WO2013065425A1 - Mobile station, communication system, communication method and integrated circuit - Google Patents

Mobile station, communication system, communication method and integrated circuit Download PDF

Info

Publication number
WO2013065425A1
WO2013065425A1 PCT/JP2012/074745 JP2012074745W WO2013065425A1 WO 2013065425 A1 WO2013065425 A1 WO 2013065425A1 JP 2012074745 W JP2012074745 W JP 2012074745W WO 2013065425 A1 WO2013065425 A1 WO 2013065425A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
station apparatus
transmission power
transmission
mobile station
Prior art date
Application number
PCT/JP2012/074745
Other languages
French (fr)
Japanese (ja)
Inventor
中嶋 大一郎
渉 大内
翔一 鈴木
公彦 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013065425A1 publication Critical patent/WO2013065425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present invention relates to a mobile station apparatus, a communication system, a communication method, and an integrated circuit that can realize efficient uplink signal transmission in a communication system including a plurality of mobile station apparatuses and a base station apparatus.
  • the third generation partnership project (3rd Generation Generation) is the evolution of wireless access systems and wireless networks for cellular mobile communications (hereinafter referred to as “Long Term Evolution (LTE)” or “Evolved Universal Terrestrial Radio Access (EUTRA)”).
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP 3rd Generation Partnership Project
  • SC-FDMA Single-carrier-Frequency-Division-Multiple-Access
  • uplink called UL
  • the DFT-Spread OFDM Discrete-Fourier-Transform-Spread-OFDM
  • LTE-A Long Term Evolution-Advanced
  • A-EUTRA Advanced Evolved Universal Terrestrial Radio Access
  • LTE-A is required to realize backward compatibility with LTE.
  • a base station apparatus compatible with LTE-A communicates simultaneously with both mobile station apparatuses compatible with LTE-A and mobile stations compatible with LTE, and mobile stations compatible with LTE-A It is required for LTE-A to realize that the apparatus communicates with a base station apparatus compatible with LTE-A and a base station apparatus compatible with LTE.
  • LTE-A is studying to support at least the same channel structure as LTE.
  • a channel means a medium used for signal transmission.
  • a channel used in the physical layer is called a physical channel
  • a channel used in a medium access control (Medium Access Control: MAC) layer is called a logical channel.
  • Physical channel types include physical downlink shared channel (Physical Downlink Shared CHannel: PDSCH) used for transmission / reception of downlink data and control information, and physical downlink control channel (Physical) used for transmission / reception of downlink control information.
  • PDSCH Physical Downlink shared channel
  • Physical downlink control channel Physical downlink control channel
  • Downlink Control CHannel PDCCH
  • Physical Uplink shared channel Physical Uplink Shared CHannel: PUSCH
  • Physical Uplink Control CHannel used for transmission and reception of uplink data and control information
  • physical uplink control channel Physical Uplink Control CHannel used for transmission and reception of control information : PUCCH
  • synchronization channel used to establish downlink synchronization
  • Synchronization CHannel: SCH synchronization channel used to establish uplink synchronization
  • Physical Random Access CHannel Physical broadcast used for information transmission There are channels (Physical Broadcast CHannel: PBCH).
  • a mobile station apparatus or a base station apparatus arranges and transmits a signal generated from control information, data, and the like on each physical channel. Data transmitted on the physical downlink shared channel or the physical uplink shared channel is referred to as a transport block.
  • Uplink control information is control information (reception acknowledgment; ACK / NACK) indicating an acknowledgment (Acknowledgement: ACK) or a negative response (Negative Acknowledgement: NACK) for the data arranged in the received physical downlink shared channel, Alternatively, it is control information (Scheduling Request: SR) indicating a request for uplink resource allocation, or control information (Channel Quality Indicator: CQI) indicating downlink reception quality (also referred to as channel quality).
  • SR reception acknowledgment
  • NACK negative response
  • CQI Channel Quality Indicator
  • inter-cell cooperative communication in which communication is performed in cooperation between adjacent cells.
  • CoMP communication a mode in which the base station apparatus communicates using any one frequency band.
  • different weighting signal processing precoding processing
  • Joint Transmission Joint Transmission
  • the signal power to interference noise power ratio of the mobile station apparatus can be improved, and reception characteristics in the mobile station apparatus can be improved.
  • a method Coordinatd Scheduling: CS
  • CS Coordinated Scheduling
  • the signal power to interference noise power ratio of the mobile station apparatus can be improved.
  • a method Coordinated beamforming: CB
  • CB Coordinated beamforming: CB
  • different cells may be configured by different base station apparatuses, and different cells are smaller than different RRH (Remote Radio Head, base station apparatus managed by the same base station apparatus. Outdoor type radio unit, Remote Radio Unit: also called “RRU”), and different cells may be constituted by base station apparatus and RRH managed by the base station apparatus, or different cells. May be configured by an RRH managed by a base station apparatus and a base station apparatus different from the base station apparatus.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • a base station apparatus with a wide coverage is generally called a macro base station apparatus.
  • a base station apparatus with a narrow coverage is generally called a pico base station apparatus or a femto base station apparatus.
  • RRH is generally considered to be used in an area where the coverage is narrower than that of a macro base station apparatus.
  • a deployment such as a communication system configured by a macro base station apparatus and an RRH, and a coverage supported by the macro base station apparatus including a part or all of the coverage supported by the RRH is a heterogeneous network deployment. Called.
  • a method in which a macro base station apparatus and an RRH transmit signals in a coordinated manner to mobile station apparatuses located within the overlapping coverage of each other has been studied.
  • RRH is managed by the macro base station apparatus, and transmission / reception is controlled.
  • the macro base station apparatus and the RRH are connected by a wired line such as an optical fiber or a wireless line using a relay technology.
  • the macro base station apparatus and the RRH perform cooperative communication using radio resources that are partly or entirely the same, so that the overall frequency use efficiency in the coverage area constructed by the macro base station apparatus is increased. (Transmission capacity) can be improved.
  • the mobile station apparatus can perform single cell communication with the macro base station apparatus or RRH. That is, a certain mobile station apparatus communicates with the macro base station apparatus or RRH without using cooperative communication, and transmits and receives signals.
  • the macro base station apparatus receives an uplink signal from a mobile station apparatus that is close in distance to itself.
  • the RRH receives an uplink signal from a mobile station apparatus that is close in distance to the own apparatus.
  • the mobile station apparatus is located near the edge of the coverage constructed by the RRH (cell edge), it is necessary to take measures against co-channel interference from the macro base station apparatus.
  • the mobile station apparatus receives signals transmitted from both the macro base station apparatus and the RRH using cooperative communication.
  • the mobile station apparatus receives either the macro base station apparatus or the RRH. Therefore, it is considered to transmit a signal in a suitable form.
  • the mobile station apparatus transmits an uplink signal with transmission power suitable for reception of a signal by the macro base station apparatus.
  • the mobile station apparatus transmits an uplink signal with transmission power suitable for receiving a signal by RRH. Thereby, unnecessary interference in the uplink can be reduced and the frequency utilization efficiency can be improved.
  • a mobile station apparatus estimates path loss from each of a plurality of types of reference signals and performs transmission power parameter setting suitable for reception of a signal by a macro base station apparatus or RRH (non-transmission).
  • Patent Document 1 the mobile station apparatus calculates a parameter of transmission power suitable for receiving a signal at the macro base station apparatus from the reference signal transmitted from the macro base station apparatus.
  • the mobile station apparatus calculates a parameter of transmission power suitable for receiving a signal by RRH from a reference signal transmitted by RRH.
  • the mobile station apparatus calculates a sub-optimal transmission power parameter for receiving a signal at the macro base station apparatus or RRH from a reference signal transmitted in cooperation from both the macro base station apparatus and the RRH.
  • the mobile station apparatus estimates path loss based on the received quality of the received reference signal.
  • the base station apparatus indicates how much the mobile station apparatus transmits uplink signals with respect to the maximum transmission power value (possible maximum transmission power value) that can be used as apparatus capability.
  • the mobile station apparatus recognizes the base station apparatus by subtracting the transmission power value used for transmission of the uplink signal from the maximum possible transmission power value, which is called power headroom (Power Headroom;) PH).
  • a power headroom indicating a positive value indicates that there is a margin in transmission power of the mobile station apparatus.
  • the power headroom indicating a negative value is a state in which the mobile station device is requesting a transmission power value exceeding the maximum possible transmission power value from the base station device, but the mobile station device is transmitting at the maximum possible transmission power value Is shown.
  • the base station apparatus uses the power headroom information to adjust and determine the frequency bandwidth of resources allocated to the uplink signal of the mobile station apparatus, the modulation scheme of the uplink signal, and the like.
  • the mobile station apparatus transmits power headroom using two timers (periodicPHR-Timer and prohibitPHR-Timer) notified from the base station apparatus and one value dl-PathlossChange (expressed in dB). To control.
  • the mobile station apparatus determines to transmit power headroom when any of the following events occurs.
  • the first event is “when prohibitPHR-Timer has ended and the path loss value has changed by more than dl-PathlossChange [dB] from the path loss value used for the previous transmission of power headroom”.
  • the second event is “when periodicPHR-Timer ends”.
  • the third event is “when the setting relating to the transmission function of the power headroom is set or reset”.
  • the base station apparatus When the mobile station apparatus decides to perform power headroom transmission and a resource used for uplink signal transmission is allocated by the base station apparatus, the base station apparatus includes information on the power headroom in the uplink signal. Send to. When the mobile station apparatus transmits information related to the power headroom, the periodical PHR-Timer and prohibitPHR-Timer being measured are once reset and restarted.
  • the prior literature does not disclose how to control power headroom transmission using a path loss estimated based on one type of reference signal from among a plurality of types of reference signals. For example, when a plurality of types of path loss are estimated from a plurality of types of reference signals, and uplink signal transmission using transmission power calculated from each path loss is performed in the mobile station apparatus, information on power headroom How to control the transmission is not disclosed in the prior literature.
  • uplink signal resource allocation, modulation scheme determination, etc. cannot be performed efficiently for the mobile station apparatus, and uplink scheduling is not possible. There was a problem that the accuracy of the deteriorated. For example, in a communication system in which signal reception destinations (including a plurality of reception destinations) can be switched, a path loss suitable for each reception destination is used to determine the transmission power of the uplink signal, and the uplink for each reception destination Efficient scheduling is required from the viewpoint of improving frequency utilization efficiency.
  • the present invention has been made in view of the above points, and in a communication system including a plurality of mobile station apparatuses and a base station apparatus, a mobile station apparatus capable of realizing efficient uplink signal transmission
  • An object of the present invention is to provide a communication system, a communication method, and an integrated circuit.
  • the mobile station apparatus of the present invention is a mobile station apparatus that communicates with at least one base station apparatus, wherein the first reception processing unit that receives a signal from the base station apparatus in a certain cell; Based on the first reference signal and the second reference signal received by the reception processing unit, a path loss calculation unit that calculates a plurality of path losses, and among the plurality of path loss calculated by the path loss calculation unit, A transmission power setting unit that sets transmission power for a physical uplink control channel using any one of the path losses, and sets transmission power for a physical uplink shared channel using any one of the path losses; and the physical uplink The bandwidth of the resources allocated for the link shared channel and the first path loss used to set the transmission power of the physical uplink shared channel; Generating a first type of report as power headroom, which is information about the transmission power room for transmission of only the physical uplink shared channel, and the bandwidth of the resources allocated for the physical uplink shared channel Using the first path loss used
  • a power headroom generation unit that generates a second type of report as a power headroom that is information on the room for transmission power for simultaneous transmission of a shared channel and a physical uplink control channel, and generated by the power headroom generation unit
  • a power headroom control unit for controlling transmission of the power headroom;
  • the power headroom control unit has a dl-PathlossChange amount of change in the first path loss when the mobile station apparatus is not configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel. If the mobile station apparatus is configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel, the first path loss of the first path loss is determined. When the amount of change or the amount of change of the second path loss is larger than the value of dl-PathlossChange, it is determined that the power headroom reporting process is started.
  • the first reference signal is one of CRS (Cell specific reference Signal) or CSI-RS (Channel State information Reference Signal), and the second reference The signal is different from the first reference signal and is either CRS or CSI-RS.
  • CRS Cell specific reference Signal
  • CSI-RS Channel State information Reference Signal
  • the first reference signal and the second reference signal are CSI-RSs (Channel State Information Reference Signal) having different configurations.
  • the communication system of the present invention is a communication system including a plurality of mobile station apparatuses and at least one base station apparatus that communicates with the plurality of mobile station apparatuses, and the base station apparatus includes: A transmission processing unit that transmits a signal to the mobile station device; and a second reception processing unit that receives a signal from the mobile station device, wherein the mobile station device transmits a signal from the base station device in a cell.
  • a path loss calculation unit that calculates a plurality of path losses based on the first reference signal and the second reference signal received by the first reception processing unit, The transmission power for the physical uplink control channel is set using any one of the plurality of path losses calculated by the path loss calculation unit, and the physical uplink link is set using any one of the path losses.
  • a transmission power setting unit configured to set transmission power for the shared channel; a bandwidth of resources allocated for the physical uplink shared channel; and a first used for setting the transmission power of the physical uplink shared channel.
  • a power headroom generating unit that generates a second type of report as power headroom that is information to be performed, a power headroom control unit that controls transmission of the power headroom generated by the power headroom generating unit,
  • the power headroom control unit has a dl-PathlossChange amount of change in the first path loss when the mobile station apparatus is not configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel.
  • the first path loss of the first path loss is determined.
  • the amount of change or the amount of change of the second path loss is dl-PathlossCha.
  • the communication method of the present invention is a communication method used for a mobile station apparatus that communicates with at least one base station apparatus, and receives a signal from the base station apparatus in a certain cell; Based on the received first reference signal and second reference signal, a step of calculating a plurality of path losses, and a physical uplink using any one of the calculated path losses.
  • a first type of report is generated as power headroom, which is information about the transmission power room for transmission of only the traffic, and the bandwidth of resources allocated for the physical uplink shared channel and the physical uplink shared.
  • the physical uplink shared channel and the physical uplink control using the first path loss used for setting the transmission power of the channel and the second path loss used for setting the transmission power of the physical uplink control channel Generating a second type of report as power headroom, which is information regarding the room for transmission power for simultaneous transmission of channels, and controlling transmission of the generated power headroom.
  • An integrated circuit according to the present invention is an integrated circuit that is mounted on a mobile station apparatus that communicates with at least one base station apparatus, and that allows the mobile station apparatus to perform a plurality of functions.
  • a function of setting transmission power for a physical uplink control channel using any one of the path losses, and a function of setting transmission power for a physical uplink shared channel using any one of the path losses, and the physical uplink sharing Using the bandwidth of the resources allocated for the channel and the first path loss used to set the transmission power of the physical uplink shared channel Generating a first type of report as power headroom, which is information about the transmission power room for transmission of only the physical uplink shared channel, and the bandwidth of the resources allocated for the physical uplink shared channel; Using the first path loss used for setting the transmission power of the physical uplink shared channel and the second path loss used for setting the transmission power of the physical uplink control channel, the physical uplink shared channel And a function to generate a second type of report as power headroom that is information on the room for transmission power for simultaneous transmission of the physical uplink control channel, a function to control transmission of the generated power headroom, To the mobile station device, the mobile station device and the physical uplink shared channel If simultaneous transmission of the logical uplink control channel is not configured,
  • the present invention is disclosed in terms of improvement of a mobile station device, a communication system, a communication method, and an integrated circuit when information related to transmission power of the mobile station device is notified to the base station device.
  • the communication system to which the invention is applicable is not limited to a communication system that is upward compatible with LTE, such as LTE or LTE-A.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • the present invention can be applied to UMTS (Universal Mobile Telecommunications System).
  • the base station apparatus can efficiently control transmission of uplink signals to the mobile station apparatus.
  • FIG. 1 It is a flowchart which shows an example of the process which judges the start (trigger) of the report process of the power headroom of the mobile station apparatus 5 which concerns on embodiment of this invention. It is a figure explaining the outline about the whole picture of the communications system concerning the embodiment of the present invention. It is a figure which shows schematic structure of the time frame of the downlink from the base station apparatus 3 which concerns on embodiment of this invention to the mobile station apparatus 5. FIG. It is a figure which shows an example of arrangement
  • CRS downlink reference signal
  • FIG. 1 It is a figure which shows an example of arrangement
  • FIG. 1 shows an example of arrangement
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • a CDMA system may implement a radio technology (standard) such as Universal Terrestrial Radio Access (UTRA) or cdma2000®.
  • UTRA includes Wideband CDMA (WCDMA) and other improved versions of CDMA.
  • cdma2000 covers IS-2000, IS-95, and IS-856 standards.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • OFDMA systems include Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM (registered trademark), etc.
  • Wireless technology may be implemented.
  • UTRA and E-UTRA are part of the universal mobile communication system (UMTS).
  • 3GPP LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM® are described in documents from an organization named Third Generation Partnership Project (3GPP).
  • cdma2000 and UMB are described in documents from an organization named Third Generation Partnership Project 2 (3GPP2).
  • 3GPP2 Third Generation Partnership Project 2
  • FIG. 8 is a diagram for explaining the outline of the overall image of the communication system according to the embodiment of the present invention.
  • the communication system 1 shown in this figure includes a base station apparatus (eNodeB, NodeB, BS: Base Station, AP: Access Point; also called an access point, macro base station) 3 and a plurality of RRHs (Remote Radio Head, base station).
  • a base station apparatus eNodeB, NodeB, BS: Base Station
  • AP Access Point; also called an access point, macro base station
  • RRHs Remote Radio Head, base station
  • a device having an outdoor-type radio unit smaller than the device also called Remote Radio Unit: RRU (also called remote antenna, distributed antenna) 4A, 4B, 4C, and a plurality of mobile station devices (UE: User Equipment, MS: Mobile Station, MT: Mobile Terminal, also referred to as a terminal, a terminal device, and a mobile terminal) 5A, 5B, and 5C communicate with each other.
  • RRU Remote Radio Unit
  • UE User Equipment
  • MS Mobile Station
  • MT Mobile Terminal
  • 5A, 5B, and 5C communicate with each other.
  • RRHs 4A, 4B, and 4C are referred to as RRH4
  • the mobile station devices 5A, 5B, and 5C are referred to as mobile station devices 5 and will be described as appropriate.
  • the base station device 3 and the RRH 4 cooperate to communicate with the mobile station device 5.
  • base station apparatus 3 and RRH 4A perform cooperative communication with mobile station apparatus 5A
  • base station apparatus 3 and RRH 4B perform cooperative communication with mobile station apparatus 5B
  • base station apparatus 3 and RRH 4C are mobile stations. Performs cooperative communication with the device 5C.
  • a plurality of RRHs 4 communicate with the mobile station apparatus 5 in cooperation.
  • RRH4A and RRH4B perform cooperative communication with mobile station apparatus 5A or mobile station apparatus 5B
  • RRH4B and RRH4C perform cooperative communication with mobile station apparatus 5B or mobile station apparatus 5C
  • RRH4C and RRH4A move. Performs cooperative communication with the station device 5C or the mobile station device 5A.
  • RRH can be said to be a special form of the base station apparatus.
  • RRH has only a signal processing unit, and can be said to be a base station apparatus in which parameters used in RRH, determination of scheduling, and the like are performed by other base station apparatuses. Therefore, in the following description, the expression “base station apparatus 3” includes RRH 4 as appropriate.
  • cooperative communication in which signals are transmitted and received in cooperation using a plurality of cells may be used.
  • a mode in which the base station apparatus communicates using any one frequency band is referred to as a “cell”.
  • different weighting signal processing precoding processing
  • base station device 3 and RRH4 cooperate with the signal to transmit the same mobile station. Transmit to device 5.
  • scheduling is performed for the mobile station device 5 in cooperation with a plurality of cells (base station device 3 and RRH4) (Coordinated Scheduling: CS).
  • 3 and RRH4) cooperatively apply beamforming to transmit a signal to the mobile station apparatus 5 (Coordinated beamforming: CB).
  • CB Coordinatd beamforming
  • a signal is transmitted using a predetermined resource only in one cell (base station apparatus 3 or RRH4), and a signal is transmitted using a predetermined resource in one cell (base station apparatus 3 or RRH4). Do not send (Blanking, Muting).
  • different cells may be configured by different base station devices 3 with respect to a plurality of cells used for cooperative communication, or different cells may be managed by the same base station device 3.
  • the different RRH4 may be configured, and the different cell may be configured by the base station apparatus 3 and the RRH4 managed by the base station apparatus 3 different from the base station apparatus.
  • the plurality of cells are physically used as different cells, but may be logically used as the same cell. Specifically, a configuration in which a common cell identifier (physical cell ID: Physical cell ID) is used for each cell may be used.
  • a configuration in which a plurality of transmitting apparatuses (base station apparatus 3 and RRH 4) transmit a common signal to the same receiving apparatus using the same frequency band is called a single frequency network (SFN).
  • SFN single frequency network
  • the deployment of the communication system 1 assumes a heterogeneous network deployment.
  • the communication system 1 includes a base station device 3 and an RRH 4, and the coverage supported by the base station device 3 includes a part or all of the coverage supported by the RRH 4.
  • the coverage means an area where communication can be realized while satisfying the request.
  • the base station device 3 and the RRH 4 transmit signals in cooperation to the mobile station device 5 located in the overlapping coverage.
  • the RRH 4 is managed by the base station apparatus 3 and transmission / reception is controlled.
  • the base station apparatus 3 and the RRH 4 are connected by a wired line such as an optical fiber or a wireless line using a relay technology.
  • the mobile station device 5 may use single cell communication with the base station device 3 or the RRH 4. That is, a certain mobile station device 5 may communicate with the base station device 3 or the RRH 4 without using cooperative communication to transmit and receive signals.
  • the base station apparatus 3 may receive an uplink signal from the mobile station apparatus 5 that is close in distance to the base station apparatus 3.
  • the RRH 4 may receive an uplink signal from the mobile station apparatus 5 that is close in distance to the own apparatus.
  • both the base station device 3 and the RRH 4 may receive uplink signals from the mobile station device 5 located near the edge of the coverage (cell edge) constructed by the RRH 4.
  • a plurality of RRHs 4 may receive uplink signals from the mobile station apparatus 5 located near the edge of the coverage (cell edge) constructed by each RRH 4.
  • the mobile station apparatus 5 receives signals transmitted from both the base station apparatus 3 and the RRH 4 using cooperative communication in the downlink, and either the base station apparatus 3 or the RRH 4 in the uplink.
  • the signal may be transmitted in a suitable form.
  • the mobile station apparatus 5 transmits an uplink signal with transmission power suitable for receiving a signal by the base station apparatus 3.
  • the mobile station apparatus 5 transmits an uplink signal with transmission power suitable for receiving a signal by the RRH 4.
  • the downlink (also referred to as DL: Downlink) that is the communication direction from the base station device 3 or the RRH 4 to the mobile station device 5 is a downlink pilot channel, a physical downlink control channel (PDCCH: Physical Downlink). Control CHannel) and physical downlink shared channel (PDSCH: Physical Downlink Shared CHannel).
  • DL Downlink
  • PDSCH Physical Downlink Shared CHannel
  • an uplink (also referred to as UL: Uplink) that is a communication direction from the mobile station device 5 to the base station device 3 or the RRH 4 is a physical uplink shared channel (PUSCH: Physical Uplink Shared CHannel). Also called uplink pilot channel (uplink reference signal; UL RS: Uplink Reference Signal, SRS: Sounding Reference Signal, DM RS: Demodulation Reference Signal), and physical uplink control channel (PUCCH: Physical Uplink Control Channel) To be included).
  • a channel means a medium used for signal transmission.
  • a channel used in the physical layer is called a physical channel
  • a channel used in a medium access control (Medium Access Control: MAC) layer is called a logical channel.
  • MAC Medium Access Control
  • the mobile station apparatus 5 transmits a signal with transmission power suitable for reception by the base station apparatus 3 in the uplink, and a signal with transmission power suitable for reception by the RRH 4.
  • a signal with transmission power suitable for reception by the base station apparatus 3 in the uplink For the sake of simplification of explanation, description of other operations will be omitted as appropriate, but the present invention is limited to such operation. It should be noted that does not mean.
  • the mobile station apparatus 5 transmits a signal with an optimal transmission power to be received by the RRH 4 in the uplink, and a sub-optimal transmission power to be received by the base station apparatus 3.
  • the present invention is also applicable to a communication system in which transmission of signals is controlled.
  • the embodiment of the present invention is not limited to the communication system 1 in which only the channels described in the present specification are used, but can be applied to a communication system in which other channels are used.
  • a downlink control channel E-PDCCH: Enhanced-PDCCH
  • a precoding process may be applied to E-PDCCH.
  • the E-PDCCH may be subjected to demodulation processing such as channel compensation based on a reference signal to which processing similar to the precoding processing used for E-PDCCH is applied.
  • PDSCH is a physical channel used for transmission / reception of downlink data and control information.
  • the PDCCH is a physical channel used for transmission / reception of downlink control information.
  • PUSCH is a physical channel used for transmission / reception of uplink data and control information.
  • the PUCCH is a physical channel used for transmission / reception of uplink control information (uplink control information; Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • UCI Uplink Control Information
  • synchronization CHannel SCH, synchronization signal; synchronization signal
  • Physical random access channel Physical
  • Physical broadcast channel Physical Broadcast CHannel: PBCH
  • SIB System ⁇ ⁇ Information Block
  • the PDSCH is also used for transmission of downlink system information.
  • the mobile station device 5, the base station device 3, or the RRH 4 arranges and transmits signals generated from control information, data, etc. in each physical channel.
  • Data transmitted on the PDSCH or PUSCH is referred to as a transport block.
  • an area controlled by the base station apparatus 3 or the RRH 4 is called a cell.
  • FIG. 9 is a diagram illustrating a schematic configuration of a downlink time frame from the base station apparatus 3 or the RRH 4 to the mobile station apparatus 5 according to the embodiment of the present invention.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • the downlink time frame is a unit for resource allocation and the like, and is a resource block (RB) (physical resource block; also referred to as a PRB: Physical Resource Block) composed of a frequency band and a time slot having a predetermined downlink width. ) Pairs (physical resource block pairs; referred to as PRB pairs).
  • One downlink PRB pair (downlink physical resource block pair; referred to as DL PRB pair) is derived from two consecutive PRBs (downlink physical resource block; referred to as DL PRB) in the downlink time domain. Composed.
  • one DL PRB is composed of 12 subcarriers (referred to as downlink subcarriers) in the downlink frequency domain, and 7 OFDM (orthogonal frequency division multiplexing in the time domain; (Orthogonal Frequency Division Multiplexing) symbol.
  • a downlink system band (referred to as a downlink system band) is a downlink communication band of the base station apparatus 3 or the RRH 4.
  • the downlink system bandwidth (referred to as downlink system bandwidth) is configured with a frequency bandwidth of 20 MHz.
  • the downlink system band a plurality of DL PRBs are arranged according to the downlink system bandwidth.
  • the downlink system band having a frequency bandwidth of 20 MHz is composed of 110 DL PRBs.
  • a slot composed of 7 OFDM symbols (referred to as a downlink slot) and a subframe composed of two downlink slots (referred to as a downlink subframe).
  • a unit composed of one downlink subcarrier and one OFDM symbol is called a resource element (RE: Resource) (downlink resource element).
  • RE Resource
  • downlink resource element A unit composed of one downlink subcarrier and one OFDM symbol.
  • a PDSCH used for transmission of information data (transport block; also called “Transport Block”) and a PDCCH used for transmission of control information are arranged.
  • the PDCCH is composed of the first to third OFDM symbols in the downlink subframe
  • the PDSCH is composed of the fourth to fourteenth OFDM symbols in the downlink subframe. Note that the number of OFDM symbols constituting the PDCCH and the number of OFDM symbols constituting the PDSCH may be changed for each downlink subframe.
  • downlink pilot channels used for transmission of downlink reference signals are distributed and arranged in a plurality of downlink resource elements.
  • the downlink reference signal includes at least different types of a first type reference signal, a second type reference signal, and a third type reference signal.
  • the downlink reference signal is used for estimation of PDSCH and PDCCH propagation path fluctuations.
  • the first type of reference signal is used for demodulation of PDSCH and PDCCH, and is also called Cell specific RS: CRS.
  • the second type of reference signal is used only for estimating propagation path fluctuations, and is also referred to as Channel State Information RS: CSI-RS.
  • CSI-RS Channel State Information RS
  • the third type of reference signal is used for demodulation of PDSCH to which cooperative communication is applied, and is also referred to as UE specific RS.
  • the downlink reference signal is a known signal in the communication system 1.
  • the number of downlink resource elements constituting the downlink reference signal may depend on the number of transmission antennas (antenna ports) used for communication to the mobile station apparatus 5 in the base station apparatus 3 and RRH4.
  • CRS is used as the first type reference signal
  • CSI-RS is used as the second type reference signal
  • UE specific RS is used as the third type reference signal.
  • the UE specific RS can also be used for demodulation of PDSCH to which cooperative communication is not applied.
  • PDCCH is information indicating DL PRB allocation to PDSCH, information indicating UL PRB allocation to PUSCH, mobile station identifier (referred to as Radio Network Temporary Identifier: RNTI), modulation scheme, coding rate, retransmission parameter, spatial multiplexing
  • RNTI Radio Network Temporary Identifier
  • a signal generated from control information such as information indicating the number, precoding matrix, and transmission power control command (TPCTPcommand) is arranged.
  • Control information included in the PDCCH is referred to as downlink control information (Downlink Control DCI).
  • DCI including information indicating DL PRB assignment to PDSCH is referred to as downlink assignment (also referred to as “downlink assignment” or “DL assignment”), and DCI including information indicating UL PRB assignment to PUSCH is uplink.
  • Grant Uplink grant: UL grant.
  • the downlink assignment includes a transmission power control command for PUCCH.
  • the uplink assignment includes a transmission power control command for PUSCH.
  • One PDCCH includes only information indicating resource allocation of one PDSCH, or information indicating resource allocation of one PUSCH, and information indicating resource allocation of a plurality of PDSCHs, It does not include information indicating PUSCH resource allocation.
  • CRC Cyclic Redundancy Check
  • RNTI Cyclic Redundancy Check
  • a CRC code is generated from DCI using a predetermined generator polynomial.
  • the generated CRC code is subjected to exclusive OR (also referred to as scrambling) processing using RNTI.
  • exclusive OR also referred to as scrambling
  • a signal obtained by modulating a bit indicating DCI and a bit (CRC masked by UE ID) generated by performing exclusive OR processing on the CRC code using RNTI is actually transmitted on PDCCH. Is done.
  • the PDSCH resource is arranged in the same downlink subframe as the downlink subframe in which the PDCCH resource including the downlink assignment used for the allocation of the PDSCH resource is arranged in the time domain.
  • FIG. 10 is a diagram illustrating an example of an arrangement of downlink reference signals in a downlink subframe of the communication system 1 according to the embodiment of the present invention.
  • FIG. 10 illustrates the arrangement of downlink reference signals in one PRB pair, but basically a common arrangement method is used in all PRB pairs in the downlink system band. .
  • R0 to R1 indicate CRS of antenna ports 0 to 1, respectively.
  • the antenna port means a logical antenna used in signal processing, and one antenna port may be composed of a plurality of physical antennas. A plurality of physical antennas constituting the same antenna port transmit the same signal. Although delay diversity or CDD (Cyclic Delay Delay) can be applied using a plurality of physical antennas within the same antenna port, other signal processing cannot be used.
  • FIG. 10 shows the case where the CRS corresponds to two antenna ports, but the communication system of the present embodiment may support different numbers of antenna ports, for example, one antenna port or four antenna ports.
  • a CRS for an antenna port may be mapped to a downlink resource. The CRS is arranged in all DL PRBs in the downlink system band.
  • D1 indicates the UE specific RS.
  • UE specific RS When UE specific RS is transmitted using a plurality of antenna ports, different codes are used for each antenna port. That is, CDM (Code Division Multiplexing) is applied to UE specific RS.
  • CDM Code Division Multiplexing
  • the UE specific RS is the length of the code used for the CDM and the downlink to be mapped according to the type of signal processing (number of antenna ports) used for the control signal and data signal mapped to the PRB pair. The number of resource elements may be changed.
  • UE specific RSs are multiplexed and arranged with two downlink resource elements (OFDM symbols) as one unit (CDM unit).
  • CDM is applied to multiplexing of UE specific RS.
  • the number of antenna ports used for cooperative communication in the base station device 3 and the RRH 4 is 4, the number of downlink resource elements to which the UE specific RS is mapped is doubled, and each of the two antenna ports The UE specific RS is multiplexed and arranged on different downlink resource elements.
  • CDM and FDM Frequency Division Multiplexing
  • the number of antenna ports used for cooperative communication in the base station apparatus 3 and the RRH 4 is 8
  • the number of downlink resource elements to which the UE specific RS is mapped is doubled
  • the code length is 4 UE specific RSs are multiplexed and arranged using four downlink resource elements as a unit.
  • CDMs having different code lengths are applied to multiplexing of the UE specific RS.
  • a scramble code is further superimposed on the code of each antenna port.
  • This scramble code is generated based on the cell ID and the scramble ID notified from the base station apparatus 3 and the RRH 4.
  • the scramble code is generated from a pseudo random sequence generated based on the cell ID and the scramble ID notified from the base station apparatus 3 and the RRH 4.
  • the scramble ID is a value indicating 0 or 1.
  • the scramble ID and the antenna port to be used can be jointly coded, and information indicating them can be indexed.
  • the UE specific RS is arranged in the DL PRB of the PDSCH assigned to the mobile station apparatus 5 that is set to use the UE specific RS.
  • the base station apparatus 3 and the RRH 4 may assign a CRS signal to different downlink resource elements, or may assign a CRS signal to the same downlink resource element.
  • the base station apparatus 3 and the RRH 4 allocate CRS signals to different resource elements and / or different signal sequences
  • the mobile station apparatus 5 uses the CRS to receive the received power (received signal power, received quality). ) Can be calculated individually.
  • the base station apparatus 3 may assign a CRS signal to some downlink resource elements, and the RRH 4 may not assign a CRS signal to any downlink resource element.
  • the mobile station device 5 can calculate the received power of the base station device 3 from the CRS.
  • the above-described setting is possible.
  • the base station apparatus 3 and the RRH 4 allocate a CRS signal to the same downlink resource element and transmit the same sequence from the base station apparatus 3 and the RRH 4, the mobile station apparatus 5 combines using the CRS. Received power can be calculated.
  • the above-described setting is possible.
  • calculating power includes calculating a power value
  • calculating power includes calculating a power value
  • measuring power includes measuring a power value
  • reporting power includes reporting a power value.
  • power includes the meaning of the value of power as appropriate.
  • FIG. 11 is a diagram showing a DL PRB pair to which CSI-RS (transmission path condition measurement reference signal) for 8 antenna ports is mapped.
  • FIG. 11 shows a case where CSI-RS is mapped when the number of antenna ports (number of CSI ports) used in base station apparatus 3 and RRH 4 is 8.
  • CSI-RS transmission path condition measurement reference signal
  • the CSI-RS uses a 2-chip orthogonal code (Walsh code) in each CDM group, and a CSI port (CSI-RS port (antenna port, resource grid)) is assigned to each orthogonal code. Code division multiplexing is performed for each port. Further, each CDM group is frequency division multiplexed. CSI-RSs of 8 antenna ports of CSI ports 1 to 8 (antenna ports 15 to 22) are mapped using four CDM groups. For example, in the CDM group C1 of CSI-RS, CSI-RSs of CSI ports 1 and 2 (antenna ports 15 and 16) are code division multiplexed and mapped.
  • CDM group C2 of CSI-RS CSI-RSs of CSI ports 3 and 4 (antenna ports 17 and 18) are code division multiplexed and mapped.
  • CDM group C3 of CSI-RS CSI-RS of CSI ports 5 and 6 (antenna ports 19 and 20) are code division multiplexed and mapped.
  • CDM group C4 of CSI-RS CSI-RSs of CSI ports 7 and 8 (antenna ports 21 and 22) are code division multiplexed and mapped.
  • the base station device 3 and the RRH 4 can set the maximum number of layers (number of ranks, spatial multiplexing number) applied to the PDSCH to 8. Further, the base station device 3 and the RRH 4 can transmit CSI-RS when the number of antenna ports is 1, 2 or 4.
  • the base station apparatus 3 and the RRH 4 can transmit CSI-RS for one antenna port or two antenna ports by using the CDM group C1 of CSI-RS shown in FIG.
  • the base station apparatus 3 and the RRH 4 can transmit the CSI-RS for four antenna ports using the CDM groups C1 and C2 of the CSI-RS shown in FIG.
  • the base station apparatus 3 and the RRH 4 may assign a CSI-RS signal to different downlink resource elements, or may assign a CSI-RS signal to the same downlink resource element.
  • the mobile station apparatus 5 uses the CSI-RS to transmit the base station apparatus 3 and the RRH 4
  • Each received power (received signal power, received quality) and each propagation path state can be calculated individually.
  • the CSI-RS transmitted from the base station apparatus 3 and the CSI-RS transmitted from the RRH 4 are recognized as CSI-RSs corresponding to different antenna ports.
  • the base station device 3 is instructed to individually measure and calculate the received power of the CSI-RS corresponding to each antenna port, and each CSI-RS is actually Whether it is transmitted from the base station apparatus 3 or RRH4 does not have to be clearly recognized.
  • the base station apparatus and the RRH4 allocate the same downlink resource element to the CSI-RS and transmit the same sequence from the base station apparatus 3 and the RRH4, the mobile station apparatus 5 uses the CSI-RS.
  • the combined received power can be calculated.
  • different RRHs 4 may assign CSI-RS signals to different downlink resource elements, respectively.
  • the mobile station device 5 uses the CSI-RS to receive each received power (received signal) of the different RRH4. Power, reception quality) and respective propagation path states can be calculated individually.
  • the configuration of CSI-RS (CSI-RS-Config-r10) is notified from the base station device 3 and RRH 4 to the mobile station device 5.
  • the configuration of the CSI-RS includes information indicating the number of antenna ports set in the CSI-RS (antennaPortsCount-r10), information indicating a downlink subframe in which the CSI-RS is arranged (subframeConfig-r10), CSI-RS Information (ResourceConfig-r10) indicating a frequency region where the RS is arranged is included at least. For example, any one of 1, 2, 4, and 8 is used as the number of antenna ports.
  • an index indicating the position of the first resource element is used among the resource elements in which the CSI-RS corresponding to the antenna port 15 (CSI port 1) is allocated. . If the position of the CSI-RS corresponding to the antenna port 15 is determined, the CSI-RS corresponding to the other antenna port is uniquely determined based on a predetermined rule. As information indicating the downlink subframe in which the CSI-RS is arranged, the position and period of the downlink subframe in which the CSI-RS is arranged are indicated by an index.
  • subframeConfig-r10 For example, if the index of subframeConfig-r10 is 5, it indicates that CSI-RS is arranged for every 10 subframes, and subframe 0 (subframe in the radio frame) Indicates that the CSI-RS is arranged. Further, in another example, for example, if the index of subframeConfig-r10 is 1, it indicates that CSI-RS is arranged every 5 subframes, and in a radio frame in units of 10 subframes, 6 shows that CSI-RS is arranged.
  • only RRH4 transmits CSI-RS corresponding to at least a specific antenna port. This includes the case where only RRH4 transmits CSI-RS corresponding to all antenna ports of CSI-RS.
  • the CSI-RSs corresponding to other antenna ports may be transmitted only from the base station apparatus 3, and the base station apparatus 3 and the RRH 4 Both may be transmitted (SFN transmission).
  • the CRS may be transmitted only from the base station apparatus 3, or may be transmitted from both the base station apparatus 3 and the RRH 4 (SFN transmission).
  • the mobile station apparatus 5 receives the CSI-RS of a specific antenna port transmitted only by the RRH 4, measures the path loss for the RRH 4, and sets the measured path loss for the transmission power of the uplink signal. Used for. Thereby, it is possible to set transmission power suitable for the case where the signal receiving destination is RRH4. Further, the mobile station apparatus 5 receives an RS (CRS or CSI-RS) transmitted only by the base station apparatus 3, measures the path loss to the base station apparatus 3, and transmits the measured path loss to the uplink signal. You may make it use for the setting of electric power. Thereby, it is possible to set transmission power suitable for the case where the signal receiving destination is the base station apparatus 3.
  • RS CRS
  • CSI-RS CSI-RS
  • the mobile station apparatus 5 receives RS (CRS or CSI-RS) transmitted by both the base station apparatus 3 and the RRH 4, measures the path loss from the signal obtained by combining both signals, and calculates the measured path loss. You may make it use for the setting of the transmission power of the signal of an uplink.
