WO2013066091A1 - Method and apparatus for allocating resources for result of wireless signal transmission and transceiving the result - Google Patents

Method and apparatus for allocating resources for result of wireless signal transmission and transceiving the result Download PDF

Info

Publication number
WO2013066091A1
WO2013066091A1 PCT/KR2012/009152 KR2012009152W WO2013066091A1 WO 2013066091 A1 WO2013066091 A1 WO 2013066091A1 KR 2012009152 W KR2012009152 W KR 2012009152W WO 2013066091 A1 WO2013066091 A1 WO 2013066091A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pdcch
phich
uplink
transmitting
Prior art date
Application number
PCT/KR2012/009152
Other languages
French (fr)
Korean (ko)
Inventor
박경민
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2013066091A1 publication Critical patent/WO2013066091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention provides a method and apparatus for more efficiently allocating information indicating a transmission result between a user terminal and a base station to a radio resource and transmitting and receiving the same.
  • the user terminal and the base station checks the received signal to confirm whether the transmission of the radio signal was performed without error, and transmits and receives the transmission result (ACK) (Acknowledge) / NACK (Negative Acknowledge) or N / Ack). And, it provides a mechanism (Hybrid Automatic Repeat reQuest, HARQ) to retransmit the error portion during the transmission process.
  • ACK Acknowledge
  • NACK Negative Acknowledge
  • N / Ack a mechanism to retransmit the error portion during the transmission process.
  • the base station transmits the signal transmission result using some resources of the frequency bandwidth for transmitting the radio signal, and these resources are set in a manner previously promised with the user terminal.
  • the transmission result In order for the base station to provide a result of the transmission of the radio signal transmitted by the user terminal, the transmission result must be included in a resource of a location promised by the user terminal and the base station.
  • more radio resources including a transmission result to be provided to the user terminal are needed. Therefore, an increase in the user terminal or an increase in transmission results that should be provided to the user terminal in a limited radio resource is required. It is necessary to efficiently process and secure radio resources.
  • HARQ resources that is, PHICH resources are more efficiently. It is necessary to assign In this specification, for this purpose, the base station more efficiently allocates PHICH resources within a limited resource, so that PUSCH simultaneous transmission of multiple user terminals is supported.
  • a method for allocating a resource for a wireless signal transmission result and transmitting the same may include transmitting uplink resource allocation information of a user terminal in a transmitting terminal for transmitting and receiving a wireless signal to a plurality of user terminals. Transmitting to the user terminal through an enhanced PDCCH (E-PDCCH), receiving a radio signal from the user terminal using an uplink resource allocated through the E-PDCCH, and verifying the received radio signal And transmitting to the user terminal, wherein the verification result is a PHICH (Physical Hybrid ARQ Indicator CHannel) resource that can be calculated from a radio resource including the E-PDCCH or a PHICH that can be calculated from information included in the E-PDCCH. It is characterized by being included in the resource.
  • E-PDCCH enhanced PDCCH
  • PHICH Physical Hybrid ARQ Indicator CHannel
  • a method for receiving a resource for a wireless signal transmission result includes receiving, by a user terminal, uplink resource allocation information through an enhanced PDCCH (E-PDCCH) from a transmitting end; Physical Hybrid ARQ Indicator CHannel (PHICH), which is capable of calculating a radio signal using an uplink resource allocated through the E-PDCCH and calculating a verification result of the transmitted radio signal from a radio resource including the E-PDCCH.
  • E-PDCCH enhanced PDCCH
  • PHICH Physical Hybrid ARQ Indicator CHannel
  • an apparatus for allocating a resource for a radio signal transmission result and transmitting the same may include a uplink resource allocation information of a user terminal in a transmission terminal for transmitting and receiving a radio signal to a plurality of user terminals.
  • E-PDCCH is allocated to a radio resource of a pre-computed index or E-PDCCH is included in the E-PDCCH so that an E-PDCCH indicates an index of a radio resource to transmit the uplink result.
  • PHICH Physical Hybrid ARQ Indicator CHannel
  • An apparatus for receiving a resource for a radio signal transmission result receives uplink resource allocation information through an extended PDCCH (E-PDCCH) from a transmitter, and is allocated through the E-PDCCH.
  • E-PDCCH extended PDCCH
  • PHHY Physical Hybrid ARQ
  • PUSCH Physical Uplink Shared CHannel
  • 1, 2, and 3 are diagrams illustrating a data transmission and reception process in a Het-Net environment.
  • FIG. 4 is a table illustrating a PHICH group and a sequence index according to an embodiment.
  • FIG. 5 is a diagram illustrating an example in which index information on a PHICH resource is included in an E-PDCCH according to an embodiment of the present specification.
  • FIG. 6 illustrates an example in which only a part of index information indicating a PHICH resource is provided through an E-PDCCH according to an embodiment of the present specification.
  • FIG. 7 is a diagram illustrating a process of including all or part of information indicating a PHICH resource in an E-PDCCH according to one embodiment of the present specification.
  • FIG. 8 is a diagram for E-PDCCH scheduling according to another embodiment of the present disclosure to allow a UE to identify PHICH resources using the location of an E-PDCCH.
  • FIG. 9 illustrates a process of including all or part of information indicating a PHICH resource in an E-PDCCH according to another embodiment of the present specification.
  • FIG. 10 is a diagram for E-PDCCH scheduling according to another embodiment of the present disclosure to enable a UE to identify PHICH resources using the location of an E-PDCCH.
  • FIG. 11 is a diagram illustrating a process of allocating a resource for a radio signal transmission result and transmitting the same in a transmitting end such as a base station and an RRH according to an embodiment of the present specification.
  • FIG. 12 is a diagram illustrating a process of receiving a radio signal transmission result after transmitting a radio signal after receiving uplink allocation from a transmitting end such as a base station and an RRH according to an embodiment of the present specification.
  • FIG. 13 is a diagram illustrating a configuration of a base station according to an embodiment of the present specification.
  • FIG. 14 is a diagram illustrating a configuration of a user terminal according to one embodiment of the present specification.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • a communication system using a multiple-input multiple-output antenna may be used at both the transmitting and receiving ends, and may be a single UE (SU) or multiple UEs.
  • MUs share the same radio resource capacity and receive or transmit a signal to one base station or the like.
  • the terminal can adaptively optimize the system by feeding back channel state information for each physical channel to the base station.
  • Signals of Channel Status Information Reference Signals (CSI-RS), Channel Quality Indicator (CQI) and Precoding Matrix Index (PMI) may be used, and the base station may use such channel status related information. Channels can be scheduled.
  • CSI-RS Channel Status Information Reference Signals
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • CRS cell-specific reference signal
  • a sounding reference signal (SRS) and a demodulation reference signal (DM RS) for demodulation are signals transmitted by the user terminal to the base station. That is, the CSI-RS is transmitted by the base station, and the PMI and CQI are information reported by the terminal.
  • the wireless communication system is widely deployed to provide various communication services such as voice and packet data, and the wireless communication system controls the behavior of a base station such as a user equipment (UE), a base station (base station, BS, or eNB), and an RRH. It includes a subsidiary unit.
  • a terminal in the present specification is a comprehensive concept that means a user terminal in wireless communication.
  • UE User Equipment
  • LTE Long Term Evolution
  • HSPA High Speed Packet Access
  • MS Mobile Station
  • UT User Terminal
  • SS Global System for Mobile communications
  • a base station or a cell generally refers to a station that communicates with a terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. It may be called other terms such as a transceiver system, an access point, a relay node, and an RRH.
  • a base station or a cell should be interpreted in a comprehensive sense indicating some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to encompass various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node communication range.
  • BSC base station controller
  • the terminal and the base station are two transmitting and receiving entities used in implementing the technology or the technical idea described in the present specification and are used in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the terminal 10 and the base station 20 are two (uplink or downlink) transmission and reception subjects used to implement the technology or the technical idea described in the present invention, which are used in a generic sense and are specifically referred to in terms or words. It is not limited by.
  • the uplink Uplink, UL, or uplink
  • the downlink Downlink, DL, or downlink
  • the base station 20 By means of a method for transmitting and receiving data to the terminal 10 by.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH).
  • a data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data.
  • the meaning of transmitting a control or data channel may be interpreted to mean that control information or data information included in a specific channel is transmitted in the form of a radio signal.
  • the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH).
  • the data channel may be a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • LTE-A a standard based on a single carrier in LTE is discussed, and a combination of several bands having a band smaller than 20 MHz is discussed, while a component carrier band having a band of 20 MHz or more is being discussed.
  • multi-carrier aggregation hereinafter referred to as 'CA'
  • 'CA' multi-carrier aggregation
  • Up to five component carriers are considered in the link. Of course, the five component carriers can be increased or decreased according to the environment of the system, the present invention is not limited thereto.
  • the CC set refers to a set of two or more CCs configured for use in a corresponding system.
  • uplink ACK / NACK ACKnowledgement / Negative ACKnowledgement
  • CQI channel quality indicator
  • PMI precoding matrix indicators
  • RI Rank Indicator
  • LTE-A is basically considering backward compatibility of 3GPP LTE Rel-8 for the configuration of CA.
  • CQI / PMI / RI information determined as a standard in LTE Rel-8 is performed by various methods through a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) which are uplink control channels.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • a wireless communication system to which an embodiment of the present specification is applied may support uplink and / or downlink HARQ.
  • the number of user terminals in the base station increases, the control signal provided to the user terminal is increased, and the resource to which the control signal is transmitted also requires more.
  • the number of user terminals is increased, the number of user terminals is gradually increased in a cell managed by the base station, and the number of user terminals is increased by using various multiplexing methods.
  • a coordinated multi-point transmission / reception system or a coordinated multi-antenna transmission system in which two or more transmitters cooperate to transmit a signal A cooperative multi-cell communication system (hereinafter referred to as "cooperative multi-cell communication system" or "CoMP").
  • Het-Net Het-Net
  • the macro base station will be described collectively as an eNB, and the micro or local base station will be described as RRH.
  • PUSCH transmission and corresponding PHICH transmission are performed in the following manner.
  • the eNB 100 performs CRS and CSI-RS broadcasting, and each of the RRHs 110, 120, 130, and 140 performs CSI-RS broadcasting.
  • the RRH may also transmit the CRS, but in the case of FIG. 1, the CRS transmitted by the RRH is configured as part of the CRS transmitted by the eNB or configured in the same pattern.
  • the CSI-RS transmitted by the RRH is broadcast through a different port than the CSI-RS transmitted by the eNB.
  • the eNB 100 may receive the SRS and other uplink signals transmitted by the user terminal and determine the location of each terminal or the channel state of the terminal, and set uplink of each terminal according to the identified information.
  • uplink configuration can be configured. 2 is an example of the configuration.
  • Each UE 111, 121, 131, 132, and 141 attempts to transmit a PUSCH to the RRHs 110, 120, 130, and 140, or attempts to transmit a PUSCH directly to the eNB 100 such as UEs 101 and 102. Can be.
  • the eNB 100 and the RRHs 110, 120, 130, and 140 create an uplink connection with each terminal.
  • the PUSCH is transmitted together with the DM RS, and each receiving end attempts to decode the PUSCH using the DM RS.
  • each receiver performs channel estimation through the CRS and performs decoding using the estimated channel value.
  • channel estimation should be channel estimation, which means that the band where the CRS is provided and the band where the PHICH is provided must be the same, and therefore, the PHICH should be transmitted through a transmitter that performs CRS transmission.
  • the eNB 100 or all transmission terminals (eNB, RRH, etc.) performing CRS transmission should perform PHICH transmission for all UEs performing PUSCH transmission.
  • the eNB should perform PHICH resource management (resource management or resource management) for more PUSCH transmission, which is PHICH This can be a significant burden on resources.
  • resources and resources are used in the same sense and may be used interchangeably.
  • a plurality of uplink grants must be transmitted to the terminal, which is an E-PDCCH (Extended PDCCH, or X-PDCCH). It may not be possible without it.
  • E-PDCCH Extended PDCCH, or X-PDCCH
  • an uplink grant is transmitted by a plurality of E-PDCCHs when a PHICH resource shortage or a PHICH collision problem occurs.
  • a method of allocating a PHICH resource using information such as using an E-PDCCH resource or receiving an E-PDCCH, a resource used for E-PDCCH transmission, and the like is provided.
  • the E-PDCCH will be briefly described.
  • MIMO, CoMP, and Het-Net described above are technologies for improving the performance of a wireless communication system, and when these techniques are applied, more control information may be required. Therefore, resources of the control region may be insufficient to allocate a plurality of PDCCHs for transmitting control information.
  • the control region may mean a radio resource region including the PDCCH.
  • E-PDCCH the newly designed PDCCH for transmitting more PDCCH.
  • the implementation manner of the E-PDCCH may vary, and the invention described herein is not limited to the implementation manner of a specific E-PDCCH.
  • the PHICH resource allocation method using the legacy PDCCH is different from the PHICH resource allocation method using the E-PDCCH, thereby increasing the allocation efficiency of the PHICH resource.
  • PHICH resource allocation of a user terminal using an existing PDCCH that is, a PHICH resource for performing N / Ack transmission of a base station for a PUSCH transmitted by a user terminal is determined by a PHICH group and a PHICH sequence. Is determined.
  • Each PHICH group is composed of eight orthogonal codes in the case of a subframe using a normal CP (cyclic prefix) and four orthogonal codes in the case of a subframe using an extended CP.
  • Each cell determines the total amount of PHICH resources by selecting the number of PHICH groups, and performs PHICH resource management by selecting PHICH groups and PHICH sequences to deliver N / Ack to each UE.
  • the number of PHICH groups is In all subframes, the number of PHICH groups in a TDD system In each subframe, a different size PHICH resource is used.
  • the value is determined according to the subframe number i and the uplink-downlink configuration, as indicated in Table 1.
  • a PHICH resource that performs N / Ack reporting on a PUSCH is a PHICH group index calculated from a PHICH index of Equation 2 below.
  • PHICH Sequence Index, ) Is determined by the value (index).
  • the PHICH sequence index has a value of 0-7 or 0-3 according to the type of an orthogonal sequence, and may be applied as shown in Table 2 below.
  • PHICH resource in many cases different And The same PHICH resource may be designated by the value.
  • PRB of vertical axis is Where the horizontal axis is Indicates.
  • the PHICH group index ( ) Is 2 is 2, and the PHICH sequence index ( In the case of 1), there are a large number as indicated by the dotted-ellipse in FIG. 4, all of which are different from each other.
  • the same PHICH group / sequence value may exist by value.
  • the base station may perform PUSCH scheduling for each user terminal that is allocated uplink by the PDCCH, avoiding the above case.
  • I a factor indicating the relative position occupied by N / Ack in a virtual resource block (VRB) allocated for PHICH transmission, and which physical resource is mapped to which physical resource is mapped According to the definition of the PHICH region (region).
  • VRB virtual resource block
  • the PHICH resource of the user terminal received uplink allocation through the PDCCH may be allocated the same PHICH resource even if different PUSCH resources are allocated, scheduling to adjust the PUSCH region is applied to avoid this.
  • the E-PDCCH since additional information can be extended and added to the E-PDCCH, it is not necessary to perform new scheduling of the PUSCH resource or to reduce the scope of such scheduling to a minimum, and indicate the PHICH resource directly or indirectly. Can be considered. In this case, there is an advantage that the PHICH resource can be allocated without changing the user terminal using the conventional PDCCH (PDCCH).
  • the E-PDCCH may separately include a field indicating group information and sequence information, which are index information for PHICH resources.
  • FIG. 5 is a diagram illustrating an example in which index information on a PHICH resource is included in an E-PDCCH according to an embodiment of the present specification.
  • Two fields 510 and 520 may be included in the E-PDCCH region 500.
  • the at least one field may be referred to as a PHICH indicator or indication information.
  • the PHICH group index field 510 includes a group index value for the PHICH resource ( ) Is included.
  • the PHICH sequence index field 520 has a sequence index value for the PHICH resource ( ) Is included.
  • the sequence index field 520 may be calculated by using Equation 2 above.
  • the user terminal may use Equation 3 or 3 by using each field of the received E-PDCCH.
  • PHICH resource indication information may be confirmed, and as a result, PHICH resource may be allocated.
  • Equation 3 the value of the PHICH group index field 510 of FIG. 5 indicates, Using the PHICH group index ( ), And the value of the PHICH sequence index is the same as in Equation 3 in the same manner as in the PDCCH terminal. The value can be calculated.
  • Equation 4 as indicated by Equation 3, the value of the PHICH group index field 510 of FIG. 5 is indicated. Using the PHICH group index ( ) Value, indicated by the value of the PHICH sequence index field 520 of FIG. Using PHICH sequence index ( ) Value can be calculated.
  • the length of the PHICH group index field 510 should be able to indicate the maximum possible number of PHICH groups. Therefore, the length of the PHICH group index field 510 is In the case of applying the values of Equations 1 and Ng to 2, it can be calculated as Equation 5.
  • the size of the PHICH group index field 510 is determined according to the downlink bandwidth (or the number of RBs), which is determined by the maximum number of PHICH groups that can be set in a given downlink bandwidth. Is determined by
  • Equation 5 if the downlink bandwidth (BW) is 5MHz and Normal CP, the size of the PHICH group index field ( ) Is 3 bits, and if the downlink bandwidth (BW) is 10 MHz and Normal CP, the size of the PHICH group index field ( ) Is 4 bits.
  • the length of the PHICH sequence index field 520 has a length of 3 bits in the case of Normal CP, which indicates 8 pieces of sequence information, and 4 cases in the case of Extended CP. Since the sequence information of must be indicated, the length is 2 bits.
  • the E-PDCCH is a part that considers various expansion possibilities, and the 7-bit data growth may have a better effect than scheduling of the PUSCH.
  • the user terminal may identify the PHICH resource to which the HARQ result for the uplink performance is applied by applying Equation 3 or Equation 4 using the value of the field included in the E-PDCCH indicating uplink allocation. .
  • FIG. 6 illustrates an example in which only a part of index information indicating a PHICH resource is provided through an E-PDCCH according to an embodiment of the present specification.
  • PHICH is allocated to PHICH subgroups only for PUSCH triggered by E-PDCCH to allocate PHICH resource allocation.
  • each UE recognizes a category of a PHICH group that can be allocated through high layer signaling, and can perform PHICH group allocation within the category.
  • the PHICH group is ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇
  • they are divided into subsets such as ⁇ 0, 1, 2, 3 ⁇ and ⁇ 4, 5, 6 ⁇ .
  • whether the PHICH subset allocated to each UE is ⁇ 0, 1, 2, 3 ⁇ or ⁇ 4, 5, 6 ⁇ Can be indicated using.
  • the base station determines the value of the PHICH group subset index 610 of the E-PDCCH region 600 of FIG. 6. It can be calculated by using the equation (6).
  • the length of, i.e., the length of the PHICH group subset index 610 of the E-PDCCH can be implemented in 2 bits.
  • the length of the PHICH group index 510 of the E-PDCCH may be implemented as 3 bits since it should be indicated among 7 PHICH groups.
  • the PHICH sequence it may be calculated through Equation 2 or set through additional E-PDCCH signaling through the PHICH sequence index 620 as described above with reference to FIG. 5.
  • the scheme of FIG. 5 does not require higher layer signaling and can immediately apply a PHICH resource allocation mechanism, but the number of group indexes to be transmitted in the E-PDCCH is large.
  • the scheme of FIG. 6 performs higher layer signaling and has a small number of group indexes to be transmitted on the E-PDCCH.
  • the higher layer signaling divides PHICH resources into subframes and performs PHICH resource allocation through E-PDCCH in each subframe, thereby reducing signaling overhead.
  • the user terminal uses the subset information of the group received through Equation 6 and higher layer signaling, and the HARQ result for the uplink performance is obtained.
  • the PHICH resource to be allocated can be identified.
  • 5 and 6 illustrate a method of instructing allocation of PHICH resources using a region of the E-PDCCH.
  • E PRB_RA the index value of the PRB (Physical Resource Block) through which the E-PDCCH is transmitted.
  • the base station controls this value and the user terminal calculates group and sequence information for PHICH resource allocation as shown in Equation 7 below. Implement to do it.
  • Equation 7 it is possible to change the PHICH group indexing or PHICH sequence indexing, respectively. Therefore, PHICH resource allocation may be performed using both of the above equations, or PHICH resource allocation may be performed by mixing one of the equations and the existing one.
  • the base station When applying the third embodiment, the base station performs scheduling of the E-PDCCH. This is because the PHICH group and sequence information are calculated using the PRB index through which the E-PDCCH is transmitted, as shown in Equations 7, and 8. Accordingly, the E-PDCCH scheduling is performed like the PUSCH scheduling of the UE that receives the PDCCH, so that PHICH resource collision due to the same group / sequence does not occur. However, since E-PDCCH scheduling has less impact on network efficiency than PUSCH scheduling, overall system performance may be improved.
  • the user terminal uses the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block, as shown in Equation 7 or Equation 8.
  • the PHICH resource to which the HARQ result for the uplink performance may be allocated may be identified.
  • FIG. 7 illustrates uplink allocation by including all or part of information indicating a PHICH resource in an E-PDCCH according to an embodiment of the present specification, and when a user terminal performs uplink transmission thereafter, HARQ result Is a diagram illustrating a process of including a transmission in a downlink radio signal.
  • the eNB of FIG. 7 becomes an embodiment of a base station, and the UE becomes an embodiment of a user terminal or a terminal.
  • the eNB 700 determines an uplink grant of a specific UE 701 (S710).
  • the uplink transmission (PUSCH) is indicated by the E-PDCCH, it is possible to determine a group and sequence value indicating the PHICH resource including the HARQ result for the uplink transmission (S720).
  • the E-PDCCH is generated to be included in a specific field of the E-PDCCH indicating the uplink allocation. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
  • the eNB 700 transmits a downlink including the generated E-PDCCH (S740).
  • the UE 701 knows that uplink allocation has been made through the E-PDCCH.
  • information (group and / or sequence information) indicating a PHICH resource included in the E-PDCCH is extracted (S750).
  • uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
  • the eNB 700 proceeds with the HARQ process. That is, the eNB 700 proceeds the HARQ process with respect to the received uplink (PUSCH transmission) (S770), includes the HARQ process result in the PHICH resource determined in S720, and performs downlink transmission (S780, S790). Thereafter, the UE 701 checks the HARQ result included in the PHICH resource indicated in S750 among the received PHICH resources (S795), and determines whether to retransmit.
  • FIG. 8 performs E-PDCCH scheduling according to another embodiment of the present specification so that the UE can identify PHICH resources using the location of the E-PDCCH.
  • the E-PDCCH performs uplink allocation, and when the user terminal performs uplink transmission, the E-PDCCH shows a process of including the HARQ result in the downlink radio signal and transmitting the uplink transmission.
  • the eNB of FIG. 8 becomes an embodiment of a base station, and the UE becomes an embodiment of a user terminal or a terminal.
  • the eNB 800 determines an uplink grant of a specific UE 801 (S810).
  • a group and sequence value indicating a PHICH resource including a HARQ result for the uplink transmission may be determined (S820).
  • E-PDCCH scheduling is performed such that the E-PDCCH indicating the uplink allocation is transmitted at a position capable of calculating the determined group and sequence of PHICH resources (S830).
  • the E-PDCCH may be scheduled such that a group or sequence of PHICH resources is calculated according to the index of the resource block of the E-PDCCH.
  • the eNB 800 transmits a downlink including the generated E-PDCCH (S840).
  • the UE 801 grasps that uplink allocation has been made through the E-PDCCH.
  • information (group and / or sequence information) indicating a PHICH resource is extracted using physical resources and uplink allocation resources of the E-PDCCH (S850).
  • uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
  • the eNB 800 proceeds with the HARQ process. That is, the eNB 800 proceeds with a HARQ process with respect to the received uplink (PUSCH transmission) (S870), includes the HARQ process result in the PHICH resource determined in S820, and performs downlink transmission (S880, S890). Thereafter, the UE 801 checks the HARQ result included in the PHICH resource indicated in S850 among the received PHICH resources (S895), and determines whether to retransmit.
  • PUSCH transmission PUSCH transmission
  • S870 includes the HARQ process result in the PHICH resource determined in S820
  • S890 downlink transmission
  • the UE 801 checks the HARQ result included in the PHICH resource indicated in S850 among the received PHICH resources (S895), and determines whether to retransmit.
  • the downlink / uplink transmission of S740, S760, S840, S860 may be made through the RRH. This may be configured as shown in FIGS. 9 and 10.
  • FIG. 9 includes uplink allocation by including all or part of information indicating a PHICH resource in an E-PDCCH according to an embodiment of the present specification as shown in FIG. 7, and then, when a user terminal performs uplink transmission, A diagram showing a process of including the HARQ result in the downlink radio signal and transmitting.
  • the RRH 905 performs separate communication with the eNB 900 through a medium such as optical communication, and transmits and receives a radio signal with the UE 901.
  • the eNB 900 and the RRH 905 determine an uplink grant of a specific UE 901 (S910).
  • the eNB 900 and the RRH 905 indicate a group and sequence indicating a PHICH resource including a HARQ result for the uplink transmission.
  • Seq) value can be determined (S920).
  • the RRH 905 generates the E-PDCCH such that a value indicating the determined group and sequence is included in a specific field of the E-PDCCH indicating the uplink allocation.
  • the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG.
  • the method of indicating a group can be applied.
  • the RRH 905 transmits a downlink including the generated E-PDCCH (S940).
  • the UE 901 knows that uplink allocation has been made through the E-PDCCH.
  • information (group and / or sequence information) indicating a PHICH resource included in the E-PDCCH is extracted (S950).
  • uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
  • the RRH 905 provides the uplink PUSCH to the eNB 900 (S965).
  • the provision includes the RRH 905 transmitting the uplink PUSCH to the eNB 900 via an optical communication network or the like.
  • the eNB 900 proceeds with the HARQ process for this. That is, the eNB 900 proceeds with the HARQ process on the received uplink (PUSCH transmission) (S970), includes the HARQ process result in the PHICH resource determined in S920, and performs downlink transmission (S980, S990). Thereafter, the UE 901 checks the HARQ result included in the PHICH resource indicated in S750 among the received PHICH resources (S995), and determines whether to retransmit.
  • FIG. 10 performs E-PDCCH scheduling, as shown in FIG. 8, so that the UE can identify PHICH resources using the location of the E-PDCCH.
  • the E-PDCCH performs uplink allocation, and when the user terminal performs uplink transmission, the E-PDCCH shows a process of including the HARQ result in the downlink radio signal and transmitting the uplink transmission.
  • the RRH 1005 performs separate communication with the eNB 1000 through a medium such as optical communication, and transmits and receives a radio signal with the UE 1001.
  • the eNB 1000 and the RRH 1005 determine an uplink grant of a specific UE 1001 (S1010).
  • the eNB 1000 and the RRH 1005 indicate a group and sequence indicating a PHICH resource including a HARQ result for the uplink transmission.
  • a value of (Seq) may be determined (S1020).
  • E-PDCCH scheduling is performed such that the E-PDCCH indicating the uplink allocation is transmitted at a position capable of calculating the determined group and sequence of PHICH resources (S1030).
  • the E-PDCCH may be scheduled such that a group or sequence of PHICH resources is calculated according to the index of the resource block of the E-PDCCH.
  • the RRH 1005 transmits a downlink including the generated E-PDCCH (S1040).
  • the UE 1001 grasps that uplink allocation has been made through the E-PDCCH.
  • information (group and / or sequence information) indicating a PHICH resource is extracted using physical resources and uplink allocation resources of the E-PDCCH (S1050).
  • uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
  • the RRH 1005 provides the uplink PUSCH to the eNB 1000 (S1065).
  • the provision includes the RRH 1005 transmitting the uplink PUSCH to the eNB 1000 via an optical communication network or the like.
  • the eNB 1000 proceeds with the HARQ process for this. That is, the eNB 1000 proceeds with the HARQ process on the received uplink (PUSCH transmission) (S1070), includes the HARQ process result in the PHICH resource determined in S1020, and performs downlink transmission (S1080, S1090). Thereafter, the UE 1001 checks the HARQ result included in the PHICH resource indicated in S1050 among the received PHICH resources (S1095), and determines whether to retransmit.
  • FIG. 11 is a diagram illustrating a process of allocating and transmitting resources for transmitting a radio signal transmission result in a transmitting end such as a base station and an RRH according to an embodiment of the present specification.
  • Figure 11 is a process made in a transmitting end for transmitting and receiving a radio signal to a plurality of user terminals, characterized in that the transmitting end is composed of a base station or RRH.
  • the transmitter determines the uplink allocation of the user terminal and transmits uplink allocation information of the user terminal to the user terminal through the E-PDCCH (S1110). This includes a process in which the RRH or the base station transmits an uplink allocation through the E-PDCCH or the PDCCH as shown in FIG. 1.
  • a wireless signal is received from the user terminal in the uplink resource allocated through the E-PDCCH (S1120).
  • the transmitting end verifies the received radio signal.
  • the verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource.
  • the transmitting end in particular, the base station transmits the verification result to the user terminal (S1140).
  • the verification result of S1140 is included in a radio resource that can be calculated from a resource including the E-PDCCH or a radio resource that can be calculated from information included in the E-PDCCH.
  • the radio resource that can be calculated from the information included in the E-PDCCH means to include group information or sequence information indicating a PHICH resource in a specific field of the E-PDCCH as in the first and second embodiments. That is, the E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
  • the radio resource that can be calculated from the resource including the E-PDCCH is calculated as a group or sequence of PHICH resources by using the index of the physical resource block of the E-PDCCH which performs uplink allocation as in the third embodiment. It means an embodiment that can be done. That is, group information or sequence information indicating the PHICH resource may be calculated using the resource block index of the E-PDCCH. In other words, by using the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block, as shown in Equation 7 or 8 The PHICH resource to which the HARQ result for the uplink performance may be allocated may be identified.
  • S1110, S1120, and S1130 may be performed in cooperation with the base station and the RRH or the base station / RRH alone. However, S1140 may transmit the PHICH including the verification result in the apparatus for transmitting the reference signal (for example, the CRS) for the entire cell, such as the base station, for example, the eNB.
  • the reference signal for example, the CRS
  • the PHICH resource calculated through the E-PDCCH does not collide with a PHICH resource of another user terminal.
  • PDCCH scheduling may be additionally performed.
  • FIG. 12 is a diagram illustrating a process of receiving a radio signal transmission result after transmitting a radio signal after receiving uplink allocation from a transmitting end such as a base station and an RRH according to an embodiment of the present specification.
  • the transmitting end of Figure 12 is characterized by consisting of a base station or an RRH.
  • the user terminal receives uplink allocation information through the E-PDCCH from the transmitting end (S1210). This includes a process in which the RRH or the base station is instructed to allocate uplink through the E-PDCCH or the PDCCH as shown in FIG. 1.
  • a radio signal is transmitted on an uplink resource allocated through the E-PDCCH. This includes a process of transmitting a PUSCH to the RRH or the base station by the user terminal as shown in FIG.
  • the verification result of the transmitted radio signal is received from a radio resource that can be calculated from a resource including the E-PDCCH or a radio resource that can be calculated from information included in the E-PDCCH (S1230). Thereafter, the previously transmitted wireless signal may be retransmitted according to the verification result.
  • the verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource.
  • the user terminal receives the verification result from the base station. That is, from an apparatus for transmitting a reference signal (for example, CRS) for all cells, such as a base station, for example, an eNB, the user terminal may receive a PHICH including a verification result.
  • a reference signal for example, CRS
  • the verification result is included in a radio resource that can be calculated from a resource including the E-PDCCH or a radio resource that can be calculated from information included in the E-PDCCH.
  • the radio resource that can be calculated from the information included in the E-PDCCH means to include group information or sequence information indicating a PHICH resource in a specific field of the E-PDCCH as in the first and second embodiments. That is, the E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
  • the radio resource that can be calculated from the resource including the E-PDCCH is calculated as a group or sequence of PHICH resources by using the index of the physical resource block of the E-PDCCH which performs uplink allocation as in the third embodiment. It means an embodiment that can be done. That is, group information or sequence information indicating the PHICH resource may be calculated using the resource block index of the E-PDCCH. That is, the user terminal uses the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block. Likewise, the PHICH resource to which the HARQ result for the corresponding uplink execution can be identified can be identified.
  • FIG. 13 is a diagram illustrating a configuration of a base station according to an embodiment of the present specification.
  • the base station may further require various components to transmit and receive wireless signals to and from user terminals, and FIG. 13 illustrates components required to implement an embodiment of the present specification.
  • the base station includes a resource allocator 1310, a verification unit 1320, and a transceiver 1330.
  • the resource allocator 1310 allocates the E-PDCCH to a radio resource of a pre-calculated index so that the E-PDCCH including uplink allocation information of the user terminal indicates an index of a radio resource to transmit the uplink result.
  • the E-PDCCH is generated by including a pre-calculated value in the E-PDCCH.
  • the verification unit 1320 verifies the radio signal transmitted by the user terminal receiving the radio signal including the E-PDCCH.
  • the transceiver 1330 transmits the verification result to the user terminal and receives a signal from one or more user terminals.
  • the verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource.
  • the resource allocator 1310 may include all or part of group information or sequence information indicating the PHICH resource in the E-PDCCH.
  • the group information or the sequence information indicating the PHICH resource is included in a specific field of the E-PDCCH as in the first and second embodiments. That is, the E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
  • the resource allocator 1310 uses a resource block index of a radio resource to which the E-PDCCH is to be allocated so that group information or sequence information indicating the PHICH resource is calculated, and to the resource to which the E-PDCCH is to be allocated. Scheduling may be performed.
  • a group or sequence of PHICH resources can be calculated using the index of the physical resource block of the E-PDCCH that performs uplink allocation, as in the third embodiment. That is, group information or sequence information indicating the PHICH resource may be calculated using the resource block index of the E-PDCCH.
  • the resource allocator 1310 may allocate an E-PDCCH to a radio resource of a predetermined index, so that the PHICH resource to which the HARQ result for the uplink performance is allocated is identified.
  • the resource allocator 1310 may additionally perform E-PDCCH scheduling so that PHICH resources calculated through the E-PDCCH do not collide with PHICH resources of other user terminals.
  • FIG. 14 is a diagram illustrating a configuration of a user terminal according to one embodiment of the present specification.
  • the user terminal may further require various components to transmit and receive wireless signals with the base station, and FIG. 14 illustrates components required to implement an embodiment of the present specification.
  • the user terminal may be composed of a verification result checker 1410, a resource checker 1420, and a transceiver 1430.
  • the transceiver 1430 receives uplink resource allocation information through an E-PDCCH from a transmitting end, for example, a base station, and uses a first radio resource for uplink allocated through the E-PDCCH. Can be sent.
  • the resource identifying unit 1420 may calculate the index of the second radio resource from the index of the radio resource including the E-PDCCH or the information included in the E-PDCCH.
  • the transceiver 1430 may receive an uplink transmission result transmitted from the second radio resource using the first radio resource, and a verification result confirming unit 1410 may check the uplink transmission result.
  • the verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource.
  • the user terminal may receive the verification result from the base station. That is, from an apparatus for transmitting a reference signal (for example, CRS) for all cells, such as a base station, for example, an eNB, the user terminal may receive a PHICH including a verification result.
  • a reference signal for example, CRS
  • the resource identifying unit 1420 may be included in the E-PDCCH and may calculate an index of the second radio resource by using all or part of group information or sequence information indicating the PHICH resource. This means that, as in the first and second embodiments, the resource identifying unit 1420 calculates an index of a radio resource including the PHICH by using group information or sequence information indicating a PHICH resource in a specific field of the E-PDCCH. Can be. That is, the E-PDCCH may include all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
  • the resource identification unit 1420 may calculate group information or sequence information indicating the PHICH resource using the resource block index of the E-PDCCH. That is, as in the third embodiment, the resource identifying unit 1420 may identify the PHICH resource by calculating a group or sequence of PHICH resources using the index of the physical resource block of the E-PDCCH that performs uplink allocation. have. In other words, the user terminal may use Equation 7 or Equation 7 using the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block. As shown in FIG. 8, a PHICH resource to which an HARQ result for uplink performance is allocated may be identified.
  • the collision is controlled so that the collision does not occur through scheduling of the base station.
  • the PUSCH transmission is performed in the same subframe, and the PHICH resource of an appropriate size is set in consideration of the number of UEs to perform N / Ack reception through the PHICH in the same subframe, and the PUSCH band scheduling and uplink DM RS are performed.
  • PHICH resources for N / Ack delivery could be distributed to each UE.
  • This PHICH resource allocation method for performing each N / Ack has the advantage that PHICH resource allocation can be performed without signaling overhead, but it is impossible to manage dedicated resources (dedicated resource management). The efficiency of utilization may be diminished.
  • Downlink control channel capacity is increased by the use of E-PDCCH in CoMP scenario 4, and downlink shared channel capacity is also increased by the use of multiple transmission points. Increases.
  • the capacity of an uplink shared channel and an uplink control channel is increased by the use of multiple reception points.
  • PHICH resource management or PHICH resource enhancement may be achieved.
  • the PHICH resource is calculated from the radio resource of the E-PDCCH by including some or all of the information indicating the resource or by E-PDCCH scheduling which does not significantly affect the transmission efficiency in comparison with the PUSCH. Therefore, both resource efficiency and transmission efficiency can be considered.
  • the E-PDCCH scheduling may be performed in addition to the PUSCH scheduling, or the resource for the PHICH may be allocated to the E-PDCCH, so that the limited PHICH resource may be more effectively used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method and an apparatus for allocating resources for the result of a wireless signal transmission and transceiving the result. The method for allocating resources for the result of a wireless signal transmission and transceiving the result according to one embodiment of the present invention enables a transmitting end that transceives a wireless signal to/from a plurality of user terminals to perform a step of transmitting a wireless signal including an extended PDCCH (E-PDCCH) indicating an uplink allocation of the user terminal to the user terminal; a step of receiving, from the user terminal, the wireless signal at the uplink resource allocated through the E-PDCCH; and a step of transmitting a received wireless signal verification result to the user terminal, wherein the verification result is included in a wireless resource calculable from the wireless resource including the E-PDCCH or in a wireless resource calculable from the information included in the E-PDCCH.

