WO2013065437A1 - Air-conditioning indoor unit - Google Patents

Air-conditioning indoor unit Download PDF

Info

Publication number
WO2013065437A1
WO2013065437A1 PCT/JP2012/075460 JP2012075460W WO2013065437A1 WO 2013065437 A1 WO2013065437 A1 WO 2013065437A1 JP 2012075460 W JP2012075460 W JP 2012075460W WO 2013065437 A1 WO2013065437 A1 WO 2013065437A1
Authority
WO
WIPO (PCT)
Prior art keywords
coanda
air
blade
wind direction
indoor unit
Prior art date
Application number
PCT/JP2012/075460
Other languages
French (fr)
Japanese (ja)
Inventor
安冨 正直
正史 鎌田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2013065437A1 publication Critical patent/WO2013065437A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/28Details or features not otherwise provided for using the Coanda effect

Definitions

  • the present invention relates to an air conditioning indoor unit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-232531
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-232531
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-232531
  • This upward Coanda airflow causes a so-called short circuit that is drawn into the suction port along the front surface of the casing. Therefore, a movable air guide plate is disposed in the vicinity of the air outlet and moves away from the front surface of the casing. Guides the airflow. However, if the state where the cold air flows on one side of the air guide plate continues for a long time, the opposite surface condenses, so it is necessary to apply a heat insulating material.
  • the subject of this invention is providing the air-conditioning indoor unit which can prevent dew condensation of a baffle plate.
  • An air conditioning indoor unit is an air conditioning indoor unit capable of changing a flow of blown air blown from a blower outlet after being taken in from a suction port and harmonized in a main body casing in a predetermined direction.
  • a movable air guide plate and a control unit are provided.
  • the wind guide plate adjusts the wind direction of the blown air during use, and is housed in a position away from the front of the air passage and the blowout port of the blown air when not used.
  • the control unit controls the wind guide plate so that the gap between the wind guide plate and the formation wall of the blower outlet becomes larger when the wind guide plate is used than when the wind guide plate is housed.
  • the air conditioning indoor unit according to the second aspect of the present invention is the air conditioning indoor unit according to the first aspect, and the gap between the air guide plate and the blower outlet forming wall is substantially zero when accommodated.
  • this air conditioning indoor unit if there is a gap between the wind guide plate and the wall where the air outlet is formed, the appearance may be deteriorated, so that the gap becomes almost zero suppresses at least a decrease in designability. can do.
  • the air conditioning indoor unit according to the third aspect of the present invention is the air conditioning indoor unit according to the first aspect, and the housing portion is provided on the front surface portion of the main casing.
  • the front portion of the main casing is formed with a shape that prevents the occurrence of the Coanda effect. If there is a suction port above the front part of the main casing, the air that has passed through the gap between the air guide plate and the wall where the blower outlet is formed becomes a Coanda airflow along the front part of the casing, and is sucked into the suction port to create a short circuit. cause.
  • An air conditioning indoor unit is the air conditioning indoor unit according to any one of the first to third aspects, wherein the air guide plate is provided in the vicinity of the outlet, It is a Coanda vane that makes a Coanda airflow along its lower surface.
  • the air guide plate is provided in the vicinity of the outlet, It is a Coanda vane that makes a Coanda airflow along its lower surface.
  • the blown air can be deflected upward or blown without a combination of the Coanda blades and the wind guide plate as in the conventional product. Furthermore, since air passes through both sides of the Coanda blade, condensation on the Coanda blade is also prevented.
  • An air conditioning indoor unit is the air conditioning indoor unit according to any one of the first to fourth aspects, wherein a suction port is provided on the top surface of the main body casing, and the front surface of the main body casing. There is no inlet in the part.
  • this air conditioning indoor unit since there is no suction port in the front portion of the main body casing, the phenomenon that the air passing through the gap between the Coanda blades and the front portion of the main body casing is sucked into the suction port and becomes a short circuit is suppressed.
  • the air conditioning indoor unit for example, in order to improve the appearance, even when the gap between the air guide plate and the blower outlet forming wall is set small when the air guide plate is accommodated, it is used. Sometimes, the gap between the air outlet and the forming wall becomes larger than that during housing, so that air passes through both sides of the air guide plate. As a result, condensation on the air guide plate is prevented.
  • the air conditioning indoor unit when there is a gap between the air guide plate and the formation wall of the outlet, the appearance may be deteriorated, so that the gap becomes almost zero, At least a decrease in design properties can be suppressed.
  • the shape that prevents the occurrence of the Coanda effect is formed on the front surface portion of the main body casing, the generation of the Coanda airflow along the front surface portion of the main body casing is prevented, Short circuit is prevented.
  • the blown air can be deflected upward or blown without using a combination of the Coanda blade and the wind guide plate as in the conventional product. Furthermore, since air passes through both sides of the Coanda blade, condensation on the Coanda blade is also prevented. In the air conditioning indoor unit pertaining to the fifth aspect of the present invention, the phenomenon that the wind passing through the gap between the Coanda blades and the front surface portion of the main body casing is sucked into the inlet and becomes a short circuit is suppressed.
  • wing The conceptual diagram which shows the direction of blowing air and the direction of Coanda airflow.
  • wing consist, and the internal angle which the tangent of the terminal F of a scroll and a wind direction adjustment blade
  • the side view of the air-conditioning indoor unit installation space which shows the wind direction of Coanda airflow when a Coanda blade
  • the block diagram which shows the relationship between a control part and a remote control.
  • the front view of the display part showing the low-order menu of the "Coanda wind direction setting" menu.
  • the side view of the accommodating part periphery of the air-conditioning indoor unit which concerns on a modification.
  • FIG. 1 is a cross-sectional view of the air conditioning indoor unit 10 when operation is stopped according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the air conditioning indoor unit 10 during operation. 1 and 2, the air conditioning indoor unit 10 is a wall-hanging type, and a main body casing 11, an indoor heat exchanger 13, an indoor fan 14, a bottom frame 16, and a control unit 40 are mounted thereon.
  • the main body casing 11 has a top surface portion 11a, a front panel 11b, a back plate 11c, and a lower horizontal plate 11d, and houses an indoor heat exchanger 13, an indoor fan 14, a bottom frame 16, and a control unit 40 therein. .
  • the top surface part 11a is located in the upper part of the main body casing 11, and the inlet (not shown) is provided in the front part of the top surface part 11a.
  • the front panel 11b constitutes the front part of the indoor unit, and has a flat shape without a suction port. Further, the upper end of the front panel 11b is rotatably supported by the top surface portion 11a, and can operate in a hinged manner.
  • the indoor heat exchanger 13 and the indoor fan 14 are attached to the bottom frame 16.
  • the indoor heat exchanger 13 exchanges heat with the passing air.
  • the indoor heat exchanger 13 has an inverted V-shape in which both ends are bent downward in a side view, and the indoor fan 14 is located below the indoor heat exchanger 13.
  • the indoor fan 14 is a cross-flow fan, blows air taken in from the room against the indoor heat exchanger 13 and then blows it into the room.
  • An air outlet 15 is provided at the lower part of the main body casing 11.
  • a wind direction adjusting blade 31 that changes the direction of the blown air blown from the blower outlet 15 is rotatably attached to the blower outlet 15.
  • the wind direction adjusting blade 31 is driven by a motor (not shown) and can change the direction of the blown air, and can also open and close the blowout port 15.
  • the wind direction adjusting blade 31 can take a plurality of postures having different inclination angles.
  • a Coanda blade 32 is provided in the vicinity of the air outlet 15.
  • the Coanda blade 32 can take a posture inclined in the front-rear direction by a motor (not shown), and is accommodated in the accommodating portion 130 provided in the front panel 11b when the operation is stopped.
  • the Coanda blade 32 can take a plurality of postures having different inclination angles. Further, the air outlet 15 is connected to the inside of the main body casing 11 by the air outlet channel 18. The blowout channel 18 is formed along the scroll 17 of the bottom frame 16 from the blowout port 15.
  • the indoor air is sucked into the indoor fan 14 through the suction port and the indoor heat exchanger 13 by the operation of the indoor fan 14, and blown out from the blower outlet 15 through the blowout passage 18 from the indoor fan 14.
  • the control unit 40 is located on the right side of the indoor heat exchanger 13 and the indoor fan 14 when the main body casing 11 is viewed from the front panel 11b, and controls the rotational speed of the indoor fan 14, the wind direction adjusting blade 31 and the Coanda blade 32. Perform motion control.
  • the depth of the depression in this region is set so as to match the thickness dimension of the Coanda blade 32, and constitutes a housing portion 130 in which the Coanda blade 32 is housed.
  • the surface of the accommodating part 130 is also a gentle circular curved surface.
  • the blower outlet 15 is formed in the lower part of the main body casing 11, and is a rectangular opening which makes a horizontal direction (direction orthogonal to the paper surface of FIG. 1) a long side.
  • the lower end of the blower outlet 15 is in contact with the front edge of the lower horizontal plate 11d, and the virtual plane connecting the lower end and the upper end of the blower outlet 15 is inclined forward and upward.
  • Scroll 17 The scroll 17 is a partition wall curved so as to face the indoor fan 14 and is a part of the bottom frame 16.
  • the end F of the scroll 17 reaches the vicinity of the periphery of the air outlet 15.
  • the air passing through the blowout flow path 18 travels along the scroll 17 and is sent in the tangential direction of the end F of the scroll 17. Therefore, if there is no wind direction adjusting blade 31 at the air outlet 15, the air direction of the air blown out from the air outlet 15 is a direction substantially along the tangent L 0 of the terminal end F of the scroll 17.
  • the vertical wind direction adjusting plate 20 includes a plurality of blade pieces 201 and a connecting rod 203 that connects the plurality of blade pieces 201. Further, the vertical air direction adjusting plate 20 is disposed nearer the indoor fan 14 than the air direction adjusting blades 31 in the blowout flow path 18. The plurality of blade pieces 201 swing left and right around a state perpendicular to the longitudinal direction as the connecting rod 203 horizontally reciprocates along the longitudinal direction of the outlet 15. The connecting rod 203 is horizontally reciprocated by a motor (not shown). (2-5) Wind direction adjusting blade 31 The wind direction adjusting blade 31 has an area that can block the air outlet 15.
  • the outer side surface 31 a is finished to have a gentle circular curved surface that protrudes outwardly as if it is an extension of the curved surface of the front panel 11 b. Further, the inner side surface 31b (see FIG. 2) of the wind direction adjusting blade 31 also forms an arcuate curved surface substantially parallel to the outer surface.
  • the wind direction adjusting blade 31 has a rotation shaft 311 at the lower end.
  • the rotating shaft 311 is connected to the rotating shaft of a stepping motor (not shown) fixed to the main body casing 11 in the vicinity of the lower end of the air outlet 15.
  • the rotation shaft 311 rotates counterclockwise when viewed from the front in FIG. 1, so that the upper end of the airflow direction adjusting blade 31 moves away from the upper end side of the outlet 15 to open the outlet 15.
  • the rotation shaft 311 rotates in the clockwise direction in FIG. 1, the upper end of the wind direction adjusting blade 31 operates so as to approach the upper end side of the outlet 15 to close the outlet 15.
  • the Coanda blade 32 is stored in the storage unit 130 while the air-conditioning operation is stopped or in an operation in the normal blowing mode described later.
  • the Coanda blade 32 moves away from the accommodating portion 130 by rotating.
  • the rotation shaft 321 of the Coanda blade 32 is provided in the vicinity of the lower end of the housing portion 130 and inside the main body casing 11 (a position above the upper wall of the outlet flow passage 18).
  • the rotating shaft 321 is connected with a predetermined interval. Therefore, as the rotation shaft 321 rotates and the Coanda blade 32 moves away from the housing portion 130 on the front surface of the casing, the height position of the lower end of the Coanda blade 32 rotates so as to become lower.
  • the inclination when the Coanda blade 32 rotates and opens is gentler than the inclination of the casing front surface portion.
  • the accommodating portion 130 is provided outside the air passage, and the entire Coanda blade 32 is accommodated outside the air passage when being accommodated.
  • only a part of the Coanda blade 32 may be accommodated outside the air passage, and the rest may be accommodated in the air passage (for example, the upper wall portion of the air passage).
  • the rotating shaft 321 rotates counterclockwise in the front view of FIG. 1, the upper and lower ends of the Coanda blades 32 are separated from the housing portion 130 while drawing an arc.
  • the shortest distance between the casing front portion and the accommodating portion 130 is larger than the shortest distance between the lower end and the accommodating portion 130. That is, the Coanda blade 32 is controlled so as to move away from the front surface of the casing as it goes forward.
  • the rotation shaft 321 rotates in the clockwise direction in the front view of FIG. 1
  • the Coanda blade 32 approaches the storage unit 130 and is finally stored in the storage unit 130.
  • the operating state of the Coanda blade 32 includes a state where the Coanda blade 32 is housed in the storage unit 130, a posture rotated and tilted forward and upward, a posture rotated and substantially horizontal, and a posture rotated and tilted forward and downward. is there.
  • the outer surface 32a of the Coanda blade 32 is finished to a gentle circular curved surface that protrudes outwardly as if it is an extension of the gentle circular curved surface of the front panel 11b.
  • the inner side surface 32 b of the Coanda blade 32 is finished to have an arcuate curved surface that follows the surface of the housing portion 130.
  • the dimension in the longitudinal direction of the Coanda blade 32 is set to be equal to or larger than the dimension in the longitudinal direction of the wind direction adjusting blade 31.
  • the reason for this is to receive all of the blown air whose wind direction has been adjusted by the wind direction adjusting blade 31 by the Coanda blade 32, and its purpose is to prevent the blown air from the side of the Coanda blade 32 from short-circuiting.
  • Direction control of blown air The air-conditioning indoor unit of the present embodiment, as means for controlling the direction of blown air, is a normal blow mode that adjusts the direction of blown air by rotating only the wind direction adjusting blade 31 and the wind direction.
  • the adjustment blade 31 and the Coanda blade 32 are rotated so that the Coanda effect uses the Coanda effect to make the blown air flow along the outer surface 32a of the Coanda blade 32, and the tips of the wind direction adjustment blade 31 and the Coanda blade 32, respectively.
  • FIG. 3A is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the blown air is normally forward blown. In FIG.
  • the control unit 40 rotates the wind direction adjusting blade 31 to a position where the inner side surface 31b of the wind direction adjusting blade 31 becomes substantially horizontal.
  • wing 31 has comprised the circular arc curved surface like this embodiment, the wind direction adjustment blade
  • FIG. 3B is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the blown air is normally forward down blown. In FIG. 3B, when the user wants to direct the blowing direction downward from “normal forward blowing”, the user may select “normal forward lower blowing”.
  • control unit 40 rotates the wind direction adjusting blade 31 until the tangent at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 becomes lower than the horizontal. As a result, the blown air is in a front lower blowing state.
  • Coanda effect utilization mode means that if there is a wall near the flow of gas or liquid, it flows in the direction along the wall surface even if the direction of the flow is different from the direction of the wall. It is a phenomenon to try (Asakura Shoten "Dictionary of Law").
  • the Coanda utilization mode includes “Coanda airflow front blowing” and “Coanda airflow ceiling blowing” using this Coanda effect. Further, the direction of the blown air and the direction of the Coanda airflow differ depending on the method of defining the reference position, so an example is shown below, but is not limited thereto.
  • FIG. 4A is a conceptual diagram showing the direction of blown air and the direction of Coanda airflow.
  • the inclination of the direction (D1) of the blown air changed by the wind direction adjusting blade 31 becomes close to the posture (inclination) of the Coanda blade 32. There is a need.
  • the Coanda blade 32 and the wind direction adjusting blade 31 need to be equal to or less than a predetermined opening angle, and both the adjustment plates (31, 32) are within the range, and The relationship is established. Thereby, as shown in FIG. 4A, after the wind direction of the blown air is changed to D1 by the wind direction adjusting blade 31, it is further changed to D2 by the Coanda effect.
  • FIG. 4B is a conceptual diagram illustrating an example of an opening angle between the wind direction adjusting blade 31 and the Coanda blade 32.
  • the wind direction adjusting blade 31 and the Coanda blade 32 have an inner angle formed by the tangent of the end F of the scroll 17 and the Coanda blade 32 and the tangent of the end F of the scroll 17. It is preferable to take a posture that satisfies the condition that it is larger than the inner angle formed by the wind direction adjusting blade 31. 5A (the inner angle R2 formed by the tangent line L0 of the terminal end F of the scroll 17 and the Coanda blade 32 when the Coanda airflow is blown forward and the tangent line L0 of the terminal end F of the scroll 17 and the airflow direction adjusting blade 31 are formed.
  • Comparison diagram with inner angle R1) and FIG. 5B inner angle R2 formed between tangent L0 of end F of scroll 17 and Coanda blade 32 when Coanda airflow ceiling is blown, tangent L0 of end F of scroll 17 and wind direction adjusting blade 31) (Refer to the comparison figure with the internal angle R1).
  • 3C is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 during the Coanda airflow forward blow.
  • the control unit 40 moves the airflow direction adjustment blade 31 until the tangent L1 at the front end E1 of the inner side surface 31b of the airflow direction adjustment blade 31 becomes lower than the horizontal. Rotate.
  • the control unit 40 rotates the Coanda blade 32 until the outer surface 32a of the Coanda blade 32 becomes substantially horizontal.
  • the Coanda blade 32 is rotated until the tangent L2 at the front end E2 of the outer surface 32a becomes substantially horizontal. That is, as shown in FIG. 5A, the inner angle R2 formed by the tangent line L0 and the tangent line L2 is larger than the inner angle R1 formed by the tangent line L0 and the tangent line L1.
  • the blown air adjusted to the front lower blow by the wind direction adjusting blade 31 becomes a flow attached to the outer surface 32a of the Coanda blade 32 by the Coanda effect, and changes to a Coanda airflow along the outer surface 32a. Therefore, even if the tangential L1 direction at the front end E1 of the airflow direction adjusting blade 31 is the front lower blowing, the tangential L2 direction at the front end E2 of the Coanda blade 32 is horizontal, so that the blown air is blown from the Coanda blade 32 by the Coanda effect. It blows off in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, in the horizontal direction.
  • the Coanda blades 32 are separated from the casing front surface and the inclination becomes gentle, and the blown air becomes more susceptible to the Coanda effect in front of the front panel 11b.
  • the blown air whose wind direction is adjusted by the wind direction adjusting blade 31 is the front lower blow, it becomes horizontal blown air due to the Coanda effect.
  • the gap between the Coanda blade 32 and the upper forming wall 15 a of the blower outlet 15 is larger than that during housing, and air also passes through the inner surface 32 b of the Coanda blade 32.
  • FIG. 3D is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the Coanda airflow ceiling is blown.
  • the control unit 40 rotates the airflow direction adjusting blade 31 until the tangent L1 at the front end E1 of the inner side surface 31b of the airflow direction adjusting blade 31 becomes horizontal.
  • the control part 40 rotates the Coanda blade
  • the blown air adjusted to be blown horizontally by the wind direction adjusting blade 31 becomes a flow attached to the outer surface 32a of the Coanda blade 32 by the Coanda effect, and changes to a Coanda airflow along the outer surface 32a.
  • the tangential L2 direction at the front end E2 of the Coanda blade 32 is forward upward blowing, so that the blown air is generated by the Coanda effect by the Coanda effect. It blows out in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, the ceiling direction. Since the front end portion of the Coanda blade 32 protrudes outward from the air outlet 15, the Coanda airflow reaches further away. Further, since the tip of the Coanda blade 32 is positioned above the outlet 15, the wind is prevented from traveling straightly downward along the scroll 17 on the upper side of the Coanda blade 32. The upward induction of is difficult to be inhibited.
  • the Coanda blades 32 are separated from the casing front surface and the inclination becomes gentle, and the blown air becomes more susceptible to the Coanda effect in front of the front panel 11b.
  • the blown air whose wind direction is adjusted by the wind direction adjusting blade 31 is forward blowing, it becomes upward air due to the Coanda effect.
  • the wind direction is changed while the pressure loss due to the ventilation resistance of the wind direction adjusting blade 31 is suppressed.
  • the blown air is guided toward the ceiling while the blower outlet 15 remains open. That is, the blown air is guided toward the ceiling in a state where the ventilation resistance is kept low.
  • the size in the longitudinal direction of the Coanda blade 32 is not less than the size in the longitudinal direction of the wind direction adjusting blade 31. Therefore, all of the blown air whose wind direction is adjusted by the wind direction adjusting blade 31 can be received by the Coanda blade 32, and the effect that the blown air is prevented from short-circuiting from the side of the Coanda blade 32 is also achieved.
  • FIG. 3E is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 during the down-blowing. 3E, when “downward blowing” is selected, the control unit 40 rotates the wind direction adjusting blade 31 until the tangent at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 is directed downward.
  • control part 40 rotates the Coanda blade
  • the blown air passes between the wind direction adjusting blade 31 and the Coanda blade 32 and is blown downward.
  • FIG. 6A is a side view of the air-conditioning indoor unit installation space showing the wind direction of the Coanda airflow when the Coanda blade 32 takes the first posture.
  • the air conditioning indoor unit 10 is installed above the indoor side wall.
  • the Coanda blade 32 is in a state of being housed in the housing portion 130 (hereinafter referred to as a first posture). After the Coanda blade 32 is in the first posture, the air direction adjustment blade 31 is made to face upward from the horizontal so that the blown air whose air direction has been adjusted on the inner surface 31b of the wind direction adjustment blade 31 leaves the inner surface 31b. The direction is changed so as to be pulled by the outer surface 32a of the Coanda blade 32, and the first Coanda airflow flows along the outer surface 32a of the Coanda blade 32 and the front panel 11b.
  • FIG. 7A is a block diagram showing the relationship between the control unit 40 and the remote controller 50.
  • the remote controller 50 transmits an infrared signal wirelessly.
  • the remote controller 50 has switching means for switching the wind direction. Specifically, it has a display unit 52 that displays a wind direction selection menu and a cursor 52a for designating each wind direction selection menu so that the user can select the wind direction.
  • the user selects “Coanda wind direction setting” from the menu displayed on the display unit 52 with the cursor 52a. Since the technology for selecting and confirming the menu by the remote controller 50 is widely disclosed, detailed description is omitted.
  • FIG. 7B is a front view of the display unit 52 showing a lower menu of the “Coanda wind direction setting” menu.
  • the first to fifth Coanda angles are prepared in advance in the lower menu of the “Coanda wind direction setting” menu.
  • the Coanda blade 32 is displayed.
  • the first posture shown in FIG. 6A is taken, and a Coanda airflow in a first direction corresponding to the first Coanda angle is generated.
  • FIG. 6B is a side view of the air conditioning indoor unit installation space showing the wind direction of the Coanda airflow when the Coanda blade 32 takes the second posture. .
  • the second posture of the Coanda blade 32 in FIG. 6B can be achieved by specifying and confirming the second Coanda angle with the cursor 52a in FIG. 7B.
  • the Coanda airflow generated when the Coanda blade 32 is in the second posture corresponds to the Coanda airflow described in the section “(3-2-2) Coanda airflow ceiling blowing”.
  • the control unit 40 rotates the wind direction adjusting blade 31 until the tangent L1 at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 becomes horizontal, Next, the Coanda blade 32 is rotated until the tangent L2 at the front end E2 of the outer side surface 32a is directed upward.
  • FIG. 8A is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the Coanda blade 32 is in the third posture.
  • the third posture of the Coanda blade 32 is downward than the second posture.
  • the Coanda blade 32 in the second posture is drawn with a two-dot chain line
  • the Coanda blade 32 in the third posture is drawn with a solid line.
  • the Coanda airflow is reliably generated in the second posture and the posture of the airflow direction adjusting blade 31 is not changed, the Coanda airflow is directed from the outer surface 32a of the Coanda blade 32 in the third posture that is downward than the second posture. It is clear that it does not peel.
  • it can be achieved by selecting the second Coanda angle or the third Coanda angle with the cursor 52a in FIG. 7B.
  • the blown air is adjusted in the direction approaching the curved surface 320 of the Coanda blade 32 by the wind direction adjusting blade 31, and the Coanda blade 32 uses the blown air whose air direction is adjusted as its own. Since the air flow is changed to the Coanda airflow along the curved surface 320, the wind direction deflection effect is great.
  • the tip of the Coanda blade 32 faces the ceiling, so the Coanda airflow along the curved surface 320 of the Coanda blade 32 is separated from the front panel 11b and You can go upward. In this case, even if there is a suction port above the front surface of the main body casing 11, a short circuit can be prevented.
  • the second posture and the third posture of the Coanda blade 32 are selected when it is desired to fly conditioned air far away.
  • the Coanda blade 32 is preferably in the second posture.
  • the posture of the Coanda blade 32 is preferably the third posture.
  • the user can select the posture of the Coanda blade 32 according to the size of the indoor space via the remote controller 50, so that the user can use the conditioned air evenly in the air-conditioning target space. Is possible.
  • the outer surface 32a of the Coanda blade 32 may be a convexly curved shape or a planar shape.
  • the outer surface 32a is preferably convexly curved in the following points.
  • the outer surface 32 a of the Coanda blade 32 is curved in a convex shape to form a curved surface 320. Since the Coanda blade 32 moves away from the front panel 11b as it moves away from the air outlet 15, the Coanda airflow along the curved surface 320 of the Coanda blade 32 advances upward while leaving the front panel 11b. be able to. Further, the angle of the tip of the Coanda blade 32 becomes an upward angle, and an upward airflow can be generated without making the inclination angle of the Coanda blade sharp.
  • the blown air becomes an upward Coanda airflow along the curved surface 320 of the Coanda blade 32.
  • the front panel 11b and the curved surface 320 of the Coanda blade 32 are curved so as to be aligned on one continuous virtual curved surface, so that the appearance of the casing front portion when the Coanda blade 32 is accommodated is improved.
  • the curved surface 320 of the Coanda blade 32 may be formed of a plurality of curved surfaces having different degrees of curvature.
  • FIG. 6C is a side view of the air-conditioning indoor unit installation space showing the wind direction of the Coanda airflow when the Coanda blade 32 takes the fourth posture.
  • wing 32 in FIG. 6C can be comprised by specifying and confirming a 4th Coanda angle with the cursor 52a in FIG. 7B.
  • the Coanda airflow generated when the Coanda blade 32 is in the fourth posture corresponds to the Coanda airflow described in the section “(3-2-1) Coanda airflow forward blowing”.
  • the controller 40 adjusts the wind direction adjusting blade 31 until the tangent line L1 at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 becomes lower than the horizontal.
  • the Coanda blade 32 is rotated until the outer surface 32a of the Coanda blade 32 becomes substantially horizontal.
  • the tangential L1 direction at the front end E1 of the airflow direction adjusting blade 31 is the front lower blowing
  • the tangential L2 direction at the front end E2 of the Coanda blade 32 is horizontal, so that the blown air is blown from the Coanda blade 32 by the Coanda effect. It blows off in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, in the horizontal direction.
  • FIG. 8B is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the Coanda blade 32 is in the fifth posture.
  • the fifth posture of the Coanda blade 32 is more downward than the fourth posture.
  • the Coanda blade 32 in the fourth posture is drawn with a two-dot chain line
  • the Coanda blade 32 in the fifth posture is drawn with a solid line for comparison.
  • the Coanda airflow is reliably generated in the fourth posture and the posture of the wind direction adjusting blade 31 is not changed, the Coanda airflow is directed from the outer surface 32a of the Coanda blade 32 in the fifth posture, which is downward than the fourth posture. It is clear that it does not peel.
  • it can be achieved by selecting the fourth Coanda angle or the fifth Coanda angle with the cursor 52a in FIG. 7B.
  • the attitude of the wind direction adjusting vane 31 is different from each of the first attitude, the second attitude, and the fourth attitude of the Coanda vane 32.
  • the Coanda airflow by the Coanda blade 32 can be directed in any direction by a combination of the posture of the wind direction adjusting blade 31 and the posture of the Coanda blade 32.
  • the Coanda blade 32 adjusts the wind direction of the blown air when used, and is housed in the housing part 130 at a position deviated from the front of the air passage and the outlet of the blown air when not used.
  • control unit 40 controls the Coanda blade 32 so that the gap between the Coanda blade 32 and the upper forming wall 15a of the air outlet 15 is larger than when accommodated when the Coanda blade 32 is used, Air will pass through. As a result, condensation on the Coanda blade 32 is prevented.
  • the blown air can be deflected upward or blown by only the Coanda blade 32 without using a Coanda blade and a wind guide plate as in the conventional product.
  • the gap between the Coanda blade 32 and the upper forming wall 15 a of the blower outlet 15 becomes substantially zero at the time of accommodation, so that at least deterioration in design can be suppressed.
  • the amount of air passing through the gap between the Coanda blade 32 and the upper forming wall 15a of the outlet 15 is not so large, and most of the air is along the inner surface 32b of the Coanda blade 32. Flowing.
  • FIG. 9 is a side view of the vicinity of the accommodating portion 130 of the air conditioning indoor unit 10 according to the modification.
  • the protrusion 140 is provided on the wall surface that connects the lower portion of the accommodating portion 130 and the upper forming wall 15 a of the outlet 15.
  • the present invention is useful for a wall-mounted air conditioning indoor unit.