  • the signal receiving destination is the base station apparatus 3 or RRH4, it is possible to set transmission power suitable to some extent. In this way, by setting the transmission power suitable for the signal receiving destination, it is possible to improve the efficiency of the communication system while suppressing the interference given to other signals while satisfying the required quality of the signal. .
  • the mobile station apparatus 5 measures a plurality of path losses from different types of downlink reference signals, and uses any one path loss or each path loss.
  • a communication system that controls transmission power of uplink signals is mainly assumed.
  • the mobile station apparatus 5 measures a plurality of path losses from CRS and CSI-RS and controls the transmission power of uplink signals using any one path loss is mainly assumed.
  • the mobile station apparatus 5 is a downlink reference signal of the same type but transmitted from different transmission apparatuses (base station apparatus 3, RRH4).
  • a communication system is mainly assumed in which a plurality of path losses are measured for a reference signal, and the transmission power of an uplink signal is controlled using any one path loss or each path loss.
  • the mobile station apparatus 5 measures a plurality of path losses from a CSI-RS corresponding to a certain antenna port and a CSI-RS corresponding to an antenna port different from the antenna port, and uses any one path loss.
  • a communication system that controls transmission power of uplink signals is mainly assumed.
  • the embodiment of the present invention assumes a communication system in which path loss can be set independently for each physical channel with respect to path loss applied to uplink transmission power control.
  • different path loss is set for PUCCH transmission power control and PUSCH transmission power control.
  • a path loss measured from CRS is set for transmission power control of PUCCH
  • a path loss measured from CSI-RS is set for transmission power control of PUSCH.
  • a path loss measured from CSI-RS is set for PUCCH transmission power control
  • a path loss measured from CRS is set for PUSCH transmission power control.
  • path loss measured from CSI-RSs corresponding to different antenna ports is set for PUCCH transmission power control and PUSCH transmission power control, respectively.
  • the same path loss is set for PUCCH transmission power control and PUSCH transmission power control.
  • path loss measured from the same CRS is set for PUCCH transmission power control and PUSCH transmission power control.
  • path loss measured from the same CSI-RS is set for PUCCH transmission power control and PUSCH transmission power control.
  • the path loss measured from the CSI-RS of the same antenna port is set for PUCCH transmission power control and PUSCH transmission power control.
  • the mobile station apparatus 5 can measure the path loss for the signal transmitted from the RRH 4.
  • CRS is basically transmitted only from base station apparatus 3 and CSI-RS is transmitted only from RRH4. Therefore, in the following description, the path loss measured based on the CRS is for a signal transmitted from the base station apparatus 3, and the path loss measured based on the CSI-RS is a signal transmitted from the RRH 4.
  • the embodiment of the present invention is only described for such a communication system, and the following description does not limit the present invention.
  • the present invention can also be applied to a communication system transmitted from both RRH4, a communication system in which only CSI-RS of a specific antenna port is transmitted from only RRH4, and the like.
  • the mobile station apparatus 5 measures (calculates) a path loss from each type of downlink reference signal using the notified transmission power of each type of downlink reference signal.
  • transmission power includes the meaning of the transmission power value as appropriate.
  • setting transmission power includes setting a value of transmission power.
  • controlling the transmission power includes controlling the value of the transmission power.
  • FIG. 12 is a diagram illustrating a schematic configuration of an uplink time frame from the mobile station apparatus 5 to the base station apparatus 3 and the RRH 4 according to the embodiment of the present invention.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain.
  • An uplink time frame is a unit for resource allocation and the like, and is a pair of physical resource blocks (uplink physical resource block pair; UL PRB pair) consisting of a frequency band and a time zone of a predetermined width of the uplink. ).
  • One UL PRB pair is composed of two uplink PRBs (uplink physical resource block; referred to as UL PRB) that are continuous in the uplink time domain.
  • one UL PRB is composed of 12 subcarriers (referred to as uplink subcarriers) in the uplink frequency domain, and 7 SC-FDMA (Single-Carrier) in the time domain. Frequency (Division (Multiple Access) symbol).
  • An uplink system band (referred to as an uplink system band) is an uplink communication band of the base station apparatus 3 and the RRH 4.
  • the uplink system bandwidth (referred to as an uplink system bandwidth) is composed of a frequency bandwidth of 20 MHz, for example.
  • the uplink system band a plurality of UL PRBs are arranged according to the uplink system bandwidth.
  • the uplink system band having a frequency bandwidth of 20 MHz is composed of 110 UL PRBs.
  • a slot composed of seven SC-FDMA symbols referred to as an uplink slot
  • a subframe composed of two uplink slots uplink subframe and Called.
  • a unit composed of one uplink subcarrier and one SC-FDMA symbol is called a resource element (uplink resource element).
  • Each uplink subframe includes at least PUSCH used for transmission of information data, PUCCH used for transmission of uplink control information (UCI: Uplink Control Information), and demodulation of PUSCH and PUCCH (estimation of propagation path fluctuation).
  • UL RS (DM RS) is placed.
  • a PRACH used for establishing uplink synchronization is arranged in any uplink subframe.
  • UL RS (SRS) used for measuring channel quality, synchronization deviation, etc. is arranged in any uplink subframe.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • It is used to transmit at least UCI (SR: “Scheduling Request”) and UCI (CQI: “Channel Quality Indicator”) indicating downlink reception quality (also referred to as channel quality).
  • the mobile station apparatus 5 when the mobile station apparatus 5 indicates to the base station apparatus 3 that the allocation of uplink resources is requested, the mobile station apparatus 5 transmits a signal using the PUCCH for SR transmission.
  • the base station apparatus 3 recognizes that the mobile station apparatus 5 is requesting uplink resource allocation from the result of detecting a signal using the PUCCH resource for transmission of the SR.
  • the mobile station apparatus 5 indicates to the base station apparatus 3 that it does not request allocation of uplink resources, the mobile station apparatus 5 does not transmit any signal using the PUCCH resources for transmission of the SR allocated in advance.
  • the base station apparatus 3 recognizes that the mobile station apparatus 5 does not request uplink resource allocation from the result that the signal is not detected by the PUCCH resource for transmission of the SR.
  • PUCCH used for transmission of ACK / NACK is called PUCCH format 1a or PUCCH format 1b.
  • PUCCH format 1a BPSK (binary phase shift keying; Binary Phase Shift Keying) is used as a modulation method for modulating information about ACK / NACK.
  • PUCCH format 1a 1-bit information is indicated from the modulation signal.
  • PUCCH format 1b uses QPSK (Quadrature Shift Phase Key Shift) as a modulation method for modulating information about ACK / NACK.
  • QPSK Quadrature Shift Phase Key Shift
  • 2-bit information is indicated from the modulation signal.
  • the PUCCH used for SR transmission is called PUCCH format 1.
  • the PUCCH used for CQI transmission is referred to as PUCCH format 2.
  • the PUCCH used for simultaneous transmission of CQI and ACK / NACK is referred to as PUCCH format 2a or PUCCH format 2b.
  • the reference signal (DM RS) of the uplink pilot channel is multiplied by a modulation signal generated from ACK / NACK information.
  • PUCCH format 2a 1-bit information about ACK / NACK and CQI information are transmitted.
  • PUCCH format 2b 2-bit information on ACK / NACK and CQI information are transmitted.
  • One PUSCH is composed of one or more UL PRBs, and one PUCCH is symmetrical in the frequency domain within the uplink system band, and is composed of two UL PRBs located in different uplink slots.
  • One PRACH is composed of 6 UL PRB pairs. For example, in FIG. 12, the UL PRB having the lowest frequency in the first uplink slot and the UL PRB having the highest frequency in the second uplink slot in the uplink subframe are used for the PUCCH.
  • One PRB pair is configured.
  • the mobile station apparatus 5 is set not to perform simultaneous transmission of PUSCH and PUCCH, when the PUCCH resource and the PUSCH resource are allocated in the same uplink subframe, only the PUSCH resource is allocated. To send a signal.
  • the mobile station apparatus 5 when the mobile station apparatus 5 is set to perform simultaneous transmission of PUSCH and PUCCH, when PUCCH resources and PUSCH resources are allocated in the same uplink subframe, the PUCCH resources are basically allocated. And PUSCH resources can be used for signal transmission.
  • UL RS is a signal used for an uplink pilot channel.
  • UL RS is a demodulation reference signal (DM RS: Demodulation Reference ⁇ ⁇ Signal) used to estimate PUSCH and PUCCH propagation path fluctuations, and channel quality measurement for base station apparatus 3 and RSCH4 PUSCH frequency scheduling and adaptive modulation.
  • the base station apparatus 3 and the sounding reference signal (SRS: Sounding Reference Signal) used for measuring the synchronization deviation between the RRH 4 and the mobile station device 5.
  • SRS Sounding Reference Signal
  • DM RSs are arranged in different SC-FDMA symbols depending on whether they are arranged in the same UL PRB as PUSCH or in the same UL PRB as PUCCH.
  • the DM RS is a signal known in the communication system 1 that is used for estimating propagation path fluctuations of PUSCH and PUCCH.
  • the DM RS When the DM RS is arranged in the same UL PRB as the PUSCH, it is arranged in the fourth SC-FDMA symbol in the uplink slot.
  • the DM RS When the DM RS is arranged in the same UL PRB as the PUCCH including ACK / NACK, the DM RS is arranged in the third, fourth, and fifth SC-FDMA symbols in the uplink slot.
  • the DM RS is arranged in the same UL PRB as the PUCCH including the SR, the DM RS is arranged in the third, fourth, and fifth SC-FDMA symbols in the uplink slot.
  • the DM RS When the DM RS is arranged in the same UL PRB as the PUCCH including the CQI, it is arranged in the second and sixth SC-FDMA symbols in the uplink slot.
  • the SRS is arranged in the UL PRB determined by the base station apparatus 3, and the 14th SC-FDMA symbol in the uplink subframe (the 7th SC-FDMA symbol in the second uplink slot of the uplink subframe) ).
  • the SRS can be arranged only in the uplink subframe (survey reference signal subframe; referred to as “SRS subframe”) having a period determined by the base station apparatus 3 in the cell.
  • SRS subframe survey reference signal subframe
  • the base station apparatus 3 allocates a UL PRB to be allocated to the SRS, a period for transmitting the SRS for each mobile station apparatus 5.
  • FIG. 12 shows the case where the PUCCH is arranged in the UL PRB at the end in the frequency region of the uplink system band, but the second and third UL PRBs from the end of the uplink system band are used for the PUCCH. May be.
  • code multiplexing in the frequency domain and code multiplexing in the time domain are used in the PUCCH.
  • Code multiplexing in the frequency domain is processed by multiplying each code of the code sequence by a modulated signal modulated from uplink control information in subcarrier units.
  • Code multiplexing in the time domain is processed by multiplying each code of the code sequence by the modulated signal modulated from the uplink control information in units of SC-FDMA symbols.
  • a plurality of PUCCHs are arranged in the same UL PRB, and different codes are assigned to the respective PUCCHs, and code multiplexing is realized in the frequency domain or time domain by the assigned codes.
  • PUCCH In PUCCH (referred to as PUCCH (format 1a or PUCCH format 1b) used to transmit ACK / NACK, code multiplexing in the frequency domain and time domain is used. In PUCCH used to transmit SR (referred to as PUCCH format ⁇ ⁇ 1), code multiplexing in the frequency domain and time domain is used. In PUCCH (referred to as PUCCH format 2 or PUCCH format 2a or PUCCH format 2b) used for transmitting CQI, code multiplexing in the frequency domain is used. For simplification of description, description of the contents related to PUCCH code multiplexing is omitted as appropriate.
  • the PUSCH resource is an uplink subframe after a predetermined number (for example, 4) from the downlink subframe in which the PDCCH resource including the uplink grant used for allocation of the PUSCH resource is allocated in the time domain. Placed in.
  • the mobile station device 5 calculates (measures) the path loss based on the CRS. In addition, the mobile station apparatus 5 additionally calculates (measures) the path loss based on the CSI-RS. The mobile station apparatus 5 calculates uplink transmission power based on the calculated path loss, and transmits an uplink signal with the calculated uplink transmission power. The base station apparatus 3 sets a parameter (configuration) related to the measurement of the downlink reference signal for the mobile station apparatus 5.
  • the mobile station apparatus 5 calculates a path loss based on the CRS, and calculates an uplink transmission power value using the calculated path loss. In the initial state, the mobile station apparatus 5 performs path loss calculation based on the CRS of the antenna port 0 or the CRSs of the antenna ports 0 and 1.
  • the base station apparatus 3 determines that it is necessary (for example, when it is determined that the mobile station apparatus 5 is close to RRH4), it additionally calculates a path loss based on the CSI-RS and uses it for uplink transmission power.
  • the mobile station apparatus 5 is set so that it can be used.
  • the base station device 3 performs addition change (re-setting, reconfiguration) of the path loss reference of the mobile station device 5. For example, this change is made using RRC signaling.
  • the path loss reference means a measurement object used for path loss calculation, and is CRS or CSI-RS.
  • the base station apparatus 3 can specify the CSI-RS antenna port used by the mobile station apparatus 5 for path loss calculation, and the mobile station apparatus 5 can specify the CSI- of the antenna port specified by the base station apparatus 3.
  • the path loss is calculated based on the RS.
  • the antenna port designated by the mobile station device 5 from the base station device 3 may be one antenna port, a plurality of antenna ports, or all antenna ports. Good.
  • the base station apparatus 3 controls the mobile station apparatus 5 so as to transmit the uplink signal with the transmission power calculated using the path loss measured based on the CRS.
  • the base station apparatus 3 controls the mobile station apparatus 5 so as to transmit the uplink signal with the transmission power calculated using the path loss measured based on the CSI-RS.
  • the base station apparatus 3 when it is determined that the base station apparatus 3 is necessary, the base station apparatus 3 performs setting for the mobile station apparatus 5 so as to stop measuring the path loss based on the CSI-RS. This operation can be performed for a state in which the mobile station device 5 is calculating a path loss based on the CSI-RS.
  • the base station apparatus 3 can set a path loss reference for each physical channel independently for the mobile station apparatus 5 with respect to the path loss applied to uplink transmission power control. For example, the base station apparatus 3 sets different path loss references for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets CRS as a path loss reference for PUCCH transmission power control and sets CSI-RS as a path loss reference for PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets CSI-RS as a path loss reference for PUCCH transmission power control and sets CRS as a path loss reference for PUSCH transmission power control for the mobile station apparatus 5.
  • the base station apparatus 3 sets CSI-RSs corresponding to different antenna ports as path loss references for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the same path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the same CRS as the path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the same CSI-RS as the path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the CSI-RS of the same antenna port as the path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5.
  • the path loss calculation requires the value of the transmission power of the downlink reference signal, information on the CRS transmission power value and information on the CSI-RS transmission power value are transmitted from the base station apparatus 3 to the mobile station.
  • the device 5 is notified.
  • Power Headroom Reporting is information on the difference between the nominal UE maximum transmit power and the estimated transmit power for the PUSCH (Power Headroom). 3. Procedure for providing to RRH4. As a processing hierarchy, RRC (Radio Resource Control) controls power headroom reporting, configures two timers (periodicPHR-Timer and prohibitPHR-Timer) for control, and signals a certain parameter (dl-PathlossChange). A series of processes for determining power headroom transmission is referred to as power headroom transmission processing. Power headroom transmission processing is executed (controlled) for each path loss reference.
  • RRC Radio Resource Control
  • Dl-PathlossChange is a parameter for performing transmission of the power headroom when the path loss value changes.
  • the amount of change between the path loss measured when the power headroom is last transmitted and the path loss measured at the present time is used for threshold determination with dl-PathlossChange. Threshold determination using dl-PathlossChange is performed, and when the measured change amount of path loss exceeds the value of dl-PathlossChange, the power headroom reporting process is started (driven) (triggered).
  • the value of dl-PathlossChange is expressed in dB, and for example, any value of 1 dB, 3 dB, 6 dB, or infinity (Infinity) is used.
  • PeriodicPHR-Timer is a timer used to transmit power headroom periodically to some extent.
  • the periodicPHR-Timer is finished, the power headroom reporting process is started.
  • the periodical PHR-Timer being measured is once reset and restarted.
  • the value of periodicPHR-Timer is expressed by the number of subframes as a unit. For example, 10 subframes, 20 subframes, 50 subframes, 100 subframes, 200 subframes, 500 subframes, 1000 subframes, infinite (Infinity) Any of these values is used.
  • ProhibitPHR-Timer is a timer used to prevent transmission of power headroom more frequently than necessary. While the preventPHR-Timer is not finished and the measured path loss change amount exceeds the value of dl-PathlossChange during the measurement, the power headroom reporting process is not started. When the preventPHR-Timer is finished, the power headroom reporting process can be started by dl-PathlossChange. When transmission of the power headroom is performed, the preventPHR-Timer being measured is once reset and restarted.
  • the value of prohibitPHR-Timer is expressed as the number of subframes as a unit. For example, 0 subframe, 10 subframe, 20 subframe, 50 subframe, 100 subframe, 200 subframe, 500 subframe, 1000 subframe Either value is used.
  • the parameters of periodicPHR-Timer, prohibitPHR-Timer, and dl-PathlossChange are notified from the base station apparatus 3 and RRH4 to the mobile station apparatus 5 using the RRC signaling structure phr-Config.
  • phr-Config is initialized (configuration of power headroom reporting functionality) or reconfigured (reconfiguration of power headroom reporting functionality), the power headroom reporting process can be triggered.
  • the power headroom consists of a first type report and a second type report.
  • power headroom is calculated assuming only PUSCH transmission in a certain uplink subframe.
  • power headroom is calculated assuming simultaneous transmission of PUSCH and PUCCH in an uplink subframe.
  • the value of the first type report is the difference between the transmission power value configured in advance in the mobile station device 5 and the transmission power value of the desired PUSCH.
  • a desired PUSCH transmission power value is calculated using a predetermined formula (algorithm) using parameters used for transmission power control. For example, the desired PUSCH transmission power value is set to satisfy the required quality. As the transmission power value of the PUSCH actually transmitted, a smaller value is used by comparing the transmission power value configured in advance in the mobile station apparatus 5 with the transmission power value of the desired PUSCH.
  • the transmission power value configured in advance in the mobile station apparatus 5 is the transmission power value set in advance for the mobile station apparatus 5 by the base station apparatus 3 or RRH 4 or the upper limit of the allowable transmission power as the apparatus capability of the mobile station apparatus 5. Value.
  • the device capability corresponds to the power amplifier class.
  • the value of the power headroom (first type report, second type report) is expressed in 1 dB steps within the range of [40; -23] dB.
  • the value of the second type report is a difference between the transmission power value configured in advance in the mobile station device 5, the transmission power value of the desired PUSCH, and the transmission power value of the desired PUCCH.
  • a desired PUCCH transmission power value is calculated using a predetermined formula (algorithm) using parameters used for transmission power control. For example, the desired PUCCH transmission power value is set to satisfy the required quality.
  • the transmission power values of PUSCH and PUCCH that are actually transmitted at the same time are compared with the transmission power value configured in advance in the mobile station device 5 and the total value of the transmission power value of the desired PUSCH and the transmission power value of the desired PUCCH. Therefore, a small value is used.
  • the path loss used for PUSCH transmission power control is set by the base station apparatus 3 and RRH4 (configured, changed, reconfigured, reconfigured, rechanged ), It may be determined that the power headroom reporting process is started, and the power headroom may be in a transmission standby state.
  • the transmission standby state can be said to be a state in which transmission of the power headroom is triggered.
  • the power head uses the PUSCH or PUSCH and PUCCH to which the resources are allocated. Send a signal containing room information.
  • the path loss used for PUSCH transmission power control is a path loss calculated based on CRS or a path loss calculated based on CSI-RS.
  • the calculation of the value of the first type report as the power headroom is basically performed based on the transmission power value set in the PUSCH used for transmission of the power headroom. Exactly, it is the transmission power value of the above-mentioned desired PUSCH that is used for the calculation of the first type of report as the power headroom.
  • the transmission power value of the desired PUSCH described above is smaller than the transmission power value configured in advance in the mobile station apparatus 5, the transmission power value of the PUSCH used for transmission of the power headroom is the transmission power value of the desired PUSCH. .
  • the transmission power value of the desired PUSCH described above is larger than the transmission power value configured in advance in the mobile station apparatus 5, the transmission power value of PUSCH used for power headroom transmission is configured in the mobile station apparatus 5 in advance. This is the transmission power value.
  • a target used for path loss measurement is referred to as a path loss reference.
  • the path loss used for the calculation of the uplink transmission power value is calculated from the set path loss reference. That is, the power headroom value is calculated based on the path loss calculated from the set path loss reference.
  • the calculation of the value of the second type report as the power headroom is basically based on the transmission power value set for the PUSCH used for power headroom transmission and the transmission power set for the PUCCH transmitted simultaneously with the PUSCH. Based on the value. More precisely, the transmission power value of the above-mentioned desired PUSCH and the transmission power value of the desired PUCCH described later are used as the power headroom for the calculation of the second type of report.
  • the PUSCH used for power headroom transmission The transmission power value is the transmission power value of the desired PUSCH, and the transmission power value of the PUCCH transmitted simultaneously with the PUSCH is the transmission power value of the desired PUCCH.
  • the PUSCH used for transmission of the power headroom is a value obtained by subtracting the transmission power value of the desired PUCCH from the transmission power value configured in advance in the mobile station apparatus 5, and the transmission power value of the PUCCH transmitted simultaneously with the PUSCH is the transmission power value of the desired PUCCH.
  • the mobile station apparatus 5 may enter a power headroom transmission standby state.
  • the mobile station apparatus 5 may be in a power headroom transmission standby state when the path loss reference of path loss used for PUSCH transmission power control is switched from CSI-RS to CRS.
  • the power headroom to be transmitted is either the first type report or the second type report. It is.
  • the mobile station apparatus 5 When the path loss reference for PUSCH transmission power control is reset and the power headroom is in a transmission standby state, the mobile station apparatus 5 is the first power headroom when simultaneous transmission of PUCCH and PUSCH is not configured. If the simultaneous transmission of PUCCH and PUSCH is configured, the second type of report is transmitted as power headroom.
  • the path loss used for PUCCH transmission power control is set by the base station apparatus 3 and RRH4 (configured, changed, reconfigured, reconfigured, rechanged). If the simultaneous transmission of PUSCH and PUCCH is configured, it may be determined that the power headroom reporting process is started and the power headroom may be in a transmission standby state, and the simultaneous transmission of PUSCH and PUCCH may be performed. If it is not configured, it is not determined that the power headroom reporting process is started, and the power headroom may not be in a transmission standby state.
  • the mobile station device 5 when the path loss reference of path loss used for PUCCH transmission power control is switched from CRS to CSI-RS, the mobile station device 5 is configured to control the power headroom when simultaneous transmission of PUSCH and PUCCH is configured. It may be in a transmission standby state, and when simultaneous transmission of PUSCH and PUCCH is not configured, it does not have to be in a transmission standby state of the power headroom.
  • the mobile station apparatus 5 is configured to control the power headroom when simultaneous transmission of PUSCH and PUCCH is configured.
  • the transmitted power headroom is a second type report.
  • the mobile station apparatus 5 is the first power headroom when simultaneous transmission of PUCCH and PUSCH is not configured. If the simultaneous transmission of PUCCH and PUSCH is configured, the second type of report is transmitted as power headroom.
  • the mobile station apparatus 5 determines whether to drive the power headroom reporting process according to whether simultaneous transmission of PUCCH and PUSCH is configured. Also good. If the PUCCH path loss reference is reset, the mobile station apparatus 5 may determine to drive the power headroom reporting process when simultaneous transmission of PUCCH and PUSCH is configured. If transmission is configured, there is no need to decide to drive the power headroom reporting process.
  • the mobile station device 5 in the power headroom transmission standby state When the mobile station device 5 in the power headroom transmission standby state is assigned the PUSCH resource for new transmission, the mobile station device 5 in the power headroom in the transmission standby state using the PUSCH to which the resource is assigned is assigned. Send a signal containing information.
  • the mobile station apparatus 5 is set with a plurality of parameters related to power headroom reporting. For example, multiple dl-PathlossChanges are set for the path loss (first path loss) used for setting the transmission power for PUSCH and the path loss (second path loss) used for setting the transmission power for PUCCH.
  • the mobile station apparatus 5 determines the trigger for the overall power headroom reporting process using dl-PathlossChange for the first path loss and the second path loss.
  • the mobile station apparatus 5 determines the trigger for the reporting process of the entire power headroom using dl-PathlossChange for the first path loss when the mobile station apparatus is not configured to simultaneously transmit PUCCH and PUSCH. To do.
  • the mobile station apparatus 5 uses the dl-PathlossChange for each of the first path loss and the second path loss to Determine the trigger for the room reporting process. If the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, the mobile station apparatus 5 performs the power headroom reporting process when the amount of change in the first path loss is greater than the value of dl-PathlossChange. Judge to start. When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH in the mobile station apparatus, the change amount of the first path loss or the change amount of the second path loss is greater than the value of dl-PathlossChange.
  • the path loss change amount is the change amount between the path loss measured at the time when the power headroom using the corresponding path loss is transmitted and the path loss measured at the present time. Absent.
  • the mobile station apparatus 5 uses a single periodicPHR-Timer.
  • the mobile station apparatus 5 uses a single periodicPHR-Timer for the powerheadroom transmission process, and controls to transmit the powerheadroom when the periodicPHR-Timer expires.
  • the path loss (second path loss) used for setting PUCCH transmission power is calculated from CRS
  • the path loss (first path loss) used for setting PUSCH transmission power is calculated from CSI-RS.
  • the path loss (second path loss) used for setting the PUCCH transmission power is calculated from CSI-RS
  • the path loss (first path loss) used for setting the PUSCH transmission power is calculated from CRS.
  • the path loss (second path loss) used for setting the PUCCH transmission power is calculated from the CRS
  • the path loss (first path loss) used for setting the PUSCH transmission power is calculated from the CRS.
  • the path loss (second path loss) used for setting the PUCCH transmission power is calculated from CSI-RS
  • the path loss (first path loss) used for setting the PUSCH transmission power is calculated from CSI-RS. Is done.
  • the power headroom reporting process start determination process using dl-PathlossChange is performed as one common process. It is.
  • Dl-PathlossChange corresponding to the path loss (first path loss) used for setting the PUSCH transmission power is changed to dl-PathlossChange 1 (first dl-PathlossChange) (first threshold) and PUCCH transmission power setting.
  • the dl-PathlossChange corresponding to the used path loss (second path loss) is set to dl-PathlossChange 3 (second dl-PathlossChange) (second threshold).
  • a single periodicPHR-Timer is referred to as periodicPHR-Timer20.
  • a single prohibitPHR-Timer is designated as prohibitPHR-Timer 400.
  • periodicPHR-Timer 20 When periodicPHR-Timer 20 expires, the power headroom enters a transmission standby state. When the power headroom in the transmission standby state is transmitted, the periodicPHR-Timer 20 and the prohibitPHR-Timer 400 are reset (restarted), and measurement is started again. When prohibitPHR-Timer 400 is measuring (before the timer expires), transmission of power headroom based on threshold judgment using dl-PathlossChange is prohibited. dl-PathlossChange 1 is used for threshold determination with the amount of change in path loss (first path loss) used for setting the transmission power of PUSCH.
  • dl-PathlossChange 3 is used for threshold determination with the amount of change in the path loss (second path loss) used for setting the transmission power of the PUCCH.
  • processing using dl-PathlossChange 1 is performed.
  • the amount of change in the path loss (first path loss) used for setting the PUSCH transmission power is greater than the value of dl-PathlossChange 1 It is determined that the power headroom reporting process is started in the case of When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, processing using dl-PathlossChange 1 and dl-PathlossChange 3 is performed.
  • the amount of change in the path loss (first path loss) used for setting the PUSCH transmission power is greater than the value of dl-PathlossChange 1
  • the change amount of the path loss (second path loss) used for setting the transmission power of the PUCCH becomes larger than the value of dl-PathlossChange 3
  • the power headroom reporting process is started.
  • the same value may be set for dl-PathlossChange 1 and dl-PathlossChange 3. It is determined that the power headroom reporting process is started, and the power headroom enters a transmission standby state.
  • FIG. 1 is a schematic block diagram showing the configuration of the base station apparatus 3 according to the embodiment of the present invention.
  • the base station apparatus 3 includes a reception processing unit (second reception processing unit) 101, a radio resource control unit (second radio resource control unit) 103, and a control unit (second control unit). 105 and a transmission processing unit 107.
  • the reception processing unit 101 demodulates and decodes the received signals of PUCCH and PUSCH received from the mobile station apparatus 5 by the reception antenna 109 using the UL RS according to the instruction of the control unit 105, and obtains control information and information data. Extract. For example, the reception processing unit 101 extracts power headroom information from the PUSCH. The reception processing unit 101 performs a process of extracting UCI from the uplink subframe, UL PRB, in which the own apparatus assigns PUCCH resources to the mobile station apparatus 5. The reception processing unit 101 is instructed from the control unit 105 what processing is to be performed on which uplink subframe and which UL PRB.
  • the reception processing unit 101 performs code sequence multiplication and synthesis in the time domain and code sequence multiplication and synthesis in the frequency domain on the ACK / NACK PUCCH (PUCCH format 1a, PUCCH format 1b) signal.
  • the detection process to be performed is instructed from the control unit 105.
  • Reception processing section 101 is instructed by control section 105 to use a frequency-domain code sequence and / or a time-domain code sequence used for processing to detect UCI from PUCCH.
  • the reception processing unit 101 outputs the extracted UCI to the control unit 105 and outputs information data to the upper layer.
  • the reception processing unit 101 outputs the extracted UCI to the control unit 105 and outputs information data to the upper layer.
  • the reception processing unit 101 detects (receives) a preamble sequence from the received PRACH signal received from the mobile station apparatus 5 by the reception antenna 109 in accordance with the instruction of the control unit 105.
  • the reception processing unit 101 also estimates arrival timing (reception timing) along with detection of the preamble sequence.
  • the reception processing unit 101 performs processing for detecting a preamble sequence for an uplink subframe, UL PRB, to which the own apparatus has assigned PRACH resources.
  • the reception processing unit 101 outputs information regarding the estimated arrival timing to the control unit 105.
  • the reception processing unit 101 measures the channel quality of one or more UL PRBs using the SRS received from the mobile station apparatus 5. Also, the reception processing unit 101 detects (calculates and measures) an uplink synchronization shift using the SRS received from the mobile station apparatus 5. The reception processing unit 101 is instructed from the control unit 105 what processing is to be performed on which uplink subframe and which UL PRB. The reception processing unit 101 outputs information regarding the measured channel quality and the detected uplink synchronization loss to the control unit 105. Details of the reception processing unit 101 will be described later.
  • Radio resource control section 103 is configured to simultaneously transmit PUCCH and PUSCH (information indicating whether to instruct simultaneous transmission of PUCCH and PUSCH or whether to instruct simultaneous transmission of PUCCH and PUSCH), CSI -RS configuration, resource allocation for PDCCH, resource allocation for PUCCH, DL PRB allocation for PDSCH, UL PRB allocation for PUSCH, resource allocation for PRACH, resource allocation for SRS, modulation scheme / code of various channels A rate, a transmission power control value, a phase rotation amount (weighting value) used for precoding processing, and the like are set.
  • the radio resource control unit 103 sets parameters (periodicPHR-Timer, prohibitPHR-Timer, dl-PathlossChange) related to power headroom reporting.
  • the radio resource control unit 103 uses the downlink reference signal (CRS, CSI-RS) used for the path loss measurement for the mobile station device 5, the path loss reference (CRS or CSI-RS) used for PUSCH transmission power control, and the PUCCH Sets the path loss reference (CRS or CSI-RS) used for transmission power control. Radio resource control section 103 also sets a frequency domain code sequence, a time domain code sequence, and the like for PUCCH. Also, the radio resource control unit 103 outputs information indicating the set PUCCH resource allocation to the control unit 105.
  • a part of the information set by the radio resource control unit 103 is notified to the mobile station device 5 via the transmission processing unit 107, and is used for, for example, information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and transmission power control of PUSCH.
  • Information indicating path loss reference, information indicating path loss reference used for transmission power control of PUCCH, information regarding CSI-RS configuration, information indicating parameter values related to power headroom reporting, and part related to transmission power of PUSCH The mobile station apparatus 5 is notified of information indicating the values of the parameters and information indicating the values of some parameters related to the transmission power of the PUCCH.
  • the radio resource control unit 103 sets PDSCH radio resource allocation and the like based on the UCI acquired by the reception processing unit 101 using the PUCCH and input via the control unit 105. For example, when ACK / NACK acquired using PUCCH is input, radio resource control section 103 assigns PDSCH resources for which NACK is indicated by ACK / NACK to mobile station apparatus 5.
  • the radio resource control unit 103 outputs various control signals to the control unit 105.
  • the control signal is a control signal indicating a configuration for simultaneous transmission of PUCCH and PUSCH, a control signal indicating allocation of PUSCH resources, a control signal indicating a phase rotation amount used for precoding processing, and the like.
  • control section 105 Based on the control signal input from radio resource control section 103, control section 105 sets CSI-RS, DL PRB allocation for PDSCH, resource allocation for PDCCH, modulation scheme setting for PDSCH, codes for PDSCH and PDCCH
  • the transmission processing unit 107 is controlled to set the conversion rate and set the precoding processing for the PDSCH and UE specific RS.
  • the control unit 105 generates DCI transmitted using the PDCCH based on the control signal input from the radio resource control unit 103 and outputs the DCI to the transmission processing unit 107.
  • the DCI transmitted using the PDCCH is a downlink assignment, an uplink grant, or the like.
  • control section 105 Based on the control signal input from radio resource control section 103, control section 105 assigns UL PRB to PUSCH, assigns resources to PUCCH, sets PUSCH and PUCCH modulation schemes, sets the PUSCH coding rate, and PUCCH.
  • the reception processing unit 101 is subjected to control such as detection processing for, setting of a code sequence for PUCCH, resource allocation for PRACH, resource allocation for SRS, and the like. Also, the control unit 105 receives the UCI transmitted from the mobile station apparatus 5 using the PUCCH from the reception processing unit 101 and outputs the input UCI to the radio resource control unit 103.
  • control unit 105 receives, from the reception processing unit 101, information indicating the arrival timing of the detected preamble sequence and information indicating the uplink synchronization shift detected from the received SRS, and transmits the uplink transmission timing.
  • the adjustment value (TA: Timing Advance, Timing Adjustment, Timing Alignment) (TA value) is calculated.
  • Information (TA ⁇ command) indicating the calculated uplink transmission timing adjustment value is notified to the mobile station apparatus 5 via the transmission processing unit 107.
  • the transmission processing unit 107 generates a signal to be transmitted using PDCCH and PDSCH based on the control signal input from the control unit 105, and transmits the signal through the transmission antenna 111.
  • the transmission processing unit 107 receives information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, information on the configuration of CSI-RS, parameters related to power headroom reporting (periodicPHR-Timer, prohibitPHR) input from the radio resource control unit 103 -Timer, information indicating dl-PathlossChange), information indicating downlink reference signals (CRS, CSI-RS) used for path loss measurement, information indicating path loss reference used for PUSCH transmission power control, and transmission power control for PUCCH Information indicating path loss reference to be used, information indicating values of some parameters related to transmission power of PUSCH, information indicating values of some parameters related to transmission power of PUCCH, information data input from higher layers, etc.
  • the control unit 10 Transmitting to the mobile station apparatus 5 by using PDCCH the DCI input from.
  • the information data includes information on several types of control. Details of the transmission processing unit 107 will be described later.
  • FIG. 2 is a schematic block diagram showing the configuration of the transmission processing unit 107 of the base station apparatus 3 according to the embodiment of the present invention.
  • the transmission processing unit 107 includes a plurality of physical downlink shared channel processing units 201-1 to 201-M (hereinafter referred to as physical downlink shared channel processing units 201-1 to 201-M).
  • Physical downlink control channel processing units 203-1 to 203-M (hereinafter referred to as physical downlink control channel processing units 203-1 to 203-M).
  • Control channel processing unit 203 Downlink pilot channel processing unit 205, precoding processing unit 231, multiplexing unit 207, IFFT (Inverse Fast Fourier Transform) unit 209, GI (Guard Interval) Insertion unit 211, D / A (Digital / Analog converter) unit 213, transmission RF (Radio Frequency) unit 215, And configured to include a transmitting antenna 111. Since each physical downlink shared channel processing unit 201 and each physical downlink control channel processing unit 203 have the same configuration and function, only one of them will be described as a representative. For simplification of explanation, it is assumed that the transmission antenna 111 is a collection of a plurality of antenna ports.
  • the physical downlink shared channel processing unit 201 includes a turbo encoding unit 219, a data modulation unit 221 and a precoding processing unit 229, respectively.
  • the physical downlink control channel processing unit 203 includes a convolutional coding unit 223, a QPSK modulation unit 225, and a precoding processing unit 227.
  • the physical downlink shared channel processing unit 201 performs baseband signal processing for transmitting information data to the mobile station apparatus 5 by the OFDM method.
  • the turbo encoding unit 219 performs turbo encoding for increasing the error tolerance of the data at the encoding rate input from the control unit 105 and outputs the input information data to the data modulation unit 221.
  • the data modulation unit 221 uses the data encoded by the turbo coding unit 219 as a modulation method input from the control unit 105, for example, QPSK (quadrature phase shift keying; Quadrature Phase Shift Keying), 16QAM (16-value quadrature amplitude modulation). Modulation is performed using a modulation scheme such as 16 Quadrature Amplitude Modulation) or 64QAM (64-value quadrature amplitude modulation; 64 Quadrature Amplitude Modulation) to generate a signal sequence of modulation symbols.
  • the data modulation unit 221 outputs the generated signal sequence to the precoding processing unit 229.
  • the precoding processing unit 229 performs precoding processing (beamforming processing) on the signal input from the data modulation unit 221 and outputs the result to the multiplexing unit 207.
  • the precoding process performs phase rotation or the like on the generated signal so that the mobile station apparatus 5 can efficiently receive (for example, the interference is minimized so that the reception power is maximized). It is preferable to do so.
  • the physical downlink control channel processing unit 203 performs baseband signal processing for transmitting the DCI input from the control unit 105 in the OFDM scheme.
  • the convolutional coding unit 223 performs convolutional coding for increasing DCI error tolerance based on the coding rate input from the control unit 105.
  • DCI is controlled in bit units.
  • the convolutional coding unit 223 also performs rate matching to adjust the number of output bits for the bits subjected to the convolutional coding process based on the coding rate input from the control unit 105.
  • the convolutional code unit 223 outputs the encoded DCI to the QPSK modulation unit 225.
  • the QPSK modulation unit 225 modulates the DCI encoded by the convolutional coding unit 223 using the QPSK modulation method, and outputs the modulated modulation symbol signal sequence to the precoding processing unit 227.
  • Precoding processing section 227 performs precoding processing on the signal input from QPSK modulation section 225 and outputs the result to multiplexing section 207. Note that the precoding processing unit 227 can output the signal input from the QPSK modulation unit 225 to the multiplexing unit 207 without performing precoding processing.
  • the downlink pilot channel processing unit 205 generates a downlink reference signal (CRS, UE specific RS, CSI-RS) that is a known signal in the mobile station apparatus 5 and outputs the downlink reference signal to the precoding processing unit 231.
  • the precoding processing unit 231 does not perform precoding processing on the CRS and CSI-RS input from the downlink pilot channel processing unit 205 and outputs them to the multiplexing unit 207.
  • the precoding processing unit 231 performs precoding processing on the UE specific RS input from the downlink pilot channel processing unit 205 and outputs the result to the multiplexing unit 207.
  • the precoding processing unit 231 performs the same processing as the processing performed on the PDSCH in the precoding processing unit 229 and / or the processing performed on the PDCCH in the precoding processing unit 227 on the UE specific RS. Therefore, when demodulating the PDSCH and PDCCH signals to which the precoding process is applied in the mobile station apparatus 5, the UE specific RS uses the fluctuation of the propagation path (transmission path) in the downlink, the precoding processing unit 229, and the precoding process.
  • the equalization channel affected by the phase rotation by the unit 227 can be estimated.
  • the base station device 3 does not have to notify the mobile station device 5 of information (phase rotation amount) of the precoding processing by the precoding processing unit 229 and the precoding processing unit 227, and the mobile station device 5 It is possible to demodulate a precoded signal (transmitted in cooperative communication).
  • the precoding processing unit 231 does not perform the precoding process on the UE specific RS. And output to the multiplexing unit 207.