Description

무선 신호 전송 결과를 위한 자원을 할당하고 그 결과를 송수신하는 방법 및 장치Method and apparatus for allocating resources for wireless signal transmission result and transmitting and receiving the result
사용자 단말과 기지국 간에 전송 결과를 지시하는 정보를 무선 자원에 보다 효율적으로 할당하여 이를 송수신하는 방법 및 장치를 제공하는 데 있다.The present invention provides a method and apparatus for more efficiently allocating information indicating a transmission result between a user terminal and a base station to a radio resource and transmitting and receiving the same.
이동통신 시스템에서 사용자 단말과 기지국은 무선 신호의 전송이 에러 없이 이루어졌는지를 확인하기 위하여 수신한 신호를 확인하여 신호의 전송 결과(ACK(Acknowledge)/NACK(Negative Acknowledge) 또는 N/Ack)를 송수신하고, 전송 과정에서 오류가 발생한 부분을 재전송하는 매커니즘(Hybrid Automatic Repeat reQuest, HARQ)을 제공하고 있다. In the mobile communication system, the user terminal and the base station checks the received signal to confirm whether the transmission of the radio signal was performed without error, and transmits and receives the transmission result (ACK) (Acknowledge) / NACK (Negative Acknowledge) or N / Ack). And, it provides a mechanism (Hybrid Automatic Repeat reQuest, HARQ) to retransmit the error portion during the transmission process.
한편, 이동통신 시스템에서 기지국은 무선 신호를 송신하기 위한 주파수 대역폭 중 일부 자원을 이용하여 상기의 신호 전송 결과를 전송하게 되며, 이러한 자원은 사용자 단말과 미리 약속된 방식 하에 설정된다. 사용자 단말이 송신한 무선 신호의 전송에 대한 결과를 기지국이 제공하기 위해서는 상기 사용자 단말과 기지국이 서로 약속한 위치의 자원에 상기 전송 결과가 포함되어야 한다. 그런데, 사용자 단말이 증가할 경우, 상기 사용자 단말에게 제공해야 하는 전송 결과를 포함하는 무선 자원이 더 많이 필요하게 되므로, 한정된 무선 자원에서 사용자 단말의 증가 혹은 사용자 단말에 제공해야 하는 전송 결과의 증가를 효율적으로 처리하여 무선 자원을 확보하는 것이 필요하다.On the other hand, in the mobile communication system, the base station transmits the signal transmission result using some resources of the frequency bandwidth for transmitting the radio signal, and these resources are set in a manner previously promised with the user terminal. In order for the base station to provide a result of the transmission of the radio signal transmitted by the user terminal, the transmission result must be included in a resource of a location promised by the user terminal and the base station. However, when the number of user terminals increases, more radio resources including a transmission result to be provided to the user terminal are needed. Therefore, an increase in the user terminal or an increase in transmission results that should be provided to the user terminal in a limited radio resource is required. It is necessary to efficiently process and secure radio resources.
업링크 전송을 동시에 수행하는 단말이 증가할 경우, 상기 업링크 전송에 대한 전송 결과를 사용자 단말에 제공하는 HARQ 프로세스를 수행하기 위한 무선 자원이 더 많이 필요해지므로, 보다 효율적으로 HARQ 자원, 즉 PHICH 자원을 할당하는 것이 필요하다. 본 명세서에서는 이를 위하여 기지국이 한정된 자원 내에서 PHICH 자원을 보다 효율적으로 할당하여, 다수 사용자 단말의 PUSCH 동시 전송이 지원되도록 하는 방법을 제시한다. When the number of UEs simultaneously performing uplink transmission increases, more radio resources are needed to perform a HARQ process that provides a user terminal with a transmission result for the uplink transmission. Thus, HARQ resources, that is, PHICH resources are more efficiently. It is necessary to assign In this specification, for this purpose, the base station more efficiently allocates PHICH resources within a limited resource, so that PUSCH simultaneous transmission of multiple user terminals is supported.
본 명세서의 일 실시예에 의한 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 방법은 다수의 사용자 단말에게 무선 신호를 송수신하는 전송단에 있어서, 사용자 단말의 업링크 자원(resource) 할당 정보를 E-PDCCH(Enhanced PDCCH)를 통해 상기 사용자 단말에 송신하는 단계, 상기 E-PDCCH를 통해 할당된 업링크 자원을 이용하여 상기 사용자 단말로부터 무선 신호를 수신하는 단계 및 상기 수신된 무선 신호의 검증 결과를 상기 사용자 단말에 송신하는 단계를 포함하며, 상기 검증 결과는 상기 E-PDCCH가 포함된 무선 자원에서 산출 가능한 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 PHICH 자원에 포함되는 것을 특징으로 한다.According to an embodiment of the present disclosure, a method for allocating a resource for a wireless signal transmission result and transmitting the same may include transmitting uplink resource allocation information of a user terminal in a transmitting terminal for transmitting and receiving a wireless signal to a plurality of user terminals. Transmitting to the user terminal through an enhanced PDCCH (E-PDCCH), receiving a radio signal from the user terminal using an uplink resource allocated through the E-PDCCH, and verifying the received radio signal And transmitting to the user terminal, wherein the verification result is a PHICH (Physical Hybrid ARQ Indicator CHannel) resource that can be calculated from a radio resource including the E-PDCCH or a PHICH that can be calculated from information included in the E-PDCCH. It is characterized by being included in the resource.
본 명세서의 다른 실시예에 의한 무선 신호 전송 결과를 위한 자원을 수신하는 방법은 사용자 단말에 있어서, 전송단으로부터 E-PDCCH(Enhanced PDCCH)를 통해 업링크 자원(resource) 할당 정보를 수신하는 단계, 상기 E-PDCCH를 통해 할당된 업링크 자원을 이용하여 무선 신호를 송신하는 단계 및 상기 송신된 무선 신호의 검증 결과를 상기 E-PDCCH가 포함된 무선 자원 에서 산출 가능한 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 PHICH 자원을 이용하여 수신하는 단계를 포함한다.In another aspect of the present disclosure, a method for receiving a resource for a wireless signal transmission result includes receiving, by a user terminal, uplink resource allocation information through an enhanced PDCCH (E-PDCCH) from a transmitting end; Physical Hybrid ARQ Indicator CHannel (PHICH), which is capable of calculating a radio signal using an uplink resource allocated through the E-PDCCH and calculating a verification result of the transmitted radio signal from a radio resource including the E-PDCCH. Receiving using a PHICH resource that can be calculated from resources or information included in the E-PDCCH.
본 명세서의 또 다른 실시예에 의한 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 장치는 다수의 사용자 단말에게 무선 신호를 송수신하는 전송단에 있어서, 사용자 단말의 업링크 자원 할당 정보를 포함하는 E-PDCCH가 상기 업링크 결과를 전송할 무선 자원의 인덱스를 지시하도록, 상기 E-PDCCH를 미리 계산된 인덱스의 무선 자원에 할당하거나, 상기 E-PDCCH에 미리 계산된 값을 포함시켜 상기 E-PDCCH를 생성하는 자원 할당부, 상기 업링크 자원 할당 정보를 수신한 사용자 단말이 송신한 무선 신호를 검증하는 검증부 및 상기 검증 결과를 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원을 통해 상기 사용자 단말에 송신하며 하나 이상의 사용자 단말로부터 신호를 수신하는 송수신부를 포함한다.In another embodiment of the present disclosure, an apparatus for allocating a resource for a radio signal transmission result and transmitting the same may include a uplink resource allocation information of a user terminal in a transmission terminal for transmitting and receiving a radio signal to a plurality of user terminals. E-PDCCH is allocated to a radio resource of a pre-computed index or E-PDCCH is included in the E-PDCCH so that an E-PDCCH indicates an index of a radio resource to transmit the uplink result. A resource allocation unit for generating a data transmission unit, a verifying unit for verifying a radio signal transmitted by the user terminal receiving the uplink resource allocation information, and the verification result to the user terminal through a PHICH (Physical Hybrid ARQ Indicator CHannel) resource; It includes a transceiver for receiving a signal from one or more user terminals.
본 명세서의 또 다른 실시예에 의한 무선 신호 전송 결과를 위한 자원을 수신하는 장치는 전송단으로부터 E-PDCCH(Extended PDCCH)를 통해 업링크 자원 할당 정보를 수신하고, 상기 E-PDCCH를 통해 할당된 업링크를 위한 PUSCH(Physical Uplink Shared CHannel) 자원을 이용하여 무선 신호를 송신하는 송수신부 및 상기 E-PDCCH가 포함된 무선 자원의 블록 인덱스 또는 상기 E-PDCCH에 포함된 정보에서 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원의 인덱스를 산출하는 자원 확인부를 포함하며, 상기 송수신부는 상기 PHICH 자원을 통해 상기 PUSCH 자원에서 송신된 무선 신호의 검증 결과를 수신하는 것을 특징으로 한다.An apparatus for receiving a resource for a radio signal transmission result according to another embodiment of the present specification receives uplink resource allocation information through an extended PDCCH (E-PDCCH) from a transmitter, and is allocated through the E-PDCCH. PHHY (Physical Hybrid ARQ) in a block index of a transceiver for transmitting a radio signal using a PUSCH (Physical Uplink Shared CHannel) resource for uplink and a block index of a radio resource including the E-PDCCH or information included in the E-PDCCH Indicator CHannel) includes a resource checking unit for calculating an index of a resource, wherein the transceiver unit receives a verification result of a radio signal transmitted from the PUSCH resource through the PHICH resource.
도 1, 2, 3은 Het-Net 환경에서의 데이터 송수신 과정을 보여주는 도면이다. 1, 2, and 3 are diagrams illustrating a data transmission and reception process in a Het-Net environment.
도 4는 일 실시예에 의한 PHICH 그룹 및 sequence index에 대한 도표이다. 4 is a table illustrating a PHICH group and a sequence index according to an embodiment.
도 5는 본 명세서의 일 실시예에 의한 E-PDCCH에 PHICH 자원에 대한 인덱스 정보가 포함되는 예를 보여주는 도면이다. 5 is a diagram illustrating an example in which index information on a PHICH resource is included in an E-PDCCH according to an embodiment of the present specification.
도 6은 본 명세서의 일 실시예에 의한 PHICH 자원을 지시하는 인덱스 정보 중 일부만을 E-PDCCH를 통하여 제공되는 예를 보여주는 도면이다. FIG. 6 illustrates an example in which only a part of index information indicating a PHICH resource is provided through an E-PDCCH according to an embodiment of the present specification.
도 7은 본 명세서의 일 실시예에 의한 E-PDCCH에 PHICH 자원을 지시하는 정보의 전부 또는 일부를 포함시키는 과정을 보여주는 도면이다. FIG. 7 is a diagram illustrating a process of including all or part of information indicating a PHICH resource in an E-PDCCH according to one embodiment of the present specification.
도 8은 본 명세서의 다른 실시예에 의한 E-PDCCH 스케줄링을 수행하여 UE가 E-PDCCH의 위치를 이용하여 PHICH 자원을 확인할 수 있도록 하는 도면이다.FIG. 8 is a diagram for E-PDCCH scheduling according to another embodiment of the present disclosure to allow a UE to identify PHICH resources using the location of an E-PDCCH.
도 9는 본 명세서의 또 다른 실시예에 의한 E-PDCCH에 PHICH 자원을 지시하는 정보의 전부 또는 일부를 포함시키는 과정을 보여주는 도면이다. FIG. 9 illustrates a process of including all or part of information indicating a PHICH resource in an E-PDCCH according to another embodiment of the present specification.
도 10은 본 명세서의 또 다른 실시예에 의한 E-PDCCH 스케줄링을 수행하여 UE가 E-PDCCH의 위치를 이용하여 PHICH 자원을 확인할 수 있도록 하는 도면이다.FIG. 10 is a diagram for E-PDCCH scheduling according to another embodiment of the present disclosure to enable a UE to identify PHICH resources using the location of an E-PDCCH.
도 11은 본 명세서의 일 실시예에 의한 기지국 및 RRH와 같은 전송단에서 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 과정을 보여주는 도면이다. FIG. 11 is a diagram illustrating a process of allocating a resource for a radio signal transmission result and transmitting the same in a transmitting end such as a base station and an RRH according to an embodiment of the present specification.
도 12는 본 명세서의 일 실시예에 의한 기지국 및 RRH와 같은 전송단으로부터 업링크 할당을 받은 후, 무선 신호를 전송한 후, 상기 무선 신호 전송 결과를 수신하는 과정을 보여주는 도면이다.12 is a diagram illustrating a process of receiving a radio signal transmission result after transmitting a radio signal after receiving uplink allocation from a transmitting end such as a base station and an RRH according to an embodiment of the present specification.
도 13은 본 명세서의 일 실시예에 의한 기지국의 구성을 보여주는 도면이다. 13 is a diagram illustrating a configuration of a base station according to an embodiment of the present specification.
도 14는 본 명세서의 일 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.14 is a diagram illustrating a configuration of a user terminal according to one embodiment of the present specification.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.In addition, the terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, the inventors should use the concept of terms in order to explain their own invention in the best way. It should be interpreted as meanings and concepts corresponding to the technical idea of the present invention based on the principle that it can be properly defined.
현재의 3GPP, LTE(Long Term Evolution), LTE-A(LTE Advanced)등의 이동 통신 시스템에서는 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신 할 수 있는 고속 대용량의 통신 시스템으로서, 유선 통신 네트워크에 준하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있을 뿐 아니라, 정보 손실의 감소를 최소화하고, 시스템 전송 효율을 높임으로써 시스템 성능을 향상시킬 수 있는 적절한 오류검출 방식이 필수적인 요소가 되었다.In the current mobile communication systems such as 3GPP, Long Term Evolution (LTE), LTE-A (LTE Advanced), etc., it is a high-speed, high-capacity communication system that can transmit and receive various data such as video and wireless data beyond voice-oriented services. Not only is the development of technology capable of transmitting large amounts of data comparable to wired communication networks, but also the proper error detection method to improve system performance by minimizing the reduction of information loss and increasing system transmission efficiency has become an essential element. .
한편, 송수신단 모두에서 다중입력 다중출력 안테나(Multiple-Input Multiple-Output, 이하 "MIMO"라 한다)를 이용하는 통신시스템을 사용할 수 있으며, 단일의 UE(single UE; SU) 또는 여러 UE(Multiple UE, MU)가 동일한 무선 자원 용량을 공유하여 하나의 기지국 등에 신호를 수신 또는 송신하는 구조이다.Meanwhile, a communication system using a multiple-input multiple-output antenna (hereinafter referred to as "MIMO") may be used at both the transmitting and receiving ends, and may be a single UE (SU) or multiple UEs. MUs share the same radio resource capacity and receive or transmit a signal to one base station or the like.
MIMO을 사용하는 시스템에서는 여러 참조신호 또는 기준 신호 등을 이용하여 채널 상태를 파악하고, 파악한 결과를 전송단(다른 장치로)으로 피드백하는 과정이 필요하다.In a system using MIMO, it is necessary to identify a channel state using various reference signals or reference signals, and to feed back the result to a transmission terminal (another device).
즉, 하나의 단말이 다수의 하향링크 물리채널을 할당받는 경우, 단말은 각 물리채널에 대한 채널상태 정보를 기지국에 피드백함으로써 적응적으로 시스템을 최적화할 수 있으며, 이를 위하여 채널상태 지시 참조신호(CSI-RS (Channel Status Information Reference Signal)), 채널품질 지시자(CQI: Channel Quality Indicator) 및 프리코딩 매트릭스 인덱스(PMI: Precoding Matrix Index)의 신호들이 사용될 수 있으며, 기지국은 그러한 채널상태 관련 정보를 이용하여 채널을 스케줄링할 수 있다. 또한, 다운링크 서브프레임 전체에서 송신되는 셀특이적 참조신호(Cell-specific Reference Signal, CRS) 역시 기지국이 해당 셀 내의 사용자 단말들에게 전송하게 된다. 한편, 사용자 단말의 채널의 상태를 확인하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)와 복조를 위한 참조 신호(Demodulation Reference Signal, DM RS)는 사용자 단말이 기지국에 전송하는 신호이다. 즉, CSI-RS은 기지국이 전송하며, PMI 및 CQI은 단말이 보고하는 정보이다That is, when a single terminal is assigned a plurality of downlink physical channels, the terminal can adaptively optimize the system by feeding back channel state information for each physical channel to the base station. Signals of Channel Status Information Reference Signals (CSI-RS), Channel Quality Indicator (CQI) and Precoding Matrix Index (PMI) may be used, and the base station may use such channel status related information. Channels can be scheduled. In addition, a cell-specific reference signal (CRS) transmitted in the entire downlink subframe is also transmitted by the base station to user terminals in the cell. Meanwhile, a sounding reference signal (SRS) and a demodulation reference signal (DM RS) for demodulation are signals transmitted by the user terminal to the base station. That is, the CSI-RS is transmitted by the base station, and the PMI and CQI are information reported by the terminal.
무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치되며, 무선통신시스템은 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB) 그리고 RRH등 기지국의 행동을 보조하는 유닛(unit)을 포함한다. 본 명세서에서의 단말은 무선 통신에서의 사용자 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system is widely deployed to provide various communication services such as voice and packet data, and the wireless communication system controls the behavior of a base station such as a user equipment (UE), a base station (base station, BS, or eNB), and an RRH. It includes a subsidiary unit. A terminal in the present specification is a comprehensive concept that means a user terminal in wireless communication. In addition to UE (User Equipment) in WCDMA, LTE, and HSPA, as well as MS (Mobile Station), UT (User Terminal), SS in GSM It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
기지국 또는 셀(cell)은 일반적으로 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. It may be called other terms such as a transceiver system, an access point, a relay node, and an RRH.
즉, 본 명세서에서 기지국 또는 셀은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node) 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, in the present specification, a base station or a cell should be interpreted in a comprehensive sense indicating some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to encompass various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node communication range.
본 명세서에서 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 상기 단말(10)과 기지국(20)은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 업링크(Uplink, UL, 또는 상향링크)는 단말(10)에 의해 기지국(20)으로 데이터를 송수신하는 방식을 의미하며, 다운링크(Downlink, DL, 또는 하향링크)는 기지국(20)에 의해 단말(10)로 데이터를 송수신하는 방식을 의미한다.In the present specification, the terminal and the base station are two transmitting and receiving entities used in implementing the technology or the technical idea described in the present specification and are used in a comprehensive sense and are not limited by the terms or words specifically referred to. The terminal 10 and the base station 20 are two (uplink or downlink) transmission and reception subjects used to implement the technology or the technical idea described in the present invention, which are used in a generic sense and are specifically referred to in terms or words. It is not limited by. Here, the uplink (Uplink, UL, or uplink) means a method for transmitting and receiving data to the base station 20 by the terminal 10, the downlink (Downlink, DL, or downlink) is the base station 20 By means of a method for transmitting and receiving data to the terminal 10 by.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used.
업링크 전송 및 다운링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
한편, LTE에서는 하나의 반송파 또는 반송파 쌍을 기준으로 업링크와 다운링크를 구성하여 규격을 구성한다. 업링크와 다운링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. Meanwhile, in LTE, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH). A data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data.