Abstract

Provided is an air-conditioning indoor unit that can prevent condensation at a Coanda vane (32). In the air-conditioning indoor unit (10), the Coanda vane (32) adjusts the airflow orientation of discharged air during use, and is stored at a position away from the front of a discharge opening and an airpath for discharged air when not in use. A control unit (40) controls the Coanda vane (32) in a manner so that the gap between the Coanda vane (32) and the wall forming the discharge opening becomes greater when the Coanda vane (32) is in use than during storage, causing air to pass across both surfaces of the Coanda vane (32). As a result, condensation at the Conada vane (32) is prevented.

Description

空調室内機Air conditioning indoor unit
 本発明は、空調室内機に関する。 The present invention relates to an air conditioning indoor unit.
 近年、コアンダ効果を利用して吹出空気を所定ゾーンへ到達させる空気調和機が検討されるようになった。例えば、特許文献1(特開2003-232531)に開示されている空気調和機は、吹出口の前面で且つ吹出空気の通り道に横ルーバが配置された構成である。吹出空気は、コアンダ効果によって横ルーバに沿った上向きのコアンダ気流となる。 In recent years, air conditioners that use the Coanda effect to make blown air reach a predetermined zone have been studied. For example, an air conditioner disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-232531) has a configuration in which a horizontal louver is disposed in front of the air outlet and in the passage of the air. The blown air becomes an upward Coanda airflow along the horizontal louver due to the Coanda effect.
 この上向きのコアンダ気流は、ケーシング前面部に沿って吸込口に引き込まれる、いわゆるショートサーキットを引き起こす要因となるので、可動の導風板を吹出口近傍に配置して、ケーシング前面部から離れる方向へ気流を導いている。しかしながら、導風板の片面に冷風が流れる状態が長く継続するとその反対側の面が結露するので、断熱材を貼付する必要がある。
 本願発明の課題は、導風板の結露を防止することができる空調室内機を提供することにある。
This upward Coanda airflow causes a so-called short circuit that is drawn into the suction port along the front surface of the casing. Therefore, a movable air guide plate is disposed in the vicinity of the air outlet and moves away from the front surface of the casing. Guides the airflow. However, if the state where the cold air flows on one side of the air guide plate continues for a long time, the opposite surface condenses, so it is necessary to apply a heat insulating material.
The subject of this invention is providing the air-conditioning indoor unit which can prevent dew condensation of a baffle plate.
 本発明の第1観点に係る空調室内機は、吸込口から取り入れられ本体ケーシング内で調和された後に吹出口から吹き出される吹出空気の流れを所定の方向へ変更可能な空調室内機であって、可動の導風板と、制御部とを備えている。導風板は、利用時に吹出空気の風向を調整し、非利用時に吹出空気の風路および吹出口の前方から外れた位置に収容される。制御部は、導風板の利用時に、導風板と吹出口の形成壁との隙間が収容時よりも大きくなるように導風板を制御する。
 この空調室内機では、例えば、見栄えを良くするために、導風板収容時の導風板と吹出口の形成壁との隙間を小さく設定している場合でも、利用時に吹出口の形成壁との隙間が収容時よりも大きくなるので、導風板の両面に空気が通過するようになる。その結果、導風板への結露が防止される。
An air conditioning indoor unit according to a first aspect of the present invention is an air conditioning indoor unit capable of changing a flow of blown air blown from a blower outlet after being taken in from a suction port and harmonized in a main body casing in a predetermined direction. A movable air guide plate and a control unit are provided. The wind guide plate adjusts the wind direction of the blown air during use, and is housed in a position away from the front of the air passage and the blowout port of the blown air when not used. The control unit controls the wind guide plate so that the gap between the wind guide plate and the formation wall of the blower outlet becomes larger when the wind guide plate is used than when the wind guide plate is housed.
In this air conditioning indoor unit, for example, in order to improve the appearance, even when the gap between the air guide plate and the air outlet forming wall is set small when the air guide plate is accommodated, Since the gap becomes larger than that during housing, air passes through both sides of the air guide plate. As a result, condensation on the air guide plate is prevented.
 本発明の第2観点に係る空調室内機は、第1観点に係る空調室内機であって、導風板と吹出口の形成壁との隙間は、収容時にほぼゼロとなる。
 この空調室内機では、導風板と吹出口の形成壁との隙間がある場合は、見栄えが悪くなる可能性があるので、その隙間がほぼゼロになることは、少なくとも意匠性の低下を抑制することができる。
The air conditioning indoor unit according to the second aspect of the present invention is the air conditioning indoor unit according to the first aspect, and the gap between the air guide plate and the blower outlet forming wall is substantially zero when accommodated.
In this air conditioning indoor unit, if there is a gap between the wind guide plate and the wall where the air outlet is formed, the appearance may be deteriorated, so that the gap becomes almost zero suppresses at least a decrease in designability. can do.
 本発明の第3観点に係る空調室内機は、第1観点に係る空調室内機であって、収容部が本体ケーシングの前面部に設けられている。本体ケーシングの前面部は、コアンダ効果の発生を防止する形状が形成されている。
 本体ケーシングの前面部上方に吸込口がある場合、導風板と吹出口の形成壁との隙間を通過した空気がケーシング前面部に沿ったコアンダ気流になって、吸込口に吸われてショートサーキットを引き起こす。しかし、この空調室内機では、本体ケーシングの前面部にコアンダ効果の発生を防止する形状が形成されているので、本体ケーシングの前面部に沿ったコアンダ気流の発生が防止され、ショートサーキットが防止される。
The air conditioning indoor unit according to the third aspect of the present invention is the air conditioning indoor unit according to the first aspect, and the housing portion is provided on the front surface portion of the main casing. The front portion of the main casing is formed with a shape that prevents the occurrence of the Coanda effect.
If there is a suction port above the front part of the main casing, the air that has passed through the gap between the air guide plate and the wall where the blower outlet is formed becomes a Coanda airflow along the front part of the casing, and is sucked into the suction port to create a short circuit. cause. However, in this air conditioning indoor unit, since the shape that prevents the occurrence of the Coanda effect is formed on the front surface portion of the main body casing, the generation of the Coanda airflow along the front surface portion of the main body casing is prevented, and a short circuit is prevented. The
 本発明の第4観点に係る空調室内機は、第1観点から第3観点のいずれか1つに係る空調室内機であって、導風板が、吹出口の近傍に設けられ、吹出空気を自己の下面に沿わせたコアンダ気流にするコアンダ羽根である。
 この空調室内機では、従来品のようにコアンダ羽根と導風板との組み合わせをしなくとも、吹出空気を上吹き、又は天井吹きに偏向することができる。さらに、コアンダ羽根の両面に空気が通過するようになるのでコアンダ羽根への結露も防止される。
An air conditioning indoor unit according to a fourth aspect of the present invention is the air conditioning indoor unit according to any one of the first to third aspects, wherein the air guide plate is provided in the vicinity of the outlet, It is a Coanda vane that makes a Coanda airflow along its lower surface.
In this air conditioning indoor unit, the blown air can be deflected upward or blown without a combination of the Coanda blades and the wind guide plate as in the conventional product. Furthermore, since air passes through both sides of the Coanda blade, condensation on the Coanda blade is also prevented.
 本発明の第5観点に係る空調室内機は、第1観点から第4観点のいずれか1つに係る空調室内機であって、本体ケーシングの天面に吸込口が設けられ、本体ケーシングの前面部には吸込口が設けられていない。
 この空調室内機では、本体ケーシングの前面部に吸込口が無いので、コアンダ羽根と本体ケーシングの前面部との隙間を通る風が吸込口に吸い込まれてショートサーキットになるという現象が抑制される。
An air conditioning indoor unit according to a fifth aspect of the present invention is the air conditioning indoor unit according to any one of the first to fourth aspects, wherein a suction port is provided on the top surface of the main body casing, and the front surface of the main body casing. There is no inlet in the part.
In this air conditioning indoor unit, since there is no suction port in the front portion of the main body casing, the phenomenon that the air passing through the gap between the Coanda blades and the front portion of the main body casing is sucked into the suction port and becomes a short circuit is suppressed.
 本発明の第1観点に係る空調室内機では、例えば、見栄えを良くするために、導風板収容時の導風板と吹出口の形成壁との隙間を小さく設定している場合でも、利用時に吹出口の形成壁との隙間が収容時よりも大きくなるので、導風板の両面に空気が通過するようになる。その結果、導風板への結露が防止される。
 本発明の第2観点に係る空調室内機では、導風板と吹出口の形成壁との隙間がある場合は、見栄えが悪くなる可能性があるので、その隙間がほぼゼロになることは、少なくとも意匠性の低下を抑制することができる。
 本発明の第3観点に係る空調室内機では、本体ケーシングの前面部にコアンダ効果の発生を防止する形状が形成されているので、本体ケーシングの前面部に沿ったコアンダ気流の発生が防止され、ショートサーキットが防止される。
In the air conditioning indoor unit according to the first aspect of the present invention, for example, in order to improve the appearance, even when the gap between the air guide plate and the blower outlet forming wall is set small when the air guide plate is accommodated, it is used. Sometimes, the gap between the air outlet and the forming wall becomes larger than that during housing, so that air passes through both sides of the air guide plate. As a result, condensation on the air guide plate is prevented.
In the air conditioning indoor unit according to the second aspect of the present invention, when there is a gap between the air guide plate and the formation wall of the outlet, the appearance may be deteriorated, so that the gap becomes almost zero, At least a decrease in design properties can be suppressed.
In the air conditioning indoor unit according to the third aspect of the present invention, since the shape that prevents the occurrence of the Coanda effect is formed on the front surface portion of the main body casing, the generation of the Coanda airflow along the front surface portion of the main body casing is prevented, Short circuit is prevented.
 本発明の第4観点に係る空調室内機では、従来品のようにコアンダ羽根と導風板との組み合わせをしなくとも、吹出空気を上吹き、又は天井吹きに偏向することができる。さらに、コアンダ羽根の両面に空気が通過するようになるのでコアンダ羽根への結露も防止される。
 本発明の第5観点に係る空調室内機では、コアンダ羽根と本体ケーシングの前面部との隙間を通る風が吸込口に吸い込まれてショートサーキットになるという現象が抑制される。
In the air conditioning indoor unit according to the fourth aspect of the present invention, the blown air can be deflected upward or blown without using a combination of the Coanda blade and the wind guide plate as in the conventional product. Furthermore, since air passes through both sides of the Coanda blade, condensation on the Coanda blade is also prevented.
In the air conditioning indoor unit pertaining to the fifth aspect of the present invention, the phenomenon that the wind passing through the gap between the Coanda blades and the front surface portion of the main body casing is sucked into the inlet and becomes a short circuit is suppressed.
本発明の一実施形態に係る運転停止時の空調室内機の断面図。Sectional drawing of the air-conditioning indoor unit at the time of the operation stop which concerns on one Embodiment of this invention. 運転時の空調室内機の断面図。A sectional view of an air-conditioning indoor unit at the time of operation. 吹出空気が通常前吹き時の風向調整羽根およびコアンダ羽根の側面図。The side view of the wind direction adjustment blade | wing and Coanda blade | wing at the time of blowing air normally normal front blowing. 吹出空気が通常前方下吹き時の風向調整羽根およびコアンダ羽根の側面図。The side view of the wind direction adjustment blade | wing and the Coanda blade | wing at the time of blowing air normally downward forward. コアンダ気流前方吹き時の風向調整羽根およびコアンダ羽根の側面図。The side view of the wind direction adjustment blade | wing at the time of Coanda airflow front blowing, and the Coanda blade | wing. コアンダ気流天井吹き時の風向調整羽根およびコアンダ羽根の側面図。The side view of the wind direction adjustment blade | wing at the time of Coanda airflow ceiling blowing, and a Coanda blade | wing. 下吹き時の風向調整羽根およびコアンダ羽根の側面図。The side view of the wind direction adjustment blade | wing at the time of a bottom blowing, and a Coanda blade | wing. 吹出空気の方向およびコアンダ気流の方向を示す概念図。The conceptual diagram which shows the direction of blowing air and the direction of Coanda airflow. 風向調整羽根とコアンダ羽根との開き角度の一例を表す概念図。The conceptual diagram showing an example of the opening angle of a wind direction adjustment blade | wing and a Coanda blade | wing. コアンダ気流前方吹き時のスクロールの終端Fの接線とコアンダ羽根とが成す内角と、スクロールの終端Fの接線と風向調整羽根とが成す内角との比較図。The comparison figure of the internal angle which the tangent of the scroll end F at the time of Coanda airflow front blowing and the Coanda blade | wing make, and the internal angle which the tangent of the scroll end F and the wind direction adjustment blade | wing make. コアンダ気流天井吹き時のスクロールの終端Fの接線とコアンダ羽根とが成す内角と、スクロールの終端Fの接線と風向調整羽根とが成す内角との比較図。The comparison figure of the interior angle which the tangent of the terminal F of a scroll at the time of Coanda airflow ceiling blowing and the Coanda blade | wing consist, and the internal angle which the tangent of the terminal F of a scroll and a wind direction adjustment blade | wing form. コアンダ羽根が第1姿勢をとるときのコアンダ気流の風向を示す空調室内機設置空間の側面図。The side view of the air-conditioning indoor unit installation space which shows the wind direction of Coanda airflow when a Coanda blade | wing takes a 1st attitude | position. コアンダ羽根が第2姿勢をとるときのコアンダ気流の風向を示す空調室内機設置空間の側面図。The side view of the air-conditioning indoor unit installation space which shows the wind direction of Coanda airflow when a Coanda blade | wing takes a 2nd attitude | position. コアンダ羽根が第4姿勢をとるときのコアンダ気流の風向を示す空調室内機設置空間の側面図。The side view of the air-conditioning indoor unit installation space which shows the wind direction of Coanda airflow when a Coanda blade | wing takes a 4th attitude | position. 制御部とリモコンとの関係を示すブロック図。The block diagram which shows the relationship between a control part and a remote control. 「コアンダ風向設定」メニューの下位メニューを表した表示部の正面図。The front view of the display part showing the low-order menu of the "Coanda wind direction setting" menu. コアンダ羽根が第3姿勢のときの風向調整羽根とコアンダ羽根の側面図。The side view of a wind direction adjustment blade | wing and a Coanda blade | wing when a Coanda blade | wing is a 3rd attitude | position. コアンダ羽根が第5姿勢のときの風向調整羽根とコアンダ羽根の側面図。The side view of a wind direction adjustment blade | wing and a Coanda blade | wing when a Coanda blade | wing is a 5th attitude | position. 変形例に係る空調室内機の収容部周辺の側面図。The side view of the accommodating part periphery of the air-conditioning indoor unit which concerns on a modification.
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 (1)空調室内機10の構成
 図1は、本発明の一実施形態に係る運転停止時の空調室内機10の断面図である。また、図2は、運転時の空調室内機10の断面図である。図1及び図2において、空調室内機10は壁掛けタイプであり、本体ケーシング11、室内熱交換器13、室内ファン14、底フレーム16、及び制御部40が搭載されている。
