal receiving or to receive the MBMS service in the state of detecting the network congestion.
  • FIG. 7 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
  • a base station providing an MBMS service at a specific frequency recognizes network congestion (S700).
  • the base station may be aware of network congestion by using the MBMS counting procedure for collecting the number of connected mode terminals receiving the MBMS service.
  • the base station may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, since the number of terminals for the MBMS service is higher than expected, it may be considered that network congestion has occurred.
  • the base station may also know the number of terminals operating in the connected mode for the reception of the unicast service while accessing the cell of the specific frequency for the reception of the MBMS service.
  • the base station may be aware of network congestion based on the MBMS priority information.
  • the base station may obtain MBMS related information of the terminal by receiving MBMS priority information and the like from the terminal.
  • the base station may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service.
  • the base station may know that network congestion occurs, there may be a limit in accurately knowing what kind of situation provides the cause of network congestion.
  • the base station Upon recognition of network congestion, the base station transmits a congestion notifying indicator to the terminal (S705).
  • the congestion notification indicator is information for notifying the terminal that the base station has recognized the network congestion.
  • the congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided.
  • the congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services. Meanwhile, the congestion notification indicator may further include MBMS related information.
  • the MBMS-related information may include frequency information indicating a frequency (hereinafter, referred to as MBMS frequency) at which the UE receives the MBMS service, and alternative information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • MBMS frequency a frequency at which the UE receives the MBMS service
  • alternative information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • at least one of frequency information an MBMS type list indicating a type of MBMS service provided through the MBMS frequency, a session start timing information of each MBMS service, and geographical area information provided by each MBMS service; Include.
  • the frequency information or the alternative frequency information may indicate any one index in the following table indicating an E-UTRA operating band supported by the terminal as an index.
  • network operating bands are identified by indices of 1 to 43.
  • Network operating bands 1 to 32 are operating bands supported in frequency division duplex (FDD) mode
  • network operating bands 33 to 43 are operating bands supported in time division duplex (TDD) mode.
  • Each network operating band may be divided into an uplink operating band and a downlink operating band.
  • the uplink operating band is limited to the lowest band (F UL_Low ) and the highest band (F UL_High )
  • the downlink operating band is limited to the lowest band (F DL_Low ) and the highest band (F DL_High ).
  • the MBMS type list may list a temporary mobile group identity (TMGI) corresponding to each MBMS service.
  • the congestion notification indicator may be transmitted through an RRC message dedicated to each terminal in the connected mode.
  • the RRC message includes an RRC connection reconfiguration message.
  • the congestion notification indicator may be transmitted through system information commonly applied to a plurality of terminals.
  • the congestion notification indicator is transmitted on the BCCH or MCCH which is a logical channel.
  • the UE may know that network congestion has occurred at a specific MBMS frequency provided with the MBMS service.
  • the terminal selectively performs at least one of several operations intended to respond to network congestion. For example, when the terminal transmits the congestion response information, the base station receives the congestion response information from the terminal (S710).
  • the congestion response information is included in the RRC connection release request message for releasing the connected mode of the terminal.
  • the congestion response information is included in a measurement report used to determine handover.
  • Congestion response information may be transmitted in a specific message such as a measurement report, but is not limited thereto and may be included in a message for transmitting MBMS-related assistant information such as a degree of congestion response.
  • the base station transmits congestion resolution information to the terminal based on the congestion response information (S715).
  • the congestion resolution information is information that the base station instructs the terminal to correspond to network congestion in a designated manner.
  • the congestion resolution information is included in the RRC connection release message for releasing the connection mode of the terminal.
  • the congestion resolution information is included in a handover command message instructing the base station to the terminal to perform handover to the target eNB.
  • the base station releases the RRC connection with the terminal, and releases the radio resources allocated to the terminal (S720).
  • the released radio resource includes a resource for unicast service dedicated to the terminal.
  • network congestion can be reduced.
  • the UE may continuously receive the MBMS service, thereby ensuring continuity of the MBMS service and quality of service (QoS).
  • FIG. 8 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
  • the terminal receiving the MBMS service at a specific frequency receives a congestion notification indicator from the base station (S800).
  • the congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided.
  • the congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services.
  • the congestion notification indicator may further include MBMS related information.
  • the MBMS related information includes at least one of frequency information indicating an MBMS frequency, alternative frequency information, a list of MBMS types, session start timing information of each MBMS service, and geographic area information provided by each MBMS service.
  • the frequency information or the alternative frequency information may indicate any one of the indexes in Table 1, which indicates the network operating bands supported by the terminal as an index.
  • the congestion notification indicator may be transmitted through an RRC message dedicated to each terminal in the connected mode.
  • the RRC message includes an RRC connection reconfiguration message.
  • the congestion notification indicator may be transmitted through system information commonly applied to a plurality of terminals.
  • the congestion notification indicator is transmitted on the BCCH or MCCH which is a logical channel.
  • the UE may know that network congestion has occurred at a specific MBMS frequency provided with the MBMS service.
  • the terminal optionally performs at least one of several operations intended to respond to network congestion. For example, if the terminal determines that network congestion is not a big problem, it can take an unresponsive operation. Alternatively, if the terminal determines that network congestion should be avoided, the terminal generates congestion response information containing a specific message and transmits it to the base station (S805).
  • the congestion response information is included in the RRC connection release request message for releasing the connected mode of the terminal.
  • the congestion response information is included in a measurement report used to determine handover.
  • the terminal receives congestion resolution information from the base station (S810).
  • the congestion resolution information is information that the base station instructs the terminal to correspond to network congestion in a designated manner.
  • the congestion resolution information is included in the RRC connection release message for releasing the connection mode of the terminal.
  • the congestion resolution information is included in a handover command message instructing the base station to the terminal to perform handover to the target eNB.
  • the terminal Upon receiving the congestion resolution information, the terminal releases the current unicast service and enters an idle mode (S815). Even in the idle mode, the UE may continuously receive the MBMS service. In this case, the terminal may move to another frequency (or cell) by cell reselection with reference to the alternative frequency information, and receive the MBMS service through the other frequency. Alternatively, the terminal may give up the MBMS service reception and handover to another cell. As a result, the continuity of the MBMS service and the quality of service (QoS) can be guaranteed.
  • QoS quality of service
  • FIG. 9 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to an embodiment of the present invention.
  • the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S900).
  • the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services. Therefore, the terminal transmits congestion response information to the base station (S905).
  • the base station transmits congestion resolution information to the terminal (S910).
  • FIG. 10 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is an example embodiment of FIG. 9.
  • congestion control is performed using an RRC connection release procedure.
  • the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1000).
  • the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services.
  • the terminal may release the connection mode, that is, release the unicast service. Therefore, the terminal transmits an RRC connection release request message to the base station as a response to the congestion notification indicator (S1005).
  • the base station transmits an RRC connection release message indicating the release of the RRC connection to the terminal (S1010).
  • the terminal switches from the connected mode to the idle mode. Thereafter, even if the priority of the MBMS service and the unicast service is changed, the RRC connection cannot be reestablished for the terminal until the network congestion decreases to a certain level (that is, before the end of the network congestion).
  • the network may reject a configuration request for an RRC connection reestablishment or an RRC connection establishment request of the terminal.
  • the terminal determines whether the MBMS service currently being received can be received at another frequency by using the alternative frequency information included in the MBMS related information, and if the same MBMS service can be provided through another frequency, the terminal can Handover may be performed at another frequency (or target base station). Preferably said other frequency should be free of network congestion.
  • the UE manages the MBMS service as a higher priority than the unicast service, it is to increase the flexibility and efficiency of using the frequency to support the MBMS service continuity according to the capability of the UE.
  • FIG. 11 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is another example embodied in FIG.
  • congestion control is performed using a handover procedure.
  • the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1100).
  • the terminal is in the connected mode.
  • the UE does not require the MBMS service to be given a higher priority than other unicast services.
  • handover to neighbor cell rather than staying at current MBMS frequency may be helpful in resolving network congestion. Because it can. Accordingly, when a terminal giving a high priority to unicast receives a congestion notification indicator, it may be determined that handover is possible to an adjacent cell.
  • the UE determines whether the MBMS service currently being received can be received at another frequency using the alternative frequency information included in the MBMS-related information, and if the UE can be provided with the same MBMS service through another frequency, the UE can receive the other frequency. (Or the target base station) may perform a handover. Preferably said other frequency should be free of network congestion.
  • the terminal performs measurement on the frequency of the MBMS service currently being received, and transmits the result of the measurement report to the base station (S1105).
  • the base station transmits a handover (HO) preparation request to the target base station through the X2 interface (S1106), and the target base station receiving the handover preparation request transmits a handover (HO) preparation response to the base station (S1107). .
  • the base station When the handover preparation response is received from the target base station, the base station transmits a handover command message to the terminal (S1110).
  • a terminal supporting carrier aggregation may be a component carrier (CC) in which an MBMS frequency in which the same MBMS service is performed may be aggregated.
  • CC component carrier
  • another frequency or another CC that provides the same MBMS service may be newly configured in the terminal in addition to the CC where the current network congestion occurs.
  • information on the MBMS service available for each CC supported by the MBMS may be transmitted from the primary serving cell (PCell) or the primary CC (PCC) or cell to the terminal. have.
  • the MBMS-related CC information may be included in the CC configuration message.
  • the CC configuration message may be an RRC reconfiguration message.
  • FIG. 12 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
  • the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1200).
  • the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services.
  • the base station transmits congestion resolution information to the terminal (S1205). Unlike the congestion control in FIG. 9, this excludes the transmission procedure of the congestion response information.
  • FIG. 13 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is an example embodiment of FIG.
  • congestion control is performed using a modified RRC connection release procedure.
  • the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1300).
  • the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services.
  • the base station transmits an RRC connection release message to the terminal instructing release of the RRC connection (S1305).
  • the terminal switches from the connected mode to the idle mode.
  • the RRC connection cannot be reestablished for the terminal until the network congestion decreases to a certain level (that is, before the end of the network congestion).
  • the network may reject a configuration request for an RRC connection reestablishment or an RRC connection establishment request of the terminal.
  • FIG. 14 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is another embodiment embodied in FIG.
  • congestion control is performed using a modified handover procedure.
  • the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1400).
  • the terminal is in the connected mode.
  • the base station transmits a handover command message to the terminal (S1405).
  • the UE hands over to a cell provided by another base station or another base station.
  • the cell provides the same MBMS service as the MBMS service received by the UE before handover.
  • 15 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
  • the terminal 1500 includes an RF unit 1505 and a terminal processor 1510.
  • the terminal processor 1510 includes a message processor 1511 and a communication controller 1512.
  • the terminal 1500 may operate in one of a connected mode and a idle mode.
  • the RF unit 1505 receives an MBMS service provided at a specific frequency, a congestion notification indicator including MBMS related information, or congestion resolution information from the base station 1550. In addition, the RF unit 1505 transmits the congestion response information generated by the message processing unit 1511 to the base station 1550.
  • the message processor 1511 extracts MBMS related information from the congestion notification indicator.
  • the extracted MBMS-related information is frequency information indicating the MBMS frequency provided by the MBMS service being received by the terminal 1500, and an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • At least one of the information an MBMS type list indicating a list of MBMS services provided through the MBMS frequency, session start timing information of each MBMS service, and geographic area information provided by each MBMS service.
  • the frequency information or the alternative frequency information may indicate any one of the indexes in Table 1, which indicates the network operating bands supported by the terminal as an index.
  • the message processor 1511 may generate congestion response information that is a response to the congestion notification indicator and transmit the congestion response information to the RF unit 1505 based on the MBMS-related information.
  • the congestion response information is included in the RRC connection release request message.
  • the congestion response information is included in the measurement report.
  • the message processor 1511 transfers the content indicated by the congestion resolution information to the communication control unit 1512. Congestion resolution information is included in the RRC connection release message. In this case, the message processor 1511 instructs the communication controller 1512 to release the RRC connection according to the instruction of the RRC connection release message.
  • the congestion resolution information is included in the handover command message.
  • the message processing unit 1511 instructs the communication control unit 1512 to handover according to the instruction of the handover command message.
  • the communication controller 1512 releases the RRC connection and switches the terminal 1500 from the connected mode to the idle mode according to the instruction of the message processor 1511. That is, the communication control unit 1512 no longer transmits or receives a unicast service related signal.
  • the communication controller 1512 may measure the MBMS frequency, perform a handover to another base station, or perform cell reselection using MBMS-related information according to the instruction of the message processor 1511.
  • the base station 1550 includes an RF unit 1555 and a base station processor 1560.
  • the base station processor 1560 includes a congestion control unit 1561 and a message processing unit 1562.
  • the RF unit 1555 transmits an MBMS service at a specific frequency, and transmits a congestion notification indicator including MBMS related information generated by the message processor 1561 and congestion resolution information to the terminal 1500.
  • the RF unit 1555 may transmit the congestion resolution information through one of an RRC connection release message and a handover command message.
  • the RF unit 1555 receives congestion response information from the terminal 1500.
  • the RF unit 1555 transmits a radio resource control (RRC) connection release request message, a measurement report message, and MBMS-related assistant information requesting release of the connection mode.
  • RRC radio resource control
  • the congestion response information may be received through one of the messages.
  • the congestion control unit 1561 recognizes network congestion. There may be various ways for the congestion control unit 1561 to recognize network congestion. As an example, the congestion control unit 1561 may use an MBMS counting procedure that collects the number of connected mode terminals receiving the MBMS service. When determining whether the network is congested based on the number of terminals collected by the MBMS counting procedure, the congestion control unit 1561 may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, it is determined that network congestion has occurred since the number of terminals for the MBMS service is higher than expected.
  • the congestion control unit 1561 may recognize the network congestion based on the MBMS priority information.
  • the congestion control unit 1561 may obtain MBMS-related information of the terminal 1500 by receiving MBMS priority information and the like from the terminal 1500.
  • the congestion control unit 1561 may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service.
  • the message processing unit 1562 instructs to generate a congestion notification indicator.
  • the congestion control unit 1561 instructs the message processing unit 1562 to generate congestion resolution information when the congestion response information is received from the terminal 1500.
  • the message processing unit 1562 generates a congestion notification indicator or congestion resolution information according to the instruction of the congestion control unit 1561.
  • the congestion control unit 1561 releases the radio resource allocated to the terminal 1500.
  • the message processor 1562 includes at least one of frequency information indicating a specific frequency, alternative frequency information indicating another frequency for providing an MBMS service, and an MBMS type list indicating an MBMS service type provided through the specific frequency. MBMS related information can be generated.
  • the message processing unit 1562 includes congestion state information indicating a network congestion state at a frequency where an MBMS service is provided, includes congestion state information for each frequency provided by each MBMS service, or further includes MBMS related information. Congestion notification indicators can be generated.
  • the terminal may inform the terminal of the priority between the MBMS service and the unicast service in advance so that the base station can cope with the network congestion, thereby controlling the network congestion.
  • the base station should receive information on service priority from the terminal.
  • 16 is a flowchart illustrating a method of performing congestion control according to an embodiment of the present invention.
  • the terminal transmits a service priority indicator to the base station (S1600).
  • the service priority means the priority between the MBMS service and the unicast service for the terminal, and the service priority indicator is information indicating service priority.
  • service priority may be defined as shown in the following table.
  • the service priority indicator is 1 bit, 0 means that the service priority is in the MBMS service, and 1 means that the service priority is in the unicast service.
  • the indication of the service priority indicator may be reversed.
  • the service priority indicator may also indicate priority for 2 n services as n bits.
  • service priority may be granted to the MBMS service as a default, or may be assigned to the unicast service. This is called the default priority.
  • the service priority indicator may mean a modification of the previous service priority as shown in the following table.
  • the service priority indicator when the service priority indicator is not transmitted or there is no signaling, it means that the previous service priority is maintained. If the service priority indicator is transmitted, it means that the previous service priority is changed.
  • the terminal may transmit a service priority indicator to the base station whenever a change in service priority occurs.
  • the service priority indicator may be used as an indicator indicating a change of priority as an indicator that the priority has been changed.
  • the terminal does not transmit the service priority indicator to the base station. From the base station's point of view, if no service priority indicator is received, the base station still determines that the MBMS service has priority. If the service priority is changed, the terminal transmits a service priority indicator to the base station. From the point of view of the base station, upon receipt of the service priority indicator, the base station may know that the service priority has changed from MBMS service to unicast service.
  • the terminal does not transmit the service priority indicator to the base station. From the base station's point of view, if no service priority indicator is received, the base station still determines that the unicast service has priority. If the service priority is changed, the terminal transmits a service priority indicator to the base station. From the point of view of the base station, upon receiving the service priority indicator, the base station may know that the service priority has changed from unicast service to MBMS service.
  • the terminal may inform the base station of the change or maintenance of the service priority by transmitting or not transmitting the service priority indicator.
  • the base station may perform network congestion control according to the service priority indicator.
  • the service priority indicator may indicate the priority (which is called a higher level priority) between different types of services such as MBMS service and unicast service, and additionally, priority between services of the same kind (low level priority). May be used).
  • the lower level priority includes the priority between unicast services.
  • low-level priorities between application services such as file transfer protocol (FTP), messaging, and games may be indicated by the service priority indicator.
  • lower level priorities include priorities between particular users or between particular servers. In this case, the user may be designated by an identifier, and the server may be designated by a server name. Alternatively, an email address, a telephone number, or the like may be used.
  • 17 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • the terminal transmits a service priority indicator to the base station (S1700).
  • the terminal receives the MBMS service and the unicast service.
  • the service priority indicator may explicitly indicate that a particular service has priority as shown in Table 1.
  • the service priority indicator may instruct maintenance or change of service priority as shown in Table 2.
  • the default priority is assumed to be in MBMS service.
  • Service priorities include high level priorities (priorities between MBMS services and unicast services) and / or low level priorities (priorities between various application services included in unicast services), as described above.
  • the service priority indicator may be transmitted to the base station not only by the base station but also by the terminal itself. For example, when a user has changed a symbol or priority for a specific service, the terminal may transmit a change fact to the base station. Alternatively, the terminal may transmit the service priority indicator to the base station at regular intervals.
  • the base station transmits an RRC connection release message to the terminal to release the unicast service (S1705).
  • the RRC connection release message may include MBMS frequency (MBMSfreq) information, which is a frequency at which the MBMS service is provided.
  • MBMS frequency information indicates that the RRC connection is explicitly released because the priority is set in the MBMS service.
  • the RRC connection release message may further include alternative frequency information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • FIG. 18 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • the terminal transmits a service priority indicator to the base station (S1800).
  • the terminal receives the MBMS service and the unicast service.
  • the service priority indicator may explicitly indicate that a particular service has priority as shown in Table 2.
  • the service priority indicator may instruct maintenance or change of service priority as shown in Table 3.
  • the default priority is assumed to be in MBMS service.
  • Service priorities include high level priorities (priorities between MBMS services and unicast services) and / or low level priorities (priorities between various application services included in unicast services), as described above.
  • the service priority indicator may be transmitted to the base station not only by the base station but also by the terminal itself.
  • One scenario is that the UE does not know that the same MBMS service is provided through an alternative frequency, and performs the cell change to the current MBMS frequency to receive the MBMS service. This can be one cause of network congestion. If the UE knows the alternative frequency information, the cell can be changed to the alternative frequency, thereby congesting the network.
  • the base station transmits a system information block (SIB) to the terminal to inform the MBMS that the MBMS service is performed even at the alternative frequency (S1805).
  • SIB system information block
  • the system information block includes alternate frequency information and network congestion state information at the alternate frequency.
  • the system information block may be transmitted through a broadcast channel or an MBMS control channel (MCCH).
  • MCCH MBMS control channel
  • 19 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • the terminal transmits an RRC connection request message including a service priority indicator to the base station (S1900).
  • the RRC connection request message is a message used for the UE in idle mode to switch to the connected mode.
  • the service priority indicator may be piggybacked on the RRC connection request message used in the RRC connection procedure and transmitted.
  • the base station can know how the terminal sets the priority of the MBMS service and the unicast service by checking the service priority indicator piggybacked in the RRC connection request message.
  • the base station may determine whether to accept the RRC connection request of the terminal based on the service priority indicator. For example, in a situation in which network congestion is not eliminated, when the RRC connection request message is received from the UE which gives priority to the MBMS service, the base station may reject the RRC connection request. This is because the network congestion will increase when the terminal is switched to the connected mode. On the other hand, if the RRC connection request message is received from the UE that gives priority to the unicast service, the base station may accept the RRC connection request.
  • the base station Upon determining rejection or acceptance of the RRC connection request, the base station transmits an RRC connection response message indicating the determination to the terminal (S1905). Upon determining acceptance of the RRC connection request, the RRC connection response message is an RRC connection establishment message.
  • 20 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • the base station upon recognition of network congestion, transmits a congestion notifying indicator to the terminal (S2000).
  • the congestion notification indicator is information for notifying the terminal that the base station has recognized the network congestion.
  • the congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided.
  • the congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services. Meanwhile, the congestion notification indicator may further include MBMS related information.
  • the MBMS-related information is frequency information indicating a frequency (hereinafter, referred to as MBMS frequency) at which the UE receives the MBMS service, and an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • MBMS frequency a frequency at which the UE receives the MBMS service
  • an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • an MBMS type list indicating a type of MBMS service provided through the MBMS frequency
  • session initiation timing information of each MBMS service and geographical area information provided by each MBMS service.
  • the frequency information or the alternate frequency information may indicate any one of the indexes in Table 1 indicating an E-UTRA operating band that can be supported by the terminal as an index.
  • the MBMS type list may list a temporary mobile group identity (TMGI) corresponding to each MBMS service.
  • TMGI temporary mobile group identity
  • the congestion notification indicator may be transmitted through an RRC message dedicated to each terminal in the connected mode.
  • the RRC message includes an RRC connection reconfiguration message.
  • the congestion notification indicator may be transmitted through system information commonly applied to a plurality of terminals.
  • the congestion notification indicator is transmitted on the BCCH or MCCH which is a logical channel.
  • the terminal transmits the service priority indicator to the base station (S2005).
  • the terminal receives the congestion notification indicator from the base station, not when the service priority is changed as in the embodiment according to Table 3, the terminal transmits the service priority indicator to the base station as in the embodiment according to Table 1 above.
  • the base station may perform network congestion control based on the service priority indicator.
  • 21 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
  • the base station transmits a congestion notification indicator to the terminal (S2100).
  • the terminal transmits a service priority indicator to the base station (S2105).
  • the terminal receives the congestion notification indicator from the base station, not when the service priority is changed as in the embodiment according to Table 3, the terminal transmits the service priority indicator to the base station as in the embodiment according to Table 2.
  • the base station transmits an RRC connection release message to the terminal (S2110).
  • the RRC connection release message may include MBMS frequency (MBMSfreq) information, which is a frequency at which the MBMS service is provided. MBMS frequency information indicates that the RRC connection is explicitly released because the priority is set in the MBMS service.
  • the RRC connection release message may further include alternative frequency information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • the RRC connection release message may further include information indicating that the MBMS service releases the RRC connection because it has priority.
  • 22 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
  • a base station providing an MBMS service at a specific frequency recognizes network congestion (S2200).
  • the base station may be aware of network congestion by using the MBMS counting procedure for collecting the number of connected mode terminals receiving the MBMS service.
  • the base station may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, since the number of terminals for the MBMS service is higher than expected, it may be considered that network congestion has occurred.
  • the base station may also know the number of terminals operating in the connected mode for the reception of the unicast service while accessing the cell of the specific frequency for the reception of the MBMS service.
  • the base station may be aware of network congestion based on the MBMS priority information.
  • the base station may obtain MBMS related information of the terminal by receiving MBMS priority information and the like from the terminal.
  • the base station may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service.
  • the base station may know that network congestion occurs, there may be a limit in accurately knowing what kind of situation provides the cause of network congestion.
  • the base station Upon recognition of network congestion, the base station transmits a congestion notification indicator to the terminal (S2205).
  • the base station receives a service priority indicator from the terminal (S2210). From the service priority indicator, the base station determines which of the MBMS service and the unicast service the terminal has priority, and determines a priority service (S2215).
  • Priority service means a service that is given priority. For example, when receiving the service priority indicator according to the embodiment of Table 2, the base station determines one of the MBMS service and the unicast service as the priority service according to the indication of the service priority indicator. Alternatively, when receiving the service priority indicator according to the embodiment of Table 3, the base station may know that the priority service has been changed. Accordingly, the base station determines the priority service as a unicast service if the previous service priority was an MBMS service, and determines the priority service as an MBMS service if the previous service priority was a unicast service.
  • the base station transmits congestion resolution information to the terminal (S2220).
  • the congestion resolution information is information that the base station instructs the terminal to correspond to network congestion in a designated manner.
  • the congestion resolution information is included in the RRC connection release message for releasing the connection mode of the terminal.
  • the congestion resolution information is included in a system information block that includes system information parameters.
  • the terminal may determine what action it should take.
  • FIG. 23 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
  • a terminal receiving an MBMS service at a specific frequency receives a congestion notification indicator from a base station (S2300).
  • the congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided.
  • the congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services.
  • the congestion notification indicator may further include MBMS related information.
  • the MBMS related information includes at least one of frequency information indicating an MBMS frequency, alternative frequency information, a list of MBMS types, session start timing information of each MBMS service, and geographic area information provided by each MBMS service.
  • the frequency information or the alternative frequency information may indicate any one of the indexes in Table 1, which indicates the network operating bands supported by the terminal as an index.
  • the terminal transmits a service priority indicator to the base station (S2305).
  • the terminal receives congestion resolution information from the base station (S2310).
  • Congestion resolution information may be included in the system information block, or may be included in the RRC connection release message.
  • the terminal establishes an RRC connection or releases an RRC connection to solve network congestion based on the congestion resolution information (S2315).
  • congestion resolution information may be included in the RRC connection release message. In this case, the terminal releases the RRC connection and enters the idle mode.
  • congestion resolution information may be included in the RRC connection establishment message. In this case, the terminal may be switched from the idle mode to the connected mode.
  • the terminal may move to another frequency (or cell) by cell reselection with reference to the alternative frequency information included in the congestion notification indicator, and may receive MBMS service through the other frequency.
  • the terminal may give up receiving the MBMS service and hand over to another cell.
  • QoS quality of service
  • 24 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
  • the terminal 2400 includes an RF unit 2405 and a terminal processor 2410.
  • the terminal processor 2410 includes a message processor 2411 and a communication controller 2412.
  • the terminal 2400 may operate in one of a connected mode and a idle mode.
  • the RF unit 2405 receives an MBMS service provided at a specific frequency, a congestion notification indicator including MBMS related information, or congestion resolution information from the base station 2450.
  • the RF unit 2405 also transmits the service priority indicator generated by the message processing unit 2411 to the base station 2450.
  • the message processor 2411 extracts MBMS related information from the congestion notification indicator.
  • the extracted MBMS-related information is frequency information indicating the MBMS frequency provided by the MBMS service being received by the terminal 2400, and an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
  • At least one of the information an MBMS type list indicating a list of MBMS services provided through the MBMS frequency, session start timing information of each MBMS service, and geographic area information provided by each MBMS service.
  • the frequency information or the alternative frequency information may indicate any one of the indexes in Table 3, which indicates the network operating bands supported by the terminal as an index.
  • the message processing unit 2411 may generate a service priority indicator based on the priority between the MBMS service and the unicast service and transmit the service priority indicator to the RF unit 2405.
  • the service priority indicator may be included in the RRC connection request message.
  • the service priority indicator may explicitly indicate that a specific service has priority as shown in Table 1 above.
  • the service priority indicator may instruct maintenance or change of the service priority as shown in Table 2 above. In this case, the default priority is assumed to be in MBMS service.
  • Service priorities include high level priorities (priorities between MBMS services and unicast services) and / or low level priorities (priorities between various application services included in unicast services), as described above.
  • the message processing unit 2411 transfers the content indicated by the congestion resolution information to the communication control unit 2412. Congestion resolution information is included in the RRC connection release message. In this case, the message processing unit 2411 instructs the communication control unit 2412 to release the RRC connection according to the instruction of the RRC connection release message.
  • the congestion resolution information is included in the system information block.
  • the message processor 2411 instructs the communication controller 2412 to maintain or switch the state of the terminal 2400 to the idle mode or the connected mode according to the instruction of the system information block.
  • the communication controller 2412 releases the RRC connection and switches the terminal 2400 from the connected mode to the idle mode according to the instruction of the message processor 2411. That is, the communication control unit 2412 no longer transmits or receives a unicast service related signal. Alternatively, the communication control unit 2412 controls to receive the unicast service in the connected mode according to the instruction of the message processing unit 2411.
  • the base station 2450 includes an RF unit 2455 and a base station processor 2460.
  • the base station processor 2460 includes a congestion control unit 2641 and a message processing unit 2246.
  • the RF unit 2455 transmits an MBMS service at a specific frequency, and transmits a congestion notification indicator including MBMS related information generated by the message processor 2241 and congestion resolution information to the terminal 2400. In addition, the RF unit 2455 receives a service priority indicator from the terminal 2400.
  • the congestion control unit 2241 recognizes network congestion. There may be various ways for the congestion control unit 2641 to recognize network congestion. As an example, the congestion control unit 2461 may use an MBMS counting procedure that collects the number of connected mode terminals receiving the MBMS service. When determining whether the network is congested based on the number of terminals collected by the MBMS counting procedure, the congestion control unit 2241 may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, it is determined that network congestion has occurred since the number of terminals for the MBMS service is higher than expected.
  • the congestion control unit 2241 may recognize the network congestion based on the MBMS priority information.
  • the congestion control unit 2241 may obtain MBMS related information of the terminal 2400 by receiving MBMS priority information and the like from the terminal 2400.
  • the congestion control unit 2461 may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service.
  • the congestion control unit 2241 When the congestion control unit 2641 recognizes network congestion, the message processing unit 2246 instructs to generate a congestion notification indicator.
  • the congestion control unit 2241 determines a priority service based on the priority of a plurality of services set in the terminal 2400. For example, when the RF unit 2455 receives the service priority indicator according to the embodiment of Table 2, the congestion control unit 2241 may prioritize any one of the MBMS service and the unicast service according to the indication of the service priority indicator. Decide on service. Alternatively, when the RF unit 2455 receives the service priority indicator according to the embodiment of Table 3, the congestion control unit 2241 may know that the priority service has been changed. Therefore, the congestion control unit 2241 determines the priority service as a unicast service if the previous service priority was an MBMS service, and determines the priority service as an MBMS service if the previous service priority was a unicast service.
  • the congestion control unit 2651 instructs the message processing unit 2542 to generate congestion resolution information based on the determined priority service.
  • the message processing unit 2542 generates a congestion notification indicator or congestion resolution information according to the instruction of the congestion control unit 2241.
  • the congestion control unit 2241 releases the radio resource allocated to the terminal 2400, or establishes an RRC connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to an apparatus and a method for congestion control for continuity of an MBMS service. The present specification discloses a method in which a base station controls network congestion for continuity of an MBMS service, said method comprising: a step of recognizing network congestion caused by excessive traffic entering a network; a step of transmitting a congestion notification indicator that indicates the perception of network congestion and includes information relating to MBMS to a terminal in a connection mode for receiving an MBMS service at a specific frequency; a step of receiving congestion response information from the terminal; and a step of transmitting congestion solution information for solving the network congestion to the terminal. According to the present invention, a terminal may continuously receive an MBMS service, and continuity of the MBMS service and quality of the service for the terminal may be ensured.