  • Multiplexer 207 receives a signal input from downlink pilot channel processor 205, a signal input from each physical downlink shared channel processor 201, and a signal input from each physical downlink control channel processor 203. Are multiplexed into the downlink subframe according to the instruction from the control unit 105. Control signals related to DL PRB allocation to PDSCH and resource allocation to PDCCH set by the radio resource control unit 103 are input to the control unit 105, and the control unit 105 controls processing of the multiplexing unit 207 based on the control signal .
  • the multiplexing unit 207 basically multiplexes PDSCH and PDCCH by time multiplexing as shown in FIG.
  • the multiplexing unit 207 performs multiplexing between the downlink pilot channel and other channels by time / frequency multiplexing.
  • the multiplexing unit 207 may multiplex the PDSCH addressed to each mobile station device 5 in units of DL PRB pairs, and may multiplex the PDSCH to one mobile station device 5 using a plurality of DL PRB pairs.
  • the multiplexing unit 207 outputs the multiplexed signal to the IFFT unit 209.
  • the IFFT unit 209 performs fast inverse Fourier transform on the signal multiplexed by the multiplexing unit 207, performs OFDM modulation, and outputs the result to the GI insertion unit 211.
  • the GI insertion unit 211 generates a baseband digital signal including symbols in the OFDM scheme by adding a guard interval to the signal modulated by the OFDM scheme by the IFFT unit 209. As is well known, the guard interval is generated by duplicating a part of the head or tail of the OFDM symbol to be transmitted.
  • the GI insertion unit 211 outputs the generated baseband digital signal to the D / A unit 213.
  • the D / A unit 213 converts the baseband digital signal input from the GI insertion unit 211 into an analog signal and outputs the analog signal to the transmission RF unit 215.
  • the transmission RF unit 215 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 213, and removes an extra frequency component for the intermediate frequency band.
  • the transmission RF section 215 converts (up-converts) the intermediate frequency signal into a high frequency signal, removes excess frequency components, amplifies the power, and transmits to the mobile station apparatus 5 via the transmission antenna 111. Send.
  • FIG. 3 is a schematic block diagram showing the configuration of the reception processing unit 101 of the base station apparatus 3 according to the embodiment of the present invention.
  • the reception processing unit 101 includes a reception RF unit 301, an A / D (Analog / Digital converter) unit 303, a symbol timing detection unit 309, a GI removal unit 311, an FFT unit 313, a sub Carrier demapping section 315, propagation path estimation section 317, PUSCH propagation path equalization section 319, PUCCH propagation path equalization section 321, IDFT section 323, data demodulation section 325, turbo decoding section 327, physical uplink control A channel detection unit 329, a preamble detection unit 331, and an SRS processing unit 333 are included.
  • a / D Analog / Digital converter
  • the reception RF unit 301 appropriately amplifies the signal received by the reception antenna 109, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained. The level is controlled, and quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal.
  • the reception RF unit 301 outputs the quadrature demodulated analog signal to the A / D unit 303.
  • a / D section 303 converts the analog signal quadrature demodulated by reception RF section 301 into a digital signal, and outputs the converted digital signal to symbol timing detection section 309, GI removal section 311 and preamble detection section 331.
  • the symbol timing detection unit 309 detects the symbol timing based on the signal input from the A / D unit 303, and outputs a control signal indicating the detected symbol boundary timing to the GI removal unit 311.
  • the GI removal unit 311 removes a portion corresponding to the guard interval from the signal input from the A / D unit 303 based on the control signal from the symbol timing detection unit 309, and converts the remaining portion of the signal to the FFT unit 313.
  • the FFT unit 313 performs fast Fourier transform on the signal input from the GI removal unit 311, performs demodulation of the DFT-Spread-OFDM scheme, and outputs the result to the subcarrier demapping unit 315. Note that the number of points in the FFT unit 313 is equal to the number of points in the IFFT unit of the mobile station apparatus 5 described later.
  • the subcarrier demapping unit 315 separates the signal demodulated by the FFT unit 313 into DM RS, SRS, PUSCH signal, and PUCCH signal based on the control signal input from the control unit 105.
  • the subcarrier demapping unit 315 outputs the separated DM RS to the propagation path estimation unit 317, outputs the separated SRS to the SRS processing unit 333, and outputs the separated PUSCH signal to the PUSCH propagation path equalization unit 319.
  • the separated PUCCH signal is output to the PUCCH channel equalization unit 321.
  • the propagation path estimation unit 317 estimates propagation path fluctuations using the DM RS separated by the subcarrier demapping unit 315 and a known signal.
  • the propagation path estimation unit 317 outputs the estimated propagation path estimation value to the PUSCH propagation path equalization unit 319 and the PUCCH propagation path equalization unit 321.
  • the PUSCH channel equalization unit 319 equalizes the amplitude and phase of the PUSCH signal separated by the subcarrier demapping unit 315 based on the channel estimation value input from the channel estimation unit 317.
  • equalization refers to a process for restoring the fluctuation of the propagation path received by the signal during wireless communication.
  • PUSCH propagation path equalization section 319 outputs the adjusted signal to IDFT section 323.
  • the IDFT unit 323 performs discrete inverse Fourier transform on the signal input from the PUSCH channel equalization unit 319 and outputs the result to the data demodulation unit 325.
  • the data demodulating unit 325 demodulates the PUSCH signal converted by the IDFT unit 323, and outputs the demodulated PUSCH signal to the turbo decoding unit 327.
  • This demodulation is demodulation corresponding to the modulation method used in the data modulation unit of the mobile station apparatus 5, and the modulation method is input from the control unit 105.
  • the turbo decoding unit 327 decodes information data from the PUSCH signal input from the data demodulation unit 325 and demodulated.
  • the coding rate is input from the control unit 105.
  • the PUCCH channel equalization unit 321 equalizes the amplitude and phase of the PUCCH signal separated by the subcarrier demapping unit 315 based on the channel estimation value input from the channel estimation unit 317.
  • the PUCCH channel equalization unit 321 outputs the equalized signal to the physical uplink control channel detection unit 329.
  • the physical uplink control channel detection unit 329 demodulates and decodes the signal input from the PUCCH channel equalization unit 321 and detects UCI.
  • the physical uplink control channel detection unit 329 performs processing for separating the frequency domain and / or the signal code-multiplexed in the frequency domain.
  • the physical uplink control channel detection unit 329 detects ACK / NACK, SR, CQI from the PUCCH signal code-multiplexed in the frequency domain and / or time domain using the code sequence used on the transmission side. Perform processing.
  • the physical uplink control channel detection unit 329 performs a detection process using a code sequence in the frequency domain, that is, a process for separating a code-multiplexed signal in the frequency domain, for each PUCCH subcarrier signal. On the other hand, after multiplying each code of the code sequence, a signal multiplied by each code is synthesized. Specifically, the physical uplink control channel detection unit 329 performs detection processing using a code sequence in the time domain, that is, processing for separating code-multiplexed signals in the time domain, for each SC-FDMA symbol of PUCCH. Is multiplied by each code of the code sequence, and then the signal multiplied by each code is synthesized. The physical uplink control channel detection unit 329 sets detection processing for the PUCCH signal based on the control signal from the control unit 105.
  • the SRS processing unit 333 measures the channel quality using the SRS input from the subcarrier demapping unit 315, and outputs the UL PRB channel quality measurement result to the control unit 105.
  • the SRS processing unit 333 is instructed by the control unit 105 as to which UL PRB signal of which uplink subframe the channel quality of the mobile station apparatus 5 is to be measured. Further, the SRS processing unit 333 detects an uplink synchronization shift using the SRS input from the subcarrier demapping unit 315, and sends information (synchronization shift information) indicating the uplink synchronization shift to the control unit 105. Output.
  • the SRS processing unit 333 may perform processing for detecting an uplink synchronization shift from a time domain received signal. The specific process may be the same as the process performed by the preamble detection unit 331 described later.
  • the preamble detection unit 331 performs processing for detecting (receiving) a preamble transmitted from a received signal corresponding to the PRACH based on the signal input from the A / D unit 303. Specifically, the preamble detection unit 331 performs correlation processing on a received signal at various timings within the guard time with a replica signal generated using each preamble sequence that may be transmitted. . For example, if the correlation value is higher than a preset threshold value, the preamble detection unit 331 receives from the mobile station device 5 the same signal as the preamble sequence used to generate the replica signal used for the correlation processing. Judge that it was sent. The preamble detection unit 331 determines that the timing with the highest correlation value is the arrival timing of the preamble sequence. The preamble detection unit 331 generates preamble detection information including at least information indicating the detected preamble sequence and information indicating arrival timing, and outputs the preamble detection information to the control unit 105.
  • the control unit 105 Based on the control information (DCI) transmitted from the base station device 3 to the mobile station device 5 using the PDCCH and the control information transmitted using the PDSCH, the control unit 105 performs subcarrier demapping unit 315, data demodulation Control unit 325, turbo decoding unit 327, propagation path estimation unit 317, and physical uplink control channel detection unit 329. Also, the control unit 105 determines which resource is the PRACH, PUSCH, PUCCH, and SRS that each mobile station device 5 has transmitted (may have transmitted) based on the control information that the base station device 3 has transmitted to the mobile station device 5. It is ascertained whether it is composed of (uplink subframe, UL PRB, frequency domain code sequence, time domain code sequence, preamble sequence).
  • FIG. 4 is a schematic block diagram showing the configuration of the mobile station apparatus 5 according to the embodiment of the present invention.
  • the mobile station apparatus 5 includes a reception processing unit (first reception processing unit) 401, a radio resource control unit (first radio resource control unit) 403, and a control unit (first control unit). 405 and a transmission processing unit 407.
  • the control unit 405 includes a path loss calculation unit 4051, a transmission power setting unit 4053, a power headroom control unit 4055, and a power headroom generation unit 4057.
  • the reception processing unit 401 receives a signal from the base station apparatus 3, and demodulates and decodes the received signal in accordance with an instruction from the control unit 405.
  • the reception processing unit 401 detects a PDCCH signal addressed to itself, the reception processing unit 401 outputs the DCI obtained by decoding the PDCCH signal to the control unit 405.
  • the reception processing unit 401 outputs control information regarding PUCCH resources included in the PDCCH to the control unit 405.
  • the reception processing unit 401 receives, via the control unit 405, information data obtained by decoding the PDSCH addressed to itself based on an instruction from the control unit 405 after outputting the DCI included in the PDCCH to the control unit 405. To the upper layer.
  • the downlink assignment includes information indicating the allocation of PDSCH resources.
  • the reception processing unit 401 outputs the control information generated by the radio resource control unit 103 of the base station apparatus 3 obtained by decoding the PDSCH to the control unit 405, and the radio of the own apparatus via the control unit 405. Output to the resource control unit 403.
  • the control information generated by the radio resource control unit 103 of the base station apparatus 3 includes information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, information regarding the configuration of CSI-RS, and a downlink reference signal used for path loss measurement.
  • Information indicating power headroom reporting parameters for example, dl-PathlossChange corresponding to the first path loss, dl-PathlossChange corresponding to the second path loss
  • path loss reference used for PUSCH transmission power control Information indicating path loss reference used for transmission power control of PUCCH, information indicating values of some parameters related to transmission power of PUSCH, and information indicating values of some parameters related to transmission power of PUCCH Including.
  • the reception processing unit 401 outputs a cyclic redundancy check (Cyclic Redundancy Check: CRC) code included in the PDSCH to the control unit 405.
  • CRC Cyclic Redundancy Check
  • the transmission processing unit 107 of the base station apparatus 3 generates a CRC code from the information data, and transmits the information data and the CRC code by PDSCH.
  • the CRC code is used to determine whether the data included in the PDSCH is incorrect or not. For example, if the information generated from the data using a generator polynomial determined in advance in the mobile station device 5 is the same as the CRC code generated in the base station device 3 and transmitted on the PDSCH, the data is correct. If the information generated from the data using the generator polynomial determined in advance in the mobile station apparatus 5 is different from the CRC code generated in the base station apparatus 3 and transmitted on the PDSCH, the data is incorrect. It is judged.
  • the reception processing unit 401 measures downlink reception quality (RSRP: “Reference” Signal “Received Power”) and outputs the measurement result to the control unit 405.
  • the reception processing unit 401 measures (calculates) RSRP from CRS or CSI-RS based on an instruction from the control unit 405. Details of the reception processing unit 401 will be described later.
  • the control unit 405 includes a path loss calculation unit 4051, a transmission power setting unit 4053, a power headroom control unit 4055, and a power headroom generation unit 4057.
  • the control unit 405 confirms the data transmitted from the base station device 3 using the PDSCH and input from the reception processing unit 401, outputs the information data to the upper layer in the data, and the base station device in the data
  • the reception processing unit 401 and the transmission processing unit 407 are controlled based on the control information generated by the third radio resource control unit 103. Further, the control unit 405 controls the reception processing unit 401 and the transmission processing unit 407 based on an instruction from the radio resource control unit 403.
  • the control unit 405 sets a downlink reference signal for measuring RSRP in the reception processing unit 401 based on information indicating a downlink reference signal used for path loss measurement.
  • the control unit 405 controls the transmission processing unit 407 to transmit a signal including power headroom information using the PUSCH instructed from the radio resource control unit 403.
  • the control unit 405 sets the path loss reference used for PUSCH transmission power control based on the information indicating the path loss reference used for PUSCH transmission power control, sets the PUSCH transmission power, and sends it to the transmission processing unit 407. Set.
  • control unit 405 sets the path loss reference used for PUCCH transmission power control based on the information indicating the path loss reference used for PUCCH transmission power control, sets the PUCCH transmission power, and sends it to the transmission processing unit 407.
  • Set For example, the control unit 405 sets the transmission power of the PUCCH and PUSCH based on the information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and sets the transmission power in the transmission processing unit 407.
  • the control unit 405 sets whether or not to perform simultaneous transmission of PUCCH and PUSCH based on information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and controls the transmission processing unit 407.
  • control unit 405 controls the reception processing unit 401 and the transmission processing unit 407 based on the DCI transmitted from the base station apparatus 3 using the PDCCH and input from the reception processing unit 401. Specifically, the control unit 405 controls the reception processing unit 401 based on the detected downlink assignment, and controls the transmission processing unit 407 based on the detected uplink grant. In addition, the control unit 405 compares the data input from the reception processing unit 401 with the CRC code input from the reception processing unit 401 using a predetermined generator polynomial, and determines whether the data is incorrect. ACK / NACK is generated. Further, the control unit 405 generates SR and CQI based on an instruction from the radio resource control unit 403. Further, the control unit 405 controls the transmission timing of the signal of the transmission processing unit 407 based on the adjustment value of the uplink transmission timing notified from the base station apparatus 3.
  • the path loss calculation unit 4051 calculates a path loss using the RSRP input from the reception processing unit 401.
  • the reception processing unit 401 measures RSRP for CRS and RSRP for CSI-RS, and inputs each measured RSRP to the path loss calculation unit 4051.
  • the path loss calculation unit 4051 performs path loss calculation using RSRP for CRS, and calculates path loss using RSRP for CSI-RS. For example, the path loss is calculated by subtracting the averaged RSRP value from the transmission power value of the downlink reference signal.
  • averaging uses a predetermined filter coefficient (filterCoefficent), a value obtained by multiplying a value obtained by averaging processing by (1-filterCoefficent), and a value obtained by multiplying a newly measured value by filterCoefficient. This is done by adding.
  • the value of the filter coefficient (filterCoefficent) used in the mobile station apparatus 5 is set by the base station apparatus 3 and RRH4.
  • the path loss calculation unit 4051 outputs the calculated information of each path loss (path loss based on CRS, path loss based on CSI-RS) to the transmission power setting unit 4053, the power headroom control unit 4055, and the power headroom generation unit 4057.
  • the transmission power setting unit 4053 sets uplink transmission power.
  • the transmission power setting unit 4053 sets transmission power for PUSCH, PUCCH, DM RS, SRS, and PRACH.
  • the transmission power setting unit 4053 is a parameter based on the path loss input from the path loss calculation unit 4051, the coefficient multiplied by the path loss, the number of UL PRBs allocated to the PUSCH (the bandwidth of the resources allocated for the PUSCH), Based on the parameters specific to the cell and mobile stations notified from the base station device 3 and RRH4, the parameters based on the transmission power control command notified from the base station device 3 and RRH4, etc., the desired transmission power of the PUSCH Set up.
  • the transmission power setting unit 4053 uses any of the path losses input from the path loss calculation unit 4051 for setting the PUSCH transmission power. Select whether or not.
  • the transmission power setting unit 4053 includes the path loss input from the path loss calculation unit 4051, parameters based on the PUCCH signal configuration, parameters based on the amount of information transmitted on the PUCCH, cell-specific information previously notified from the base station device 3 and RRH4, Based on parameters specific to the mobile station apparatus, parameters based on the transmission power control command notified from the base station apparatus 3 and RRH4, etc., the desired transmission power of PUCCH is set.
  • the transmission power setting unit 4053 uses any of the path loss input from the path loss calculation unit 4051 for setting the transmission power of the PUCCH based on the information indicating the path loss reference used for the transmission power control of the PUCCH notified from the base station apparatus 3. Select whether or not.
  • the transmission power setting unit 4053 includes a path loss input from the path loss calculation unit 4051, a coefficient to be multiplied by the path loss, a parameter based on the number of UL PRBs allocated to the SRS, cell-specific information previously notified from the base station apparatus 3 and the RRH 4, And a parameter specific to the mobile station apparatus, an offset previously notified from the base station apparatus 3 and RRH4, a parameter based on a transmission power control command notified from the base station apparatus 3 and RRH4, and the like.
  • the transmission power setting unit 4053 sets the transmission power for the DM RS, similar to the physical channel in which the DM RS is arranged.
  • the various parameters described above may be configured by using signaling from the base station apparatus 3 and RRH 4, or may be configured to have values that are uniquely set in the specification, or depending on various other factors. A configuration in which a value is set may be used.
  • the transmission power setting unit 4053 uses any one path loss among a plurality of path losses input from the path loss calculation unit 4051 for the channel and signal transmitted for each uplink subframe. Set the transmission power.
  • the transmission power setting unit 4053 controls the transmission processing unit 407 to use a set desired transmission power value or a transmission power value (maximum transmittable transmission power value that can be transmitted) configured in advance in the mobile station apparatus 5.
  • the transmission power setting unit 4053 compares the transmission power value configured in advance in the mobile station device 5 with a desired transmission power value, selects a smaller value, and uses the selected transmission power value to transmit the transmission processing unit. 407 is controlled.
  • the transmission power setting unit 4053 When the radio resource control unit 403 instructs the transmission power setting unit 4053 to simultaneously transmit PUCCH and PUSCH, the transmission power setting unit 4053, the transmission power value configured in advance in the mobile station device 5, the desired transmission power value of the PUCCH, and the desired PUSCH
  • the transmission processing unit 407 is controlled to use a selected transmission power value by selecting a smaller value by comparing with the total transmission power value.
  • the transmission power value configured in advance in the mobile station apparatus 5 is smaller than the total value of the desired transmission power value of PUCCH and the desired transmission power value of PUSCH, basically, the transmission power value of PUCCH As the transmission power value of PUSCH, a value obtained by subtracting the transmission power value of the set PUCCH from the transmission power value (maximum transmittable transmission power value) configured in advance is set as the transmission power value of PUSCH.
  • the transmission power setting unit 4053 uses two types of modes for setting parameters based on the transmission power control command.
  • One mode is a mode in which the notified transmission power control command values are accumulated.
  • the other mode is a mode in which only the latest transmission power control command value is used without integrating the notified values of the plurality of transmission power control commands.
  • the accumulation mode or the absolute mode is set in the mobile station apparatus 5 using RRC signaling, and the accumulation mode is set in the mobile station apparatus 5 for the PUCCH.
  • the transmission power setting unit 4053 performs independent transmission power control for each path loss input from the path loss calculation unit 4051. Specifically, the transmission power setting unit 4053 executes a plurality of independent transmission power setting processes, and uses different path losses in each transmission power setting process. For the transmission power setting process in which different path loss is used, an independent parameter is notified from the base station apparatus 3 and the RRH 4, and the notified independent parameter is used. For example, for transmission power setting processing in which different path loss is used, a coefficient to be multiplied by the path loss, cell-specific and mobile station device-specific parameters previously notified from the base station device 3 and RRH4, base station device 3 and RRH4 The transmission power control command notified from the base station apparatus 3 and the RRH 4 is notified and used.
  • the actual values of the independent parameters for the transmission power setting process in which different path losses are used may be the same.
  • a configuration may be used in which some parameters are commonly used for transmission power setting processing in which different path losses are used.
  • the path loss that can be used for setting the transmission power can be switched for each uplink subframe, and for some different uplink signals, the uplink A configuration in which path loss that can be used for transmission power setting for each subframe is not switched and only one path loss is used may be used.
  • a path loss based on CRS and a path loss based on CSI-RS can be switched for each uplink subframe for PUSCH, and a path loss for each uplink subframe is not switched for PUCCH.
  • a configuration in which path loss based on CSI-RS is used may be used.
  • the power headroom control unit 4055 controls power headroom reporting.
  • the power headroom control unit 4055 uses the parameters related to power headroom reporting (periodicPHR-Timer, prohibitPHR-Timer, dl-PathlossChange) and the path loss input from the path loss calculation unit 4051 to transmit power headroom. Control.
  • the power headroom control unit 4055 determines which path loss of the path loss input from the path loss calculation unit 4051 is the transmission power of the PUSCH in the transmission power setting unit 4053 based on the information notified from the base station device 3 and the RRH 4. It is grasped whether the path loss (first path loss) used for the setting or the path loss (second path loss) used for setting the transmission power of the PUCCH.
  • the power headroom control unit 4055 performs the power headroom reporting process when the path loss reference used for PUSCH transmission power control is reset based on the information notified from the base station apparatus 3 and the RRH 4. You may judge that it starts (Trigger). Further, the power headroom control unit 4055 resets the path loss reference used for PUCCH transmission power control when simultaneous transmission of PUCCH and PUSCH is configured based on information notified from the base station device 3 and RRH4. As a trigger, it may be determined to start the power headroom reporting process.
  • the power headroom control unit 4055 resets the path loss reference used for the transmission power control of the PUCCH when simultaneous transmission of the PUCCH and the PUSCH is not configured based on the information notified from the base station device 3 and the RRH 4. As a result, it is not necessary to determine that the power headroom reporting process is started.
  • the power headroom control unit 4055 When the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 does not consider the second path loss and uses dl-PathlossChange for the first path loss. Judgment of start (Trigger) of reporting process of headroom When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 reports power headroom using dl-PathlossChange for the first path loss and the second path loss. Judge the start of the process. When it is determined that the power headroom reporting process is started, the power headroom control unit 4055 controls the transmission processing unit 407 to transmit the power headroom information using the PUSCH. When the power headroom control unit 4055 controls the transmission processing unit 407 to transmit power headroom information using PUSCH, the power headroom control unit 4055 instructs the power headroom generation unit 4057 to generate the power headroom. Control.
  • a plurality of parameters related to power headroom reporting are set for the power headroom control unit 4055. Parameters are set independently for power headroom reporting using the first path loss and power headroom reporting using the second path loss. In the power headroom control unit 4055, different dl-PathlossChanges are set for different path loss references. In the power headroom control unit 4055, different dl-PathlossChanges are set for the first path loss and the second path loss. Note that the dl-PathlossChange for the first path loss and the second path loss may have the same value. The power headroom control unit 4055 determines a trigger for the power headroom reporting process using different dl-PathlossChanges for the first path loss and the second path loss.
  • the power headroom control unit 4055 performs a threshold determination between the dl-PathlossChange and the amount of change in the path loss with respect to the path loss corresponding to the dl-PathlossChange.
  • the power headroom control unit 4055 does not consider the second path loss and uses dl-PathlossChange for the first path loss. Judgment to start the headroom reporting process.
  • the power headroom control unit 4055 determines the power headroom when the change amount of the first path loss is larger than the value of dl-PathlossChange.
  • the power headroom control unit 4055 reports power headroom using dl-PathlossChange for the first path loss and the second path loss. Judge the start of the process.
  • the power headroom control unit 4055 determines whether the change amount of the first path loss or the change amount of the second path loss is based on the value of dl-PathlossChange. When it becomes larger, it is determined that the power headroom reporting process is started.
  • the power headroom control unit 4055 controls the transmission processing unit 407 so that the power headroom is transmitted on the PUSCH to which the resource is first allocated after determining that the power headroom reporting process is started.
  • a single periodicPHR-Timer is set.
  • the power headroom control unit 4055 determines to start the power headroom reporting process when the periodicPHR-Timer expires.
  • the power headroom control unit 4055 controls the transmission processing unit 407 so that the power headroom is transmitted on the PUSCH to which the resource is first allocated after determining that the power headroom reporting process is started.
  • the mobile station apparatus 5 recognizes that the PUSCH resource has been allocated from the received UL grant, and executes related processing in the power headroom control unit 4055 assuming that the PUSCH resource has been allocated.
  • Information regarding the bandwidth of the allocated PUSCH resource is input to transmission power setting section 4053 and power headroom generation section 4057.
  • the power headroom generating unit 4057 generates a power headroom.
  • the power headroom is information regarding the room for transmission power.
  • the power headroom generation unit 4057 generates a first type report or a second type report as a power headroom.
  • the power headroom generation unit 4057 generates a first type of report as power headroom when simultaneous transmission of PUCCH and PUSCH is not configured, and power headroom when simultaneous transmission of PUCCH and PUSCH is configured. Generate a second type of report as a room.
  • the power headroom generation unit 4057 includes a nominal mobile station maximum transmission power, a path loss for the PUSCH input from the path loss calculation unit 4051, a coefficient to be multiplied by the path loss, and the number of UL PRBs allocated to the PUSCH (PUSCH Parameters based on the resource bandwidth allocated to the base station apparatus 3 and cell-specific parameters previously notified from the base station apparatus 3 and RRH4, and PUSCH notified from the base station apparatus 3 and RRH4.
  • a first type of report is generated based on the parameters based on the transmission power control command.
  • the path loss used for generating the first type of report is the path loss of the path loss reference set for PUSCH transmission power control. Note that parameters other than those described above may be added to generate the first type of report.
  • the power headroom generation unit 4057 is based on the path loss input from the path loss calculation unit 4051, the coefficient multiplied by the path loss, and the number of UL PRBs allocated to PUSCH (the bandwidth of resources allocated for PUSCH). Based on the parameters, the cell-specific and mobile-station-specific parameters previously notified from the base station apparatus 3 and RRH4, and the parameters based on the transmission power control command notified from the base station apparatus 3 and RRH4, the desired for the PUSCH Calculate the transmission power of. The power headroom generation unit 4057 uses the value obtained by subtracting the desired transmission power for the PUSCH from the nominal maximum transmission power of the mobile station as information of the first type report.
  • the path loss used in the generation of power headroom is a path loss used for setting the transmission power of the PUSCH used for power headroom transmission.
  • the coefficient used to generate the power headroom, the coefficient multiplied by the path loss, the cell-specific parameters previously notified from the base station apparatus 3 and RRH4, and the parameters specific to the mobile station apparatus, and notified from the base station apparatus 3 and RRH4 As the parameter based on the transmission power control command, a parameter corresponding to a path loss used in generating the power headroom is used.
  • the parameters based on the number of UL PRBs allocated to PUSCH (resource bandwidth allocated for PUSCH) used in the generation of power headroom are those set in PUSCH used for transmission of power headroom. is there.
  • Information and instructions necessary for generating the power headroom are input to the power headroom generation unit 4057 from other processing units such as the power headroom control unit 4055.
  • the power headroom generation unit 4057 includes the nominal mobile station maximum transmission power, the path loss for the PUSCH and the path loss for the PUCCH input from the path loss calculation unit 4051, the coefficient multiplied by the path loss, and the UL PRB assigned to the PUSCH. Parameters based on the number (bandwidth of resources allocated for PUSCH), parameters based on the PUCCH signal configuration, parameters based on the amount of information transmitted on the PUCCH, and notified in advance from the base station apparatus 3 and RRH4.
  • the path loss for the PUSCH used for generating the second type of report is the path loss of the path loss reference set for the PUSCH transmission power control.
  • the path loss for the PUCCH used for generating the second type of report is the path loss of the path loss reference set in the transmission power control of the PUCCH. Note that parameters other than those described above may be added to generate the second type of report.
  • the power headroom generation unit 4057 includes a path loss for the PUSCH input from the path loss calculation unit 4051, a coefficient to be multiplied by the path loss, and the number of UL PRBs allocated to the PUSCH (the bandwidth of resources allocated for the PUSCH). , Parameters specific to cells and mobile stations specific previously notified from the base station apparatus 3 and RRH4, and parameters based on transmission power control commands for PUSCH notified from the base station apparatus 3 and RRH4 , Calculate the desired transmit power for the PUSCH.
  • the power headroom generation unit 4057 receives the path loss for the PUCCH input from the path loss calculation unit 4051, the parameter based on the PUCCH signal configuration, the parameter based on the amount of information transmitted on the PUCCH, and the base station apparatus 3 and the RRH 4 in advance. Based on the notified cell-specific and mobile station device-specific parameters and the parameters based on the transmission power control command for the PUCCH notified from the base station device 3 and RRH4, the desired transmission power for the PUCCH is calculated. The power headroom generation unit 4057 obtains a value obtained by subtracting the total value of the desired transmission power value for PUSCH and the desired transmission power value for PUCCH from the nominal maximum transmission power of the mobile station.
  • the path loss for the PUSCH used in generating the power headroom is a path loss used for setting the transmission power of the PUSCH used for power headroom transmission.
  • a coefficient used to generate power headroom a coefficient multiplied by a path loss, a cell-specific parameter and a mobile station device-specific parameter previously notified from the base station apparatus 3 and RRH 4
  • the parameters based on the transmission power control command notified from the station apparatus 3 and the RRH 4 are the path loss used in generating the power headroom (path loss set for PUSCH transmission power control, path loss set for PUCCH transmission power control). Corresponding to each of the path loss).
  • the parameters based on the number of UL PRBs allocated to PUSCH (resource bandwidth allocated for PUSCH) used in the generation of power headroom are those set in PUSCH used for transmission of power headroom. is there.
  • Information and instructions necessary for generating the power headroom are input to the power headroom generation unit 4057 from other processing units such as the power headroom control unit 4055.
  • parameters related to transmission power cell-specific and mobile station device-specific parameters, a coefficient to be multiplied by the path loss, and an offset used for the SRS are notified from the base station device 3 using the PDSCH, and the transmission power A control command is notified from the base station apparatus 3 using PDCCH. Other parameters are calculated from the received signal or calculated and set based on other information.
  • the transmission power control command for PUSCH is included in the uplink grant, and the transmission power control command for PUCCH is included in the downlink assignment.
  • the control unit 405 controls the PUCCH signal configuration according to the type of UCI to be transmitted, and controls the PUCCH signal configuration used by the transmission power setting unit 4053.
  • Various parameters related to transmission power notified from the base station apparatus 3 are appropriately stored in the radio resource control unit 403, and the stored values are input to the transmission power setting unit 4053 and the power headroom generation unit 4057. .
  • the PUCCH when the second type report is generated as the power headroom, in the uplink subframe in which the PUSCH used for transmission of the power headroom is transmitted, the PUCCH is not actually transmitted, and only the PUSCH is transmitted. Is transmitted, virtual transmission power is used as the transmission power related to the PUCCH of the second type of report.
  • the virtual transmission power of the PUCCH includes the path loss for the PUCCH, the parameters specific to the cell and mobile station previously notified from the base station apparatus 3 and RRH4, and the transmission to the PUCCH notified from the base station apparatus 3 and RRH4. And a parameter based on the power control command.
  • the power headroom generation unit 4057 includes a path loss for the PUCCH input from the path loss calculation unit 4051, cell-specific and mobile station device-specific parameters previously notified from the base station device 3 and the RRH 4, and a base station
  • the virtual transmission power for the PUCCH is calculated based on the parameter based on the transmission power control command for the PUCCH notified from the device 3 and the RRH 4, and the desired transmission power value for the PUSCH and the PUCCH are calculated from the nominal maximum transmission power of the mobile station.
  • the radio resource control unit 403 stores and holds the control information generated by the radio resource control unit 103 of the base station device 3 and notified from the base station device 3, and receives the reception processing unit 401 via the control unit 405.
  • the transmission processing unit 407 is controlled. That is, the radio resource control unit 403 has a memory function for holding various parameters.
  • the radio resource control unit 403 holds parameters related to transmission power of PUSCH, PUCCH, and SRS, and uses the parameters notified from the base station apparatus 3 in the transmission power setting unit 4053 and the power headroom generation unit 4057.
  • the control signal is output to the control unit 405.
  • the radio resource control unit 403 holds information on the type of downlink reference signal used for path loss measurement, and the reception quality used for path loss calculation from the type of downlink reference signal notified from the base station apparatus 3 and RRH 4
  • a control signal is output to the control unit 405 so as to measure (RSRP).
  • the radio resource control unit 403 holds information indicating a path loss reference used for PUSCH transmission power control, and the base station apparatus 3 performs transmission power setting unit 4053, power headroom control unit 4055, and power headroom generation unit 4057.
  • a control signal is output to the control unit 405 so that the notified path loss reference path loss is used for PUSCH.
  • the radio resource control unit 403 holds information indicating a path loss reference used for PUCCH transmission power control, and controls the transmission power setting unit 4053 to use the path loss of the path loss reference notified from the base station apparatus 3 for the PUCCH.
  • the signal is output to the control unit 405.
  • the radio resource control unit 403 holds information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and notifies the base station apparatus 3 in the transmission power setting unit 4053, the power headroom control unit 4055, and the power headroom generation unit 4057.
  • a control signal is output to the control unit 405 so as to use the configuration for simultaneous transmission of the PUCCH and PUSCH.
  • the transmission processing unit 407 transmits a signal obtained by encoding and modulating power headroom, information data, and UCI according to instructions from the control unit 405 to the base station apparatus 3 via the transmission antenna 411 using the PUSCH and PUCCH resources. Transmit with RS. Also, the transmission processing unit 407 transmits the SRS according to the instruction from the control unit 405. Further, the transmission processing unit 407 transmits a preamble to the base station apparatus 3 and the RRH 4 using the PRACH resource according to the instruction of the control unit 405. Also, the transmission processing unit 407 sets PUSCH, PUCCH, PRACH (not described), DM RS, and SRS transmission power in accordance with instructions from the control unit 405. Details of the transmission processing unit 407 will be described later.
  • FIG. 5 is a schematic block diagram showing the configuration of the reception processing unit 401 of the mobile station apparatus 5 according to the embodiment of the present invention.
  • the reception processing unit 401 includes a reception RF unit 501, an A / D unit 503, a symbol timing detection unit 505, a GI removal unit 507, an FFT unit 509, a demultiplexing unit 511, a propagation path estimation unit 513, PDSCH propagation path compensation section 515, physical downlink shared channel decoding section 517, PDCCH propagation path compensation section 519, physical downlink control channel decoding section 521, and downlink reception quality measurement section 531 are configured.
  • the physical downlink shared channel decoding unit 517 includes a data demodulation unit 523 and a turbo decoding unit 525.
  • the physical downlink control channel decoding unit 521 includes a QPSK demodulation unit 527 and a Viterbi decoder unit 529.
  • the reception RF unit 501 appropriately amplifies the signal received by the reception antenna 409, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and amplifies the signal so that the signal level is properly maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal.
  • the reception RF unit 501 outputs the quadrature demodulated analog signal to the A / D unit 503.
  • the A / D unit 503 converts the analog signal quadrature demodulated by the reception RF unit 501 into a digital signal, and outputs the converted digital signal to the symbol timing detection unit 505 and the GI removal unit 507.
  • Symbol timing detection section 505 detects symbol timing based on the digital signal converted by A / D section 503, and outputs a control signal indicating the detected symbol boundary timing to GI removal section 507.
  • GI removal section 507 removes a portion corresponding to the guard interval from the digital signal output from A / D section 503 based on the control signal from symbol timing detection section 505, and converts the remaining portion of the signal to FFT section 509. Output to.
  • the FFT unit 509 performs fast Fourier transform on the signal input from the GI removing unit 507, performs OFDM demodulation, and outputs the result to the demultiplexing unit 511.
  • the demultiplexing unit 511 separates the signal demodulated by the FFT unit 509 into a PDCCH signal and a PDSCH signal based on the control signal input from the control unit 405.
  • the demultiplexing unit 511 outputs the separated PDSCH signal to the PDSCH propagation path compensation unit 515 and outputs the separated PDCCH signal to the PDCCH propagation path compensation unit 519.
  • the demultiplexing unit 511 demultiplexes the downlink resource element in which the downlink pilot channel is arranged, and outputs the downlink reference signal (CRS, UE specific RS) of the downlink pilot channel to the propagation path estimation unit 513.
  • CRS downlink reference signal
  • the demultiplexing unit 511 outputs the downlink reference signals (CRS, CSI-RS) of the downlink pilot channel to the downlink reception quality measuring unit 531.
  • the demultiplexing unit 511 outputs the PDCCH signal to the PDCC channel compensation unit 519, and outputs the PDSCH signal to the PDSCH channel compensation unit 515.
  • the propagation path estimation unit 513 estimates the propagation path variation using the downlink reference signal (CRS, UE specific RS) of the downlink pilot channel separated by the demultiplexing unit 511 and the known signal, and the propagation path variation.
  • the channel compensation value for adjusting the amplitude and phase is output to the channel compensation unit 515 for PDSCH and the channel compensation unit 519 for PDCCH.
  • the propagation path estimation unit 513 estimates propagation path fluctuations independently using the CRS and the UE specific RS, and outputs a propagation path compensation value.
  • the propagation path estimation part 513 estimates the fluctuation
  • the processing used for the UE specific RS is performed.
  • a common precoding process is performed.
  • the PDSCH channel compensation unit 515 adjusts the amplitude and phase of the PDSCH signal separated by the demultiplexing unit 511 according to the channel compensation value input from the channel estimation unit 513.
  • the PDSCH propagation path compensation unit 515 adjusts the PDSCH signal transmitted using cooperative communication according to the propagation path compensation value generated based on the UE specific RS by the propagation path estimation unit 513.
  • the channel estimation unit 513 adjusts the PDSCH signal transmitted without using communication according to the channel compensation value generated based on the CRS.
  • PDSCH propagation path compensation section 515 outputs the signal whose propagation path has been adjusted to data demodulation section 523 of physical downlink shared channel decoding section 517.
  • the PDSCH channel compensation unit 515 generates a PDSCH signal that is transmitted without using cooperative communication (without applying the precoding process) based on the UE specific RS by the channel channel estimation unit 513. It is also possible to adjust according to the propagation path compensation value.
  • the physical downlink shared channel decoding unit 517 performs demodulation and decoding of the PDSCH based on an instruction from the control unit 405, and detects information data.
  • the data demodulating unit 523 demodulates the PDSCH signal input from the PDSCH channel compensation unit 515 and outputs the demodulated PDSCH signal to the turbo decoding unit 525. This demodulation is demodulation corresponding to the modulation method used in the data modulation unit 221 of the base station apparatus 3.
  • the turbo decoding unit 525 decodes information data from the demodulated PDSCH signal input from the data demodulation unit 523 and outputs the decoded information data to the upper layer via the control unit 405.
  • control information generated by the radio resource control unit 103 of the base station apparatus 3 transmitted using the PDSCH is also output to the control unit 405, and is also output to the radio resource control unit 403 via the control unit 405.
  • the PDCCH channel compensation unit 519 adjusts the amplitude and phase of the PDCCH signal separated by the demultiplexing unit 511 according to the channel compensation value input from the channel estimation unit 513. For example, the PDCCH channel compensation unit 519 adjusts the PDCCH signal according to the channel compensation value generated based on the CRS by the channel estimation unit 513 and transmits the PDCCH (E -PDCCH) is adjusted according to the propagation path compensation value generated based on the UE specific RS by the propagation path estimation unit 513. PDCCH propagation path compensation section 519 outputs the adjusted signal to QPSK demodulation section 527 of physical downlink control channel decoding section 521.
  • the channel compensation unit 519 for PDCCH uses a channel estimation unit 513 for a signal of PDCCH (including E-PDCCH) transmitted without using cooperative communication (without applying precoding processing). It can also adjust according to the propagation path compensation value produced
  • the physical downlink control channel decoding unit 521 demodulates and decodes the signal input from the PDCCH channel compensation unit 519 as described below, and detects control data.
  • the QPSK demodulator 527 performs QPSK demodulation on the PDCCH signal and outputs the result to the Viterbi decoder 529.
  • the Viterbi decoder unit 529 decodes the signal demodulated by the QPSK demodulator 527 and outputs the decoded DCI to the controller 405.