 本体ケーシング11は、天面部11a、前面パネル11b、背面板11c及び下部水平板11dを有し、内部に室内熱交換器13、室内ファン14、底フレーム16、及び制御部40を収納している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.
(1) Configuration of Air Conditioning Indoor Unit 10 FIG. 1 is a cross-sectional view of the air conditioning indoor unit 10 when operation is stopped according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the air conditioning indoor unit 10 during operation. 1 and 2, the air conditioning indoor unit 10 is a wall-hanging type, and a main body casing 11, an indoor heat exchanger 13, an indoor fan 14, a bottom frame 16, and a control unit 40 are mounted thereon.
The main body casing 11 has a top surface portion 11a, a front panel 11b, a back plate 11c, and a lower horizontal plate 11d, and houses an indoor heat exchanger 13, an indoor fan 14, a bottom frame 16, and a control unit 40 therein. .
 天面部11aは、本体ケーシング11の上部に位置し、天面部11aの前部には、吸込口(図示せず)が設けられている。
 前面パネル11bは室内機の前面部を構成しており、吸込口がないフラットな形状を成している。また、前面パネル11bは、その上端が天面部11aに回動自在に支持され、ヒンジ式に動作することができる。
 室内熱交換器13及び室内ファン14は、底フレーム16に取り付けられている。室内熱交換器13は、通過する空気との間で熱交換を行う。また、室内熱交換器13は、側面視において両端が下方に向いて屈曲する逆V字状の形状を成し、その下方に室内ファン14が位置する。室内ファン14は、クロスフローファンであり、室内から取り込んだ空気を、室内熱交換器13に当てて通過させた後、室内に吹き出す。
The top surface part 11a is located in the upper part of the main body casing 11, and the inlet (not shown) is provided in the front part of the top surface part 11a.
The front panel 11b constitutes the front part of the indoor unit, and has a flat shape without a suction port. Further, the upper end of the front panel 11b is rotatably supported by the top surface portion 11a, and can operate in a hinged manner.
The indoor heat exchanger 13 and the indoor fan 14 are attached to the bottom frame 16. The indoor heat exchanger 13 exchanges heat with the passing air. In addition, the indoor heat exchanger 13 has an inverted V-shape in which both ends are bent downward in a side view, and the indoor fan 14 is located below the indoor heat exchanger 13. The indoor fan 14 is a cross-flow fan, blows air taken in from the room against the indoor heat exchanger 13 and then blows it into the room.
 本体ケーシング11の下部には、吹出口15が設けられている。吹出口15には、吹出口15から吹き出される吹出空気の方向を変更する風向調整羽根31が回動自在に取り付けられている。風向調整羽根31は、モータ(図示せず)によって駆動し、吹出空気の方向を変更するだけでなく、吹出口15を開閉することもできる。風向調整羽根31は、傾斜角が異なる複数の姿勢をとることが可能である。
 また、吹出口15の近傍にはコアンダ羽根32が設けられている。コアンダ羽根32は、モータ(図示せず)によって前後方向に傾斜した姿勢をとることが可能であり、運転停止時に前面パネル11bに設けられた収容部130に収容される。コアンダ羽根32は、傾斜角が異なる複数の姿勢をとることが可能である。
 また、吹出口15は、吹出流路18によって本体ケーシング11の内部と繋がっている。吹出流路18は、吹出口15から底フレーム16のスクロール17に沿って形成されている。
An air outlet 15 is provided at the lower part of the main body casing 11. A wind direction adjusting blade 31 that changes the direction of the blown air blown from the blower outlet 15 is rotatably attached to the blower outlet 15. The wind direction adjusting blade 31 is driven by a motor (not shown) and can change the direction of the blown air, and can also open and close the blowout port 15. The wind direction adjusting blade 31 can take a plurality of postures having different inclination angles.
A Coanda blade 32 is provided in the vicinity of the air outlet 15. The Coanda blade 32 can take a posture inclined in the front-rear direction by a motor (not shown), and is accommodated in the accommodating portion 130 provided in the front panel 11b when the operation is stopped. The Coanda blade 32 can take a plurality of postures having different inclination angles.
Further, the air outlet 15 is connected to the inside of the main body casing 11 by the air outlet channel 18. The blowout channel 18 is formed along the scroll 17 of the bottom frame 16 from the blowout port 15.
 室内空気は、室内ファン14の稼動によって吸込口、室内熱交換器13を経て室内ファン14に吸い込まれ、室内ファン14から吹出流路18を経て吹出口15から吹き出される。
 制御部40は、本体ケーシング11を前面パネル11bから視て室内熱交換器13及び室内ファン14の右側方に位置しており、室内ファン14の回転数制御、風向調整羽根31及びコアンダ羽根32の動作制御を行う。
 (2)詳細構成
 (2-1)前面パネル11b
 図1に示すように、前面パネル11bは本体ケーシング11の上部前方からなだらかな円弧曲面を描きながら下部水平板11dの前方エッジに向かって延びている。前面パネル11bの下部に本体ケーシング11の内側に向かって窪んだ領域がある。この領域の窪み深さはコアンダ羽根32の厚み寸法に合うように設定されており、コアンダ羽根32が収容される収容部130を成している。収容部130の表面もなだらかな円弧曲面である。
The indoor air is sucked into the indoor fan 14 through the suction port and the indoor heat exchanger 13 by the operation of the indoor fan 14, and blown out from the blower outlet 15 through the blowout passage 18 from the indoor fan 14.
The control unit 40 is located on the right side of the indoor heat exchanger 13 and the indoor fan 14 when the main body casing 11 is viewed from the front panel 11b, and controls the rotational speed of the indoor fan 14, the wind direction adjusting blade 31 and the Coanda blade 32. Perform motion control.
(2) Detailed configuration (2-1) Front panel 11b
As shown in FIG. 1, the front panel 11 b extends toward the front edge of the lower horizontal plate 11 d while drawing a gentle arc curved surface from the upper front of the main body casing 11. There is a region recessed toward the inside of the main body casing 11 at the bottom of the front panel 11b. The depth of the depression in this region is set so as to match the thickness dimension of the Coanda blade 32, and constitutes a housing portion 130 in which the Coanda blade 32 is housed. The surface of the accommodating part 130 is also a gentle circular curved surface.
 (2-2)吹出口15
 図1に示すように、吹出口15は、本体ケーシング11の下部に形成されており、横方向(図1紙面と直交する方向)を長辺とする長方形の開口である。吹出口15の下端は下部水平板11dの前方エッジに接しており、吹出口15の下端と上端とを結ぶ仮想面は前方上向きに傾斜している。
 (2-3)スクロール17
 スクロール17は、室内ファン14に対峙するように湾曲した隔壁であり、底フレーム16の一部である。スクロール17の終端Fは、吹出口15の周縁近傍まで到達している。吹出流路18を通る空気は、スクロール17に沿って進み、スクロール17の終端Fの接線方向に送られる。したがって、吹出口15に風向調整羽根31がなければ、吹出口15から吹き出される吹出空気の風向は、スクロール17の終端Fの接線L0に概ね沿った方向である。
(2-2) Air outlet 15
As shown in FIG. 1, the blower outlet 15 is formed in the lower part of the main body casing 11, and is a rectangular opening which makes a horizontal direction (direction orthogonal to the paper surface of FIG. 1) a long side. The lower end of the blower outlet 15 is in contact with the front edge of the lower horizontal plate 11d, and the virtual plane connecting the lower end and the upper end of the blower outlet 15 is inclined forward and upward.
(2-3) Scroll 17
The scroll 17 is a partition wall curved so as to face the indoor fan 14 and is a part of the bottom frame 16. The end F of the scroll 17 reaches the vicinity of the periphery of the air outlet 15. The air passing through the blowout flow path 18 travels along the scroll 17 and is sent in the tangential direction of the end F of the scroll 17. Therefore, if there is no wind direction adjusting blade 31 at the air outlet 15, the air direction of the air blown out from the air outlet 15 is a direction substantially along the tangent L 0 of the terminal end F of the scroll 17.
 (2-4)垂直風向調整板20
 垂直風向調整板20は、図1及び図2に示すように、複数の羽根片201と、複数の羽根片201を連結する連結棒203を有している。また、垂直風向調整板20は、吹出流路18において、風向調整羽根31よりも室内ファン14近傍に配置されている。
 複数枚の羽根片201は、連結棒203が吹出口15の長手方向に沿って水平往復移動することによって、その長手方向に対して垂直な状態を中心に左右に揺動する。なお、連結棒203は、モータ(図示せず)によって水平往復移動する。
 (2-5)風向調整羽根31
 風向調整羽根31は、吹出口15を塞ぐことができる程度の面積を有している。風向調整羽根31が吹出口15を閉じた状態において、その外側面31aは前面パネル11bの曲面の延長上にあるような外側に凸のなだらかな円弧曲面に仕上げられている。また、風向調整羽根31の内側面31b(図2参照)も、外面にほぼ平行な円弧曲面を成している。
(2-4) Vertical wind direction adjusting plate 20
As shown in FIGS. 1 and 2, the vertical wind direction adjusting plate 20 includes a plurality of blade pieces 201 and a connecting rod 203 that connects the plurality of blade pieces 201. Further, the vertical air direction adjusting plate 20 is disposed nearer the indoor fan 14 than the air direction adjusting blades 31 in the blowout flow path 18.
The plurality of blade pieces 201 swing left and right around a state perpendicular to the longitudinal direction as the connecting rod 203 horizontally reciprocates along the longitudinal direction of the outlet 15. The connecting rod 203 is horizontally reciprocated by a motor (not shown).
(2-5) Wind direction adjusting blade 31
The wind direction adjusting blade 31 has an area that can block the air outlet 15. In the state where the airflow direction adjusting blade 31 closes the air outlet 15, the outer side surface 31 a is finished to have a gentle circular curved surface that protrudes outwardly as if it is an extension of the curved surface of the front panel 11 b. Further, the inner side surface 31b (see FIG. 2) of the wind direction adjusting blade 31 also forms an arcuate curved surface substantially parallel to the outer surface.
 風向調整羽根31は、下端部に回動軸311を有している。回動軸311は、吹出口15の下端近傍で、本体ケーシング11に固定されているステッピングモータ(図示せず)の回転軸に連結されている。
 回動軸311が図1正面視反時計方向に回動することによって、風向調整羽根31の上端が吹出口15の上端側から遠ざかるように動作して吹出口15を開ける。逆に、回動軸311が図1正面視時計方向に回動することによって、風向調整羽根31の上端が吹出口15の上端側へ近づくように動作して吹出口15を閉じる。
 風向調整羽根31が吹出口15を開けている状態において、吹出口15から吹き出された吹出空気は、風向調整羽根31の内側面31bに概ね沿って流れる。すなわち、スクロール17の終端Fの接線方向に概ね沿って吹き出された吹出空気は、その風向が風向調整羽根31によってやや上向きに変更される。
The wind direction adjusting blade 31 has a rotation shaft 311 at the lower end. The rotating shaft 311 is connected to the rotating shaft of a stepping motor (not shown) fixed to the main body casing 11 in the vicinity of the lower end of the air outlet 15.
The rotation shaft 311 rotates counterclockwise when viewed from the front in FIG. 1, so that the upper end of the airflow direction adjusting blade 31 moves away from the upper end side of the outlet 15 to open the outlet 15. On the contrary, when the rotation shaft 311 rotates in the clockwise direction in FIG. 1, the upper end of the wind direction adjusting blade 31 operates so as to approach the upper end side of the outlet 15 to close the outlet 15.
In a state where the airflow direction adjusting blade 31 opens the air outlet 15, the air blown out from the air outlet 15 flows along the inner side surface 31 b of the airflow direction adjusting blade 31. That is, the blown air blown out substantially along the tangential direction of the terminal end F of the scroll 17 is changed slightly upward by the wind direction adjusting blade 31.
 (2-6)コアンダ羽根32
 コアンダ羽根32は、空調運転が停止している間や後述する通常吹出モードでの運転では収容部130に収納されている。コアンダ羽根32は回動することによって収容部130から離れる。コアンダ羽根32の回動軸321は、収容部130の下端近傍で且つ本体ケーシング11の内側の位置(吹出流路18上壁の上方の位置)に設けられており、コアンダ羽根32の下端部と回動軸321とは所定の間隔を保って連結されている。それゆえ、回動軸321が回動してコアンダ羽根32がケーシング前面部の収容部130から離れるほど、コアンダ羽根32の下端の高さ位置は低くなるように回転する。また、コアンダ羽根32が回転して開いたときの傾斜はケーシング前面部の傾斜よりも緩やかである。
 本実施形態では、収容部130は、送風路の外に設けられており、収容時にコアンダ羽根32の全体が送風路の外側に収容される。かかる構造に代えて、コアンダ羽根32の一部のみが送風路の外側に収容され、残りが送風路内(たとえば、送風経路の上壁部)に収容されるようにしてもよい。
(2-6) Coanda blade 32
The Coanda blade 32 is stored in the storage unit 130 while the air-conditioning operation is stopped or in an operation in the normal blowing mode described later. The Coanda blade 32 moves away from the accommodating portion 130 by rotating. The rotation shaft 321 of the Coanda blade 32 is provided in the vicinity of the lower end of the housing portion 130 and inside the main body casing 11 (a position above the upper wall of the outlet flow passage 18). The rotating shaft 321 is connected with a predetermined interval. Therefore, as the rotation shaft 321 rotates and the Coanda blade 32 moves away from the housing portion 130 on the front surface of the casing, the height position of the lower end of the Coanda blade 32 rotates so as to become lower. Further, the inclination when the Coanda blade 32 rotates and opens is gentler than the inclination of the casing front surface portion.
In the present embodiment, the accommodating portion 130 is provided outside the air passage, and the entire Coanda blade 32 is accommodated outside the air passage when being accommodated. Instead of such a structure, only a part of the Coanda blade 32 may be accommodated outside the air passage, and the rest may be accommodated in the air passage (for example, the upper wall portion of the air passage).
 また、回動軸321が図1正面視反時計方向に回動することによって、コアンダ羽根32の上端および下端ともに円弧を描きながら収容部130から離れるが、そのとき、上端と吹出口より上方のケーシング前面部の収容部130との最短距離は、下端と収容部130との最短距離より大きい。すなわち、コアンダ羽根32は前方に行くにしたがって前記ケーシング前面部から離れるような姿勢に制御される。そして、回動軸321が図1正面視時計方向に回動することによって、コアンダ羽根32は収容部130に近づき、最終的に収容部130に収容される。コアンダ羽根32の運転状態の姿勢としては、収容部130に収納された状態、回転して前方上向きに傾斜した姿勢、さらに回転してほぼ水平な姿勢、さらに回転して前方下向きに傾斜した姿勢がある。
 コアンダ羽根32が収容部130に収容された状態で、コアンダ羽根32の外側面32aは前面パネル11bのなだらかな円弧曲面の延長上にあるような外側に凸のなだらかな円弧曲面に仕上げられている。また、コアンダ羽根32の内側面32bは、収容部130の表面に沿うような円弧曲面に仕上げられている。
Further, when the rotating shaft 321 rotates counterclockwise in the front view of FIG. 1, the upper and lower ends of the Coanda blades 32 are separated from the housing portion 130 while drawing an arc. The shortest distance between the casing front portion and the accommodating portion 130 is larger than the shortest distance between the lower end and the accommodating portion 130. That is, the Coanda blade 32 is controlled so as to move away from the front surface of the casing as it goes forward. Then, when the rotation shaft 321 rotates in the clockwise direction in the front view of FIG. 1, the Coanda blade 32 approaches the storage unit 130 and is finally stored in the storage unit 130. The operating state of the Coanda blade 32 includes a state where the Coanda blade 32 is housed in the storage unit 130, a posture rotated and tilted forward and upward, a posture rotated and substantially horizontal, and a posture rotated and tilted forward and downward. is there.
In a state where the Coanda blade 32 is housed in the housing portion 130, the outer surface 32a of the Coanda blade 32 is finished to a gentle circular curved surface that protrudes outwardly as if it is an extension of the gentle circular curved surface of the front panel 11b. . Further, the inner side surface 32 b of the Coanda blade 32 is finished to have an arcuate curved surface that follows the surface of the housing portion 130.