Description

MBMS 서비스의 연속성을 위한 혼잡 제어장치 및 방법Congestion control device and method for continuity of MBMS service
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 MBMS 서비스의 연속성을 위한 혼잡 제어장치 및 방법에 관한 것이다.The present invention relates to wireless communications, and more particularly, to an apparatus and method for congestion control for continuity of MBMS services.
셀룰러(cellular)는 서비스 지역의 제한, 주파수 및 가입자 수용용량의 한계를 극복하기 위하여 제안된 개념이다. 이는 고출력 단일 기지국을 저출력의 다수 기지국으로 바꿔서 통화권을 제공하는 방식이다. 즉, 이동통신 서비스 지역을 여러 개의 작은 셀(cell)단위로 나눠서 인접한 셀들에는 각각 다른 주파수들을 할당하고, 서로 충분히 멀리 떨어져 간섭 발생이 없는 두 셀에서는 동일한 주파수 대역을 사용하여 공간적으로 주파수를 재사용할 수 있도록 하였다.Cellular is a concept proposed to overcome the limitations of coverage area, frequency and subscriber capacity. This is a method of providing a call right by replacing a high power single base station with a plurality of low power base stations. In other words, by dividing the mobile communication service area into several small cells, adjacent cells are assigned different frequencies, and two cells that are sufficiently far apart from each other and do not cause interference can use the same frequency band to spatially reuse frequencies. To make it possible.
핸드오버(handover) 또는 핸드오프(handoff)란 단말이 이동함에 따라 현재의 통신 서비스 지역(이하 소스 셀(source cell))을 이탈하여 인접한 통신 서비스 지역(이하 타겟 셀(target cell))으로 이동할 때 인접한 통신 서비스 지역의 새로운 통화 채널(traffic channel)에 자동 동조(tuning)되어 지속적으로 통화 상태를 유지하게 하는 기능을 말한다. 즉, 특정 기지국과 통신하고 있는 단말은 그 특정 기지국(이하 소스 기지국(source base station))에서의 신호 세기가 약해질 경우 다른 인접 기지국(이하 타겟 기지국(target base station))에 링크(link)된다. 핸드오버가 이루어지면 인접셀로의 이동시 발생하는 호단절의 문제점이 해결될 수 있다.Handover or handoff is when the terminal moves away from the current communication service area (source cell) as the terminal moves to an adjacent communication service area (target cell). It is a function that automatically tunes to a new traffic channel of an adjacent communication service area and keeps a call state continuously. That is, a terminal communicating with a specific base station is linked to another neighboring base station (target base station) when the signal strength of the specific base station (hereinafter referred to as a source base station) is weakened. . If a handover is made, the problem of call disconnection occurring when moving to an adjacent cell can be solved.
MBMS(Multimedia Broadcast/Multicast Service)는 기존의 CBS(Cell Broadcast Service)와 유사하게 동일하게 데이터 패킷을 다수의 사용자들에게 동시에 전송하는 서비스이다. 그러나 CBS는 저속의 메시지 기반 서비스이지만 MBMS는 고속의 멀티미디어 데이터 전송을 목적으로 하고 있다. 또한 CBS는 IP(internet protocol) 기반이 아니지만 MBMS는 IP 멀티캐스트 기반으로 이루어진다는 차이점이 있다. 일정 수준의 사용자가 동일한 셀에 존재하는 경우 각 사용자로 전송하는 경우 필요한 자원(또는 채널)을 공유하게 함으로써 다수의 사용자가 동일한 멀티미디어 데이터를 수신하도록 하여 무선 자원의 효율을 높이고 사용자 입장에서 멀티미디어 서비스를 값싸게 이용할 수 있도록 하는 것이 MBMS의 장점이다.MBMS (Multimedia Broadcast / Multicast Service) is a service that transmits data packets to multiple users at the same time similarly to the existing CBS (Cell Broadcast Service). However, while CBS is a low-speed message-based service, MBMS is intended for high-speed multimedia data transmission. In addition, CBS is not based on IP (internet protocol), but MBMS is based on IP multicast. When a certain level of users exists in the same cell, the necessary resources (or channels) are shared when they are transmitted to each user so that multiple users receive the same multimedia data to improve the efficiency of radio resources and to provide multimedia services from the user's point of view. It is an advantage of MBMS that it is available cheaply.
MBMS는 하나의 서비스를 복수의 단말이 효율적으로 데이터를 수신하도록 하기 위해서, 공용채널을 사용하게 된다. 즉 하나의 서비스 데이터에 대해서, 한 셀에서 상기 서비스를 수신하고자 하는 단말의 수만큼 전용채널을 할당하는 것이 아니라, 하나의 공용채널만을 할당한다. 복수의 단말이 상기 공용채널을 동시에 수신하여, 무선 자원의 효율성을 높인다. MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. That is, not one dedicated channel is allocated to one service data, but only one shared channel, as many as the number of terminals to receive the service in one cell. A plurality of terminals simultaneously receive the shared channel, thereby improving the efficiency of radio resources.
그런데, 네트워크 혼잡이 발생한 경우, 기지국은 MBMS 서비스와 관련된 단말들에 대하여 네트워크 혼잡을 해결할 수 있어야 한다. 또는 기지국은 MBMS 서비스가 고려되지 않는 통신 상황에서 네트워크 혼잡이 감지된 경우에도, MBMS 서비스에 관심이 있거나 MBMS 서비스를 수신 중인 단말에 대한 정보를 파악할 수 있어야 한다. However, when network congestion occurs, the base station should be able to solve network congestion for terminals related to the MBMS service. Alternatively, even when network congestion is detected in a communication situation where the MBMS service is not considered, the base station should be able to grasp information on the terminal interested in the MBMS service or receiving the MBMS service.
셀룰러(cellular)는 서비스 지역의 제한, 주파수 및 가입자 수용용량의 한계를 극복하기 위하여 제안된 개념이다. 이는 고출력 단일 기지국을 저출력의 다수 기지국으로 바꿔서 통화권을 제공하는 방식이다. 즉, 이동통신 서비스 지역을 여러 개의 작은 셀(cell)단위로 나눠서 인접한 셀들에는 각각 다른 주파수들을 할당하고, 서로 충분히 멀리 떨어져 간섭 발생이 없는 두 셀에서는 동일한 주파수 대역을 사용하여 공간적으로 주파수를 재사용할 수 있도록 하였다.Cellular is a concept proposed to overcome the limitations of coverage area, frequency and subscriber capacity. This is a method of providing a call right by replacing a high power single base station with a plurality of low power base stations. In other words, by dividing the mobile communication service area into several small cells, adjacent cells are assigned different frequencies, and two cells that are sufficiently far apart from each other and do not cause interference can use the same frequency band to spatially reuse frequencies. To make it possible.
핸드오버(handover) 또는 핸드오프(handoff)란 단말이 이동함에 따라 현재의 통신 서비스 지역(이하 소스 셀(source cell))을 이탈하여 인접한 통신 서비스 지역(이하 타겟 셀(target cell))으로 이동할 때 인접한 통신 서비스 지역의 새로운 통화 채널(traffic channel)에 자동 동조(tuning)되어 지속적으로 통화 상태를 유지하게 하는 기능을 말한다. 즉, 특정 기지국과 통신하고 있는 단말은 그 특정 기지국(이하 소스 기지국(source base station))에서의 신호 세기가 약해질 경우 다른 인접 기지국(이하 타겟 기지국(target base station))에 링크(link)된다. 핸드오버가 이루어지면 인접셀로의 이동시 발생하는 호단절의 문제점이 해결될 수 있다.Handover or handoff is when the terminal moves away from the current communication service area (source cell) as the terminal moves to an adjacent communication service area (target cell). It is a function that automatically tunes to a new traffic channel of an adjacent communication service area and keeps a call state continuously. That is, a terminal communicating with a specific base station is linked to another neighboring base station (target base station) when the signal strength of the specific base station (hereinafter referred to as a source base station) is weakened. . If a handover is made, the problem of call disconnection occurring when moving to an adjacent cell can be solved.
MBMS(Multimedia Broadcast/Multicast Service)는 기존의 CBS(Cell Broadcast Service)와 유사하게 동일하게 데이터 패킷을 다수의 사용자들에게 동시에 전송하는 서비스이다. 그러나 CBS는 저속의 메시지 기반 서비스이지만 MBMS는 고속의 멀티미디어 데이터 전송을 목적으로 하고 있다. 또한 CBS는 IP(internet protocol) 기반이 아니지만 MBMS는 IP 멀티캐스트 기반으로 이루어진다는 차이점이 있다. 일정 수준의 사용자가 동일한 셀에 존재하는 경우 각 사용자로 전송하는 경우 필요한 자원(또는 채널)을 공유하게 함으로써 다수의 사용자가 동일한 멀티미디어 데이터를 수신하도록 하여 무선 자원의 효율을 높이고 사용자 입장에서 멀티미디어 서비스를 값싸게 이용할 수 있도록 하는 것이 MBMS의 장점이다.MBMS (Multimedia Broadcast / Multicast Service) is a service that transmits data packets to multiple users at the same time similarly to the existing CBS (Cell Broadcast Service). However, while CBS is a low-speed message-based service, MBMS is intended for high-speed multimedia data transmission. In addition, CBS is not based on IP (internet protocol), but MBMS is based on IP multicast. When a certain level of users exists in the same cell, the necessary resources (or channels) are shared when they are transmitted to each user so that multiple users receive the same multimedia data to improve the efficiency of radio resources and to provide multimedia services from the user's point of view. It is an advantage of MBMS that it is available cheaply.
MBMS는 하나의 서비스를 복수의 단말이 효율적으로 데이터를 수신하도록 하기 위해서, 공용채널을 사용하게 된다. 즉 하나의 서비스 데이터에 대해서, 한 셀에서 상기 서비스를 수신하고자 하는 단말의 수만큼 전용채널을 할당하는 것이 아니라, 하나의 공용채널만을 할당한다. 복수의 단말이 상기 공용채널을 동시에 수신하여, 무선 자원의 효율성을 높인다. MBMS uses a shared channel to efficiently receive data from a plurality of terminals in one service. That is, not one dedicated channel is allocated to one service data, but only one shared channel, as many as the number of terminals to receive the service in one cell. A plurality of terminals simultaneously receive the shared channel, thereby improving the efficiency of radio resources.
그런데, 네트워크 혼잡이 발생한 경우, 기지국은 MBMS 서비스와 관련된 단말들에 대하여 네트워크 혼잡을 해결할 수 있어야 한다. 또는 기지국은 MBMS 서비스가 고려되지 않는 통신 상황에서 네트워크 혼잡이 감지된 경우에도, MBMS 서비스에 관심이 있거나 MBMS 서비스를 수신 중인 단말에 대한 정보를 파악할 수 있어야 한다. However, when network congestion occurs, the base station should be able to solve network congestion for terminals related to the MBMS service. Alternatively, even when network congestion is detected in a communication situation where the MBMS service is not considered, the base station should be able to grasp information on the terminal interested in the MBMS service or receiving the MBMS service.
본 발명의 일 양태에 따르면, MBMS(multimedia broadcast multicast service) 서비스의 연속성을 위한 기지국의 네트워크 혼잡(network congestion) 제어방법에 있어서, 네트워크에 과도한 트래픽(traffic)이 유입되는 네트워크 혼잡을 인지하는 단계, 네트워크 혼잡을 인지함을 지시하고, MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 특정 주파수에서 MBMS 서비스를 수신하는 연결 모드(connected mode)인 단말로 전송하는 단계, 혼잡 응답 정보를 상기 단말로부터 수신하는 단계, 및 상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 단말로 전송하는 단계를 포함한다. According to an aspect of the present invention, in the method of controlling network congestion of a base station for continuity of a multimedia broadcast multicast service (MBMS) service, recognizing a network congestion in which excessive traffic is introduced into a network; Indicating that network congestion is recognized and transmitting a congestion notification indicator including MBMS related information to a terminal in a connected mode that receives an MBMS service at a specific frequency, and receiving congestion response information from the terminal; And transmitting the congestion resolution information to solve the network congestion to the terminal.
본 발명의 다른 양태에 따르면, MBMS 서비스의 연속성을 위한 네트워크 혼잡을 제어하는 기지국에 있어서, 네트워크에 과도한 트래픽이 유입되는 네트워크 혼잡을 인지하는 혼잡 제어부, 상기 혼잡 제어부의 지시에 의해 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 생성하는 메시지 처리부, 상기 혼잡 통보 지시자를 특정 주파수에서 MBMS 서비스를 수신하는 연결 모드(connected mode)인 단말로 전송하고, 상기 혼잡 통보 지시자에 대한 응답인 혼잡 응답 정보를 상기 단말로부터 수신하며, 상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 단말로 전송하는 RF부를 포함한다.According to another aspect of the present invention, there is provided a base station for controlling network congestion for continuity of MBMS service, comprising: a congestion control unit recognizing a network congestion in which excessive traffic flows into a network, and including MBMS-related information by an instruction of the congestion control unit; A message processing unit for generating a congestion notification indicator, transmitting the congestion notification indicator to a terminal in a connected mode that receives an MBMS service at a specific frequency, and sending congestion response information that is a response to the congestion notification indicator from the terminal; And an RF unit configured to transmit congestion resolution information to the terminal to solve the network congestion.
본 발명의 또 다른 양태에 따르면, MBMS 서비스의 연속성을 위한 단말의 네트워크 혼잡 제어방법에 있어서, 특정 주파수에서 MBMS 서비스를 기지국으로부터 수신하는 단계, 상기 특정 주파수상에서 네트워크로 과도한 트래픽이 유입되는 네트워크 혼잡이 발생함을 지시하고, MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 상기 기지국으로부터 수신하는 단계, 상기 혼잡 통보 지시자에 대한 응답으로 혼잡 응답 정보를 상기 기지국으로 전송하는 단계, 및 상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 기지국으로부터 수신하는 단계를 포함한다. According to another aspect of the present invention, in the method of controlling network congestion of a terminal for continuity of MBMS services, receiving a MBMS service from a base station at a specific frequency, and network congestion in which excessive traffic flows into a network on the specific frequency. Receiving, from the base station, a congestion notification indicator including MBMS related information, transmitting congestion response information to the base station in response to the congestion notification indicator, and congestion to resolve the network congestion Receiving resolution information from the base station.
본 발명의 또 다른 양태에 따르면, MBMS 서비스의 연속성을 위한 네트워크 혼잡을 제어하는 단말에 있어서, 특정 주파수에서 MBMS 서비스를 기지국으로부터 수신하고, 상기 특정 주파수상에서 네트워크로 과도한 트래픽이 유입되는 네트워크 혼잡이 발생함을 지시하는 혼잡 통보 지시자를 상기 기지국으로부터 수신하며, 상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 기지국으로부터 수신하는 RF부, 상기 혼잡 통보 지시자로부터 MBMS 관련 정보를 추출하고, 상기 MBMS 관련 정보에 기반하여 혼잡 응답 정보를 생성하여 상기 RF부로 전달하는 메시지 처리부, 및 상기 혼잡 해결 정보의 지시에 따라 상기 단말을 휴지 모드로 동작하도록 제어하는 통신 제어부를 포함한다. According to another aspect of the present invention, in a terminal for controlling network congestion for continuity of an MBMS service, network congestion occurs in which an MBMS service is received from a base station at a specific frequency and excessive traffic flows into a network on the specific frequency. Receiving a congestion notification indicator indicating from the base station, an RF unit for receiving congestion resolution information for solving the network congestion from the base station, extracting MBMS information from the congestion notification indicator, and based on the MBMS information And a message processing unit for generating congestion response information and transmitting the congestion response information to the RF unit, and a communication control unit for controlling the terminal to operate in the idle mode according to the instruction of the congestion resolution information.
본 발명의 또 다른 양태에 따르면, MBMS(multimedia broadcast multicast service) 서비스의 연속성을 위한 단말의 네트워크 혼잡(network congestion) 제어방법을 제공한다. 상기 방법은 MBMS 서비스와 유니캐스트(unicast) 서비스 중 어느 하나에 우선권이 있음을 알려주는 서비스 우선권 지시자를 기지국으로 전송하는 단계, 및 상기 MBMS 서비스에 상기 우선권이 있음을 근거로 상기 유니캐스트 서비스의 연결을 해제함을 지시하는 무선자원제어(radio resource control: RRC) 연결 해제 메시지를 상기 기지국으로부터 수신하는 단계를 포함한다.According to another aspect of the present invention, there is provided a network congestion control method of a terminal for continuity of a multimedia broadcast multicast service (MBMS) service. The method includes transmitting a service priority indicator to a base station indicating that one of an MBMS service and a unicast service has priority, and connecting the unicast service based on the MBMS service having the priority. Receiving a radio resource control (RRC) connection release message from the base station indicating that the release.
상기 서비스 우선권 지시자의 전송에 의해 상기 우선권의 변경이 있음이 지시되고, 상기 서비스 우선권 지시자의 비전송에 의해 상기 우선권의 변경이 없음이 지시될 수 있다. The change of the priority may be indicated by the transmission of the service priority indicator, and the change of the priority may be indicated by the non-transmission of the service priority indicator.
상기 MBMS(multimedia broadcast multicast service) 서비스의 연속성을 위한 단말의 네트워크 혼잡(network congestion) 제어방법은, 네트워크에 과도한 트래픽(traffic)이 유입되는 네트워크 혼잡을 상기 기지국이 인지함을 지시하고, 상기 MBMS 서비스에 관련된 정보를 포함하는 혼잡 통보 지시자를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다.The network congestion control method of a terminal for continuity of the multimedia broadcast multicast service (MBMS) service indicates that the base station recognizes a network congestion in which excessive traffic flows into a network, and the MBMS service. The method may further include receiving a congestion notification indicator from the base station, the congestion notification indicator including information related to the.
여기서, 상기 MBMS 서비스에 관련된 정보는, 상기 MBMS 서비스가 제공되는 특정 주파수를 알려주는 주파수 정보, 상기 MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함할 수 있다. The information related to the MBMS service includes frequency information indicating a specific frequency provided by the MBMS service, alternative frequency information indicating another frequency providing the MBMS service, and a type of MBMS service provided through the specific frequency. It may include at least one of the MBMS type list indicating.
본 발명의 또 다른 양태에 따르면, MBMS 서비스의 연속성을 위한 기지국의 네트워크 혼잡 제어방법을 제공한다. 상기 방법은 MBMS 서비스와 유니캐스트 서비스 중 어느 하나에 우선권이 있음을 알려주는 서비스 우선권 지시자를 단말로부터 수신하는 단계, 및 상기 MBMS 서비스에 상기 우선권이 있음을 근거로 상기 유니캐스트 서비스의 연결을 해제함을 지시하는 RRC 연결 해제 메시지를 상기 단말로 전송하는 단계를 포함한다.According to still another aspect of the present invention, there is provided a network congestion control method of a base station for continuity of MBMS service. The method may further include receiving a service priority indicator from a terminal informing that one of the MBMS service and the unicast service has priority, and disconnecting the unicast service based on the MBMS service having the priority. And transmitting to the terminal an RRC connection release message indicating.
여기서, 상기 기지국은, 상기 서비스 우선권 지시자의 수신에 의해 상기 우선권의 변경이 있음을 인지하고, 상기 서비스 우선권 지시자의 비수신에 의해 상기 우선권의 변경이 없음을 인지할 수 있다. Here, the base station may recognize that there is a change in the priority by the reception of the service priority indicator, and may recognize that there is no change in the priority by non-receipt of the service priority indicator.
상기 MBMS 서비스의 연속성을 위한 기지국의 네트워크 혼잡 제어방법은 네트워크에 과도한 트래픽이 유입되는 네트워크 혼잡을 인지하는 단계, 및 상기 네트워크 혼잡을 지시하고, 상기 MBMS 서비스에 관련된 정보를 포함하는 혼잡 통보 지시자를 상기 단말로 전송하는 단계를 더 포함할 수 있다. The network congestion control method of the base station for the continuity of the MBMS service includes the steps of recognizing a network congestion in which excessive traffic flows into the network, and instructing the network congestion and including a information related to the MBMS service. The method may further include transmitting to the terminal.
그리고 상기 MBMS 서비스에 관련된 정보는, 상기 MBMS 서비스가 제공되는 특정 주파수를 알려주는 주파수 정보, 상기 MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함할 수 있다. The information related to the MBMS service may include frequency information indicating a specific frequency provided by the MBMS service, alternative frequency information indicating another frequency providing the MBMS service, and a type of MBMS service provided through the specific frequency. It may include at least one of the MBMS type list.
네트워크 혼잡의 상황에서 혼잡 통보 지시자에 MBMS 관련 정보를 단말에 전송함으로써 네트워크 혼잡을 해결할 수 있고, 단말은 MBMS 서비스를 지속적으로 수신할 수 있으며, 단말에 대한 MBMS 서비스의 연속성 및 서비스의 품질(Quality of Service: QoS)이 보장될 수 있다. 또한 네트워크 혼잡의 상황에서 단말이 MBMS 또는 유니캐스트 서비스에 대한 우선순위를 기지국으로 알려줌으로써 네트워크 혼잡을 해결할 수 있고, 단말은 MBMS 서비스를 지속적으로 수신할 수 있으며, 단말에 대한 MBMS 서비스의 연속성 및 서비스의 품질이 보장될 수 있다.The network congestion can be solved by transmitting MBMS related information to the terminal in the situation of network congestion, the terminal can continuously receive the MBMS service, the continuity of the MBMS service for the terminal and the quality of service (Quality of Service (QoS) can be guaranteed. In addition, in a network congestion situation, the UE may inform the base station of the priority of the MBMS or unicast service to solve the network congestion, the UE may continuously receive the MBMS service, and the continuity and service of the MBMS service for the UE. The quality of can be guaranteed.
도 1은 무선 통신 시스템을 나타낸 블록도이다.1 is a block diagram illustrating a wireless communication system.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture) 및 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane and a radio protocol architecture for a control plane.
도 3은 하향링크 논리채널과 하향링크 전송채널간의 맵핑을 나타낸다.3 shows a mapping between a downlink logical channel and a downlink transport channel.
도 4는 하향링크 전송채널과 하향링크 물리채널간의 맵핑을 나타낸다. 4 shows a mapping between a downlink transport channel and a downlink physical channel.
도 5는 본 발명이 적용되는 MBMS를 위한 핵심망 구조를 나타내는 도면이다.5 is a diagram illustrating a core network structure for MBMS to which the present invention is applied.
도 6은 본 발명에 따른 MBMS에서의 서비스를 제공하는 시스템의 배치(deployment) 시나리오의 일 예이다.6 is an example of a deployment scenario of a system providing a service in an MBMS according to the present invention.
도 7은 본 발명의 일 예에 따른 기지국에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.7 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
도 8은 본 발명의 일 예에 따른 단말에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.8 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
도 9는 본 발명의 일 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.9 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to an embodiment of the present invention.
도 10은 본 발명의 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.10 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
도 11은 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.11 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.12 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
도 13은 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.13 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
도 14는 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.14 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
도 15는 본 발명에 따른 혼잡제어를 수행하는 단말과 기지국을 도시한 블록도이다.15 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
도 16은 본 발명의 일 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 16 is a flowchart illustrating a method of performing congestion control according to an embodiment of the present invention.
도 17은 본 발명의 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 17 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 18은 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다.18 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 19는 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 19 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 20은 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다.  20 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 21은 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 21 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 22는 본 발명의 일 예에 따른 기지국에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.22 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
도 23은 본 발명의 일 예에 따른 단말에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.23 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
도 24는 본 발명에 따른 혼잡제어를 수행하는 단말과 기지국을 도시한 블록도이다.24 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 무선 통신 시스템을 나타낸 블록도이다. 이는 E-UMTS(Evolved- Universal Mobile Telecommunications System)의 망 구조일 수 있다. E-UMTS 시스템은 LTE(Long Term Evolution) 또는 LTE-A(advanced)시스템이라고 할 수도 있다. 무선 통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.1 is a block diagram illustrating a wireless communication system. This may be a network structure of an Evolved-Universal Mobile Telecommunications System (E-UMTS). The E-UMTS system may be referred to as Long Term Evolution (LTE) or LTE-A (Advanced) system. Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
도 1을 참조하면, E-UTRAN은 단말에 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 적어도 하나의 기지국(20; Base Station, BS)을 포함한다. 단말(10; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, the E-UTRAN includes at least one base station (BS) 20 that provides a control plane and a user plane to the terminal. The UE 10 may be fixed or mobile and may have other mobile stations, advanced MSs (AMS), user terminals (UTs), subscriber stations (SSs), wireless devices (Wireless Devices), and the like. It may be called a term.
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, eNodeB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 가내 기지국(Home eNB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 기지국(20)은 적어도 하나의 셀을 단말에 제공할 수 있다. 셀은 기지국(20)이 통신 서비스를 제공하는 지리적 영역을 의미할 수도 있고, 특정 주파수 대역을 의미할 수도 있다. 셀은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(carrier aggregation: CA)를 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍(pair)으로 존재한다.The base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an femto-eNB, It may be called other terms such as a pico-eNB, a home eNB, and a relay. The base station 20 may provide at least one cell to the terminal. The cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band. The cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource. In addition, in general, when carrier aggregation (CA) is not considered, one cell always has a pair of uplink and downlink frequency resources.
기지국(20)간에는 사용자 트래픽 혹은 제어 트래픽 전송을 위한 인터페이스가 사용될 수도 있다. 소스 기지국(Source BS, 21)은 현재 단말(10)과 무선 베어러가 설정된 기지국을 의미하고, 타겟 기지국(Target BS, 22)은 단말(10)이 소스 기지국(21)과의 무선 베어러를 끊고 새롭게 무선 베어러를 설정하기 위해 핸드오버를 하려는 기지국을 의미한다. An interface for transmitting user traffic or control traffic may be used between the base stations 20. The source base station (Source BS) 21 refers to a base station in which a radio bearer is currently set up with the terminal 10, and the target base station (Target BS, 22) means that the terminal 10 disconnects the radio bearer from the source base station 21 and renews it. It means a base station to be handed over to establish a radio bearer.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있는데, X2 인터페이스는 기지국(20)간의 메시지를 주고받는데 사용된다. 기지국(20)은 S1 인터페이스를 통해 EPS(Evolved Packet System), 보다 상세하게는 이동관리개체(Mobility Management Entity: 이하 MME)/S-GW(Serving Gateway, 30)와 연결된다. S1 인터페이스는 기지국(20)과 MME/S-GW(30) 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다. MME/S-GW(30)로의 패킷 데이터 서비스를 제공하기 위해 PDN-GW(40)이 사용된다. PDN-GW(40)는 통신의 목적이나 서비스에 따라 달라지며, 특정 서비스를 지원하는 PDN-GW(40)는 APN(Access Point Name) 정보를 이용하여 찾을 수 있다. The base stations 20 may be connected to each other through an X2 interface, which is used to exchange messages between the base stations 20. The base station 20 is connected to an evolved packet system (EPS), more specifically, a mobility management entity (MME) / serving gateway (S-GW) 30 through an S1 interface. The S1 interface supports a many-to-many-relation between base station 20 and MME / S-GW 30. The PDN-GW 40 is used to provide packet data services to the MME / S-GW 30. The PDN-GW 40 varies depending on the purpose or service of communication, and the PDN-GW 40 supporting a specific service can be found using APN information.