  • this signal is expressed in bit units, and the Viterbi decoder unit 529 also performs rate dematching in order to adjust the number of bits for which Viterbi decoding processing is performed on the input bits.
  • the mobile station apparatus 5 performs a process of detecting DCI addressed to itself for the PDCCH, assuming a plurality of coding rates.
  • the mobile station apparatus 5 performs a different decoding process on the PDCCH signal for each assumed coding rate, and acquires DCI included in the PDCCH in which no error was detected in the CRC code added to the PDCCH together with the DCI. To do.
  • Such a process is called blind decoding.
  • the mobile station apparatus 5 may perform blind decoding only on signals of some resources instead of performing blind decoding on signals of all resources in the downlink system band. . An area of a part of the resource where blind decoding is performed is referred to as “Search space”. Further, the mobile station apparatus 5 may perform blind decoding on different resources for each coding rate.
  • the control unit 405 determines whether the DCI input from the Viterbi decoder unit 529 is error-free and is addressed to the own device. If the control unit 405 determines that the DCI is addressed to the device without error, the demultiplexing unit is based on the DCI. 511, a data demodulating unit 523, a turbo decoding unit 525, and a transmission processing unit 407 are controlled. For example, when the DCI is a downlink assignment, the control unit 405 controls the reception processing unit 401 to decode the PDSCH signal. Note that the CRC code is also included in the PDCCH as in the PDSCH, and the control unit 405 determines whether or not the DCI of the PDCCH is incorrect using the CRC code.
  • the downlink reception quality measurement unit 531 measures the downlink reception quality (RSRP) of the cell using the downlink reference signals (CRS, CSI-RS) of the downlink pilot channel, and the measured downlink reception quality information. Is output to the control unit 405.
  • the downlink reception quality measurement unit 531 also performs instantaneous channel quality measurement for generating CQI to be notified to the base station apparatus 3 and the RRH 4 in the mobile station apparatus 5.
  • the downlink reception quality measurement unit 531 measures RSRP using any kind of downlink reference signals (CRS, CSI-RS, CRS and CSI-RS) from the base station apparatus 3 and the RRH 4 via the control unit 405. To be controlled. This control is controlled by information indicating a downlink reference signal used for path loss measurement.
  • the downlink reception quality measurement unit 531 measures RSRP using CRS.
  • the downlink reception quality measurement unit 531 measures RSRP using CSI-RS.
  • the downlink reception quality measurement unit 531 measures RSRP using CRS and measures RSRP using CSI-RS.
  • the downlink reception quality measurement unit 531 always performs RSRP measurement using CRS, and additionally performs RSRP measurement using CSI-RS when instructed by the base station apparatus 3 and RRH4.
  • the downlink reception quality measurement unit 531 outputs information such as the measured RSRP to the control unit 405.
  • FIG. 6 is a schematic block diagram showing the configuration of the transmission processing unit 407 of the mobile station apparatus 5 according to the embodiment of the present invention.
  • the transmission processing unit 407 includes a turbo coding unit 611, a data modulation unit 613, a DFT unit 615, an uplink pilot channel processing unit 617, a physical uplink control channel processing unit 619, a subcarrier mapping unit 621, An IFFT unit 623, a GI insertion unit 625, a transmission power adjustment unit 627, a random access channel processing unit 629, a D / A unit 605, a transmission RF unit 607, and a transmission antenna 411 are configured.
  • the transmission processing unit 407 performs coding and modulation on information data and UCI, generates a signal to be transmitted using PUSCH and PUCCH, and adjusts transmission power of PUSCH and PUCCH.
  • the transmission processing unit 407 generates a signal to be transmitted using the PRACH and adjusts the transmission power of the PRACH.
  • the transmission processing unit 407 generates DM RSs and SRSs, and adjusts the transmission powers of the DM RSs and SRSs.
  • the turbo coding unit 611 performs turbo coding for increasing the error tolerance of the data at the coding rate instructed by the control unit 405, and outputs the input information data to the data modulation unit 613.
  • the data modulation unit 613 modulates the code data encoded by the turbo coding unit 611 using a modulation method instructed by the control unit 405, for example, a modulation method such as QPSK, 16QAM, or 64QAM, and converts the signal sequence of modulation symbols. Generate.
  • Data modulation section 613 outputs the generated modulation symbol signal sequence to DFT section 615.
  • the DFT unit 615 performs discrete Fourier transform on the signal output from the data modulation unit 613 and outputs the result to the subcarrier mapping unit 621.
  • the physical uplink control channel processing unit 619 performs baseband signal processing for transmitting the UCI input from the control unit 405.
  • the UCI input to the physical uplink control channel processing unit 619 is ACK / NACK, SR, and CQI.
  • the physical uplink control channel processing unit 619 performs baseband signal processing and outputs the generated signal to the subcarrier mapping unit 621.
  • the physical uplink control channel processing unit 619 encodes UCI information bits to generate a signal.
  • the physical uplink control channel processing unit 619 performs signal processing related to frequency domain code multiplexing and / or time domain code multiplexing on a signal generated from UCI.
  • the physical uplink control channel processing unit 619 is a control unit for realizing frequency domain code multiplexing for PUCCH signals generated from ACK / NACK information bits, SR information bits, or CQI information bits. Multiply the code sequence indicated by 405.
  • the physical uplink control channel processing unit 619 uses a code instructed by the control unit 405 to implement time-domain code multiplexing for PUCCH signals generated from ACK / NACK information bits or SR information bits. Multiply series.
  • the uplink pilot channel processing unit 617 generates SRS and DM RS, which are known signals in the base station apparatus 3, based on an instruction from the control unit 405, and outputs the SRS and DM RS to the subcarrier mapping unit 621.
  • the subcarrier mapping unit 621 converts the signal input from the uplink pilot channel processing unit 617, the signal input from the DFT unit 615, and the signal input from the physical uplink control channel processing unit 619 into the control unit 405. Are arranged on subcarriers according to instructions from, and output to IFFT section 623.
  • the IFFT unit 623 performs fast inverse Fourier transform on the signal output from the subcarrier mapping unit 621 and outputs the result to the GI insertion unit 625.
  • the number of points of IFFT section 623 is larger than the number of points of DFT section 615, and mobile station apparatus 5 transmits using PUSCH by using DFT section 615, subcarrier mapping section 621, and IFFT section 623.
  • DFT-Spread-OFDM modulation is performed on the signal.
  • GI insertion section 625 adds a guard interval to the signal input from IFFT section 623 and outputs the signal to transmission power adjustment section 627.
  • the random access channel processing unit 629 generates a signal to be transmitted by PRACH using the preamble sequence instructed by the control unit 405, and outputs the generated signal to the transmission power adjustment unit 627.
  • the transmission power adjustment unit 627 transmits a signal input from the GI insertion unit 625 or a signal input from the random access channel processing unit 629 based on a control signal from the control unit 405 (transmission power setting unit 4053). The power is adjusted and output to the D / A unit 605.
  • the transmission power adjustment unit 627 controls the average transmission power of PUSCH, PUCCH, DM RS, SRS, and PRACH for each uplink subframe.
  • the D / A unit 605 converts the baseband digital signal input from the transmission power adjustment unit 627 into an analog signal and outputs the analog signal to the transmission RF unit 607.
  • the transmission RF unit 607 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 605, and removes an extra frequency component for the intermediate frequency band.
  • the transmission RF unit 607 converts (up-converts) the intermediate frequency signal into a high frequency signal, removes excess frequency components, amplifies the power, and transmits to the base station apparatus 3 via the transmission antenna 411. Send.
  • FIG. 7 is a flowchart showing an example of processing for determining the start (trigger) of the power headroom reporting process of the mobile station apparatus 5 according to the embodiment of the present invention.
  • the mobile station device 5 determines whether or not simultaneous transmission of PUCCH and PUSCH is configured (step S101). If it is determined that simultaneous transmission of PUCCH and PUSCH is configured (step S101: YES), the mobile station device 5 uses dl-PathlossChange for the first path loss and the second path loss.
  • the start of the reporting process is determined (step S102). Next, the mobile station apparatus 5 determines whether or not the change amount of the first path loss or the change amount of the second path loss is larger than the value of dl-PathlossChange (step S103).
  • step S103 When the mobile station apparatus 5 determines that the first path loss change amount or the second path loss change amount is greater than the value of dl-PathlossChange (step S103: YES), the mobile station device 5 starts the power headroom reporting process. Judgment is made (step S104). If the mobile station apparatus 5 determines that the change amount of the first path loss or the change amount of the second path loss is not larger than the value of dl-PathlossChange (step S103: NO), the mobile station device 5 starts the power headroom reporting process. Then, it is not determined (step S105).
  • step S101 If it is determined that simultaneous transmission of PUCCH and PUSCH is not configured (step S101: NO), the mobile station device 5 starts power headroom reporting processing using dl-PathlossChange for the first path loss. Judgment is made (step S106). Next, the mobile station apparatus 5 determines whether or not the amount of change in the first path loss is larger than the value of dl-PathlossChange (step S107). If the mobile station apparatus 5 determines that the amount of change in the first path loss is greater than the value of dl-PathlossChange (step S107: YES), the mobile station apparatus 5 determines to start the power headroom reporting process (step S108).
  • step S107 determines that the amount of change in the first path loss is not greater than the value of dl-PathlossChange (step S107: NO)
  • the mobile station apparatus 5 does not determine to start the power headroom reporting process (step S109). After determining that the power headroom reporting process is started, the mobile station apparatus 5 transmits the power headroom using the PUSCH to which the resource is newly allocated.
  • the mobile station apparatus 5 calculates a plurality of path losses based on the CRS (first reference signal) and the CSI-RS (second reference signal).
  • the transmission power for the PUSCH is set using any one of the path losses
  • the transmission power for the PUCCH is set using any one of the plurality of path losses, and assigned for the PUSCH.
  • a first type of report is generated using the resource bandwidth and the path loss used to set the PUSCH transmission power, and the resource bandwidth allocated for the PUSCH and the PUSCH transmission power setting.
  • a second type of report is generated using the path loss used for the PUCCH and the path loss used for setting the transmission power of the PUCCH, and the PUCCH and PU
  • the power headroom reporting process is started when the amount of change in the first path loss (path loss used for setting the PUSCH transmission power) is larger than dl-PathlossChange.
  • the change amount of the first path loss or the change amount of the second path loss is larger than dl-PathlossChange.
  • RRH 4 can efficiently perform uplink scheduling (PUSCH resource allocation, modulation scheme determination) with respect to mobile station apparatus 5, but PUCCH and PUSCH are not simultaneously transmitted, and PUCCH and PUSCH are simultaneously transmitted.
  • the base station apparatus 3 and RRH 4 efficiently perform uplink scheduling (PUSCH resource allocation and modulation scheme determination) for the mobile station apparatus 5 while preventing an increase in signaling overhead related to power headroom reporting. Can be done.
  • the mobile station device 5 is not limited to a mobile terminal, and the present invention may be realized by implementing the function of the mobile station device 5 in a fixed terminal.
  • the characteristic means of the present invention described above can also be realized by mounting and controlling functions in an integrated circuit. That is, the integrated circuit of the present invention is an integrated circuit mounted on the mobile station apparatus 5 that communicates with the base station apparatus 3 and the RRH 4, and receives a signal from the base station apparatus 3 and the RRH 4 in a certain cell. Calculated by a reception processing unit, a path loss calculation unit that calculates a plurality of path losses based on the first reference signal and the second reference signal received by the first reception processing unit, and the path loss calculation unit.
  • a first type of report is generated as a power headroom, which is information related to a room for transmission power for transmission of only the physical uplink shared channel, for the physical uplink shared channel.
  • a power headroom generating unit that generates a second type of report as a power headroom that is information on the room for transmission power for simultaneous transmission of the physical uplink shared channel and the physical uplink control channel, and the power A parameter for controlling transmission of the power headroom generated by the headroom generation unit.
  • a headroom controller, and the power headroom controller changes the first path loss when the mobile station device is not configured to simultaneously transmit a physical uplink shared channel and a physical uplink control channel.
  • the power headroom reporting process is started, and when the mobile station apparatus is configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel, When the amount of change in the first path loss or the amount of change in the second path loss is greater than the value of dl-PathlossChange, it is determined that the power headroom reporting process is started.
  • the mobile station device 5 using the integrated circuit of the present invention calculates a plurality of path losses based on the CRS (first reference signal) and the CSI-RS (second reference signal).
  • the transmission power for the PUSCH is set using any one of the path losses
  • the transmission power for the PUCCH is set using any one of the plurality of path losses, and assigned for the PUSCH.
  • a first type of report is generated using the resource bandwidth and the path loss used to set the PUSCH transmission power, and the resource bandwidth allocated for the PUSCH and the PUSCH transmission power setting.
  • a second type of report is generated using the path loss used for the PUCCH and the path loss used for setting the transmission power of the PUCCH, and the PUCCH and PU
  • the power headroom reporting process is started when the amount of change in the first path loss (path loss used for setting the PUSCH transmission power) is larger than dl-PathlossChange.
  • the change amount of the first path loss or the change amount of the second path loss is larger than dl-PathlossChange.
  • RRH 4 can efficiently perform uplink scheduling (PUSCH resource allocation, modulation scheme determination) with respect to mobile station apparatus 5, but PUCCH and PUSCH are not simultaneously transmitted, and PUCCH and PUSCH are simultaneously transmitted.
  • the base station apparatus 3 and RRH 4 efficiently perform uplink scheduling (PUSCH resource allocation and modulation scheme determination) for the mobile station apparatus 5 while preventing an increase in signaling overhead related to power headroom reporting. Can be done.
  • the second embodiment of the present invention differs from the first embodiment in downlink reference signals used for measuring a plurality of path losses.
  • each of the plurality of path losses is calculated based on the CSI-RS, but each path loss is a CSI-RS corresponding to a different antenna port (first reference signal, second reference signal).
  • the mobile station apparatus 5 is designated by the base station apparatus 3 and RRH 4 as CSI-RS antenna ports (including a plurality of antenna ports) used for measuring the path loss.
  • Some CSI-RSs are transmitted only from the antenna port of the base station apparatus 3, and some CSI-RSs are transmitted only from the RRH 4.
  • one path loss is calculated based on CSI-RS transmitted only from the antenna port of the base station apparatus 3, and the other path loss is calculated from the antenna port of RRH4. Only based on CSI-RS transmitted only.
  • the mobile station apparatus 5 sets the desired transmission power of the PUSCH using any one of the path losses calculated based on the CSI-RS of different antenna ports. For example, when the PUSCH receiving destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for setting the desired transmission power of the PUSCH. When the destination of PUSCH is RRH4, the path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for setting the desired transmission power of PUSCH. In the mobile station apparatus 5, any one of the path losses calculated based on the CSI-RS corresponding to different antenna ports is set for transmission power control of PUSCH. In the mobile station apparatus 5, one of CSI-RSs corresponding to different antenna ports is set as a path loss reference for path loss used for PUSCH transmission power control.
  • the mobile station apparatus 5 sets the desired transmission power of the PUCCH using any one of the path losses calculated based on the CSI-RS of different antenna ports. For example, when the PUCCH reception destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for the PUCCH, and the PUCCH reception destination is RRH4. In some cases, path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for PUCCH. In the mobile station apparatus 5, one of path losses calculated based on CSI-RSs corresponding to different antenna ports is set for PUCCH transmission power control. In the mobile station apparatus 5, one of CSI-RSs corresponding to different antenna ports is set as a path loss reference for path loss used for transmission power control of PUCCH.
  • a CSI-RS corresponding to a certain antenna port is set as a path loss reference of a path loss (first path loss) used for PUSCH transmission power control.
  • the mobile station apparatus 5 sets a CSI-RS corresponding to a certain antenna port as a path loss reference of a path loss (second path loss) used for transmission power control of PUCCH.
  • the CSI-RS used for the first path loss measurement and the CSI-RS used for the second path loss measurement correspond to different antenna ports.
  • the mobile station device 5 uses dl-PathlossChange for the first path loss and the second path loss. Processing to determine the trigger of the reporting process, and when simultaneous transmission of PUCCH and PUSCH is not configured, a process to determine the trigger of the power headroom reporting process using dl-PathlossChange for the first path loss To do.
  • the mobile station apparatus 5 uses dl-PathlossChange according to the configuration of simultaneous transmission of PUCCH and PUSCH (simultaneous transmission of PUCCH and PUSCH is performed, but not simultaneous transmission of PUCCH and PUSCH).
  • the path loss the first path loss, or the first path loss and the second path loss
  • the notification of power headroom is immediately performed so that uplink scheduling can be performed efficiently and an increase in signaling overhead can be prevented.
  • CSI-RSs corresponding to substantially different antenna ports are indicated to the mobile station apparatus 5 by expressing the antenna ports with different numbers explicitly using the antenna ports in one CSI-RS configuration.
  • the mobile station apparatus 5 may be indicated by different CSI-RS configurations.
  • the mobile station apparatus 5 is notified of a plurality of CSI-RS configurations (CSI-RS-Config-r10).
  • CSI-RS-Config-r10 CSI-RS-Config-r10
  • the number of antenna ports set in the CSI-RS may be the same or different. That is, the same number may be used as the antenna port number in each CSI-RS configuration.
  • the downlink subframe in which the CSI-RS is arranged is different.
  • the frequency region where the CSI-RS is arranged is different.
  • a certain CSI-RS configuration is substantially a CSI-RS configuration that is transmitted only from the antenna port of the base station apparatus 3.
  • a certain CSI-RS configuration is substantially a CSI-RS configuration transmitted only from the antenna port of RRH4.
  • the mobile station apparatus 5 is only notified of the configuration of a plurality of CSI-RSs, and is explicitly configured to transmit only from the antenna port of the base station apparatus 3, or the antenna port of the RRH4. It is not necessary to notify whether the configuration of the CSI-RS is transmitted only from.
  • the mobile station apparatus 5 sets the desired transmission power of the PUSCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the PUSCH receiving destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for the PUSCH, and the PUSCH receiving destination is RRH4. In some cases, the path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for PUSCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUSCH transmission power control.
  • one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUSCH transmission power control. Note that the mobile station apparatus 5 receives the PUSCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUSCH. Whether the destination is the base station apparatus 3 or RRH4 does not have to be explicitly notified.
  • the mobile station apparatus 5 sets the desired transmission power of the PUCCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the PUCCH reception destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for the PUCCH, and the PUCCH reception destination is RRH4. In some cases, path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for PUCCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUCCH transmission power control.
  • one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUCCH transmission power control. Note that the mobile station apparatus 5 receives the PUCCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUCCH. Whether the destination is the base station apparatus 3 or RRH4 does not have to be explicitly notified.
  • the CSI-RS having the first CSI-RS configuration is set as the path loss reference of the path loss (first path loss) used for PUSCH transmission power control.
  • the CSI-RS having the second CSI-RS configuration is set as a path loss reference of a path loss (second path loss) used for PUCCH transmission power control.
  • the CSI-RS configuration used for the first path loss measurement and the CSI-RS configuration used for the second path loss measurement are different CSI-RS configurations. Even in such a case, when simultaneous transmission of PUCCH and PUSCH is configured, the mobile station device 5 uses dl-PathlossChange for the first path loss and the second path loss. Processing to determine the trigger of the reporting process, and when simultaneous transmission of PUCCH and PUSCH is not configured, a process to determine the trigger of the power headroom reporting process using dl-PathlossChange for the first path loss To do.
  • different frequency bands may be used between the base station apparatus 3 and the RRH 4, and cooperative communication may be used between different RRHs 4.
  • the mobile station apparatus 5 transmits an uplink signal with transmission power suitable for receiving a signal by each RRH 4.
  • the mobile station apparatus 5 calculates a path loss based on the CRS for the cell configured by the RRH 4, and performs an initial state (default) using the calculated path loss to calculate an uplink transmission power value.
  • a process of calculating a path loss based on CSI-RS and calculating an uplink transmission power value using the calculated path loss may be set as an initial state (default state).
  • the base station device 5 determines that the mobile station device 5 needs to add RRH4 used for cooperative communication, the base station device 5 notifies the mobile station device 5 of the configuration of the CSI-RS for the cell configured by the RRH4, and moves The path loss reference of the station device 5 is added or changed (reset or reconfigured).
  • Different CSI-RS configurations may be applied to different RRHs 4.
  • downlink subframes in which CSI-RSs are arranged may be different.
  • the frequency regions where the CSI-RSs are arranged may be different.
  • the number of CSI-RS antenna ports may be different.
  • Information regarding the configuration of the CSI-RS for each RRH 4 to which the cooperative communication is applied is notified from the base station apparatus 3 to the mobile station apparatus 5 using RRC signaling.
  • the mobile station apparatus 5 receives the CSI-RS transmitted by each RRH 4 based on the notified CSI-RS configuration, measures the path loss for each RRH 4, and uses the measured path loss to signal an uplink signal. Set the transmission power. Thereby, the mobile station apparatus 5 can set transmission power suitable for each RRH 4 that is a signal reception destination. In this way, by setting the transmission power suitable for the signal receiving destination, it is possible to improve the efficiency of the communication system while suppressing the interference given to other signals while satisfying the required quality of the signal. .
  • a certain CSI-RS configuration is substantially a CSI-RS configuration that is transmitted only from the antenna port of the first RRH4.
  • a certain CSI-RS configuration is substantially a CSI-RS configuration that is transmitted only from the antenna port of the second RRH4.
  • the mobile station apparatus 5 is only notified of the configuration of a plurality of CSI-RSs, and is not explicitly notified of the configuration of the CSI-RS transmitted only from the antenna port of any RRH4. Good.
  • the mobile station apparatus 5 sets the desired transmission power of the PUSCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the PUSCH destination is the first RRH4, the path loss calculated based on the CSI-RS transmitted from the antenna port of the first RRH4 is used for the PUSCH, and the PUSCH destination is the second RSCH4. In the case of RRH4, the path loss calculated based on the CSI-RS transmitted from the antenna port of the second RRH4 is used for PUSCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUSCH transmission power control.
  • one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUSCH transmission power control. Note that the mobile station apparatus 5 receives the PUSCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUSCH. It is not necessary to explicitly notify which RRH4 is the destination.
  • the mobile station apparatus 5 sets the desired transmission power of the PUCCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the destination of the PUCCH is the first RRH4, the path loss calculated based on the CSI-RS transmitted from the antenna port of the first RRH4 is used for the PUCCH, and the destination of the PUCCH is the second In the case of RRH4, the path loss calculated based on CSI-RS transmitted from the antenna port of the second RRH4 is used for PUCCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUCCH transmission power control.
  • one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUCCH transmission power control. Note that the mobile station apparatus 5 receives the PUCCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUCCH. It is not necessary to explicitly notify which RRH4 is the destination.
  • the operation described in the embodiment of the present invention may be realized by a program.
  • the program that operates in the mobile station device 5 and the base station device 3 related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a semiconductor medium for example, ROM, nonvolatile memory card, etc.
  • an optical recording medium for example, DVD, MO, MD, CD, BD, etc.
  • a magnetic recording medium for example, magnetic tape, Any of a flexible disk etc.
  • the program when distributing to the market, can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • LSI which is typically an integrated circuit.
  • Each functional block of the mobile station device 5 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • Each functional block of the mobile station device 5 and the base station device 3 may be realized by a plurality of circuits.
  • Information and signals can be presented using a variety of different techniques and methods. For example, chips, symbols, bits, signals, information, commands, instructions, and data that may be referred to throughout the above description may be indicated by voltage, current, electromagnetic waves, magnetic or magnetic particles, optical or light particles, or combinations thereof .
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array signal
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented as a combination of computing devices. For example, a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors connected to a DSP core, or a combination of other such configurations.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any form of recording medium known in the art.
  • a typical recording medium may be coupled to the processor such that the processor can read information from, and write information to, the recording medium.
  • the recording medium may be integral to the processor.
  • the processor and the recording medium may be in the ASIC.
  • the ASIC can be in the mobile station device (user terminal). Or a processor and a recording medium may exist in the mobile station apparatus 5 as a discrete element.
  • the functions described can be implemented in hardware, software, firmware, or a combination thereof. If implemented by software, the functions may be maintained or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both communication media and computer recording media including media that facilitate carrying a computer program from one place to another.
  • the recording medium may be any commercially available medium that can be accessed by a general purpose or special purpose computer.
  • Such computer readable media may be RAM, ROM, EEPROM, CDROM or other optical disc media, magnetic disc media or other magnetic recording media, or general purpose or A medium can be included that is accessible by a special purpose computer or general purpose or special purpose processor and that can be used to carry or retain the desired program code means in the form of instructions or data structures. Any connection is also properly termed a computer-readable medium.
  • the software uses a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, wireless, or microwave
  • a website, server, or other remote source When transmitting from, these coaxial cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the definition of the medium.
  • Discs used in this specification include compact discs (CD), laser discs (registered trademark), optical discs, digital versatile discs (DVD), floppy (registered trademark) discs, and Blu-ray discs.
  • CD compact discs
  • DVD digital versatile discs
  • floppy registered trademark
  • Blu-ray discs Blu-ray discs.
  • a disk generally reproduces data magnetically, while a disk optically reproduces data by a laser. Combinations of the above should also be included on the computer-readable medium.
  • Base station apparatus 4 (A to C) RRH 5 (A to C) Mobile station apparatus 101 Reception processing unit 103 Radio resource control unit 105 Control unit 107 Transmission processing unit 109 Reception antenna 111 Transmission antenna 201, 201-1 to 201-M Physical downlink shared channel processing units 203 and 203 ⁇ 1 to 203-M Physical downlink control channel processing unit 205 Downlink pilot channel processing unit 207 Multiplexing unit 209 IFFT unit 211 GI insertion unit 213 D / A unit 215 Transmission RF unit 219 Turbo coding unit 221 Data modulation unit 223 Convolutional code Unit 225 QPSK modulation unit 227 precoding processing unit (for PDCCH) 229 Precoding processing unit (for PDSCH) 231 Precoding processing unit (for downlink pilot channel) 301 reception RF section 303 A / D section 309 symbol timing detection section 311 GI removal section 313 FFT section 315 subcarrier demapping section 317 propagation path estimation section 319 propagation path equalization section (for PUSCH) 321

Abstract

In order to enable the transmission of uplink signals to be efficiently controlled, this communication system comprises: a power headroom generating unit that generates a power headroom report of a first type for the transmission of a Physical Uplink Shared Channel (PUSCH) only, and a power headroom report of a second type for the simultaneous transmission of the PUSCH and a Physical Uplink Control Channel (PUCCH); and a power headroom control unit which, if the simultaneous transmission of the PUSCH and PUCCH is not configured, determines that a power headroom reporting process is to start if the amount of a first path loss change used to control the transmission power of the PUSCH is greater than a d1-PathlossChange value, and if the simultaneous transmission of the PUSCH and PUCCH is configured, determines that the power headroom reporting process is to start if the amount of the first path loss change, or the amount of a second path loss change used to control the transmission power of the PUCCH is greater than the d1-PathlossChange value.

Description

移動局装置、通信システム、通信方法および集積回路Mobile station apparatus, communication system, communication method, and integrated circuit
 本発明は、複数の移動局装置と基地局装置から構成される通信システムにおいて、効率的な上りリンクの信号の送信を実現することができる移動局装置、通信システム、通信方法および集積回路に関する。 The present invention relates to a mobile station apparatus, a communication system, a communication method, and an integrated circuit that can realize efficient uplink signal transmission in a communication system including a plurality of mobile station apparatuses and a base station apparatus.
 セルラー移動通信の無線アクセス方式および無線ネットワークの進化(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access (EUTRA)」と呼称する)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において仕様化されている。LTEでは、基地局装置から移動局装置への無線通信(下りリンク; DLと呼称する)の通信方式として、マルチキャリア送信である直交周波数分割多重(Orthogonal Frequency Division Multiplexing: OFDM)方式が用いられる。また、LTEでは、移動局装置から基地局装置への無線通信(上りリンク; ULと呼称する)の通信方式として、シングルキャリア送信であるSC-FDMA(Single-Carrier Frequency Division Multiple Access)方式が用いられる。LTEでは、SC-FDMA方式としてDFT-Spread OFDM(Discrete Fourier Transform-Spread OFDM)方式が用いられる。 The third generation partnership project (3rd Generation Generation) is the evolution of wireless access systems and wireless networks for cellular mobile communications (hereinafter referred to as “Long Term Evolution (LTE)” or “Evolved Universal Terrestrial Radio Access (EUTRA)”). Partnership (Project: 3GPP). In LTE, an orthogonal frequency division multiplexing (OFDM) method, which is multicarrier transmission, is used as a communication method (downlink; referred to as “DL”) from a base station device to a mobile station device. In LTE, a single-carrier SC-FDMA (Single-Carrier-Frequency-Division-Multiple-Access) system is used as a communication system (uplink; called UL) from the mobile station apparatus to the base station apparatus. It is done. In LTE, the DFT-Spread OFDM (Discrete-Fourier-Transform-Spread-OFDM) system is used as the SC-FDMA system.
 3GPPでは、LTEよりもさらに高速なデータの通信を実現する無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution-Advanced (LTE-A)」、または、「Advanced Evolved Universal Terrestrial Radio Access (A-EUTRA)」と呼称する)が検討されている。LTE-Aでは、LTEとの後方互換性(backward compatibility)を実現することが求められている。LTE-Aに対応した基地局装置が、LTE-Aに対応した移動局装置およびLTEに対応した移動局装置の両方の移動局装置と同時に通信を行なうこと、およびLTE-Aに対応した移動局装置が、LTE-Aに対応した基地局装置およびLTEに対応した基地局装置と通信を行なうことを実現することがLTE-Aに対して要求される。 In 3GPP, a wireless access method and a wireless network (hereinafter referred to as “Long Term Evolution-Advanced (LTE-A)”) or “Advanced Evolved Universal Terrestrial Radio Access (A-EUTRA ) ") Is under consideration. LTE-A is required to realize backward compatibility with LTE. A base station apparatus compatible with LTE-A communicates simultaneously with both mobile station apparatuses compatible with LTE-A and mobile stations compatible with LTE, and mobile stations compatible with LTE-A It is required for LTE-A to realize that the apparatus communicates with a base station apparatus compatible with LTE-A and a base station apparatus compatible with LTE.
 その要求を実現するためにLTE-AではLTEと同一のチャネル構造を少なくともサポートすることが検討されている。チャネルとは、信号の送信に用いられる媒体を意味する。物理層で用いられるチャネルは物理チャネル、媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルは論理チャネルと呼称する。物理チャネルの種類としては、下りリンクのデータおよび制御情報の送受信に用いられる物理下りリンク共用チャネル(Physical Downlink Shared CHannel: PDSCH)、下りリンクの制御情報の送受信に用いられる物理下りリンク制御チャネル(Physical Downlink Control CHannel: PDCCH)、上りリンクのデータおよび制御情報の送受信に用いられる物理上りリンク共用チャネル(Physical Uplink Shared CHannel: PUSCH)、制御情報の送受信に用いられる物理上りリンク制御チャネル(Physical Uplink Control CHannel: PUCCH)、下りリンクの同期確立のために用いられる同期チャネル(Synchronization CHannel: SCH)、上りリンクの同期確立のために用いられる物理ランダムアクセスチャネル(Physical Random Access CHannel: PRACH)、下りリンクのシステム情報の送信に用いられる物理報知チャネル(Physical Broadcast CHannel: PBCH)等がある。移動局装置、または基地局装置は、制御情報、データなどから生成した信号を各物理チャネルに配置して、送信する。物理下りリンク共用チャネル、または物理上りリンク共用チャネルで送信されるデータは、トランスポートブロックと呼称する。 In order to realize this requirement, LTE-A is studying to support at least the same channel structure as LTE. A channel means a medium used for signal transmission. A channel used in the physical layer is called a physical channel, and a channel used in a medium access control (Medium Access Control: MAC) layer is called a logical channel. Physical channel types include physical downlink shared channel (Physical Downlink Shared CHannel: PDSCH) used for transmission / reception of downlink data and control information, and physical downlink control channel (Physical) used for transmission / reception of downlink control information. Downlink Control CHannel: PDCCH), physical uplink shared channel (Physical Uplink Shared CHannel: PUSCH) used for transmission and reception of uplink data and control information, physical uplink control channel (Physical Uplink Control CHannel used for transmission and reception of control information : PUCCH), synchronization channel used to establish downlink synchronization (Synchronization CHannel: SCH), physical random access channel used to establish uplink synchronization (Physical Random Access CHannel: PRACH), downlink system Physical broadcast used for information transmission There are channels (Physical Broadcast CHannel: PBCH). A mobile station apparatus or a base station apparatus arranges and transmits a signal generated from control information, data, and the like on each physical channel. Data transmitted on the physical downlink shared channel or the physical uplink shared channel is referred to as a transport block.
 物理上りリンク制御チャネルに配置される制御情報は、上りリンク制御情報(Uplink Control Information: UCI)と呼称する。上りリンク制御情報は、受信された物理下りリンク共用チャネルに配置されたデータに対する肯定応答(Acknowledgement: ACK)または否定応答(Negative Acknowledgement: NACK)を示す制御情報(受信確認応答; ACK/NACK)、または上りリンクのリソースの割り当ての要求を示す制御情報(Scheduling Request: SR)、または下りリンクの受信品質(チャネル品質とも呼称する)を示す制御情報(Channel Quality Indicator: CQI)である。 The control information arranged in the physical uplink control channel is referred to as uplink control information (Uplink Control Information: UCI). Uplink control information is control information (reception acknowledgment; ACK / NACK) indicating an acknowledgment (Acknowledgement: ACK) or a negative response (Negative Acknowledgement: NACK) for the data arranged in the received physical downlink shared channel, Alternatively, it is control information (Scheduling Request: SR) indicating a request for uplink resource allocation, or control information (Channel Quality Indicator: CQI) indicating downlink reception quality (also referred to as channel quality).
 <協調通信>
 LTE-Aでは、セル端領域の移動局装置に対する干渉を軽減または抑圧するために、または受信信号電力を増大させるために、隣接セル間で互いに協調して通信を行なうセル間協調通信(Cooperative Multipoint: CoMP通信)が検討されている。なお、例えば、基地局装置が任意の1つの周波数帯域を用いて通信する形態のことを「セル(Cell)」と呼称する。例えば、セル間協調通信として、複数のセルで異なる重み付け信号処理(プリコーディング処理)が信号に適用され、複数の基地局装置がその信号を協調して同一の移動局装置に送信する方法(Joint Processing、Joint Transmissionとも呼称する)などが検討されている。この方法では、移動局装置の信号電力対干渉雑音電力比を向上することができ、移動局装置における受信特性を改善することができる。例えば、セル間協調通信として、複数のセルで協調して移動局装置に対してスケジューリングを行なう方法(Coordinated Scheduling: CS)が検討されている。この方法では、移動局装置の信号電力対干渉雑音電力比を向上することができる。例えば、セル間協調通信として、複数のセルで協調してビームフォーミングを適用して移動局装置に信号を送信する方法(Coordinated beamforming:CB)が検討されている。この方法では、移動局装置の信号電力対干渉雑音電力比を向上することができる。例えば、セル間協調通信として、一方のセルでのみ所定のリソースを用いて信号を送信し、一方のセルでは所定のリソースで信号を送信しない方法(Blanking, Muting)が検討されている。この方法では、移動局装置の信号電力対干渉雑音電力比を向上することができる。
<Collaborative communication>
In LTE-A, in order to reduce or suppress interference with a mobile station apparatus in a cell edge region, or to increase received signal power, inter-cell cooperative communication (Cooperative Multipoint) in which communication is performed in cooperation between adjacent cells. : CoMP communication). For example, a mode in which the base station apparatus communicates using any one frequency band is referred to as a “cell”. For example, as inter-cell cooperative communication, different weighting signal processing (precoding processing) is applied to a signal in a plurality of cells, and a plurality of base station devices cooperates to transmit the signal to the same mobile station device (Joint Processing, also called Joint Transmission). In this method, the signal power to interference noise power ratio of the mobile station apparatus can be improved, and reception characteristics in the mobile station apparatus can be improved. For example, as a coordinated inter-cell communication, a method (Coordinated Scheduling: CS) in which a mobile station apparatus performs scheduling in cooperation with a plurality of cells has been studied. In this method, the signal power to interference noise power ratio of the mobile station apparatus can be improved. For example, as a coordinated inter-cell communication, a method (Coordinated beamforming: CB) in which a signal is transmitted to a mobile station apparatus by applying beamforming in cooperation with a plurality of cells has been studied. In this method, the signal power to interference noise power ratio of the mobile station apparatus can be improved. For example, as inter-cell cooperative communication, a method (Blanking, Muting) in which a signal is transmitted using a predetermined resource only in one cell and a signal is not transmitted using a predetermined resource in one cell has been studied. In this method, the signal power to interference noise power ratio of the mobile station apparatus can be improved.
 なお、協調通信に用いられる複数のセルに関して、異なるセルは異なる基地局装置により構成されてもよいし、異なるセルは同じ基地局装置に管理される異なるRRH(Remote Radio Head、基地局装置より小型の屋外型の無線部、Remote Radio Unit: RRUとも呼称する)により構成されてもよいし、異なるセルは基地局装置とその基地局装置に管理されるRRHにより構成されてもよいし、異なるセルは基地局装置とその基地局装置とは異なる基地局装置に管理されるRRHにより構成されてもよい。 In addition, regarding a plurality of cells used for cooperative communication, different cells may be configured by different base station apparatuses, and different cells are smaller than different RRH (Remote Radio Head, base station apparatus managed by the same base station apparatus. Outdoor type radio unit, Remote Radio Unit: also called “RRU”), and different cells may be constituted by base station apparatus and RRH managed by the base station apparatus, or different cells. May be configured by an RRH managed by a base station apparatus and a base station apparatus different from the base station apparatus.
 カバレッジの広い基地局装置は、一般的にマクロ基地局装置と呼称する。カバレッジの狭い基地局装置は、一般的にピコ基地局装置、またはフェムト基地局装置と呼称する。RRHは、一般的に、マクロ基地局装置よりもカバレッジが狭いエリアでの運用が検討されている。マクロ基地局装置と、RRHにより構成され、マクロ基地局装置によりサポートされるカバレッジがRRHによりサポートされるカバレッジの一部または全部を含んで構成される通信システムのような展開は、ヘテロジーニアスネットワーク展開と呼称する。そのようなヘテロジーニアスネットワーク展開の通信システムにおいて、マクロ基地局装置とRRHが、お互いに重複したカバレッジ内に位置する移動局装置に対して、協調して信号を送信する方法が検討されている。ここで、RRHは、マクロ基地局装置により管理され、送受信が制御されている。なお、マクロ基地局装置とRRHは、光ファイバ等の有線回線や、リレー技術を用いた無線回線により接続されている。このように、マクロ基地局装置とRRHがそれぞれ一部または全部が同一の無線リソースを用いて協調通信を実行することで、マクロ基地局装置が構築するカバレッジのエリア内の総合的な周波数利用効率(伝送容量)が向上できる。 A base station apparatus with a wide coverage is generally called a macro base station apparatus. A base station apparatus with a narrow coverage is generally called a pico base station apparatus or a femto base station apparatus. RRH is generally considered to be used in an area where the coverage is narrower than that of a macro base station apparatus. A deployment such as a communication system configured by a macro base station apparatus and an RRH, and a coverage supported by the macro base station apparatus including a part or all of the coverage supported by the RRH is a heterogeneous network deployment. Called. In such a heterogeneous network-deployed communication system, a method in which a macro base station apparatus and an RRH transmit signals in a coordinated manner to mobile station apparatuses located within the overlapping coverage of each other has been studied. Here, RRH is managed by the macro base station apparatus, and transmission / reception is controlled. Note that the macro base station apparatus and the RRH are connected by a wired line such as an optical fiber or a wireless line using a relay technology. As described above, the macro base station apparatus and the RRH perform cooperative communication using radio resources that are partly or entirely the same, so that the overall frequency use efficiency in the coverage area constructed by the macro base station apparatus is increased. (Transmission capacity) can be improved.