 また、コアンダ羽根32の長手方向の寸法は、風向調整羽根31の長手方向の寸法以上となるように設定されている。この理由は風向調整羽根31で風向調節された吹出空気すべてをコアンダ羽根32で受けるためであり、その目的はコアンダ羽根32の側方からの吹出空気がショートサーキットすることを防止することである。
 (3)吹出空気の方向制御
 本実施形態の空調室内機は、吹出空気の方向を制御する手段として、風向調整羽根31のみを回動させて吹出空気の方向を調整する通常吹出モードと、風向調整羽根31及びコアンダ羽根32を回動させてコアンダ効果によって吹出空気をコアンダ羽根32の外側面32aに沿わせたコアンダ気流にするコアンダ効果利用モードと、風向調整羽根31及びコアンダ羽根32それぞれの先端を前方下向きにして吹出空気を下方に導く下吹きモードを有している。
Further, the dimension in the longitudinal direction of the Coanda blade 32 is set to be equal to or larger than the dimension in the longitudinal direction of the wind direction adjusting blade 31. The reason for this is to receive all of the blown air whose wind direction has been adjusted by the wind direction adjusting blade 31 by the Coanda blade 32, and its purpose is to prevent the blown air from the side of the Coanda blade 32 from short-circuiting.
(3) Direction control of blown air The air-conditioning indoor unit of the present embodiment, as means for controlling the direction of blown air, is a normal blow mode that adjusts the direction of blown air by rotating only the wind direction adjusting blade 31 and the wind direction. The adjustment blade 31 and the Coanda blade 32 are rotated so that the Coanda effect uses the Coanda effect to make the blown air flow along the outer surface 32a of the Coanda blade 32, and the tips of the wind direction adjustment blade 31 and the Coanda blade 32, respectively. Has a lower blowing mode in which the air is directed downward and the blowing air is directed downward.
 風向調整羽根31及びコアンダ羽根32は、上記各モードにおいて空気の吹出方向ごとに姿勢が変化するので、各姿勢について図3A~図3Eを参照しながら説明する。なお、吹出方向の選択は、ユーザーがリモコン等を介して行なうことができるものとする。また、モードの変更や吹出方向は自動的に変更されるように制御することも可能である。
 (3-1)通常吹出モード
 通常吹出モードは、風向調整羽根31のみを回動させて吹出空気の方向を調整するモードであり、「通常前吹き」と「通常前方下吹き」とを含む。
 (3-1-1)通常前吹き
 図3Aは、吹出空気が通常前吹き時の風向調整羽根31及びコアンダ羽根32の側面図である。図3Aにおいて、ユーザーが「通常前吹き」を選択したとき、制御部40は風向調整羽根31の内側面31bが略水平になる位置まで風向調整羽根31を回動させる。なお、本願実施形態のように風向調整羽根31の内側面31bが円弧曲面をなしている場合は、内側面31bの前方端E1における接線が略水平になるまで風向調整羽根31を回動させる。その結果、吹出空気は、前吹き状態となる。
Since the postures of the wind direction adjusting blade 31 and the Coanda blade 32 change for each air blowing direction in each of the above modes, each posture will be described with reference to FIGS. 3A to 3E. It should be noted that the blowing direction can be selected by the user via a remote controller or the like. It is also possible to control the mode change and the blowing direction to be automatically changed.
(3-1) Normal blowout mode The normal blowout mode is a mode in which only the wind direction adjusting blade 31 is rotated to adjust the direction of the blown air, and includes “normal forward blow” and “normal forward lower blow”.
(3-1-1) Normal Front Blow FIG. 3A is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the blown air is normally forward blown. In FIG. 3A, when the user selects “normal blow”, the control unit 40 rotates the wind direction adjusting blade 31 to a position where the inner side surface 31b of the wind direction adjusting blade 31 becomes substantially horizontal. In addition, when the inner side surface 31b of the wind direction adjustment blade | wing 31 has comprised the circular arc curved surface like this embodiment, the wind direction adjustment blade | wing 31 is rotated until the tangent in the front end E1 of the inner side surface 31b becomes substantially horizontal. As a result, the blown air is in a front blowing state.
 なお、コアンダ羽根32は収容部130に収容されているので、コアンダ羽根32と吹出口15の上部形成壁15aとの間に空気が通過できるような隙間は生じないので、空気がコアンダ羽根32の内側面32b側を通過することができない。
 (3-1-2)通常前方下吹き
 図3Bは、吹出空気が通常前方下吹き時の風向調整羽根31及びコアンダ羽根32の側面図である。図3Bにおいて、ユーザーは吹出方向を「通常前吹き」よりも下方に向けたいとき、「通常前方下吹き」を選択すればよい。
 このとき、制御部40は、風向調整羽根31の内側面31bの前方端E1における接線が水平よりも前下がりになるまで風向調整羽根31を回動させる。その結果、吹出空気は、前方下吹き状態となる。
In addition, since the Coanda blade | wing 32 is accommodated in the accommodating part 130, since the clearance gap through which air can pass between the Coanda blade | wing 32 and the upper formation wall 15a of the blower outlet 15 does not arise, air is not in the Coanda blade | wing 32. It cannot pass through the inner side surface 32b.
(3-1-2) Normal Front Down Blow FIG. 3B is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the blown air is normally forward down blown. In FIG. 3B, when the user wants to direct the blowing direction downward from “normal forward blowing”, the user may select “normal forward lower blowing”.
At this time, the control unit 40 rotates the wind direction adjusting blade 31 until the tangent at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 becomes lower than the horizontal. As a result, the blown air is in a front lower blowing state.
 なお、コアンダ羽根32は収容部130に収容されているので、コアンダ羽根32と吹出口15の上部形成壁15aとの間に空気が通過できるような隙間は生じないので、空気がコアンダ羽根32の内側面32b側を通過することができない。
 (3-2)コアンダ効果利用モード
 コアンダ(効果)とは、気体や液体の流れのそばに壁があると、流れの方向と壁の方向とが異なっていても、壁面に沿った方向に流れようとする現象である(朝倉書店「法則の辞典」)。コアンダ利用モードは、このコアンダ効果を利用した「コアンダ気流前方吹き」および「コアンダ気流天井吹き」を含む。
 また、吹出空気の方向およびコアンダ気流の方向については、基準位置の取り方次第で定義の方法が異なるので、以下に一例を示す、但し、それに限定されるものではない。図4Aは、吹出空気の方向およびコアンダ気流の方向を示す概念図である。図4Aにおいて、コアンダ羽根32の外側面32a側にコアンダ効果を生じさせるには、風向調整羽根31によって変更された吹出空気の方向(D1)の傾斜がコアンダ羽根32の姿勢(傾斜)に近くなる必要がある。両者が離れすぎているとコアンダ効果が生じない。そのため、本コアンダ効果利用モードでは、コアンダ羽根32と風向調整羽根31とが所定の開き角度以下になる必要があり、両調整板(31、32)がその範囲内を成すようにして、上記の関係が成立するようにしている。これにより、図4Aに示すように、吹出空気の風向が風向調整羽根31によってD1に変更された後、さらにコアンダ効果によりD2に変更される。
In addition, since the Coanda blade | wing 32 is accommodated in the accommodating part 130, since the clearance gap through which air can pass between the Coanda blade | wing 32 and the upper formation wall 15a of the blower outlet 15 does not arise, air is not in the Coanda blade | wing 32. It cannot pass through the inner side surface 32b.
(3-2) Coanda effect utilization mode Coanda (effect) means that if there is a wall near the flow of gas or liquid, it flows in the direction along the wall surface even if the direction of the flow is different from the direction of the wall. It is a phenomenon to try (Asakura Shoten "Dictionary of Law"). The Coanda utilization mode includes “Coanda airflow front blowing” and “Coanda airflow ceiling blowing” using this Coanda effect.
Further, the direction of the blown air and the direction of the Coanda airflow differ depending on the method of defining the reference position, so an example is shown below, but is not limited thereto. FIG. 4A is a conceptual diagram showing the direction of blown air and the direction of Coanda airflow. In FIG. 4A, in order to produce the Coanda effect on the outer surface 32a side of the Coanda blade 32, the inclination of the direction (D1) of the blown air changed by the wind direction adjusting blade 31 becomes close to the posture (inclination) of the Coanda blade 32. There is a need. If they are too far apart, the Coanda effect will not occur. Therefore, in this Coanda effect utilization mode, the Coanda blade 32 and the wind direction adjusting blade 31 need to be equal to or less than a predetermined opening angle, and both the adjustment plates (31, 32) are within the range, and The relationship is established. Thereby, as shown in FIG. 4A, after the wind direction of the blown air is changed to D1 by the wind direction adjusting blade 31, it is further changed to D2 by the Coanda effect.
 また、本実施形態のコアンダ効果利用モードでは、コアンダ羽根32が風向調整羽根31の前方(吹出の下流側)かつ上方の位置あるのが好ましい。
 また、風向調整羽根31とコアンダ羽根32との開き角度については、基準位置の取り方次第で定義の方法が異なるので、以下に一例を示す。但し、それに限定されるものではない。図4Bは、風向調整羽根31とコアンダ羽根32との開き角度の一例を表す概念図である。図4Bにおいて、風向調整羽根31の内側面31bの前後端を結ぶ直線と水平線との角度を風向調整羽根31の傾斜角θ1とし、コアンダ羽根32の外側面32aの前後端を結ぶ直線と水平線との角度をコアンダ羽根32の傾斜角θ2としたとき、風向調整羽根31とコアンダ羽根32との開き角度θ=θ2-θ1である。なお、θ1及びθ2は絶対値ではなく、図4B正面視において水平線よりも下方となる場合は負の値である。
Moreover, in the Coanda effect utilization mode of this embodiment, it is preferable that the Coanda blade | wing 32 exists in the front (downstream side of blowing) and the upper position of the wind direction adjustment blade | wing 31. FIG.
The opening angle between the wind direction adjusting blade 31 and the Coanda blade 32 is defined differently depending on how to set the reference position, and an example is shown below. However, the present invention is not limited to this. FIG. 4B is a conceptual diagram illustrating an example of an opening angle between the wind direction adjusting blade 31 and the Coanda blade 32. 4B, the angle between the straight line connecting the front and rear ends of the inner surface 31b of the wind direction adjusting blade 31 and the horizontal line is the inclination angle θ1 of the wind direction adjusting blade 31, and the straight line connecting the front and rear ends of the outer surface 32a of the Coanda blade 32 and the horizontal line Is the inclination angle θ2 of the Coanda blade 32, the opening angle θ between the wind direction adjusting blade 31 and the Coanda blade 32 is θ = θ2-θ1. Note that θ1 and θ2 are not absolute values, and are negative values when they are below the horizontal line in the front view of FIG. 4B.
 「コアンダ気流前方吹き」および「コアンダ気流天井吹き」ともに、風向調整羽根31およびコアンダ羽根32は、スクロール17の終端Fの接線とコアンダ羽根32とが成す内角が、スクロール17の終端Fの接線と風向調整羽根31とが成す内角よりも大きい、という条件を満たす姿勢をとるのが好ましい。
 なお、内角については、図5A(コアンダ気流前方吹き時のスクロール17の終端Fの接線L0とコアンダ羽根32とが成す内角R2と、スクロール17の終端Fの接線L0と風向調整羽根31とが成す内角R1との比較図)、および図5B(コアンダ気流天井吹き時のスクロール17の終端Fの接線L0とコアンダ羽根32とが成す内角R2と、スクロール17の終端Fの接線L0と風向調整羽根31とが成す内角R1との比較図)を参照のこと。
In both “Coanda airflow forward blowing” and “Coanda airflow ceiling blowing”, the wind direction adjusting blade 31 and the Coanda blade 32 have an inner angle formed by the tangent of the end F of the scroll 17 and the Coanda blade 32 and the tangent of the end F of the scroll 17. It is preferable to take a posture that satisfies the condition that it is larger than the inner angle formed by the wind direction adjusting blade 31.
5A (the inner angle R2 formed by the tangent line L0 of the terminal end F of the scroll 17 and the Coanda blade 32 when the Coanda airflow is blown forward and the tangent line L0 of the terminal end F of the scroll 17 and the airflow direction adjusting blade 31 are formed. Comparison diagram with inner angle R1) and FIG. 5B (inner angle R2 formed between tangent L0 of end F of scroll 17 and Coanda blade 32 when Coanda airflow ceiling is blown, tangent L0 of end F of scroll 17 and wind direction adjusting blade 31) (Refer to the comparison figure with the internal angle R1).
 また、図5Bに示すように、コアンダ効果利用モードにおけるコアンダ羽根32では、コアンダ羽根32の先端部が水平より前方上向で、吹出口15よりも外側上方に位置する。その結果、コアンダ気流はより遠方に到達する上に、コアンダ羽根32の上側において、風がスクロール17に沿って斜め下方に直進することが抑制されるため、コアンダ気流の上方への誘導が阻害されにくくなる。
 また、コアンダ羽根32の後端部の高さ位置は運転停止時よりも低くなっているので、上流側でのコアンダ効果によるコアンダ気流が生成し易い。
 (3-2-1)コアンダ気流前方吹き
 図3Cは、コアンダ気流前方吹き時の風向調整羽根31及びコアンダ羽根32の側面図である。図3Cにおいて、「コアンダ気流前方吹き」が選択されたとき、制御部40は、風向調整羽根31の内側面31bの前方端E1における接線L1が水平よりも前下がりになるまで風向調整羽根31を回動させる。
Further, as shown in FIG. 5B, in the Coanda blade 32 in the Coanda effect utilization mode, the tip portion of the Coanda blade 32 is located forward and upward from the horizontal, and is located outward and upward from the air outlet 15. As a result, the Coanda airflow reaches farther, and further, the wind is restrained from moving diagonally downward along the scroll 17 on the upper side of the Coanda blade 32, so that the upward guidance of the Coanda airflow is inhibited. It becomes difficult.
In addition, since the height position of the rear end portion of the Coanda blade 32 is lower than when the operation is stopped, a Coanda airflow is easily generated due to the Coanda effect on the upstream side.
(3-2-1) Coanda Airflow Forward Blow FIG. 3C is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 during the Coanda airflow forward blow. In FIG. 3C, when “Coanda airflow forward blowing” is selected, the control unit 40 moves the airflow direction adjustment blade 31 until the tangent L1 at the front end E1 of the inner side surface 31b of the airflow direction adjustment blade 31 becomes lower than the horizontal. Rotate.
 次に、制御部40は、コアンダ羽根32の外側面32aが略水平になる位置までコアンダ羽根32を回動させる。なお、本願実施形態のようにコアンダ羽根32の外側面32aが円弧曲面をなしている場合は、外側面32aの前方端E2における接線L2が略水平になるまでコアンダ羽根32を回動させる。つまり、図5Aに示すように、接線L0と接線L2とが成す内角R2は、接線L0と接線L1とが成す内角R1よりも大きくなる。
 風向調整羽根31で前方下吹きに調整された吹出空気は、コアンダ効果によってコアンダ羽根32の外側面32aに付着した流れとなり、この外側面32aに沿ったコアンダ気流に変わる。
 したがって、風向調整羽根31の前方端E1における接線L1方向が前方下吹きであっても、コアンダ羽根32の前方端E2における接線L2方向が水平であるので、吹出空気は、コアンダ効果によってコアンダ羽根32の外側面32aの前方端E2における接線L2方向、すなわち水平方向に吹き出される。
Next, the control unit 40 rotates the Coanda blade 32 until the outer surface 32a of the Coanda blade 32 becomes substantially horizontal. When the outer side surface 32a of the Coanda blade 32 has an arcuate curved surface as in the present embodiment, the Coanda blade 32 is rotated until the tangent L2 at the front end E2 of the outer surface 32a becomes substantially horizontal. That is, as shown in FIG. 5A, the inner angle R2 formed by the tangent line L0 and the tangent line L2 is larger than the inner angle R1 formed by the tangent line L0 and the tangent line L1.
The blown air adjusted to the front lower blow by the wind direction adjusting blade 31 becomes a flow attached to the outer surface 32a of the Coanda blade 32 by the Coanda effect, and changes to a Coanda airflow along the outer surface 32a.
Therefore, even if the tangential L1 direction at the front end E1 of the airflow direction adjusting blade 31 is the front lower blowing, the tangential L2 direction at the front end E2 of the Coanda blade 32 is horizontal, so that the blown air is blown from the Coanda blade 32 by the Coanda effect. It blows off in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, in the horizontal direction.