E-UTRAN 내(Inter E-UTRAN) 핸드오버(handover)는 E-UTRAN 접속망간의 핸드오버시에 사용되는 기본적인 핸드오버 메커니즘으로서, X2 기반의 핸드오버와 S1 기반의 핸드오버로 구성되어 있다. X2 기반의 핸드오버는 UE가 X2 인터페이스를 이용하여 소스 기지국(source BS, 21)에서 타겟 기지국(target BS, 22)로 핸드오버하고자 할 때 사용되며 이때 MME/S-GW(30)는 변경되지 않는다. Inter-E-UTRAN handover is a basic handover mechanism used for handover between E-UTRAN access networks. It is composed of X2 based handover and S1 based handover. X2-based handover is used when the UE wants to handover from the source base station (source BS, 21) to the target base station (target BS, 22) using the X2 interface. At this time, the MME / S-GW 30 is not changed. Do not.
S1 기반의 핸드오버에 의해, P-GW(40), MME/S-GW(30), 소스 기지국(21) 및 단말(10)간에 설정되어 있던 제1 베어러가 해제(release)되고, P-GW(40), MME/S-GW(30), 타겟 기지국(22) 및 단말(10)간에 새로운 제2 베어러가 설정된다. By S1 based handover, the first bearer set between the P-GW 40, the MME / S-GW 30, the source base station 21, and the terminal 10 is released, and the P-GW 40 is released. A new second bearer is established between the GW 40, the MME / S-GW 30, the target base station 22, and the terminal 10.
이하에서 하향링크(downlink)는 기지국(20)에서 단말(10)로의 통신을 의미하며, 상향링크(uplink)는 단말(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크는 순방향 링크(forward link)라고도 하며, 상향링크는 역방향 링크(reverse link)라고도 한다. 하향링크에서 송신기는 기지국(20)의 일부분일 수 있고, 수신기는 단말(10)의 일부분일 수 있다. 상향링크에서 송신기는 단말(10)의 일부분일 수 있고, 수신기는 기지국(20)의 일부분일 수 있다.Hereinafter, downlink means communication from the base station 20 to the terminal 10, and uplink means communication from the terminal 10 to the base station 20. The downlink is also called a forward link, and the uplink is also called a reverse link. In downlink, the transmitter may be part of the base station 20 and the receiver may be part of the terminal 10. In uplink, the transmitter may be part of the terminal 10 and the receiver may be part of the base station 20.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture) 및 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 데이터 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다. FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane and a radio protocol architecture for a control plane. The data plane is a protocol stack for user data transmission, and the control plane is a protocol stack for control signal transmission.
도 2를 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 매체접근제어(Medium Access Control: MAC) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고 서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 몇몇 물리 제어채널들이 있다. PDCCH(physical downlink control channel)는 단말에게 PCH(paging channel)와 DL-SCH(downlink shared channel)의 자원 할당 및 DL-SCH와 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심벌의 수를 알려주고, 매 서브프레임마다 전송된다. PHICH(physical Hybrid ARQ Indicator Channel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다. PUCCH(Physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. PUSCH(Physical uplink shared channel)은 UL-SCH(uplink shared channel)을 나른다. Referring to FIG. 2, a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel. The physical layer is connected to the upper layer Medium Access Control (MAC) layer through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface. Data moves between the physical layers, that is, between the physical layers of the transmitter and the receiver. There are several physical control channels. The physical downlink control channel (PDCCH) informs the terminal of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH. The PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission. The physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe. PHICH (physical Hybrid ARQ Indicator Channel) carries a HARQ ACK / NAK signal in response to uplink transmission. Physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission. Physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다. 논리채널은 제어 영역 정보의 전달을 위한 제어채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 나눌 수 있다.The functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel. The logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs. In order to guarantee the various Quality of Service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM). AM RLC provides error correction through an automatic repeat request (ARQ).
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다. Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering. The functionality of the Packet Data Convergence Protocol (PDCP) layer in the user plane includes the transfer of control plane data and encryption / integrity protection.
RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB (Signaling RB), DRB (Data RB), MRB(MBMS PTM RB)로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다. MRB는 MBMS 데이터를 전송하는 통로로 사용된다. The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network. The establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. RB can be further divided into SRB (Signaling RB), DRB (Data RB), and MRB (MBMS PTM RB). The SRB is used as a path for transmitting RRC messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane. MRB is used as a path for transmitting MBMS data.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
도 3은 하향링크 논리채널과 하향링크 전송채널간의 맵핑을 나타낸다.3 shows a mapping between a downlink logical channel and a downlink transport channel.
도 3을 참조하면, PCCH(Paging Control Channel)는 PCH(Paging Channel)에 매핑되고, BCCH(Broadcast Control Channel)은 BCH(Broadcast Channel) 또는 DL-SCH(Downlink Shared Channel)에 매핑된다. CCCH(Common Control Channel), DCCH(Dedicated Control Channel), DTCH(Dedicated Traffic Channel), MCCH(Multicast Control Channel) 및 MTCH(Multicast Traffic Channel)는 DL-SCH에 매핑된다. MCCH와 MTCH는 MCH(Multicast Channel)에도 맵핑된다. Referring to FIG. 3, a paging control channel (PCCH) is mapped to a paging channel (PCH), and a broadcast control channel (BCCH) is mapped to a broadcast channel (BCH) or a downlink shared channel (DL-SCH). Common Control Channel (CCCH), Dedicated Control Channel (DCCH), Dedicated Traffic Channel (DTCH), Multicast Control Channel (MCCH) and Multicast Traffic Channel (MTCH) are mapped to DL-SCH. MCCH and MTCH are also mapped to MCH (Multicast Channel).
각 논리채널 타입은 어떤 종류의 정보가 전송되는가에 따라 정의된다. 논리채널은 제어채널과 트래픽 채널 2종류가 있다. Each logical channel type is defined by what kind of information is transmitted. There are two types of logical channels: control channels and traffic channels.
제어채널은 제어평면 정보의 전송에 사용된다. BCCH는 시스템 제어 정보를 브로드캐스팅하기 위한 하향링크 채널이다. PCCH는 페이징 정보를 전송하는 하향링크 채널로, 네트워크가 단말의 위치를 모를 때 사용한다. CCCH는 단말과 네트워크 간의 제어 정보를 전송하는 채널로, 단말이 네트워크와 RRC 연결이 없을 때 사용한다. MCCH는 MBMS 제어정보를 전송하는 데 사용되는 점대다점(point-to-multipoint) 하향링크 채널이며, MBMS를 수신하는 단말들에게 사용된다. DCCH는 단말과 네트워크간의 전용 제어정보를 전송하는 점대점 단방향 채널이며, RRC 연결을 갖는 단말에 의해 사용된다. The control channel is used for transmission of control plane information. BCCH is a downlink channel for broadcasting system control information. PCCH is a downlink channel that transmits paging information and is used when the network does not know the location of the terminal. CCCH is a channel for transmitting control information between the terminal and the network, and is used when the terminal does not have an RRC connection with the network. The MCCH is a point-to-multipoint downlink channel used to transmit MBMS control information and is used for terminals receiving MBMS. DCCH is a point-to-point one-way channel for transmitting dedicated control information between the terminal and the network, and is used by a terminal having an RRC connection.
트래픽 채널은 사용자 평면 정보의 전송에 사용된다. DTCH는 사용자 정보의 전송을 위한 점-대-점(point-to-point) 채널이며, 상향링크과 하향링크 모두에 존재한다. MTCH는 트래픽 데이터의 전송을 위한 점-대-다점 하향링크 채널이며, MBMS를 수신하는 단말에게 사용된다. The traffic channel is used for transmission of user plane information. DTCH is a point-to-point channel for transmitting user information and exists in both uplink and downlink. MTCH is a point-to-multipoint downlink channel for transmission of traffic data, and is used for a terminal receiving an MBMS.
전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. BCH는 셀 전 영역에서 브로드캐스트되고 고정된 미리 정의된 전송 포맷을 가진다. DL-SCH는 HARQ(hybrid automatic repeat request)의 지원. 변조, 코딩 및 전송파워의 변화에 의한 동적 링크 적응의 지원, 브로드캐스트의 가능성, 빔포밍의 가능성, 동적/반정적(semi-static) 자원 할당 지원, 단말 파워 절약을 위한 DRX(discontinuous reception) 지원 및 MBMS 전송 지원으로 특징된다. PCH는 단말 파워 절약을 위한 DRX 지원, 셀 전영역에의 브로드캐스트로 특징된다. MCH는 셀 전영역에의 브로드캐스트 및 MBSFN(MBMS Single Frequency Network) 지원으로 특징된다. MBSFN은 MBMS 셀그룹을 형성하는 다수의 셀에서, 동일한 MBMS 채널을 동시에 브로드캐스트하기 위해 공통의 스크램블링 코드(scrambling code)와 스프레딩 코드(spreading code)를 사용하는 방식이다. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface. The BCH has a predefined transmission format that is broadcast and fixed in the entire cell area. DL-SCH supports hybrid automatic repeat request (HARQ). Support for dynamic link adaptation by changing modulation, coding and transmission power, possibility of broadcast, possibility of beamforming, support for dynamic / semi-static resource allocation, and support for discontinuous reception (DRX) to save terminal power And MBMS transmission support. PCH is characterized by DRX support for terminal power saving and broadcast to the entire cell area. The MCH is characterized by broadcast to the entire cell and MBMS Single Frequency Network (MBSFN) support. MBSFN uses a common scrambling code and spreading code to simultaneously broadcast the same MBMS channel in a plurality of cells forming an MBMS cell group.
도 4는 하향링크 전송채널과 하향링크 물리채널간의 맵핑을 나타낸다. 4 shows a mapping between a downlink transport channel and a downlink physical channel.
도 4를 참조하면, BCH는 PBCH(physical broadcast channel)에 맵핑되고, MCH는 PMCH(physical multicast channel)에 매핑되고, PCH와 DL-SCH는 PDSCH에 매핑된다. PBCH는 BCH 전송 블록을 나르고, PMCH는 MCH를 나르고, PDSCH는 DL-SCH와 PCH를 나른다.Referring to FIG. 4, a BCH is mapped to a physical broadcast channel (PBCH), an MCH is mapped to a physical multicast channel (PMCH), and a PCH and a DL-SCH are mapped to a PDSCH. PBCH carries the BCH transport block, PMCH carries the MCH, and PDSCH carries the DL-SCH and PCH.
MBMS는 두 개의 논리채널을 이용한다. 제어채널인 MCCH와 트래픽 채널인 MTCH이다. MTCH상으로 실제 음성 또는 비디오 같은 사용자 데이터가 전송되고, MCCH상으로 MTCH를 수신하기 위한 설정 정보 등이 전송된다. MTCH와 MCCH는 복수의 단말을 위한 점-대-다 하향링크 채널이며, 공용채널이라 할 수 있다. MBMS는 서비스를 제공받는 단말의 수만큼 무선자원을 할당하는 것이 아니라, 공용채널에 대한 무선 자원만을 할당하고, 공용채널을 복수의 단말이 동시에 수신하여, 무선 자원의 효율성을 높인다.MBMS uses two logical channels. MCCH as a control channel and MTCH as a traffic channel. User data such as actual voice or video is transmitted on the MTCH, and setting information for receiving the MTCH is transmitted on the MCCH. MTCH and MCCH are a point-to-many downlink channel for a plurality of terminals, and may be referred to as a shared channel. The MBMS does not allocate radio resources as many as the number of terminals receiving a service, but allocates only radio resources for a shared channel, and simultaneously receives a shared channel from a plurality of terminals, thereby improving efficiency of radio resources.
단말이 MBMS 서비스를 수신하는 중 위치 이동으로 인하여 셀을 변경할 경우, MBMS 서비스 수신을 연속적으로 할 수 없는 상태일 수 있다. 이러한 상태에도 단말이 지속적으로 MBMS 서비스 수신을 위하여 복호화 동작을 수행할 경우 배터리 소모를 야기할 수 있다. MBMS 서비스를 사용하는 단말이 핸드오버 시에 자원의 낭비없이 MBMS 서비스를 연속적으로 수신할 수 있는 장치 및 방법이 요구된다. If the UE changes the cell due to a location movement while receiving the MBMS service, it may be in a state in which the MBMS service cannot be continuously received. Even in this state, if the UE continuously performs the decoding operation for receiving the MBMS service, it may cause battery consumption. There is a need for an apparatus and method for allowing a terminal using an MBMS service to continuously receive an MBMS service without wasting resources during handover.
소스 셀(source cell)은 현재 단말이 서비스를 제공받고 있는 셀을 의미한다. 소스 셀을 제공하는 기지국을 소스 기지국이라 한다. 인접 셀(neighbor)은 소스 셀과 지리적으로 또는 주파수 대역상에서 인접한 셀을 의미한다. 소스 셀을 기준으로 동일한 반송파 주파수를 사용하는 인접 셀을 주파수내 인접 셀(Intra-frequency Neighbour Cell)이라 한다. 또한, 소스 셀을 기준으로 상이한 반송파 주파수를 사용하는 인접 셀을 주파수간 인접셀(Inter-frequency Neighbour Cell)라고 한다. 즉, 소스 셀과 동일한 주파수를 사용하는 셀뿐만 아니라 다른 주파수를 사용하는 셀로서, 소스 셀과 인접한 셀은 모두 인접 셀이라 할 수 있다. A source cell refers to a cell in which a terminal is currently receiving a service. A base station providing a source cell is called a source base station. A neighbor cell refers to a cell that is geographically adjacent to a source cell or on a frequency band. An adjacent cell using the same carrier frequency with respect to the source cell is called an intra-frequency neighbor cell. In addition, adjacent cells using different carrier frequencies based on the source cell are called inter-frequency neighbor cells. That is, not only a cell using the same frequency as the source cell but also a cell using a different frequency, all of the cells adjacent to the source cell may be referred to as adjacent cells.
단말이 소스 셀에서 주파수내 인접 셀로 핸드오버하는 것을 주파수내 핸드오버(Intra-frequency Handover)라 한다. 한편, 단말이 소스 셀에서 주파수간 인접 셀로 핸드오버하는 것을 주파수간 핸드오버(Inter-frequency Handover)라 한다. 핸드오버에서 단말이 이동하는 인접 셀을 타겟 셀(target cell)이라 한다. 그리고 타겟 셀을 제공하는 기지국을 타겟 기지국이라 한다. The UE handover from the source cell to the neighboring cell in frequency is called intra-frequency handover. On the other hand, the UE handover from the source cell to the inter-frequency neighbor cell is referred to as inter-frequency handover. An adjacent cell to which the UE moves in handover is called a target cell. The base station providing the target cell is called a target base station.
소스 셀과 타겟 셀은 하나의 기지국에 의해 제공될 수도 있고, 서로 다른 기지국에 의해 제공될 수도 있다. 이하에서는 설명의 편의를 위해 소스 셀과 타겟 셀이 서로 다른 기지국, 즉 소스 기지국 및 타겟 기지국에 의해 제공되는 것으로 가정하여 설명한다. 따라서 소스 기지국과 소스 셀간, 타겟 기지국과 타겟 셀간에 서로 혼용되어 사용될 수 있다. The source cell and the target cell may be provided by one base station or may be provided by different base stations. Hereinafter, for convenience of description, it is assumed that the source cell and the target cell are provided by different base stations, that is, the source base station and the target base station. Therefore, the source base station and the source cell, the target base station and the target cell can be used interchangeably with each other.
도 5는 본 발명이 적용되는 MBMS를 위한 핵심망 구조를 나타내는 도면이다.5 is a diagram illustrating a core network structure for MBMS to which the present invention is applied.
도 5를 참조하면, 무선접속망(EUTRAN, 500)은 다중셀 조정개체(Multi-cell Coordination Entity, 이하 MCE, 510)와 기지국(eNB, 520)을 포함한다. MCE(510)는 MBMS를 제어하는 주요 개체(main entity)로서, MBSFN 지역내에서의 무선자원할당(radio resource allocation)이나 허가제어(admission control)의 역할을 수행한다. MCE(510)는 기지국(520)내에 구현될 수도 있고, 기지국(520)과는 독립적으로 구현될 수도 있다. MCE(510)와 기지국(520)간의 인터페이스는 M2 인터페이스라 한다. M2 인터페이스는 무선접속망(500)의 내부 제어평면(internal control plane) 인터페이스로서 MBMS 제어정보가 전송된다. MCE(510)가 기지국(520)내에 구현되는 경우, M2 인터페이스는 논리적으로만 존재할 수 있다.Referring to FIG. 5, a radio access network (EUTRAN) 500 includes a multi-cell coordination entity (hereinafter referred to as MCE) 510 and a base station eNB 520. The MCE 510 is a main entity controlling the MBMS, and plays a role of radio resource allocation or admission control in the MBSFN region. MCE 510 may be implemented within base station 520 or may be implemented independently of base station 520. The interface between the MCE 510 and the base station 520 is called an M2 interface. The M2 interface is an internal control plane interface of the wireless access network 500, and MBMS control information is transmitted. If the MCE 510 is implemented in the base station 520, the M2 interface may only exist logically.
EPC(Evolved Packet Core, 550)는 MME(560)와 MBMS 게이트웨이(MBMS GW, 570)를 포함한다. MME(560)는 NAS 시그널링, 로밍(roading), 인증(authentification), PDN 게이트웨이와 S-GW의 선택, MME 변경에 의한 핸드오버를 위한 MME 선택, 휴지모드 단말에 대한 접근성(reachability), AS 보안제어(security control)등의 동작을 수행한다. An Evolved Packet Core (EPC) 550 includes an MME 560 and an MBMS Gateway (MBMS GW) 570. MME 560, NAS signaling, roaming (authentication), authentication (authentication), PDN gateway and S-GW selection, MME selection for handover by MME change, accessibility to the idle mode terminal, AS security Performs operations such as security control.
MBMS 게이트웨이(570)는 MBMS 서비스 데이터를 전송하는 개체로서 기지국(520)과 BM-SC의 사이에 위치하며 기지국(520)으로의 MBMS 패킷전송과 브로드캐스트를 수행한다. MBMS 게이트웨이(570)는 사용자 데이터를 기지국(520)으로 전송하기 위해 PDCP와 IP 멀티캐스트를 이용하고, 무선접속망(500)에 대해 세션 제어 시그널링을 수행한다. The MBMS gateway 570 is an entity that transmits MBMS service data and is located between the base station 520 and the BM-SC and performs MBMS packet transmission and broadcast to the base station 520. The MBMS gateway 570 uses PDCP and IP multicast to transmit user data to the base station 520, and performs session control signaling for the radio access network 500.
MME(560)와 MCE(510)간의 인터페이스는 무선접속망(500)과 EPC(550)간의 제어평면 인터페이스로서, M3 인터페이스라 하며 MBMS 세션 제어와 관련된 제어정보가 전송된다. The interface between the MME 560 and the MCE 510 is a control plane interface between the radio access network 500 and the EPC 550, which is called an M3 interface, and transmits control information related to MBMS session control.
기지국(520)과 MBMS 게이트웨이(570)간의 인터페이스는 사용자 평면의 인터페이스로서, M1 인터페이스라 하며 MBMS 서비스 데이터가 전송된다. The interface between the base station 520 and the MBMS gateway 570 is an interface of a user plane, which is called an M1 interface, and transmits MBMS service data.
도 6은 본 발명에 따른 MBMS에서의 서비스를 제공하는 시스템의 배치(deployment) 시나리오의 일 예이다. 6 is an example of a deployment scenario of a system providing a service in an MBMS according to the present invention.
도 6을 참조하면, MBMS 서비스는 셀 기반 또는 위치(location) 기반으로 관리될 수 있다. MBMS 서비스 지역은 특정한 MBMS 서비스가 제공되는 지역을 널리 일컫는 용어이다. 예를 들어, 특정한 MBMS 서비스 A가 진행되는 지역을 MBMS 서비스 지역 A라고 한다면, MBMS 서비스 지역 A에서 네트워크는 MBMS 서비스 A를 송신하고 있는 상태일 수 있다. 이 때, 단말은 단말의 성능(capability)에 따라서 MBMS 서비스 A를 수신할 수 있다. MBMS 서비스 영역은 특정한 서비스가 일정 지역에서 제공되는지 또는 그렇지 않은지에 대한 응용(application) 및 서비스의 관점에서 정의될 수 있다.Referring to FIG. 6, the MBMS service may be managed based on cell or location. MBMS service area is a general term for the area where a particular MBMS service is provided. For example, if an area where a specific MBMS service A is performed is called an MBMS service area A, the network may be in a state of transmitting an MBMS service A in the MBMS service area A. In this case, the terminal may receive the MBMS service A according to the capability of the terminal. The MBMS service area may be defined in terms of applications and services as to whether or not a particular service is provided in a certain area.
셀A, 셀B, 셀C, 셀D, 셀E는 MBSFN 지역1에 포함되고, 셀F는 MBSFN 지역2에 포함된다. 셀G는 MBSFN 지역의 셀이 아닌 다른 주파수 대역 f2로 서비스하는 셀이다. MBSFN 지역은 특정한 MBMS 서비스가 단일 주파수 대역에서 제공되는 지역을 의미한다. 예를 들어 MBSFN 지역 1의 경우에는 MBSFN 서브프레임(subframe)을 주파수 f1에 할당해서 특정 MBMS 서비스 A를 지원한다. 이 때, MBSFN 지역내에서는 동일한 주파수 f1에 MBSFN 서브프레임을 할당하여 MBMS 서비스 A를 지원할 수 있다. 예를 들어, MBSFN 지역 2의 경우에도 MBMS 서비스 A를 지원할 수 있지만, MBSFN 지역 1에서의 주파수 자원 f1과는 다른 f3을 이용하여 MBMS 서비스 A를 지원할 수 있다. 동일 MBSFN 지역내에서는 단말이 이동 시에도 동일한 MBMS 구성(configuration)에 기반하여 MBMS 서비스를 수신할 수 있다.Cell A, Cell B, Cell C, Cell D, and Cell E are included in MBSFN Region 1, and Cell F is included in MBSFN Region 2. Cell G is a cell serving a frequency band f2 other than a cell in the MBSFN region. The MBSFN region refers to a region in which a particular MBMS service is provided in a single frequency band. For example, in the case of MBSFN region 1, an MBSFN subframe is allocated to frequency f1 to support a specific MBMS service A. At this time, in the MBSFN region, the MBSFN subframe may be allocated to the same frequency f1 to support the MBMS service A. For example, MBMSN region 2 may support MBMS service A, but MBMS service A may be supported using f3 different from frequency resource f1 in MBSFN region 1. In the same MBSFN region, even when the UE moves, the UE may receive the MBMS service based on the same MBMS configuration.
MBMS 위치범위(location range)는 기존에 MBSFN 지역 내에서 모든 셀에서 MBMS 서비스를 MRB를 통하여 서비스받을 수 있는데 비하여 동일한 MBSFN 지역 내부에서도 특정한 지역 혹은 위치범위 내에서만 MRB를 통하여 MBMS 서비스를 수신할 수 있도록 관리하는 방식이다. MBMS 위치범위의 관리방법으로서, 셀 단위로 관리하는 방식 및 특정 위치나 지역을 포지셔닝(positioning) 방식이 고려될 수 있다. MBMS location range can be used to receive MBMS service through MRB only within a specific region or location range within the same MBSFN region, whereas MBMS service can be serviced by MRB in all cells in the MBSFN region. It is the way of management. As a management method of the MBMS location range, a method of managing by a cell unit and a method of positioning a specific location or region may be considered.
네트워크 혼잡(network congestion)은 네트워크가 수용할 수 없을 만큼 과도한(excessive) 트래픽(traffic) 또는 데이터가 유입되는 상태를 말한다. 일반적으로 다수의 단말이 특정 셀 혹은 주파수 대역 등을 사용하도록 밀집하는 경우에 발생할 수 있다. 이는 특정한 서비스 등이 특정 셀 혹은 주파수 대역에서 진행될 경우에 발생할 수도 있다. 예를 들어, 핫스팟(hot spot)과 같이 RRC 연결 모드의 단말이 밀집하여 있는 지역에서 통신을 수행하는 경우나, 동일한 주파수 대역에서 제공 중인 MBMS 서비스를 수신하려는 MBMS 단말들이 급격히 증가함으로써, 특정 주파수 대역의 자원이 부족하게 되는 경우가 네트워크 혼잡의 원인이 된다. 한편, 혼잡제어(congestion control)는 네트워크 혼잡 상황에서, 네트워크에서 더 이상의 자원할당(resource allocation)을 중지하거나 현재 유지하고 있는 호(call), 베어러(bearer)를 해제(release)함으로써, 일정한 수준의 부하(load)를 유지/관리하는 제어방식이다. Network congestion is a condition in which excessive traffic or data is introduced that the network cannot accept. In general, this may occur when a plurality of terminals are concentrated to use a specific cell or frequency band. This may occur when a specific service or the like is performed in a specific cell or frequency band. For example, when performing communication in an area in which RRC connection mode terminals are concentrated, such as a hot spot, or by rapidly increasing the number of MBMS terminals that want to receive MBMS services provided in the same frequency band, a specific frequency band The lack of resources can cause network congestion. Congestion control, on the other hand, is a certain level of congestion in a network congestion situation, by stopping further resource allocation in a network or releasing a call or bearer that is currently maintained. It is a control method that maintains / manages a load.
기지국은 MBMS 서비스이건 유니캐스트(unicast) 서비스이건 할당 및 점유 우선권(Allocation and Retention Priority: ARP)을 기준으로 혼잡제어를 수행한다. 다시 말해, 네트워크에 혼잡 발생시에 높은 할당 및 점유 우선권을 가지는 서비스는 유지시키고 낮은 높은 할당 및 점유 우선권을 가지는 서비스는 중단시키도록 하는 방식이다. MBMS 서비스 여부와 관련 없이 네트워크는 혼잡제어를 수행한다. The base station performs congestion control based on Allocation and Retention Priority (ARP), whether MBMS service or unicast service. In other words, when congestion occurs in the network, a service having a high allocation and occupancy priority is maintained and a service having a low high allocation and occupancy priority is stopped. The network performs congestion control regardless of MBMS service.
단말은 MBMS 서비스와 유니캐스트 서비스 간에 우선순위를 가지고 서비스를 수신할 수 있다. 상기에서 유니캐스트 서비스란 단말과 기지국이 연결설정(Connection)을 이루고 이를 통해 서비스가 진행되는 점유방식(dedicated) 방식의 서비스를 지칭하는 것이다. 예를 들면, 음성 통신 등이 이에 해당할 수 있다. The terminal may receive the service with priority between the MBMS service and the unicast service. The unicast service refers to a dedicated type of service in which a terminal and a base station form a connection and through which a service is performed. For example, voice communication may correspond to this.
또는 단말은 특정 시간이나 특정한 상황에 MBMS 서비스를 유니캐스트 서비스보다 우선하여 수신하려는 경향이 있을 수 있다. 예를 들면, 선호하는 특정 방송의 특정 프로그램을 수신하기 위해 일정 시간 동안 MBMS 서비스를 우선적으로 수신할 수 있도록 우선순위를 높여서 서비스할 수 있다. 또한, 어떠한 상황에서는 MBMS 서비스보다는 유니캐스트 서비스의 우선순위가 높게 설정될 수 있다. 예를 들어 MBMS 서비스 수신 동안에도, 특정인으로부터의 연결 요청을 기반으로 하는 서비스와 같이 단말이 선호하는 유니캐스트 서비스가 있을 수 있다. 이러한 경우 단말이 MBMS 서비스를 제공받는 중이더라도, 유니캐스트 서비스에 더 높은 우선권이 부여되어야 한다. Or, the terminal may tend to receive the MBMS service in preference to the unicast service at a specific time or in a specific situation. For example, in order to receive a specific program of a specific specific broadcast, the priority may be increased so as to preferentially receive an MBMS service for a predetermined time. In some circumstances, the priority of the unicast service may be set higher than that of the MBMS service. For example, even during reception of an MBMS service, there may be a unicast service preferred by the terminal, such as a service based on a connection request from a specific person. In this case, even though the terminal is receiving the MBMS service, higher priority should be given to the unicast service.
네트워크 혼잡이 발생한 상황에서는 자원에 심한 제약이 가해지므로, 기지국은 우선순위에 따라 MBMS 서비스 또는 유니캐스트 서비스 중 어느 하나를 선택적으로 단말에 제공할 필요가 있다. 이를 위해 기지국은 MBMS 서비스와 유니캐스트 서비스를 적절하게 제공하고 이를 위한 베어러를 적절하게 관리할 수 있어야 한다. 예를 들면, 유니캐스트가 높은 우선순위를 가지는 상태의 단말을 통해 기지국이 유니캐스트 서비스를 하려면 현재의 셀 혹은 주파수가 아닌 다른 셀 혹은 다른 주파수로 핸드오버 해야한다. 이때, 이동하는 다른 셀 혹은 주파수에서는 MBMS 서비스가 진행되지 않을 수 있고, MBMS 서비스 연속성에 문제가 발생할 수 있다. Since a severe congestion is placed on resources in a network congestion situation, the base station needs to selectively provide either the MBMS service or the unicast service to the terminal according to the priority. To this end, the base station should be able to properly provide the MBMS service and unicast service, and manage the bearer appropriately. For example, in order to perform a unicast service through a terminal having a high unicast state, the base station needs to handover to a cell or another frequency other than the current cell or frequency. In this case, the MBMS service may not proceed in another cell or frequency that moves, and a problem may occur in the MBMS service continuity.
네트워크 혼잡을 인지한 경우에는 기지국은 MBMS 서비스와 관련된 단말들에 대하여 네트워크 혼잡을 해결할 수 있어야 한다. 또는 기지국은 MBMS 서비스가 고려되지 않는 통신 상황에서 네트워크 혼잡이 감지된 경우에도, MBMS 서비스에 관심이 있거나 MBMS 서비스를 수신 중인 단말에 대한 정보를 파악할 수 있어야 한다. 여기서, MBMS 서비스에 관심이 있거나 MBMS 서비스를 수신 중인 단말에 대한 정보란, MBMS 카운팅 절차(counting procedure)에서 사용되는 MBMS 관련 정보일 수 있다. When the network congestion is recognized, the base station should be able to solve the network congestion for the terminals related to the MBMS service. Alternatively, even when network congestion is detected in a communication situation where the MBMS service is not considered, the base station should be able to grasp information on the terminal interested in the MBMS service or receiving the MBMS service. Here, the information about the terminal interested in the MBMS service or receiving the MBMS service may be MBMS related information used in the MBMS counting procedure.