 移動局装置は、マクロ基地局装置またはRRHの付近に位置している場合、マクロ基地局装置またはRRHとシングルセル通信することができる。つまり、ある移動局装置は、協調通信を用いずに、マクロ基地局装置またはRRHと通信を行ない、信号の送受信を行なう。例えば、マクロ基地局装置は、自装置に距離的に近い移動局装置からの上りリンクの信号を受信する。例えば、RRHは、自装置に距離的に近い移動局装置からの上りリンクの信号を受信する。さらに、移動局装置は、RRHが構築するカバレッジの端付近(セルエッジ)に位置する場合、マクロ基地局装置からの同一チャネル干渉に対する対策が必要になる。マクロ基地局装置とRRHとのマルチセル通信(協調通信)として、隣接基地局間で互いに協調するCoMP方式を用いることにより、セルエッジ領域の移動局装置に対する干渉を軽減または抑圧する方法が検討されている。 When the mobile station apparatus is located in the vicinity of the macro base station apparatus or RRH, the mobile station apparatus can perform single cell communication with the macro base station apparatus or RRH. That is, a certain mobile station apparatus communicates with the macro base station apparatus or RRH without using cooperative communication, and transmits and receives signals. For example, the macro base station apparatus receives an uplink signal from a mobile station apparatus that is close in distance to itself. For example, the RRH receives an uplink signal from a mobile station apparatus that is close in distance to the own apparatus. Furthermore, when the mobile station apparatus is located near the edge of the coverage constructed by the RRH (cell edge), it is necessary to take measures against co-channel interference from the macro base station apparatus. As a multi-cell communication (cooperative communication) between a macro base station apparatus and an RRH, a method for reducing or suppressing interference with a mobile station apparatus in a cell edge region by using a CoMP scheme in which adjacent base stations cooperate with each other has been studied. .
 また、移動局装置は、下りリンクでは、協調通信を用いて、マクロ基地局装置とRRHの双方から送信された信号を受信し、上りリンクでは、マクロ基地局装置、またはRRHの何れかに対して適した形で信号を送信することが検討されている。例えば、移動局装置は、マクロ基地局装置で信号が受信されるのに適した送信電力で上りリンクの信号を送信する。例えば、移動局装置は、RRHで信号が受信されるのに適した送信電力で上りリンクの信号を送信する。これにより、上りリンクの不必要な干渉を低減し、周波数利用効率を向上できる。 In the downlink, the mobile station apparatus receives signals transmitted from both the macro base station apparatus and the RRH using cooperative communication. In the uplink, the mobile station apparatus receives either the macro base station apparatus or the RRH. Therefore, it is considered to transmit a signal in a suitable form. For example, the mobile station apparatus transmits an uplink signal with transmission power suitable for reception of a signal by the macro base station apparatus. For example, the mobile station apparatus transmits an uplink signal with transmission power suitable for receiving a signal by RRH. Thereby, unnecessary interference in the uplink can be reduced and the frequency utilization efficiency can be improved.
 移動局装置が複数種類の参照信号のそれぞれからパスロスを推定して、マクロ基地局装置、またはRRHで信号が受信されるのに適した送信電力のパラメータ設定を行なうことが検討されている(非特許文献1)。例えば、移動局装置は、マクロ基地局装置から送信された参照信号から、マクロ基地局装置で信号が受信されるのに適した送信電力のパラメータの計算を行なう。例えば、移動局装置は、RRHから送信された参照信号から、RRHで信号が受信されるのに適した送信電力のパラメータの計算を行なう。例えば、移動局装置は、マクロ基地局装置とRRHの双方から協調して送信された参照信号から、マクロ基地局装置、またはRRHで信号が受信されるのに準最適な送信電力のパラメータの計算を行なう。具体的には、移動局装置は、受信した参照信号の受信品質に基づき、パスロスの推定を行なう。 It has been studied that a mobile station apparatus estimates path loss from each of a plurality of types of reference signals and performs transmission power parameter setting suitable for reception of a signal by a macro base station apparatus or RRH (non-transmission). Patent Document 1). For example, the mobile station apparatus calculates a parameter of transmission power suitable for receiving a signal at the macro base station apparatus from the reference signal transmitted from the macro base station apparatus. For example, the mobile station apparatus calculates a parameter of transmission power suitable for receiving a signal by RRH from a reference signal transmitted by RRH. For example, the mobile station apparatus calculates a sub-optimal transmission power parameter for receiving a signal at the macro base station apparatus or RRH from a reference signal transmitted in cooperation from both the macro base station apparatus and the RRH. To do. Specifically, the mobile station apparatus estimates path loss based on the received quality of the received reference signal.
 また、移動局装置が装置能力として用いることが可能な最大の送信電力値(可能最大送信電力値)に対してどの程度の余裕を持って上りリンクの信号の送信を行なっているかを基地局装置が認識するために、移動局装置は、パワーヘッドルーム(Power Headroom; PH)と呼ばれる、可能最大送信電力値から上りリンクの信号の送信に用いられる送信電力値を減算した値を、基地局装置に通知する。 Further, the base station apparatus indicates how much the mobile station apparatus transmits uplink signals with respect to the maximum transmission power value (possible maximum transmission power value) that can be used as apparatus capability. The mobile station apparatus recognizes the base station apparatus by subtracting the transmission power value used for transmission of the uplink signal from the maximum possible transmission power value, which is called power headroom (Power Headroom;) PH). Notify
 パワーヘッドルームでは、-23dB~40dBの範囲内の値が示され、1dB単位で表現される。正の値を示すパワーヘッドルームは、移動局装置の送信電力に余裕があることを示す。負の値を示すパワーヘッドルームは、移動局装置が可能最大送信電力値を超える送信電力値を基地局装置から要求されているが、移動局装置は可能最大送信電力値で送信している状態を示している。基地局装置は、パワーヘッドルームの情報を用いて、移動局装置の上りリンクの信号に割り当てるリソースの周波数帯域幅や、上りリンクの信号の変調方式等を調整、決定する。 In the power headroom, values in the range of −23 dB to 40 dB are shown and expressed in 1 dB units. A power headroom indicating a positive value indicates that there is a margin in transmission power of the mobile station apparatus. The power headroom indicating a negative value is a state in which the mobile station device is requesting a transmission power value exceeding the maximum possible transmission power value from the base station device, but the mobile station device is transmitting at the maximum possible transmission power value Is shown. The base station apparatus uses the power headroom information to adjust and determine the frequency bandwidth of resources allocated to the uplink signal of the mobile station apparatus, the modulation scheme of the uplink signal, and the like.
 移動局装置は、基地局装置から通知された2つのタイマー(periodicPHR-TimerとprohibitPHR-Timer)と、1つの値dl-PathlossChange(dB単位で表現される)と、を用いてパワーヘッドルームの送信を制御する。移動局装置は、以下に記載の事象の何れかが発生した場合に、パワーヘッドルームの送信を行なうことを決定する。第一の事象は、「prohibitPHR-Timerが終了しており、前回パワーヘッドルームを送信した時に計算に用いたパスロスの値からdl-PathlossChange [dB]以上、パスロスの値が変化した場合」である。第二の事象は、「periodicPHR-Timerが終了した場合」である。第三の事象は、「パワーヘッドルームの送信機能に関することが設定または再設定された場合」である。このように、パワーヘッドルームの送信を判断して、パワーヘッドルームを基地局装置に報告する処理のことを、パワーヘッドルームレポーティングと呼称する。 The mobile station apparatus transmits power headroom using two timers (periodicPHR-Timer and prohibitPHR-Timer) notified from the base station apparatus and one value dl-PathlossChange (expressed in dB). To control. The mobile station apparatus determines to transmit power headroom when any of the following events occurs. The first event is “when prohibitPHR-Timer has ended and the path loss value has changed by more than dl-PathlossChange [dB] from the path loss value used for the previous transmission of power headroom”. . The second event is “when periodicPHR-Timer ends”. The third event is “when the setting relating to the transmission function of the power headroom is set or reset”. Thus, the process of determining the transmission of the power headroom and reporting the power headroom to the base station apparatus is referred to as power headroom reporting.
 移動局装置は、パワーヘッドルームの送信を行なうと決定し、上りリンクの信号の送信に用いるリソースが基地局装置より割り当てられたら、上りリンクの信号にパワーヘッドルームに関する情報を含めて基地局装置に送信する。移動局装置は、パワーヘッドルームに関する情報を送信したら、計測中のperiodicPHR-Timer、prohibitPHR-Timerを一旦リセットし、再スタートさせる。 When the mobile station apparatus decides to perform power headroom transmission and a resource used for uplink signal transmission is allocated by the base station apparatus, the base station apparatus includes information on the power headroom in the uplink signal. Send to. When the mobile station apparatus transmits information related to the power headroom, the periodical PHR-Timer and prohibitPHR-Timer being measured are once reset and restarted.
 しかしながら、パワーヘッドルームに関する従来の技術では、1種類の参照信号から1種類のパスロスが推定され、推定された1種類のパスロスが上りリンクの信号の送信電力に用いられる場合しか想定されていなかった。例えば、複数種類の参照信号の中から1つの種類の参照信号に基づき推定されたパスロスを用いたパワーヘッドルームの送信をどのように制御するかは先行文献には開示されていない。例えば、複数種類の参照信号から複数種類のパスロスが推定され、それぞれのパスロスから計算された送信電力を用いた上りリンクの信号の送信が移動局装置において行なわれる場合に、パワーヘッドルームに関する情報の送信をどのように制御するかは先行文献には開示されていない。 However, in the conventional technology related to power headroom, only one type of path loss is estimated from one type of reference signal, and only one case where the estimated one type of path loss is used for the transmission power of an uplink signal is assumed. . For example, the prior literature does not disclose how to control power headroom transmission using a path loss estimated based on one type of reference signal from among a plurality of types of reference signals. For example, when a plurality of types of path loss are estimated from a plurality of types of reference signals, and uplink signal transmission using transmission power calculated from each path loss is performed in the mobile station apparatus, information on power headroom How to control the transmission is not disclosed in the prior literature.
 パワーヘッドルームに関する情報が適切に基地局装置に伝えられなければ、移動局装置に対して上りリンクの信号のリソース割り当て、変調方式の決定等を効率的に行なうことができず、上りリンクのスケジューリングの精度が劣化するという問題があった。例えば、信号の受信先(複数の受信先を含む)が切り替えられ得る通信システムでは、各受信先に適したパスロスが上りリンクの信号の送信電力の決定に用いられ、各受信先に対する上りリンクのスケジューリングが効率的に行なわれることが周波数利用効率を向上させる観点から求められる。 If information about power headroom is not properly transmitted to the base station apparatus, uplink signal resource allocation, modulation scheme determination, etc. cannot be performed efficiently for the mobile station apparatus, and uplink scheduling is not possible. There was a problem that the accuracy of the deteriorated. For example, in a communication system in which signal reception destinations (including a plurality of reception destinations) can be switched, a path loss suitable for each reception destination is used to determine the transmission power of the uplink signal, and the uplink for each reception destination Efficient scheduling is required from the viewpoint of improving frequency utilization efficiency.
 本発明は上記の点に鑑みてなされたものであり、複数の移動局装置と基地局装置から構成される通信システムにおいて、効率的な上りリンクの信号の送信を実現することができる移動局装置、通信システム、通信方法および集積回路を提供することを目的とする。 The present invention has been made in view of the above points, and in a communication system including a plurality of mobile station apparatuses and a base station apparatus, a mobile station apparatus capable of realizing efficient uplink signal transmission An object of the present invention is to provide a communication system, a communication method, and an integrated circuit.
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の移動局装置は、少なくとも1つの基地局装置と通信を行なう移動局装置であって、あるセルにおいて前記基地局装置から信号を受信する第一の受信処理部と、前記第一の受信処理部で受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうパスロス計算部と、前記パスロス計算部で計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する送信電力設定部と、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するパワーヘッドルーム生成部と、前記パワーヘッドルーム生成部で生成された前記パワーヘッドルームの送信を制御するパワーヘッドルーム制御部と、を有し、前記パワーヘッドルーム制御部は、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, the mobile station apparatus of the present invention is a mobile station apparatus that communicates with at least one base station apparatus, wherein the first reception processing unit that receives a signal from the base station apparatus in a certain cell; Based on the first reference signal and the second reference signal received by the reception processing unit, a path loss calculation unit that calculates a plurality of path losses, and among the plurality of path loss calculated by the path loss calculation unit, A transmission power setting unit that sets transmission power for a physical uplink control channel using any one of the path losses, and sets transmission power for a physical uplink shared channel using any one of the path losses; and the physical uplink The bandwidth of the resources allocated for the link shared channel and the first path loss used to set the transmission power of the physical uplink shared channel; Generating a first type of report as power headroom, which is information about the transmission power room for transmission of only the physical uplink shared channel, and the bandwidth of the resources allocated for the physical uplink shared channel Using the first path loss used for setting the transmission power of the physical uplink shared channel and the second path loss used for setting the transmission power of the physical uplink control channel. A power headroom generation unit that generates a second type of report as a power headroom that is information on the room for transmission power for simultaneous transmission of a shared channel and a physical uplink control channel, and generated by the power headroom generation unit A power headroom control unit for controlling transmission of the power headroom; The power headroom control unit has a dl-PathlossChange amount of change in the first path loss when the mobile station apparatus is not configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel. If the mobile station apparatus is configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel, the first path loss of the first path loss is determined. When the amount of change or the amount of change of the second path loss is larger than the value of dl-PathlossChange, it is determined that the power headroom reporting process is started.
 (2)また、本発明の移動局装置において、前記第一の参照信号は、CRS(Cell specific Reference Signal)またはCSI-RS(Channel State Information Reference Signal)の何れかであり、前記第二の参照信号は、前記第一の参照信号とは異なる信号であって、CRSまたはCSI-RSの何れかであることを特徴とする。 (2) In the mobile station apparatus of the present invention, the first reference signal is one of CRS (Cell specific reference Signal) or CSI-RS (Channel State information Reference Signal), and the second reference The signal is different from the first reference signal and is either CRS or CSI-RS.
 (3)また、本発明の移動局装置において、前記第一の参照信号と前記第二の参照信号は、それぞれ異なる構成のCSI-RS(Channel State Information Reference Signal)であることを特徴とする。 (3) Further, in the mobile station apparatus of the present invention, the first reference signal and the second reference signal are CSI-RSs (Channel State Information Reference Signal) having different configurations.
 (4)また、本発明の通信システムは、複数の移動局装置および前記複数の移動局装置と通信を行なう少なくとも1つの基地局装置から構成される通信システムであって、前記基地局装置は、前記移動局装置に信号を送信する送信処理部と、前記移動局装置から信号を受信する第二の受信処理部と、を有し、前記移動局装置は、あるセルにおいて前記基地局装置から信号を受信する第一の受信処理部と、前記第一の受信処理部で受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうパスロス計算部と、前記パスロス計算部で計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する送信電力設定部と、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するパワーヘッドルーム生成部と、前記パワーヘッドルーム生成部で生成された前記パワーヘッドルームの送信を制御するパワーヘッドルーム制御部と、を有し、前記パワーヘッドルーム制御部は、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする。 (4) Moreover, the communication system of the present invention is a communication system including a plurality of mobile station apparatuses and at least one base station apparatus that communicates with the plurality of mobile station apparatuses, and the base station apparatus includes: A transmission processing unit that transmits a signal to the mobile station device; and a second reception processing unit that receives a signal from the mobile station device, wherein the mobile station device transmits a signal from the base station device in a cell. A path loss calculation unit that calculates a plurality of path losses based on the first reference signal and the second reference signal received by the first reception processing unit, The transmission power for the physical uplink control channel is set using any one of the plurality of path losses calculated by the path loss calculation unit, and the physical uplink link is set using any one of the path losses. A transmission power setting unit configured to set transmission power for the shared channel; a bandwidth of resources allocated for the physical uplink shared channel; and a first used for setting the transmission power of the physical uplink shared channel. A resource that is allocated for the physical uplink shared channel by generating a first type of report as a power headroom that is information about the room of transmission power for transmission of only the physical uplink shared channel using the path loss. Using the first path loss used for setting the transmission power of the physical uplink shared channel and the second path loss used for setting the transmission power of the physical uplink control channel, There is room for transmission power for simultaneous transmission of physical uplink shared channel and physical uplink control channel A power headroom generating unit that generates a second type of report as power headroom that is information to be performed, a power headroom control unit that controls transmission of the power headroom generated by the power headroom generating unit, The power headroom control unit has a dl-PathlossChange amount of change in the first path loss when the mobile station apparatus is not configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel. If the mobile station apparatus is configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel, the first path loss of the first path loss is determined. The amount of change or the amount of change of the second path loss is dl-PathlossCha. When the value is larger than the value of nge, it is determined that the power headroom reporting process is started.
 (5)また、本発明の通信方法は、少なくとも1つの基地局装置と通信を行なう移動局装置に用いられる通信方法であって、あるセルにおいて前記基地局装置から信号を受信するステップと、前記受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうステップと、前記計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定するステップと、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するステップと、前記生成された前記パワーヘッドルームの送信を制御するステップと、を有し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする。 (5) Moreover, the communication method of the present invention is a communication method used for a mobile station apparatus that communicates with at least one base station apparatus, and receives a signal from the base station apparatus in a certain cell; Based on the received first reference signal and second reference signal, a step of calculating a plurality of path losses, and a physical uplink using any one of the calculated path losses. Setting transmission power for a link control channel, setting transmission power for a physical uplink shared channel using any one of the path losses, and bandwidth of resources allocated for the physical uplink shared channel; , Using the first path loss used for setting the transmission power of the physical uplink shared channel, the physical uplink shared channel A first type of report is generated as power headroom, which is information about the transmission power room for transmission of only the traffic, and the bandwidth of resources allocated for the physical uplink shared channel and the physical uplink shared The physical uplink shared channel and the physical uplink control using the first path loss used for setting the transmission power of the channel and the second path loss used for setting the transmission power of the physical uplink control channel Generating a second type of report as power headroom, which is information regarding the room for transmission power for simultaneous transmission of channels, and controlling transmission of the generated power headroom. Simultaneous transmission of physical uplink shared channel and physical uplink control channel to mobile station equipment If not, it is determined that the power headroom reporting process is started when the change amount of the first path loss is larger than the value of dl-PathlossChange, and the physical uplink shared channel and the physical uplink When simultaneous transmission of the control channel is configured, it is determined that the power headroom reporting process is started when the change amount of the first path loss or the change amount of the second path loss is larger than the value of dl-PathlossChange. It is characterized by doing.
 (6)また、本発明の集積回路は、少なくとも1つの基地局装置と通信を行なう移動局装置に実装され、前記移動局装置に複数の機能を発揮させる集積回路であって、あるセルにおいて前記基地局装置から信号を受信する機能と、前記受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なう機能と、前記計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する機能と、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成する機能と、前記生成された前記パワーヘッドルームの送信を制御する機能と、を前記移動局装置に発揮させ、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする。 (6) An integrated circuit according to the present invention is an integrated circuit that is mounted on a mobile station apparatus that communicates with at least one base station apparatus, and that allows the mobile station apparatus to perform a plurality of functions. A function of receiving a signal from a base station apparatus, a function of calculating a plurality of path losses based on the received first reference signal and second reference signal, and a function of calculating the plurality of path losses. A function of setting transmission power for a physical uplink control channel using any one of the path losses, and a function of setting transmission power for a physical uplink shared channel using any one of the path losses, and the physical uplink sharing Using the bandwidth of the resources allocated for the channel and the first path loss used to set the transmission power of the physical uplink shared channel Generating a first type of report as power headroom, which is information about the transmission power room for transmission of only the physical uplink shared channel, and the bandwidth of the resources allocated for the physical uplink shared channel; Using the first path loss used for setting the transmission power of the physical uplink shared channel and the second path loss used for setting the transmission power of the physical uplink control channel, the physical uplink shared channel And a function to generate a second type of report as power headroom that is information on the room for transmission power for simultaneous transmission of the physical uplink control channel, a function to control transmission of the generated power headroom, To the mobile station device, the mobile station device and the physical uplink shared channel If simultaneous transmission of the logical uplink control channel is not configured, it is determined that the power headroom reporting process is started when the change amount of the first path loss is greater than the value of dl-PathlossChange, and the mobile station apparatus When simultaneous transmission of the physical uplink shared channel and the physical uplink control channel is configured, the power when the change amount of the first path loss or the change amount of the second path loss is larger than the value of dl-PathlossChange. It is determined that the headroom reporting process is started.
 本明細書では、移動局装置の送信電力に関連する情報が基地局装置に通知される場合における移動局装置、通信システム、通信方法および集積回路の改良という点において本発明を開示するが、本発明が適用可能な通信方式は、LTEまたはLTE-AのようにLTEと上位互換性のある通信方式に限定されるものではない。例えば、本発明はUMTS(Universal Mobile Telecommunications System)にも適用することができる。 In this specification, the present invention is disclosed in terms of improvement of a mobile station device, a communication system, a communication method, and an integrated circuit when information related to transmission power of the mobile station device is notified to the base station device. The communication system to which the invention is applicable is not limited to a communication system that is upward compatible with LTE, such as LTE or LTE-A. For example, the present invention can be applied to UMTS (Universal Mobile Telecommunications System).
 この発明によれば、基地局装置は移動局装置に対して上りリンクの信号の送信を効率的に制御することができる。 According to this invention, the base station apparatus can efficiently control transmission of uplink signals to the mobile station apparatus.
本発明の実施形態に係る基地局装置3の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 3 which concerns on embodiment of this invention. 本発明の実施形態に係る基地局装置3の送信処理部107の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the transmission process part 107 of the base station apparatus 3 which concerns on embodiment of this invention. 本発明の実施形態に係る基地局装置3の受信処理部101の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the reception process part 101 of the base station apparatus 3 which concerns on embodiment of this invention. 本発明の実施形態に係る移動局装置5の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the mobile station apparatus 5 which concerns on embodiment of this invention. 本発明の実施形態に係る移動局装置5の受信処理部401の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the reception process part 401 of the mobile station apparatus 5 which concerns on embodiment of this invention. 本発明の実施形態に係る移動局装置5の送信処理部407の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the transmission process part 407 of the mobile station apparatus 5 which concerns on embodiment of this invention. 本発明の実施形態に係る移動局装置5のパワーヘッドルームの報告処理の始動(トリガー)を判断する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which judges the start (trigger) of the report process of the power headroom of the mobile station apparatus 5 which concerns on embodiment of this invention. 本発明の実施形態に係る通信システムの全体像についての概略を説明する図である。It is a figure explaining the outline about the whole picture of the communications system concerning the embodiment of the present invention. 本発明の実施形態に係る基地局装置3から移動局装置5への下りリンクの時間フレームの概略構成を示す図である。It is a figure which shows schematic structure of the time frame of the downlink from the base station apparatus 3 which concerns on embodiment of this invention to the mobile station apparatus 5. FIG. 本発明の実施形態に係る通信システム1の下りリンクサブフレーム内の下りリンク参照信号(CRS、UE-specific RS)の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the downlink reference signal (CRS, UE-specific | standard RS) in the downlink sub-frame of the communication system 1 which concerns on embodiment of this invention. 本発明の実施形態に係る通信システム1の下りリンクサブフレーム内の下りリンク参照信号(CSI-RS)の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the downlink reference signal (CSI-RS) in the downlink sub-frame of the communication system 1 which concerns on embodiment of this invention. 本発明の実施形態に係る移動局装置5から基地局装置3への上りリンクの時間フレームの概略構成を示す図である。It is a figure which shows schematic structure of the time frame of the uplink from the mobile station apparatus 5 which concerns on embodiment of this invention to the base station apparatus 3. FIG.
 本明細書で述べられる技術は、符号分割多重アクセス(CDMA)システム、時分割多重アクセス(TDMA)システム、周波数分割多重アクセス(FDMA)システム、直交FDMA(OFDMA)システム、シングルキャリアFDMA(SC-FDMA)システム、およびその他のシステム等の、種々の無線通信システムにおいて使用され得る。用語「システム」および「ネットワーク」は、しばしば同義的に使用され得る。CDMAシステムは、ユニバーサル地上波無線アクセス(UTRA)やcdma2000(登録商標)等のような無線技術(規格)を実装し得る。UTRAは、広帯域CDMA(WCDMA)およびCDMAのその他の改良型を含む。cdma2000は、IS-2000、IS-95、およびIS-856規格をカバーする。TDMAシステムは、Global System for Mobile Communications(GSM(登録商標))のような無線技術を実装し得る。OFDMAシステムは、Evolved UTRA(E-UTRA)、Ultra Mobile Broadband(UMB)、IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、Flash‐OFDM(登録商標)などのような無線技術を実装し得る。UTRAおよびE-UTRAは、汎用移動通信システム(UMTS)の一部である。3GPP LTE(Long Term Evolution)は、ダウンリンク上でOFDMAを、アップリンク上でSC-FDMAを採用するE-UTRAを使用するUMTSである。LTE-Aは、LTEを改良したシステム、無線技術、規格である。UTRA、E-UTRA、UMTS、LTE、LTE-AおよびGSM(登録商標)は、第3世代パートナーシッププロジェクト(3GPP)と名付けられた機関からのドキュメントで説明されている。cdma2000およびUMBは、第3世代パートナーシッププロジェクト2(3GPP2)と名付けられた機関からのドキュメントで説明されている。明確さのために、本技術のある側面は、LTE、LTE-Aにおけるデータ通信について以下では述べられ、LTE用語、LTE-A用語は、以下の記述の多くで用いられる。 The techniques described herein include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal FDMA (OFDMA) systems, single carrier FDMA (SC-FDMA). ) System, and other systems, such as other wireless communication systems. The terms “system” and “network” can often be used interchangeably. A CDMA system may implement a radio technology (standard) such as Universal Terrestrial Radio Access (UTRA) or cdma2000®. UTRA includes Wideband CDMA (WCDMA) and other improved versions of CDMA. cdma2000 covers IS-2000, IS-95, and IS-856 standards. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM). OFDMA systems include Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM (registered trademark), etc. Wireless technology may be implemented. UTRA and E-UTRA are part of the universal mobile communication system (UMTS). 3GPP LTE (Long Term Evolution) is a UMTS that uses E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink. LTE-A is a system, radio technology, and standard improved from LTE. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM® are described in documents from an organization named Third Generation Partnership Project (3GPP). cdma2000 and UMB are described in documents from an organization named Third Generation Partnership Project 2 (3GPP2). For clarity, certain aspects of the techniques are described below for data communication in LTE, LTE-A, and LTE terminology, LTE-A terminology is used in much of the description below.
 (第1の実施形態)
 以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。まず、図8~図12を用いて、本実施形態に係る通信システムの全体像、および無線フレームの構成などについて説明する。次に、図1~図6を用いて、本実施形態に係る通信システムの構成について説明する。次に、図7を用いて、本実施形態に係る通信システムの動作処理について説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. First, an overview of a communication system according to the present embodiment, a configuration of a radio frame, and the like will be described with reference to FIGS. Next, the configuration of the communication system according to the present embodiment will be described with reference to FIGS. Next, operation processing of the communication system according to the present embodiment will be described with reference to FIG.
 <通信システムの全体像>
 図8は、本発明の実施形態に係る通信システムの全体像についての概略を説明する図である。この図が示す通信システム1は、基地局装置(eNodeB、NodeB、BS: Base Station、AP: Access Point; アクセスポイント、マクロ基地局とも呼称する)3と、複数のRRH(Remote Radio Head、基地局装置より小型の屋外型の無線部を有する装置、Remote Radio Unit: RRUとも呼称する)(リモートアンテナ、分散アンテナとも呼称する)4A、4B、4Cと、複数の移動局装置(UE: User Equipment、MS: Mobile Station、MT: Mobile Terminal、端末、端末装置、移動端末とも呼称する)5A、5B、5Cとが通信を行なう。以下、本実施形態において、RRH4A、4B、4CをRRH4と呼び、移動局装置5A、5B、5Cを移動局装置5と呼び、適宜説明を行なう。通信システム1では、基地局装置3とRRH4が協調して、移動局装置5と通信を行なう。図8では、基地局装置3とRRH4Aとが移動局装置5Aと協調通信を行ない、基地局装置3とRRH4Bとが移動局装置5Bと協調通信を行ない、基地局装置3とRRH4Cとが移動局装置5Cと協調通信を行なう。また、通信システム1では、複数のRRH4が協調して、移動局装置5と通信を行なう。例えば、RRH4AとRRH4Bとが移動局装置5A、または移動局装置5Bと協調通信を行ない、RRH4BとRRH4Cとが移動局装置5B、または移動局装置5Cと協調通信を行ない、RRH4CとRRH4Aとが移動局装置5C、または移動局装置5Aと協調通信を行なう。
<Overview of communication system>
FIG. 8 is a diagram for explaining the outline of the overall image of the communication system according to the embodiment of the present invention. The communication system 1 shown in this figure includes a base station apparatus (eNodeB, NodeB, BS: Base Station, AP: Access Point; also called an access point, macro base station) 3 and a plurality of RRHs (Remote Radio Head, base station). A device having an outdoor-type radio unit smaller than the device, also called Remote Radio Unit: RRU (also called remote antenna, distributed antenna) 4A, 4B, 4C, and a plurality of mobile station devices (UE: User Equipment, MS: Mobile Station, MT: Mobile Terminal, also referred to as a terminal, a terminal device, and a mobile terminal) 5A, 5B, and 5C communicate with each other. Hereinafter, in the present embodiment, RRHs 4A, 4B, and 4C are referred to as RRH4, and the mobile station devices 5A, 5B, and 5C are referred to as mobile station devices 5 and will be described as appropriate. In the communication system 1, the base station device 3 and the RRH 4 cooperate to communicate with the mobile station device 5. In FIG. 8, base station apparatus 3 and RRH 4A perform cooperative communication with mobile station apparatus 5A, base station apparatus 3 and RRH 4B perform cooperative communication with mobile station apparatus 5B, and base station apparatus 3 and RRH 4C are mobile stations. Performs cooperative communication with the device 5C. In the communication system 1, a plurality of RRHs 4 communicate with the mobile station apparatus 5 in cooperation. For example, RRH4A and RRH4B perform cooperative communication with mobile station apparatus 5A or mobile station apparatus 5B, RRH4B and RRH4C perform cooperative communication with mobile station apparatus 5B or mobile station apparatus 5C, and RRH4C and RRH4A move. Performs cooperative communication with the station device 5C or the mobile station device 5A.
 なお、RRHは、基地局装置の特殊な形態とも言える。例えば、RRHは信号処理部のみを有し、他の基地局装置によってRRHで用いられるパラメータの設定、スケジューリングの決定などが行なわれる基地局装置と言うことができる。よって、以降の説明では、基地局装置3という表現は、適宜RRH4を含む。 In addition, RRH can be said to be a special form of the base station apparatus. For example, RRH has only a signal processing unit, and can be said to be a base station apparatus in which parameters used in RRH, determination of scheduling, and the like are performed by other base station apparatuses. Therefore, in the following description, the expression “base station apparatus 3” includes RRH 4 as appropriate.
 <協調通信>
 本発明の実施形態に係る通信システム1では、複数のセルを用いて協調して信号の送受信が行なわれる協調通信(Cooperative Multipoint: CoMP通信)が用いられ得る。なお、例えば、基地局装置が任意の1つの周波数帯域を用いて通信する形態のことを「セル(Cell)」と呼称する。例えば、協調通信として、複数のセル(基地局装置3とRRH4)で異なる重み付け信号処理(プリコーディング処理)が信号に適用され、基地局装置3とRRH4がその信号を協調して同一の移動局装置5に送信する。例えば、協調通信として、複数のセル(基地局装置3とRRH4)で協調して移動局装置5に対してスケジューリングを行なう(Coordinated Scheduling: CS)例えば、協調通信として、複数のセル(基地局装置3とRRH4)で協調してビームフォーミングを適用して移動局装置5に信号を送信する(Coordinated beamforming:CB)。例えば、協調通信として、一方のセル(基地局装置3、またはRRH4)でのみ所定のリソースを用いて信号を送信し、一方のセル(基地局装置3、またはRRH4)では所定のリソースで信号を送信しない(Blanking, Muting)。
<Collaborative communication>
In the communication system 1 according to the embodiment of the present invention, cooperative communication (Cooperative Multipoint: CoMP communication) in which signals are transmitted and received in cooperation using a plurality of cells may be used. For example, a mode in which the base station apparatus communicates using any one frequency band is referred to as a “cell”. For example, as cooperative communication, different weighting signal processing (precoding processing) is applied to a signal in a plurality of cells (base station device 3 and RRH4), and base station device 3 and RRH4 cooperate with the signal to transmit the same mobile station. Transmit to device 5. For example, as coordinated communication, scheduling is performed for the mobile station device 5 in cooperation with a plurality of cells (base station device 3 and RRH4) (Coordinated Scheduling: CS). 3 and RRH4) cooperatively apply beamforming to transmit a signal to the mobile station apparatus 5 (Coordinated beamforming: CB). For example, as cooperative communication, a signal is transmitted using a predetermined resource only in one cell (base station apparatus 3 or RRH4), and a signal is transmitted using a predetermined resource in one cell (base station apparatus 3 or RRH4). Do not send (Blanking, Muting).
 なお、本発明の実施形態では説明を省略するが、協調通信に用いられる複数のセルに関して、異なるセルは異なる基地局装置3により構成されてもよいし、異なるセルは同じ基地局装置3に管理される異なるRRH4により構成されてもよいし、異なるセルは基地局装置3とその基地局装置とは異なる基地局装置3に管理されるRRH4により構成されてもよい。 Although not described in the embodiment of the present invention, different cells may be configured by different base station devices 3 with respect to a plurality of cells used for cooperative communication, or different cells may be managed by the same base station device 3. The different RRH4 may be configured, and the different cell may be configured by the base station apparatus 3 and the RRH4 managed by the base station apparatus 3 different from the base station apparatus.
 なお、複数のセルは物理的には異なるセルとして用いられるが、論理的には同一のセルとして用いられてもよい。具体的には、共通のセル識別子(物理セルID:Physical cell ID)が各セルに用いられる構成でもよい。複数の送信装置(基地局装置3とRRH4)が同一の周波数帯域を用いて同一の受信装置に対して共通の信号を送信する構成を単一周波数ネットワーク(SFN; Single Frequency Network)と呼称する。 Note that the plurality of cells are physically used as different cells, but may be logically used as the same cell. Specifically, a configuration in which a common cell identifier (physical cell ID: Physical cell ID) is used for each cell may be used. A configuration in which a plurality of transmitting apparatuses (base station apparatus 3 and RRH 4) transmit a common signal to the same receiving apparatus using the same frequency band is called a single frequency network (SFN).
 本発明の実施形態の通信システム1の展開は、ヘテロジーニアスネットワーク展開を想定する。通信システム1は、基地局装置3と、RRH4により構成され、基地局装置3によりサポートされるカバレッジがRRH4によりサポートされるカバレッジの一部または全部を含んで構成される。ここで、カバレッジとは、要求を満たしつつ通信を実現することができるエリアのことを意味する。通信システム1では、基地局装置3とRRH4が、お互いに重複したカバレッジ内に位置する移動局装置5に対して、協調して信号を送信する。ここで、RRH4は、基地局装置3により管理され、送受信が制御されている。なお、基地局装置3とRRH4は、光ファイバ等の有線回線や、リレー技術を用いた無線回線により接続されている。 The deployment of the communication system 1 according to the embodiment of the present invention assumes a heterogeneous network deployment. The communication system 1 includes a base station device 3 and an RRH 4, and the coverage supported by the base station device 3 includes a part or all of the coverage supported by the RRH 4. Here, the coverage means an area where communication can be realized while satisfying the request. In the communication system 1, the base station device 3 and the RRH 4 transmit signals in cooperation to the mobile station device 5 located in the overlapping coverage. Here, the RRH 4 is managed by the base station apparatus 3 and transmission / reception is controlled. The base station apparatus 3 and the RRH 4 are connected by a wired line such as an optical fiber or a wireless line using a relay technology.
 移動局装置5は、基地局装置3またはRRH4の付近に位置している場合、基地局装置3またはRRH4とシングルセル通信を用いてもよい。つまり、ある移動局装置5は、協調通信を用いずに、基地局装置3またはRRH4と通信を行ない、信号の送受信を行なってもよい。例えば、基地局装置3は、自装置に距離的に近い移動局装置5からの上りリンクの信号を受信してもよい。例えば、RRH4は、自装置に距離的に近い移動局装置5からの上りリンクの信号を受信してもよい。また、例えば、基地局装置3とRRH4の両方が、RRH4が構築するカバレッジの端付近(セルエッジ)に位置する移動局装置5からの上りリンクの信号を受信してもよい。また、例えば、複数のRRH4が、それぞれのRRH4が構築するカバレッジの端付近(セルエッジ)に位置する移動局装置5からの上りリンクの信号を受信してもよい。 When the mobile station device 5 is located in the vicinity of the base station device 3 or the RRH 4, the mobile station device 5 may use single cell communication with the base station device 3 or the RRH 4. That is, a certain mobile station device 5 may communicate with the base station device 3 or the RRH 4 without using cooperative communication to transmit and receive signals. For example, the base station apparatus 3 may receive an uplink signal from the mobile station apparatus 5 that is close in distance to the base station apparatus 3. For example, the RRH 4 may receive an uplink signal from the mobile station apparatus 5 that is close in distance to the own apparatus. Further, for example, both the base station device 3 and the RRH 4 may receive uplink signals from the mobile station device 5 located near the edge of the coverage (cell edge) constructed by the RRH 4. Further, for example, a plurality of RRHs 4 may receive uplink signals from the mobile station apparatus 5 located near the edge of the coverage (cell edge) constructed by each RRH 4.
 また、移動局装置5は、下りリンクでは、協調通信を用いて、基地局装置3とRRH4の双方から送信された信号を受信し、上りリンクでは、基地局装置3、またはRRH4の何れかに対して適した形で信号を送信してもよい。例えば、移動局装置5は、基地局装置3で信号が受信されるのに適した送信電力で上りリンクの信号を送信する。例えば、移動局装置5は、RRH4で信号が受信されるのに適した送信電力で上りリンクの信号を送信する。 Further, the mobile station apparatus 5 receives signals transmitted from both the base station apparatus 3 and the RRH 4 using cooperative communication in the downlink, and either the base station apparatus 3 or the RRH 4 in the uplink. Alternatively, the signal may be transmitted in a suitable form. For example, the mobile station apparatus 5 transmits an uplink signal with transmission power suitable for receiving a signal by the base station apparatus 3. For example, the mobile station apparatus 5 transmits an uplink signal with transmission power suitable for receiving a signal by the RRH 4.
 通信システム1では、基地局装置3、またはRRH4から移動局装置5への通信方向である下りリンク(DL: Downlinkとも呼称する)が、下りリンクパイロットチャネル、物理下りリンク制御チャネル(PDCCH: Physical Downlink Control CHannelとも呼称する)、および物理下りリンク共用チャネル(PDSCH: Physical Downlink Shared CHannelとも呼称する)を含んで構成される。PDSCHは、協調通信が適用されたり、適用されなかったりする。 In the communication system 1, the downlink (also referred to as DL: Downlink) that is the communication direction from the base station device 3 or the RRH 4 to the mobile station device 5 is a downlink pilot channel, a physical downlink control channel (PDCCH: Physical Downlink). Control CHannel) and physical downlink shared channel (PDSCH: Physical Downlink Shared CHannel). As for PDSCH, cooperative communication is applied or not applied.
 また、通信システム1では、移動局装置5から基地局装置3、またはRRH4への通信方向である上りリンク(UL: Uplinkとも呼称する)が、物理上りリンク共用チャネル(PUSCH: Physical Uplink Shared CHannelとも呼称する)、上りリンクパイロットチャネル(上りリンク参照信号; UL RS: Uplink Reference Signal、SRS: Sounding Reference Signal、DM RS: Demodulation Reference Signal)、および物理上りリンク制御チャネル(PUCCH: Physical Uplink Control CHannelとも呼称する)を含んで構成される。チャネルとは、信号の送信に用いられる媒体を意味する。物理層で用いられるチャネルは物理チャネル、媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルは論理チャネルと呼称する。 Further, in the communication system 1, an uplink (also referred to as UL: Uplink) that is a communication direction from the mobile station device 5 to the base station device 3 or the RRH 4 is a physical uplink shared channel (PUSCH: Physical Uplink Shared CHannel). Also called uplink pilot channel (uplink reference signal; UL RS: Uplink Reference Signal, SRS: Sounding Reference Signal, DM RS: Demodulation Reference Signal), and physical uplink control channel (PUCCH: Physical Uplink Control Channel) To be included). A channel means a medium used for signal transmission. A channel used in the physical layer is called a physical channel, and a channel used in a medium access control (Medium Access Control: MAC) layer is called a logical channel.
 また、本発明は、移動局装置5が上りリンクにおいて、基地局装置3で受信されるのに適した送信電力で信号を送信することと、RRH4で受信されるのに適した送信電力で信号を送信することとを制御される通信システムに適用可能であり、説明の簡略化のため、その他の動作については、適宜説明を省略するが、本発明がそのような動作に限定されるということを意味しているわけではないことに注意すべきである。例えば、本発明は、移動局装置5が上りリンクにおいて、RRH4で受信されるのに最適な送信電力で信号を送信することと、基地局装置3で受信されるのに準最適な送信電力で信号を送信することとが制御される通信システムにも適用可能である。 In the present invention, the mobile station apparatus 5 transmits a signal with transmission power suitable for reception by the base station apparatus 3 in the uplink, and a signal with transmission power suitable for reception by the RRH 4. For the sake of simplification of explanation, description of other operations will be omitted as appropriate, but the present invention is limited to such operation. It should be noted that does not mean. For example, in the present invention, the mobile station apparatus 5 transmits a signal with an optimal transmission power to be received by the RRH 4 in the uplink, and a sub-optimal transmission power to be received by the base station apparatus 3. The present invention is also applicable to a communication system in which transmission of signals is controlled.