 このように、コアンダ羽根32がケーシング前面部から離れて傾斜が緩やかになり、吹出空気が前面パネル11bよりも前方でコアンダ効果を受け易くなる。その結果、風向調整羽根31で風向調節された吹出空気が前方下吹きであっても、コアンダ効果によって水平吹きの空気となる。これは、風向調整羽根31の通風抵抗による圧損が抑制されつつ風向が変更されることを意味する。
 なお、図3Cに示すようにコアンダ羽根32と吹出口15の上部形成壁15aとの隙間は収容時よりも大きくなっており、コアンダ羽根32の内側面32b側にも空気が通過する。それゆえ、コアンダ羽根32への結露が防止される。
 (3-2-2)コアンダ気流天井吹き
 図3Dは、コアンダ気流天井吹き時の風向調整羽根31及びコアンダ羽根32の側面図である。図3Dにおいて、「コアンダ気流天井吹き」が選択されたとき、制御部40は風向調整羽根31の内側面31bの前方端E1における接線L1が水平になるまで風向調整羽根31を回動させる。
Thus, the Coanda blades 32 are separated from the casing front surface and the inclination becomes gentle, and the blown air becomes more susceptible to the Coanda effect in front of the front panel 11b. As a result, even if the blown air whose wind direction is adjusted by the wind direction adjusting blade 31 is the front lower blow, it becomes horizontal blown air due to the Coanda effect. This means that the wind direction is changed while the pressure loss due to the ventilation resistance of the wind direction adjusting blade 31 is suppressed.
As shown in FIG. 3C, the gap between the Coanda blade 32 and the upper forming wall 15 a of the blower outlet 15 is larger than that during housing, and air also passes through the inner surface 32 b of the Coanda blade 32. Therefore, condensation on the Coanda blade 32 is prevented.
(3-2-2) Coanda Airflow Ceiling Blow FIG. 3D is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the Coanda airflow ceiling is blown. In FIG. 3D, when “Coanda airflow ceiling blowing” is selected, the control unit 40 rotates the airflow direction adjusting blade 31 until the tangent L1 at the front end E1 of the inner side surface 31b of the airflow direction adjusting blade 31 becomes horizontal.
 次に、制御部40は、外側面32aの前方端E2における接線L2が前方上向きとなるまでコアンダ羽根32を回動させる。つまり、図5Bに示すように、接線L0と接線L2とが成す内角R2は、接線L0と接線L1とが成す内角R1よりも大きくなる。風向調整羽根31で水平吹きに調整された吹出空気は、コアンダ効果によってコアンダ羽根32の外側面32aに付着した流れとなり、この外側面32aに沿ったコアンダ気流に変わる。
 したがって、風向調整羽根31の前方端E1における接線L1方向が前方吹きであっても、コアンダ羽根32の前方端E2における接線L2方向が前方上吹きであるので、吹出空気は、コアンダ効果によってコアンダ羽根32の外側面32aの前方端E2における接線L2方向、すなわち天井方向に吹き出される。コアンダ羽根32の先端部は吹出口15より外側に突出しているので、コアンダ気流はより遠方に到達する。さらに、コアンダ羽根32の先端部は吹出口15よりも上方に位置しているので、コアンダ羽根32の上側において、風がスクロール17に沿って斜め下方に直進することが抑制されるため、コアンダ気流の上方への誘導が阻害されにくい。
Next, the control part 40 rotates the Coanda blade | wing 32 until the tangent L2 in the front end E2 of the outer side surface 32a becomes front upward. That is, as shown in FIG. 5B, the inner angle R2 formed by the tangent line L0 and the tangent line L2 is larger than the inner angle R1 formed by the tangent line L0 and the tangent line L1. The blown air adjusted to be blown horizontally by the wind direction adjusting blade 31 becomes a flow attached to the outer surface 32a of the Coanda blade 32 by the Coanda effect, and changes to a Coanda airflow along the outer surface 32a.
Therefore, even if the tangential L1 direction at the front end E1 of the wind direction adjusting blade 31 is forward blowing, the tangential L2 direction at the front end E2 of the Coanda blade 32 is forward upward blowing, so that the blown air is generated by the Coanda effect by the Coanda effect. It blows out in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, the ceiling direction. Since the front end portion of the Coanda blade 32 protrudes outward from the air outlet 15, the Coanda airflow reaches further away. Further, since the tip of the Coanda blade 32 is positioned above the outlet 15, the wind is prevented from traveling straightly downward along the scroll 17 on the upper side of the Coanda blade 32. The upward induction of is difficult to be inhibited.
 このように、コアンダ羽根32がケーシング前面部から離れて傾斜が緩やかになり、吹出空気が前面パネル11bよりも前方でコアンダ効果を受け易くなる。その結果、風向調整羽根31で風向調節された吹出空気が前方吹きであっても、コアンダ効果によって上向きの空気となる。これは、風向調整羽根31の通風抵抗による圧損が抑制されつつ風向が変更されることを意味する。
 その結果、吹出口15が開き気味のまま、吹出空気が天井方向へ誘導される。つまり、通風抵抗が低く保たれた状態で吹出空気が天井方向へ誘導される。
 なお、コアンダ羽根32の長手方向の寸法は、風向調整羽根31の長手方向の寸法以上である。それゆえ、風向調整羽根31で風向調節された吹出空気すべてをコアンダ羽根32で受けることができ、コアンダ羽根32の側方から吹出空気がショートサーキットすることが防止されるという効果も奏している。
Thus, the Coanda blades 32 are separated from the casing front surface and the inclination becomes gentle, and the blown air becomes more susceptible to the Coanda effect in front of the front panel 11b. As a result, even if the blown air whose wind direction is adjusted by the wind direction adjusting blade 31 is forward blowing, it becomes upward air due to the Coanda effect. This means that the wind direction is changed while the pressure loss due to the ventilation resistance of the wind direction adjusting blade 31 is suppressed.
As a result, the blown air is guided toward the ceiling while the blower outlet 15 remains open. That is, the blown air is guided toward the ceiling in a state where the ventilation resistance is kept low.
The size in the longitudinal direction of the Coanda blade 32 is not less than the size in the longitudinal direction of the wind direction adjusting blade 31. Therefore, all of the blown air whose wind direction is adjusted by the wind direction adjusting blade 31 can be received by the Coanda blade 32, and the effect that the blown air is prevented from short-circuiting from the side of the Coanda blade 32 is also achieved.
 なお、図3Dに示すように、天井吹き姿勢のコアンダ羽根32と吹出口15の上部形成壁15aとの隙間は、前方吹き姿勢のときよりは小さいものの、収容時よりも大きくなっており、コアンダ羽根32の内側面32b側にも空気が通過することができる。それゆえ、コアンダ羽根32への結露が防止される。
 (3-3)下吹きモード
 図3Eは、下吹き時の風向調整羽根31及びコアンダ羽根32の側面図である。図3Eにおいて、「下吹き」が選択されたとき、制御部40は風向調整羽根31の内側面31bの前方端E1における接線が下向きなるまで風向調整羽根31を回動させる。
 次に、制御部40は、外側面32aの前方端E2における接線が下向きとなるまでコアンダ羽根32を回動させる。その結果、吹出空気は、風向調整羽根31とコアンダ羽根32との間を通過し、下向きに吹き出される。
As shown in FIG. 3D, the clearance between the Coanda blades 32 in the ceiling blowing posture and the upper forming wall 15a of the blowout port 15 is smaller than that in the forward blowing posture, but larger than that in the housing. Air can also pass through the inner surface 32 b of the blade 32. Therefore, condensation on the Coanda blade 32 is prevented.
(3-3) Down-blowing mode FIG. 3E is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 during the down-blowing. 3E, when “downward blowing” is selected, the control unit 40 rotates the wind direction adjusting blade 31 until the tangent at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 is directed downward.
Next, the control part 40 rotates the Coanda blade | wing 32 until the tangent in the front end E2 of the outer side surface 32a turns downward. As a result, the blown air passes between the wind direction adjusting blade 31 and the Coanda blade 32 and is blown downward.
 特に、風向調整羽根31がスクロール17の終端部の接線角度より下向きになったときでも、制御部40が下吹きモードを実行することによって、コアンダ羽根32の外側面32aに当てて下向きの気流を生成することができる。
 (4)動作
 上記のような吹出空気の方向制御を利用した空調室内機の動作について、以下、図面を参照しながら説明する。
 (4-1)コアンダ羽根32の第1姿勢
 図6Aは、コアンダ羽根32が第1姿勢をとるときのコアンダ気流の風向を示す空調室内機設置空間の側面図である。図6Aにおいて、空調室内機10は室内側壁の上方に設置されている。コアンダ羽根32は、収納部130に収納されている状態(以後、第1姿勢とよぶ)である。コアンダ羽根32が第1姿勢のときに風向調整羽根31の姿勢を水平よりも上向きにすることによって、風向調整羽根31の内側面31bで風向調整された吹出空気がその内側面31bを離れた後、コアンダ羽根32の外側面32aに引っ張られるように方向を変え、第1コアンダ気流となってコアンダ羽根32の外側面32aおよび前面パネル11bに沿うように流れる。
In particular, even when the wind direction adjusting blade 31 is directed downward from the tangential angle of the end portion of the scroll 17, the control unit 40 executes the down blowing mode to apply a downward air flow against the outer surface 32 a of the Coanda blade 32. Can be generated.
(4) Operation The operation of the air-conditioning indoor unit using the blown air direction control as described above will be described below with reference to the drawings.
(4-1) First posture of Coanda blade 32 FIG. 6A is a side view of the air-conditioning indoor unit installation space showing the wind direction of the Coanda airflow when the Coanda blade 32 takes the first posture. In FIG. 6A, the air conditioning indoor unit 10 is installed above the indoor side wall. The Coanda blade 32 is in a state of being housed in the housing portion 130 (hereinafter referred to as a first posture). After the Coanda blade 32 is in the first posture, the air direction adjustment blade 31 is made to face upward from the horizontal so that the blown air whose air direction has been adjusted on the inner surface 31b of the wind direction adjustment blade 31 leaves the inner surface 31b. The direction is changed so as to be pulled by the outer surface 32a of the Coanda blade 32, and the first Coanda airflow flows along the outer surface 32a of the Coanda blade 32 and the front panel 11b.
 この第1姿勢は、ショートサーキットを形成させたいときに選択される。その目的は、公知文献(特開平10-9659号公報)にも開示されているように、冷風感を生じさせることなく室内を除湿することである。
 ここで、ユーザーがコアンダ気流を選択する方法について説明する。図7Aは、制御部40とリモコン50との関係を示すブロック図である。図7Aにおいて、リモコン50は赤外線信号を無線で送信する。リモコン50には、風向を切り換えるための切換手段を有している。具体的には、ユーザーが風向を選択できるように、風向選択メニューを表示する表示部52と、各風向選択メニューを指定するためのカーソル52aを有している。
 先ず、ユーザーは、表示部52に表示されたメニューの中から「コアンダ風向設定」をカーソル52aで選択する。なお、リモコン50によるメニューの選択および確定するための技術は広く公開されているので詳細な説明は省略する。
This first posture is selected when it is desired to form a short circuit. The purpose is to dehumidify the room without causing a feeling of cold wind as disclosed in a publicly known document (Japanese Patent Laid-Open No. 10-9659).
Here, a method for the user to select the Coanda airflow will be described. FIG. 7A is a block diagram showing the relationship between the control unit 40 and the remote controller 50. In FIG. 7A, the remote controller 50 transmits an infrared signal wirelessly. The remote controller 50 has switching means for switching the wind direction. Specifically, it has a display unit 52 that displays a wind direction selection menu and a cursor 52a for designating each wind direction selection menu so that the user can select the wind direction.
First, the user selects “Coanda wind direction setting” from the menu displayed on the display unit 52 with the cursor 52a. Since the technology for selecting and confirming the menu by the remote controller 50 is widely disclosed, detailed description is omitted.
 図7Bは、「コアンダ風向設定」メニューの下位メニューを表した表示部52の正面図である。図7Bにおいて、「コアンダ風向設定」メニューの下位メニューには、第1~第5コアンダ角度が予め準備されており、カーソル52aで第1コアンダ角度を指定して確定することによって、コアンダ羽根32は図6Aに示す第1姿勢をとり、第1コアンダ角度に応じた第1の向きのコアンダ気流が発生する。
 (4-2)コアンダ羽根32の第2姿勢および第3姿勢
 次に、図6Bは、コアンダ羽根32が第2姿勢をとるときのコアンダ気流の風向を示す空調室内機設置空間の側面図である。図6Bにおけるコアンダ羽根32の第2姿勢は、図7Bにおいてカーソル52aで第2コアンダ角度を指定し確定することによって成し得る。コアンダ羽根32が第2姿勢のときに発生するコアンダ気流は、「(3-2-2)コアンダ気流天井吹き」の段で説明したコアンダ気流に相当する。第2コアンダ角度が選択されたとき、図3Dに示すように、制御部40は風向調整羽根31の内側面31bの前方端E1における接線L1が水平になるまで風向調整羽根31を回動させ、次に、外側面32aの前方端E2における接線L2が前方上向きとなるまでコアンダ羽根32を回動させる。したがって、風向調整羽根31の前方端E1における接線L1方向が前方吹きであっても、コアンダ羽根32の前方端E2における接線L2方向が前方上吹きであるので、吹出空気は、コアンダ効果によってコアンダ羽根32の外側面32aの前方端E2における接線L2方向、すなわち天井方向に吹き出される。
FIG. 7B is a front view of the display unit 52 showing a lower menu of the “Coanda wind direction setting” menu. In FIG. 7B, the first to fifth Coanda angles are prepared in advance in the lower menu of the “Coanda wind direction setting” menu. By specifying and confirming the first Coanda angle with the cursor 52a, the Coanda blade 32 is displayed. The first posture shown in FIG. 6A is taken, and a Coanda airflow in a first direction corresponding to the first Coanda angle is generated.
(4-2) Second posture and third posture of Coanda blade 32 Next, FIG. 6B is a side view of the air conditioning indoor unit installation space showing the wind direction of the Coanda airflow when the Coanda blade 32 takes the second posture. . The second posture of the Coanda blade 32 in FIG. 6B can be achieved by specifying and confirming the second Coanda angle with the cursor 52a in FIG. 7B. The Coanda airflow generated when the Coanda blade 32 is in the second posture corresponds to the Coanda airflow described in the section “(3-2-2) Coanda airflow ceiling blowing”. When the second Coanda angle is selected, as shown in FIG. 3D, the control unit 40 rotates the wind direction adjusting blade 31 until the tangent L1 at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 becomes horizontal, Next, the Coanda blade 32 is rotated until the tangent L2 at the front end E2 of the outer side surface 32a is directed upward. Therefore, even if the tangential L1 direction at the front end E1 of the wind direction adjusting blade 31 is forward blowing, the tangential L2 direction at the front end E2 of the Coanda blade 32 is forward upward blowing, so that the blown air is generated by the Coanda effect by the Coanda effect. It blows out in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, the ceiling direction.
 なお、一旦、コアンダ気流が発生すると、風向調整羽根31を動かさずにコアンダ羽根32の角度のみを変動させてコアンダ気流の風向を調整することができる。例えば、図8Aは、コアンダ羽根32が第3姿勢のときの風向調整羽根31とコアンダ羽根32の側面図である。図8Aにおいて、コアンダ羽根32の第3姿勢は第2姿勢よりも下向きである。なお、図8Aでは、比較のために第2姿勢のコアンダ羽根32を2点鎖線で、第3姿勢のコアンダ羽根32を実線で描いている。
 第2姿勢でコアンダ気流が確実に発生し、且つ、風向調整羽根31の姿勢が変わらないとすれば、第2姿勢よりも下向きである第3姿勢でコアンダ気流がコアンダ羽根32の外側面32aから剥離しないことは明らかである。このように、コアンダ気流天井吹きを実施したいときは、図7Bにおいてカーソル52aで第2コアンダ角度、若しくは第3コアンダ角度を選択することによって成し得る。
Once the Coanda airflow is generated, it is possible to adjust the wind direction of the Coanda airflow by changing only the angle of the Coanda blade 32 without moving the airflow direction adjustment blade 31. For example, FIG. 8A is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the Coanda blade 32 is in the third posture. In FIG. 8A, the third posture of the Coanda blade 32 is downward than the second posture. In FIG. 8A, for comparison, the Coanda blade 32 in the second posture is drawn with a two-dot chain line, and the Coanda blade 32 in the third posture is drawn with a solid line.
If the Coanda airflow is reliably generated in the second posture and the posture of the airflow direction adjusting blade 31 is not changed, the Coanda airflow is directed from the outer surface 32a of the Coanda blade 32 in the third posture that is downward than the second posture. It is clear that it does not peel. Thus, when it is desired to perform Coanda airflow ceiling blowing, it can be achieved by selecting the second Coanda angle or the third Coanda angle with the cursor 52a in FIG. 7B.