이하에서 기지국이 네트워크 혼잡을 감지한 후, 이를 해결하는 방법으로서 2가지 실시예가 개시된다. Hereinafter, after the base station detects network congestion, two embodiments are disclosed as a method of solving the network congestion.
<제1 실시예><First Embodiment>
기지국은 네트워크 혼잡을 감지한 상태에서 MBMS 서비스를 수신 중이거나 수신하고자 하는 단말에 대하여 네트워크 혼잡을 통보할 수 있다. The base station may notify the network congestion to the terminal receiving or to receive the MBMS service in the state of detecting the network congestion.
도 7은 본 발명의 일 예에 따른 기지국에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.7 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
도 7을 참조하면, 특정 주파수에서 MBMS 서비스를 제공하는 기지국은 네트워크 혼잡을 인지한다(S700). 기지국이 네트워크 혼잡을 인지하는 방법은 여러가지가 있을 수 있다. 일 예로서, MBMS 서비스를 수신하는 연결 모드 단말의 수를 수집하는 MBMS 카운팅 절차를 기지국이 이용함으로써, 기지국은 네트워크 혼잡을 인지할 수 있다. MBMS 카운팅 절차에 의해 수집된 단말의 개수에 기반하여 네트워크 혼잡 여부를 판단할 경우, 기지국은 다음과 같이 판단할 수 있다. 예를 들어 일정한 임계 개수 이상의 단말이 MBMS 서비스를 수신하고 있는 상태임을 인지하면, MBMS 서비스를 위한 단말의 개수가 예상수준 이상이므로, 네트워크 혼잡이 발생하였다고 여겨질 수 있다. 나아가 MBMS 서비스의 수신을 위해 특정 주파수의 셀에 접속하면서, 유니캐스트 서비스의 수신을 위해 연결 모드로 동작하는 단말의 개수 정보도 기지국은 알 수 있다.Referring to FIG. 7, a base station providing an MBMS service at a specific frequency recognizes network congestion (S700). There may be several ways for the base station to recognize network congestion. As an example, the base station may be aware of network congestion by using the MBMS counting procedure for collecting the number of connected mode terminals receiving the MBMS service. When determining whether the network is congested based on the number of terminals collected by the MBMS counting procedure, the base station may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, since the number of terminals for the MBMS service is higher than expected, it may be considered that network congestion has occurred. Furthermore, the base station may also know the number of terminals operating in the connected mode for the reception of the unicast service while accessing the cell of the specific frequency for the reception of the MBMS service.
다른 예로서, MBMS 우선권 정보에 기반하여 기지국은 네트워크 혼잡을 인지할 수 있다. 기지국은 MBMS 우선권 정보 등을 단말로부터 수신함으로써 단말의 MBMS 관련 정보를 획득할 수 있다. As another example, the base station may be aware of network congestion based on the MBMS priority information. The base station may obtain MBMS related information of the terminal by receiving MBMS priority information and the like from the terminal.
또 다른 예로서, 특정 MBMS 서비스를 수신하기 위하여 특정한 셀로 셀 변경을 수행한 단말에 대한 정보에 기반하여, 기지국은 네트워크 혼잡을 인지할 수 있다. 물론 기지국은 네트워크 혼잡이 발생함을 알 수는 있어도, 네트워크 혼잡의 원인을 제공한 것이 어떠한 상황인지를 정확히 인지하는데는 한계가 있을 수 있다. As another example, the base station may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service. Of course, even though the base station may know that network congestion occurs, there may be a limit in accurately knowing what kind of situation provides the cause of network congestion.
네트워크 혼잡을 인지하면, 기지국은 혼잡 통보 지시자(congestion notifying indicator)를 단말로 전송한다(S705). 혼잡 통보 지시자는 기지국이 네트워크 혼잡을 인지하였음을 단말에 통보하는 정보이다. 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함한다. 혼잡 상태 정보는 다수의 MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태를 표시할 수도 있다. 한편, 혼잡 통보 지시자는 MBMS 관련 정보를 더 포함할 수 있다. Upon recognition of network congestion, the base station transmits a congestion notifying indicator to the terminal (S705). The congestion notification indicator is information for notifying the terminal that the base station has recognized the network congestion. The congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided. The congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services. Meanwhile, the congestion notification indicator may further include MBMS related information.
여기서, MBMS 관련 정보는 단말이 수신 중인 MBMS 서비스가 제공되는 주파수(이하, MBMS 주파수)를 알려주는 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스와 동일한 서비스를 제공하는 다른 주파수를 알려주는 대체(alternative) 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스 종류를 리스트로 표시하는 MBMS 종류 리스트, 각 MBMS 서비스의 세션 개시 타이밍 정보, 각 MBMS 서비스가 제공되는 지리적 영역(geographical area) 정보 중 적어도 하나를 포함한다. 주파수 정보 또는 대체 주파수 정보는 단말에 지원가능한 네트워크 동작대역(E-UTRA operating band)을 인덱스로 표시하는 아래의 표에서, 어느 하나의 인덱스를 지시할 수 있다. Here, the MBMS-related information may include frequency information indicating a frequency (hereinafter, referred to as MBMS frequency) at which the UE receives the MBMS service, and alternative information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency. alternative) at least one of frequency information, an MBMS type list indicating a type of MBMS service provided through the MBMS frequency, a session start timing information of each MBMS service, and geographical area information provided by each MBMS service; Include. The frequency information or the alternative frequency information may indicate any one index in the following table indicating an E-UTRA operating band supported by the terminal as an index.
표 1
Figure PCTKR2012009175-appb-T000001
Table 1
Figure PCTKR2012009175-appb-T000001
표 1을 참조하면, 네트워크 동작대역은 1~43까지의 인덱스로 식별된다. 네트워크 동작대역 1~32까지는 주파수 분할 듀플렉스(frequency division duplex: FDD) 모드에서 지원되는 동작대역이고, 네트워크 동작대역 33~43까지는 시간 분할 듀플렉스(time division duplex: TDD) 모드에서 지원되는 동작대역이다. 각 네트워크 동작대역은 상향링크 동작대역과 하향링크 동작대역으로 세분화될 수 있다. 상향링크 동작대역은 최저 대역(FUL_Low)과 최고 대역(FUL_High)으로 한정되고, 하향링크 동작대역은 최저 대역(FDL_Low)과 최고 대역(FDL_High)으로 한정된다. Referring to Table 1, network operating bands are identified by indices of 1 to 43. Network operating bands 1 to 32 are operating bands supported in frequency division duplex (FDD) mode, and network operating bands 33 to 43 are operating bands supported in time division duplex (TDD) mode. Each network operating band may be divided into an uplink operating band and a downlink operating band. The uplink operating band is limited to the lowest band (F UL_Low ) and the highest band (F UL_High ), and the downlink operating band is limited to the lowest band (F DL_Low ) and the highest band (F DL_High ).
한편, MBMS 종류 리스트는 각 MBMS 서비스에 대응하는 임시 이동 그룹 식별자(temporary mobile group identity: TMGI)를 나열할 수 있다. 혼잡 통보 지시자는 연결 모드인 각 단말에 전용인(dedicated) RRC 메시지를 통하여 전송될 수 있다. 예를 들어, 상기 RRC 메시지는 RRC 연결 재구성(connection reconfiguration) 메시지를 포함한다. 또는, 혼잡 통보 지시자는 다수의 단말에 공통적으로(commonly) 적용되는 시스템 정보를 통해 전송될 수 있다. 예를 들어, 혼잡 통보 지시자는 논리채널인 BCCH 또는 MCCH를 통하여 전송된다. On the other hand, the MBMS type list may list a temporary mobile group identity (TMGI) corresponding to each MBMS service. The congestion notification indicator may be transmitted through an RRC message dedicated to each terminal in the connected mode. For example, the RRC message includes an RRC connection reconfiguration message. Alternatively, the congestion notification indicator may be transmitted through system information commonly applied to a plurality of terminals. For example, the congestion notification indicator is transmitted on the BCCH or MCCH which is a logical channel.
혼잡 통보 지시자를 수신하면, 단말은 MBMS 서비스가 제공되는 특정 MBMS 주파수에서 네트워크 혼잡이 발생하였음을 알 수 있다. 단말은 네트워크 혼잡에 대해 반응하도록 예정된 몇 가지 동작(operation)들 중에 적어도 하나를 선택적으로 수행한다. 예를 들어 단말이 혼잡 응답 정보를 전송하면, 기지국은 혼잡 응답 정보를 단말로부터 수신한다(S710). When the congestion notification indicator is received, the UE may know that network congestion has occurred at a specific MBMS frequency provided with the MBMS service. The terminal selectively performs at least one of several operations intended to respond to network congestion. For example, when the terminal transmits the congestion response information, the base station receives the congestion response information from the terminal (S710).
일 예로서, 혼잡 응답 정보는 단말의 연결 모드를 해제하기 위한 RRC 연결 해제 요청 메시지에 포함된다. As one example, the congestion response information is included in the RRC connection release request message for releasing the connected mode of the terminal.
다른 예로서, 혼잡 응답 정보는 핸드오버의 판단에 사용되는 측정보고(measurement report)에 포함된다. As another example, the congestion response information is included in a measurement report used to determine handover.
혼잡 응답 정보는 측정보고와 같은 특정한 메시지에 전송될 수 있지만, 이에 한정되지 않고 혼잡 응답 정도 등의 MBMS 관련 보조 정보(assistant information)을 전송하는 메시지에 포함되어 전송될 수도 있다.Congestion response information may be transmitted in a specific message such as a measurement report, but is not limited thereto and may be included in a message for transmitting MBMS-related assistant information such as a degree of congestion response.
기지국은 혼잡 응답 정보에 기반하여, 혼잡 해결 정보(congestion resolution information)를 단말로 전송한다(S715). 혼잡 해결 정보는 지정된 방식에 따라 네트워크 혼잡에 대응할 것을 기지국이 단말에 지시하는 정보이다. The base station transmits congestion resolution information to the terminal based on the congestion response information (S715). The congestion resolution information is information that the base station instructs the terminal to correspond to network congestion in a designated manner.
일 예로서, 혼잡 해결 정보는 단말의 연결 모드를 해제하기 위한 RRC 연결 해제 메시지에 포함된다. As one example, the congestion resolution information is included in the RRC connection release message for releasing the connection mode of the terminal.
다른 예로서, 혼잡 해결 정보는 단말이 타겟 기지국(target eNB)로 핸드오버를 수행할 것을 기지국이 단말에 지시하는 핸드오버 명령 메시지에 포함된다.As another example, the congestion resolution information is included in a handover command message instructing the base station to the terminal to perform handover to the target eNB.
기지국은 단말과의 RRC 연결을 해제하고, 단말에 할당되는 무선자원을 해제한다(S720). 여기서, 상기 해제되는 무선자원은 단말에 전용하는 유니캐스트 서비스용 자원을 포함한다. 무선자원이 해제됨으로써, 네트워크 혼잡이 줄어들 수 있다. 무선자원이 해제되더라도 단말은 MBMS 서비스를 지속적으로 수신할 수 있으며, 이로써 MBMS 서비스의 연속성 및 서비스의 품질(Quality of Service: QoS)이 보장될 수 있다. The base station releases the RRC connection with the terminal, and releases the radio resources allocated to the terminal (S720). Here, the released radio resource includes a resource for unicast service dedicated to the terminal. By releasing radio resources, network congestion can be reduced. Even if the radio resource is released, the UE may continuously receive the MBMS service, thereby ensuring continuity of the MBMS service and quality of service (QoS).
도 8은 본 발명의 일 예에 따른 단말에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.8 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
도 8을 참조하면, 특정 주파수에서 MBMS 서비스를 수신하는 단말은 혼잡 통보 지시자를 기지국으로부터 수신한다(S800). 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함한다. 혼잡 상태 정보는 다수의 MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태를 표시할 수도 있다. 한편, 혼잡 통보 지시자는 MBMS 관련 정보를 더 포함할 수 있다. Referring to FIG. 8, the terminal receiving the MBMS service at a specific frequency receives a congestion notification indicator from the base station (S800). The congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided. The congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services. Meanwhile, the congestion notification indicator may further include MBMS related information.
MBMS 관련 정보는 MBMS 주파수를 알려주는 주파수 정보, 대체 주파수 정보, MBMS 종류 리스트, 각 MBMS 서비스의 세션 개시 타이밍 정보, 각 MBMS 서비스가 제공되는 지리적 영역 정보 중 적어도 하나를 포함한다. 주파수 정보 또는 대체 주파수 정보는 단말에 지원가능한 네트워크 동작대역을 인덱스로 표시하는 상기 표 1에서, 어느 하나의 인덱스를 지시할 수 있다. The MBMS related information includes at least one of frequency information indicating an MBMS frequency, alternative frequency information, a list of MBMS types, session start timing information of each MBMS service, and geographic area information provided by each MBMS service. The frequency information or the alternative frequency information may indicate any one of the indexes in Table 1, which indicates the network operating bands supported by the terminal as an index.
혼잡 통보 지시자는 연결 모드인 각 단말에 전용인(dedicated) RRC 메시지를 통하여 전송될 수 있다. 예를 들어, 상기 RRC 메시지는 RRC 연결 재구성(connection reconfiguration) 메시지를 포함한다. 또는, 혼잡 통보 지시자는 다수의 단말에 공통적으로(commonly) 적용되는 시스템 정보를 통해 전송될 수 있다. 예를 들어, 혼잡 통보 지시자는 논리채널인 BCCH 또는 MCCH를 통하여 전송된다. The congestion notification indicator may be transmitted through an RRC message dedicated to each terminal in the connected mode. For example, the RRC message includes an RRC connection reconfiguration message. Alternatively, the congestion notification indicator may be transmitted through system information commonly applied to a plurality of terminals. For example, the congestion notification indicator is transmitted on the BCCH or MCCH which is a logical channel.
혼잡 통보 지시자를 수신하면, 단말은 MBMS 서비스가 제공되는 특정 MBMS 주파수에서 네트워크 혼잡이 발생하였음을 알 수 있다. 단말은 네트워크 혼잡에 대해 반응하도록 예정된 몇 가지 동작들 중에 적어도 하나를 선택적으로 수행한다. 예를 들어, 단말은 네트워크 혼잡이 큰 문제가 되지 않는다고 판단하면, 무응답의 동작을 취할 수 있다. 또는 단말은 네트워크 혼잡을 회피해야 한다고 판단하면, 특정한 메시지를 담은 혼잡 응답 정보를 생성하여 기지국으로 전송한다(S805). When the congestion notification indicator is received, the UE may know that network congestion has occurred at a specific MBMS frequency provided with the MBMS service. The terminal optionally performs at least one of several operations intended to respond to network congestion. For example, if the terminal determines that network congestion is not a big problem, it can take an unresponsive operation. Alternatively, if the terminal determines that network congestion should be avoided, the terminal generates congestion response information containing a specific message and transmits it to the base station (S805).
일 예로서, 혼잡 응답 정보는 단말의 연결 모드를 해제하기 위한 RRC 연결 해제 요청 메시지에 포함된다. As one example, the congestion response information is included in the RRC connection release request message for releasing the connected mode of the terminal.
다른 예로서, 혼잡 응답 정보는 핸드오버의 판단에 사용되는 측정보고(measurement report)에 포함된다. As another example, the congestion response information is included in a measurement report used to determine handover.
단말은 혼잡 해결 정보를 기지국으로부터 수신한다(S810). 혼잡 해결 정보는 지정된 방식에 따라 네트워크 혼잡에 대응할 것을 기지국이 단말에 지시하는 정보이다. 일 예로서, 혼잡 해결 정보는 단말의 연결 모드를 해제하기 위한 RRC 연결 해제 메시지에 포함된다. 다른 예로서, 혼잡 해결 정보는 단말이 타겟 기지국(target eNB)로 핸드오버를 수행할 것을 기지국이 단말에 지시하는 핸드오버 명령 메시지에 포함된다. The terminal receives congestion resolution information from the base station (S810). The congestion resolution information is information that the base station instructs the terminal to correspond to network congestion in a designated manner. As one example, the congestion resolution information is included in the RRC connection release message for releasing the connection mode of the terminal. As another example, the congestion resolution information is included in a handover command message instructing the base station to the terminal to perform handover to the target eNB.
혼잡 해결 정보를 수신하면, 단말은 현재 진행되고 있는 유니캐스트 서비스를 해제하고, 휴지 모드(idle mode)로 진입한다(S815). 휴지 모드로 동작하더라도, 단말은 MBMS 서비스를 지속적으로 수신할 수 있다. 이때, 단말은 대체 주파수 정보를 참조하여 셀 재선택에 의해 다른 주파수(또는 셀)로 이동하고, 상기 다른 주파수를 통해 MBMS 서비스를 수신할 수 있다. 또는, 단말은 MBMS 서비스 수신을 포기 하고 다른 셀로 핸드오버할 수 있다. 이로써 MBMS 서비스의 연속성 및 서비스의 품질(Quality of Service: QoS)이 보장될 수 있다. Upon receiving the congestion resolution information, the terminal releases the current unicast service and enters an idle mode (S815). Even in the idle mode, the UE may continuously receive the MBMS service. In this case, the terminal may move to another frequency (or cell) by cell reselection with reference to the alternative frequency information, and receive the MBMS service through the other frequency. Alternatively, the terminal may give up the MBMS service reception and handover to another cell. As a result, the continuity of the MBMS service and the quality of service (QoS) can be guaranteed.
도 9는 본 발명의 일 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.9 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to an embodiment of the present invention.
도 9를 참조하면, 네트워크 혼잡을 인지한 기지국은 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 단말로 전송한다(S900). 여기서, 단말은 연결 모드이고, MBMS 서비스를 다른 유니캐스트 서비스보다 높은 우선순위를 부여한다. 따라서, 단말은 혼잡 응답 정보를 기지국으로 전송한다(S905). 기지국은 혼잡 해결 정보를 단말로 전송한다(S910). 9, the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S900). In this case, the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services. Therefore, the terminal transmits congestion response information to the base station (S905). The base station transmits congestion resolution information to the terminal (S910).
도 10은 본 발명의 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다. 이는 도 9의 구체화된 일 예이다. 10 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is an example embodiment of FIG. 9.
도 10을 참조하면, 혼잡제어는 RRC 연결 해제 절차를 이용하여 수행된다. 예를 들어, 네트워크 혼잡을 인지한 기지국은 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 단말로 전송한다(S1000). 여기서, 단말은 연결 모드이고, MBMS 서비스를 다른 유니캐스트 서비스보다 높은 우선순위를 부여한다. Referring to FIG. 10, congestion control is performed using an RRC connection release procedure. For example, the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1000). In this case, the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services.
이때, MBMS 서비스를 계속적으로 수신하기 위하여 단말은 연결 모드를 해제, 다시 말해 유니캐스트 서비스를 해제할 수 있다. 따라서, 단말은 혼잡 통보 지시자에 대한 응답으로서 RRC 연결 해제 요청 메시지를 기지국으로 전송한다(S1005). 단말의 RRC 연결 해제 요청 메시지를 수신하면, 기지국은 RRC 연결의 해제를 지시하는 RRC 연결 해제 메시지를 단말로 전송한다(S1010). 이로써 단말은 연결 모드로부터 휴지 모드로 전환된다. 이후에 MBMS 서비스와 유니캐스트 서비스의 우선순위가 변경되더라도 네트워크 혼잡이 일정 수준으로 감소하기 전(즉, 네트워크 혼잡의 종료 전)까지는 단말에 대해 RRC 연결을 재설정(reestablishment)할 수 없다. 혹은 네트워크 혼잡의 종료 전까지는 네트워크는 단말의 RRC 연결 재설정(reestablishment) 혹은 RRC 연결 요구(connection establishment request)에 대하여 설정 요구를 거부할 수 있다.In this case, in order to continuously receive the MBMS service, the terminal may release the connection mode, that is, release the unicast service. Therefore, the terminal transmits an RRC connection release request message to the base station as a response to the congestion notification indicator (S1005). When receiving the RRC connection release request message of the terminal, the base station transmits an RRC connection release message indicating the release of the RRC connection to the terminal (S1010). As a result, the terminal switches from the connected mode to the idle mode. Thereafter, even if the priority of the MBMS service and the unicast service is changed, the RRC connection cannot be reestablished for the terminal until the network congestion decreases to a certain level (that is, before the end of the network congestion). Alternatively, until the network congestion ends, the network may reject a configuration request for an RRC connection reestablishment or an RRC connection establishment request of the terminal.
이때, 단말은 MBMS 관련 정보에 포함된 대체 주파수 정보를 사용하여, 현재 수신 중인 MBMS 서비스를 다른 주파수에서도 수신할 수 있는지 판단하고, 만약 다른 주파수를 통해서도 동일한 MBMS 서비스를 제공받을 수 있다면, 단말은 상기 다른 주파수(또는 타겟 기지국)로 핸드오버를 수행할 수 있다. 바람직하게는 상기 다른 주파수는 네트워크 혼잡이 존재하지 않아야 한다. 이때, 비록 단말은 MBMS 서비스를 유니캐스트 서비스에 비해 높은 우선순위로서 관리하고 있지만 단말의 성능(capability) 등에 따라서 MBMS 서비스 연속성 지원을 위한 유연성 및 주파수 이용의 효율성을 증대하도록 하기 위함이다.In this case, the terminal determines whether the MBMS service currently being received can be received at another frequency by using the alternative frequency information included in the MBMS related information, and if the same MBMS service can be provided through another frequency, the terminal can Handover may be performed at another frequency (or target base station). Preferably said other frequency should be free of network congestion. In this case, although the UE manages the MBMS service as a higher priority than the unicast service, it is to increase the flexibility and efficiency of using the frequency to support the MBMS service continuity according to the capability of the UE.
도 11은 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다. 이는 도 9의 구체화된 다른 예이다. 11 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is another example embodied in FIG.
도 11을 참조하면, 혼잡제어는 핸드오버 절차를 이용하여 수행된다. 예를 들어, 네트워크 혼잡을 인지한 기지국은 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 단말로 전송한다(S1100). 이때 단말은 연결 모드이다. 도 10과 달리 도 11에서는 단말이 MBMS 서비스를 다른 유니캐스트 서비스보다 높은 우선순위를 부여할 것을 요구하지 않는다. 왜냐하면 MBMS 서비스에 관심이 없거나 유니캐스트 서비스에 더 높은 우선순위를 부여하는 단말의 경우에는 오히려 현재의 MBMS 주파수에 머무르는 것 보다 인접셀(neighbor cell)로 핸드오버하는 것이 네트워크 혼잡의 해결에 도움이 될 수 있기 때문이다. 따라서, 유니캐스트에 높은 우선순위를 부여하는 단말이 혼잡 통보 지시자를 수신하였을 경우에 인접셀로 핸드오버가 가능한 것으로 판단할 수 있다. Referring to FIG. 11, congestion control is performed using a handover procedure. For example, the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1100). At this time, the terminal is in the connected mode. Unlike FIG. 10, in FIG. 11, the UE does not require the MBMS service to be given a higher priority than other unicast services. For UEs that are not interested in MBMS service or give higher priority to unicast service, handover to neighbor cell rather than staying at current MBMS frequency may be helpful in resolving network congestion. Because it can. Accordingly, when a terminal giving a high priority to unicast receives a congestion notification indicator, it may be determined that handover is possible to an adjacent cell.
단말은 MBMS 관련 정보에 포함된 대체 주파수 정보를 사용하여, 현재 수신 중인 MBMS 서비스를 다른 주파수에서도 수신할 수 있는지 판단하고, 만약 다른 주파수를 통해서도 동일한 MBMS 서비스를 제공받을 수 있다면, 단말은 상기 다른 주파수(또는 타겟 기지국)로 핸드오버를 수행할 수 있다. 바람직하게는 상기 다른 주파수는 네트워크 혼잡이 존재하지 않아야 한다. The UE determines whether the MBMS service currently being received can be received at another frequency using the alternative frequency information included in the MBMS-related information, and if the UE can be provided with the same MBMS service through another frequency, the UE can receive the other frequency. (Or the target base station) may perform a handover. Preferably said other frequency should be free of network congestion.
이를 위해, 단말은 현재 수신 중인 MBMS 서비스의 주파수에 대해 측정을 수행하고, 그 결과인 측정 보고를 기지국으로 전송한다(S1105). To this end, the terminal performs measurement on the frequency of the MBMS service currently being received, and transmits the result of the measurement report to the base station (S1105).
기지국은 X2 인터페이스를 통해 타겟 기지국으로 핸드오버(HandOver: HO) 준비요청을 전송하고(S1106), 핸드오버 준비요청을 수신한 타겟 기지국은 핸드오버(HO) 준비응답을 기지국으로 전송한다(S1107).The base station transmits a handover (HO) preparation request to the target base station through the X2 interface (S1106), and the target base station receiving the handover preparation request transmits a handover (HO) preparation response to the base station (S1107). .
핸드오버 준비응답을 타겟 기지국으로부터 수신하면, 기지국은 핸드오버 명령 메시지를 단말로 전송한다(S1110). When the handover preparation response is received from the target base station, the base station transmits a handover command message to the terminal (S1110).
한편, 반송파 집성(Carrier Aggregation: CA)을 지원하는 단말의 경우, 동일 MBMS 서비스가 진행되는 MBMS 주파수가 집성 가능한 요소 반송파(component carrier: CC)일 수 있다. 이때에는 MBMS 서비스를 상기 CC를 통해 수신하면서, 다른 CC를 통해 유니캐스트 서비스를 수신할 수 있다. 또는 현재 네트워크 혼잡이 발생한 CC 이외에 동일 MBMS 서비스를 제공하는 다른 주파수나 다른 CC를 단말에 새롭게 구성할 수도 있다. 이때, CC 등에서 MBMS 서비스가 지원되는지 혹은 MBMS 가 지원되는 CC 별로 가능한 MBMS 서비스에 대한 정보는 주서빙셀(Primary serving cell: PCell) 혹은 주요소 반송파(primary CC: PCC) 혹은 셀에서 단말에 전송될 수 있다. 이때, MBMS 관련 CC 정보는 CC 구성 메시지에 포함될 수 있다. CC 구성 메시지는 RRC 재구성 메시지일 수 있다.Meanwhile, a terminal supporting carrier aggregation (CA) may be a component carrier (CC) in which an MBMS frequency in which the same MBMS service is performed may be aggregated. In this case, while receiving an MBMS service through the CC, it is possible to receive a unicast service through another CC. Alternatively, another frequency or another CC that provides the same MBMS service may be newly configured in the terminal in addition to the CC where the current network congestion occurs. In this case, whether the MBMS service is supported in the CC or the like, information on the MBMS service available for each CC supported by the MBMS may be transmitted from the primary serving cell (PCell) or the primary CC (PCC) or cell to the terminal. have. In this case, the MBMS-related CC information may be included in the CC configuration message. The CC configuration message may be an RRC reconfiguration message.
도 12는 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다.12 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention.
도 12를 참조하면, 네트워크 혼잡을 인지한 기지국은 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 단말로 전송한다(S1200). 여기서, 단말은 연결 모드이고, MBMS 서비스를 다른 유니캐스트 서비스보다 높은 우선순위를 부여한다. 이후 기지국은 혼잡 해결 정보를 단말로 전송한다(S1205). 이는 도 9에서의 혼잡제어와 달리 혼잡 응답 정보의 전송절차가 제외된다. Referring to FIG. 12, the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1200). In this case, the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services. Thereafter, the base station transmits congestion resolution information to the terminal (S1205). Unlike the congestion control in FIG. 9, this excludes the transmission procedure of the congestion response information.
도 13은 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다. 이는 도 12의 구체화된 일 예이다. 13 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is an example embodiment of FIG.
도 13을 참조하면, 혼잡제어는 변형된 RRC 연결 해제 절차를 이용하여 수행된다. 예를 들어, 네트워크 혼잡을 인지한 기지국은 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 단말로 전송한다(S1300). 여기서, 단말은 연결 모드이고, MBMS 서비스를 다른 유니캐스트 서비스보다 높은 우선순위를 부여한다. Referring to FIG. 13, congestion control is performed using a modified RRC connection release procedure. For example, the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1300). In this case, the terminal is in the connected mode, and gives the MBMS service higher priority than other unicast services.
그리고 기지국은 RRC 연결의 해제를 지시하는 RRC 연결 해제 메시지를 단말로 전송한다(S1305). 이로써 단말은 연결 모드로부터 휴지 모드로 전환된다. 이후에 MBMS 서비스와 유니캐스트 서비스의 우선순위가 변경되더라도 네트워크 혼잡이 일정 수준으로 감소하기 전(즉, 네트워크 혼잡의 종료 전)까지는 단말에 대해 RRC 연결을 재설정(reestablishment)할 수 없다. 혹은 네트워크 혼잡의 종료 전까지는 네트워크는 단말의 RRC 연결 재설정(reestablishment) 혹은 RRC 연결 요구(connection establishment request)에 대하여 설정 요구를 거부할 수 있다.The base station transmits an RRC connection release message to the terminal instructing release of the RRC connection (S1305). As a result, the terminal switches from the connected mode to the idle mode. Thereafter, even if the priority of the MBMS service and the unicast service is changed, the RRC connection cannot be reestablished for the terminal until the network congestion decreases to a certain level (that is, before the end of the network congestion). Alternatively, until the network congestion ends, the network may reject a configuration request for an RRC connection reestablishment or an RRC connection establishment request of the terminal.
도 14는 본 발명의 또 다른 예에 따른 단말과 기지국간에 이루어지는 혼잡제어 방법을 나타내는 흐름도이다. 이는 도 12의 구체화된 다른 예이다. 14 is a flowchart illustrating a congestion control method performed between a terminal and a base station according to another embodiment of the present invention. This is another embodiment embodied in FIG.