본 발명의 실시예들에 따르면, 제어 또는 데이터 채널을 전송한다라는 의미는 특정 채널이 포함하는 제어 정보 또는 데이터 정보가 무선 신호의 형태로 전송되는 의미로 해석될 수 있다. 여기서, 제어 채널은 일례로 물리 하향링크 제어채널(Physical Downlink Control Channel: PDCCH) 혹은 물리 상향링크 제어채널(Physical Uplink Control Channel: PUCCH)가 될 수 있다. 여기서 데이터 채널은 물리 하향링크 공용채널(Physical Downlink Shared Channel: PDSCH) 혹은 물리 상향링크 공용 채널(Physical Uplink Shared Channel: PUSCH)이 될 수 있다.According to embodiments of the present invention, the meaning of transmitting a control or data channel may be interpreted to mean that control information or data information included in a specific channel is transmitted in the form of a radio signal. Here, the control channel may be, for example, a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH). The data channel may be a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
LTE-A에서는 LTE에서 단일 반송파에 의한 규격이 기본을 이루고, 20MHz보다 작은 대역을 가진 몇 개의 대역의 결합에 대해서 논의되고 있는 반면에 20MHz이상의 대역을 가지는 요소 반송파 대역에 대한 논의를 진행하고 있다. LTE-A에서 다중 반송파 집합화(Carrier Aggregation, 이하 'CA'라 칭함)에 대한 논의는 기본적으로 LTE의 기본규격을 근거로 백워드 컴패터빌러티(Backward Compatibility)를 최대한 고려해 이루어지고 상향링크 및 하향링크에서는 최대 5개의 요소 반송파가 고려되고 있다. 물론, 상기 5개의 요소 반송파는 시스템의 환경에 따라 증감할 수 있으며, 본 발명은 이에 한정되지 않는다. 이하 요소 반송파 집합은 해당 시스템에서 사용하도록 설정된(configured) 둘 이상의 요소 반송파들로 이루어진 집합을 의미한다.In LTE-A, a standard based on a single carrier in LTE is discussed, and a combination of several bands having a band smaller than 20 MHz is discussed, while a component carrier band having a band of 20 MHz or more is being discussed. In LTE-A, multi-carrier aggregation (hereinafter referred to as 'CA') is basically discussed in consideration of backward compatibility based on LTE's basic specifications. Up to five component carriers are considered in the link. Of course, the five component carriers can be increased or decreased according to the environment of the system, the present invention is not limited thereto. Hereinafter, the CC set refers to a set of two or more CCs configured for use in a corresponding system.
CA에 있어서, 제어 채널 설계와 관련되어 여러 가지 고려되고 있는 사항 중에 상향링크 ACK/NACK(ACKnowledgement/Negative ACKnowledgement) 전송과, CQI(Channel Quality Indicator, 이하 "CQI"라 칭함), PMI(Precoding Matrix Indicators, 이하 "PMI"이라 칭함) 및 RI(Rank Indicator, 이하 "RI"라 칭함)를 포함하는 상향링크 채널정보 전송에 관한 사항이 있다.In CA, uplink ACK / NACK (ACKnowledgement / Negative ACKnowledgement) transmission, channel quality indicator (CQI), and precoding matrix indicators (PMI) are considered among various considerations related to control channel design. , Which is referred to as " PMI ") and RI (Rank Indicator (hereinafter, referred to as " RI ")).
LTE-A에서는 CA의 구성을 위해서 기본적으로 3GPP LTE Rel-8의 백워드 컴패터빌러티(Backward Compatibility) 사항을 고려하고 있다. LTE Rel-8에서 표준으로 정해진 CQI/PMI/RI정보는 상향 제어 채널인 PUCCH(Physical Uplink Control Channel)와 PUSCH(Physical Uplink Shared Channel)를 통하여 다양한 방식에 의해 이루어진다. LTE-A is basically considering backward compatibility of 3GPP LTE Rel-8 for the configuration of CA. CQI / PMI / RI information determined as a standard in LTE Rel-8 is performed by various methods through a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH) which are uplink control channels.
본 명세서의 실시예가 적용되는 무선통신 시스템은 상향링크 및/또는 하향링크 HARQ를 지원할 수 있다. A wireless communication system to which an embodiment of the present specification is applied may support uplink and / or downlink HARQ.
한편, 기지국 내에서의 사용자 단말의 수가 증가할 경우, 상기 사용자 단말에게 제공하는 제어 신호는 증가하게 되며, 상기 제어 신호가 송신될 자원 역시 더 많이 필요로 하게 된다. 사용자 단말의 수가 증가하는 일 실시예로, 해당 기지국이 관리하는 셀(Cell) 내에 사용자 단말의 수가 점진적으로 늘어나는 경우와 다양한 다중 전송 방식을 사용하여 사용자 단말의 수가 증가하는 경우로 나뉘어진다. 후자의 경우의 통신 시스템으로는 둘 이상의 전송단이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(Coordinated multi-point transmission/reception System) 또는 협력형 다중 안테나 전송방식(Coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템(이하, "협력형 다중 셀 통신시스템" 또는 "CoMP"라 )이 있다. 특히, 이러한 다중 셀 통신 시스템 중에서, 하나의 매크로 기지국의 셀 반경 내에는 위치하는 펨토 셀(Femto cell), 피코 셀(Pico cell), 릴레이(Relay), 핫스팟(Hot spot)과 같은 다양한 형태의 마이크로 또는 로컬 기지국들(Remote Radio Head, 이하 RRH라 한다)일 수도 있다. 다양한 형태의 기지국들로 구성된 네트워크를 헤테로지니어스 네트워크(Heterogenous network, 이하 Het-Net이라 한다)라고 한다. On the other hand, when the number of user terminals in the base station increases, the control signal provided to the user terminal is increased, and the resource to which the control signal is transmitted also requires more. In an embodiment in which the number of user terminals is increased, the number of user terminals is gradually increased in a cell managed by the base station, and the number of user terminals is increased by using various multiplexing methods. In the latter case, a coordinated multi-point transmission / reception system or a coordinated multi-antenna transmission system in which two or more transmitters cooperate to transmit a signal , A cooperative multi-cell communication system (hereinafter referred to as "cooperative multi-cell communication system" or "CoMP"). In particular, in such a multi-cell communication system, various types of micros such as femto cells, pico cells, relays, hot spots, etc., located within a cell radius of one macro base station Or it may be local base stations (Remote Radio Head, hereinafter referred to as RRH). A network composed of various types of base stations is called a heterogenous network (hereinafter referred to as Het-Net).
한편, 이러한 Het-Net 환경에서의 데이터 송수신 과정을 보다 상세히 살펴보면 도 1, 2, 3과 같다. 도 1, 2, 3에서 매크로 기지국을 eNB로 통칭하여 설명하며, 마이크로 또는 로컬 기지국을 RRH로 하여 설명하고자 한다. Meanwhile, the data transmission and reception process in the Het-Net environment will be described in more detail with reference to FIGS. 1, 2, and 3. 1, 2, and 3, the macro base station will be described collectively as an eNB, and the micro or local base station will be described as RRH.
다수의 RRH(110, 120, 130, 140)와 eNB(100)가 동일 cell ID을 공유하는 경우, PUSCH 전송 및 이에 상응하는 PHICH 전송은 다음과 같은 방식으로 수행된다. eNB(100)는 CRS 및 CSI-RS 브로드캐스팅(broadcasting)을 수행하며, 각 RRH(110, 120, 130, 140)는 CSI-RS 브로드캐스팅을 수행한다. 네트워크의 구성 방식에 따라서 RRH 역시 CRS을 전송할 수 있으나, 도 1의 경우 RRH가 송신하는 CRS은 eNB가 송신하는 CRS의 일부분으로 구성되거나, 또는 동일한 패턴(pattern)으로 구성된다. 반면 RRH가 송신하는 CSI-RS의 경우에는 eNB가 송신하는 CSI-RS와는 다른 포트(port)를 통해 브로드캐스팅된다. When a plurality of RRHs 110, 120, 130, 140 and eNB 100 share the same cell ID, PUSCH transmission and corresponding PHICH transmission are performed in the following manner. The eNB 100 performs CRS and CSI-RS broadcasting, and each of the RRHs 110, 120, 130, and 140 performs CSI-RS broadcasting. According to the configuration of the network, the RRH may also transmit the CRS, but in the case of FIG. 1, the CRS transmitted by the RRH is configured as part of the CRS transmitted by the eNB or configured in the same pattern. On the other hand, the CSI-RS transmitted by the RRH is broadcast through a different port than the CSI-RS transmitted by the eNB.
eNB(100)는 사용자 단말이 전송하는 SRS 및 기타 업링크 신호(uplink signal)를 수신하여, 각 단말의 위치 또는 상기 단말의 채널 상태를 파악할 수 있으며, 상기 파악한 정보에 따라 각 단말의 업링크 설정(uplink configuration)을 구성할 수 있다. 도 2는 상기 설정(configuration)의 일 예이다. 각 단말(111, 121, 131, 132, 141)은 RRH(110, 120, 130, 140)에 PUSCH 전송을 시도하거나, 또는 단말 101 및 102와 같이 eNB(100)에 대하여 직접 PUSCH 전송을 시도할 수 있다. 도 2 에서, eNB(100) 및 RRH(110, 120, 130, 140)는 각각의 단말과 업링크 연결(uplink connection)을 생성한다. 상기 PUSCH은 DM RS와 함께 전송되며, 각 수신단은 상기의 DM RS을 사용하여 PUSCH 복호를 시도한다. The eNB 100 may receive the SRS and other uplink signals transmitted by the user terminal and determine the location of each terminal or the channel state of the terminal, and set uplink of each terminal according to the identified information. (uplink configuration) can be configured. 2 is an example of the configuration. Each UE 111, 121, 131, 132, and 141 attempts to transmit a PUSCH to the RRHs 110, 120, 130, and 140, or attempts to transmit a PUSCH directly to the eNB 100 such as UEs 101 and 102. Can be. In FIG. 2, the eNB 100 and the RRHs 110, 120, 130, and 140 create an uplink connection with each terminal. The PUSCH is transmitted together with the DM RS, and each receiving end attempts to decode the PUSCH using the DM RS.
그런데, PHICH의 경우, 각 수신단은 CRS을 통해 채널 추정을 수행하고 상기 추정된 채널 값을 사용하여 복호를 진행하게 된다. 이는 채널 추정(Channel Estimation)이 되어야 함을 의미하며, 이는 CRS가 제공되는 대역과 PHICH가 제공되는 대역이 같아야 함을 의미하므로, PHICH는 CRS 전송을 수행하는 전송단을 통해 전송이 수행되어야 한다. 이는 도 3에서 나타난 바와 같이, PUSCH 전송을 수행하는 모든 단말에 대하여 eNB(100), 또는 CRS 전송을 수행하는 모든 전송단(eNB, RRH 등)이 PHICH 전송을 수행하여야 함을 의미한다. However, in the case of PHICH, each receiver performs channel estimation through the CRS and performs decoding using the estimated channel value. This means that channel estimation should be channel estimation, which means that the band where the CRS is provided and the band where the PHICH is provided must be the same, and therefore, the PHICH should be transmitted through a transmitter that performs CRS transmission. This means that, as shown in FIG. 3, the eNB 100 or all transmission terminals (eNB, RRH, etc.) performing CRS transmission should perform PHICH transmission for all UEs performing PUSCH transmission.
이는, eNB에 직접 PUSCH 연결(connection)을 가지는 단말에 대해서만 PHICH 전송을 수행하는 경우와 비교할 때, eNB가 보다 많은 PUSCH 전송에 대하여 PHICH 자원 관리(resource management 또는 리소스 매니지먼트)를 수행하여야 하며, 이는 PHICH 리소스(resource, 자원)에 상당한 부담으로 작용할 수 있다. 이하 본 명세서에서 리소스와 자원은 동일한 의미로 사용되며 서로 치환하여 사용 가능하다. This is compared with the case of performing PHICH transmission only for a UE having a PUSCH connection (connection) directly to the eNB, the eNB should perform PHICH resource management (resource management or resource management) for more PUSCH transmission, which is PHICH This can be a significant burden on resources. In the following specification, resources and resources are used in the same sense and may be used interchangeably.
도 2와 같이 다수의 단말에 대해 업링크 전송(uplink transmission)을 허가하기 위해서는 다수의 업링크 할당(uplink grant)이 단말에 전달되어야 하며, 이는 E-PDCCH(Extended PDCCH, 또는 X-PDCCH)의 사용 없이는 불가능할 수도 있다. As shown in FIG. 2, in order to allow uplink transmission for a plurality of terminals, a plurality of uplink grants must be transmitted to the terminal, which is an E-PDCCH (Extended PDCCH, or X-PDCCH). It may not be possible without it.
즉, 그림 3와 같이 PHICH resource 부족 또는 PHICH 충돌(collision) 문제가 발생하는 상황은 다수의 E-PDCCH에 의해 업링크 할당(uplink grant)이 전달된 상황이다. 본 명세서에서는 E-PDCCH 자원을 활용하거나 또는 E-PDCCH 수신 여부, E-PDCCH 전송에 사용된 자원 등의 정보를 통해 PHICH 자원을 할당하는 방식을 제시한다. That is, as shown in FIG. 3, an uplink grant is transmitted by a plurality of E-PDCCHs when a PHICH resource shortage or a PHICH collision problem occurs. In this specification, a method of allocating a PHICH resource using information such as using an E-PDCCH resource or receiving an E-PDCCH, a resource used for E-PDCCH transmission, and the like is provided.
먼저, E-PDCCH에 대해 간략하게 설명한다. 앞서 살펴본 MIMO, CoMP, Het-Net은 무선 통신 시스템의 성능을 향상시키기 위한 기술이며, 이러한 기술을 적용할 경우, 더 많은 제어 정보가 요구될 수 있다. 따라서 제어 정보를 전송하기 위한 다수의 PDCCH를 할당하기에 제어 영역의 자원이 부족할 수 있다. 여기서 제어 영역은 PDCCH가 포함되는 무선 자원 영역을 의미할 수 있다.First, the E-PDCCH will be briefly described. MIMO, CoMP, and Het-Net described above are technologies for improving the performance of a wireless communication system, and when these techniques are applied, more control information may be required. Therefore, resources of the control region may be insufficient to allocate a plurality of PDCCHs for transmitting control information. Here, the control region may mean a radio resource region including the PDCCH.
따라서, 제어 영역 내의 PDCCH의 최대 수를 높이기 위한 방안으로 기존 제어 영역의 효율을 높이는 것이 고려될 수 있다. 기존 제어 영역에 존재하는 PDCCH를 새롭게 정의하여 간략하게 구현하거나, PDSCH등이 포함되는 데이터 영역의 일부를 제어 정보를 위하여 이용할 수 있다. 이렇게, 기존의 PDCCH 구성과 달리, 더 많은 PDCCH의 전송을 위해 새로이 고안된 PDCCH를 이하 E-PDCCH라고 한다. 상기 E-PDCCH의 구현 방식은 다양할 수 있으며, 본 명세서에서 설명하는 발명은 특정한 E-PDCCH의 구현 방식에 한정되지 않는다. Therefore, increasing the efficiency of the existing control region may be considered as a method for increasing the maximum number of PDCCHs in the control region. The PDCCH existing in the existing control region may be newly defined and simply implemented, or a part of the data region including the PDSCH may be used for the control information. Thus, unlike the existing PDCCH configuration, the newly designed PDCCH for transmitting more PDCCH is referred to as E-PDCCH. The implementation manner of the E-PDCCH may vary, and the invention described herein is not limited to the implementation manner of a specific E-PDCCH.
이하, 본 명세서에서는 기존의 PDCCH(legacy-PDCCH)를 사용하는 경우의 PHICH 자원 할당 방식과 E-PDCCH를 사용하는 경우의 PHICH 자원 할당 방식을 달리하여, PHICH 자원의 할당 효율을 증가시키고자 한다. Hereinafter, in the present specification, the PHICH resource allocation method using the legacy PDCCH (legacy-PDCCH) is different from the PHICH resource allocation method using the E-PDCCH, thereby increasing the allocation efficiency of the PHICH resource.
기존의 PDCCH를 사용하는 사용자 단말의 PHICH 자원 할당, 즉, 사용자 단말이 송신한 PUSCH에 대한 기지국의 N/Ack 전송을 수행하는 PHICH 자원은 PHICH 그룹(PHICH group) 및 PHICH 시퀀스(PHICH sequence)에 의해 결정된다. 각 PHICH 그룹은 normal CP(Cyclic Prefix)을 사용하는 서브프레임(subframe)의 경우 8개의 직교 코드(Orthogonal Code)로 구성되며, extended CP을 사용하는 서브프레임의 경우 4개의 직교 코드로 구성된다. 각 셀은 PHICH 그룹 개수를 선정하는 방식으로 PHICH 자원 전체의 양을 결정하며, 각 단말에 N/Ack을 전달할 PHICH 그룹 및 PHICH 시퀀스 선정을 통해 PHICH 자원 관리를 수행한다. PHICH resource allocation of a user terminal using an existing PDCCH, that is, a PHICH resource for performing N / Ack transmission of a base station for a PUSCH transmitted by a user terminal is determined by a PHICH group and a PHICH sequence. Is determined. Each PHICH group is composed of eight orthogonal codes in the case of a subframe using a normal CP (cyclic prefix) and four orthogonal codes in the case of a subframe using an extended CP. Each cell determines the total amount of PHICH resources by selecting the number of PHICH groups, and performs PHICH resource management by selecting PHICH groups and PHICH sequences to deliver N / Ack to each UE.
FDD 시스템의 경우, PHICH 그룹의 수는
Figure PCTKR2012009152-appb-I000001
으로 모든 서브프레임에서 동일하며, TDD 시스템의 경우 PHICH 그룹의 수는
Figure PCTKR2012009152-appb-I000002
으로 각 서브프레임에서 다른 크기의 PHICH 자원을 사용한다.
Figure PCTKR2012009152-appb-I000003
은 수학식 1에 의해 정의되며,
Figure PCTKR2012009152-appb-I000004
값은 표 1에 명시된 바와 같이, 서브프레임 번호 i와 상향링크-하향링크 설정에 따라 결정된다. 수학식 1에서,
Figure PCTKR2012009152-appb-I000005
는 다운링크 대역에서 정의되는 자원 블록(resource block)의 수이며,
Figure PCTKR2012009152-appb-I000006
은 {1/6, 1/2, 1, 2}의 값을 가지며, 이는 상위 계층 시그널링(high layer signaling)을 통해 단말과 기지국이 공유하는 인자이다.
For FDD systems, the number of PHICH groups is
Figure PCTKR2012009152-appb-I000001
In all subframes, the number of PHICH groups in a TDD system
Figure PCTKR2012009152-appb-I000002
In each subframe, a different size PHICH resource is used.
Figure PCTKR2012009152-appb-I000003
Is defined by Equation 1,
Figure PCTKR2012009152-appb-I000004
The value is determined according to the subframe number i and the uplink-downlink configuration, as indicated in Table 1. In Equation 1,
Figure PCTKR2012009152-appb-I000005
Is the number of resource blocks defined in the downlink band,
Figure PCTKR2012009152-appb-I000006
Has a value of {1/6, 1/2, 1, 2}, which is a factor shared between the terminal and the base station through high layer signaling.
[수학식 1][Equation 1]
Figure PCTKR2012009152-appb-I000007
Figure PCTKR2012009152-appb-I000007
[표 1]TABLE 1
Figure PCTKR2012009152-appb-I000008
Figure PCTKR2012009152-appb-I000008
PUSCH에 대한 N/Ack 리포팅(reporting)을 수행하는 PHICH 자원은 다음의 수학식 2의 PHICH 인덱스에서 산출되는 PHICH 그룹 인덱스(PHICH Group Index,
Figure PCTKR2012009152-appb-I000009
)및 PHICH 시퀀스 인덱스(PHICH Sequence Index,
Figure PCTKR2012009152-appb-I000010
)값(인덱스)에 의해 결정된다.
A PHICH resource that performs N / Ack reporting on a PUSCH is a PHICH group index calculated from a PHICH index of Equation 2 below.
Figure PCTKR2012009152-appb-I000009
) And PHICH Sequence Index,
Figure PCTKR2012009152-appb-I000010
) Is determined by the value (index).
[수학식 2][Equation 2]
Figure PCTKR2012009152-appb-I000011
Figure PCTKR2012009152-appb-I000011
PHICH 시퀀스 인덱스는 직교 시퀀스(Orthogonal sequence)의 종류에 따라 0~7 또는 0~3의 값을 가지며, 다음의 표 2와 같이 적용될 수 있다. The PHICH sequence index has a value of 0-7 or 0-3 according to the type of an orthogonal sequence, and may be applied as shown in Table 2 below.
[표 2]TABLE 2
Figure PCTKR2012009152-appb-I000012
Figure PCTKR2012009152-appb-I000012
도 4는 업링크 및 다운링크에서 25개의 자원 블록(Resource Block, RB)이 사용되며,
Figure PCTKR2012009152-appb-I000013
일 때
Figure PCTKR2012009152-appb-I000014
Figure PCTKR2012009152-appb-I000015
값에 의해 결정되는 PHICH 그룹 인덱스 및 시퀀스 인덱스(sequence index)에 대한 도표이다.
4, 25 resource blocks (RBs) are used in the uplink and the downlink.
Figure PCTKR2012009152-appb-I000013
when
Figure PCTKR2012009152-appb-I000014
And
Figure PCTKR2012009152-appb-I000015
Table of the PHICH group index and sequence index determined by the value.
도 4에서 확인 할 수 있듯이, 많은 경우에 서로 다른
Figure PCTKR2012009152-appb-I000016
Figure PCTKR2012009152-appb-I000017
값에 의해 동일한 PHICH 자원이 지정될 수 있다. 여기서 세로축의 PRB는
Figure PCTKR2012009152-appb-I000018
를 나타내며, 가로축의 CS는
Figure PCTKR2012009152-appb-I000019
를 나타낸다. 예를 들어, PHICH 그룹 인덱스(
Figure PCTKR2012009152-appb-I000020
)가 2이며, PHICH 시퀀스 인덱스(
Figure PCTKR2012009152-appb-I000021
)가 1인 경우는 도 4에 점선-타원형으로 표시된 바와 같이 다수가 존재하는데, 이들 모두 서로 다른
Figure PCTKR2012009152-appb-I000022
Figure PCTKR2012009152-appb-I000023
값에 의해서도 동일한 PHICH 그룹/시퀀스 값이 존재할 수 있다는 것을 보여준다.
As can be seen in Figure 4, in many cases different
Figure PCTKR2012009152-appb-I000016
And
Figure PCTKR2012009152-appb-I000017
The same PHICH resource may be designated by the value. Where PRB of vertical axis is
Figure PCTKR2012009152-appb-I000018
Where the horizontal axis is
Figure PCTKR2012009152-appb-I000019
Indicates. For example, the PHICH group index (
Figure PCTKR2012009152-appb-I000020
) Is 2, and the PHICH sequence index (
Figure PCTKR2012009152-appb-I000021
In the case of 1), there are a large number as indicated by the dotted-ellipse in FIG. 4, all of which are different from each other.
Figure PCTKR2012009152-appb-I000022
And
Figure PCTKR2012009152-appb-I000023
It is shown that the same PHICH group / sequence value may exist by value.
따라서, 기지국은 PDCCH에 의해 업링크 할당을 받는 사용자 단말에 대해서는, 상기의 경우를 피해 각 단말에 PUSCH 스케줄링(scheduling)을 수행할 수 있다.Accordingly, the base station may perform PUSCH scheduling for each user terminal that is allocated uplink by the PDCCH, avoiding the above case.
상기의 수식에서,
Figure PCTKR2012009152-appb-I000024