 コアンダ羽根32の第2姿勢および第3姿勢では、風向調整羽根31によって吹出空気がコアンダ羽根32の湾曲面320に近づく方向へ風向調整され、コアンダ羽根32がその風向調整された吹出空気を自己の湾曲面320に沿ったコアンダ気流に変えるので、風向偏向効果が大きい。
 また、第2姿勢および第3姿勢では、コアンダ羽根32の先端部は天井向きになっているので、コアンダ羽根32の湾曲面320に沿ったコアンダ気流は、前面パネル11bから離れながら、且つ、天上向きに進むことができる。この場合は、本体ケーシング11の前面上方に吸込口があってもショートサーキットを防止することができる。
 他方、コアンダ羽根32の後端部は下向きであるので、スクロール17自体の角度、つまり下向きの角度に近い角度となり、コアンダ羽根32に吹出空気が沿いやすくなる。なお、仮に後端部が上向きならば、スクロール角度とのギャップが大きくなり、コアンダ羽根に吹出空気が沿わなくなる。
In the second posture and the third posture of the Coanda blade 32, the blown air is adjusted in the direction approaching the curved surface 320 of the Coanda blade 32 by the wind direction adjusting blade 31, and the Coanda blade 32 uses the blown air whose air direction is adjusted as its own. Since the air flow is changed to the Coanda airflow along the curved surface 320, the wind direction deflection effect is great.
In the second posture and the third posture, the tip of the Coanda blade 32 faces the ceiling, so the Coanda airflow along the curved surface 320 of the Coanda blade 32 is separated from the front panel 11b and You can go upward. In this case, even if there is a suction port above the front surface of the main body casing 11, a short circuit can be prevented.
On the other hand, since the rear end portion of the Coanda blade 32 faces downward, the angle becomes close to the angle of the scroll 17 itself, that is, the downward angle, so that the blown air easily follows the Coanda blade 32. If the rear end is upward, the gap with the scroll angle becomes large, and the blown air does not follow the Coanda blade.
 さらに、コアンダ羽根32の先端部が上向きで後端部が下向きであるので、風を捕まえるようにコアンダ羽根32の後端部で気流を外側面32aに沿わせておき、段々と上向きに曲げていくことが可能となる。
 本実施形態では、コアンダ羽根32の第2姿勢および第3姿勢は、調和空気を遠方に飛ばしたいときに選択されることを想定している。例えば、吹出口15から天井までの高さ距離、および吹出口15からその対面壁までの対面距離がともに大きい場合は、コアンダ羽根32の姿勢は第2姿勢が好ましい。他方、吹出口15から天井までの高さ距離は小さいが、吹出口15からその対面壁までの対面距離が大きい場合などはコアンダ羽根32の姿勢は第3姿勢が好ましい。このようにユーザーは、リモコン50を介して室内空間の大きさに応じてコアンダ羽根32の姿勢を選択することができるので、使い勝手がよい上に、調和空気を空調対象空間に均一に行き渡らせることが可能となる。
Further, since the front end portion of the Coanda blade 32 is upward and the rear end portion is downward, the air flow is kept along the outer surface 32a at the rear end portion of the Coanda blade 32 so as to catch the wind, and is bent upward gradually. It is possible to go.
In the present embodiment, it is assumed that the second posture and the third posture of the Coanda blade 32 are selected when it is desired to fly conditioned air far away. For example, when the height distance from the blower outlet 15 to the ceiling and the face-to-face distance from the blower outlet 15 to the facing wall are both large, the Coanda blade 32 is preferably in the second posture. On the other hand, although the height distance from the blower outlet 15 to the ceiling is small, when the facing distance from the blower outlet 15 to the facing wall is large, the posture of the Coanda blade 32 is preferably the third posture. Thus, the user can select the posture of the Coanda blade 32 according to the size of the indoor space via the remote controller 50, so that the user can use the conditioned air evenly in the air-conditioning target space. Is possible.
 (4-2-1)コアンダ羽根32の形状について
 コアンダ羽根32の形状について、コアンダ羽根32の外側面32aは、凸状に湾曲している形状であっても、平面形状であってもよいが、以下の点で、外側面32aは凸状に湾曲していることが好ましい。
 図8Aにおいて、コアンダ羽根32の外側面32aは、凸状に湾曲して湾曲面320を形成している。コアンダ羽根32の姿勢は、吹出口15から離れるにしたがって前面パネル11bから離れる姿勢となるので、コアンダ羽根32の湾曲面320に沿ったコアンダ気流は、前面パネル11bから離れながら、且つ、上向きに進むことができる。また、コアンダ羽根32先端部の角度が上向きの角度となり、コアンダ羽根の傾斜角度を急にすることなく、上向きの気流を発生させることができる。
(4-2-1) About the shape of the Coanda blade 32 With respect to the shape of the Coanda blade 32, the outer surface 32a of the Coanda blade 32 may be a convexly curved shape or a planar shape. The outer surface 32a is preferably convexly curved in the following points.
In FIG. 8A, the outer surface 32 a of the Coanda blade 32 is curved in a convex shape to form a curved surface 320. Since the Coanda blade 32 moves away from the front panel 11b as it moves away from the air outlet 15, the Coanda airflow along the curved surface 320 of the Coanda blade 32 advances upward while leaving the front panel 11b. be able to. Further, the angle of the tip of the Coanda blade 32 becomes an upward angle, and an upward airflow can be generated without making the inclination angle of the Coanda blade sharp.
 また、スクロール17の終端部の接線が下向きであっても、吹出空気がコアンダ羽根32の湾曲面320に沿った上向きのコアンダ気流となる。
 また、前面パネル11bとコアンダ羽根32の湾曲面320とは1つの連続的な仮想曲面上に並ぶように湾曲させることによって、コアンダ羽根32収容時のケーシング前面部の見栄えがよくなる。
 なお、コアンダ羽根32の湾曲面320は、湾曲度合いの異なる複数の湾曲面で形成されてもよい。なぜなら、複数の湾曲面で偏向度合いを徐々に高めることによって、コアンダ気流が湾曲面から剥離することを抑制しつつ、吹出空気の方向からコアンダ気流の方向への偏向度合いを高めることができるからである。
 (4-3)コアンダ羽根32の第4姿勢および第5姿勢
 さらに、図6Cは、コアンダ羽根32が第4姿勢をとるときのコアンダ気流の風向を示す空調室内機設置空間の側面図である。図6Cにおけるコアンダ羽根32の第4姿勢は、図7Bにおいてカーソル52aで第4コアンダ角度を指定し確定することによって成し得る。コアンダ羽根32が第4姿勢のときに発生するコアンダ気流は、「(3-2-1)コアンダ気流前方吹き」の段で説明したコアンダ気流に相当する。第4コアンダ角度が選択されたとき、図3Cに示すように、制御部40は、風向調整羽根31の内側面31bの前方端E1における接線L1が水平よりも前下がりになるまで風向調整羽根31を回動させ、次に、コアンダ羽根32の外側面32aが略水平になる位置までコアンダ羽根32を回動させる。したがって、風向調整羽根31の前方端E1における接線L1方向が前方下吹きであっても、コアンダ羽根32の前方端E2における接線L2方向が水平であるので、吹出空気は、コアンダ効果によってコアンダ羽根32の外側面32aの前方端E2における接線L2方向、すなわち水平方向に吹き出される。
Further, even if the tangent line of the end portion of the scroll 17 is downward, the blown air becomes an upward Coanda airflow along the curved surface 320 of the Coanda blade 32.
Further, the front panel 11b and the curved surface 320 of the Coanda blade 32 are curved so as to be aligned on one continuous virtual curved surface, so that the appearance of the casing front portion when the Coanda blade 32 is accommodated is improved.
The curved surface 320 of the Coanda blade 32 may be formed of a plurality of curved surfaces having different degrees of curvature. This is because by gradually increasing the degree of deflection at a plurality of curved surfaces, the degree of deflection from the direction of the blown air to the direction of the Coanda airflow can be increased while suppressing the Coanda airflow from being separated from the curved surface. is there.
(4-3) Fourth posture and fifth posture of Coanda blade 32 Further, FIG. 6C is a side view of the air-conditioning indoor unit installation space showing the wind direction of the Coanda airflow when the Coanda blade 32 takes the fourth posture. The 4th attitude | position of the Coanda blade | wing 32 in FIG. 6C can be comprised by specifying and confirming a 4th Coanda angle with the cursor 52a in FIG. 7B. The Coanda airflow generated when the Coanda blade 32 is in the fourth posture corresponds to the Coanda airflow described in the section “(3-2-1) Coanda airflow forward blowing”. When the fourth Coanda angle is selected, as shown in FIG. 3C, the controller 40 adjusts the wind direction adjusting blade 31 until the tangent line L1 at the front end E1 of the inner side surface 31b of the wind direction adjusting blade 31 becomes lower than the horizontal. Next, the Coanda blade 32 is rotated until the outer surface 32a of the Coanda blade 32 becomes substantially horizontal. Therefore, even if the tangential L1 direction at the front end E1 of the airflow direction adjusting blade 31 is the front lower blowing, the tangential L2 direction at the front end E2 of the Coanda blade 32 is horizontal, so that the blown air is blown from the Coanda blade 32 by the Coanda effect. It blows off in the tangent L2 direction at the front end E2 of the outer side surface 32a, that is, in the horizontal direction.
 なお、一旦、コアンダ気流が発生すると、風向調整羽根31を動かさずにコアンダ羽根32の角度のみを変動させてコアンダ気流の風向を調整することができる。例えば、図8Bは、コアンダ羽根32が第5姿勢のときの風向調整羽根31とコアンダ羽根32の側面図である。図8Bにおいて、コアンダ羽根32の第5姿勢は第4姿勢よりも下向きである。なお、図8Bでは、比較のために第4姿勢のコアンダ羽根32を2点鎖線で、第5姿勢のコアンダ羽根32を実線で描いている。
 第4姿勢でコアンダ気流が確実に発生し、且つ、風向調整羽根31の姿勢が変わらないとすれば、第4姿勢よりも下向きである第5姿勢でコアンダ気流がコアンダ羽根32の外側面32aから剥離しないことは明らかである。このように、コアンダ気流前方吹きを実施したいときは、図7Bにおいてカーソル52aで第4コアンダ角度、若しくは第5コアンダ角度を選択することによって成し得る。
Once the Coanda airflow is generated, it is possible to adjust the wind direction of the Coanda airflow by changing only the angle of the Coanda blade 32 without moving the airflow direction adjustment blade 31. For example, FIG. 8B is a side view of the wind direction adjusting blade 31 and the Coanda blade 32 when the Coanda blade 32 is in the fifth posture. In FIG. 8B, the fifth posture of the Coanda blade 32 is more downward than the fourth posture. In FIG. 8B, the Coanda blade 32 in the fourth posture is drawn with a two-dot chain line, and the Coanda blade 32 in the fifth posture is drawn with a solid line for comparison.
If the Coanda airflow is reliably generated in the fourth posture and the posture of the wind direction adjusting blade 31 is not changed, the Coanda airflow is directed from the outer surface 32a of the Coanda blade 32 in the fifth posture, which is downward than the fourth posture. It is clear that it does not peel. Thus, when it is desired to carry out Coanda airflow forward blowing, it can be achieved by selecting the fourth Coanda angle or the fifth Coanda angle with the cursor 52a in FIG. 7B.
 なお、上記の説明で明らかなように、コアンダ羽根32の第1姿勢、第2姿勢および第4姿勢それぞれに対して風向調整羽根31の姿勢が異なる。言い換えると、コアンダ羽根32によるコアンダ気流は、風向調整羽根31の姿勢とコアンダ羽根32の姿勢との組み合わせによって如何なる方向にも仕向けることができる。
 (5)特徴
 (5-1)
 空調室内機10では、コアンダ羽根32が、利用時に吹出空気の風向を調整し、非利用時に吹出空気の風路および吹出口の前方から外れた位置、すなわち、収容部130に収容される。制御部40は、コアンダ羽根32の利用時に、コアンダ羽根32と吹出口15の上部形成壁15aとの隙間が収容時よりも大きくなるようにコアンダ羽根32を制御するので、コアンダ羽根32の両面に空気が通過するようになる。その結果、コアンダ羽根32への結露が防止される。
As apparent from the above description, the attitude of the wind direction adjusting vane 31 is different from each of the first attitude, the second attitude, and the fourth attitude of the Coanda vane 32. In other words, the Coanda airflow by the Coanda blade 32 can be directed in any direction by a combination of the posture of the wind direction adjusting blade 31 and the posture of the Coanda blade 32.
(5) Features (5-1)
In the air conditioning indoor unit 10, the Coanda blade 32 adjusts the wind direction of the blown air when used, and is housed in the housing part 130 at a position deviated from the front of the air passage and the outlet of the blown air when not used. Since the control unit 40 controls the Coanda blade 32 so that the gap between the Coanda blade 32 and the upper forming wall 15a of the air outlet 15 is larger than when accommodated when the Coanda blade 32 is used, Air will pass through. As a result, condensation on the Coanda blade 32 is prevented.
 なお、空調室内機10では、従来品のようにコアンダ羽根と導風板との組み合わせをしなくとも、コアンダ羽根32だけで吹出空気を上吹き、又は天井吹きに偏向することができる。
 (5-2)
 空調室内機10では、コアンダ羽根32と吹出口15の上部形成壁15aとの隙間は、収容時にほぼゼロとなるので、少なくとも意匠性の低下を抑制することができる。
 (6)変形例
 上記実施形態では、コアンダ羽根32と吹出口15の上部形成壁15aとの隙間を通過する空気は、量としてはそれほど多くなく、ほとんどがコアンダ羽根32の内側面32bに沿って流れる。
In the air conditioning indoor unit 10, the blown air can be deflected upward or blown by only the Coanda blade 32 without using a Coanda blade and a wind guide plate as in the conventional product.
(5-2)
In the air conditioning indoor unit 10, the gap between the Coanda blade 32 and the upper forming wall 15 a of the blower outlet 15 becomes substantially zero at the time of accommodation, so that at least deterioration in design can be suppressed.
(6) Modification In the above embodiment, the amount of air passing through the gap between the Coanda blade 32 and the upper forming wall 15a of the outlet 15 is not so large, and most of the air is along the inner surface 32b of the Coanda blade 32. Flowing.
 しかし、収容部130の前面壁においてコアンダ効果が作用し、その壁面に沿ったコアンダ気流が発生した場合、それが本体ケーシング11の上部に到達して吸込口に吸い込まれ、ショートサーキットとなる可能性もある。それゆえ、収容部130の下方にコアンダ気流の発生を阻止する形状を設けることが好ましい。
 図9は、変形例に係る空調室内機10の収容部130周辺の側面図である。図9において、突起140が、収容部130の下部と吹出口15の上部形成壁15aとをつなぐ壁面上に設けられている。
 コアンダ羽根32と吹出口15の上部形成壁15aとの隙間を通過する空気のうち、一部はコアンダ羽根32の内側面32bに沿うように流れ、一部は突起140に衝突する。
 突起140は外側に突出しているので、突起140に衝突した空気は、突起140の先端部において剥離し、突起140の後方はいわゆる死水域となる。
However, when the Coanda effect acts on the front wall of the housing portion 130 and a Coanda airflow along the wall surface is generated, it may reach the upper portion of the main body casing 11 and be sucked into the suction port, thereby causing a short circuit. There is also. Therefore, it is preferable to provide a shape that prevents the generation of the Coanda airflow below the housing portion 130.
FIG. 9 is a side view of the vicinity of the accommodating portion 130 of the air conditioning indoor unit 10 according to the modification. In FIG. 9, the protrusion 140 is provided on the wall surface that connects the lower portion of the accommodating portion 130 and the upper forming wall 15 a of the outlet 15.
Part of the air passing through the gap between the Coanda blade 32 and the upper forming wall 15 a of the air outlet 15 flows along the inner surface 32 b of the Coanda blade 32, and a part collides with the protrusion 140.
Since the protrusion 140 protrudes outward, the air that has collided with the protrusion 140 peels off at the tip of the protrusion 140, and the rear of the protrusion 140 becomes a so-called dead water area.
 それゆえ、収容部130の壁面および前面パネル11bに沿ったコアンダ気流の発生は防止される。 Therefore, the generation of the Coanda airflow along the wall surface of the accommodating portion 130 and the front panel 11b is prevented.
 本発明は、壁掛け式空調室内機に有用である。 The present invention is useful for a wall-mounted air conditioning indoor unit.
10 空調室内機
15 吹出口
32 コアンダ羽根
32a 外側面(下面)
40 制御部
130 収容部
10 Air-conditioning indoor unit 15 Air outlet 32 Coanda blade 32a Outer side surface (lower surface)
40 Control unit 130 Accommodation unit
特開2003-232531号公報JP 2003-232531 A