 また、本発明の実施形態は、本明細書に記載されるチャネルのみが用いられる通信システム1に限定されず、その他のチャネルが用いられる通信システムにも適用可能である。例えば、PDCCHとは異なる性質を持つ下りリンク制御チャネル(E-PDCCH: Enhanced-PDCCH)がPDCCHとは独立して用いられてもよい。例えば、E-PDCCHには、プリコーディング処理が適用され得る。例えば、E-PDCCHは、E-PDCCHに用いられるプリコーディング処理と同様の処理が適用された参照信号に基づく、伝搬路補償などの復調処理が実行され得る。 Further, the embodiment of the present invention is not limited to the communication system 1 in which only the channels described in the present specification are used, but can be applied to a communication system in which other channels are used. For example, a downlink control channel (E-PDCCH: Enhanced-PDCCH) having properties different from PDCCH may be used independently of PDCCH. For example, a precoding process may be applied to E-PDCCH. For example, the E-PDCCH may be subjected to demodulation processing such as channel compensation based on a reference signal to which processing similar to the precoding processing used for E-PDCCH is applied.
 PDSCHは、下りリンクのデータおよび制御情報の送受信に用いられる物理チャネルである。PDCCHは、下りリンクの制御情報の送受信に用いられる物理チャネルである。PUSCHは、上りリンクのデータおよび制御情報の送受信に用いられる物理チャネルである。PUCCHは、上りリンクの制御情報(上りリンク制御情報; Uplink Control Information: UCI)の送受信に用いられる物理チャネルである。UCIの種類としては、PDSCHの下りリンクのデータに対する肯定応答(Acknowledgement: ACK)、または否定応答(Negative Acknowledgement: NACK)を示す受信確認応答(ACK/NACK)と、リソースの割り当てを要求するか否かを示すスケジューリング要求(Scheduling request: SR)等が用いられる。その他の物理チャネルの種類としては、下りリンクの同期確立のために用いられる同期チャネル(Synchronization CHannel: SCH、同期信号; synchronization signal)、上りリンクの同期確立のために用いられる物理ランダムアクセスチャネル(Physical Random Access CHannel: PRACH)、下りリンクのシステム情報(SIB: System Information Blockとも呼称する)の送信に用いられる物理報知チャネル(Physical Broadcast CHannel: PBCH)等が用いられる。また、PDSCHは下りリンクのシステム情報の送信にも用いられる。 PDSCH is a physical channel used for transmission / reception of downlink data and control information. The PDCCH is a physical channel used for transmission / reception of downlink control information. PUSCH is a physical channel used for transmission / reception of uplink data and control information. The PUCCH is a physical channel used for transmission / reception of uplink control information (uplink control information; Uplink Control Information: UCI). As the type of UCI, whether to request an acknowledgment (ACK / NACK) indicating an acknowledgment (Acknowledgement: ACK) or a negative acknowledgment (NegativeegAcknowledgement: NACK) for PDSCH downlink data and resource allocation A scheduling request (Scheduling request: SR) or the like is used. Other physical channel types include synchronization channel (Synchronization CHannel: SCH, synchronization signal; synchronization signal) used for downlink synchronization establishment, physical random access channel (Physical) used for uplink synchronization establishment Random Access CHannel: PRACH), physical broadcast channel (Physical Broadcast CHannel: PBCH) used for transmission of downlink system information (also referred to as SIB: System と も Information Block), and the like are used. The PDSCH is also used for transmission of downlink system information.
 移動局装置5、基地局装置3、またはRRH4は、制御情報、データなどから生成した信号を各物理チャネルに配置して、送信する。PDSCH、またはPUSCHで送信されるデータは、トランスポートブロックと呼称する。また、基地局装置3、またはRRH4が管轄するエリアのことをセルと呼ぶ。 The mobile station device 5, the base station device 3, or the RRH 4 arranges and transmits signals generated from control information, data, etc. in each physical channel. Data transmitted on the PDSCH or PUSCH is referred to as a transport block. In addition, an area controlled by the base station apparatus 3 or the RRH 4 is called a cell.
 <下りリンクの時間フレームの構成>
 図9は、本発明の実施形態に係る基地局装置3、またはRRH4から移動局装置5への下りリンクの時間フレームの概略構成を示す図である。この図において、横軸は時間領域、縦軸は周波数領域を表している。下りリンクの時間フレームは、リソースの割り当てなどの単位であり、下りリンクの予め決められた幅の周波数帯および時間帯からなるリソースブロック(RB)(物理リソースブロック; PRB: Physical Resource Blockとも呼称する)のペア(物理リソースブロックペア; PRB pairと呼称する)から構成される。1個の下りリンクのPRB pair(下りリンク物理リソースブロックペア; DL PRB pairと呼称する)は下りリンクの時間領域で連続する2個のPRB(下りリンク物理リソースブロック; DL PRBと呼称する)から構成される。
<Configuration of downlink time frame>
FIG. 9 is a diagram illustrating a schematic configuration of a downlink time frame from the base station apparatus 3 or the RRH 4 to the mobile station apparatus 5 according to the embodiment of the present invention. In this figure, the horizontal axis represents the time domain, and the vertical axis represents the frequency domain. The downlink time frame is a unit for resource allocation and the like, and is a resource block (RB) (physical resource block; also referred to as a PRB: Physical Resource Block) composed of a frequency band and a time slot having a predetermined downlink width. ) Pairs (physical resource block pairs; referred to as PRB pairs). One downlink PRB pair (downlink physical resource block pair; referred to as DL PRB pair) is derived from two consecutive PRBs (downlink physical resource block; referred to as DL PRB) in the downlink time domain. Composed.
 また、この図において、1個のDL PRBは、下りリンクの周波数領域において12個のサブキャリア(下りリンクサブキャリアと呼称する)から構成され、時間領域において7個のOFDM(直交周波数分割多重; Orthogonal Frequency Division Multiplexing)シンボルから構成される。下りリンクのシステム帯域(下りリンクシステム帯域と呼称する)は、基地局装置3、またはRRH4の下りリンクの通信帯域である。例えば、下りリンクのシステム帯域幅(下りリンクシステム帯域幅と呼称する)は、20MHzの周波数帯域幅から構成される。 In this figure, one DL PRB is composed of 12 subcarriers (referred to as downlink subcarriers) in the downlink frequency domain, and 7 OFDM (orthogonal frequency division multiplexing in the time domain; (Orthogonal Frequency Division Multiplexing) symbol. A downlink system band (referred to as a downlink system band) is a downlink communication band of the base station apparatus 3 or the RRH 4. For example, the downlink system bandwidth (referred to as downlink system bandwidth) is configured with a frequency bandwidth of 20 MHz.
 なお、下りリンクシステム帯域では下りリンクシステム帯域幅に応じて複数のDL PRBが配置される。例えば、20MHzの周波数帯域幅の下りリンクシステム帯域は、110個のDL PRBから構成される。 In the downlink system band, a plurality of DL PRBs are arranged according to the downlink system bandwidth. For example, the downlink system band having a frequency bandwidth of 20 MHz is composed of 110 DL PRBs.
 また、この図が示す時間領域においては、7個のOFDMシンボルから構成されるスロット(下りリンクスロットと呼称する)、2個の下りリンクスロットから構成されるサブフレーム(下りリンクサブフレームと呼称する)がある。なお、1個の下りリンクサブキャリアと1個のOFDMシンボルから構成されるユニットをリソースエレメント(RE: Resource Element)(下りリンクリソースエレメント)と呼称する。各下りリンクサブフレームには少なくとも、情報データ(トランスポートブロック; Transport Blockとも呼称する)の送信に用いられるPDSCH、制御情報の送信に用いられるPDCCHが配置される。この図においては、PDCCHは下りリンクサブフレームの1番目から3番目までのOFDMシンボルから構成され、PDSCHは下りリンクサブフレームの4番目から14番目までのOFDMシンボルから構成される。なお、PDCCHを構成するOFDMシンボルの数と、PDSCHを構成するOFDMシンボルの数は、下りリンクサブフレーム毎に変更されてもよい。 Further, in the time domain shown in this figure, a slot composed of 7 OFDM symbols (referred to as a downlink slot) and a subframe composed of two downlink slots (referred to as a downlink subframe). ) A unit composed of one downlink subcarrier and one OFDM symbol is called a resource element (RE: Resource) (downlink resource element). In each downlink subframe, at least a PDSCH used for transmission of information data (transport block; also called “Transport Block”) and a PDCCH used for transmission of control information are arranged. In this figure, the PDCCH is composed of the first to third OFDM symbols in the downlink subframe, and the PDSCH is composed of the fourth to fourteenth OFDM symbols in the downlink subframe. Note that the number of OFDM symbols constituting the PDCCH and the number of OFDM symbols constituting the PDSCH may be changed for each downlink subframe.
 この図において図示は省略するが、下りリンクの参照信号(Reference signal: RS)(下りリンク参照信号と呼称する)の送信に用いられる下りリンクパイロットチャネルが複数の下りリンクリソースエレメントに分散して配置される。ここで、下りリンク参照信号は、少なくとも異なるタイプの第一のタイプの参照信号と第二のタイプの参照信号と第三のタイプの参照信号から構成される。例えば、下りリンク参照信号は、PDSCHおよびPDCCHの伝搬路変動の推定に用いられる。例えば、第一のタイプの参照信号は、PDSCH、PDCCHの復調に用いられ、Cell specific RS:CRSとも呼称する。例えば、第二のタイプの参照信号は、伝搬路変動の推定のみに用いられ、Channel State Information RS:CSI-RSとも呼称する。例えば、第三のタイプの参照信号は、協調通信が適用されるPDSCHの復調に用いられ、UE specific RSとも呼称する。下りリンク参照信号は、通信システム1において既知の信号である。なお、下りリンク参照信号を構成する下りリンクリソースエレメントの数は、基地局装置3、RRH4において移動局装置5への通信に用いられる送信アンテナ(アンテナポート)の数に依存してもよい。以降の説明では、第一のタイプの参照信号としてCRS、第二のタイプの参照信号としてCSI-RS、第三のタイプの参照信号としてUE specific RSが用いられる場合について説明する。なお、UE specific RSは、協調通信が適用されないPDSCHの復調にも用いられ得る。 Although not shown in the figure, downlink pilot channels used for transmission of downlink reference signals (Reference signal: RS) (referred to as downlink reference signals) are distributed and arranged in a plurality of downlink resource elements. Is done. Here, the downlink reference signal includes at least different types of a first type reference signal, a second type reference signal, and a third type reference signal. For example, the downlink reference signal is used for estimation of PDSCH and PDCCH propagation path fluctuations. For example, the first type of reference signal is used for demodulation of PDSCH and PDCCH, and is also called Cell specific RS: CRS. For example, the second type of reference signal is used only for estimating propagation path fluctuations, and is also referred to as Channel State Information RS: CSI-RS. For example, the third type of reference signal is used for demodulation of PDSCH to which cooperative communication is applied, and is also referred to as UE specific RS. The downlink reference signal is a known signal in the communication system 1. Note that the number of downlink resource elements constituting the downlink reference signal may depend on the number of transmission antennas (antenna ports) used for communication to the mobile station apparatus 5 in the base station apparatus 3 and RRH4. In the following description, a case will be described in which CRS is used as the first type reference signal, CSI-RS is used as the second type reference signal, and UE specific RS is used as the third type reference signal. Note that the UE specific RS can also be used for demodulation of PDSCH to which cooperative communication is not applied.
 PDCCHは、PDSCHに対するDL PRBの割り当てを示す情報、PUSCHに対するUL PRBの割り当てを示す情報、移動局識別子(Radio Network Temporary Identifier: RNTIと呼称する)、変調方式、符号化率、再送パラメータ、空間多重数、プリコーディング行列、送信電力制御コマンド(TPC command)を示す情報などの制御情報から生成された信号が配置される。PDCCHに含まれる制御情報を下りリンク制御情報(Downlink Control Information: DCI)と呼称する。PDSCHに対するDL PRBの割り当てを示す情報を含むDCIは下りリンクアサインメント(Downlink assignment: DL assignment、またDownlink grantとも呼称する)と呼称し、PUSCHに対するUL PRBの割り当てを示す情報を含むDCIは上りリンクグラント(Uplink grant: UL grant)と呼称する。なお、下りリンクアサインメントは、PUCCHに対する送信電力制御コマンドを含む。なお、上りリンクアサインメントは、PUSCHに対する送信電力制御コマンドを含む。なお、1個のPDCCHは、1個のPDSCHのリソースの割り当てを示す情報、または1個のPUSCHのリソースの割り当てを示す情報しか含まず、複数のPDSCHのリソースの割り当てを示す情報、または複数のPUSCHのリソースの割り当てを示す情報を含まない。 PDCCH is information indicating DL PRB allocation to PDSCH, information indicating UL PRB allocation to PUSCH, mobile station identifier (referred to as Radio Network Temporary Identifier: RNTI), modulation scheme, coding rate, retransmission parameter, spatial multiplexing A signal generated from control information such as information indicating the number, precoding matrix, and transmission power control command (TPCTPcommand) is arranged. Control information included in the PDCCH is referred to as downlink control information (Downlink Control DCI). DCI including information indicating DL PRB assignment to PDSCH is referred to as downlink assignment (also referred to as “downlink assignment” or “DL assignment”), and DCI including information indicating UL PRB assignment to PUSCH is uplink. It is called Grant (Uplink grant: UL grant). Note that the downlink assignment includes a transmission power control command for PUCCH. The uplink assignment includes a transmission power control command for PUSCH. One PDCCH includes only information indicating resource allocation of one PDSCH, or information indicating resource allocation of one PUSCH, and information indicating resource allocation of a plurality of PDSCHs, It does not include information indicating PUSCH resource allocation.
 更に、PDCCHで送信される情報として、巡回冗長検査CRC(Cyclic Redundancy Check)符号がある。PDCCHで送信される、DCI、RNTI、CRCの関係について詳細に説明する。予め決められた生成多項式を用いてDCIからCRC符号が生成される。生成されたCRC符号に対してRNTIを用いて排他的論理和(スクランブリングとも呼称する)の処理が行なわれる。DCIを示すビットと、CRC符号に対してRNTIを用いて排他的論理和の処理が行なわれて生成されたビット(CRC masked by UE IDと呼称する)を変調した信号が、PDCCHで実際に送信される。 Furthermore, as information transmitted on the PDCCH, there is a cyclic redundancy check CRC (Cyclic Redundancy Check) code. The relationship between DCI, RNTI, and CRC transmitted on the PDCCH will be described in detail. A CRC code is generated from DCI using a predetermined generator polynomial. The generated CRC code is subjected to exclusive OR (also referred to as scrambling) processing using RNTI. A signal obtained by modulating a bit indicating DCI and a bit (CRC masked by UE ID) generated by performing exclusive OR processing on the CRC code using RNTI is actually transmitted on PDCCH. Is done.
 PDSCHのリソースは、時間領域において、そのPDSCHのリソースの割り当てに用いられた下りリンクアサインメントを含むPDCCHのリソースが配置された下りリンクサブフレームと同一の下りリンクサブフレームに配置される。 The PDSCH resource is arranged in the same downlink subframe as the downlink subframe in which the PDCCH resource including the downlink assignment used for the allocation of the PDSCH resource is arranged in the time domain.
 下りリンク参照信号の配置について説明する。図10は、本発明の実施形態に係る通信システム1の下りリンクサブフレーム内の下りリンク参照信号の配置の一例を示す図である。説明の簡略化のため、図10では、1個のPRB pair内の下りリンク参照信号の配置について説明するが、基本的に下りリンクシステム帯域内の全てのPRB pairにおいて共通した配置方法が用いられる。 Described below is the arrangement of downlink reference signals. FIG. 10 is a diagram illustrating an example of an arrangement of downlink reference signals in a downlink subframe of the communication system 1 according to the embodiment of the present invention. For simplification of explanation, FIG. 10 illustrates the arrangement of downlink reference signals in one PRB pair, but basically a common arrangement method is used in all PRB pairs in the downlink system band. .
 網掛けした下りリンクリソースエレメントのうち、R0~R1は、それぞれアンテナポート0~1のCRSを示す。ここで、アンテナポートとは、信号処理で用いる論理的なアンテナを意味し、1個のアンテナポートは複数の物理的なアンテナから構成されてもよい。同一のアンテナポートを構成する複数の物理的なアンテナは、同一の信号を送信する。同一のアンテナポート内で、複数の物理的なアンテナを用いて、遅延ダイバーシチ、またはCDD(Cyclic Delay Diversity)を適用することはできるが、その他の信号処理を用いることはできない。ここで、図10においては、CRSが2つのアンテナポートに対応する場合について示すが、本実施形態の通信システムは異なる数のアンテナポートに対応してもよく、例えば、1つのアンテナポートや4つのアンテナポートに対するCRSが下りリンクのリソースにマッピングされてもよい。CRSは、下りリンクシステム帯域内の全てのDL PRB内に配置される。 Among the shaded downlink resource elements, R0 to R1 indicate CRS of antenna ports 0 to 1, respectively. Here, the antenna port means a logical antenna used in signal processing, and one antenna port may be composed of a plurality of physical antennas. A plurality of physical antennas constituting the same antenna port transmit the same signal. Although delay diversity or CDD (Cyclic Delay Delay) can be applied using a plurality of physical antennas within the same antenna port, other signal processing cannot be used. Here, FIG. 10 shows the case where the CRS corresponds to two antenna ports, but the communication system of the present embodiment may support different numbers of antenna ports, for example, one antenna port or four antenna ports. A CRS for an antenna port may be mapped to a downlink resource. The CRS is arranged in all DL PRBs in the downlink system band.
 斜線部分の下りリンクリソースエレメントのうち、D1はUE specific RSを示す。複数のアンテナポートを用いてUE specific RSが送信される場合、各アンテナポートで異なる符号が用いられる。つまり、UE specific RSにCDM(Code Division Multiplexing)が適用される。ここで、UE specific RSは、そのPRB pairにマッピングされる制御信号やデータ信号に用いられる信号処理のタイプ(アンテナポートの数)に応じて、CDMに用いられる符号の長さやマッピングされる下りリンクリソースエレメントの数が変えられてもよい。例えば、基地局装置3、RRH4において、協調通信に用いられるアンテナポートの数が2本の場合、符号の長さが2である符号を用いて、同じ周波数領域(サブキャリア)で連続する時間領域(OFDMシンボル)の2個の下りリンクリソースエレメントを一単位(CDMの単位)としてUE specific RSが多重されて、配置される。言い換えると、この場合、UE specific RSの多重にCDMが適用される。例えば、基地局装置3、RRH4において協調通信に用いられるアンテナポートの数が4本の場合、UE specific RSがマッピングされる下りリンクリソースエレメントの数が2倍に変えられ、2本のアンテナポート毎に異なる下りリンクリソースエレメントにUE specific RSが多重されて、配置される。言い換えると、この場合、UE specific RSの多重にCDMとFDM(Frequency Division Multiplexing)が適用される。例えば、基地局装置3、RRH4において協調通信に用いられるアンテナポートの数が8本の場合、UE specific RSがマッピングされる下りリンクリソースエレメントの数が2倍に変えられ、符号の長さが4である符号を用いて、4個の下りリンクリソースエレメントを一単位としてUE specific RSが多重されて、配置される。言い換えると、この場合、UE specific RSの多重に異なる符号長のCDMが適用される。 Among the downlink resource elements in the shaded area, D1 indicates the UE specific RS. When UE specific RS is transmitted using a plurality of antenna ports, different codes are used for each antenna port. That is, CDM (Code Division Multiplexing) is applied to UE specific RS. Here, the UE specific RS is the length of the code used for the CDM and the downlink to be mapped according to the type of signal processing (number of antenna ports) used for the control signal and data signal mapped to the PRB pair. The number of resource elements may be changed. For example, in the base station apparatus 3 and the RRH 4, when the number of antenna ports used for cooperative communication is two, using a code having a code length of 2, a time domain continuous in the same frequency domain (subcarrier) UE specific RSs are multiplexed and arranged with two downlink resource elements (OFDM symbols) as one unit (CDM unit). In other words, in this case, CDM is applied to multiplexing of UE specific RS. For example, when the number of antenna ports used for cooperative communication in the base station device 3 and the RRH 4 is 4, the number of downlink resource elements to which the UE specific RS is mapped is doubled, and each of the two antenna ports The UE specific RS is multiplexed and arranged on different downlink resource elements. In other words, in this case, CDM and FDM (Frequency Division Multiplexing) are applied to multiplexing of the UE specific RS. For example, when the number of antenna ports used for cooperative communication in the base station apparatus 3 and the RRH 4 is 8, the number of downlink resource elements to which the UE specific RS is mapped is doubled, and the code length is 4 UE specific RSs are multiplexed and arranged using four downlink resource elements as a unit. In other words, in this case, CDMs having different code lengths are applied to multiplexing of the UE specific RS.
 また、UE specific RSにおいて、各アンテナポートの符号に対してスクランブル符号がさらに重畳される。このスクランブル符号は、基地局装置3、RRH4から通知されるセルIDおよびスクランブルIDに基づいて生成される。例えば、スクランブル符号は、基地局装置3、RRH4から通知されるセルIDおよびスクランブルIDに基づいて生成される擬似ランダム系列から生成される。例えば、スクランブルIDは、0または1を示す値である。また、用いられるスクランブルIDおよびアンテナポートは、ジョイントコーディング(Joint coding)されて、それらを示す情報をインデックス化することもできる。UE specific RSは、UE specific RSを用いることが設定された移動局装置5に割り当てられたPDSCHのDL PRB内に配置される。 Also, in the UE specific RS, a scramble code is further superimposed on the code of each antenna port. This scramble code is generated based on the cell ID and the scramble ID notified from the base station apparatus 3 and the RRH 4. For example, the scramble code is generated from a pseudo random sequence generated based on the cell ID and the scramble ID notified from the base station apparatus 3 and the RRH 4. For example, the scramble ID is a value indicating 0 or 1. Further, the scramble ID and the antenna port to be used can be jointly coded, and information indicating them can be indexed. The UE specific RS is arranged in the DL PRB of the PDSCH assigned to the mobile station apparatus 5 that is set to use the UE specific RS.
 また、基地局装置3およびRRH4はそれぞれ、異なる下りリンクリソースエレメントにCRSの信号を割り当てる場合もあるし、同じ下りリンクリソースエレメントにCRSの信号を割り当てる場合もある。例えば、基地局装置3およびRRH4はそれぞれ、異なるリソースエレメントおよび、または異なる信号系列にCRSの信号を割り当てる場合には、移動局装置5はCRSを用いてそれぞれの受信電力(受信信号電力、受信品質)を個別に算出することができる。特に、基地局装置3およびRRH4から通知されるセルIDが異なる場合には前述のような設定が可能となる。別の例では、基地局装置3のみが一部の下りリンクリソースエレメントにCRSの信号を割り当て、RRH4は何れの下りリンクリソースエレメントにもCRSの信号を割り当てない場合がある。この場合には、移動局装置5は、基地局装置3の受信電力をCRSから算出することができる。特に、基地局装置3からのみセルIDが通知される場合には前述のような設定が可能となる。別の例では、基地局装置3およびRRH4が同じ下りリンクリソースエレメントにCRSの信号を割り当て、同じ系列を基地局装置3およびRRH4から送信した場合には、移動局装置5はCRSを用いて合成された受信電力を算出することができる。特に、基地局装置3およびRRH4から通知されるセルIDが同じ場合には前述のような設定が可能となる。 In addition, the base station apparatus 3 and the RRH 4 may assign a CRS signal to different downlink resource elements, or may assign a CRS signal to the same downlink resource element. For example, when the base station apparatus 3 and the RRH 4 allocate CRS signals to different resource elements and / or different signal sequences, the mobile station apparatus 5 uses the CRS to receive the received power (received signal power, received quality). ) Can be calculated individually. In particular, when the cell IDs notified from the base station apparatus 3 and the RRH 4 are different, the above-described setting is possible. In another example, only the base station apparatus 3 may assign a CRS signal to some downlink resource elements, and the RRH 4 may not assign a CRS signal to any downlink resource element. In this case, the mobile station device 5 can calculate the received power of the base station device 3 from the CRS. In particular, when the cell ID is notified only from the base station apparatus 3, the above-described setting is possible. In another example, when the base station apparatus 3 and the RRH 4 allocate a CRS signal to the same downlink resource element and transmit the same sequence from the base station apparatus 3 and the RRH 4, the mobile station apparatus 5 combines using the CRS. Received power can be calculated. In particular, when the cell IDs notified from the base station device 3 and the RRH 4 are the same, the above-described setting is possible.
 なお、本発明の実施形態の説明では、例えば、電力を算出することは電力の値を算出することを含み、電力を計算することは電力の値を計算することを含み、電力を測定することは電力の値を測定することを含み、電力を報告することは電力の値を報告することを含む。このように、電力という表現は、適宜電力の値という意味も含まれる。 In the description of the embodiments of the present invention, for example, calculating power includes calculating a power value, and calculating power includes calculating a power value, and measuring power. Includes measuring a power value, and reporting power includes reporting a power value. Thus, the expression “power” includes the meaning of the value of power as appropriate.
 図11は、8アンテナポート用のCSI-RS(伝送路状況測定用参照信号)がマッピングされたDL PRB pairを示す図である。図11は、基地局装置3およびRRH4において用いられるアンテナポート数(CSIポート数)が8の場合のCSI-RSがマッピングされる場合を示している。なお、図11において、CRS、UE specific RS、PDCCH、PDSCH等の記載は、説明の簡略化のため、省略している。 FIG. 11 is a diagram showing a DL PRB pair to which CSI-RS (transmission path condition measurement reference signal) for 8 antenna ports is mapped. FIG. 11 shows a case where CSI-RS is mapped when the number of antenna ports (number of CSI ports) used in base station apparatus 3 and RRH 4 is 8. In FIG. 11, descriptions of CRS, UE specific RS, PDCCH, PDSCH, and the like are omitted for simplification of description.
 CSI-RSは、それぞれのCDMグループにおいて、2チップの直交符号(Walsh符号)が用いられ、それぞれの直交符号にCSIポート(CSI-RSのポート(アンテナポート、リソースグリッド))が割り当てられ、2CSIポート毎に符号分割多重される。さらに、それぞれのCDMグループが周波数分割多重される。4つのCDMグループを用いて、CSIポート1~8(アンテナポート15~22)の8アンテナポートのCSI-RSがマッピングされる。例えば、CSI-RSのCDMグループC1では、CSIポート1および2(アンテナポート15および16)のCSI-RSが符号分割多重され、マッピングされる。CSI-RSのCDMグループC2では、CSIポート3および4(アンテナポート17および18)のCSI-RSが符号分割多重され、マッピングされる。CSI-RSのCDMグループC3では、CSIポート5および6(アンテナポート19および20)のCSI-RSが符号分割多重され、マッピングされる。CSI-RSのCDMグループC4では、CSIポート7および8(アンテナポート21および22)のCSI-RSが符号分割多重され、マッピングされる。 The CSI-RS uses a 2-chip orthogonal code (Walsh code) in each CDM group, and a CSI port (CSI-RS port (antenna port, resource grid)) is assigned to each orthogonal code. Code division multiplexing is performed for each port. Further, each CDM group is frequency division multiplexed. CSI-RSs of 8 antenna ports of CSI ports 1 to 8 (antenna ports 15 to 22) are mapped using four CDM groups. For example, in the CDM group C1 of CSI-RS, CSI-RSs of CSI ports 1 and 2 (antenna ports 15 and 16) are code division multiplexed and mapped. In CDM group C2 of CSI-RS, CSI-RSs of CSI ports 3 and 4 (antenna ports 17 and 18) are code division multiplexed and mapped. In CDM group C3 of CSI-RS, CSI-RS of CSI ports 5 and 6 (antenna ports 19 and 20) are code division multiplexed and mapped. In the CDM group C4 of CSI-RS, CSI-RSs of CSI ports 7 and 8 (antenna ports 21 and 22) are code division multiplexed and mapped.
 基地局装置3およびRRH4のアンテナポート数が8の場合、基地局装置3およびRRH4はPDSCHに適用するレイヤー数(ランク数、空間多重数)を最大8とすることができる。また、基地局装置3およびRRH4は、アンテナポート数が1、2または4の場合のCSI-RSを送信することができる。基地局装置3およびRRH4は、1アンテナポート用または2アンテナポート用のCSI-RSを、図11で示すCSI-RSのCDMグループC1を用いて、送信することができる。基地局装置3およびRRH4は、4アンテナポート用のCSI-RSを、図11で示すCSI-RSのCDMグループC1、C2を用いて、送信することができる。 When the number of antenna ports of the base station device 3 and the RRH 4 is 8, the base station device 3 and the RRH 4 can set the maximum number of layers (number of ranks, spatial multiplexing number) applied to the PDSCH to 8. Further, the base station device 3 and the RRH 4 can transmit CSI-RS when the number of antenna ports is 1, 2 or 4. The base station apparatus 3 and the RRH 4 can transmit CSI-RS for one antenna port or two antenna ports by using the CDM group C1 of CSI-RS shown in FIG. The base station apparatus 3 and the RRH 4 can transmit the CSI-RS for four antenna ports using the CDM groups C1 and C2 of the CSI-RS shown in FIG.
 また、基地局装置3およびRRH4はそれぞれ、異なる下りリンクリソースエレメントにCSI-RSの信号を割り当てる場合もあるし、同じ下りリンクリソースエレメントにCSI-RSの信号を割り当てる場合もある。例えば、基地局装置3およびRRH4はそれぞれ、異なる下りリンクリソースエレメントおよび、または異なる信号系列をCSI-RSに割り当てる場合には、移動局装置5はCSI-RSを用いて、基地局装置3およびRRH4のそれぞれの受信電力(受信信号電力、受信品質)およびそれぞれの伝搬路状態を個別に算出することができる。移動局装置5においては、基地局装置3から送信されるCSI-RS、RRH4から送信されるCSI-RSは、それぞれ異なるアンテナポートに対応するCSI-RSと認識される。この場合、移動局装置5においては、基地局装置3より、各アンテナポートに対応するCSI-RSの受信電力をそれぞれ個別に測定、算出することのみが指示され、各CSI-RSが実際には基地局装置3より送信されるのか、RRH4より送信されるのかは明確に認識されなくても良い。別の例では、基地局装置およびRRH4が同じ下りリンクリソースエレメントをCSI-RSに割り当て、同じ系列を基地局装置3およびRRH4から送信した場合には、移動局装置5はCSI-RSを用いて合成された受信電力を算出することができる。また、異なるRRH4はそれぞれ、異なる下りリンクリソースエレメントにCSI-RSの信号を割り当てる場合もある。例えば、異なるRRH4のそれぞれが異なる下りリンクリソースエレメントおよび、または異なる信号系列をCSI-RSに割り当てる場合には、移動局装置5はCSI-RSを用いて、異なるRRH4のそれぞれの受信電力(受信信号電力、受信品質)およびそれぞれの伝搬路状態を個別に算出することができる。 In addition, the base station apparatus 3 and the RRH 4 may assign a CSI-RS signal to different downlink resource elements, or may assign a CSI-RS signal to the same downlink resource element. For example, when the base station apparatus 3 and the RRH 4 allocate different downlink resource elements and / or different signal sequences to the CSI-RS, the mobile station apparatus 5 uses the CSI-RS to transmit the base station apparatus 3 and the RRH 4 Each received power (received signal power, received quality) and each propagation path state can be calculated individually. In the mobile station apparatus 5, the CSI-RS transmitted from the base station apparatus 3 and the CSI-RS transmitted from the RRH 4 are recognized as CSI-RSs corresponding to different antenna ports. In this case, in the mobile station device 5, the base station device 3 is instructed to individually measure and calculate the received power of the CSI-RS corresponding to each antenna port, and each CSI-RS is actually Whether it is transmitted from the base station apparatus 3 or RRH4 does not have to be clearly recognized. In another example, when the base station apparatus and the RRH4 allocate the same downlink resource element to the CSI-RS and transmit the same sequence from the base station apparatus 3 and the RRH4, the mobile station apparatus 5 uses the CSI-RS. The combined received power can be calculated. Also, different RRHs 4 may assign CSI-RS signals to different downlink resource elements, respectively. For example, when each different RRH4 assigns a different downlink resource element and / or different signal sequence to the CSI-RS, the mobile station device 5 uses the CSI-RS to receive each received power (received signal) of the different RRH4. Power, reception quality) and respective propagation path states can be calculated individually.
 CSI-RSの構成(CSI-RS-Config-r10)は、基地局装置3、RRH4から移動局装置5に通知される。CSI-RSの構成としては、CSI-RSに設定されるアンテナポートの数を示す情報(antennaPortsCount-r10)、CSI-RSが配置される下りリンクサブフレームを示す情報(subframeConfig-r10)、CSI-RSが配置される周波数領域を示す情報(ResourceConfig-r10)が少なくとも含まれる。アンテナポートの数は、例えば、1,2,4,8の値の何れかが用いられる。CSI-RSが配置される周波数領域を示す情報として、アンテナポート15(CSIポート1)に対応するCSI-RSが配置されるリソースエレメントの中で、先頭のリソースエレメントの位置を示すインデックスが用いられる。アンテナポート15に対応するCSI-RSの位置が決まれば、他のアンテナポートに対応するCSI-RSは予め決められたルールに基づき一意に決まる。CSI-RSが配置される下りリンクサブフレームを示す情報として、CSI-RSが配置される下りリンクサブフレームの位置と周期がインデックスにより示される。例えば、subframeConfig-r10のインデックスが5であれば、10サブフレーム毎にCSI-RSが配置されることを示し、10サブフレームを単位とする無線フレーム中ではサブフレーム0(無線フレーム内のサブフレームの番号)にCSI-RSが配置されることを示す。また、別の例では、例えばsubframeConfig-r10のインデックスが1であれば、5サブフレーム毎にCSI-RSが配置されることを示し、10サブフレームを単位とする無線フレーム中ではサブフレーム1と6にCSI-RSが配置されることを示す。 The configuration of CSI-RS (CSI-RS-Config-r10) is notified from the base station device 3 and RRH 4 to the mobile station device 5. The configuration of the CSI-RS includes information indicating the number of antenna ports set in the CSI-RS (antennaPortsCount-r10), information indicating a downlink subframe in which the CSI-RS is arranged (subframeConfig-r10), CSI-RS Information (ResourceConfig-r10) indicating a frequency region where the RS is arranged is included at least. For example, any one of 1, 2, 4, and 8 is used as the number of antenna ports. As information indicating the frequency region in which the CSI-RS is allocated, an index indicating the position of the first resource element is used among the resource elements in which the CSI-RS corresponding to the antenna port 15 (CSI port 1) is allocated. . If the position of the CSI-RS corresponding to the antenna port 15 is determined, the CSI-RS corresponding to the other antenna port is uniquely determined based on a predetermined rule. As information indicating the downlink subframe in which the CSI-RS is arranged, the position and period of the downlink subframe in which the CSI-RS is arranged are indicated by an index. For example, if the index of subframeConfig-r10 is 5, it indicates that CSI-RS is arranged for every 10 subframes, and subframe 0 (subframe in the radio frame) Indicates that the CSI-RS is arranged. Further, in another example, for example, if the index of subframeConfig-r10 is 1, it indicates that CSI-RS is arranged every 5 subframes, and in a radio frame in units of 10 subframes, 6 shows that CSI-RS is arranged.
 本発明の実施形態では、少なくとも特定のアンテナポートに対応するCSI-RSをRRH4のみが送信する場合を主に想定する。CSI-RSの全てのアンテナポートに対応するCSI-RSをRRH4のみが送信する場合を含む。一部のアンテナポートに対応するCSI-RSをRRH4のみが送信する場合、その他のアンテナポートに対応するCSI-RSは、基地局装置3のみから送信されてもよく、基地局装置3とRRH4の両方から送信(SFN送信)されてもよい。CRSは、基地局装置3のみから送信されてもよく、基地局装置3とRRH4の両方から送信(SFN送信)されてもよい。 In the embodiment of the present invention, it is mainly assumed that only RRH4 transmits CSI-RS corresponding to at least a specific antenna port. This includes the case where only RRH4 transmits CSI-RS corresponding to all antenna ports of CSI-RS. When only the RRH 4 transmits CSI-RSs corresponding to some antenna ports, the CSI-RSs corresponding to other antenna ports may be transmitted only from the base station apparatus 3, and the base station apparatus 3 and the RRH 4 Both may be transmitted (SFN transmission). The CRS may be transmitted only from the base station apparatus 3, or may be transmitted from both the base station apparatus 3 and the RRH 4 (SFN transmission).
 詳細は後述するが、移動局装置5は、RRH4のみが送信する特定のアンテナポートのCSI-RSを受信して、RRH4に対するパスロスを測定し、測定したパスロスを上りリンクの信号の送信電力の設定に用いる。これにより、信号の受信先がRRH4である場合に適した送信電力を設定することができる。また、移動局装置5は、基地局装置3のみが送信するRS(CRS、またはCSI-RS)を受信して、基地局装置3に対するパスロスを測定し、測定したパスロスを上りリンクの信号の送信電力の設定に用いるようにしてもよい。これにより、信号の受信先が基地局装置3である場合に適した送信電力を設定することができる。また、移動局装置5は、基地局装置3とRRH4の両方が送信するRS(CRS、またはCSI-RS)を受信して、両信号が合成された信号からパスロスを測定し、測定したパスロスを上りリンクの信号の送信電力の設定に用いるようにしてもよい。これにより、信号の受信先が基地局装置3、またはRRH4である場合に、ある程度適した送信電力を設定することができる。このように、信号の受信先に適した送信電力を設定するようにすることにより、信号の要求品質を満足しつつ、他の信号に与える干渉を抑え、通信システムの効率を向上させることができる。 Although details will be described later, the mobile station apparatus 5 receives the CSI-RS of a specific antenna port transmitted only by the RRH 4, measures the path loss for the RRH 4, and sets the measured path loss for the transmission power of the uplink signal. Used for. Thereby, it is possible to set transmission power suitable for the case where the signal receiving destination is RRH4. Further, the mobile station apparatus 5 receives an RS (CRS or CSI-RS) transmitted only by the base station apparatus 3, measures the path loss to the base station apparatus 3, and transmits the measured path loss to the uplink signal. You may make it use for the setting of electric power. Thereby, it is possible to set transmission power suitable for the case where the signal receiving destination is the base station apparatus 3. Also, the mobile station apparatus 5 receives RS (CRS or CSI-RS) transmitted by both the base station apparatus 3 and the RRH 4, measures the path loss from the signal obtained by combining both signals, and calculates the measured path loss. You may make it use for the setting of the transmission power of the signal of an uplink. Thereby, when the signal receiving destination is the base station apparatus 3 or RRH4, it is possible to set transmission power suitable to some extent. In this way, by setting the transmission power suitable for the signal receiving destination, it is possible to improve the efficiency of the communication system while suppressing the interference given to other signals while satisfying the required quality of the signal. .
 本発明の実施形態は、上述のように、移動局装置5が、異なる種類の下りリンクの参照信号から複数のパスロスの測定を行ない、何れか1つのパスロスを用いて、または各パスロスを用いて上りリンクの信号の送信電力を制御する通信システムを主に想定する。例えば、移動局装置5が、CRSとCSI-RSから複数のパスロスの測定を行ない、何れか1つのパスロスを用いて上りリンクの信号の送信電力を制御する通信システムを主に想定する。または、本発明の実施形態は、上述のように、移動局装置5が、同じ種類の下りリンクの参照信号ではあるが、異なる送信装置(基地局装置3、RRH4)から送信された下りリンクの参照信号に対して複数のパスロスの測定を行ない、何れか1つのパスロスを用いて、または各パスロスを用いて上りリンクの信号の送信電力を制御する通信システムを主に想定する。例えば、移動局装置5が、あるアンテナポートに対応するCSI-RSと、そのアンテナポートとは異なるアンテナポートに対応するCSI-RSから複数のパスロスの測定を行ない、何れか1つのパスロスを用いて上りリンクの信号の送信電力を制御する通信システムを主に想定する。 In the embodiment of the present invention, as described above, the mobile station apparatus 5 measures a plurality of path losses from different types of downlink reference signals, and uses any one path loss or each path loss. A communication system that controls transmission power of uplink signals is mainly assumed. For example, a communication system in which the mobile station apparatus 5 measures a plurality of path losses from CRS and CSI-RS and controls the transmission power of uplink signals using any one path loss is mainly assumed. Alternatively, in the embodiment of the present invention, as described above, the mobile station apparatus 5 is a downlink reference signal of the same type but transmitted from different transmission apparatuses (base station apparatus 3, RRH4). A communication system is mainly assumed in which a plurality of path losses are measured for a reference signal, and the transmission power of an uplink signal is controlled using any one path loss or each path loss. For example, the mobile station apparatus 5 measures a plurality of path losses from a CSI-RS corresponding to a certain antenna port and a CSI-RS corresponding to an antenna port different from the antenna port, and uses any one path loss. A communication system that controls transmission power of uplink signals is mainly assumed.