도 14를 참조하면, 혼잡제어는 변형된 핸드오버 절차를 이용하여 수행된다. 예를 들어, 네트워크 혼잡을 인지한 기지국은 MBMS 관련 정보를 포함하는 혼잡 통보 지시자를 단말로 전송한다(S1400). 이때 단말은 연결 모드이다. 기지국은 핸드오버 명령 메시지를 단말로 전송한다(S1405). 이로써, 단말은 다른 기지국 또는 다른 기지국에 의해 제공되는 셀로 핸드오버한다. 상기 셀은 핸드오버 이전에 단말이 수신하던 MBMS 서비스와 동일한 MBMS 서비스를 제공한다. Referring to FIG. 14, congestion control is performed using a modified handover procedure. For example, the base station that recognizes network congestion transmits a congestion notification indicator including MBMS related information to the terminal (S1400). At this time, the terminal is in the connected mode. The base station transmits a handover command message to the terminal (S1405). As a result, the UE hands over to a cell provided by another base station or another base station. The cell provides the same MBMS service as the MBMS service received by the UE before handover.
도 15는 본 발명에 따른 혼잡제어를 수행하는 단말과 기지국을 도시한 블록도이다.15 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
도 15를 참조하면, 단말(1500)은 RF부(1505) 및 단말 프로세서(1510)를 포함한다. 그리고 단말 프로세서(1510)는 메시지 처리부(1511) 및 통신 제어부(1512)를 포함한다. 여기서, 단말(1500)은 연결 모드와 휴지 모드 중 어느 하나로 동작할 수 있다. Referring to FIG. 15, the terminal 1500 includes an RF unit 1505 and a terminal processor 1510. The terminal processor 1510 includes a message processor 1511 and a communication controller 1512. Here, the terminal 1500 may operate in one of a connected mode and a idle mode.
RF부(1505)는 특정 주파수에서 제공되는 MBMS 서비스, MBMS 관련 정보를 포함하는 혼잡 통보 지시자, 또는 혼잡 해결 정보를 기지국(1550)으로부터 수신한다. 또한, RF부(1505)는 메시지 처리부(1511)에 의해 생성된 혼잡 응답 정보를 기지국(1550)으로 전송한다.The RF unit 1505 receives an MBMS service provided at a specific frequency, a congestion notification indicator including MBMS related information, or congestion resolution information from the base station 1550. In addition, the RF unit 1505 transmits the congestion response information generated by the message processing unit 1511 to the base station 1550.
메시지 처리부(1511)는 혼잡 통보 지시자에서 MBMS 관련 정보를 추출한다. 여기서, 추출되는 MBMS 관련 정보는 단말(1500)이 수신 중인 MBMS 서비스가 제공되는 MBMS 주파수를 알려주는 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스와 동일한 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스 종류를 리스트로 표시하는 MBMS 종류 리스트, 각 MBMS 서비스의 세션 개시 타이밍 정보, 각 MBMS 서비스가 제공되는 지리적 영역 정보 중 적어도 하나를 포함한다. 주파수 정보 또는 대체 주파수 정보는 단말에 지원가능한 네트워크 동작대역을 인덱스로 표시하는 상기 표 1에서, 어느 하나의 인덱스를 지시할 수 있다. The message processor 1511 extracts MBMS related information from the congestion notification indicator. Here, the extracted MBMS-related information is frequency information indicating the MBMS frequency provided by the MBMS service being received by the terminal 1500, and an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency. At least one of the information, an MBMS type list indicating a list of MBMS services provided through the MBMS frequency, session start timing information of each MBMS service, and geographic area information provided by each MBMS service. The frequency information or the alternative frequency information may indicate any one of the indexes in Table 1, which indicates the network operating bands supported by the terminal as an index.
메시지 처리부(1511)는 MBMS 관련 정보에 기반하여, 혼잡 통보 지시자에 대한 응답인 혼잡 응답 정보를 생성하여 RF부(1505)로 전달 수 있다. 일 예로서 혼잡 응답 정보는 RRC 연결 해제 요청 메시지에 포함된다. 다른 예로서 혼잡 응답 정보는 측정 보고에 포함된다. The message processor 1511 may generate congestion response information that is a response to the congestion notification indicator and transmit the congestion response information to the RF unit 1505 based on the MBMS-related information. As an example, the congestion response information is included in the RRC connection release request message. As another example, the congestion response information is included in the measurement report.
혼잡 응답 정보에 대한 응답으로서 RF부(1505)가 혼잡 해결 정보를 기지국(1550)으로부터 수신하면, 메시지 처리부(1511)는 혼잡 해결 정보가 지시하는 내용을 통신 제어부(1512)로 전달한다. 혼잡 해결 정보는 RRC 연결 해제 메시지에 포함된다. 이 경우, 메시지 처리부(1511)는 RRC 연결 해제 메시지의 지시에 따라, RRC 연결 해제를 통신 제어부(1512)로 지시한다. When the RF unit 1505 receives the congestion resolution information from the base station 1550 as a response to the congestion response information, the message processor 1511 transfers the content indicated by the congestion resolution information to the communication control unit 1512. Congestion resolution information is included in the RRC connection release message. In this case, the message processor 1511 instructs the communication controller 1512 to release the RRC connection according to the instruction of the RRC connection release message.
또는 혼잡 해결 정보는 핸드오버 명령 메시지에 포함된다. 이 경우, 메시지 처리부(1511)는 핸드오버 명령 메시지의 지시에 따라 핸드오버를 통신 제어부(1512)로 지시한다. Or the congestion resolution information is included in the handover command message. In this case, the message processing unit 1511 instructs the communication control unit 1512 to handover according to the instruction of the handover command message.
통신 제어부(1512)는 메시지 처리부(1511)의 지시에 따라, RRC 연결을 해제하고 단말(1500)을 연결 모드에서 휴지 모드로 전환한다. 즉, 통신 제어부(1512)는 더 이상 유니캐스트 서비스 관련 신호를 송신하거나 수신하지 않는다. 또는 통신 제어부(1512)는 메시지 처리부(1511)의 지시에 따라 MBMS 주파수를 측정하거나, 다른 기지국으로의 핸드오버를 수행하거나, MBMS 관련 정보를 이용하여 셀 재선택을 수행할 수 있다. The communication controller 1512 releases the RRC connection and switches the terminal 1500 from the connected mode to the idle mode according to the instruction of the message processor 1511. That is, the communication control unit 1512 no longer transmits or receives a unicast service related signal. Alternatively, the communication controller 1512 may measure the MBMS frequency, perform a handover to another base station, or perform cell reselection using MBMS-related information according to the instruction of the message processor 1511.
기지국(1550)은 RF부(1555) 및 기지국 프로세서(1560)를 포함한다. 기지국 프로세서(1560)는 혼잡 제어부(1561) 및 메시지 처리부(1562)를 포함한다. The base station 1550 includes an RF unit 1555 and a base station processor 1560. The base station processor 1560 includes a congestion control unit 1561 and a message processing unit 1562.
RF부(1555)는 특정 주파수에서 MBMS 서비스를 전송하고, 메시지 처리부(1561)에 의해 생성되는 MBMS 관련 정보를 포함하는 혼잡 통보 지시자와, 혼잡 해결 정보를 단말(1500)로 전송한다. 예를 들어, RF부(1555)는 RRC 연결 해제 메시지, 핸드오버 명령 메시지 중 하나를 통해 상기 혼잡 해결 정보를 전송할 수 있다. The RF unit 1555 transmits an MBMS service at a specific frequency, and transmits a congestion notification indicator including MBMS related information generated by the message processor 1561 and congestion resolution information to the terminal 1500. For example, the RF unit 1555 may transmit the congestion resolution information through one of an RRC connection release message and a handover command message.
또한, RF부(1555)는 혼잡 응답 정보를 단말(1500)로부터 수신한다. 예를 들어, RF부(1555)는 연결 모드의 해제를 요청하는 무선자원제어(radio resource control: RRC) 연결 해제 요청 메시지, 측정보고(measurement report)메시지, MBMS 관련 보조 정보(assistant information)을 전송하는 메시지 중 하나를 통해 상기 혼잡 응답 정보를 수신할 수 있다. In addition, the RF unit 1555 receives congestion response information from the terminal 1500. For example, the RF unit 1555 transmits a radio resource control (RRC) connection release request message, a measurement report message, and MBMS-related assistant information requesting release of the connection mode. The congestion response information may be received through one of the messages.
혼잡 제어부(1561)는 네트워크 혼잡을 인지한다. 혼잡 제어부(1561)가 네트워크 혼잡을 인지하는 방법은 여러가지가 있을 수 있다. 일 예로서, 혼잡 제어부(1561)는 MBMS 서비스를 수신하는 연결 모드 단말의 수를 수집하는 MBMS 카운팅 절차를 이용할 수 있다. MBMS 카운팅 절차에 의해 수집된 단말의 개수에 기반하여 네트워크 혼잡 여부를 판단할 경우, 혼잡 제어부(1561)는 다음과 같이 판단할 수 있다. 예를 들어 일정한 임계 개수 이상의 단말이 MBMS 서비스를 수신하고 있는 상태임을 인지하면, MBMS 서비스를 위한 단말의 개수가 예상수준 이상이므로, 네트워크 혼잡이 발생하였다고 판단한다. The congestion control unit 1561 recognizes network congestion. There may be various ways for the congestion control unit 1561 to recognize network congestion. As an example, the congestion control unit 1561 may use an MBMS counting procedure that collects the number of connected mode terminals receiving the MBMS service. When determining whether the network is congested based on the number of terminals collected by the MBMS counting procedure, the congestion control unit 1561 may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, it is determined that network congestion has occurred since the number of terminals for the MBMS service is higher than expected.
다른 예로서, 혼잡 제어부(1561)는 MBMS 우선권 정보에 기반하여 기지국은 네트워크 혼잡을 인지할 수 있다. 혼잡 제어부(1561)는 MBMS 우선권 정보 등을 단말(1500)로부터 수신함으로써 단말(1500)의 MBMS 관련 정보를 획득할 수 있다. As another example, the congestion control unit 1561 may recognize the network congestion based on the MBMS priority information. The congestion control unit 1561 may obtain MBMS-related information of the terminal 1500 by receiving MBMS priority information and the like from the terminal 1500.
또 다른 예로서, 특정 MBMS 서비스를 수신하기 위하여 특정한 셀로 셀 변경을 수행한 단말에 대한 정보에 기반하여, 혼잡 제어부(1561)는 네트워크 혼잡을 인지할 수 있다. As another example, the congestion control unit 1561 may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service.
혼잡 제어부(1561)가 네트워크 혼잡을 인지하면, 메시지 처리부(1562)가 혼잡 통보 지시자를 생성하도록 지시한다. 또한, 혼잡 제어부(1561)는 단말(1500)로부터 혼잡 응답 정보가 수신되면 메시지 처리부(1562)가 혼잡 해결 정보를 생성하도록 지시한다. When the congestion control unit 1561 is aware of network congestion, the message processing unit 1562 instructs to generate a congestion notification indicator. In addition, the congestion control unit 1561 instructs the message processing unit 1562 to generate congestion resolution information when the congestion response information is received from the terminal 1500.
메시지 처리부(1562)는 혼잡 제어부(1561)의 지시에 따라 혼잡 통보 지시자 또는 혼잡 해결 정보를 생성한다. 그리고 혼잡 제어부(1561)는 단말(1500)에 할당된 무선자원을 해제한다. 또한, 메시지 처리부(1562)는 특정 주파수를 알려주는 주파수 정보, MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함하는 MBMS 관련 정보를 생성할 수 있다. The message processing unit 1562 generates a congestion notification indicator or congestion resolution information according to the instruction of the congestion control unit 1561. The congestion control unit 1561 releases the radio resource allocated to the terminal 1500. In addition, the message processor 1562 includes at least one of frequency information indicating a specific frequency, alternative frequency information indicating another frequency for providing an MBMS service, and an MBMS type list indicating an MBMS service type provided through the specific frequency. MBMS related information can be generated.
또한, 메시지 처리부(1562)는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함하거나, MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태 정보를 포함하거나, MBMS 관련 정보를 더 포함하는 혼잡 통보 지시자를 생성할 수 있다.In addition, the message processing unit 1562 includes congestion state information indicating a network congestion state at a frequency where an MBMS service is provided, includes congestion state information for each frequency provided by each MBMS service, or further includes MBMS related information. Congestion notification indicators can be generated.
<제2 실시예>Second Embodiment
네트워크 혼잡을 해결하는 다른 실시예로서, 단말이 MBMS 서비스와 유니캐스트 서비스간의 우선순위를 미리 단말에 알려주어, 기지국이 네트워크 혼잡에 대처할 수 있도록 함으로써 네트워크 혼잡을 제어할 수도 있다. 이를 위해 기지국은 단말로부터 서비스 우선권(service priority)에 관한 정보를 수신하여야 한다.As another embodiment of solving the network congestion, the terminal may inform the terminal of the priority between the MBMS service and the unicast service in advance so that the base station can cope with the network congestion, thereby controlling the network congestion. To this end, the base station should receive information on service priority from the terminal.
도 16은 본 발명의 일 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 16 is a flowchart illustrating a method of performing congestion control according to an embodiment of the present invention.
도 16을 참조하면, 단말은 서비스 우선권 지시자를 기지국으로 전송한다(S1600). 서비스 우선권(service priority)이란, 단말에 대한 MBMS 서비스와 유니캐스트 서비스간의 우선순위를 의미하며, 서비스 우선권 지시자(service priority indicator)는 서비스 우선권을 지시하는 정보이다. 예를 들어, 서비스 우선권은 다음의 표와 같이 정의될 수 있다. Referring to FIG. 16, the terminal transmits a service priority indicator to the base station (S1600). The service priority means the priority between the MBMS service and the unicast service for the terminal, and the service priority indicator is information indicating service priority. For example, service priority may be defined as shown in the following table.
표 2
서비스 우선권 지시자 서비스 우선권
0 MBMS 서비스
1 유니캐스트 서비스
TABLE 2
Service priority indicator Service priority
0 MBMS Service
One Unicast Service
표 2를 참조하면, 서비스 우선권 지시자는 1비트로서 0이면 서비스 우선권이 MBMS 서비스에 있음을 의미하고, 1이면 서비스 우선권이 유니캐스트 서비스에 있음을 의미한다. 물론, 서비스 우선권 지시자가 지시하는 바는 반대로 바뀔 수도 있다. 또한, 서비스 우선권 지시자는 n비트로서 2n가지의 서비스들에 대한 우선권을 지시할 수도 있다. Referring to Table 2, if the service priority indicator is 1 bit, 0 means that the service priority is in the MBMS service, and 1 means that the service priority is in the unicast service. Of course, the indication of the service priority indicator may be reversed. The service priority indicator may also indicate priority for 2 n services as n bits.
한편, 서비스 우선권은 디폴트(default)로서 MBMS 서비스에 부여되거나, 유니캐스트 서비스에 부여될 수도 있다. 이를 디폴트 우선권(default priority)이라 한다. 이 경우 서비스 우선권 지시자는 다음의 표와 같이 이전 서비스 우선권의 변경(modification)을 의미할 수도 있다. On the other hand, service priority may be granted to the MBMS service as a default, or may be assigned to the unicast service. This is called the default priority. In this case, the service priority indicator may mean a modification of the previous service priority as shown in the following table.
표 3
서비스 우선권 지시자 서비스 우선권
비전송 이전 서비스 우선권 유지
전송 이전 서비스 우선권 변경
TABLE 3
Service priority indicator Service priority
No transfer Maintain transfer service priority
send Change Priority Service Priority
표 3을 참조하면, 서비스 우선권 지시자가 전송되지 않거나, 어떠한 시그널링이 없는 경우, 이전 서비스 우선권이 계속 유지됨을 의미한다. 그리고 서비스 우선권 지시자가 전송되는 경우, 이전 서비스 우선권이 변경됨을 의미한다. 단말은 서비스 우선권에 변경이 발생될 때마다 서비스 우선권 지시자를 기지국으로 전송할 수 있다. 다시 말해, 서비스 우선권 지시자는 우선권이 변경되었음을 통보하는 지시자로서 우선권의 전환을 의미하는 지시자로 사용될 수 있다.Referring to Table 3, when the service priority indicator is not transmitted or there is no signaling, it means that the previous service priority is maintained. If the service priority indicator is transmitted, it means that the previous service priority is changed. The terminal may transmit a service priority indicator to the base station whenever a change in service priority occurs. In other words, the service priority indicator may be used as an indicator indicating a change of priority as an indicator that the priority has been changed.
예를 들어, MBMS 서비스가 디폴트 우선권을 가진 상태에서 서비스 우선권이 변경되지 않으면, 단말은 서비스 우선권 지시자를 기지국으로 전송하지 않는다. 기지국의 관점에서, 서비스 우선권 지시자를 수신하지 않으면 기지국은 여전히 MBMS 서비스가 우선권을 가지는 것으로 판단한다. 만약 서비스 우선권이 변경되면, 단말은 서비스 우선권 지시자를 기지국으로 전송한다. 기지국의 관점에서, 서비스 우선권 지시자를 수신하면, 기지국은 서비스 우선권이 MBMS 서비스에서 유니캐스트 서비스로 변경된 것임을 알 수 있다. For example, if the service priority is not changed while the MBMS service has a default priority, the terminal does not transmit the service priority indicator to the base station. From the base station's point of view, if no service priority indicator is received, the base station still determines that the MBMS service has priority. If the service priority is changed, the terminal transmits a service priority indicator to the base station. From the point of view of the base station, upon receipt of the service priority indicator, the base station may know that the service priority has changed from MBMS service to unicast service.
또는, 반대로 유니캐스트 서비스가 디폴트 우선권을 가진 상태에서 서비스 우선권이 변경되지 않으면 단말은 서비스 우선권 지시자를 기지국으로 전송하지 않는다. 기지국의 관점에서, 서비스 우선권 지시자를 수신하지 않으면 기지국은 여전히 유니캐스트 서비스가 우선권을 가지는 것으로 판단한다. 만약 서비스 우선권이 변경되면, 단말은 서비스 우선권 지시자를 기지국으로 전송한다. 기지국의 관점에서, 서비스 우선권 지시자를 수신하면, 기지국은 서비스 우선권이 유니캐스트 서비스에서 MBMS 서비스로 변경된 것임을 알 수 있다. Alternatively, if the service priority is not changed while the unicast service has a default priority, the terminal does not transmit the service priority indicator to the base station. From the base station's point of view, if no service priority indicator is received, the base station still determines that the unicast service has priority. If the service priority is changed, the terminal transmits a service priority indicator to the base station. From the point of view of the base station, upon receiving the service priority indicator, the base station may know that the service priority has changed from unicast service to MBMS service.
이와 같이 단말은 서비스 우선권 지시자의 전송, 비전송으로써 기지국에게 서비스 우선권의 변경 또는 유지를 알려줄 수 있다. 그리고 서비스 우선권 지시자에 따라 기지국은 네트워크 혼잡 제어를 수행할 수 있다. As such, the terminal may inform the base station of the change or maintenance of the service priority by transmitting or not transmitting the service priority indicator. The base station may perform network congestion control according to the service priority indicator.
한편, 서비스 우선권 지시자는 MBMS 서비스와 유니캐스트 서비스와 같이 서로 다른 종류의 서비스간의 우선순위(이를 상위레벨 우선권이라 함)를 지시할 수도 있고, 추가적으로 동일한 종류의 서비스간에 우선순위(이를 하위레벨 우선권이라 함)를 알려줄 수도 있다. 일 예로서, 하위레벨 우선권은 유니캐스트 서비스들간의 우선순위를 포함한다. 예를 들어, 파일 전송 프로토콜(file transfer protocol: FTP), 메시징(messaging), 게임(game)과 같은 응용 서비스들간의 하위레벨 우선권이 서비스 우선권 지시자에 의해 지시될 수 있다. 다른 예로서, 하위레벨 우선권은 특정 사용자들간 또는 특정 서버(server)들간의 우선순위를 포함한다. 이때, 사용자는 식별자(identifier: ID)로 지정될 수 있고, 서버는 서버명으로 지정될 수 있다. 또는 이메일 주소(email address), 전화 번호 등이 사용될 수도 있다. On the other hand, the service priority indicator may indicate the priority (which is called a higher level priority) between different types of services such as MBMS service and unicast service, and additionally, priority between services of the same kind (low level priority). May be used). As an example, the lower level priority includes the priority between unicast services. For example, low-level priorities between application services such as file transfer protocol (FTP), messaging, and games may be indicated by the service priority indicator. As another example, lower level priorities include priorities between particular users or between particular servers. In this case, the user may be designated by an identifier, and the server may be designated by a server name. Alternatively, an email address, a telephone number, or the like may be used.
도 17은 본 발명의 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 17 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 17을 참조하면, 단말은 서비스 우선권 지시자를 기지국으로 전송한다(S1700). 단말은 MBMS 서비스와 유니캐스트 서비스를 수신한다. 서비스 우선권 지시자는 표 1과 같이 특정 서비스가 우선권을 가짐을 명시적으로 지시할 수 있다. 또는, 서비스 우선권 지시자는 표 2와 같이 서비스 우선권의 유지, 변경을 지시할 수 있다. 이 경우 디폴트 우선권은 MBMS 서비스가 가지는 것으로 가정한다. 서비스 우선권은 전술된 바와 같이 상위레벨 우선권(MBMS 서비스와 유니캐스트 서비스간의 우선순위) 및/또는 하위레벨 우선권(유니캐스트 서비스에 포함되는 다양한 응용 서비스들간의 우선순위)를 포함한다. 서비스 우선권 지시자는 기지국의 지시뿐만 아니라, 단말 자체의 판단에 의해서도 기지국으로 전송될 수 있다. 예를 들면, 사용자가 특정 서비스 등에 대한 기호 혹은 우선 순위 등이 변경되었을 경우 이에 대하여 단말은 기지국으로 이에 대한 변경 사실을 전송할 수 있다. 혹은 단말은 일정한 주기를 가지고 서비스 우선권 지시자를 기지국으로 전송할 수도 있다.Referring to FIG. 17, the terminal transmits a service priority indicator to the base station (S1700). The terminal receives the MBMS service and the unicast service. The service priority indicator may explicitly indicate that a particular service has priority as shown in Table 1. Alternatively, the service priority indicator may instruct maintenance or change of service priority as shown in Table 2. In this case, the default priority is assumed to be in MBMS service. Service priorities include high level priorities (priorities between MBMS services and unicast services) and / or low level priorities (priorities between various application services included in unicast services), as described above. The service priority indicator may be transmitted to the base station not only by the base station but also by the terminal itself. For example, when a user has changed a symbol or priority for a specific service, the terminal may transmit a change fact to the base station. Alternatively, the terminal may transmit the service priority indicator to the base station at regular intervals.
만약 네트워크 혼잡을 인지하면, 기지국은 유니캐스트 서비스를 해제하기 위하여 RRC 연결 해제 메시지를 단말로 전송한다(S1705). RRC 연결 해제 메시지는 MBMS 서비스가 제공되는 주파수인 MBMS 주파수(MBMSfreq) 정보를 포함할 수 있다. MBMS 주파수 정보는 MBMS 서비스에 우선권이 설정되어 있음을 원인으로 하여 RRC 연결을 명시적으로 해제함을 지시한다. RRC 연결 해제 메시지는 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스와 동일한 서비스를 제공하는 다른 주파수를 알려주는 대체(alternative) 주파수 정보를 더 포함할 수 있다. If the network congestion is recognized, the base station transmits an RRC connection release message to the terminal to release the unicast service (S1705). The RRC connection release message may include MBMS frequency (MBMSfreq) information, which is a frequency at which the MBMS service is provided. MBMS frequency information indicates that the RRC connection is explicitly released because the priority is set in the MBMS service. The RRC connection release message may further include alternative frequency information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency.
도 18은 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 18 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 18을 참조하면, 단말은 서비스 우선권 지시자를 기지국으로 전송한다(S1800). 단말은 MBMS 서비스와 유니캐스트 서비스를 수신한다. 서비스 우선권 지시자는 표 2와 같이 특정 서비스가 우선권을 가짐을 명시적으로 지시할 수 있다. 또는, 서비스 우선권 지시자는 표 3과 같이 서비스 우선권의 유지, 변경을 지시할 수 있다. 이 경우 디폴트 우선권은 MBMS 서비스가 가지는 것으로 가정한다. 서비스 우선권은 전술된 바와 같이 상위레벨 우선권(MBMS 서비스와 유니캐스트 서비스간의 우선순위) 및/또는 하위레벨 우선권(유니캐스트 서비스에 포함되는 다양한 응용 서비스들간의 우선순위)를 포함한다. 서비스 우선권 지시자는 기지국의 지시뿐만 아니라, 단말 자체의 판단에 의해서도 기지국으로 전송될 수 있다. Referring to FIG. 18, the terminal transmits a service priority indicator to the base station (S1800). The terminal receives the MBMS service and the unicast service. The service priority indicator may explicitly indicate that a particular service has priority as shown in Table 2. Alternatively, the service priority indicator may instruct maintenance or change of service priority as shown in Table 3. In this case, the default priority is assumed to be in MBMS service. Service priorities include high level priorities (priorities between MBMS services and unicast services) and / or low level priorities (priorities between various application services included in unicast services), as described above. The service priority indicator may be transmitted to the base station not only by the base station but also by the terminal itself.
하나의 시나리오는, 단말이 대체 주파수를 통해 동일한 MBMS 서비스가 제공됨을 알지 못하여, 현재 MBMS 주파수로 셀 변경을 수행하여 상기 MBMS 서비스를 수신하는 것이다. 이는 네트워크 혼잡의 하나의 원인이 될 수 있다. 단말이 대체 주파수 정보를 알 수 있다면 상기 대체 주파수로 셀 변경을 수행할 수 있고, 이로써 네트워크 혼잡이 해결될 수 있다. One scenario is that the UE does not know that the same MBMS service is provided through an alternative frequency, and performs the cell change to the current MBMS frequency to receive the MBMS service. This can be one cause of network congestion. If the UE knows the alternative frequency information, the cell can be changed to the alternative frequency, thereby congesting the network.
기지국은 대체 주파수에서도 MBMS 서비스가 진행됨을 알려주기 위해 시스템 정보 블록(system information block: SIB)을 단말로 전송한다(S1805). 시스템 정보 블록은 대체 주파수 정보 및 상기 대체 주파수에서의 네트워크 혼잡 상태정보를 포함한다. 시스템 정보 블록은 브로드캐스트 채널이나 MBMS 제어채널(MBMS control channel: MCCH)를 통해 전송될 수 있다. 시스템 정보 블록을 수신하면, 단말은 대체 주파수로 이동하여 동일한 MBMS 서비스를 끊김없이(seamlessly) 수신할 수 있다. The base station transmits a system information block (SIB) to the terminal to inform the MBMS that the MBMS service is performed even at the alternative frequency (S1805). The system information block includes alternate frequency information and network congestion state information at the alternate frequency. The system information block may be transmitted through a broadcast channel or an MBMS control channel (MCCH). Upon receiving the system information block, the terminal may move to an alternative frequency and seamlessly receive the same MBMS service.
도 19는 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다.  19 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 19를 참조하면, 단말은 서비스 우선권 지시자를 포함하는 RRC 연결 요청 메시지를 기지국으로 전송한다(S1900). RRC 연결 요청 메시지는 휴지 모드(idle mode)인 단말이 연결 모드(connected mode)로 전환하는데 사용되는 메시지이다. 서비스 우선권 지시자는 RRC 연결 절차에 사용되는 상기 RRC 연결 요청 메시지에 피기백(piggyback)되어 전송될 수 있다. Referring to FIG. 19, the terminal transmits an RRC connection request message including a service priority indicator to the base station (S1900). The RRC connection request message is a message used for the UE in idle mode to switch to the connected mode. The service priority indicator may be piggybacked on the RRC connection request message used in the RRC connection procedure and transmitted.
기지국은 RRC 연결 요청 메시지에 피기백된 서비스 우선권 지시자를 확인함으로써, 단말이 MBMS 서비스와 유니캐스트 서비스의 우선순위를 어떻게 설정하는지를 알 수 있다. 그리고 기지국은 서비스 우선권 지시자에 기반하여 단말의 RRC 연결 요청을 수용할지를 결정할 수 있다. 예를 들어, 네트워크 혼잡이 해소되지 않은 상황에서, MBMS 서비스에 우선권을 부여한 단말로부터 RRC 연결 요청 메시지를 수신하면, 기지국은 RRC 연결 요청을 거절(reject)할 수 있다. 왜냐하면 단말이 연결 모드로 전환되면 네트워크 혼잡이 가중될 것이기 때문이다. 반면 유니캐스트 서비스에 우선권을 부여한 단말로부터 RRC 연결 요청 메시지를 수신하면, 기지국은 RRC 연결 요청을 수용할 수 있다. The base station can know how the terminal sets the priority of the MBMS service and the unicast service by checking the service priority indicator piggybacked in the RRC connection request message. The base station may determine whether to accept the RRC connection request of the terminal based on the service priority indicator. For example, in a situation in which network congestion is not eliminated, when the RRC connection request message is received from the UE which gives priority to the MBMS service, the base station may reject the RRC connection request. This is because the network congestion will increase when the terminal is switched to the connected mode. On the other hand, if the RRC connection request message is received from the UE that gives priority to the unicast service, the base station may accept the RRC connection request.
RRC 연결 요청의 거절 또는 수용을 결정하면, 기지국은 해당 결정을 나타내는 RRC 연결 응답 메시지를 단말로 전송한다(S1905). RRC 연결 요청의 수용을 결정하면, RRC 연결 응답 메시지는 RRC 연결 설정 메시지이다. Upon determining rejection or acceptance of the RRC connection request, the base station transmits an RRC connection response message indicating the determination to the terminal (S1905). Upon determining acceptance of the RRC connection request, the RRC connection response message is an RRC connection establishment message.