Claims (5)

  1.  吸込口から取り入れられ本体ケーシング(11)内で調和された後に吹出口(15)から吹き出される吹出空気の流れを所定の方向へ変更可能な空調室内機であって、
     利用時に前記吹出空気の風向を調整し、非利用時に吹出空気の風路および前記吹出口(15)の前方から外れた位置に収容される可動の導風板(32)と、
     前記導風板(32)の利用時に、前記導風板(32)と前記吹出口(15)の形成壁との隙間が収容時よりも大きくなるように前記導風板(32)を制御する制御部(40)と、
    を備える空調室内機(10)。
    An air conditioning indoor unit capable of changing the flow of blown air blown out from the blowout port (15) after being taken in from the suction port and harmonized in the main body casing (11) in a predetermined direction,
    A movable air guide plate (32) accommodated in a position deviated from the front of the air passage of the blown air and the outlet (15) when not in use, adjusting the wind direction of the blown air when used;
    When the air guide plate (32) is used, the air guide plate (32) is controlled such that a gap between the air guide plate (32) and the formation wall of the blower outlet (15) is larger than that during housing. A control unit (40);
    An air conditioning indoor unit (10) comprising:
  2.  前記導風板(32)と前記吹出口(15)の形成壁との隙間は、収容時にほぼゼロとなる、
    請求項1に記載の空調室内機(10)。
    The gap between the air guide plate (32) and the formation wall of the air outlet (15) becomes substantially zero when housed.
    The air conditioning indoor unit (10) according to claim 1.
  3.  前記収容部(130)は前記本体ケーシング(11)の前面部に設けられており、
     前記本体ケーシング(11)の前面部に、コアンダ効果の発生を防止する形状が形成されている、
    請求項1に記載の空調室内機(10)。
    The accommodating portion (130) is provided on the front surface of the main casing (11),
    A shape that prevents the occurrence of the Coanda effect is formed on the front surface of the main casing (11).
    The air conditioning indoor unit (10) according to claim 1.
  4.  前記導風板(32)は、前記吹出口(15)の近傍に設けられ、前記吹出空気を自己の下面(32a)に沿わせたコアンダ気流にするコアンダ羽根である、
    請求項1から請求項3のいずれか1項に記載の空調室内機(10)。
    The air guide plate (32) is a Coanda blade provided in the vicinity of the air outlet (15), and makes the air blowing the Coanda airflow along the lower surface (32a) of itself.
    The air conditioning indoor unit (10) according to any one of claims 1 to 3.
  5.  前記本体ケーシング(11)の天面に吸込口が設けられ、前記本体ケーシング(11)の前面部には吸込口が設けられていない、
    請求項1から請求項4のいずれか1項に記載の空調室内機(10)。
      