 また、本発明の実施形態は、上りリンクの送信電力制御に適用されるパスロスに関して、物理チャネル毎に独立にパスロスが設定され得る通信システムを想定する。例えば、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、異なるパスロスが設定される。例えば、PUCCHの送信電力制御に対してCRSから測定されたパスロスが設定され、PUSCHの送信電力制御に対してCSI-RSから測定されたパスロスが設定される。例えば、PUCCHの送信電力制御に対してCSI-RSから測定されたパスロスが設定され、PUSCHの送信電力制御に対してCRSから測定されたパスロスが設定される。例えば、PUCCHの送信電力制御とPUSCHの送信電力制御のそれぞれに対して、異なるアンテナポートに対応するCSI-RSから測定されたパスロスが設定される。例えば、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、同じパスロスが設定される。例えば、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、同じCRSから測定されたパスロスが設定される。例えば、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、同じCSI-RSから測定されたパスロスが設定される。例えば、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、同じアンテナポートのCSI-RSから測定されたパスロスが設定される。 Also, the embodiment of the present invention assumes a communication system in which path loss can be set independently for each physical channel with respect to path loss applied to uplink transmission power control. For example, different path loss is set for PUCCH transmission power control and PUSCH transmission power control. For example, a path loss measured from CRS is set for transmission power control of PUCCH, and a path loss measured from CSI-RS is set for transmission power control of PUSCH. For example, a path loss measured from CSI-RS is set for PUCCH transmission power control, and a path loss measured from CRS is set for PUSCH transmission power control. For example, path loss measured from CSI-RSs corresponding to different antenna ports is set for PUCCH transmission power control and PUSCH transmission power control, respectively. For example, the same path loss is set for PUCCH transmission power control and PUSCH transmission power control. For example, path loss measured from the same CRS is set for PUCCH transmission power control and PUSCH transmission power control. For example, path loss measured from the same CSI-RS is set for PUCCH transmission power control and PUSCH transmission power control. For example, the path loss measured from the CSI-RS of the same antenna port is set for PUCCH transmission power control and PUSCH transmission power control.
 なお、RRH4のみが送信するCSI-RSのアンテナポートに関する情報は、移動局装置5に通知される。通知された情報に基づき、移動局装置5はRRH4から送信される信号に対するパスロスの測定を行なうことができる。以降の説明では、説明の簡略化のため、基本的にCRSは基地局装置3のみから送信され、CSI-RSはRRH4のみから送信される場合について説明する。よって、以降の説明では、CRSに基づいて測定されるパスロスは基地局装置3から送信される信号に対してのものであり、CSI-RSに基づいて測定されるパスロスはRRH4から送信される信号に対してのものであることを意味する。説明の簡略化のために、このような通信システムに対して本発明の実施形態を説明しているだけであり、以降の説明は本発明を限定するものではなく、CRSが基地局装置3とRRH4の両方から送信される通信システム、特定のアンテナポートのCSI-RSのみがRRH4のみから送信される通信システムなどにも本発明を適用することができる。 Note that information regarding the CSI-RS antenna port transmitted only by the RRH 4 is notified to the mobile station apparatus 5. Based on the notified information, the mobile station apparatus 5 can measure the path loss for the signal transmitted from the RRH 4. In the following description, for simplification of explanation, a case will be described in which CRS is basically transmitted only from base station apparatus 3 and CSI-RS is transmitted only from RRH4. Therefore, in the following description, the path loss measured based on the CRS is for a signal transmitted from the base station apparatus 3, and the path loss measured based on the CSI-RS is a signal transmitted from the RRH 4. Means that For simplification of description, the embodiment of the present invention is only described for such a communication system, and the following description does not limit the present invention. The present invention can also be applied to a communication system transmitted from both RRH4, a communication system in which only CSI-RS of a specific antenna port is transmitted from only RRH4, and the like.
 なお、CRSの送信電力、CSI-RSの送信電力に関する情報がRRCシグナリングを用いて、基地局装置3、RRH4から移動局装置5に通知される。詳細は後述するが、移動局装置5は、通知された各種類の下りリンク参照信号の送信電力を用いて、各種類の下りリンク参照信号からパスロスを測定(計算)する。 Note that information on CRS transmission power and CSI-RS transmission power is notified from the base station apparatus 3 and RRH 4 to the mobile station apparatus 5 using RRC signaling. Although details will be described later, the mobile station apparatus 5 measures (calculates) a path loss from each type of downlink reference signal using the notified transmission power of each type of downlink reference signal.
 なお、本発明の実施形態の説明では、送信電力という表現は適宜送信電力値の意味を含む。例えば、送信電力を設定するということは、送信電力の値を設定することを含む。例えば、送信電力を制御するということは、送信電力の値を制御することを含む。 In the description of the embodiment of the present invention, the expression “transmission power” includes the meaning of the transmission power value as appropriate. For example, setting transmission power includes setting a value of transmission power. For example, controlling the transmission power includes controlling the value of the transmission power.
 <上りリンクの時間フレームの構成>
 図12は、本発明の実施形態に係る移動局装置5から基地局装置3、RRH4への上りリンクの時間フレームの概略構成を示す図である。この図において、横軸は時間領域、縦軸は周波数領域を表している。上りリンクの時間フレームは、リソースの割り当てなどの単位であり、上りリンクの予め決められた幅の周波数帯および時間帯からなる物理リソースブロックのペア(上りリンク物理リソースブロックペア; UL PRB pairと呼称する)から構成される。1個のUL PRB pairは、上りリンクの時間領域で連続する2個の上りリンクのPRB(上りリンク物理リソースブロック; UL PRBと呼称する)から構成される。
<Configuration of uplink time frame>
FIG. 12 is a diagram illustrating a schematic configuration of an uplink time frame from the mobile station apparatus 5 to the base station apparatus 3 and the RRH 4 according to the embodiment of the present invention. In this figure, the horizontal axis represents the time domain, and the vertical axis represents the frequency domain. An uplink time frame is a unit for resource allocation and the like, and is a pair of physical resource blocks (uplink physical resource block pair; UL PRB pair) consisting of a frequency band and a time zone of a predetermined width of the uplink. ). One UL PRB pair is composed of two uplink PRBs (uplink physical resource block; referred to as UL PRB) that are continuous in the uplink time domain.
 また、この図において、1個のUL PRBは、上りリンクの周波数領域において12個のサブキャリア(上りリンクサブキャリアと呼称する)から構成され、時間領域において7個のSC-FDMA(Single-Carrier Frequency Division Multiple Access)シンボルから構成される。上りリンクのシステム帯域(上りリンクシステム帯域と呼称する)は、基地局装置3、RRH4の上りリンクの通信帯域である。上りリンクのシステム帯域幅(上りリンクシステム帯域幅と呼称する)は、例えば、20MHzの周波数帯域幅から構成される。 Also, in this figure, one UL PRB is composed of 12 subcarriers (referred to as uplink subcarriers) in the uplink frequency domain, and 7 SC-FDMA (Single-Carrier) in the time domain. Frequency (Division (Multiple Access) symbol). An uplink system band (referred to as an uplink system band) is an uplink communication band of the base station apparatus 3 and the RRH 4. The uplink system bandwidth (referred to as an uplink system bandwidth) is composed of a frequency bandwidth of 20 MHz, for example.
 なお、上りリンクシステム帯域では上りリンクシステム帯域幅に応じて複数のUL PRBが配置される。例えば、20MHzの周波数帯域幅の上りリンクシステム帯域は、110個のUL PRBから構成される。また、この図が示す時間領域においては、7個のSC-FDMAシンボルから構成されるスロット(上りリンクスロットと呼称する)、2個の上りリンクスロットから構成されるサブフレーム(上りリンクサブフレームと呼称する)がある。なお、1個の上りリンクサブキャリアと1個のSC-FDMAシンボルから構成されるユニットをリソースエレメント(上りリンクリソースエレメント)と呼称する。 In the uplink system band, a plurality of UL PRBs are arranged according to the uplink system bandwidth. For example, the uplink system band having a frequency bandwidth of 20 MHz is composed of 110 UL PRBs. In the time domain shown in this figure, a slot composed of seven SC-FDMA symbols (referred to as an uplink slot) and a subframe composed of two uplink slots (uplink subframe and Called). A unit composed of one uplink subcarrier and one SC-FDMA symbol is called a resource element (uplink resource element).
 各上りリンクサブフレームには、少なくとも情報データの送信に用いられるPUSCH、上りリンク制御情報(UCI: Uplink Control Information)の送信に用いられるPUCCH、PUSCHとPUCCHの復調(伝搬路変動の推定)のためのUL RS(DM RS)が配置される。また、図示は省略するが、何れかの上りリンクサブフレームには、上りリンクの同期確立のために用いられるPRACHが配置される。また、図示は省略するが、何れかの上りリンクサブフレームには、チャネル品質、同期ずれの測定等に用いられるUL RS(SRS)が配置される。PUCCHは、PDSCHを用いて受信されたデータに対する肯定応答(ACK: Acknowledgement)または否定応答(NACK: Negative Acknowledgement)を示すUCI(ACK/NACK)、上りリンクのリソースの割り当てを要求するか否かを少なくとも示すUCI(SR: Scheduling Request; スケジューリング要求)、下りリンクの受信品質(チャネル品質とも呼称する)を示すUCI(CQI: Channel Quality Indicator; チャネル品質指標)を送信するために用いられる。 Each uplink subframe includes at least PUSCH used for transmission of information data, PUCCH used for transmission of uplink control information (UCI: Uplink Control Information), and demodulation of PUSCH and PUCCH (estimation of propagation path fluctuation). UL RS (DM RS) is placed. Although not shown, a PRACH used for establishing uplink synchronization is arranged in any uplink subframe. Although not shown in the figure, UL RS (SRS) used for measuring channel quality, synchronization deviation, etc. is arranged in any uplink subframe. Whether the PUCCH requests an acknowledgment (ACK: Acknowledgement) or a negative acknowledgment (NACK: Negative Acknowledgement) for data received using the PDSCH, and whether to request allocation of uplink resources. It is used to transmit at least UCI (SR: “Scheduling Request”) and UCI (CQI: “Channel Quality Indicator”) indicating downlink reception quality (also referred to as channel quality).
 なお、移動局装置5が上りリンクのリソースの割り当てを要求することを基地局装置3に示す場合に、移動局装置5はSRの送信用のPUCCHで信号を送信する。基地局装置3は、SRの送信用のPUCCHのリソースで信号を検出したという結果から移動局装置5が上りリンクのリソースの割り当てを要求していることを認識する。移動局装置5が上りリンクのリソースの割り当てを要求しないことを基地局装置3に示す場合に、移動局装置5は予め割り当てられたSRの送信用のPUCCHのリソースで何も信号を送信しない。基地局装置3は、SRの送信用のPUCCHのリソースで信号を検出しなかったという結果から移動局装置5が上りリンクのリソースの割り当てを要求していないことを認識する。 In addition, when the mobile station apparatus 5 indicates to the base station apparatus 3 that the allocation of uplink resources is requested, the mobile station apparatus 5 transmits a signal using the PUCCH for SR transmission. The base station apparatus 3 recognizes that the mobile station apparatus 5 is requesting uplink resource allocation from the result of detecting a signal using the PUCCH resource for transmission of the SR. When the mobile station apparatus 5 indicates to the base station apparatus 3 that it does not request allocation of uplink resources, the mobile station apparatus 5 does not transmit any signal using the PUCCH resources for transmission of the SR allocated in advance. The base station apparatus 3 recognizes that the mobile station apparatus 5 does not request uplink resource allocation from the result that the signal is not detected by the PUCCH resource for transmission of the SR.
 また、PUCCHは、ACK/NACKからなるUCIが送信される場合と、SRからなるUCIが送信される場合と、CQIからなるUCIが送信される場合とで異なる種類の信号構成が用いられる。ACK/NACKの送信に用いられるPUCCHをPUCCH format 1a、またはPUCCH format 1bと呼称する。PUCCH format 1aでは、ACK/NACKに関する情報を変調する変調方式としてBPSK(二位相偏移変調; Binary Phase Shift Keying)が用いられる。PUCCH format 1aでは、1ビットの情報が変調信号から示される。PUCCH format 1bでは、ACK/NACKに関する情報を変調する変調方式としてQPSK(四位相偏移変調; Quadrature Phase Shift Keying)が用いられる。PUCCH format 1bでは、2ビットの情報が変調信号から示される。SRの送信に用いられるPUCCHをPUCCH format 1と呼称する。CQIの送信に用いられるPUCCHをPUCCH format 2と呼称する。CQIとACK/NACKの同時送信に用いられるPUCCHをPUCCH format 2a、またはPUCCH format 2bと呼称する。PUCCH format 2bでは、上りリンクパイロットチャネルの参照信号(DM RS)にACK/NACKの情報から生成された変調信号が乗算される。PUCCH format 2aでは、ACK/NACKに関する1ビットの情報とCQIの情報が送信される。PUCCH format 2bでは、ACK/NACKに関する2ビットの情報とCQIの情報が送信される。 Also, different types of signal configurations are used for PUCCH depending on whether a UCI consisting of ACK / NACK is transmitted, a UCI consisting of SR, or a UCI consisting of CQI is transmitted. PUCCH used for transmission of ACK / NACK is called PUCCH format 1a or PUCCH format 1b. In PUCCH format 1a, BPSK (binary phase shift keying; Binary Phase Shift Keying) is used as a modulation method for modulating information about ACK / NACK. In PUCCH format 1a, 1-bit information is indicated from the modulation signal. PUCCH format 1b uses QPSK (Quadrature Shift Phase Key Shift) as a modulation method for modulating information about ACK / NACK. In PUCCH format 1b, 2-bit information is indicated from the modulation signal. The PUCCH used for SR transmission is called PUCCH format 1. The PUCCH used for CQI transmission is referred to as PUCCH format 2. The PUCCH used for simultaneous transmission of CQI and ACK / NACK is referred to as PUCCH format 2a or PUCCH format 2b. In PUCCH format 2b, the reference signal (DM RS) of the uplink pilot channel is multiplied by a modulation signal generated from ACK / NACK information. In PUCCH format 2a, 1-bit information about ACK / NACK and CQI information are transmitted. In PUCCH format 2b, 2-bit information on ACK / NACK and CQI information are transmitted.
 なお、1個のPUSCHは1個以上のUL PRBから構成され、1個のPUCCHは上りリンクシステム帯域内において周波数領域に対称関係にあり、異なる上りリンクスロットに位置する2個のUL PRBから構成され、1個のPRACHは6個のUL PRB pairから構成される。例えば、図12において、上りリンクサブフレーム内において、1番目の上りリンクスロットの最も周波数が低いUL PRBと、2番目の上りリンクスロットの最も周波数が高いUL PRBと、により、PUCCHに用いられるUL PRB pairの1個が構成される。なお、移動局装置5は、PUSCHとPUCCHの同時送信を行なわないように設定されている場合、同一上りリンクサブフレームでPUCCHのリソースとPUSCHのリソースが割り当てられた場合は、PUSCHのリソースのみを用いて信号を送信する。なお、移動局装置5は、PUSCHとPUCCHの同時送信を行なうように設定されている場合、同一上りリンクサブフレームでPUCCHのリソースとPUSCHのリソースが割り当てられた場合は、基本的にPUCCHのリソースとPUSCHのリソースの両方を用いて信号を送信することができる。 One PUSCH is composed of one or more UL PRBs, and one PUCCH is symmetrical in the frequency domain within the uplink system band, and is composed of two UL PRBs located in different uplink slots. One PRACH is composed of 6 UL PRB pairs. For example, in FIG. 12, the UL PRB having the lowest frequency in the first uplink slot and the UL PRB having the highest frequency in the second uplink slot in the uplink subframe are used for the PUCCH. One PRB pair is configured. In addition, when the mobile station apparatus 5 is set not to perform simultaneous transmission of PUSCH and PUCCH, when the PUCCH resource and the PUSCH resource are allocated in the same uplink subframe, only the PUSCH resource is allocated. To send a signal. In addition, when the mobile station apparatus 5 is set to perform simultaneous transmission of PUSCH and PUCCH, when PUCCH resources and PUSCH resources are allocated in the same uplink subframe, the PUCCH resources are basically allocated. And PUSCH resources can be used for signal transmission.
 UL RSは、上りリンクパイロットチャネルに用いられる信号である。UL RSは、PUSCHおよびPUCCHの伝搬路変動の推定に用いられる復調参照信号(DM RS: Demodulation Reference Signal)と、基地局装置3、RRH4のPUSCHの周波数スケジューリングおよび適応変調のためのチャネル品質の測定、基地局装置3、RRH4と移動局装置5間の同期ずれの測定に用いられるサウンディング参照信号(SRS: Sounding Reference Signal)とから構成される。DM RSは、PUSCHと同じUL PRB内に配置される場合と、PUCCHと同じUL PRB内に配置される場合とで、異なるSC-FDMAシンボルに配置される。DM RSは、PUSCHおよびPUCCHの伝搬路変動の推定に用いられる、通信システム1において既知の信号である。 UL RS is a signal used for an uplink pilot channel. UL RS is a demodulation reference signal (DM RS: Demodulation Reference 用 い Signal) used to estimate PUSCH and PUCCH propagation path fluctuations, and channel quality measurement for base station apparatus 3 and RSCH4 PUSCH frequency scheduling and adaptive modulation. , The base station apparatus 3, and the sounding reference signal (SRS: Sounding Reference Signal) used for measuring the synchronization deviation between the RRH 4 and the mobile station device 5. DM RSs are arranged in different SC-FDMA symbols depending on whether they are arranged in the same UL PRB as PUSCH or in the same UL PRB as PUCCH. The DM RS is a signal known in the communication system 1 that is used for estimating propagation path fluctuations of PUSCH and PUCCH.
 DM RSは、PUSCHと同じUL PRB内に配置される場合、上りリンクスロット内の4番目のSC-FDMAシンボルに配置される。DM RSは、ACK/NACKを含むPUCCHと同じUL PRB内に配置される場合、上りリンクスロット内の3番目と4番目と5番目のSC-FDMAシンボルに配置される。DM RSは、SRを含むPUCCHと同じUL PRB内に配置される場合、上りリンクスロット内の3番目と4番目と5番目のSC-FDMAシンボルに配置される。DM RSは、CQIを含むPUCCHと同じUL PRB内に配置される場合、上りリンクスロット内の2番目と6番目のSC-FDMAシンボルに配置される。 When the DM RS is arranged in the same UL PRB as the PUSCH, it is arranged in the fourth SC-FDMA symbol in the uplink slot. When the DM RS is arranged in the same UL PRB as the PUCCH including ACK / NACK, the DM RS is arranged in the third, fourth, and fifth SC-FDMA symbols in the uplink slot. When the DM RS is arranged in the same UL PRB as the PUCCH including the SR, the DM RS is arranged in the third, fourth, and fifth SC-FDMA symbols in the uplink slot. When the DM RS is arranged in the same UL PRB as the PUCCH including the CQI, it is arranged in the second and sixth SC-FDMA symbols in the uplink slot.
 SRSは、基地局装置3が決定したUL PRB内に配置され、上りリンクサブフレーム内の14番目のSC-FDMAシンボル(上りリンクサブフレームの2番目の上りリンクスロットの7番目のSC-FDMAシンボル)に配置される。SRSは、セル内において基地局装置3が決定した周期の上りリンクサブフレーム(調査参照信号サブフレーム; SRS subframeと呼称する)のみに配置され得る。SRS subframeに対して、基地局装置3は移動局装置5毎にSRSを送信する周期、SRSに割り当てるUL PRBを割り当てる。 The SRS is arranged in the UL PRB determined by the base station apparatus 3, and the 14th SC-FDMA symbol in the uplink subframe (the 7th SC-FDMA symbol in the second uplink slot of the uplink subframe) ). The SRS can be arranged only in the uplink subframe (survey reference signal subframe; referred to as “SRS subframe”) having a period determined by the base station apparatus 3 in the cell. For the SRS subframe, the base station apparatus 3 allocates a UL PRB to be allocated to the SRS, a period for transmitting the SRS for each mobile station apparatus 5.
 図12では、PUCCHが上りリンクシステム帯域の周波数領域で最も端のUL PRBに配置された場合を示しているが、上りリンクシステム帯域の端から2番目、3番目などのUL PRBがPUCCHに用いられてもよい。 FIG. 12 shows the case where the PUCCH is arranged in the UL PRB at the end in the frequency region of the uplink system band, but the second and third UL PRBs from the end of the uplink system band are used for the PUCCH. May be.
 なお、PUCCHにおいて周波数領域での符号多重、時間領域での符号多重が用いられる。周波数領域での符号多重は、サブキャリア単位で符号系列の各符号が上りリンク制御情報から変調された変調信号に乗算されることにより処理される。時間領域での符号多重は、SC-FDMAシンボル単位で符号系列の各符号が上りリンク制御情報から変調された変調信号に乗算されることにより処理される。複数のPUCCHが同一のUL PRBに配置され、各PUCCHは異なる符号が割り当てられ、割り当てられた符号により周波数領域、または時間領域において符号多重が実現される。ACK/NACKを送信するために用いられるPUCCH(PUCCH format 1a、またはPUCCH format 1bと呼称する)においては、周波数領域および時間領域での符号多重が用いられる。SRを送信するために用いられるPUCCH(PUCCH format 1と呼称する)においては、周波数領域および時間領域での符号多重が用いられる。CQIを送信するために用いられるPUCCH(PUCCH format 2、またはPUCCH format 2a、またはPUCCH format 2bと呼称する)においては、周波数領域での符号多重が用いられる。なお、説明の簡略化のため、PUCCHの符号多重に係る内容の説明は適宜省略する。 Note that code multiplexing in the frequency domain and code multiplexing in the time domain are used in the PUCCH. Code multiplexing in the frequency domain is processed by multiplying each code of the code sequence by a modulated signal modulated from uplink control information in subcarrier units. Code multiplexing in the time domain is processed by multiplying each code of the code sequence by the modulated signal modulated from the uplink control information in units of SC-FDMA symbols. A plurality of PUCCHs are arranged in the same UL PRB, and different codes are assigned to the respective PUCCHs, and code multiplexing is realized in the frequency domain or time domain by the assigned codes. In PUCCH (referred to as PUCCH (format 1a or PUCCH format 1b) used to transmit ACK / NACK, code multiplexing in the frequency domain and time domain is used. In PUCCH used to transmit SR (referred to as PUCCH format 用 い 1), code multiplexing in the frequency domain and time domain is used. In PUCCH (referred to as PUCCH format 2 or PUCCH format 2a or PUCCH format 2b) used for transmitting CQI, code multiplexing in the frequency domain is used. For simplification of description, description of the contents related to PUCCH code multiplexing is omitted as appropriate.
 PUSCHのリソースは、時間領域において、そのPUSCHのリソースの割り当てに用いられた上りリンクグラントを含むPDCCHのリソースが配置された下りリンクサブフレームから所定の数(例えば、4)後の上りリンクサブフレームに配置される。 The PUSCH resource is an uplink subframe after a predetermined number (for example, 4) from the downlink subframe in which the PDCCH resource including the uplink grant used for allocation of the PUSCH resource is allocated in the time domain. Placed in.
 <CSI-RSに基づくパスロスの測定の追加>
 移動局装置5は、CRSに基づきパスロスを計算(測定)する。また、移動局装置5は、追加として、CSI-RSに基づきパスロスを計算(測定)する。移動局装置5は、計算したパスロスに基づき上りリンクの送信電力の計算を行ない、計算した値の上りリンクの送信電力で上りリンクの信号の送信を行なう。基地局装置3は、移動局装置5に対して下りリンク参照信号の測定に関するパラメータ(コンフィグレーション)を設定する。なお、初期状態(デフォルト状態)では、移動局装置5はCRSに基づきパスロスを計算し、計算したパスロスを用いて上りリンクの送信電力値を計算する。なお、初期状態では、移動局装置5は、アンテナポート0のCRS、またはアンテナポート0と1のCRSに基づき、パスロスの計算を行なう。
<Addition of path loss measurement based on CSI-RS>
The mobile station device 5 calculates (measures) the path loss based on the CRS. In addition, the mobile station apparatus 5 additionally calculates (measures) the path loss based on the CSI-RS. The mobile station apparatus 5 calculates uplink transmission power based on the calculated path loss, and transmits an uplink signal with the calculated uplink transmission power. The base station apparatus 3 sets a parameter (configuration) related to the measurement of the downlink reference signal for the mobile station apparatus 5. In the initial state (default state), the mobile station apparatus 5 calculates a path loss based on the CRS, and calculates an uplink transmission power value using the calculated path loss. In the initial state, the mobile station apparatus 5 performs path loss calculation based on the CRS of the antenna port 0 or the CRSs of the antenna ports 0 and 1.
 基地局装置3は、必要と判断した場合(例えば、移動局装置5がRRH4に距離的に近いと判断した場合)、追加でCSI-RSに基づきパスロスを計算し、上りリンクの送信電力に用いることができるように、移動局装置5に対して設定を行なう。具体的には、基地局装置3は、移動局装置5のパスロスリファレンスの追加変更(再設定、再構成)を行なう。例えば、この変更は、RRCシグナリングを用いて行なわれる。パスロスリファレンスとは、パスロスの計算に用いる測定対象を意味し、CRS、またはCSI-RSである。ここで、基地局装置3は、移動局装置5がパスロスの計算に用いるCSI-RSのアンテナポートを指定することができ、移動局装置5は基地局装置3より指定されたアンテナポートのCSI-RSに基づきパスロスの計算を行なう。なお、ここでは、移動局装置5が基地局装置3より指定されるアンテナポートは、1つのアンテナポートであってもよく、複数のアンテナポートであってもよく、全てのアンテナポートであってもよい。基地局装置3は、CRSに基づき測定されたパスロスを用いて計算した送信電力で上りリンクの信号を送信するように、移動局装置5を制御する。基地局装置3は、CSI-RSに基づき測定されたパスロスを用いて計算した送信電力で上りリンクの信号を送信するように、移動局装置5を制御する。また、基地局装置3は、必要と判断した場合、CSI-RSに基づくパスロスの測定をやめるように、移動局装置5に対して設定を行なう。この動作は、移動局装置5がCSI-RSに基づきパスロスを計算している状態に対して行なわれ得る。 When the base station apparatus 3 determines that it is necessary (for example, when it is determined that the mobile station apparatus 5 is close to RRH4), it additionally calculates a path loss based on the CSI-RS and uses it for uplink transmission power. The mobile station apparatus 5 is set so that it can be used. Specifically, the base station device 3 performs addition change (re-setting, reconfiguration) of the path loss reference of the mobile station device 5. For example, this change is made using RRC signaling. The path loss reference means a measurement object used for path loss calculation, and is CRS or CSI-RS. Here, the base station apparatus 3 can specify the CSI-RS antenna port used by the mobile station apparatus 5 for path loss calculation, and the mobile station apparatus 5 can specify the CSI- of the antenna port specified by the base station apparatus 3. The path loss is calculated based on the RS. Here, the antenna port designated by the mobile station device 5 from the base station device 3 may be one antenna port, a plurality of antenna ports, or all antenna ports. Good. The base station apparatus 3 controls the mobile station apparatus 5 so as to transmit the uplink signal with the transmission power calculated using the path loss measured based on the CRS. The base station apparatus 3 controls the mobile station apparatus 5 so as to transmit the uplink signal with the transmission power calculated using the path loss measured based on the CSI-RS. Further, when it is determined that the base station apparatus 3 is necessary, the base station apparatus 3 performs setting for the mobile station apparatus 5 so as to stop measuring the path loss based on the CSI-RS. This operation can be performed for a state in which the mobile station device 5 is calculating a path loss based on the CSI-RS.
 基地局装置3は、移動局装置5に対して、上りリンクの送信電力制御に適用されるパスロスに関して、物理チャネル毎に独立にパスロスリファレンスを設定することができる。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、異なるパスロスリファレンスを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御に対してパスロスリファレンスとしてCRSを設定し、PUSCHの送信電力制御に対してパスロスリファレンスとしてCSI-RSを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御に対してパスロスリファレンスとしてCSI-RSを設定し、PUSCHの送信電力制御に対してパスロスリファレンスとしてCRSを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御とPUSCHの送信電力制御のそれぞれに対して、パスロスリファレンスとして異なるアンテナポートに対応するCSI-RSを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、同じパスロスリファレンスを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、パスロスリファレンスとして同じCRSを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、パスロスリファレンスとして同じCSI-RSを設定する。例えば、基地局装置3は、移動局装置5に対して、PUCCHの送信電力制御とPUSCHの送信電力制御に対して、パスロスリファレンスとして同じアンテナポートのCSI-RSを設定する。 The base station apparatus 3 can set a path loss reference for each physical channel independently for the mobile station apparatus 5 with respect to the path loss applied to uplink transmission power control. For example, the base station apparatus 3 sets different path loss references for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets CRS as a path loss reference for PUCCH transmission power control and sets CSI-RS as a path loss reference for PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets CSI-RS as a path loss reference for PUCCH transmission power control and sets CRS as a path loss reference for PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets CSI-RSs corresponding to different antenna ports as path loss references for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the same path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the same CRS as the path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the same CSI-RS as the path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5. For example, the base station apparatus 3 sets the CSI-RS of the same antenna port as the path loss reference for the PUCCH transmission power control and the PUSCH transmission power control for the mobile station apparatus 5.
 なお、パスロスの計算には、下りリンクの参照信号の送信電力の値が必要となるため、CRSの送信電力値に関する情報、CSI-RSの送信電力値に関する情報が、基地局装置3から移動局装置5に通知される。 Since the path loss calculation requires the value of the transmission power of the downlink reference signal, information on the CRS transmission power value and information on the CSI-RS transmission power value are transmitted from the base station apparatus 3 to the mobile station. The device 5 is notified.
 <パワーヘッドルームレポーティング>
 パワーヘッドルームレポーティング(Power Headroom Reporting)は、名目上の移動局最大送信電力(nominal UE maximum transmit power)と、PUSCHに対する推定送信電力との差に関する情報(パワーヘッドルーム;Power Headroom)を基地局装置3、RRH4に提供するための手順である。処理階層としてRRC(Radio Resource Control)がパワーヘッドルームレポーティングを制御し、制御のために2つのタイマー(periodicPHR-Timer、prohibitPHR-Timer)を構成し、あるパラメータ(dl-PathlossChange)をシグナリングする。パワーヘッドルームの送信を判断する一連の処理のことを、パワーヘッドルームの送信処理と呼称する。各パスロスリファレンスに対して、パワーヘッドルームの送信処理が実行(制御)される。
<Power Headroom Reporting>
Power Headroom Reporting (Power Headroom Reporting) is information on the difference between the nominal UE maximum transmit power and the estimated transmit power for the PUSCH (Power Headroom). 3. Procedure for providing to RRH4. As a processing hierarchy, RRC (Radio Resource Control) controls power headroom reporting, configures two timers (periodicPHR-Timer and prohibitPHR-Timer) for control, and signals a certain parameter (dl-PathlossChange). A series of processes for determining power headroom transmission is referred to as power headroom transmission processing. Power headroom transmission processing is executed (controlled) for each path loss reference.
 dl-PathlossChangeは、パスロスの値が変化した際にパワーヘッドルームの送信を行なうためのパラメータである。最後にパワーヘッドルームを送信した時点で測定されたパスロスと、現時点で測定されたパスロスとの変化量が、dl-PathlossChangeとの閾値判断に用いられる。dl-PathlossChangeを用いた閾値判断が行なわれ、測定されたパスロスの変化量がdl-PathlossChangeの値を超えたら、パワーヘッドルームの報告処理が始動(駆動)(トリガー)される。dl-PathlossChangeの値は、dBで表現され、例えば、1dB、3dB、6dB、無限(Infinity)の何れかの値が用いられる。 Dl-PathlossChange is a parameter for performing transmission of the power headroom when the path loss value changes. The amount of change between the path loss measured when the power headroom is last transmitted and the path loss measured at the present time is used for threshold determination with dl-PathlossChange. Threshold determination using dl-PathlossChange is performed, and when the measured change amount of path loss exceeds the value of dl-PathlossChange, the power headroom reporting process is started (driven) (triggered). The value of dl-PathlossChange is expressed in dB, and for example, any value of 1 dB, 3 dB, 6 dB, or infinity (Infinity) is used.
 periodicPHR-Timerは、ある程度定期的にパワーヘッドルームの送信を行なうために用いられるタイマーである。periodicPHR-Timerが終了したら、パワーヘッドルームの報告処理が始動される。パワーヘッドルームの送信が行なわれると、計測中のperiodicPHR-Timerは一旦リセット、リスタートされる。periodicPHR-Timerの値は、単位としてサブフレーム数で表現され、例えば、10サブフレーム、20サブフレーム、50サブフレーム、100サブフレーム、200サブフレーム、500サブフレーム、1000サブフレーム、無限(Infinity)の何れかの値が用いられる。 PeriodicPHR-Timer is a timer used to transmit power headroom periodically to some extent. When the periodicPHR-Timer is finished, the power headroom reporting process is started. When the power headroom is transmitted, the periodical PHR-Timer being measured is once reset and restarted. The value of periodicPHR-Timer is expressed by the number of subframes as a unit. For example, 10 subframes, 20 subframes, 50 subframes, 100 subframes, 200 subframes, 500 subframes, 1000 subframes, infinite (Infinity) Any of these values is used.
 prohibitPHR-Timerは、必要以上に頻繁にパワーヘッドルームの送信を行なうことを防ぐために用いられるタイマーである。prohibitPHR-Timerが終了せず、計測中の間は、測定されたパスロスの変化量がdl-PathlossChangeの値を超えたとしても、パワーヘッドルームの報告処理は始動されない。prohibitPHR-Timerが終了したら、dl-PathlossChangeにより、パワーヘッドルームの報告処理が始動され得る。パワーヘッドルームの送信が行なわれると、計測中のprohibitPHR-Timerは一旦リセット、リスタートされる。prohibitPHR-Timerの値は、単位としてサブフレーム数で表現され、例えば、0サブフレーム、10サブフレーム、20サブフレーム、50サブフレーム、100サブフレーム、200サブフレーム、500サブフレーム、1000サブフレームの何れかの値が用いられる。 ProhibitPHR-Timer is a timer used to prevent transmission of power headroom more frequently than necessary. While the preventPHR-Timer is not finished and the measured path loss change amount exceeds the value of dl-PathlossChange during the measurement, the power headroom reporting process is not started. When the preventPHR-Timer is finished, the power headroom reporting process can be started by dl-PathlossChange. When transmission of the power headroom is performed, the preventPHR-Timer being measured is once reset and restarted. The value of prohibitPHR-Timer is expressed as the number of subframes as a unit. For example, 0 subframe, 10 subframe, 20 subframe, 50 subframe, 100 subframe, 200 subframe, 500 subframe, 1000 subframe Either value is used.
 periodicPHR-Timer、prohibitPHR-Timer、dl-PathlossChangeのパラメータが、phr-ConfigというRRCシグナリングの構造体を用いて、基地局装置3、RRH4から移動局装置5に通知される。phr-Configが初期設定(configuration of power headroom reporting functionality)されたら、または再設定(reconfiguration of power headroom reporting functionality)されたら、パワーヘッドルームの報告処理が始動され得る。 The parameters of periodicPHR-Timer, prohibitPHR-Timer, and dl-PathlossChange are notified from the base station apparatus 3 and RRH4 to the mobile station apparatus 5 using the RRC signaling structure phr-Config. Once phr-Config is initialized (configuration of power headroom reporting functionality) or reconfigured (reconfiguration of power headroom reporting functionality), the power headroom reporting process can be triggered.
 パワーヘッドルームは、第一のタイプのレポートと第二のタイプのレポートから構成される。第一のタイプのレポートは、ある上りリンクサブフレームでPUSCHの送信のみを想定して、パワーヘッドルームが計算される。第二のタイプのレポートは、ある上りリンクサブフレームでPUSCHとPUCCHの同時送信を想定して、パワーヘッドルームが計算される。 The power headroom consists of a first type report and a second type report. In the first type of report, power headroom is calculated assuming only PUSCH transmission in a certain uplink subframe. In the second type of report, power headroom is calculated assuming simultaneous transmission of PUSCH and PUCCH in an uplink subframe.
 第一のタイプのレポートの値は、移動局装置5に予め構成された送信電力値と、所望のPUSCHの送信電力値との差分である。所望のPUSCHの送信電力値は、送信電力制御に用いられるパラメータを用いて、予め決められた式(アルゴリズム)を用いて計算される。例えば、所望のPUSCHの送信電力値は、要求される品質を満たすために設定される。実際に送信されるPUSCHの送信電力値は、移動局装置5に予め構成された送信電力値と、所望のPUSCHの送信電力値とを比較して小さい値が用いられる。移動局装置5に予め構成された送信電力値は、基地局装置3、RRH4が予め移動局装置5に対して設定した送信電力値、または移動局装置5の装置能力としての許容送信電力の上限値である。例えば、装置能力はパワーアンプのクラスと対応する。パワーヘッドルーム(第一のタイプのレポート、第二のタイプのレポート)の値は、[40;-23]dBの範囲内で、1dBステップで表現される。 The value of the first type report is the difference between the transmission power value configured in advance in the mobile station device 5 and the transmission power value of the desired PUSCH. A desired PUSCH transmission power value is calculated using a predetermined formula (algorithm) using parameters used for transmission power control. For example, the desired PUSCH transmission power value is set to satisfy the required quality. As the transmission power value of the PUSCH actually transmitted, a smaller value is used by comparing the transmission power value configured in advance in the mobile station apparatus 5 with the transmission power value of the desired PUSCH. The transmission power value configured in advance in the mobile station apparatus 5 is the transmission power value set in advance for the mobile station apparatus 5 by the base station apparatus 3 or RRH 4 or the upper limit of the allowable transmission power as the apparatus capability of the mobile station apparatus 5. Value. For example, the device capability corresponds to the power amplifier class. The value of the power headroom (first type report, second type report) is expressed in 1 dB steps within the range of [40; -23] dB.
 第二のタイプのレポートの値は、移動局装置5に予め構成された送信電力値と、所望のPUSCHの送信電力値と所望のPUCCHの送信電力値との差分である。所望のPUCCHの送信電力値は、送信電力制御に用いられるパラメータを用いて、予め決められた式(アルゴリズム)を用いて計算される。例えば、所望のPUCCHの送信電力値は、要求される品質を満たすために設定される。実際に同時送信されるPUSCHとPUCCHの送信電力値は、移動局装置5に予め構成された送信電力値と、所望のPUSCHの送信電力値と所望のPUCCHの送信電力値との合計値を比較して小さい値が用いられる。 The value of the second type report is a difference between the transmission power value configured in advance in the mobile station device 5, the transmission power value of the desired PUSCH, and the transmission power value of the desired PUCCH. A desired PUCCH transmission power value is calculated using a predetermined formula (algorithm) using parameters used for transmission power control. For example, the desired PUCCH transmission power value is set to satisfy the required quality. The transmission power values of PUSCH and PUCCH that are actually transmitted at the same time are compared with the transmission power value configured in advance in the mobile station device 5 and the total value of the transmission power value of the desired PUSCH and the transmission power value of the desired PUCCH. Therefore, a small value is used.