도 20은 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다.  20 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 20을 참조하면, 네트워크 혼잡을 인지하면, 기지국은 혼잡 통보 지시자(congestion notifying indicator)를 단말로 전송한다(S2000). 혼잡 통보 지시자는 기지국이 네트워크 혼잡을 인지하였음을 단말에 통보하는 정보이다. 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함한다. 혼잡 상태 정보는 다수의 MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태를 표시할 수도 있다. 한편, 혼잡 통보 지시자는 MBMS 관련 정보를 더 포함할 수 있다. Referring to FIG. 20, upon recognition of network congestion, the base station transmits a congestion notifying indicator to the terminal (S2000). The congestion notification indicator is information for notifying the terminal that the base station has recognized the network congestion. The congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided. The congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services. Meanwhile, the congestion notification indicator may further include MBMS related information.
여기서, MBMS 관련 정보는 단말이 수신 중인 MBMS 서비스가 제공되는 주파수(이하, MBMS 주파수)를 알려주는 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스와 동일한 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스 종류를 리스트로 표시하는 MBMS 종류 리스트, 각 MBMS 서비스의 세션 개시 타이밍 정보, 각 MBMS 서비스가 제공되는 지리적 영역(geographical area) 정보 중 적어도 하나를 포함한다. 주파수 정보 또는 대체 주파수 정보는 단말에 지원가능한 네트워크 동작대역(E-UTRA operating band)을 인덱스로 표시하는 상기 표 1에서, 어느 하나의 인덱스를 지시할 수 있다. Here, the MBMS-related information is frequency information indicating a frequency (hereinafter, referred to as MBMS frequency) at which the UE receives the MBMS service, and an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency. And at least one of an MBMS type list indicating a type of MBMS service provided through the MBMS frequency, session initiation timing information of each MBMS service, and geographical area information provided by each MBMS service. The frequency information or the alternate frequency information may indicate any one of the indexes in Table 1 indicating an E-UTRA operating band that can be supported by the terminal as an index.
한편, MBMS 종류 리스트는 각 MBMS 서비스에 대응하는 임시 이동 그룹 식별자(temporary mobile group identity: TMGI)를 나열할 수 있다. On the other hand, the MBMS type list may list a temporary mobile group identity (TMGI) corresponding to each MBMS service.
혼잡 통보 지시자는 연결 모드인 각 단말에 전용인(dedicated) RRC 메시지를 통하여 전송될 수 있다. 예를 들어, 상기 RRC 메시지는 RRC 연결 재구성(connection reconfiguration) 메시지를 포함한다. 또는, 혼잡 통보 지시자는 다수의 단말에 공통적으로(commonly) 적용되는 시스템 정보를 통해 전송될 수 있다. 예를 들어, 혼잡 통보 지시자는 논리채널인 BCCH 또는 MCCH를 통하여 전송된다. The congestion notification indicator may be transmitted through an RRC message dedicated to each terminal in the connected mode. For example, the RRC message includes an RRC connection reconfiguration message. Alternatively, the congestion notification indicator may be transmitted through system information commonly applied to a plurality of terminals. For example, the congestion notification indicator is transmitted on the BCCH or MCCH which is a logical channel.
혼잡 통보 지시자에 대한 응답으로서, 단말은 서비스 우선권 지시자를 기지국으로 전송한다(S2005). 단말은 상기 표 3에 따른 실시예처럼 서비스 우선권이 변경될 때가 아닌, 기지국으로부터 혼잡 통보 지시자를 수신한 경우에 상기 표 1에 따른 실시예와 같이 서비스 우선권 지시자를 기지국으로 전송한다. In response to the congestion notification indicator, the terminal transmits the service priority indicator to the base station (S2005). When the terminal receives the congestion notification indicator from the base station, not when the service priority is changed as in the embodiment according to Table 3, the terminal transmits the service priority indicator to the base station as in the embodiment according to Table 1 above.
기지국은 서비스 우선권 지시자에 기반하여 네트워크 혼잡 제어를 수행할 수 있다. The base station may perform network congestion control based on the service priority indicator.
도 21은 본 발명의 또 다른 예에 따른 혼잡제어를 수행하는 방법을 나타내는 흐름도이다. 21 is a flowchart illustrating a method of performing congestion control according to another example of the present invention.
도 21을 참조하면, 네트워크 혼잡을 인지하면, 기지국은 혼잡 통보 지시자를 단말로 전송한다(S2100). 혼잡 통보 지시자에 대한 응답으로서, 단말은 서비스 우선권 지시자를 기지국으로 전송한다(S2105). 단말은 상기 표 3에 따른 실시예처럼 서비스 우선권이 변경될 때가 아닌, 기지국으로부터 혼잡 통보 지시자를 수신한 경우에 상기 표 2에 따른 실시예와 같이 서비스 우선권 지시자를 기지국으로 전송한다. Referring to FIG. 21, when network congestion is recognized, the base station transmits a congestion notification indicator to the terminal (S2100). In response to the congestion notification indicator, the terminal transmits a service priority indicator to the base station (S2105). When the terminal receives the congestion notification indicator from the base station, not when the service priority is changed as in the embodiment according to Table 3, the terminal transmits the service priority indicator to the base station as in the embodiment according to Table 2.
이때, 기지국은 RRC 연결 해제 메시지를 단말로 전송한다(S2110). RRC 연결 해제 메시지는 MBMS 서비스가 제공되는 주파수인 MBMS 주파수(MBMSfreq) 정보를 포함할 수 있다. MBMS 주파수 정보는 MBMS 서비스에 우선권이 설정되어 있음을 원인으로 하여 RRC 연결을 명시적으로 해제함을 지시한다. RRC 연결 해제 메시지는 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스와 동일한 서비스를 제공하는 다른 주파수를 알려주는 대체(alternative) 주파수 정보를 더 포함할 수 있다. 또한, RRC 연결 해제 메시지는 MBMS 서비스가 우선권이 있음으로 RRC 연결을 해제함을 나타내는 정보를 더 포함할 수 있다. At this time, the base station transmits an RRC connection release message to the terminal (S2110). The RRC connection release message may include MBMS frequency (MBMSfreq) information, which is a frequency at which the MBMS service is provided. MBMS frequency information indicates that the RRC connection is explicitly released because the priority is set in the MBMS service. The RRC connection release message may further include alternative frequency information indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency. The RRC connection release message may further include information indicating that the MBMS service releases the RRC connection because it has priority.
도 22는 본 발명의 일 예에 따른 기지국에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.22 is a flowchart illustrating a congestion control method performed by a base station according to an embodiment of the present invention.
도 22를 참조하면, 특정 주파수에서 MBMS 서비스를 제공하는 기지국은 네트워크 혼잡을 인지한다(S2200). 기지국이 네트워크 혼잡을 인지하는 방법은 여러가지가 있을 수 있다. 일 예로서, MBMS 서비스를 수신하는 연결 모드 단말의 수를 수집하는 MBMS 카운팅 절차를 기지국이 이용함으로써, 기지국은 네트워크 혼잡을 인지할 수 있다. MBMS 카운팅 절차에 의해 수집된 단말의 개수에 기반하여 네트워크 혼잡 여부를 판단할 경우, 기지국은 다음과 같이 판단할 수 있다. 예를 들어 일정한 임계 개수 이상의 단말이 MBMS 서비스를 수신하고 있는 상태임을 인지하면, MBMS 서비스를 위한 단말의 개수가 예상수준 이상이므로, 네트워크 혼잡이 발생하였다고 여겨질 수 있다. 나아가 MBMS 서비스의 수신을 위해 특정 주파수의 셀에 접속하면서, 유니캐스트 서비스의 수신을 위해 연결 모드로 동작하는 단말의 개수 정보도 기지국은 알 수 있다.Referring to FIG. 22, a base station providing an MBMS service at a specific frequency recognizes network congestion (S2200). There may be several ways for the base station to recognize network congestion. As an example, the base station may be aware of network congestion by using the MBMS counting procedure for collecting the number of connected mode terminals receiving the MBMS service. When determining whether the network is congested based on the number of terminals collected by the MBMS counting procedure, the base station may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, since the number of terminals for the MBMS service is higher than expected, it may be considered that network congestion has occurred. Furthermore, the base station may also know the number of terminals operating in the connected mode for the reception of the unicast service while accessing the cell of the specific frequency for the reception of the MBMS service.
다른 예로서, MBMS 우선권 정보에 기반하여 기지국은 네트워크 혼잡을 인지할 수 있다. 기지국은 MBMS 우선권 정보 등을 단말로부터 수신함으로써 단말의 MBMS 관련 정보를 획득할 수 있다. As another example, the base station may be aware of network congestion based on the MBMS priority information. The base station may obtain MBMS related information of the terminal by receiving MBMS priority information and the like from the terminal.
또 다른 예로서, 특정 MBMS 서비스를 수신하기 위하여 특정한 셀로 셀 변경을 수행한 단말에 대한 정보에 기반하여, 기지국은 네트워크 혼잡을 인지할 수 있다. 물론 기지국은 네트워크 혼잡이 발생함을 알 수는 있어도, 네트워크 혼잡의 원인을 제공한 것이 어떠한 상황인지를 정확히 인지하는 데는 한계가 있을 수 있다. As another example, the base station may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service. Of course, even though the base station may know that network congestion occurs, there may be a limit in accurately knowing what kind of situation provides the cause of network congestion.
네트워크 혼잡을 인지하면, 기지국은 혼잡 통보 지시자를 단말로 전송한다(S2205). Upon recognition of network congestion, the base station transmits a congestion notification indicator to the terminal (S2205).
혼잡 통보 지시자에 대한 응답으로서, 기지국은 서비스 우선권 지시자를 단말로부터 수신한다(S2210). 서비스 우선권 지시자로부터 기지국은 상기 단말이 MBMS 서비스와 유니캐스트 서비스 중 어느 서비스에 우선권을 두고 있는지 판단하고, 우선권 서비스(priority service)를 결정한다(S2215). 우선권 서비스란 우선권을 부여받은 서비스를 의미한다. 예를 들어, 상기 표 2의 실시예에 따른 서비스 우선권 지시자를 수신하는 경우, 기지국은 서비스 우선권 지시자의 지시에 의해 MBMS 서비스와 유니캐스트 서비스 중 어느 하나를 우선권 서비스로 결정한다. 또는, 상기 표 3의 실시예에 따른 서비스 우선권 지시자를 수신하는 경우, 기지국은 우선권 서비스가 변경되었음을 알 수 있다. 따라서, 기지국은 이전 서비스 우선권이 MBMS 서비스였다면, 우선권 서비스를 유니캐스트 서비스로 결정하고, 이전 서비스 우선권이 유니캐스트 서비스였다면, 우선권 서비스를 MBMS 서비스로 결정한다.As a response to the congestion notification indicator, the base station receives a service priority indicator from the terminal (S2210). From the service priority indicator, the base station determines which of the MBMS service and the unicast service the terminal has priority, and determines a priority service (S2215). Priority service means a service that is given priority. For example, when receiving the service priority indicator according to the embodiment of Table 2, the base station determines one of the MBMS service and the unicast service as the priority service according to the indication of the service priority indicator. Alternatively, when receiving the service priority indicator according to the embodiment of Table 3, the base station may know that the priority service has been changed. Accordingly, the base station determines the priority service as a unicast service if the previous service priority was an MBMS service, and determines the priority service as an MBMS service if the previous service priority was a unicast service.
기지국은 혼잡 해결 정보를 단말로 전송한다(S2220). 혼잡 해결 정보는 지정된 방식에 따라 네트워크 혼잡에 대응할 것을 기지국이 단말에 지시하는 정보이다. The base station transmits congestion resolution information to the terminal (S2220). The congestion resolution information is information that the base station instructs the terminal to correspond to network congestion in a designated manner.
일 예로서, 혼잡 해결 정보는 단말의 연결 모드를 해제하기 위한 RRC 연결 해제 메시지에 포함된다. As one example, the congestion resolution information is included in the RRC connection release message for releasing the connection mode of the terminal.
다른 예로서, 혼잡 해결 정보는 시스템 정보 파라미터를 포함하는 시스템 정보 블록에 포함된다. As another example, the congestion resolution information is included in a system information block that includes system information parameters.
혼잡 해결 정보에 기반하여 단말은 자신이 어떠한 동작을 취해야하는지 결정할 수 있다. Based on the congestion resolution information, the terminal may determine what action it should take.
도 23은 본 발명의 일 예에 따른 단말에 의한 혼잡제어의 수행방법을 나타내는 순서도이다.23 is a flowchart illustrating a congestion control method performed by a terminal according to an embodiment of the present invention.
도 23을 참조하면, 특정 주파수에서 MBMS 서비스를 수신하는 단말은 혼잡 통보 지시자를 기지국으로부터 수신한다(S2300). 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함한다. 혼잡 상태 정보는 다수의 MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태를 표시할 수도 있다. 한편, 혼잡 통보 지시자는 MBMS 관련 정보를 더 포함할 수 있다. Referring to FIG. 23, a terminal receiving an MBMS service at a specific frequency receives a congestion notification indicator from a base station (S2300). The congestion notification indicator includes congestion status information indicating network congestion status at the frequency at which the MBMS service is provided. The congestion state information may indicate the congestion state for each frequency provided by each of the plurality of MBMS services. Meanwhile, the congestion notification indicator may further include MBMS related information.
MBMS 관련 정보는 MBMS 주파수를 알려주는 주파수 정보, 대체 주파수 정보, MBMS 종류 리스트, 각 MBMS 서비스의 세션 개시 타이밍 정보, 각 MBMS 서비스가 제공되는 지리적 영역 정보 중 적어도 하나를 포함한다. 주파수 정보 또는 대체 주파수 정보는 단말에 지원가능한 네트워크 동작대역을 인덱스로 표시하는 상기 표 1에서, 어느 하나의 인덱스를 지시할 수 있다. The MBMS related information includes at least one of frequency information indicating an MBMS frequency, alternative frequency information, a list of MBMS types, session start timing information of each MBMS service, and geographic area information provided by each MBMS service. The frequency information or the alternative frequency information may indicate any one of the indexes in Table 1, which indicates the network operating bands supported by the terminal as an index.
혼잡 통보 지시자에 대한 응답으로서, 단말은 서비스 우선권 지시자를 기지국으로 전송한다(S2305). As a response to the congestion notification indicator, the terminal transmits a service priority indicator to the base station (S2305).
단말은 혼잡 해결 정보를 기지국으로부터 수신한다(S2310). 혼잡 해결 정보는 시스템 정보 블록에 포함될 수도 있고, RRC 연결 해제 메시지에 포함될 수도 있다.The terminal receives congestion resolution information from the base station (S2310). Congestion resolution information may be included in the system information block, or may be included in the RRC connection release message.
단말은 혼잡 해결 정보에 기반하여, 네트워크 혼잡을 해결하기 위해 RRC 연결을 설정하거나 RRC 연결을 해제한다(S2315). The terminal establishes an RRC connection or releases an RRC connection to solve network congestion based on the congestion resolution information (S2315).
예를 들어, MBMS 서비스가 우선권 서비스인 경우, 혼잡 해결 정보는 RRC 연결 해제 메시지에 포함될 수 있다. 이 경우, 단말은 RRC 연결을 해제하고 휴지 모드로 진입한다. 반면, 유니캐스트 서비스가 우선권 서비스인 경우, 혼잡 해결 정보는 RRC 연결 설정 메시지에 포함될 수 있다. 이 경우, 단말은 휴지 모드에서 연결 모드로 전환될 수 있다. For example, when the MBMS service is a priority service, congestion resolution information may be included in the RRC connection release message. In this case, the terminal releases the RRC connection and enters the idle mode. On the other hand, when the unicast service is a priority service, congestion resolution information may be included in the RRC connection establishment message. In this case, the terminal may be switched from the idle mode to the connected mode.
이때, 단말은 혼잡 통보 지시자에 포함된 대체 주파수 정보를 참조하여 셀 재선택에 의해 다른 주파수(또는 셀)로 이동하고, 상기 다른 주파수를 통해 MBMS 서비스를 수신할 수 있다. 또는, 단말은 MBMS 서비스 수신을 포기하고 다른 셀로 핸드오버할 수 있다. 이로써 MBMS 서비스의 연속성 및 서비스의 품질(Quality of Service: QoS)이 보장될 수 있다. In this case, the terminal may move to another frequency (or cell) by cell reselection with reference to the alternative frequency information included in the congestion notification indicator, and may receive MBMS service through the other frequency. Alternatively, the terminal may give up receiving the MBMS service and hand over to another cell. As a result, the continuity of the MBMS service and the quality of service (QoS) can be guaranteed.
도 24는 본 발명에 따른 혼잡제어를 수행하는 단말과 기지국을 도시한 블록도이다.24 is a block diagram illustrating a terminal and a base station for performing congestion control according to the present invention.
도 24를 참조하면, 단말(2400)은 RF부(2405) 및 단말 프로세서(2410)를 포함한다. 그리고 단말 프로세서(2410)는 메시지 처리부(2411) 및 통신 제어부(2412)를 포함한다. 여기서, 단말(2400)은 연결 모드와 휴지 모드 중 어느 하나로 동작할 수 있다. Referring to FIG. 24, the terminal 2400 includes an RF unit 2405 and a terminal processor 2410. The terminal processor 2410 includes a message processor 2411 and a communication controller 2412. Here, the terminal 2400 may operate in one of a connected mode and a idle mode.
RF부(2405)는 특정 주파수에서 제공되는 MBMS 서비스, MBMS 관련 정보를 포함하는 혼잡 통보 지시자, 또는 혼잡 해결 정보를 기지국(2450)으로부터 수신한다. 또한, RF부(2405)는 메시지 처리부(2411)에 의해 생성된 서비스 우선권 지시자를 기지국(2450)으로 전송한다.The RF unit 2405 receives an MBMS service provided at a specific frequency, a congestion notification indicator including MBMS related information, or congestion resolution information from the base station 2450. The RF unit 2405 also transmits the service priority indicator generated by the message processing unit 2411 to the base station 2450.
메시지 처리부(2411)는 혼잡 통보 지시자에서 MBMS 관련 정보를 추출한다. 여기서, 추출되는 MBMS 관련 정보는 단말(2400)이 수신 중인 MBMS 서비스가 제공되는 MBMS 주파수를 알려주는 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스와 동일한 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 MBMS 주파수를 통해 제공되는 MBMS 서비스 종류를 리스트로 표시하는 MBMS 종류 리스트, 각 MBMS 서비스의 세션 개시 타이밍 정보, 각 MBMS 서비스가 제공되는 지리적 영역 정보 중 적어도 하나를 포함한다. 주파수 정보 또는 대체 주파수 정보는 단말에 지원가능한 네트워크 동작대역을 인덱스로 표시하는 상기 표 3에서, 어느 하나의 인덱스를 지시할 수 있다. The message processor 2411 extracts MBMS related information from the congestion notification indicator. Here, the extracted MBMS-related information is frequency information indicating the MBMS frequency provided by the MBMS service being received by the terminal 2400, and an alternative frequency indicating another frequency providing the same service as the MBMS service provided through the MBMS frequency. At least one of the information, an MBMS type list indicating a list of MBMS services provided through the MBMS frequency, session start timing information of each MBMS service, and geographic area information provided by each MBMS service. The frequency information or the alternative frequency information may indicate any one of the indexes in Table 3, which indicates the network operating bands supported by the terminal as an index.
메시지 처리부(2411)는 MBMS 서비스와 유니캐스트 서비스간의 우선순위를 기반으로, 서비스 우선권 지시자를 생성하여 RF부(2405)로 전달 수 있다. 일 예로서 서비스 우선권 지시자는 RRC 연결 요청 메시지에 포함될 수 있다. 서비스 우선권 지시자는 상기 표 1과 같이 특정 서비스가 우선권을 가짐을 명시적으로 지시할 수 있다. 또는, 서비스 우선권 지시자는 상기 표 2와 같이 서비스 우선권의 유지, 변경을 지시할 수 있다. 이 경우 디폴트 우선권은 MBMS 서비스가 가지는 것으로 가정한다. 서비스 우선권은 전술된 바와 같이 상위레벨 우선권(MBMS 서비스와 유니캐스트 서비스간의 우선순위) 및/또는 하위레벨 우선권(유니캐스트 서비스에 포함되는 다양한 응용 서비스들간의 우선순위)를 포함한다. The message processing unit 2411 may generate a service priority indicator based on the priority between the MBMS service and the unicast service and transmit the service priority indicator to the RF unit 2405. As an example, the service priority indicator may be included in the RRC connection request message. The service priority indicator may explicitly indicate that a specific service has priority as shown in Table 1 above. Alternatively, the service priority indicator may instruct maintenance or change of the service priority as shown in Table 2 above. In this case, the default priority is assumed to be in MBMS service. Service priorities include high level priorities (priorities between MBMS services and unicast services) and / or low level priorities (priorities between various application services included in unicast services), as described above.
RF부(2405)가 혼잡 해결 정보를 기지국(2450)으로부터 수신하면, 메시지 처리부(2411)는 혼잡 해결 정보가 지시하는 내용을 통신 제어부(2412)로 전달한다. 혼잡 해결 정보는 RRC 연결 해제 메시지에 포함된다. 이 경우, 메시지 처리부(2411)는 RRC 연결 해제 메시지의 지시에 따라, RRC 연결 해제를 통신 제어부(2412)로 지시한다. When the RF unit 2405 receives the congestion resolution information from the base station 2450, the message processing unit 2411 transfers the content indicated by the congestion resolution information to the communication control unit 2412. Congestion resolution information is included in the RRC connection release message. In this case, the message processing unit 2411 instructs the communication control unit 2412 to release the RRC connection according to the instruction of the RRC connection release message.
또는 혼잡 해결 정보는 시스템 정보 블록에 포함된다. 이 경우, 메시지 처리부(2411)는 시스템 정보 블록의 지시에 따라 단말(2400)의 상태를 휴지 모드 또는 연결 모드로 유지하거나 전환하도록 통신 제어부(2412)로 지시한다. Or the congestion resolution information is included in the system information block. In this case, the message processor 2411 instructs the communication controller 2412 to maintain or switch the state of the terminal 2400 to the idle mode or the connected mode according to the instruction of the system information block.
통신 제어부(2412)는 메시지 처리부(2411)의 지시에 따라, RRC 연결을 해제하고 단말(2400)을 연결 모드에서 휴지 모드로 전환한다. 즉, 통신 제어부(2412)는 더 이상 유니캐스트 서비스 관련 신호를 송신하거나 수신하지 않는다. 또는 통신 제어부(2412)는 메시지 처리부(2411)의 지시에 따라 연결 모드에서 유니캐스트 서비스를 수신하도록 제어한다. The communication controller 2412 releases the RRC connection and switches the terminal 2400 from the connected mode to the idle mode according to the instruction of the message processor 2411. That is, the communication control unit 2412 no longer transmits or receives a unicast service related signal. Alternatively, the communication control unit 2412 controls to receive the unicast service in the connected mode according to the instruction of the message processing unit 2411.
기지국(2450)은 RF부(2455) 및 기지국 프로세서(2460)를 포함한다. 기지국 프로세서(2460)는 혼잡 제어부(2461) 및 메시지 처리부(2462)를 포함한다. The base station 2450 includes an RF unit 2455 and a base station processor 2460. The base station processor 2460 includes a congestion control unit 2641 and a message processing unit 2246.
RF부(2455)는 특정 주파수에서 MBMS 서비스를 전송하고, 메시지 처리부(2461)에 의해 생성되는 MBMS 관련 정보를 포함하는 혼잡 통보 지시자와, 혼잡 해결 정보를 단말(2400)로 전송한다. 또한, RF부(2455)는 서비스 우선권 지시자를 단말(2400)로부터 수신한다.The RF unit 2455 transmits an MBMS service at a specific frequency, and transmits a congestion notification indicator including MBMS related information generated by the message processor 2241 and congestion resolution information to the terminal 2400. In addition, the RF unit 2455 receives a service priority indicator from the terminal 2400.
혼잡 제어부(2461)는 네트워크 혼잡을 인지한다. 혼잡 제어부(2461)가 네트워크 혼잡을 인지하는 방법은 여러가지가 있을 수 있다. 일 예로서, 혼잡 제어부(2461)는 MBMS 서비스를 수신하는 연결 모드 단말의 수를 수집하는 MBMS 카운팅 절차를 이용할 수 있다. MBMS 카운팅 절차에 의해 수집된 단말의 개수에 기반하여 네트워크 혼잡 여부를 판단할 경우, 혼잡 제어부(2461)는 다음과 같이 판단할 수 있다. 예를 들어 일정한 임계 개수 이상의 단말이 MBMS 서비스를 수신하고 있는 상태임을 인지하면, MBMS 서비스를 위한 단말의 개수가 예상수준 이상이므로, 네트워크 혼잡이 발생하였다고 판단한다. The congestion control unit 2241 recognizes network congestion. There may be various ways for the congestion control unit 2641 to recognize network congestion. As an example, the congestion control unit 2461 may use an MBMS counting procedure that collects the number of connected mode terminals receiving the MBMS service. When determining whether the network is congested based on the number of terminals collected by the MBMS counting procedure, the congestion control unit 2241 may determine as follows. For example, if it is recognized that a terminal having a predetermined threshold number or more is receiving the MBMS service, it is determined that network congestion has occurred since the number of terminals for the MBMS service is higher than expected.
다른 예로서, 혼잡 제어부(2461)는 MBMS 우선권 정보에 기반하여 기지국은 네트워크 혼잡을 인지할 수 있다. 혼잡 제어부(2461)는 MBMS 우선권 정보 등을 단말(2400)로부터 수신함으로써 단말(2400)의 MBMS 관련 정보를 획득할 수 있다. As another example, the congestion control unit 2241 may recognize the network congestion based on the MBMS priority information. The congestion control unit 2241 may obtain MBMS related information of the terminal 2400 by receiving MBMS priority information and the like from the terminal 2400.
또 다른 예로서, 특정 MBMS 서비스를 수신하기 위하여 특정한 셀로 셀 변경을 수행한 단말에 대한 정보에 기반하여, 혼잡 제어부(2461)는 네트워크 혼잡을 인지할 수 있다. As another example, the congestion control unit 2461 may recognize network congestion based on information on a terminal that has performed a cell change to a specific cell to receive a specific MBMS service.
혼잡 제어부(2461)가 네트워크 혼잡을 인지하면, 메시지 처리부(2462)가 혼잡 통보 지시자를 생성하도록 지시한다. 또한, 혼잡 제어부(2461)는 단말(2400)로부터 서비스 우선권 지시자가 수신되면, 단말(2400)에 설정된 다수의 서비스들의 우선순위에 기반하여 우선권 서비스(priority service)를 결정한다. 예를 들어, RF부(2455)가 상기 표 2의 실시예에 따른 서비스 우선권 지시자를 수신하는 경우, 혼잡 제어부(2461)는 서비스 우선권 지시자의 지시에 의해 MBMS 서비스와 유니캐스트 서비스 중 어느 하나를 우선권 서비스로 결정한다. 또는, RF부(2455)가 상기 표 3의 실시예에 따른 서비스 우선권 지시자를 수신하는 경우, 혼잡 제어부(2461)는 우선권 서비스가 변경되었음을 알 수 있다. 따라서, 혼잡 제어부(2461)는 이전 서비스 우선권이 MBMS 서비스였다면, 우선권 서비스를 유니캐스트 서비스로 결정하고, 이전 서비스 우선권이 유니캐스트 서비스였다면, 우선권 서비스를 MBMS 서비스로 결정한다.When the congestion control unit 2641 recognizes network congestion, the message processing unit 2246 instructs to generate a congestion notification indicator. In addition, when the service priority indicator is received from the terminal 2400, the congestion control unit 2241 determines a priority service based on the priority of a plurality of services set in the terminal 2400. For example, when the RF unit 2455 receives the service priority indicator according to the embodiment of Table 2, the congestion control unit 2241 may prioritize any one of the MBMS service and the unicast service according to the indication of the service priority indicator. Decide on service. Alternatively, when the RF unit 2455 receives the service priority indicator according to the embodiment of Table 3, the congestion control unit 2241 may know that the priority service has been changed. Therefore, the congestion control unit 2241 determines the priority service as a unicast service if the previous service priority was an MBMS service, and determines the priority service as an MBMS service if the previous service priority was a unicast service.
혼잡 제어부(2461)는 상기 결정된 우선권 서비스를 기반으로 메시지 처리부(2462)가 혼잡 해결 정보를 생성하도록 지시한다. The congestion control unit 2651 instructs the message processing unit 2542 to generate congestion resolution information based on the determined priority service.
메시지 처리부(2462)는 혼잡 제어부(2461)의 지시에 따라 혼잡 통보 지시자 또는 혼잡 해결 정보를 생성한다. 그리고 혼잡 제어부(2461)는 단말(2400)에 할당된 무선자원을 해제하거나, RRC 연결을 설정한다.The message processing unit 2542 generates a congestion notification indicator or congestion resolution information according to the instruction of the congestion control unit 2241. The congestion control unit 2241 releases the radio resource allocated to the terminal 2400, or establishes an RRC connection.
상술한 바와 같이, 설명된 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 이러한 본 발명은 설명된 단계 또는 블록들의 순서에 한정되는 것은 아니며, 해당 기술 분야의 통상의 지식을 가진 자에 의해 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.As described above, the described methods are described on the basis of a flowchart as a series of steps or blocks, but the present invention is not limited to the order of the described steps or blocks, and those skilled in the art. It will be appreciated that other combinations are possible. Accordingly, it is intended that the present invention cover all other replacements, modifications and variations that fall within the scope of the following claims.