은 PHICH 전송을 위해 할당한 가상 자원 블록 (virtual resource block, VRB)내에서 N/Ack이 차지하는 상대적 위치를 지시하는 인자이며, 상기 자원이 어느 물리적 자원에 매핑(mapping)되는가에 대한 부분은 별도의 PHICH 영역(region)의 정의에 따를 수 있다.
In the above formula,
Figure PCTKR2012009152-appb-I000024
Is a factor indicating the relative position occupied by N / Ack in a virtual resource block (VRB) allocated for PHICH transmission, and which physical resource is mapped to which physical resource is mapped According to the definition of the PHICH region (region).
도 4에서 살펴본 바와 같이 PDCCH를 통해 업링크 할당을 받은 사용자 단말의 PHICH 자원은 서로 다른 PUSCH 자원을 할당 받아도 동일한 PHICH 자원을 할당받을 수 있으므로, 이를 회피하기 위해 PUSCH 영역을 재조정하는 스케줄링을 적용한다. 그러나 E-PDCCH의 경우에는 E-PDCCH에 별도의 정보를 확장하여 추가할 수 있으므로, PUSCH 자원의 새로운 스케줄링을 할 필요 없이, 혹은 그러한 스케줄링의 범위를 최소한으로 줄이고, PHICH 자원을 직접 혹은 간접으로 지시하는 방안을 고려할 수 있다. 이 경우, 종래의 PDCCH(legacy PDCCH)를 사용한 사용자 단말의 변경 없이, PHICH 자원을 할당할 수 있다는 장점이 있다. As shown in FIG. 4, since the PHICH resource of the user terminal received uplink allocation through the PDCCH may be allocated the same PHICH resource even if different PUSCH resources are allocated, scheduling to adjust the PUSCH region is applied to avoid this. However, in the case of the E-PDCCH, since additional information can be extended and added to the E-PDCCH, it is not necessary to perform new scheduling of the PUSCH resource or to reduce the scope of such scheduling to a minimum, and indicate the PHICH resource directly or indirectly. Can be considered. In this case, there is an advantage that the PHICH resource can be allocated without changing the user terminal using the conventional PDCCH (PDCCH).
제 1 실시예로 PHICH 자원을 직접 지시하되, PHICH 자원에 대한 전체 인덱스 정보를 E-PDCCH를 통하여 제공하는 방안에 대해 살펴보고자 한다. 이를 위해, E-PDCCH 내에는 PHICH 자원을 위한 인덱스 정보인 그룹 정보와 시퀀스 정보를 지시하는 필드를 별도로 포함할 수 있다.In the first embodiment, a direct indication of PHICH resources is provided, and a method of providing full index information on PHICH resources through an E-PDCCH will be described. To this end, the E-PDCCH may separately include a field indicating group information and sequence information, which are index information for PHICH resources.
도 5는 본 명세서의 일 실시예에 의한 E-PDCCH에 PHICH 자원에 대한 인덱스 정보가 포함되는 예를 보여주는 도면이다. E-PDCCH 영역(500)에 두 개의 필드(510, 520)를 포함시킬 수 있다. 상기 하나 이상의 필드를 PHICH 지시자(PHICH indicator) 또는 지시 정보라 할 수 있다. 먼저 PHICH 그룹 인덱스 필드(510)에는 PHICH 자원에 대한 그룹 인덱스 값(
Figure PCTKR2012009152-appb-I000025
)이 포함된다. 한편, PHICH 시퀀스 인덱스 필드(520)에는 PHICH 자원에 대한 시퀀스 인덱스 값(
Figure PCTKR2012009152-appb-I000026
)이 포함된다. 이들 두 필드 중에서 시퀀스 인덱스 필드(520)는 앞서 수학식 2의 방식으로 산출할 수도 있다. 따라서, 기지국은 E-PDCCH의 하나의 필드(510) 또는 두 필드(510, 520)를 이용하여 업링크 할당을 전송할 경우, 사용자 단말은 수신된 E-PDCCH의 각 필드를 이용하여 수학식 3 또는 4와 같이 PHICH 자원 지시 정보를 확인할 수 있으며, 그 결과 PHICH 자원을 할당할 수 있다.
5 is a diagram illustrating an example in which index information on a PHICH resource is included in an E-PDCCH according to an embodiment of the present specification. Two fields 510 and 520 may be included in the E-PDCCH region 500. The at least one field may be referred to as a PHICH indicator or indication information. First, the PHICH group index field 510 includes a group index value for the PHICH resource (
Figure PCTKR2012009152-appb-I000025
) Is included. Meanwhile, the PHICH sequence index field 520 has a sequence index value for the PHICH resource (
Figure PCTKR2012009152-appb-I000026
) Is included. Of these two fields, the sequence index field 520 may be calculated by using Equation 2 above. Accordingly, when the base station transmits an uplink allocation using one field 510 or two fields 510 and 520 of the E-PDCCH, the user terminal may use Equation 3 or 3 by using each field of the received E-PDCCH. As shown in FIG. 4, PHICH resource indication information may be confirmed, and as a result, PHICH resource may be allocated.
[수학식 3][Equation 3]
Figure PCTKR2012009152-appb-I000027
Figure PCTKR2012009152-appb-I000027
수학식 3에서는 도 5의 PHICH 그룹 인덱스 필드(510)의 값이 지시하는,
Figure PCTKR2012009152-appb-I000028
을 이용하여 PHICH 그룹 인덱스(
Figure PCTKR2012009152-appb-I000029
)값을 산출하고, PHICH 시퀀스 인덱스의 값은 PDCCH 단말에서와 마찬가지 방식으로 수학식 3과 같이
Figure PCTKR2012009152-appb-I000030
값을 산출할 수 있다.
In Equation 3, the value of the PHICH group index field 510 of FIG. 5 indicates,
Figure PCTKR2012009152-appb-I000028
Using the PHICH group index (
Figure PCTKR2012009152-appb-I000029
), And the value of the PHICH sequence index is the same as in Equation 3 in the same manner as in the PDCCH terminal.
Figure PCTKR2012009152-appb-I000030
The value can be calculated.
[수학식 4][Equation 4]
Figure PCTKR2012009152-appb-I000031
Figure PCTKR2012009152-appb-I000031
수학식 4에서는 수학식 3과 같이 도 5의 PHICH 그룹 인덱스 필드(510)의 값이 지시하는
Figure PCTKR2012009152-appb-I000032
을 이용하여 PHICH 그룹 인덱스(
Figure PCTKR2012009152-appb-I000033
)값을 산출하고, 도 5의 PHICH 시퀀스 인덱스 필드(520)의 값이 지시하는
Figure PCTKR2012009152-appb-I000034
를 이용하여 PHICH 시퀀스 인덱스 (
Figure PCTKR2012009152-appb-I000035
)값을 산출할 수 있다.
In Equation 4, as indicated by Equation 3, the value of the PHICH group index field 510 of FIG. 5 is indicated.
Figure PCTKR2012009152-appb-I000032
Using the PHICH group index (
Figure PCTKR2012009152-appb-I000033
) Value, indicated by the value of the PHICH sequence index field 520 of FIG.
Figure PCTKR2012009152-appb-I000034
Using PHICH sequence index (
Figure PCTKR2012009152-appb-I000035
) Value can be calculated.
PHICH 그룹 인덱스 필드(510)의 길이는 PHICH 그룹의 최대 가능한 개수를 지시할 수 있어야 한다. 따라서, PHICH 그룹 인덱스 필드(510)의 길이를
Figure PCTKR2012009152-appb-I000036
라 할 때, 수학식 1 및 Ng의 값을 2로 적용할 경우 수학식 5와 같이 산출 가능하다.
The length of the PHICH group index field 510 should be able to indicate the maximum possible number of PHICH groups. Therefore, the length of the PHICH group index field 510 is
Figure PCTKR2012009152-appb-I000036
In the case of applying the values of Equations 1 and Ng to 2, it can be calculated as Equation 5.
[수학식 5][Equation 5]
Figure PCTKR2012009152-appb-I000037
Figure PCTKR2012009152-appb-I000037
즉, 수학식 5에서 알 수 있듯이, 다운링크 대역폭(Downlink bandwidth, 또는RB 수)에 따라 PHICH 그룹 인덱스 필드(510)의 크기가 결정되며, 이는 주어진 다운링크 대역폭에서 설정 가능한 최대 PHICH 그룹의 수에 의해 결정된다. That is, as shown in Equation 5, the size of the PHICH group index field 510 is determined according to the downlink bandwidth (or the number of RBs), which is determined by the maximum number of PHICH groups that can be set in a given downlink bandwidth. Is determined by
따라서, 수학식 5를 적용하면, 다운링크 대역폭(BW)이 5MHz이며 Normal CP인 경우 PHICH 그룹 인덱스 필드의 크기(
Figure PCTKR2012009152-appb-I000038
)는 3bit가 되며, 다운링크 대역폭(BW)이 10MHz이며 Normal CP인 경우 PHICH 그룹 인덱스 필드의 크기(
Figure PCTKR2012009152-appb-I000039
)는 4bit가 된다.
Therefore, applying Equation 5, if the downlink bandwidth (BW) is 5MHz and Normal CP, the size of the PHICH group index field (
Figure PCTKR2012009152-appb-I000038
) Is 3 bits, and if the downlink bandwidth (BW) is 10 MHz and Normal CP, the size of the PHICH group index field (
Figure PCTKR2012009152-appb-I000039
) Is 4 bits.
한편, PHICH 시퀀스 인덱스 필드(520)의 길이는 앞서 표 2에서 살펴본 바와 같이 Normal CP인 경우에는 총 8가지 경우의 시퀀스 정보를 지시해야 하므로 3bit의 길이가 되며, Extended CP인 경우에는 총 4가지 경우의 시퀀스 정보를 지시해야 하므로 2bit의 길이가 된다. Meanwhile, as shown in Table 2, the length of the PHICH sequence index field 520 has a length of 3 bits in the case of Normal CP, which indicates 8 pieces of sequence information, and 4 cases in the case of Extended CP. Since the sequence information of must be indicated, the length is 2 bits.
따라서, PHICH 그룹 인덱스 필드(510) 및 PHICH 시퀀스 인덱스 필드(520)를 모두 E-PDCCH 영역에서 지시할 경우, 최대 7bit가 소요될 수 있다. 그러나, E-PDCCH는 여러 가지 확장 가능성을 고려한 부분으로, 상기의 7bit 크기의 데이터 증가가 PUSCH의 스케줄링 보다 더 나은 효과를 가져올 수 있다.Therefore, when both the PHICH group index field 510 and the PHICH sequence index field 520 are indicated in the E-PDCCH region, it may take up to 7 bits. However, the E-PDCCH is a part that considers various expansion possibilities, and the 7-bit data growth may have a better effect than scheduling of the PUSCH.
사용자 단말은 업링크 할당을 지시하는 E-PDCCH에 포함된 필드의 값을 이용하여, 수학식 3 또는 수학식 4를 적용하여 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원을 식별할 수 있다. The user terminal may identify the PHICH resource to which the HARQ result for the uplink performance is applied by applying Equation 3 or Equation 4 using the value of the field included in the E-PDCCH indicating uplink allocation. .
제 2 실시예로 PHICH 자원을 지시하는 인덱스 정보 중 일부만을 E-PDCCH를 통하여 제공하는 방식에 대해 살펴보고자 한다. As a second embodiment, a method of providing only a part of index information indicating a PHICH resource through an E-PDCCH will be described.
도 6은 본 명세서의 일 실시예에 의한 PHICH 자원을 지시하는 인덱스 정보 중 일부만을 E-PDCCH를 통하여 제공되는 예를 보여주는 도면이다. FIG. 6 illustrates an example in which only a part of index information indicating a PHICH resource is provided through an E-PDCCH according to an embodiment of the present specification.
제 1 실시예에서는 PHICH 그룹 인덱스만을 송신하는 경우에도 최대 4bit의 정보가 전송될 수 있다. 이에 반하여, E-PDCCH 시그널링 오버헤드(signaling overhead)를 줄이기 위한 방법으로, E-PDCCH에 의해 트리거링(triggering)된 PUSCH에 한하여 PHICH을 PHICH 서브 그룹(subgroup)으로 분할하여 PHICH 자원 할당(resource allocation)을 수행하는 방법을 고려할 수 있다. 이 경우 각 단말은 상위 계층 시그널링(high layer signaling)을 통해 자신이 할당 받을 수 있는 PHICH 그룹(group)의 범주를 인지하며, 상기 범주 내에서 PHICH 그룹 할당을 수행할 수 있다. In the first embodiment, even when only the PHICH group index is transmitted, up to 4 bits of information may be transmitted. In contrast, as a method for reducing signaling overhead of E-PDCCH, PHICH is allocated to PHICH subgroups only for PUSCH triggered by E-PDCCH to allocate PHICH resource allocation. Consider how to do this. In this case, each UE recognizes a category of a PHICH group that can be allocated through high layer signaling, and can perform PHICH group allocation within the category.
예를 들어, PHICH group이 {0, 1, 2, 3, 4, 5, 6}인 경우, 이들을 {0, 1, 2, 3} 및 {4, 5, 6}과 같이 서브셋으로 나눈다. 그리고, 상위 계층 시그널링을 통하여, 각 단말이 할당받은 PHICH 서브셋은 {0, 1, 2, 3}인지 혹은 {4, 5, 6}인지를
Figure PCTKR2012009152-appb-I000040
를 이용하여 지시할 수 있다. 그리고 기지국은 도 6의 E-PDCCH 영역(600)의 PHICH 그룹 서브셋 인덱스(610)의 값
Figure PCTKR2012009152-appb-I000041
을 수학식 6과 같이 이용하여 산출할 수 있다.
For example, if the PHICH group is {0, 1, 2, 3, 4, 5, 6}, they are divided into subsets such as {0, 1, 2, 3} and {4, 5, 6}. And, through higher layer signaling, whether the PHICH subset allocated to each UE is {0, 1, 2, 3} or {4, 5, 6}
Figure PCTKR2012009152-appb-I000040
Can be indicated using. And the base station determines the value of the PHICH group subset index 610 of the E-PDCCH region 600 of FIG. 6.
Figure PCTKR2012009152-appb-I000041
It can be calculated by using the equation (6).
[수학식 6][Equation 6]
Figure PCTKR2012009152-appb-I000042
Figure PCTKR2012009152-appb-I000042
상기 수식에서
Figure PCTKR2012009152-appb-I000043
는 각 단말이 할당 받은 PHICH 그룹 서브셋 내에서 각 단말이 할당 받을 PHICH 그룹에 대한 인덱스이며,
Figure PCTKR2012009152-appb-I000044
은 상위계층 시그널링에 의한 PHICH 그룹 지시 정보(또는 group offset)이다.
In the above formula
Figure PCTKR2012009152-appb-I000043
Is an index for the PHICH group to be allocated to each UE in the PHICH group subset allocated to each UE.
Figure PCTKR2012009152-appb-I000044
Is PHICH group indication information (or group offset) by higher layer signaling.
앞서
Figure PCTKR2012009152-appb-I000045
를 통하여 해당 PHICH 서브셋이 {0, 1, 2, 3}으로 지시된 경우, 가능한 PHICH 그룹의 수는 총 4가지이므로,
Figure PCTKR2012009152-appb-I000046
의 길이, 즉, E-PDCCH의 PHICH 그룹 서브셋 인덱스(610)의 길이는 2 bit로 구현 가능하다. 반면 도 5의 방식을 적용할 경우에 7개의 PHICH 그룹 중에서 지시해야 하므로, E-PDCCH의 PHICH 그룹 인덱스(510)의 길이는 3bit로 구현 가능하다.
previously
Figure PCTKR2012009152-appb-I000045
If the corresponding PHICH subset is indicated as {0, 1, 2, 3} through, since the total number of possible PHICH groups is 4,
Figure PCTKR2012009152-appb-I000046
The length of, i.e., the length of the PHICH group subset index 610 of the E-PDCCH can be implemented in 2 bits. On the other hand, when the method of FIG. 5 is applied, the length of the PHICH group index 510 of the E-PDCCH may be implemented as 3 bits since it should be indicated among 7 PHICH groups.
PHICH 시퀀스의 경우, 수학식 2를 통하여 산출하거나, 앞서 도 5에서 살펴본 바와 같이 PHICH 시퀀스 인덱스(620)을 통한 부가적인 E-PDCCH 시그널링을 통해 설정될 수 있다. In the case of the PHICH sequence, it may be calculated through Equation 2 or set through additional E-PDCCH signaling through the PHICH sequence index 620 as described above with reference to FIG. 5.
도 5의 방식은 상위 계층 시그널링이 필요없으며 즉각적으로 PHICH 자원 할당 메커니즘을 적용할 수 있으나, E-PDCCH에서 전송되어야 하는 그룹 인덱스의 수가 크다. 반면, 도 6의 방식은 상위 계층 시그널링을 하며, E-PDCCH에서 전송되어야 하는 그룹 인덱스의 수가 작다. 상위 계층 시그널링은 PHICH 자원을 서브프레임으로 나누고, 각 서브프레임 내에서 PHICH 자원 할당을 E-PDCCH를 통하여 수행하므로 시그널링 오버헤드를 줄일 수 있다. The scheme of FIG. 5 does not require higher layer signaling and can immediately apply a PHICH resource allocation mechanism, but the number of group indexes to be transmitted in the E-PDCCH is large. In contrast, the scheme of FIG. 6 performs higher layer signaling and has a small number of group indexes to be transmitted on the E-PDCCH. The higher layer signaling divides PHICH resources into subframes and performs PHICH resource allocation through E-PDCCH in each subframe, thereby reducing signaling overhead.
사용자 단말은 업링크 할당을 지시하는 E-PDCCH에 포함된 필드의 값을 이용하여, 수학식 6과 상위 계층 시그널링을 통하여 수신한 그룹의 서브셋 정보를 이용하여, 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원을 식별할 수 있다. By using the value of the field included in the E-PDCCH indicating uplink allocation, the user terminal uses the subset information of the group received through Equation 6 and higher layer signaling, and the HARQ result for the uplink performance is obtained. The PHICH resource to be allocated can be identified.
도 5, 6에서 살펴본 제 1, 2 실시예는 E-PDCCH의 영역을 이용하여 PHICH 자원을 할당하도록 지시하는 방식을 제시하고 있다.5 and 6 illustrate a method of instructing allocation of PHICH resources using a region of the E-PDCCH.
제 3 실시예에서는 E-PDCCH가 전송되는 자원 블록(Resource Block, RB)에 의해 PHICH 자원을 결정하는 방안에 대해 살펴보고자 한다. In the third embodiment, a method of determining a PHICH resource by a resource block (RB) through which an E-PDCCH is transmitted will be described.
E-PDCCH가 전송되는 PRB(Physical Resource Block)의 인덱스값을 EPRB_RA라 할 경우, 이 값을 기지국이 제어하여, 아래 수학식 7과 같이 사용자 단말이 PHICH 자원 할당을 위한 그룹 및 시퀀스 정보를 산출할 수 있도록 구현한다. When the index value of the PRB (Physical Resource Block) through which the E-PDCCH is transmitted is called E PRB_RA , the base station controls this value and the user terminal calculates group and sequence information for PHICH resource allocation as shown in Equation 7 below. Implement to do it.
[수학식 7][Equation 7]
Figure PCTKR2012009152-appb-I000047
Figure PCTKR2012009152-appb-I000047
수학식 7에 의할 경우, 각각 PHICH 그룹 인덱싱 또는 PHICH 시퀀스 인덱싱에 변화를 줄 수 있다. 따라서, 상기 두 수식 모두를 사용하여 PHICH 자원 할당을 수행하거나, 또는 둘 중 하나의 수식과 기존 수식을 혼합하여 PHICH 자원 할당을 수행할 수 있다. According to Equation 7, it is possible to change the PHICH group indexing or PHICH sequence indexing, respectively. Therefore, PHICH resource allocation may be performed using both of the above equations, or PHICH resource allocation may be performed by mixing one of the equations and the existing one.
또 다른 방식으로서, 수학식 8과 같이 PHICH 그룹과 시퀀스를 산출함에 있어, 각기 다른 파라미터를 적용하여 산출되도록 구현할 수 있다. As another method, in calculating the PHICH group and the sequence as shown in Equation 8, it may be implemented to calculate by applying different parameters.
[수학식 8][Equation 8]
Figure PCTKR2012009152-appb-I000048
Figure PCTKR2012009152-appb-I000048
제 3 실시예를 적용할 경우, 기지국은 E-PDCCH의 스케줄링을 수행하게 된다. 이는 수학식 7, 8에 나타난 봐와 같이 E-PDCCH가 전송되는 PRB 인덱스를 이용하여 PHICH 그룹 및 시퀀스 정보가 산출되기 때문이다. 따라서, 앞서 PDCCH를 수신하게 되는 단말의 PUSCH 스케줄링과 같이 E-PDCCH스케줄링을 수행하여, 동일한 그룹/시퀀스로 인한 PHICH 자원 충돌이 발생하지 않도록 한다. 다만, E-PDCCH 스케줄링은 PUSCH 스케줄링 보다 네트워크의 효율에 적은 영향을 미치므로, 전체 시스템 성능을 향상시킬 수 있다. When applying the third embodiment, the base station performs scheduling of the E-PDCCH. This is because the PHICH group and sequence information are calculated using the PRB index through which the E-PDCCH is transmitted, as shown in Equations 7, and 8. Accordingly, the E-PDCCH scheduling is performed like the PUSCH scheduling of the UE that receives the PDCCH, so that PHICH resource collision due to the same group / sequence does not occur. However, since E-PDCCH scheduling has less impact on network efficiency than PUSCH scheduling, overall system performance may be improved.
사용자 단말은 업링크 할당을 지시하는 E-PDCCH의 물리적 자원 블록의 인덱스(EPRB_RA)와 업링크 할당된 물리적 자원 블록의 인덱스(IPRB_RA)를 이용하여, 수학식 7 또는 수학식 8과 같이 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원을 식별할 수 있다. The user terminal uses the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block, as shown in Equation 7 or Equation 8. The PHICH resource to which the HARQ result for the uplink performance may be allocated may be identified.
도 7은 본 명세서의 일 실시예에 의한 E-PDCCH에 PHICH 자원을 지시하는 정보의 전부 또는 일부를 포함시켜 업링크 할당을 수행하고, 이후 사용자 단말이 업링크 전송을 수행하면, 이에 대한 HARQ 결과를 다운링크 무선신호에 포함시켜 전송하는 과정을 보여주는 도면이다. 도 7의 eNB는 기지국의 일 실시예가 되며, UE는 사용자 단말 또는 단말의 일 실시예가 된다. FIG. 7 illustrates uplink allocation by including all or part of information indicating a PHICH resource in an E-PDCCH according to an embodiment of the present specification, and when a user terminal performs uplink transmission thereafter, HARQ result Is a diagram illustrating a process of including a transmission in a downlink radio signal. The eNB of FIG. 7 becomes an embodiment of a base station, and the UE becomes an embodiment of a user terminal or a terminal.
eNB(700)은 특정한 UE(701)의 업링크 할당(Uplink Grant)를 결정한다(S710). 그리고 해당 업링크 전송(PUSCH)이 E-PDCCH로 지시되는 경우, 해당 업링크 전송에 대한 HARQ 결과를 포함하는 PHICH 자원을 지시하는 그룹(Group) 및 시퀀스(Seq) 값을 결정할 수 있다(S720). 그리고 결정된 그룹 및 시퀀스를 지시하는 값은 상기 업링크 할당을 지시하는 E-PDCCH의 특정한 필드에 포함되도록 E-PDCCH를 생성한다. 앞서 도 5, 6에서 살펴본 바와 같이, 그룹 값만을 포함시키거나, 혹은 그룹/시퀀스 값 모두 포함시키거나, 또는 PHICH 그룹을 서브셋으로 분할하여, 도 6과 같이 PHICH 서브셋을 미리 알려준 후, PHICH 서브셋 중의 그룹을 지시하는 방식을 적용할 수 있다. The eNB 700 determines an uplink grant of a specific UE 701 (S710). When the uplink transmission (PUSCH) is indicated by the E-PDCCH, it is possible to determine a group and sequence value indicating the PHICH resource including the HARQ result for the uplink transmission (S720). . The E-PDCCH is generated to be included in a specific field of the E-PDCCH indicating the uplink allocation. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