      
    A suction port is provided on the top surface of the main casing (11), and no suction port is provided on the front surface of the main casing (11).
    The air conditioning indoor unit (10) according to any one of claims 1 to 4.


PCT/JP2012/075460 2011-10-31 2012-10-02 Air-conditioning indoor unit WO2013065437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011239779A JP5408228B2 (en) 2011-10-31 2011-10-31 Air conditioning indoor unit
JP2011-239779 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065437A1 true WO2013065437A1 (en) 2013-05-10

Family

ID=48191795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075460 WO2013065437A1 (en) 2011-10-31 2012-10-02 Air-conditioning indoor unit

Country Status (2)

Country Link
JP (1) JP5408228B2 (en)
WO (1) WO2013065437A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274814A1 (en) * 2016-10-27 2018-09-27 Samsung Electronics Co., Ltd. Air conditioner
EP3236164A4 (en) * 2015-10-23 2018-10-17 Samsung Electronics Co., Ltd. Air conditioner
CN109612042A (en) * 2018-12-11 2019-04-12 广东美的制冷设备有限公司 Control method, air conditioner and the computer storage medium of air conditioner
CN110749078A (en) * 2019-11-29 2020-02-04 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749077A (en) * 2019-11-29 2020-02-04 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749079A (en) * 2019-11-29 2020-02-04 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110762822A (en) * 2019-11-29 2020-02-07 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111006381A (en) * 2019-11-29 2020-04-14 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111076396A (en) * 2019-11-29 2020-04-28 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111121261A (en) * 2019-11-29 2020-05-08 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111156680A (en) * 2019-11-29 2020-05-15 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111351200A (en) * 2019-11-29 2020-06-30 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
JP2021046960A (en) * 2019-09-17 2021-03-25 ダイキン工業株式会社 Air-conditioning indoor unit and air conditioner
US10969122B2 (en) 2015-10-23 2021-04-06 Samsung Electronics Co., Ltd. Air conditioner
CN111006382B (en) * 2019-11-29 2023-10-31 广东美的制冷设备有限公司 Air deflector assembly and air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225721B2 (en) * 2014-01-24 2017-11-08 株式会社富士通ゼネラル Air conditioner
KR102420499B1 (en) * 2016-10-27 2022-07-13 삼성전자주식회사 Air Conditioner
JP6897735B2 (en) * 2019-09-17 2021-07-07 ダイキン工業株式会社 Air conditioning indoor unit and air conditioner
CN114061117B (en) * 2020-07-31 2023-06-16 广东美的制冷设备有限公司 Air conditioner, control device and control method of air deflector of air conditioner and readable storage medium
CN112361571B (en) * 2020-11-10 2021-10-01 珠海格力电器股份有限公司 Air deflector assembly, indoor unit and air conditioner
CN113251556A (en) * 2021-05-08 2021-08-13 珠海格力电器股份有限公司 Air conditioner operation control method, device, equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295888A (en) * 2000-11-21 2002-10-09 Daikin Ind Ltd Indoor unit for air conditioner
JP2007051866A (en) * 2006-09-11 2007-03-01 Sharp Corp Air conditioner
JP2009097755A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Air conditioner
JP2011214727A (en) * 2010-03-31 2011-10-27 Hitachi Appliances Inc Air conditioner
JP2012197970A (en) * 2011-03-22 2012-10-18 Panasonic Corp Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302906B2 (en) * 1997-07-15 2002-07-15 三菱電機株式会社 Air conditioner
JP2005188847A (en) * 2003-12-26 2005-07-14 Fujitsu General Ltd Air conditioner
JP4851629B2 (en) * 2011-02-14 2012-01-11 シャープ株式会社 Air conditioning method and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295888A (en) * 2000-11-21 2002-10-09 Daikin Ind Ltd Indoor unit for air conditioner
JP2007051866A (en) * 2006-09-11 2007-03-01 Sharp Corp Air conditioner
JP2009097755A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Air conditioner
JP2011214727A (en) * 2010-03-31 2011-10-27 Hitachi Appliances Inc Air conditioner
JP2012197970A (en) * 2011-03-22 2012-10-18 Panasonic Corp Air conditioner

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Press Release Room Air Conditioner X Series o Hatsubai", 6 September 2011 (2011-09-06), Retrieved from the Internet <URL:http://panasonic.co.jp/corp/news/official.data/data.dir/jn110906-1/jn110906-l.html> *
AIR CONDITIONER TOKUSEN PAMPHLET S X SERIES, 1 October 2011 (2011-10-01), pages 5, 6, 10, 11 *
TORIATSUKAI SETSUMEISHO, 21 October 2011 (2011-10-21), pages 1, 6 - 8, 12, 13, 32 TO 37, 52, Retrieved from the Internet <URL:http://dl-ctlg.panasonic.jp/manual/cs/cs12x225602.pdf> *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732906B2 (en) 2015-10-23 2023-08-22 Samsung Electronics Co., Ltd. Air conditioner
EP3236164A4 (en) * 2015-10-23 2018-10-17 Samsung Electronics Co., Ltd. Air conditioner
US10969122B2 (en) 2015-10-23 2021-04-06 Samsung Electronics Co., Ltd. Air conditioner
US11009242B2 (en) 2015-10-23 2021-05-18 Samsung Electronics Co., Ltd. Air conditioner
US11255552B2 (en) 2015-10-23 2022-02-22 Samsung Electronics Co., Ltd. Air conditioner
CN108870536B (en) * 2016-10-27 2022-05-13 三星电子株式会社 Air conditioner
US10788238B2 (en) * 2016-10-27 2020-09-29 Samsung Electronics Co., Ltd. Air conditioner
US20180274814A1 (en) * 2016-10-27 2018-09-27 Samsung Electronics Co., Ltd. Air conditioner
US11739976B2 (en) 2016-10-27 2023-08-29 Samsung Electronics Co., Ltd. Air conditioner
CN108870536A (en) * 2016-10-27 2018-11-23 三星电子株式会社 Air-conditioning
CN109612042B (en) * 2018-12-11 2022-03-01 广东美的制冷设备有限公司 Control method of air conditioner, air conditioner and computer storage medium
CN109612042A (en) * 2018-12-11 2019-04-12 广东美的制冷设备有限公司 Control method, air conditioner and the computer storage medium of air conditioner
JP2021046960A (en) * 2019-09-17 2021-03-25 ダイキン工業株式会社 Air-conditioning indoor unit and air conditioner
CN111006381A (en) * 2019-11-29 2020-04-14 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749079B (en) * 2019-11-29 2023-09-08 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111156680A (en) * 2019-11-29 2020-05-15 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111121261A (en) * 2019-11-29 2020-05-08 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111076396A (en) * 2019-11-29 2020-04-28 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110762822A (en) * 2019-11-29 2020-02-07 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749079A (en) * 2019-11-29 2020-02-04 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749077A (en) * 2019-11-29 2020-02-04 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749078A (en) * 2019-11-29 2020-02-04 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111351200A (en) * 2019-11-29 2020-06-30 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111076396B (en) * 2019-11-29 2023-09-12 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111121261B (en) * 2019-11-29 2023-09-12 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111156680B (en) * 2019-11-29 2023-09-12 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749077B (en) * 2019-11-29 2023-09-12 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111006381B (en) * 2019-11-29 2023-09-26 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111351200B (en) * 2019-11-29 2023-09-26 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110749078B (en) * 2019-11-29 2023-09-26 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN110762822B (en) * 2019-11-29 2023-10-31 广东美的制冷设备有限公司 Air deflector assembly and air conditioner
CN111006382B (en) * 2019-11-29 2023-10-31 广东美的制冷设备有限公司 Air deflector assembly and air conditioner

Also Published As

Publication number Publication date
JP2013096638A (en) 2013-05-20
JP5408228B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5408228B2 (en) Air conditioning indoor unit
JP5408227B2 (en) Air conditioning indoor unit
JP5365675B2 (en) Air conditioning indoor unit
JP5403125B2 (en) Air conditioning indoor unit
WO2013065436A1 (en) Air-conditioning indoor unit
JP5536158B2 (en) Air conditioning indoor unit
JP5403046B2 (en) Air conditioning indoor unit
JP5338895B2 (en) Air conditioning indoor unit
JP5408318B1 (en) Air conditioning indoor unit
WO2014045867A1 (en) Air conditioning indoor unit
JP5834911B2 (en) Air conditioning indoor unit
JP5413535B2 (en) Air conditioning indoor unit
JP5772589B2 (en) Air conditioning indoor unit
JP6233369B2 (en) Air conditioning indoor unit
JP5783041B2 (en) Air conditioning indoor unit
JP2017040408A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845334

Country of ref document: EP

Kind code of ref document: A1