Claims (20)

  1. MBMS(multimedia broadcast multicast service) 서비스의 연속성을 위한 기지국의 네트워크 혼잡(network congestion) 제어방법에 있어서,In the method of controlling network congestion of a base station for continuity of a multimedia broadcast multicast service (MBMS) service,
    네트워크 혼잡을 인지하는 단계;Recognizing network congestion;
    상기 네트워크 혼잡을 지시하는 혼잡 통보 지시자와 MBMS 관련 정보를 특정 주파수에서 MBMS 서비스를 수신하는 연결 모드(connected mode)인 단말로 전송하는 단계;Transmitting a congestion notification indicator and MBMS related information indicating the network congestion to a terminal in a connected mode that receives an MBMS service at a specific frequency;
    혼잡 응답 정보를 상기 단말로부터 수신하는 단계; 및Receiving congestion response information from the terminal; And
    상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 단말로 전송하는 단계를 포함함을 특징으로 하는 네트워크 혼잡 제어방법.And transmitting congestion resolution information to solve the network congestion to the terminal.
  2. 제 1 항에 있어서, 상기 MBMS 관련 정보는, The method of claim 1, wherein the MBMS related information,
    상기 특정 주파수를 알려주는 주파수 정보, 상기 MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함함을 특징으로 하는, 네트워크 혼잡 제어방법.And at least one of frequency information indicating the specific frequency, alternative frequency information indicating another frequency for providing the MBMS service, and an MBMS type list indicating the type of MBMS service provided through the specific frequency. Network congestion control method.
  3. 제 2 항에 있어서, 상기 혼잡 통보 지시자는 The method of claim 2, wherein the congestion notification indicator is
    상기 기지국이 상기 네트워크 혼잡을 인지하였음을 통보하는 정보이며, Information indicating that the base station has recognized the network congestion,
    상기 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함하거나, MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태 정보를 포함하거나, 상기 MBMS 관련 정보를 더 포함함을 특징으로 하는, 네트워크 혼잡 제어방법.The congestion notification indicator includes congestion state information indicating a network congestion state at a frequency where an MBMS service is provided, includes congestion state information for each frequency provided by each MBMS service, or further includes the MBMS related information. A network congestion control method.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 혼잡 응답 정보는 상기 연결 모드의 해제를 요청하는 무선자원제어(radio resource control: RRC) 연결 해제 요청 메시지, 측정보고(measurement report)메시지, MBMS 관련 보조 정보(assistant information)을 전송하는 메시지 중 하나를 통해 수신됨을 특징으로 하는, 네트워크 혼잡 제어방법.The congestion response information is one of a radio resource control (RRC) connection release request message requesting the release of the connection mode, a measurement report message, and a message for transmitting MBMS-related assistant information. Network congestion control method, characterized in that received through.
  5. 제 1 항에 있어서, 상기 혼잡 해결 정보는 The method of claim 1, wherein the congestion resolution information is
    RRC 연결 해제 메시지, 핸드오버 명령 메시지 중 하나를 통해 전송됨을 특징으로 하는, 네트워크 혼잡 제어방법.A method of controlling network congestion, characterized by being transmitted through one of an RRC connection release message and a handover command message.
  6. MBMS 서비스의 연속성을 위한 네트워크 혼잡을 제어하는 기지국에 있어서,A base station for controlling network congestion for continuity of MBMS services,
    네트워크 혼잡을 인지하는 혼잡 제어부;A congestion control unit for recognizing network congestion;
    상기 네트워크 혼잡을 지시하는 혼잡 통보 지시자와 MBMS 관련 정보를 생성하는 메시지 처리부;A message processing unit for generating a congestion notification indicator and MBMS information indicating the network congestion;
    상기 혼잡 통보 지시자 및 상기 MBMS 관련 정보를 특정 주파수에서 MBMS 서비스를 수신하는 연결 모드(connected mode)인 단말로 전송하고, 혼잡 응답 정보를 상기 단말로부터 수신하며, 상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 단말로 전송하는 RF부를 포함함을 특징으로 하는 기지국.Transmits the congestion notification indicator and the MBMS related information to a terminal in a connected mode that receives an MBMS service at a specific frequency, receives congestion response information from the terminal, and receives congestion resolution information that resolves the network congestion; A base station comprising an RF unit for transmitting to the terminal.
  7. 제 6 항에 있어서, 상기 메시지 처리부는, The method of claim 6, wherein the message processing unit,
    상기 특정 주파수를 알려주는 주파수 정보, 상기 MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함하는 상기 MBMS 관련 정보를 생성함을 특징으로 하는, 기지국. The MBMS related information including at least one of frequency information indicating the specific frequency, alternative frequency information indicating another frequency for providing the MBMS service, and an MBMS type list indicating the type of MBMS service provided through the specific frequency; Generating a base station.
  8. 제 6 항에 있어서, The method of claim 6,
    상기 혼잡 통보 지시자는 상기 기지국이 네트워크 혼잡을 인지하였음을 통보하는 정보이며, The congestion notification indicator is information for notifying that the base station has recognized network congestion,
    상기 메시지 처리부는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함하거나, MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태 정보를 포함하거나, 상기 MBMS 관련 정보를 더 포함하는 상기 혼잡 통보 지시자를 생성함을 특징으로 하는, 기지국.The message processing unit includes congestion state information indicating a network congestion state at a frequency where an MBMS service is provided, includes congestion state information for each frequency provided by each MBMS service, or further includes the MBMS related information. And generate an indicator.
  9. 제 6 항에 있어서, 상기 RF부는, The method of claim 6, wherein the RF unit,
    상기 연결 모드의 해제를 요청하는 무선자원제어(radio resource control: RRC) 연결 해제 요청 메시지, 측정보고(measurement report)메시지, MBMS 관련 보조 정보(assistant information)을 전송하는 메시지 중 하나를 통해 상기 혼잡 응답 정보를 수신함을 특징으로 하는, 기지국.The congestion response through one of a radio resource control (RRC) connection release request message requesting release of the connection mode, a measurement report message, and a message transmitting MBMS-related assistant information And receiving information.
  10. 제 6 항에 있어서, 상기 RF부는, The method of claim 6, wherein the RF unit,
    RRC 연결 해제 메시지, 핸드오버 명령 메시지 중 하나를 통해 상기 혼잡 해결 정보를 전송함을 특징으로 하는,기지국.And transmit the congestion resolution information through one of an RRC connection release message and a handover command message.
  11. MBMS 서비스의 연속성을 위한 단말의 네트워크 혼잡 제어방법에 있어서,In the network congestion control method of a terminal for continuity of MBMS service,
    특정 주파수에서 MBMS 서비스를 기지국으로부터 수신하는 단계;Receiving an MBMS service from a base station at a specific frequency;
    상기 특정 주파수상에서 네트워크 혼잡이 발생함을 지시하는 혼잡 통보 지시자와 MBMS 관련 정보를 상기 기지국으로부터 수신하는 단계;Receiving, from the base station, a congestion notification indicator and MBMS related information indicating that network congestion occurs on the specific frequency;
    혼잡 응답 정보를 상기 기지국으로 전송하는 단계;Transmitting congestion response information to the base station;
    상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 기지국으로부터 수신하는 단계; 및Receiving congestion resolution information from the base station to resolve the network congestion; And
    상기 MBMS 관련 정보를 이용하여 셀 재선택을 수행하는 단계를 포함함을 특징으로 하는 네트워크 혼잡 제어방법.And performing cell reselection using the MBMS related information.
  12. 제 11 항에 있어서, 상기 MBMS 관련 정보는, The method of claim 11, wherein the MBMS related information,
    상기 특정 주파수를 알려주는 주파수 정보, 상기 MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함함을 특징으로 하는, 네트워크 혼잡 제어방법.And at least one of frequency information indicating the specific frequency, alternative frequency information indicating another frequency for providing the MBMS service, and an MBMS type list indicating the type of MBMS service provided through the specific frequency. Network congestion control method.
  13. 제 11 항에 있어서, 상기 혼잡 통보 지시자는 The method of claim 11, wherein the congestion notification indicator is
    상기 기지국에 의해 네트워크 혼잡이 인지되었음을 통보하는 정보이며, Information indicating that network congestion has been recognized by the base station,
    상기 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함하거나, MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태 정보를 포함하거나, 상기 MBMS 관련 정보를 더 포함함을 특징으로 하는, 네트워크 혼잡 제어방법.The congestion notification indicator includes congestion state information indicating a network congestion state at a frequency where an MBMS service is provided, includes congestion state information for each frequency provided by each MBMS service, or further includes the MBMS related information. A network congestion control method.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 혼잡 응답 정보는 상기 연결 모드의 해제를 요청하는 무선자원제어(radio resource control: RRC) 연결 해제 요청 메시지, 측정보고(measurement report)메시지, MBMS 관련 보조 정보(assistant information)을 전송하는 메시지 중 하나를 통해 전송됨을 특징으로 하는, 네트워크 혼잡 제어방법.The congestion response information is one of a radio resource control (RRC) connection release request message requesting the release of the connection mode, a measurement report message, and an MBMS-related assistant information message. Network congestion control method, characterized in that transmitted through.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 혼잡 해결 정보는 RRC 연결 해제 메시지, 핸드오버 명령 메시지 중 하나를 통해 수신됨을 특징으로 하는, 네트워크 혼잡 제어방법.The congestion resolution information is received via one of an RRC connection release message, a handover command message, network congestion control method.
  16. MBMS 서비스의 연속성을 위한 네트워크 혼잡을 제어하는 단말에 있어서,In the terminal for controlling network congestion for continuity of MBMS service,
    특정 주파수에서 MBMS 서비스를 기지국으로부터 수신하고, 상기 특정 주파수상에서 네트워크 혼잡이 발생함을 지시하는 혼잡 통보 지시자와 MBMS 관련 정보를 상기 기지국으로부터 수신하며, 혼잡 응답 정보를 상기 기지국으로 전송하고, 상기 네트워크 혼잡을 해결하는 혼잡 해결 정보를 상기 기지국으로부터 수신하는 RF부;Receives an MBMS service from a base station at a specific frequency, receives a congestion notification indicator and MBMS related information indicating that network congestion occurs on the specific frequency from the base station, transmits congestion response information to the base station, and transmits the network congestion. RF unit for receiving congestion resolution information from the base station to solve the;
    상기 MBMS 관련 정보에 기반하여 상기 혼잡 응답 정보를 생성하여 상기 RF부로 전달하는 메시지 처리부; 및A message processing unit which generates the congestion response information based on the MBMS related information and transmits the congestion response information to the RF unit; And
    상기 혼잡 해결 정보의 지시에 따라 상기 단말을 휴지 모드로 동작하도록 제어하고, 상기 MBMS 관련 정보를 이용하여 셀 재선택을 수행하는 통신 제어부를 포함하는 단말.And a communication control unit configured to control the terminal to operate in the idle mode according to the congestion resolution information and perform cell reselection using the MBMS-related information.
  17. 제 16 항에 있어서, 상기 메시지 처리부는, The method of claim 16, wherein the message processing unit,
    상기 특정 주파수를 알려주는 주파수 정보, 상기 MBMS 서비스를 제공하는 다른 주파수를 알려주는 대체 주파수 정보, 상기 특정 주파수를 통해 제공되는 MBMS 서비스 종류를 나타내는 MBMS 종류 리스트 중 적어도 하나를 포함하는 상기 MBMS 관련 정보를 추출함을 특징으로 하는, 단말.The MBMS related information including at least one of frequency information indicating the specific frequency, alternative frequency information indicating another frequency for providing the MBMS service, and an MBMS type list indicating the type of MBMS service provided through the specific frequency; Terminal, characterized in that the extraction.
  18. 제 16 항에 있어서, The method of claim 16,
    상기 혼잡 통보 지시자는 상기 기지국에 의해 네트워크 혼잡이 인지되었음을 통보하는 정보이며, The congestion notification indicator is information for notifying that network congestion has been recognized by the base station,
    상기 혼잡 통보 지시자는 MBMS 서비스가 제공되는 주파수에서의 네트워크 혼잡 상태를 나타내는 혼잡 상태 정보를 포함하거나, MBMS 서비스 각각이 제공되는 주파수별로 혼잡 상태 정보를 포함하거나, 상기 MBMS 관련 정보를 더 포함함을 특징으로 하는, 단말.The congestion notification indicator includes congestion state information indicating a network congestion state at a frequency where an MBMS service is provided, includes congestion state information for each frequency provided by each MBMS service, or further includes the MBMS related information. Terminal.
  19. 제 16 항에 있어서, 상기 RF부는,The method of claim 16, wherein the RF unit,
    상기 연결 모드의 해제를 요청하는 무선자원제어(radio resource control: RRC) 연결 해제 요청 메시지, 측정보고(measurement report)메시지, MBMS 관련 보조 정보(assistant information)을 전송하는 메시지 중 하나를 통해 상기 혼잡 응답 정보를 전송함을 특징으로 하는, 단말.The congestion response through one of a radio resource control (RRC) connection release request message requesting the release of the connection mode, a measurement report message, and a message transmitting MBMS-related assistant information Terminal, characterized in that for transmitting information.
  20. 제 16 항에 있어서, 상기 RF부는,The method of claim 16, wherein the RF unit,
    RRC 연결 해제 메시지, 핸드오버 명령 메시지 중 하나를 통해 상기 혼잡 해결 정보를 수신함을 특징으로 하는, 단말.And receiving the congestion resolution information through one of an RRC connection release message and a handover command message.
PCT/KR2012/009175 2011-11-04 2012-11-02 Apparatus and method for congestion control for continuity of mbms service WO2013066103A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110114811A KR20130049663A (en) 2011-11-04 2011-11-04 Apparatus and method for controling congestion for service continuity of multimedia broadcast multicast service
KR10-2011-0114811 2011-11-04
KR10-2011-0115411 2011-11-07
KR1020110115411A KR20130050196A (en) 2011-11-07 2011-11-07 Apparatus and method for controling congestion for service continuity of multimedia broadcast multicast service