eNB(700)은 생성된 E-PDCCH를 포함하는 다운링크를 전송한다(S740). UE(701)는 E-PDCCH를 통해서 업링크 할당이 이루어졌음을 파악한다. 또한 E-PDCCH에 포함된 PHICH 자원을 지시하는 정보(그룹 및/또는 시퀀스 정보)를 추출한다(S750). 그리고 할당된 업링크 자원에서 업링크 전송(PUSCH 전송)을 수행한다(S760).The eNB 700 transmits a downlink including the generated E-PDCCH (S740). The UE 701 knows that uplink allocation has been made through the E-PDCCH. In addition, information (group and / or sequence information) indicating a PHICH resource included in the E-PDCCH is extracted (S750). In operation S760, uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
PUSCH 전송이 이루어지면, eNB(700)는 이에 대한 HARQ 프로세스를 진행한다. 즉, eNB(700)는 수신된 업링크(PUSCH 전송)에 대해HARQ 프로세스 진행하며(S770), HARQ 프로세스 결과를 S720에서 결정된 PHICH 자원에 포함시키며, 다운링크 전송을 수행한다(S780, S790). 이후 UE(701)는 수신된 PHICH 자원 중 앞서 S750에서 지시된 PHICH 자원에 포함된 HARQ 결과를 확인하고(S795), 재전송 여부를 결정하게 된다. When the PUSCH transmission is made, the eNB 700 proceeds with the HARQ process. That is, the eNB 700 proceeds the HARQ process with respect to the received uplink (PUSCH transmission) (S770), includes the HARQ process result in the PHICH resource determined in S720, and performs downlink transmission (S780, S790). Thereafter, the UE 701 checks the HARQ result included in the PHICH resource indicated in S750 among the received PHICH resources (S795), and determines whether to retransmit.
도 8은 본 명세서의 다른 실시예에 의한 E-PDCCH 스케줄링을 수행하여 UE가 E-PDCCH의 위치를 이용하여 PHICH 자원을 확인할 수 있도록 한다. 그리고, 상기 E-PDCCH는 업링크 할당을 수행하고, 이후 사용자 단말이 업링크 전송을 수행하면, 이에 대한 HARQ 결과를 다운링크 무선신호에 포함시켜 전송하는 과정을 보여주는 도면이다. 도 8의 eNB는 기지국의 일 실시예가 되며, UE는 사용자 단말 또는 단말의 일 실시예가 된다.FIG. 8 performs E-PDCCH scheduling according to another embodiment of the present specification so that the UE can identify PHICH resources using the location of the E-PDCCH. In addition, the E-PDCCH performs uplink allocation, and when the user terminal performs uplink transmission, the E-PDCCH shows a process of including the HARQ result in the downlink radio signal and transmitting the uplink transmission. The eNB of FIG. 8 becomes an embodiment of a base station, and the UE becomes an embodiment of a user terminal or a terminal.
eNB(800)은 특정한 UE(801)의 업링크 할당(Uplink Grant)를 결정한다(S810). 그리고 해당 업링크 전송(PUSCH)이 E-PDCCH로 지시되는 경우, 해당 업링크 전송에 대한 HARQ 결과를 포함하는 PHICH 자원을 지시하는 그룹(Group) 및 시퀀스(Seq) 값을 결정할 수 있다(S820). 그리고 상기 업링크 할당을 지시하는 E-PDCCH가 상기 결정된 PHICH 자원의 그룹 및 시퀀스를 산출할 수 있는 위치에서 전송되도록, E-PDCCH 스케줄링을 수행한다(S830). 앞서 제 3실시예에서 살펴본 바와 같이 E-PDCCH의 자원 블록의 인덱스에 따라 PHICH 자원의 그룹 또는 시퀀스가 산출되도록 E-PDCCH를 스케줄링 할 수 있다. The eNB 800 determines an uplink grant of a specific UE 801 (S810). When the uplink transmission (PUSCH) is indicated by the E-PDCCH, a group and sequence value indicating a PHICH resource including a HARQ result for the uplink transmission may be determined (S820). . E-PDCCH scheduling is performed such that the E-PDCCH indicating the uplink allocation is transmitted at a position capable of calculating the determined group and sequence of PHICH resources (S830). As described in the third embodiment, the E-PDCCH may be scheduled such that a group or sequence of PHICH resources is calculated according to the index of the resource block of the E-PDCCH.
eNB(800)은 생성된 E-PDCCH를 포함하는 다운링크를 전송한다(S840). UE(801)는 E-PDCCH를 통해서 업링크 할당이 이루어졌음을 파악한다. 또한 제 3 실시예에서 살펴본 바와 같이, E-PDCCH의 물리적 자원 및 업링크 할당 자원을 이용하여 PHICH 자원을 지시하는 정보(그룹 및/또는 시퀀스 정보)를 추출한다(S850). 그리고 할당된 업링크 자원에서 업링크 전송(PUSCH 전송)을 수행한다(S860).The eNB 800 transmits a downlink including the generated E-PDCCH (S840). The UE 801 grasps that uplink allocation has been made through the E-PDCCH. In addition, as described in the third embodiment, information (group and / or sequence information) indicating a PHICH resource is extracted using physical resources and uplink allocation resources of the E-PDCCH (S850). In operation S860, uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
PUSCH 전송이 이루어지면, eNB(800)는 이에 대한 HARQ 프로세스를 진행한다. 즉, eNB(800)는 수신된 업링크(PUSCH 전송)에 대해HARQ 프로세스 진행하며(S870), HARQ 프로세스 결과를 S820에서 결정된 PHICH 자원에 포함시키며, 다운링크 전송을 수행한다(S880, S890). 이후 UE(801)는 수신된 PHICH 자원 중 앞서 S850에서 지시된 PHICH 자원에 포함된 HARQ 결과를 확인하고(S895), 재전송 여부를 결정하게 된다. When the PUSCH transmission is made, the eNB 800 proceeds with the HARQ process. That is, the eNB 800 proceeds with a HARQ process with respect to the received uplink (PUSCH transmission) (S870), includes the HARQ process result in the PHICH resource determined in S820, and performs downlink transmission (S880, S890). Thereafter, the UE 801 checks the HARQ result included in the PHICH resource indicated in S850 among the received PHICH resources (S895), and determines whether to retransmit.
도 7, 8에는 미도시되었으나 S740, S760, S840, S860의 다운링크/업링크 전송은 RRH를 통하여 이루어질 수 있다. 이는 도 9, 10과 같이 구성될 수 있다.Although not shown in Figures 7 and 8, the downlink / uplink transmission of S740, S760, S840, S860 may be made through the RRH. This may be configured as shown in FIGS. 9 and 10.
도 9는 도 7과 같이 본 명세서의 일 실시예에 의한 E-PDCCH에 PHICH 자원을 지시하는 정보의 전부 또는 일부를 포함시켜 업링크 할당을 수행하고, 이후 사용자 단말이 업링크 전송을 수행하면, 이에 대한 HARQ 결과를 다운링크 무선신호에 포함시켜 전송하는 과정을 보여주는 도면이다. 도 9에서 RRH(905)는 eNB(900)과 광통신 등과 같은 매체로 별도의 통신을 수행하여, UE(901)와 무선 신호를 송수신한다. FIG. 9 includes uplink allocation by including all or part of information indicating a PHICH resource in an E-PDCCH according to an embodiment of the present specification as shown in FIG. 7, and then, when a user terminal performs uplink transmission, A diagram showing a process of including the HARQ result in the downlink radio signal and transmitting. In FIG. 9, the RRH 905 performs separate communication with the eNB 900 through a medium such as optical communication, and transmits and receives a radio signal with the UE 901.
eNB(900) 및 RRH(905)는 특정한 UE(901)의 업링크 할당(Uplink Grant)를 결정한다(S910). 그리고 eNB(900) 및 RRH(905)는 해당 업링크 전송(PUSCH)이 E-PDCCH로 지시되는 경우, 해당 업링크 전송에 대한 HARQ 결과를 포함하는 PHICH 자원을 지시하는 그룹(Group) 및 시퀀스(Seq) 값을 결정할 수 있다(S920). 그리고 RRH(905)는 결정된 그룹 및 시퀀스를 지시하는 값은 상기 업링크 할당을 지시하는 E-PDCCH의 특정한 필드에 포함되도록 E-PDCCH를 생성한다. 앞서 도 5, 6에서 살펴본 바와 같이, 그룹 값만을 포함시키거나, 혹은 그룹/시퀀스 값 모두 포함시키거나, 또는 PHICH 그룹을 서브셋으로 분할하여, 도 6과 같이 PHICH 서브셋을 미리 알려준 후, PHICH 서브셋 중의 그룹을 지시하는 방식을 적용할 수 있다. The eNB 900 and the RRH 905 determine an uplink grant of a specific UE 901 (S910). When the uplink transmission (PUSCH) is indicated by the E-PDCCH, the eNB 900 and the RRH 905 indicate a group and sequence indicating a PHICH resource including a HARQ result for the uplink transmission. Seq) value can be determined (S920). The RRH 905 generates the E-PDCCH such that a value indicating the determined group and sequence is included in a specific field of the E-PDCCH indicating the uplink allocation. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
RRH(905)는 생성된 E-PDCCH를 포함하는 다운링크를 전송한다(S940). UE(901)는 E-PDCCH를 통해서 업링크 할당이 이루어졌음을 파악한다. 또한 E-PDCCH에 포함된 PHICH 자원을 지시하는 정보(그룹 및/또는 시퀀스 정보)를 추출한다(S950). 그리고 할당된 업링크 자원에서 업링크 전송(PUSCH 전송)을 수행한다(S960).The RRH 905 transmits a downlink including the generated E-PDCCH (S940). The UE 901 knows that uplink allocation has been made through the E-PDCCH. In addition, information (group and / or sequence information) indicating a PHICH resource included in the E-PDCCH is extracted (S950). In operation S960, uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
PUSCH 전송이 이루어지면, RRH(905)는 업링크된 PUSCH를 eNB(900)에게 제공한다(S965). 상기 제공은 RRH(905)가 광통신망 등을 통하여 업링크된 PUSCH를 eNB(900)에게 전송함을 포함한다. eNB(900)는 이에 대한 HARQ 프로세스를 진행한다. 즉, eNB(900)는 수신된 업링크(PUSCH 전송)에 대해 HARQ 프로세스 진행하며(S970), HARQ 프로세스 결과를 S920에서 결정된 PHICH 자원에 포함시키며, 다운링크 전송을 수행한다(S980, S990). 이후 UE(901)는 수신된 PHICH 자원 중 앞서 S750에서 지시된 PHICH 자원에 포함된 HARQ 결과를 확인하고(S995), 재전송 여부를 결정하게 된다. When the PUSCH transmission is made, the RRH 905 provides the uplink PUSCH to the eNB 900 (S965). The provision includes the RRH 905 transmitting the uplink PUSCH to the eNB 900 via an optical communication network or the like. The eNB 900 proceeds with the HARQ process for this. That is, the eNB 900 proceeds with the HARQ process on the received uplink (PUSCH transmission) (S970), includes the HARQ process result in the PHICH resource determined in S920, and performs downlink transmission (S980, S990). Thereafter, the UE 901 checks the HARQ result included in the PHICH resource indicated in S750 among the received PHICH resources (S995), and determines whether to retransmit.
도 10은 도 8과 같이, E-PDCCH 스케줄링을 수행하여 UE가 E-PDCCH의 위치를 이용하여 PHICH 자원을 확인할 수 있도록 한다. 그리고, 상기 E-PDCCH는 업링크 할당을 수행하고, 이후 사용자 단말이 업링크 전송을 수행하면, 이에 대한 HARQ 결과를 다운링크 무선신호에 포함시켜 전송하는 과정을 보여주는 도면이다. 도 10에서 RRH(1005)는 eNB(1000)과 광통신 등과 같은 매체로 별도의 통신을 수행하여, UE(1001)와 무선 신호를 송수신한다.FIG. 10 performs E-PDCCH scheduling, as shown in FIG. 8, so that the UE can identify PHICH resources using the location of the E-PDCCH. In addition, the E-PDCCH performs uplink allocation, and when the user terminal performs uplink transmission, the E-PDCCH shows a process of including the HARQ result in the downlink radio signal and transmitting the uplink transmission. In FIG. 10, the RRH 1005 performs separate communication with the eNB 1000 through a medium such as optical communication, and transmits and receives a radio signal with the UE 1001.
eNB(1000)와 RRH(1005)는 특정한 UE(1001)의 업링크 할당(Uplink Grant)를 결정한다(S1010). 그리고, eNB(1000)와 RRH(1005)는 해당 업링크 전송(PUSCH)이 E-PDCCH로 지시되는 경우, 해당 업링크 전송에 대한 HARQ 결과를 포함하는 PHICH 자원을 지시하는 그룹(Group) 및 시퀀스(Seq) 값을 결정할 수 있다(S1020). 그리고 상기 업링크 할당을 지시하는 E-PDCCH가 상기 결정된 PHICH 자원의 그룹 및 시퀀스를 산출할 수 있는 위치에서 전송되도록, E-PDCCH 스케줄링을 수행한다(S1030). 앞서 제 3실시예에서 살펴본 바와 같이 E-PDCCH의 자원 블록의 인덱스에 따라 PHICH 자원의 그룹 또는 시퀀스가 산출되도록 E-PDCCH를 스케줄링 할 수 있다. The eNB 1000 and the RRH 1005 determine an uplink grant of a specific UE 1001 (S1010). When the uplink transmission (PUSCH) is indicated by the E-PDCCH, the eNB 1000 and the RRH 1005 indicate a group and sequence indicating a PHICH resource including a HARQ result for the uplink transmission. A value of (Seq) may be determined (S1020). E-PDCCH scheduling is performed such that the E-PDCCH indicating the uplink allocation is transmitted at a position capable of calculating the determined group and sequence of PHICH resources (S1030). As described in the third embodiment, the E-PDCCH may be scheduled such that a group or sequence of PHICH resources is calculated according to the index of the resource block of the E-PDCCH.
RRH(1005)는 생성된 E-PDCCH를 포함하는 다운링크를 전송한다(S1040). UE(1001)는 E-PDCCH를 통해서 업링크 할당이 이루어졌음을 파악한다. 또한 제 3 실시예에서 살펴본 바와 같이, E-PDCCH의 물리적 자원 및 업링크 할당 자원을 이용하여 PHICH 자원을 지시하는 정보(그룹 및/또는 시퀀스 정보)를 추출한다(S1050). 그리고 할당된 업링크 자원에서 업링크 전송(PUSCH 전송)을 수행한다(S1060).The RRH 1005 transmits a downlink including the generated E-PDCCH (S1040). The UE 1001 grasps that uplink allocation has been made through the E-PDCCH. In addition, as described in the third embodiment, information (group and / or sequence information) indicating a PHICH resource is extracted using physical resources and uplink allocation resources of the E-PDCCH (S1050). In operation S1060, uplink transmission (PUSCH transmission) is performed on the allocated uplink resource.
PUSCH 전송이 이루어지면, RRH(1005)는 업링크된 PUSCH를 eNB(1000)에게 제공한다(S1065). 상기 제공은 RRH(1005)가 광통신망 등을 통하여 업링크된 PUSCH를 eNB(1000)에게 전송함을 포함한다. eNB(1000)는 이에 대한 HARQ 프로세스를 진행한다. 즉, eNB(1000)는 수신된 업링크(PUSCH 전송)에 대해 HARQ 프로세스 진행하며(S1070), HARQ 프로세스 결과를 S1020에서 결정된 PHICH 자원에 포함시키며, 다운링크 전송을 수행한다(S1080, S1090). 이후 UE(1001)는 수신된 PHICH 자원 중 앞서 S1050에서 지시된 PHICH 자원에 포함된 HARQ 결과를 확인하고(S1095), 재전송 여부를 결정하게 된다. When the PUSCH transmission is made, the RRH 1005 provides the uplink PUSCH to the eNB 1000 (S1065). The provision includes the RRH 1005 transmitting the uplink PUSCH to the eNB 1000 via an optical communication network or the like. The eNB 1000 proceeds with the HARQ process for this. That is, the eNB 1000 proceeds with the HARQ process on the received uplink (PUSCH transmission) (S1070), includes the HARQ process result in the PHICH resource determined in S1020, and performs downlink transmission (S1080, S1090). Thereafter, the UE 1001 checks the HARQ result included in the PHICH resource indicated in S1050 among the received PHICH resources (S1095), and determines whether to retransmit.
도 11은 본 명세서의 일 실시예에 의한 기지국 및 RRH와 같은 전송단에서 무선 신호 전송 결과를 전송하기 위한 자원을 할당하고 이를 송신하는 과정을 보여주는 도면이다. 또한, 도 11은 다수의 사용자 단말에게 무선 신호를 송수신하는 전송단에서 이루어지는 과정으로 상기 전송단은 기지국 또는 RRH로 구성되는 것을 특징으로 한다. FIG. 11 is a diagram illustrating a process of allocating and transmitting resources for transmitting a radio signal transmission result in a transmitting end such as a base station and an RRH according to an embodiment of the present specification. In addition, Figure 11 is a process made in a transmitting end for transmitting and receiving a radio signal to a plurality of user terminals, characterized in that the transmitting end is composed of a base station or RRH.
전송단은 사용자 단말의 업링크 할당을 판단하여, 상기 사용자 단말의 업링크 할당 정보를 E-PDCCH를 통해 상기 사용자 단말에 송신한다(S1110). 이는 도 1에서와 같이 RRH 또는 기지국이 E-PDCCH 또는 PDCCH 등을 통하여 업링크 할당을 송신하는 과정을 포함한다. The transmitter determines the uplink allocation of the user terminal and transmits uplink allocation information of the user terminal to the user terminal through the E-PDCCH (S1110). This includes a process in which the RRH or the base station transmits an uplink allocation through the E-PDCCH or the PDCCH as shown in FIG. 1.
이후, 상기 E-PDCCH를 통해 할당된 업링크 자원에서 상기 사용자 단말로부터 무선 신호를 수신한다(S1120). 이는 도 2와 같이 RRH 또는 기지국이 사용자 단말로부터 PUSCH 전송을 수신하는 과정을 포함한다. Thereafter, a wireless signal is received from the user terminal in the uplink resource allocated through the E-PDCCH (S1120). This includes a process in which the RRH or the base station receives the PUSCH transmission from the user terminal as shown in FIG. 2.
그리고, 전송단은 상기 수신된 무선 신호를 검증한다(S1130). 상기 검증 결과는 상기 사용자 단말이 송신한 PUSCH에 대한 HARQ 결과이며, 상기 검증 결과가 포함되는 무선 자원은 PHICH 자원이 될 수 있다. 그리고, 전송단, 특히 기지국은 상기 검증 결과를 상기 사용자 단말에 송신한다(S1140). In operation S1130, the transmitting end verifies the received radio signal. The verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource. In addition, the transmitting end, in particular, the base station transmits the verification result to the user terminal (S1140).
S1140의 상기 검증 결과는 상기 E-PDCCH가 포함된 자원에서 산출 가능한 무선 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 무선 자원에 포함된다. E-PDCCH에 포함된 정보에서 산출 가능한 무선 자원이라는 것은, 앞서 제 1, 2 실시예와 같이 E-PDCCH의 특정 필드에 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보를 포함시키는 것을 의미한다. 즉, 상기 E-PDCCH는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함하게 된다. 앞서 도 5, 6에서 살펴본 바와 같이, 그룹 값만을 포함시키거나, 혹은 그룹/시퀀스 값 모두 포함시키거나, 또는 PHICH 그룹을 서브셋으로 분할하여, 도 6과 같이 PHICH 서브셋을 미리 알려준 후, PHICH 서브셋 중의 그룹을 지시하는 방식을 적용할 수 있다. The verification result of S1140 is included in a radio resource that can be calculated from a resource including the E-PDCCH or a radio resource that can be calculated from information included in the E-PDCCH. The radio resource that can be calculated from the information included in the E-PDCCH means to include group information or sequence information indicating a PHICH resource in a specific field of the E-PDCCH as in the first and second embodiments. That is, the E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
한편 E-PDCCH가 포함된 자원에서 산출 가능한 무선 자원이라는 것은 앞서 제 3 실시예와 같이, 업링크 할당을 수행하는 E-PDCCH의 물리적 자원 블록의 인덱스를 이용하여, PHICH 자원의 그룹 또는 시퀀스를 산출할 수 있는 실시예를 의미한다. 즉, 상기 E-PDCCH의 자원 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출할 수 있음을 의미한다. 다시 설명하면, 업링크 할당을 지시하는 E-PDCCH의 물리적 자원 블록의 인덱스(EPRB_RA)와 업링크 할당된 물리적 자원 블록의 인덱스(IPRB_RA)를 이용하여, 수학식 7 또는 수학식 8과 같이 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원을 식별할 수 있다. Meanwhile, the radio resource that can be calculated from the resource including the E-PDCCH is calculated as a group or sequence of PHICH resources by using the index of the physical resource block of the E-PDCCH which performs uplink allocation as in the third embodiment. It means an embodiment that can be done. That is, group information or sequence information indicating the PHICH resource may be calculated using the resource block index of the E-PDCCH. In other words, by using the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block, as shown in Equation 7 or 8 The PHICH resource to which the HARQ result for the uplink performance may be allocated may be identified.
S1110, S1120, S1130은 기지국과 RRH과 협동으로, 또는 기지국/RRH 단독으로 이루어 질 수 있다. 그러나 S1140은 기지국, 예를 들어 eNB와 같이 전체 셀에 대한 참조신호(예를 들어 CRS)를 송신하는 장치에서 검증 결과를 포함하는 PHICH를 송신할 수 있다. S1110, S1120, and S1130 may be performed in cooperation with the base station and the RRH or the base station / RRH alone. However, S1140 may transmit the PHICH including the verification result in the apparatus for transmitting the reference signal (for example, the CRS) for the entire cell, such as the base station, for example, the eNB.
S1110에서 E-PDCCH가 포함된 자원에서 산출 가능한 무선 자원을 통하여 PHICH 자원의 그룹 또는 시퀀스를 산출할 경우, 상기 E-PDCCH를 통하여 산출되는 PHICH 자원이 다른 사용자 단말의 PHICH 자원과 충돌하지 않도록, E-PDCCH 스케줄링을 추가적으로 수행할 수 있다. When calculating a group or sequence of PHICH resources through a radio resource that can be calculated from a resource including an E-PDCCH in S1110, the PHICH resource calculated through the E-PDCCH does not collide with a PHICH resource of another user terminal. PDCCH scheduling may be additionally performed.
도 12는 본 명세서의 일 실시예에 의한 기지국 및 RRH와 같은 전송단으로부터 업링크 할당을 받은 후, 무선 신호를 전송한 후, 상기 무선 신호 전송 결과를 수신하는 과정을 보여주는 도면이다. 또한, 도 12의 전송단은 기지국 또는 RRH로 구성되는 것을 특징으로 한다. 12 is a diagram illustrating a process of receiving a radio signal transmission result after transmitting a radio signal after receiving uplink allocation from a transmitting end such as a base station and an RRH according to an embodiment of the present specification. In addition, the transmitting end of Figure 12 is characterized by consisting of a base station or an RRH.
사용자 단말은 전송단으로부터 E-PDCCH를 통해 업링크 할당 정보를 수신한다(S1210). 이는 도 1에서와 같이 RRH 또는 기지국이 E-PDCCH 또는 PDCCH 등을 통하여 업링크 할당을 지시받는 과정을 포함한다. The user terminal receives uplink allocation information through the E-PDCCH from the transmitting end (S1210). This includes a process in which the RRH or the base station is instructed to allocate uplink through the E-PDCCH or the PDCCH as shown in FIG. 1.