Publications (1)

Publication Number Publication Date
WO2013066103A1 true WO2013066103A1 (en) 2013-05-10

Family

ID=48192384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009175 WO2013066103A1 (en) 2011-11-04 2012-11-02 Apparatus and method for congestion control for continuity of mbms service

Country Status (1)

Country Link
WO (1) WO2013066103A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060608A1 (en) * 2013-10-23 2015-04-30 Lg Electronics Inc. Method of selectively trnsmitting mbms service level information in wireless communication system and apparatus therefor
CN105323722A (en) * 2014-07-31 2016-02-10 中兴通讯股份有限公司 Method and system for reporting congestion state in cluster communication based on MBMS loading

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771899B1 (en) * 2006-08-10 2007-10-31 삼성전자주식회사 Appaturus and method for dedicated resource request using congestion information in mobile communication system
KR20090009843A (en) * 2006-05-02 2009-01-23 텔레폰악티에볼라겟엘엠에릭슨(펍) A method for generating a congestion flag based on measured system load
WO2010068454A2 (en) * 2008-11-25 2010-06-17 Zte U.S.A., Inc. Mobility management method and system for multicast and broadcast services
KR20100118515A (en) * 2009-04-28 2010-11-05 한국전자통신연구원 Control system for supporting mbms service

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090009843A (en) * 2006-05-02 2009-01-23 텔레폰악티에볼라겟엘엠에릭슨(펍) A method for generating a congestion flag based on measured system load
KR100771899B1 (en) * 2006-08-10 2007-10-31 삼성전자주식회사 Appaturus and method for dedicated resource request using congestion information in mobile communication system
WO2010068454A2 (en) * 2008-11-25 2010-06-17 Zte U.S.A., Inc. Mobility management method and system for multicast and broadcast services
KR20100118515A (en) * 2009-04-28 2010-11-05 한국전자통신연구원 Control system for supporting mbms service

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT: "Congestion control on MBMS frequency carrier: Discussion on solutions", 3GPP TSG-RAN WG2 MEETING #75BIS R2-115343, 14 October 2011 (2011-10-14), ZHUHAI, CHINA, XP050540867 *
LG ELECTRONICS INC.: "Congestion handling for MBMS", 3GPP TSG-RAN WG2 #75BIS R2-115011, 10 October 2011 (2011-10-10) - 14 October 2011 (2011-10-14), ZHUHAI, CHINA, XP050540927 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060608A1 (en) * 2013-10-23 2015-04-30 Lg Electronics Inc. Method of selectively trnsmitting mbms service level information in wireless communication system and apparatus therefor
CN105323722A (en) * 2014-07-31 2016-02-10 中兴通讯股份有限公司 Method and system for reporting congestion state in cluster communication based on MBMS loading
EP3188517A4 (en) * 2014-07-31 2017-11-01 ZTE Corporation Mbms bearer-based method and system for reporting congestion state in cluster communication and storage medium
US10104577B2 (en) 2014-07-31 2018-10-16 Zte Corporation MBMS bearer-based method and system for reporting congestion state in cluster communication and storage medium
CN105323722B (en) * 2014-07-31 2020-05-26 中兴通讯股份有限公司 Congestion state reporting method and system in cluster communication based on MBMS bearing

Similar Documents

Publication Publication Date Title
WO2012148235A2 (en) Handover device and method for service continuity in mbms
WO2012150790A2 (en) Apparatus and method for transmitting control information for continuous mbms service
WO2017171529A1 (en) Method for v2x transmission resource selection performed by means of terminal in wireless communication system and terminal using same
WO2018182254A1 (en) Method and device for transmitting scg failure information message in wireless communication system
WO2016163835A1 (en) Method and apparatus for handling l2 entity in channel change for relaying in wireless communication system
WO2015002456A1 (en) Method for selecting or reselecting relay for proximity service
WO2017069430A1 (en) Method for direct communication between terminals in wireless communication system and apparatus for method
WO2015170862A1 (en) Method for establishing plurality of pdn connections by means of csipto
WO2019031808A1 (en) Method for transmitting and receiving signals in a wireless communication system and a device therefor
WO2017026791A1 (en) Method for discoveering relay ue via d2d link at ue in wireless communication system and apparatus therefor
WO2016148475A1 (en) Method and device for transmitting and receiving list of cells providing scptm service
WO2014163289A1 (en) Method for operating time alignment timer and communication device thereof
WO2017200299A1 (en) Method for performing cell reselection procedure by terminal, and apparatus for supporting same
WO2017222322A1 (en) Method for receiving mbms service and device for supporting same
WO2014157904A1 (en) Location-specific wlan information provision method in cell of wireless communication system
WO2015102334A1 (en) Method and apparatus for providing group communication service enabler (gcse) service in wireless communication system
WO2016200213A1 (en) Method and apparatus for transmitting v2x message
WO2018070845A1 (en) Sidelink synchronization signal transmission method performed by terminal in wireless communication system and terminal using same
WO2017030343A1 (en) Method for rearranging gateway and method for generating dedicated bearer
WO2016159559A1 (en) Method and apparatus for changing, by terminal, priority in mcptt
WO2018088837A1 (en) Method for terminal performing cell reselection procedure, and device supporting same
WO2012148206A2 (en) Method and device for providing continuity in mbms service
WO2015041493A1 (en) Method and apparatus for controlling wireless access congestion
WO2016068528A1 (en) Method and apparatus for providing service continuity in mbsfn service boundary area
WO2016126029A1 (en) Method for applying a new pucch configuration in a carrier aggregation system and a device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844721

Country of ref document: EP

Kind code of ref document: A1