그리고, 상기 E-PDCCH를 통해 할당된 업링크 자원에서 무선 신호를 송신하게 된다(S1220). 이는 도 2와 같이 사용자 단말이 RRH 또는 기지국에게 PUSCH를 송신하는 과정을 포함한다. In operation S1220, a radio signal is transmitted on an uplink resource allocated through the E-PDCCH. This includes a process of transmitting a PUSCH to the RRH or the base station by the user terminal as shown in FIG.
이후, 상기 송신된 무선 신호의 검증 결과를 상기 E-PDCCH가 포함된 자원에서 산출 가능한 무선 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 무선 자원에서 수신한다(S1230). 이후, 상기 검증 결과에 따라 이전에 송신한 무선 신호를 재전송할 수 있다. Thereafter, the verification result of the transmitted radio signal is received from a radio resource that can be calculated from a resource including the E-PDCCH or a radio resource that can be calculated from information included in the E-PDCCH (S1230). Thereafter, the previously transmitted wireless signal may be retransmitted according to the verification result.
상기 검증 결과는 상기 사용자 단말이 송신한 PUSCH에 대한 HARQ 결과이며, 상기 검증 결과가 포함되는 무선 자원은 PHICH 자원이 될 수 있다. 특히, 사용자 단말은 기지국으로부터 상기 검증 결과를 수신하게 된다. 즉, 기지국, 예를 들어 eNB와 같이 전체 셀에 대한 참조신호(예를 들어 CRS)를 송신하는 장치로부터, 사용자 단말은 검증 결과를 포함하는 PHICH를 수신할 수 있다. The verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource. In particular, the user terminal receives the verification result from the base station. That is, from an apparatus for transmitting a reference signal (for example, CRS) for all cells, such as a base station, for example, an eNB, the user terminal may receive a PHICH including a verification result.
상기 검증 결과는 상기 E-PDCCH가 포함된 자원에서 산출 가능한 무선 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 무선 자원에 포함된다. E-PDCCH에 포함된 정보에서 산출 가능한 무선 자원이라는 것은, 앞서 제 1, 2 실시예와 같이 E-PDCCH의 특정 필드에 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보를 포함시키는 것을 의미한다. 즉, 상기 E-PDCCH는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함하게 된다. 앞서 도 5, 6에서 살펴본 바와 같이, 그룹 값만을 포함시키거나, 혹은 그룹/시퀀스 값 모두 포함시키거나, 또는 PHICH 그룹을 서브셋으로 분할하여, 도 6과 같이 PHICH 서브셋을 미리 알려준 후, PHICH 서브셋 중의 그룹을 지시하는 방식을 적용할 수 있다. The verification result is included in a radio resource that can be calculated from a resource including the E-PDCCH or a radio resource that can be calculated from information included in the E-PDCCH. The radio resource that can be calculated from the information included in the E-PDCCH means to include group information or sequence information indicating a PHICH resource in a specific field of the E-PDCCH as in the first and second embodiments. That is, the E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
한편 E-PDCCH가 포함된 자원에서 산출 가능한 무선 자원이라는 것은 앞서 제 3 실시예와 같이, 업링크 할당을 수행하는 E-PDCCH의 물리적 자원 블록의 인덱스를 이용하여, PHICH 자원의 그룹 또는 시퀀스를 산출할 수 있는 실시예를 의미한다. 즉, 상기 E-PDCCH의 자원 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출할 수 있음을 의미한다. 즉, 사용자 단말은 업링크 할당을 지시하는 E-PDCCH의 물리적 자원 블록의 인덱스(EPRB_RA)와 업링크 할당된 물리적 자원 블록의 인덱스(IPRB_RA)를 이용하여, 수학식 7 또는 수학식 8과 같이 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원을 식별할 수 있다. Meanwhile, the radio resource that can be calculated from the resource including the E-PDCCH is calculated as a group or sequence of PHICH resources by using the index of the physical resource block of the E-PDCCH which performs uplink allocation as in the third embodiment. It means an embodiment that can be done. That is, group information or sequence information indicating the PHICH resource may be calculated using the resource block index of the E-PDCCH. That is, the user terminal uses the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block. Likewise, the PHICH resource to which the HARQ result for the corresponding uplink execution can be identified can be identified.
도 13은 본 명세서의 일 실시예에 의한 기지국의 구성을 보여주는 도면이다. 기지국은 도 13의 구성요소 이외에도 사용자 단말들과의 무선 신호를 송수신하기 위해 다양한 구성 요소를 더 필요로 할 수 있으며, 도 13에서는 본 명세서의 일 실시예를 구현하는데 필요한 구성 요소들을 제시하고 있다. 13 is a diagram illustrating a configuration of a base station according to an embodiment of the present specification. In addition to the components of FIG. 13, the base station may further require various components to transmit and receive wireless signals to and from user terminals, and FIG. 13 illustrates components required to implement an embodiment of the present specification.
기지국은 자원할당부(1310), 검증부(1320), 그리고 송수신부(1330)을 포함한다. The base station includes a resource allocator 1310, a verification unit 1320, and a transceiver 1330.
자원할당부(1310)는 사용자 단말의 업링크 할당 정보를 포함하는 E-PDCCH가 상기 업링크 결과를 전송할 무선 자원의 인덱스를 지시하도록, 상기 E-PDCCH를 미리 계산된 인덱스의 무선 자원에 할당하거나, 상기 E-PDCCH에 미리 계산된 값을 포함시켜 상기 E-PDCCH를 생성한다.The resource allocator 1310 allocates the E-PDCCH to a radio resource of a pre-calculated index so that the E-PDCCH including uplink allocation information of the user terminal indicates an index of a radio resource to transmit the uplink result. The E-PDCCH is generated by including a pre-calculated value in the E-PDCCH.
검증부(1320)는 상기 E-PDCCH가 포함된 무선 신호를 수신한 사용자 단말이 송신한 무선 신호를 검증하게 된다. The verification unit 1320 verifies the radio signal transmitted by the user terminal receiving the radio signal including the E-PDCCH.
그리고 송수신부(1330)는 상기 검증 결과를 상기 사용자 단말에 송신하며 하나 이상의 사용자 단말로부터 신호를 수신하게 된다. The transceiver 1330 transmits the verification result to the user terminal and receives a signal from one or more user terminals.
상기 검증 결과는 상기 사용자 단말이 송신한 PUSCH에 대한 HARQ 결과이며, 상기 검증 결과가 포함되는 무선 자원은 PHICH 자원이 될 수 있다.The verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource.
또한, 상기 자원 할당부(1310)는 상기 E-PDCCH에 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함시킬 수 있다.The resource allocator 1310 may include all or part of group information or sequence information indicating the PHICH resource in the E-PDCCH.
이는 앞서 제 1, 2 실시예와 같이 E-PDCCH의 특정 필드에 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보를 포함시키는 것을 의미한다. 즉, 상기 E-PDCCH는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함하게 된다. 앞서 도 5, 6에서 살펴본 바와 같이, 그룹 값만을 포함시키거나, 혹은 그룹/시퀀스 값 모두 포함시키거나, 또는 PHICH 그룹을 서브셋으로 분할하여, 도 6과 같이 PHICH 서브셋을 미리 알려준 후, PHICH 서브셋 중의 그룹을 지시하는 방식을 적용할 수 있다. This means that the group information or the sequence information indicating the PHICH resource is included in a specific field of the E-PDCCH as in the first and second embodiments. That is, the E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
또한, 상기 자원 할당부(1310)는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출되도록 상기 E-PDCCH가 할당될 무선 자원의 자원 블록 인덱스를 이용하며, 상기 E-PDCCH가 할당될 자원에 대하여 스케줄링을 수행할 수 있다.In addition, the resource allocator 1310 uses a resource block index of a radio resource to which the E-PDCCH is to be allocated so that group information or sequence information indicating the PHICH resource is calculated, and to the resource to which the E-PDCCH is to be allocated. Scheduling may be performed.
이는, 앞서 제 3 실시예와 같이, 업링크 할당을 수행하는 E-PDCCH의 물리적 자원 블록의 인덱스를 이용하여, PHICH 자원의 그룹 또는 시퀀스를 산출할 수 있는 실시예를 의미한다. 즉, 상기 E-PDCCH의 자원 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출할 수 있음을 의미한다. 다시 설명하면, 업링크 할당을 지시하는 E-PDCCH의 물리적 자원 블록의 인덱스(EPRB_RA)와 업링크 할당된 물리적 자원 블록의 인덱스(IPRB_RA)를 이용하여, 수학식 7 또는 수학식 8과 같이 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원이 식별되도록, 상기 자원 할당부(1310)는 미리 계산된 특정한 인덱스의 무선 자원에 E-PDCCH를 할당할 수 있다. 또한, 상기 자원 할당부(1310)는 상기 E-PDCCH를 통하여 산출되는 PHICH 자원이 다른 사용자 단말의 PHICH 자원과 충돌하지 않도록, E-PDCCH 스케줄링을 추가적으로 수행할 수 있다. This is an embodiment in which a group or sequence of PHICH resources can be calculated using the index of the physical resource block of the E-PDCCH that performs uplink allocation, as in the third embodiment. That is, group information or sequence information indicating the PHICH resource may be calculated using the resource block index of the E-PDCCH. In other words, by using the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block, as shown in Equation 7 or 8 The resource allocator 1310 may allocate an E-PDCCH to a radio resource of a predetermined index, so that the PHICH resource to which the HARQ result for the uplink performance is allocated is identified. In addition, the resource allocator 1310 may additionally perform E-PDCCH scheduling so that PHICH resources calculated through the E-PDCCH do not collide with PHICH resources of other user terminals.
도 14는 본 명세서의 일 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다. 사용자 단말은 도 14의 구성요소 이외에도 기지국과의 무선 신호를 송수신하기 위해 다양한 구성 요소를 더 필요로 할 수 있으며, 도 14에서는 본 명세서의 일 실시예를 구현하는데 필요한 구성 요소들을 제시하고 있다. 14 is a diagram illustrating a configuration of a user terminal according to one embodiment of the present specification. In addition to the components of FIG. 14, the user terminal may further require various components to transmit and receive wireless signals with the base station, and FIG. 14 illustrates components required to implement an embodiment of the present specification.
상기 일 실시예에 의한 사용자 단말은 검증 결과 확인부(1410), 자원 확인부(1420), 그리고 송수신부(1430)로 구성될 수 있다. The user terminal according to the embodiment may be composed of a verification result checker 1410, a resource checker 1420, and a transceiver 1430.
송수신부(1430)는 전송단, 예를 들어 기지국 등으로부터 E-PDCCH를 통해 업링크 자원 할당 정보를 수신하고, 상기 E-PDCCH를 통해 할당된 업링크를 위한 제 1 무선 자원을 이용하여 무선 신호를 송신할 수 있다. The transceiver 1430 receives uplink resource allocation information through an E-PDCCH from a transmitting end, for example, a base station, and uses a first radio resource for uplink allocated through the E-PDCCH. Can be sent.
자원 확인부(1420)는 상기 E-PDCCH가 포함된 무선 자원의 인덱스 또는 상기 E-PDCCH에 포함된 정보에서 제 2 무선 자원의 인덱스를 산출할 수 있다.The resource identifying unit 1420 may calculate the index of the second radio resource from the index of the radio resource including the E-PDCCH or the information included in the E-PDCCH.
상기 송수신부(1430)는 상기 제 2 무선 자원에서 상기 제 1 무선 자원을 이용하여 송신된 업링크 전송 결과를 수신하며, 검증 결과 확인부(1410)는 상기 업링크 전송 결과를 확인할 수 있다. The transceiver 1430 may receive an uplink transmission result transmitted from the second radio resource using the first radio resource, and a verification result confirming unit 1410 may check the uplink transmission result.
상기 검증 결과는 상기 사용자 단말이 송신한 PUSCH에 대한 HARQ 결과이며, 상기 검증 결과가 포함되는 무선 자원은 PHICH 자원이 될 수 있다. 특히, 사용자 단말은 기지국으로부터 상기 검증 결과를 수신하할 수 있다. 즉, 기지국, 예를 들어 eNB와 같이 전체 셀에 대한 참조신호(예를 들어 CRS)를 송신하는 장치로부터, 사용자 단말은 검증 결과를 포함하는 PHICH를 수신할 수 있다. The verification result is a HARQ result for the PUSCH transmitted by the user terminal, and the radio resource including the verification result may be a PHICH resource. In particular, the user terminal may receive the verification result from the base station. That is, from an apparatus for transmitting a reference signal (for example, CRS) for all cells, such as a base station, for example, an eNB, the user terminal may receive a PHICH including a verification result.
상기 자원 확인부(1420)는 상기 E-PDCCH에 포함되며, 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 이용하여 상기 제 2 무선 자원의 인덱스를 산출할 수 있다. 이는 제 1, 2 실시예와 같이 자원 확인부(1420)는 E-PDCCH의 특정 필드에 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보를 이용하여 PHICH가 포함되는 무선 자원의 인덱스를 산출하는 것을 의미할 수 있다. 즉, 상기 E-PDCCH는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함하할 수 있다. 앞서 도 5, 6에서 살펴본 바와 같이, 그룹 값만을 포함시키거나, 혹은 그룹/시퀀스 값 모두 포함시키거나, 또는 PHICH 그룹을 서브셋으로 분할하여, 도 6과 같이 PHICH 서브셋을 미리 알려준 후, PHICH 서브셋 중의 그룹을 지시하는 방식을 적용할 수 있다. The resource identifying unit 1420 may be included in the E-PDCCH and may calculate an index of the second radio resource by using all or part of group information or sequence information indicating the PHICH resource. This means that, as in the first and second embodiments, the resource identifying unit 1420 calculates an index of a radio resource including the PHICH by using group information or sequence information indicating a PHICH resource in a specific field of the E-PDCCH. Can be. That is, the E-PDCCH may include all or part of group information or sequence information indicating the PHICH resource. As described above with reference to FIGS. 5 and 6, only the group value is included, the group / sequence value is included, or the PHICH group is divided into subsets, and the PHICH subset is notified in advance as shown in FIG. The method of indicating a group can be applied.
또한, 자원 확인부(1420)는 상기 E-PDCCH의 자원 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보를 산출할 수 있다. 즉, 앞서 제 3 실시예와 같이, 자원 확인부(1420)는 업링크 할당을 수행하는 E-PDCCH의 물리적 자원 블록의 인덱스를 이용하여, PHICH 자원의 그룹 또는 시퀀스를 산출하여 PHICH 자원을 확인할 수 있다. 다시 설명하면, 사용자 단말은 업링크 할당을 지시하는 E-PDCCH의 물리적 자원 블록의 인덱스(EPRB_RA)와 업링크 할당된 물리적 자원 블록의 인덱스(IPRB_RA)를 이용하여, 수학식 7 또는 수학식 8과 같이 해당 업링크 수행에 대한 HARQ 결과가 할당될 PHICH 자원을 식별할 수 있다. In addition, the resource identification unit 1420 may calculate group information or sequence information indicating the PHICH resource using the resource block index of the E-PDCCH. That is, as in the third embodiment, the resource identifying unit 1420 may identify the PHICH resource by calculating a group or sequence of PHICH resources using the index of the physical resource block of the E-PDCCH that performs uplink allocation. have. In other words, the user terminal may use Equation 7 or Equation 7 using the index E PRB_RA of the physical resource block of the E-PDCCH indicating the uplink allocation and the index I PRB_RA of the uplink allocated physical resource block. As shown in FIG. 8, a PHICH resource to which an HARQ result for uplink performance is allocated may be identified.
과거, PUSCH 전송이 수행되는 대역 및 PUSCH 전송이 사용하는 DM RS 의 사이클릭 쉬프트 인덱스(cyclic shift index, DM RS CS)에 의해 N/Ack 보고를 수행하는 PHICH 자원을 결정 할 경우, 일부 단말들에 송부하는 N/Ack 정보가 동일한 PHICH 자원을 사용하게 되는 충돌(collision)을 회피하기 위해 기지국의 스케줄링(scheduling)을 통해 상기의 충돌이 발생하지 않도록 제어하였다. 이는, 동일 서브프레임에서 PUSCH 전송을 수행하고, 동일 서브프레임에서 PHICH을 통한 N/Ack 수신을 수행할 단말의 수를 고려하여 적절한 크기의 PHICH 자원을 설정하고 있으며, PUSCH 대역 스케줄링 및 업링크 DM RS CS 할당을 통해 각 단말에 N/Ack 전달을 수행 할 PHICH 자원을 분배할 수 있었다. 이는 각 N/Ack 수행을 위한 PHICH 자원 할당 방법은 별도의 시그널링 오버헤드(signaling overhead) 없이 PHICH 자원 할당을 수행 할 수 있다는 장점이 있으나 전용된 자원의 관리(dedicate resource management)가 불가능한 방법이라 PHICH 자원 활용의 효율성이 떨어질 수 있다. In the past, when determining the PHICH resource for performing N / Ack report by the band in which the PUSCH transmission is performed and the cyclic shift index (DM RS CS) of the DM RS used by the PUSCH transmission, to some terminals In order to avoid a collision in which N / Ack information to be transmitted uses the same PHICH resource, the collision is controlled so that the collision does not occur through scheduling of the base station. In this case, the PUSCH transmission is performed in the same subframe, and the PHICH resource of an appropriate size is set in consideration of the number of UEs to perform N / Ack reception through the PHICH in the same subframe, and the PUSCH band scheduling and uplink DM RS are performed. Through CS assignment, PHICH resources for N / Ack delivery could be distributed to each UE. This PHICH resource allocation method for performing each N / Ack has the advantage that PHICH resource allocation can be performed without signaling overhead, but it is impossible to manage dedicated resources (dedicated resource management). The efficiency of utilization may be diminished.
CoMP scenario 4의 E-PDCCH 사용에 의해 다운링크 제어 채널 용량(downlink control channel capacity)이 증가하며, 또한, 다중 송신단(Multiple transmission points)의 사용에 의해 다운링크 공유 채널 용량(downlink shared channel capacity) 역시 증가한다. 또한, 다중 수신단(Multiple reception points)의 사용에 의해 업링크 공유 채널(uplink shared channel) 및 업링크 제어 채널(control channel)의 용량이 증가한다. 이러한 환경에서, 증가한 PUSCH 용량을 지원하기 위해서 본 명세서의 일 실시예를 적용할 경우, PHICH 자원 관리 또는 PHICH 자원 향상(resource enhancement)을 이룰 수 있다. Downlink control channel capacity is increased by the use of E-PDCCH in CoMP scenario 4, and downlink shared channel capacity is also increased by the use of multiple transmission points. Increases. In addition, the capacity of an uplink shared channel and an uplink control channel is increased by the use of multiple reception points. In such an environment, when an embodiment of the present specification is applied to support increased PUSCH capacity, PHICH resource management or PHICH resource enhancement may be achieved.
즉, PUSCH 전송을 동일 서브프레임(subframe)에서 수행하는 또는 N/Ack 수신을 동일 서브프레임에서 수행하는 단말의 수가 증가 할 경우, 무선 자원을 효율적으로 사용할 수 있도록, 본 명세서에서는 E-PDCCH내에 PHICH 자원을 지시하는 정보의 일부 또는 전부를 포함시키거나, 혹은 PUSCH와 비교하여, 상대적으로 전송 효율에 크게 영향을 미치지 않는 E-PDCCH 스케줄링을 통하여, E-PDCCH의 무선 자원에서 PHICH 자원이 산출되도록 하여, 자원의 효율과 전송 효율을 모두 고려할 수 있다. That is, in the present specification, when the number of UEs performing PUSCH transmission in the same subframe or N / Ack reception in the same subframe increases, a radio resource can be efficiently used. The PHICH resource is calculated from the radio resource of the E-PDCCH by including some or all of the information indicating the resource or by E-PDCCH scheduling which does not significantly affect the transmission efficiency in comparison with the PUSCH. Therefore, both resource efficiency and transmission efficiency can be considered.
본 발명의 일 실시예를 구현할 경우, PHICH와 같은 제어 영역의 자원을 효율적으로 이용할 수 있다. 즉, 업링크 할당 과정에서, PUSCH 스케줄링 이외에도 E-PDCCH 스케줄링을 수행하거나, E-PDCCH에 PHICH를 위한 자원을 할당할 수 있도록 하여, 한정된 PHICH 자원을 보다 효과적으로 이용할 수 있다.When implementing one embodiment of the present invention, it is possible to efficiently use the resources of the control region, such as PHICH. That is, in the uplink allocation process, the E-PDCCH scheduling may be performed in addition to the PUSCH scheduling, or the resource for the PHICH may be allocated to the E-PDCCH, so that the limited PHICH resource may be more effectively used.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.  The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited thereto. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2011년 11월 4일 한국에 출원한 특허출원번호 제 10-2011-0114497 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under No. 10 (2011) 144 (a) (35 USC § 119 (a)) of the Patent Application No. 10-2011-0114497 filed with Korea on 4 November 2011. All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (14)

  1. 다수의 사용자 단말에게 무선 신호를 송수신하는 전송단에 있어서, In the transmitting end for transmitting and receiving a radio signal to a plurality of user terminals,
    사용자 단말의 업링크 자원(resource) 할당 정보를 E-PDCCH(Enhanced PDCCH)를 통해 상기 사용자 단말에 송신하는 단계;Transmitting uplink resource allocation information of the user terminal to the user terminal through an enhanced PDCCH (E-PDCCH);
    상기 E-PDCCH를 통해 할당된 업링크 자원을 이용하여 상기 사용자 단말로부터 무선 신호를 수신하는 단계; 및Receiving a radio signal from the user terminal by using an uplink resource allocated through the E-PDCCH; And
    상기 수신된 무선 신호의 검증 결과를 상기 사용자 단말에 송신하는 단계를 포함하며, Transmitting the verification result of the received wireless signal to the user terminal,
    상기 검증 결과는 상기 E-PDCCH가 포함된 무선 자원에서 산출 가능한 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 PHICH 자원에 포함되는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 방법.The verification result is included in a PHICH (Physical Hybrid ARQ Indicator CHannel) resource that can be calculated from a radio resource including the E-PDCCH or a PHICH resource that can be calculated from information included in the E-PDCCH, the radio signal transmission How to allocate resources for results and send them.
  2. 제 1항에 있어서, The method of claim 1,
    상기 E-PDCCH는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함하는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 방법.The E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource, the method for allocating and transmitting resources for the radio signal transmission result.
  3. 제 1항에 있어서, The method of claim 1,
    상기 E-PDCCH가 포함된 자원의 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출되는 것을 특징으로 하며,Characterized in that group information or sequence information indicating the PHICH resource is calculated using a block index of the resource including the E-PDCCH,
    상기 업링크 자원 할당 정보를 송신하기 전에, 상기 E-PDCCH가 할당될 자원에 대하여 스케줄링을 수행하는 단계를 더 포함하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 방법.Prior to transmitting the uplink resource allocation information, further comprising the step of scheduling for the resource to which the E-PDCCH is to be allocated, allocating a resource for a radio signal transmission result and transmitting it.
  4. 제 1항에 있어서,The method of claim 1,
    상기 전송단은 기지국 또는 RRH(Remote Radio Head) 중 어느 하나 이상으로 구성되며, 상기 검증 결과는 상기 기지국이 상기 사용자 단말에 송신하는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 방법.The transmitting end is composed of at least one of a base station or a remote radio head (RRH), and the verification result is the base station transmits to the user terminal, allocates the resource for the radio signal transmission result and transmit it How to.
  5. 사용자 단말에 있어서,In the user terminal,
    전송단으로부터 E-PDCCH(Enhanced PDCCH)를 통해 업링크 자원(resource) 할당 정보를 수신하는 단계;Receiving uplink resource allocation information through an enhanced PDCCH (E-PDCCH) from a transmitting end;
    상기 E-PDCCH를 통해 할당된 업링크 자원을 이용하여 무선 신호를 송신하는 단계; 및Transmitting a radio signal using an uplink resource allocated through the E-PDCCH; And
    상기 송신된 무선 신호의 검증 결과를 상기 E-PDCCH가 포함된 무선 자원 에서 산출 가능한 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원 또는 상기 E-PDCCH에 포함된 정보에서 산출 가능한 PHICH 자원을 이용하여 수신하는 단계를 포함하는, 무선 신호 전송 결과를 위한 자원을 수신하는 방법.Receiving a verification result of the transmitted radio signal using a PHICH (Physical Hybrid ARQ Indicator CHannel) resource that can be calculated from a radio resource including the E-PDCCH or a PHICH resource that can be calculated from information included in the E-PDCCH Including a resource for a wireless signal transmission result.
  6. 제 5항에 있어서, The method of claim 5,
    상기 E-PDCCH는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함하는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 수신하는 방법.The E-PDCCH includes all or part of group information or sequence information indicating the PHICH resource, the method for receiving a resource for a radio signal transmission result.
  7. 제 5항에 있어서, The method of claim 5,
    상기 E-PDCCH가 포함된 자원의 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출되는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 수신하는 방법.And group information or sequence information indicating the PHICH resource is calculated using a block index of the resource including the E-PDCCH.
  8. 제 5항에 있어서,The method of claim 5,
    상기 전송단은 기지국 또는 RRH중 어느 하나 이상으로 구성되며, 상기 검증 결과는 상기 기지국으로부터 수신하는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 수신하는 방법.The transmitting end is composed of any one or more of the base station or RRH, characterized in that the verification result is received from the base station, the method for receiving a resource for a radio signal transmission result.
  9. 다수의 사용자 단말에게 무선 신호를 송수신하는 전송단에 있어서, In the transmitting end for transmitting and receiving a radio signal to a plurality of user terminals,
    사용자 단말의 업링크 자원 할당 정보를 포함하는 E-PDCCH가 상기 업링크 결과를 전송할 무선 자원의 인덱스를 지시하도록, 상기 E-PDCCH를 미리 계산된 인덱스의 무선 자원에 할당하거나, 상기 E-PDCCH에 미리 계산된 값을 포함시켜 상기 E-PDCCH를 생성하는 자원 할당부;Assign the E-PDCCH to a radio resource of a pre-computed index or assign the E-PDCCH to an E-PDCCH such that an E-PDCCH including uplink resource allocation information of a user terminal indicates an index of a radio resource to transmit the uplink result. A resource allocator configured to generate the E-PDCCH by including a pre-calculated value;
    상기 업링크 자원 할당 정보를 수신한 사용자 단말이 송신한 무선 신호를 검증하는 검증부; 및A verification unit for verifying a radio signal transmitted by a user terminal receiving the uplink resource allocation information; And
    상기 검증 결과를 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원을 통해 상기 사용자 단말에 송신하며 하나 이상의 사용자 단말로부터 신호를 수신하는 송수신부를 포함하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 장치.And a transceiver for transmitting the verification result to the user terminal through a physical hybrid ARQ indicator channel (PHICH) resource and receiving a signal from at least one user terminal.
  10. 제 9항에 있어서, The method of claim 9,
    상기 자원 할당부는 상기 E-PDCCH에 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 포함시키는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 장치.And the resource allocator includes all or part of group information or sequence information indicating the PHICH resource in the E-PDCCH.
  11. 제 9항에 있어서, The method of claim 9,
    상기 자원 할당부는 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보가 산출되도록 상기 E-PDCCH가 할당될 무선 자원의 블록 인덱스를 이용하며, 상기 E-PDCCH가 할당될 자원에 대하여 스케줄링을 수행하는, 무선 신호 전송 결과를 위한 자원을 할당하고 이를 송신하는 장치.The resource allocator uses a block index of a radio resource to which the E-PDCCH is to be allocated such that group information or sequence information indicating the PHICH resource is calculated, and performs scheduling on a resource to which the E-PDCCH is to be allocated. Apparatus for allocating resources for signal transmission result and transmitting them.
  12. 전송단으로부터 E-PDCCH(Extended PDCCH)를 통해 업링크 자원 할당 정보를 수신하고, 상기 E-PDCCH를 통해 할당된 업링크를 위한 PUSCH(Physical Uplink Shared CHannel) 자원을 이용하여 무선 신호를 송신하는 송수신부; 및Transmitting / receiving uplink resource allocation information through an extended PDCCH (E-PDCCH) from a transmitting end, and transmitting a radio signal using a physical uplink shared channel (PUSCH) resource for uplink allocated through the E-PDCCH part; And
    상기 E-PDCCH가 포함된 무선 자원의 블록 인덱스 또는 상기 E-PDCCH에 포함된 정보에서 PHICH(Physical Hybrid ARQ Indicator CHannel) 자원의 인덱스를 산출하는 자원 확인부를 포함하며,A resource identification unit for calculating an index of a PHICH (Physical Hybrid ARQ Indicator CHannel) resource from a block index of a radio resource including the E-PDCCH or information included in the E-PDCCH;
    상기 송수신부는 상기 PHICH 자원을 통해 상기 PUSCH 자원에서 송신된 무선 신호의 검증 결과를 수신하는 것을 특징으로 하는, 무선 신호 전송 결과를 위한 자원을 수신하는 장치.And the transmitting and receiving unit receives a result of verifying a radio signal transmitted from the PUSCH resource through the PHICH resource.
  13. 제 12항에 있어서, The method of claim 12,
    상기 자원 확인부는 상기 E-PDCCH에 포함되며, 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보의 전부 또는 일부를 이용하여 상기 PHICH 자원의 인덱스를 산출하는, 무선 신호 전송 결과를 위한 자원을 수신하는 장치.The apparatus for receiving a resource for a radio signal transmission result included in the E-PDCCH and calculating an index of the PHICH resource using all or part of group information or sequence information indicating the PHICH resource. .
  14. 제 12항에 있어서, The method of claim 12,
    상기 자원 확인부는 상기 E-PDCCH의 자원 블록 인덱스를 이용하여 상기 PHICH 자원을 지시하는 그룹 정보 또는 시퀀스 정보를 산출하는, 무선 신호 전송 결과를 위한 자원을 수신하는 장치.And the resource checking unit calculates group information or sequence information indicating the PHICH resource by using the resource block index of the E-PDCCH.
PCT/KR2012/009152 2011-11-04 2012-11-02 Method and apparatus for allocating resources for result of wireless signal transmission and transceiving the result WO2013066091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110114497A KR20130049456A (en) 2011-11-04 2011-11-04 Method and apparatus for allocating resource for result of wireless signal transmission, transmitting and receiving the result
KR10-2011-0114497 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013066091A1 true WO2013066091A1 (en) 2013-05-10

Family

ID=48192373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009152 WO2013066091A1 (en) 2011-11-04 2012-11-02 Method and apparatus for allocating resources for result of wireless signal transmission and transceiving the result

Country Status (2)

Country Link
KR (1) KR20130049456A (en)
WO (1) WO2013066091A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133860A1 (en) * 2014-03-06 2015-09-11 엘지전자 주식회사 Method and apparatus for transmitting control information in wireless communication system
WO2016204807A1 (en) * 2015-06-18 2016-12-22 Intel IP Corporation Uplink resource collision reduction in fd-mimo
WO2016208950A1 (en) * 2015-06-23 2016-12-29 엘지전자(주) Method for transmitting/receiving data in wireless communication system, and device for same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134874A1 (en) * 2008-08-08 2011-06-09 Panasonic Corporation Wireless communication base station device, wireless communication terminal device, and channel allocation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134874A1 (en) * 2008-08-08 2011-06-09 Panasonic Corporation Wireless communication base station device, wireless communication terminal device, and channel allocation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT; ALCATEL-LUCENT SHANGHAI BELL: "Design details for enhanced PDCCH", 3GPP TSG RAN WG1 MEETING #66BIS R1-113322, 14 October 2011 (2011-10-14), ZHUHAI, CHINA, XP050538589 *
PANTECH: "PHICH resource allocation schemes for downlink CoMP scenario 4", 3GPP TSG RAN WG1 MEETING #66BIS R1-113108, 10 October 2011 (2011-10-10) - 14 October 2011 (2011-10-14), ZHUHAI, CHINA, XP050538250 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133860A1 (en) * 2014-03-06 2015-09-11 엘지전자 주식회사 Method and apparatus for transmitting control information in wireless communication system
US9900879B2 (en) 2014-03-06 2018-02-20 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
WO2016204807A1 (en) * 2015-06-18 2016-12-22 Intel IP Corporation Uplink resource collision reduction in fd-mimo
US10454623B2 (en) 2015-06-18 2019-10-22 Intel IP Corporation Uplink resource collision reduction in FD-MIMO
WO2016208950A1 (en) * 2015-06-23 2016-12-29 엘지전자(주) Method for transmitting/receiving data in wireless communication system, and device for same
US10778697B2 (en) 2015-06-23 2020-09-15 Lg Electronics Inc. Method for transmitting/receiving data in wireless communication system, and device for same

Also Published As

Publication number Publication date
KR20130049456A (en) 2013-05-14

Similar Documents

Publication Publication Date Title
WO2018128468A1 (en) Method and apparatus for detecting signals of a downlink control channel in a wireless communication system
WO2017135745A1 (en) Method for mapping, transmitting, or receiving uplink control information in wireless communication system and device for same
WO2018038418A1 (en) Method for uplink transmission in wireless communication system, and device therefor
WO2013009043A2 (en) Method and apparatus for transceiving a downlink harq in a wireless communication system
WO2018088857A1 (en) Method for transmitting uplink signal in wireless communication system and device therefor
WO2013089507A1 (en) User equipment, pdsch a/n transmitting method thereof, transmission/reception point, and pdsch a/n receiving method thereof
WO2014042452A1 (en) Reception and configuration of downlink control channel
WO2016163807A1 (en) Method for transmitting interference downlink control information in a wireless communication system and apparatus therefor
WO2014058257A1 (en) Controlling uplink power
WO2013109100A1 (en) Device-to-device communication method and a device therefor
WO2010134755A2 (en) Method and apparatus for transmitting control information
WO2013151392A1 (en) Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo
WO2014133321A1 (en) Method and apparatus for transmitting control channel depending on ue capability in intra-cell carrier aggregation system
WO2018143701A1 (en) Method for supporting multiple transmission time intervals, multiple subcarrier intervals, or multiple processing time intervals in wireless communication system, and apparatus therefor
WO2016182369A1 (en) Method for channel sensing in wireless communication system, and apparatus therefor
WO2016089044A1 (en) Method for interference control in radio resource and device therefor
WO2014116071A1 (en) Method and apparatus for transmitting control channel in intra-cell carrier aggregation system
WO2014025140A1 (en) Control information transmission and uplink control channel resource mapping
WO2013005970A2 (en) Method and apparatus for transmitting and processing control information in time division duplex system using multi-component carrier
WO2014163407A1 (en) Method and apparatus for transmitting channel state information in wireless communication system
WO2016072763A1 (en) Method for transmitting data in unlicensed band-secondary carrier and device for same
WO2016190631A1 (en) Channel sensing in wireless communication system, transmission method based on same, and device therefor
WO2018203624A1 (en) Method for receiving reference signal in wireless communication system and device therefor
WO2015050339A1 (en) Method for transmitting and receiving downlink control channel, and apparatus therefor
WO2018143731A1 (en) Method for supporting plurality of transmission time intervals, plurality of subcarrier intervals or plurality of processing times in wireless communication system, and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845697

Country of ref document: EP

Kind code of ref document: A1