 移動局装置5は、PUSCHの送信電力制御に対して用いるパスロスが基地局装置3、RRH4より設定された(構成された、変更された、再設定された、再構成された、再変更された)場合、パワーヘッドルームの報告処理を始動すると判断し、パワーヘッドルームの送信待機状態となってもよい。送信待機状態とは、パワーヘッドルームの送信がトリガーされた状態とも言える。送信待機状態の移動局装置5は、再送を除く、新規送信のためのPUSCHのリソースが基地局装置3、RRH4より割り当てられたら、リソースが割り当てられたPUSCH、またはPUSCHとPUCCHを用いてパワーヘッドルームの情報を含む信号を送信する。第一の実施形態で、PUSCHの送信電力制御に対して用いるパスロスは、CRSに基づき計算されたパスロス、またはCSI-RSに基づき計算されたパスロスである。 In the mobile station apparatus 5, the path loss used for PUSCH transmission power control is set by the base station apparatus 3 and RRH4 (configured, changed, reconfigured, reconfigured, rechanged ), It may be determined that the power headroom reporting process is started, and the power headroom may be in a transmission standby state. The transmission standby state can be said to be a state in which transmission of the power headroom is triggered. When the mobile station apparatus 5 in the transmission standby state allocates PUSCH resources for new transmission from the base station apparatus 3 and RRH 4 except for retransmission, the power head uses the PUSCH or PUSCH and PUCCH to which the resources are allocated. Send a signal containing room information. In the first embodiment, the path loss used for PUSCH transmission power control is a path loss calculated based on CRS or a path loss calculated based on CSI-RS.
 パワーヘッドルームとして第一のタイプのレポートの値の計算は、基本的に、パワーヘッドルームの送信に用いるPUSCHに設定される送信電力値に基づいて行なわれる。正確には、パワーヘッドルームとして第一のタイプのレポートの計算に用いられるのは、上述の所望のPUSCHの送信電力値である。上述の所望のPUSCHの送信電力値が移動局装置5に予め構成された送信電力値より小さい場合は、パワーヘッドルームの送信に用いられるPUSCHの送信電力値は所望のPUSCHの送信電力値となる。上述の所望のPUSCHの送信電力値が移動局装置5に予め構成された送信電力値より大きい場合は、パワーヘッドルームの送信に用いられるPUSCHの送信電力値は移動局装置5に予め構成された送信電力値となる。なお、パスロスの測定に用いる対象を、パスロスリファレンス(Pathloss reference)と呼称する。上りリンクの送信電力値の計算に用いるパスロスは、設定されたパスロスリファレンスから計算される。つまり、パワーヘッドルームの値の計算は、設定されたパスロスリファレンスから計算されるパスロスに基づいて行なわれる。 The calculation of the value of the first type report as the power headroom is basically performed based on the transmission power value set in the PUSCH used for transmission of the power headroom. Exactly, it is the transmission power value of the above-mentioned desired PUSCH that is used for the calculation of the first type of report as the power headroom. When the transmission power value of the desired PUSCH described above is smaller than the transmission power value configured in advance in the mobile station apparatus 5, the transmission power value of the PUSCH used for transmission of the power headroom is the transmission power value of the desired PUSCH. . When the transmission power value of the desired PUSCH described above is larger than the transmission power value configured in advance in the mobile station apparatus 5, the transmission power value of PUSCH used for power headroom transmission is configured in the mobile station apparatus 5 in advance. This is the transmission power value. A target used for path loss measurement is referred to as a path loss reference. The path loss used for the calculation of the uplink transmission power value is calculated from the set path loss reference. That is, the power headroom value is calculated based on the path loss calculated from the set path loss reference.
 パワーヘッドルームとして第二のタイプのレポートの値の計算は、基本的に、パワーヘッドルームの送信に用いるPUSCHに設定される送信電力値と、PUSCHと同時に送信されるPUCCHに設定される送信電力値とに基づいて行なわれる。正確には、パワーヘッドルームとして第二のタイプのレポートの計算に用いられるのは、上述の所望のPUSCHの送信電力値と後述の所望のPUCCHの送信電力値である。上述の所望のPUSCHの送信電力値と後述の所望のPUCCHの送信電力値の合計値が移動局装置5に予め構成された送信電力値より小さい場合は、パワーヘッドルームの送信に用いられるPUSCHの送信電力値は所望のPUSCHの送信電力値となり、PUSCHと同時に送信されるPUCCHの送信電力値は所望のPUCCHの送信電力値となる。上述の所望のPUSCHの送信電力値と後述の所望のPUCCHの送信電力値の合計値が移動局装置5に予め構成された送信電力値より大きい場合は、パワーヘッドルームの送信に用いられるPUSCHの送信電力値は移動局装置5に予め構成された送信電力値から所望のPUCCHの送信電力値を減算した値となり、PUSCHと同時に送信されるPUCCHの送信電力値は所望のPUCCHの送信電力値となる。 The calculation of the value of the second type report as the power headroom is basically based on the transmission power value set for the PUSCH used for power headroom transmission and the transmission power set for the PUCCH transmitted simultaneously with the PUSCH. Based on the value. More precisely, the transmission power value of the above-mentioned desired PUSCH and the transmission power value of the desired PUCCH described later are used as the power headroom for the calculation of the second type of report. When the sum of the transmission power value of the desired PUSCH described above and the transmission power value of the desired PUCCH described later is smaller than the transmission power value configured in advance in the mobile station device 5, the PUSCH used for power headroom transmission The transmission power value is the transmission power value of the desired PUSCH, and the transmission power value of the PUCCH transmitted simultaneously with the PUSCH is the transmission power value of the desired PUCCH. When the sum of the transmission power value of the desired PUSCH described above and the transmission power value of the desired PUCCH described later is larger than the transmission power value configured in advance in the mobile station device 5, the PUSCH used for transmission of the power headroom The transmission power value is a value obtained by subtracting the transmission power value of the desired PUCCH from the transmission power value configured in advance in the mobile station apparatus 5, and the transmission power value of the PUCCH transmitted simultaneously with the PUSCH is the transmission power value of the desired PUCCH. Become.
 例えば、移動局装置5は、PUSCHの送信電力制御に対して用いるパスロスのパスロスリファレンスがCRSからCSI-RSに切り替えられた場合、パワーヘッドルームの送信待機状態となってもよい。例えば、移動局装置5は、PUSCHの送信電力制御に対して用いるパスロスのパスロスリファレンスがCSI-RSからCRSに切り替えられた場合、パワーヘッドルームの送信待機状態となってもよい。なお、PUSCHの送信電力制御に対するパスロスリファレンスが再設定され、パワーヘッドルームの送信待機状態となった場合、送信されるパワーヘッドルームは第一のタイプのレポート、または第二のタイプのレポートの何れかである。PUSCHの送信電力制御に対するパスロスリファレンスが再設定され、パワーヘッドルームの送信待機状態となった場合、移動局装置5において、PUCCHとPUSCHの同時送信が構成されていない場合はパワーヘッドルームとして第一のタイプのレポートが送信され、PUCCHとPUSCHの同時送信が構成されている場合はパワーヘッドルームとして第二のタイプのレポートが送信される。 For example, when the path loss reference of path loss used for PUSCH transmission power control is switched from CRS to CSI-RS, the mobile station apparatus 5 may enter a power headroom transmission standby state. For example, the mobile station apparatus 5 may be in a power headroom transmission standby state when the path loss reference of path loss used for PUSCH transmission power control is switched from CSI-RS to CRS. When the path loss reference for transmission power control of PUSCH is reset and the power headroom is in a transmission standby state, the power headroom to be transmitted is either the first type report or the second type report. It is. When the path loss reference for PUSCH transmission power control is reset and the power headroom is in a transmission standby state, the mobile station apparatus 5 is the first power headroom when simultaneous transmission of PUCCH and PUSCH is not configured. If the simultaneous transmission of PUCCH and PUSCH is configured, the second type of report is transmitted as power headroom.
 一方、移動局装置5は、PUCCHの送信電力制御に対して用いるパスロスが基地局装置3、RRH4より設定された(構成された、変更された、再設定された、再構成された、再変更された)場合、PUSCHとPUCCHの同時送信が構成されている場合はパワーヘッドルームの報告処理を始動すると判断してパワーヘッドルームの送信待機状態となってもよく、PUSCHとPUCCHの同時送信が構成されていない場合はパワーヘッドルームの報告処理を始動すると判断せず、パワーヘッドルームの送信待機状態とならなくてもよい。 On the other hand, in the mobile station apparatus 5, the path loss used for PUCCH transmission power control is set by the base station apparatus 3 and RRH4 (configured, changed, reconfigured, reconfigured, rechanged If the simultaneous transmission of PUSCH and PUCCH is configured, it may be determined that the power headroom reporting process is started and the power headroom may be in a transmission standby state, and the simultaneous transmission of PUSCH and PUCCH may be performed. If it is not configured, it is not determined that the power headroom reporting process is started, and the power headroom may not be in a transmission standby state.
 例えば、移動局装置5は、PUCCHの送信電力制御に対して用いるパスロスのパスロスリファレンスがCRSからCSI-RSに切り替えられた場合、PUSCHとPUCCHの同時送信が構成されている場合はパワーヘッドルームの送信待機状態となってもよく、PUSCHとPUCCHの同時送信が構成されていない場合はパワーヘッドルームの送信待機状態とならなくてもよい。例えば、移動局装置5は、PUSCHの送信電力制御に対して用いるパスロスのパスロスリファレンスがCSI-RSからCRSに切り替えられた場合、PUSCHとPUCCHの同時送信が構成されている場合はパワーヘッドルームの送信待機状態となってもよく、PUSCHとPUCCHの同時送信が構成されていない場合はパワーヘッドルームの送信待機状態とならなくてもよい。なお、PUCCHの送信電力制御に対するパスロスリファレンスが再設定され、パワーヘッドルームの送信待機状態となった場合、送信されるパワーヘッドルームは第二のタイプのレポートである。PUCCHの送信電力制御に対するパスロスリファレンスが再設定され、パワーヘッドルームの送信待機状態となった場合、移動局装置5において、PUCCHとPUSCHの同時送信が構成されていない場合はパワーヘッドルームとして第一のタイプのレポートは送信されず、PUCCHとPUSCHの同時送信が構成されている場合はパワーヘッドルームとして第二のタイプのレポートが送信される。 For example, when the path loss reference of path loss used for PUCCH transmission power control is switched from CRS to CSI-RS, the mobile station device 5 is configured to control the power headroom when simultaneous transmission of PUSCH and PUCCH is configured. It may be in a transmission standby state, and when simultaneous transmission of PUSCH and PUCCH is not configured, it does not have to be in a transmission standby state of the power headroom. For example, when the path loss reference of path loss used for PUSCH transmission power control is switched from CSI-RS to CRS, the mobile station apparatus 5 is configured to control the power headroom when simultaneous transmission of PUSCH and PUCCH is configured. It may be in a transmission standby state, and when simultaneous transmission of PUSCH and PUCCH is not configured, it does not have to be in a transmission standby state of the power headroom. When the path loss reference for the transmission power control of PUCCH is reset and the power headroom enters a transmission standby state, the transmitted power headroom is a second type report. When the path loss reference for PUCCH transmission power control is reset and the power headroom is in a transmission standby state, the mobile station apparatus 5 is the first power headroom when simultaneous transmission of PUCCH and PUSCH is not configured. If the simultaneous transmission of PUCCH and PUSCH is configured, the second type of report is transmitted as power headroom.
 移動局装置5は、PUCCHのパスロスリファレンスが再設定された場合、PUCCHとPUSCHの同時送信が構成されているか否かに応じて、パワーヘッドルームの報告処理を駆動するか否かを判断してもよい。移動局装置5は、PUCCHのパスロスリファレンスが再設定された場合、PUCCHとPUSCHの同時送信が構成されている場合はパワーヘッドルームの報告処理を駆動する判断してもよく、PUCCHとPUSCHの同時送信が構成されている場合はパワーヘッドルームの報告処理を駆動する判断しなくてもよい。 When the PUCCH path loss reference is reset, the mobile station apparatus 5 determines whether to drive the power headroom reporting process according to whether simultaneous transmission of PUCCH and PUSCH is configured. Also good. If the PUCCH path loss reference is reset, the mobile station apparatus 5 may determine to drive the power headroom reporting process when simultaneous transmission of PUCCH and PUSCH is configured. If transmission is configured, there is no need to decide to drive the power headroom reporting process.
 パワーヘッドルームの送信待機状態となっている移動局装置5は、新規送信のためのPUSCHのリソースが割り当てられたら、リソースが割り当てられたPUSCHを用いて送信待機状態となっているパワーヘッドルームの情報を含む信号を送信する。 When the mobile station device 5 in the power headroom transmission standby state is assigned the PUSCH resource for new transmission, the mobile station device 5 in the power headroom in the transmission standby state using the PUSCH to which the resource is assigned is assigned. Send a signal containing information.
 第1の実施形態のパワーヘッドルームレポーティングの詳細について説明する。移動局装置5は、パワーヘッドルームレポーティングに関連するパラメータが複数設定される。例えば、PUSCHに対する送信電力の設定に用いられたパスロス(第一のパスロス)と、PUCCHに対する送信電力の設定に用いられたパスロス(第二のパスロス)とに対して、dl-PathlossChangeが複数設定される。移動局装置5は、第一のパスロス、第二のパスロスに対してdl-PathlossChangeを用いて、全体のパワーヘッドルームの報告処理のトリガーを判断する。移動局装置5は、自移動局装置にPUCCHとPUSCHの同時送信が構成されていない場合は第一のパスロスに対してdl-PathlossChangeを用いて、全体のパワーヘッドルームの報告処理のトリガーを判断する。移動局装置5は、自移動局装置にPUCCHとPUSCHの同時送信が構成されている場合は第一のパスロスと第二のパスロスとのそれぞれに対してdl-PathlossChangeを用いて、全体のパワーヘッドルームの報告処理のトリガーを判断する。移動局装置5は、自移動局装置にPUCCHとPUSCHの同時送信が構成されていない場合は第一のパスロスの変化量がdl-PathlossChangeの値より大きくなった場合にパワーヘッドルームの報告処理を始動すると判断する。移動局装置5は、自移動局装置にPUCCHとPUSCHの同時送信が構成されている場合は第一のパスロスの変化量、または第二のパスロスの変化量がdl-PathlossChangeの値より大きくなった場合にパワーヘッドルームの報告処理を始動すると判断する。なお、第一のパスロスに対して用いるdl-PathlossChangeと、第二のパスロスに対して用いるdl-PathlossChangeは、それぞれに対して同じ値が設定されてもよいし、それぞれに対して異なる値が設定されてもよい。なお、パスロスの変化量は、対応するパスロスを用いたパワーヘッドルームが送信された時点で測定されたパスロスと、現時点で測定されたパスロスとの変化量であり、異なるパスロスに対するパスロスの変化量ではない。 Details of power headroom reporting according to the first embodiment will be described. The mobile station apparatus 5 is set with a plurality of parameters related to power headroom reporting. For example, multiple dl-PathlossChanges are set for the path loss (first path loss) used for setting the transmission power for PUSCH and the path loss (second path loss) used for setting the transmission power for PUCCH. The The mobile station apparatus 5 determines the trigger for the overall power headroom reporting process using dl-PathlossChange for the first path loss and the second path loss. The mobile station apparatus 5 determines the trigger for the reporting process of the entire power headroom using dl-PathlossChange for the first path loss when the mobile station apparatus is not configured to simultaneously transmit PUCCH and PUSCH. To do. When the mobile station apparatus is configured to simultaneously transmit PUCCH and PUSCH, the mobile station apparatus 5 uses the dl-PathlossChange for each of the first path loss and the second path loss to Determine the trigger for the room reporting process. If the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, the mobile station apparatus 5 performs the power headroom reporting process when the amount of change in the first path loss is greater than the value of dl-PathlossChange. Judge to start. When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH in the mobile station apparatus, the change amount of the first path loss or the change amount of the second path loss is greater than the value of dl-PathlossChange. In this case, it is determined that the power headroom reporting process is started. The same value may be set for each of the dl-PathlossChange used for the first path loss and the dl-PathlossChange used for the second path loss, or different values may be set for each. May be. The path loss change amount is the change amount between the path loss measured at the time when the power headroom using the corresponding path loss is transmitted and the path loss measured at the present time. Absent.
 また、移動局装置5は、単一のperiodicPHR-Timerが用いられる。移動局装置5は、パワーヘッドルームの送信処理に対して単一のperiodicPHR-Timerを用い、periodicPHR-Timerが満了した場合に、パワーヘッドルームを送信するように制御する。 In addition, the mobile station apparatus 5 uses a single periodicPHR-Timer. The mobile station apparatus 5 uses a single periodicPHR-Timer for the powerheadroom transmission process, and controls to transmit the powerheadroom when the periodicPHR-Timer expires.
 例えば、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)はCRSから計算され、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)はCSI-RSから計算される。例えば、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)はCSI-RSから計算され、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)はCRSから計算される。例えば、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)はCRSから計算され、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)はCRSから計算される。例えば、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)はCSI-RSから計算され、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)はCSI-RSから計算される。なお、第一のパスロスと第二のパスロスが同じ下りリンク参照信号から計算されている場合は、dl-PathlossChangeを用いたパワーヘッドルームの報告処理の始動の判断処理は共通した一つの処理が行なわれる。 For example, the path loss (second path loss) used for setting PUCCH transmission power is calculated from CRS, and the path loss (first path loss) used for setting PUSCH transmission power is calculated from CSI-RS. . For example, the path loss (second path loss) used for setting the PUCCH transmission power is calculated from CSI-RS, and the path loss (first path loss) used for setting the PUSCH transmission power is calculated from CRS. . For example, the path loss (second path loss) used for setting the PUCCH transmission power is calculated from the CRS, and the path loss (first path loss) used for setting the PUSCH transmission power is calculated from the CRS. For example, the path loss (second path loss) used for setting the PUCCH transmission power is calculated from CSI-RS, and the path loss (first path loss) used for setting the PUSCH transmission power is calculated from CSI-RS. Is done. When the first path loss and the second path loss are calculated from the same downlink reference signal, the power headroom reporting process start determination process using dl-PathlossChange is performed as one common process. It is.
 PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)に対応するdl-PathlossChangeをdl-PathlossChange 1(第一のdl-PathlossChange)(第一の閾値)、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)に対応するdl-PathlossChangeをdl-PathlossChange 3(第二のdl-PathlossChange)(第二の閾値)とする。単一のperiodicPHR-TimerをperiodicPHR-Timer 20とする。単一のprohibitPHR-TimerをprohibitPHR-Timer 400とする。periodicPHR-Timer 20が満了した場合、パワーヘッドルームが送信待機状態となる。送信待機状態のパワーヘッドルームが送信された時点で、periodicPHR-Timer 20、prohibitPHR-Timer 400はリセット(リスタート)され、再度計測が開始される。prohibitPHR-Timer 400が計測中(タイマーが終了する前の間)の場合、dl-PathlossChangeを用いた閾値判断に基づくパワーヘッドルームの送信が禁止された状態となる。dl-PathlossChange 1は、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)の変化量との閾値判断に用いられる。dl-PathlossChange 3は、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)の変化量との閾値判断に用いられる。移動局装置5にPUCCHとPUSCHの同時送信が構成されていない場合は、dl-PathlossChange 1を用いた処理が行なわれる。移動局装置5にPUCCHとPUSCHの同時送信が構成されていない場合は、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)の変化量がdl-PathlossChange 1の値よりも大きくなった場合にパワーヘッドルームの報告処理を始動すると判断される。移動局装置5にPUCCHとPUSCHの同時送信が構成されている場合は、dl-PathlossChange 1とdl-PathlossChange 3とを用いた処理が行なわれる。移動局装置5にPUCCHとPUSCHの同時送信が構成されている場合は、PUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)の変化量がdl-PathlossChange 1の値よりも大きくなった場合、またはPUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)の変化量がdl-PathlossChange 3の値よりも大きくなった場合にパワーヘッドルームの報告処理を始動すると判断される。なお、dl-PathlossChange 1とdl-PathlossChange 3は、同じ値が設定されてもよい。パワーヘッドルームの報告処理を始動すると判断され、パワーヘッドルームの送信待機状態となる。 Dl-PathlossChange corresponding to the path loss (first path loss) used for setting the PUSCH transmission power is changed to dl-PathlossChange 1 (first dl-PathlossChange) (first threshold) and PUCCH transmission power setting. The dl-PathlossChange corresponding to the used path loss (second path loss) is set to dl-PathlossChange 3 (second dl-PathlossChange) (second threshold). A single periodicPHR-Timer is referred to as periodicPHR-Timer20. A single prohibitPHR-Timer is designated as prohibitPHR-Timer 400. When periodicPHR-Timer 20 expires, the power headroom enters a transmission standby state. When the power headroom in the transmission standby state is transmitted, the periodicPHR-Timer 20 and the prohibitPHR-Timer 400 are reset (restarted), and measurement is started again. When prohibitPHR-Timer 400 is measuring (before the timer expires), transmission of power headroom based on threshold judgment using dl-PathlossChange is prohibited. dl-PathlossChange 1 is used for threshold determination with the amount of change in path loss (first path loss) used for setting the transmission power of PUSCH. dl-PathlossChange 3 is used for threshold determination with the amount of change in the path loss (second path loss) used for setting the transmission power of the PUCCH. When the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, processing using dl-PathlossChange 1 is performed. When simultaneous transmission of PUCCH and PUSCH is not configured in the mobile station apparatus 5, the amount of change in the path loss (first path loss) used for setting the PUSCH transmission power is greater than the value of dl-PathlossChange 1 It is determined that the power headroom reporting process is started in the case of When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, processing using dl-PathlossChange 1 and dl-PathlossChange 3 is performed. When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, the amount of change in the path loss (first path loss) used for setting the PUSCH transmission power is greater than the value of dl-PathlossChange 1 Or when the change amount of the path loss (second path loss) used for setting the transmission power of the PUCCH becomes larger than the value of dl-PathlossChange 3, it is determined that the power headroom reporting process is started. . Note that the same value may be set for dl-PathlossChange 1 and dl-PathlossChange 3. It is determined that the power headroom reporting process is started, and the power headroom enters a transmission standby state.
 <基地局装置3の全体構成>
 以下、図1、図2、図3を用いて、本実施形態に係る基地局装置3の構成について説明する。図1は、本発明の実施形態に係る基地局装置3の構成を示す概略ブロック図である。この図に示すように、基地局装置3は、受信処理部(第二の受信処理部)101、無線リソース制御部(第二の無線リソース制御部)103、制御部(第二の制御部)105、および、送信処理部107を含んで構成される。
<Overall configuration of base station apparatus 3>
Hereinafter, the configuration of the base station apparatus 3 according to the present embodiment will be described with reference to FIGS. 1, 2, and 3. FIG. 1 is a schematic block diagram showing the configuration of the base station apparatus 3 according to the embodiment of the present invention. As shown in this figure, the base station apparatus 3 includes a reception processing unit (second reception processing unit) 101, a radio resource control unit (second radio resource control unit) 103, and a control unit (second control unit). 105 and a transmission processing unit 107.
 受信処理部101は、制御部105の指示に従い、受信アンテナ109により移動局装置5から受信した、PUCCH、PUSCHの受信信号をUL RSを用いて復調し、復号して、制御情報、情報データを抽出する。例えば、受信処理部101は、PUSCHからパワーヘッドルームの情報を抽出する。受信処理部101は、自装置が移動局装置5にPUCCHのリソースを割り当てた上りリンクサブフレーム、UL PRBに対してUCIを抽出する処理を行なう。受信処理部101は、何れの上りリンクサブフレーム、何れのUL PRBに対してどのような処理を行なうかを制御部105から指示される。例えば、受信処理部101は、ACK/NACK用のPUCCH(PUCCH format 1a、PUCCH format 1b)の信号に対して時間領域での符号系列の乗算と合成、周波数領域での符号系列の乗算と合成を行なう検出処理を制御部105から指示される。また、受信処理部101は、PUCCHからUCIを検出する処理に用いる周波数領域の符号系列および/または時間領域の符号系列を制御部105から指示される。受信処理部101は、抽出したUCIを制御部105に出力し、情報データを上位層に出力する。受信処理部101は、抽出したUCIを制御部105に出力し、情報データを上位層に出力する。 The reception processing unit 101 demodulates and decodes the received signals of PUCCH and PUSCH received from the mobile station apparatus 5 by the reception antenna 109 using the UL RS according to the instruction of the control unit 105, and obtains control information and information data. Extract. For example, the reception processing unit 101 extracts power headroom information from the PUSCH. The reception processing unit 101 performs a process of extracting UCI from the uplink subframe, UL PRB, in which the own apparatus assigns PUCCH resources to the mobile station apparatus 5. The reception processing unit 101 is instructed from the control unit 105 what processing is to be performed on which uplink subframe and which UL PRB. For example, the reception processing unit 101 performs code sequence multiplication and synthesis in the time domain and code sequence multiplication and synthesis in the frequency domain on the ACK / NACK PUCCH (PUCCH format 1a, PUCCH format 1b) signal. The detection process to be performed is instructed from the control unit 105. Reception processing section 101 is instructed by control section 105 to use a frequency-domain code sequence and / or a time-domain code sequence used for processing to detect UCI from PUCCH. The reception processing unit 101 outputs the extracted UCI to the control unit 105 and outputs information data to the upper layer. The reception processing unit 101 outputs the extracted UCI to the control unit 105 and outputs information data to the upper layer.
 また、受信処理部101は、制御部105の指示に従い、受信アンテナ109により移動局装置5から受信したPRACHの受信信号から、プリアンブル系列を検出(受信)する。また、受信処理部101は、プリアンブル系列の検出と共に、到来タイミング(受信タイミング)の推定も行なう。受信処理部101は、自装置がPRACHのリソースを割り当てた上りリンクサブフレーム、UL PRBに対してプリアンブル系列を検出する処理を行なう。受信処理部101は、推定した到来タイミングに関する情報を制御部105に出力する。 In addition, the reception processing unit 101 detects (receives) a preamble sequence from the received PRACH signal received from the mobile station apparatus 5 by the reception antenna 109 in accordance with the instruction of the control unit 105. The reception processing unit 101 also estimates arrival timing (reception timing) along with detection of the preamble sequence. The reception processing unit 101 performs processing for detecting a preamble sequence for an uplink subframe, UL PRB, to which the own apparatus has assigned PRACH resources. The reception processing unit 101 outputs information regarding the estimated arrival timing to the control unit 105.
 また、受信処理部101は、移動局装置5から受信したSRSを用いて1個以上のUL PRBのチャネル品質を測定する。また、受信処理部101は、移動局装置5から受信したSRSを用いて上りリンクの同期ずれを検出(算出、測定)する。受信処理部101は、何れの上りリンクサブフレーム、何れのUL PRBに対してどのような処理を行なうかを制御部105から指示される。受信処理部101は、測定したチャネル品質、検出した上りリンクの同期ずれに関する情報を制御部105に出力する。受信処理部101の詳細については、後述する。 Further, the reception processing unit 101 measures the channel quality of one or more UL PRBs using the SRS received from the mobile station apparatus 5. Also, the reception processing unit 101 detects (calculates and measures) an uplink synchronization shift using the SRS received from the mobile station apparatus 5. The reception processing unit 101 is instructed from the control unit 105 what processing is to be performed on which uplink subframe and which UL PRB. The reception processing unit 101 outputs information regarding the measured channel quality and the detected uplink synchronization loss to the control unit 105. Details of the reception processing unit 101 will be described later.
 無線リソース制御部103は、PUCCHとPUSCHの同時送信の構成(PUCCHとPUSCHの同時送信を行なうように指示するか、PUCCHとPUSCHの同時送信を行なわないように指示するかを示す情報)、CSI-RSの構成、PDCCHに対するリソースの割り当て、PUCCHに対するリソースの割り当て、PDSCHに対するDL PRBの割り当て、PUSCHに対するUL PRBの割り当て、PRACHに対するリソースの割り当て、SRSに対するリソースの割り当て、各種チャネルの変調方式・符号化率・送信電力制御値・プリコーディング処理に用いる位相回転量(重み付け値)などを設定する。無線リソース制御部103は、パワーヘッドルームレポーティングに関連するパラメータ(periodicPHR-Timer、prohibitPHR-Timer、dl-PathlossChange)を設定する。無線リソース制御部103は、移動局装置5に対してパスロスの測定に用いる下りリンク参照信号(CRS、CSI-RS)、PUSCHの送信電力制御に用いるパスロスリファレンス(CRSまたはCSI-RS)、PUCCHの送信電力制御に用いるパスロスリファレンス(CRSまたはCSI-RS)を設定する。なお、無線リソース制御部103は、PUCCHに対する周波数領域の符号系列、時間領域の符号系列なども設定する。また、無線リソース制御部103は、設定したPUCCHのリソースの割り当てを示す情報などを制御部105に出力する。無線リソース制御部103で設定された情報の一部は送信処理部107を介して移動局装置5に通知され、例えば、PUCCHとPUSCHの同時送信の構成を示す情報、PUSCHの送信電力制御に用いるパスロスリファレンスを示す情報、PUCCHの送信電力制御に用いるパスロスリファレンスを示す情報、CSI-RSの構成に関する情報、パワーヘッドルームレポーティングに関連するパラメータの値を示す情報、PUSCHの送信電力に関連する一部のパラメータの値を示す情報、PUCCHの送信電力に関連する一部のパラメータの値を示す情報が移動局装置5に通知される。 Radio resource control section 103 is configured to simultaneously transmit PUCCH and PUSCH (information indicating whether to instruct simultaneous transmission of PUCCH and PUSCH or whether to instruct simultaneous transmission of PUCCH and PUSCH), CSI -RS configuration, resource allocation for PDCCH, resource allocation for PUCCH, DL PRB allocation for PDSCH, UL PRB allocation for PUSCH, resource allocation for PRACH, resource allocation for SRS, modulation scheme / code of various channels A rate, a transmission power control value, a phase rotation amount (weighting value) used for precoding processing, and the like are set. The radio resource control unit 103 sets parameters (periodicPHR-Timer, prohibitPHR-Timer, dl-PathlossChange) related to power headroom reporting. The radio resource control unit 103 uses the downlink reference signal (CRS, CSI-RS) used for the path loss measurement for the mobile station device 5, the path loss reference (CRS or CSI-RS) used for PUSCH transmission power control, and the PUCCH Sets the path loss reference (CRS or CSI-RS) used for transmission power control. Radio resource control section 103 also sets a frequency domain code sequence, a time domain code sequence, and the like for PUCCH. Also, the radio resource control unit 103 outputs information indicating the set PUCCH resource allocation to the control unit 105. A part of the information set by the radio resource control unit 103 is notified to the mobile station device 5 via the transmission processing unit 107, and is used for, for example, information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and transmission power control of PUSCH. Information indicating path loss reference, information indicating path loss reference used for transmission power control of PUCCH, information regarding CSI-RS configuration, information indicating parameter values related to power headroom reporting, and part related to transmission power of PUSCH The mobile station apparatus 5 is notified of information indicating the values of the parameters and information indicating the values of some parameters related to the transmission power of the PUCCH.
 また、無線リソース制御部103は、受信処理部101においてPUCCHを用いて取得され、制御部105を介して入力されたUCIに基づいてPDSCHの無線リソースの割り当てなどを設定する。例えば、無線リソース制御部103は、PUCCHを用いて取得されたACK/NACKが入力された場合、ACK/NACKでNACKが示されたPDSCHのリソースの割り当てを移動局装置5に対して行なう。 Also, the radio resource control unit 103 sets PDSCH radio resource allocation and the like based on the UCI acquired by the reception processing unit 101 using the PUCCH and input via the control unit 105. For example, when ACK / NACK acquired using PUCCH is input, radio resource control section 103 assigns PDSCH resources for which NACK is indicated by ACK / NACK to mobile station apparatus 5.
 無線リソース制御部103は、各種制御信号を制御部105に出力する。例えば、制御信号は、PUCCHとPUSCHの同時送信の構成を示す制御信号、PUSCHのリソースの割り当てを示す制御信号や、プリコーディング処理に用いる位相回転量を示す制御信号などである。 The radio resource control unit 103 outputs various control signals to the control unit 105. For example, the control signal is a control signal indicating a configuration for simultaneous transmission of PUCCH and PUSCH, a control signal indicating allocation of PUSCH resources, a control signal indicating a phase rotation amount used for precoding processing, and the like.
 制御部105は、無線リソース制御部103から入力された制御信号に基づき、CSI-RSの設定、PDSCHに対するDL PRBの割り当て、PDCCHに対するリソースの割り当て、PDSCHに対する変調方式の設定、PDSCHおよびPDCCHに対する符号化率の設定、PDSCHおよびUE specific RSに対するプリコーディング処理の設定などの制御を送信処理部107に対して行なう。また、制御部105は、無線リソース制御部103から入力された制御信号に基づき、PDCCHを用いて送信されるDCIを生成し、送信処理部107に出力する。PDCCHを用いて送信されるDCIは、下りリンクアサインメント、上りリンクグラントなどである。 Based on the control signal input from radio resource control section 103, control section 105 sets CSI-RS, DL PRB allocation for PDSCH, resource allocation for PDCCH, modulation scheme setting for PDSCH, codes for PDSCH and PDCCH The transmission processing unit 107 is controlled to set the conversion rate and set the precoding processing for the PDSCH and UE specific RS. Also, the control unit 105 generates DCI transmitted using the PDCCH based on the control signal input from the radio resource control unit 103 and outputs the DCI to the transmission processing unit 107. The DCI transmitted using the PDCCH is a downlink assignment, an uplink grant, or the like.
 制御部105は、無線リソース制御部103から入力された制御信号に基づき、PUSCHに対するUL PRBの割り当て、PUCCHに対するリソースの割り当て、PUSCHおよびPUCCHの変調方式の設定、PUSCHの符号化率の設定、PUCCHに対する検出処理、PUCCHに対する符号系列の設定、PRACHに対するリソースの割り当て、SRSに対するリソースの割り当てなどの制御を受信処理部101に対して行なう。また、制御部105は、移動局装置5によってPUCCHを用いて送信されたUCIが受信処理部101より入力され、入力されたUCIを無線リソース制御部103に出力する。 Based on the control signal input from radio resource control section 103, control section 105 assigns UL PRB to PUSCH, assigns resources to PUCCH, sets PUSCH and PUCCH modulation schemes, sets the PUSCH coding rate, and PUCCH. The reception processing unit 101 is subjected to control such as detection processing for, setting of a code sequence for PUCCH, resource allocation for PRACH, resource allocation for SRS, and the like. Also, the control unit 105 receives the UCI transmitted from the mobile station apparatus 5 using the PUCCH from the reception processing unit 101 and outputs the input UCI to the radio resource control unit 103.
 また、制御部105は、受信処理部101より、検出されたプリアンブル系列の到来タイミングを示す情報、受信されたSRSから検出された上りリンクの同期ずれを示す情報が入力され、上りリンクの送信タイミングの調整値(TA: Timing Advance、Timing Adjustment、 Timing Alignment)(TA value)を算出する。算出された上りリンクの送信タイミングの調整値を示す情報(TA command)は、送信処理部107を介して移動局装置5に通知される。 Further, the control unit 105 receives, from the reception processing unit 101, information indicating the arrival timing of the detected preamble sequence and information indicating the uplink synchronization shift detected from the received SRS, and transmits the uplink transmission timing. The adjustment value (TA: Timing Advance, Timing Adjustment, Timing Alignment) (TA value) is calculated. Information (TA 調整 command) indicating the calculated uplink transmission timing adjustment value is notified to the mobile station apparatus 5 via the transmission processing unit 107.
 送信処理部107は、制御部105から入力された制御信号に基づき、PDCCH、PDSCHを用いて送信する信号を生成して、送信アンテナ111を介して送信する。送信処理部107は、無線リソース制御部103から入力された、PUCCHとPUSCHの同時送信の構成を示す情報、CSI-RSの構成に関する情報、パワーヘッドルームレポーティングに関連するパラメータ(periodicPHR-Timer、prohibitPHR-Timer、dl-PathlossChange)を示す情報、パスロスの測定に用いる下りリンク参照信号(CRS、CSI-RS)を示す情報、PUSCHの送信電力制御に用いるパスロスリファレンスを示す情報、PUCCHの送信電力制御に用いるパスロスリファレンスを示す情報、PUSCHの送信電力に関連する一部のパラメータの値を示す情報、PUCCHの送信電力に関連する一部のパラメータの値を示す情報、上位層から入力された情報データ等をPDSCHを用いて移動局装置5に対して送信し、制御部105から入力されたDCIをPDCCHを用いて移動局装置5に対して送信する。なお、説明の簡略化のため、以降、情報データは数種の制御に関する情報を含むものとする。送信処理部107の詳細については、後述する。 The transmission processing unit 107 generates a signal to be transmitted using PDCCH and PDSCH based on the control signal input from the control unit 105, and transmits the signal through the transmission antenna 111. The transmission processing unit 107 receives information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, information on the configuration of CSI-RS, parameters related to power headroom reporting (periodicPHR-Timer, prohibitPHR) input from the radio resource control unit 103 -Timer, information indicating dl-PathlossChange), information indicating downlink reference signals (CRS, CSI-RS) used for path loss measurement, information indicating path loss reference used for PUSCH transmission power control, and transmission power control for PUCCH Information indicating path loss reference to be used, information indicating values of some parameters related to transmission power of PUSCH, information indicating values of some parameters related to transmission power of PUCCH, information data input from higher layers, etc. Is transmitted to the mobile station apparatus 5 using the PDSCH, and the control unit 10 Transmitting to the mobile station apparatus 5 by using PDCCH the DCI input from. For the sake of simplification of explanation, hereinafter, it is assumed that the information data includes information on several types of control. Details of the transmission processing unit 107 will be described later.
 <基地局装置3の送信処理部107の構成>
 以下、基地局装置3の送信処理部107の詳細について説明する。図2は、本発明の実施形態に係る基地局装置3の送信処理部107の構成を示す概略ブロック図である。この図に示すように、送信処理部107は、複数の物理下りリンク共用チャネル処理部201-1~201-M(以下、物理下りリンク共用チャネル処理部201-1~201-Mを合わせて物理下りリンク共用チャネル処理部201と表す)、複数の物理下りリンク制御チャネル処理部203-1~203-M(以下、物理下りリンク制御チャネル処理部203-1~203-Mを合わせて物理下りリンク制御チャネル処理部203と表す)、下りリンクパイロットチャネル処理部205、プリコーディング処理部231、多重部207、IFFT(Inverse Fast Fourier Transform; 高速逆フーリエ変換)部209、GI(Guard Interval; ガードインターバル)挿入部211、D/A(Digital/Analog converter; ディジタルアナログ変換)部213、送信RF(Radio Frequency; 無線周波数)部215、および、送信アンテナ111を含んで構成される。なお、各物理下りリンク共用チャネル処理部201、各物理下りリンク制御チャネル処理部203は、それぞれ、同様の構成および機能を有するので、その一つを代表して説明する。なお、説明の簡略化のため、送信アンテナ111は、複数のアンテナポートをまとめたものとする。
<Configuration of transmission processing unit 107 of base station apparatus 3>
Hereinafter, details of the transmission processing unit 107 of the base station apparatus 3 will be described. FIG. 2 is a schematic block diagram showing the configuration of the transmission processing unit 107 of the base station apparatus 3 according to the embodiment of the present invention. As shown in this figure, the transmission processing unit 107 includes a plurality of physical downlink shared channel processing units 201-1 to 201-M (hereinafter referred to as physical downlink shared channel processing units 201-1 to 201-M). Physical downlink control channel processing units 203-1 to 203-M (hereinafter referred to as physical downlink control channel processing units 203-1 to 203-M). Control channel processing unit 203), downlink pilot channel processing unit 205, precoding processing unit 231, multiplexing unit 207, IFFT (Inverse Fast Fourier Transform) unit 209, GI (Guard Interval) Insertion unit 211, D / A (Digital / Analog converter) unit 213, transmission RF (Radio Frequency) unit 215, And configured to include a transmitting antenna 111. Since each physical downlink shared channel processing unit 201 and each physical downlink control channel processing unit 203 have the same configuration and function, only one of them will be described as a representative. For simplification of explanation, it is assumed that the transmission antenna 111 is a collection of a plurality of antenna ports.
 また、この図に示すように、物理下りリンク共用チャネル処理部201は、それぞれ、ターボ符号部219、データ変調部221およびプリコーディング処理部229を備える。また、この図に示すように、物理下りリンク制御チャネル処理部203は、畳み込み符号部223、QPSK変調部225およびプリコーディング処理部227を備える。物理下りリンク共用チャネル処理部201は、移動局装置5への情報データをOFDM方式で伝送するためのベースバンド信号処理を行なう。ターボ符号部219は、入力された情報データを、制御部105から入力された符号化率で、データの誤り耐性を高めるためのターボ符号化を行ない、データ変調部221に出力する。データ変調部221は、ターボ符号部219が符号化したデータを、制御部105から入力された変調方式、例えば、QPSK(四位相偏移変調; Quadrature Phase Shift Keying)、16QAM(16値直交振幅変調; 16 Quadrature Amplitude Modulation)、64QAM(64値直交振幅変調; 64 Quadrature Amplitude Modulation)のような変調方式で変調し、変調シンボルの信号系列を生成する。データ変調部221は、生成した信号系列を、プリコーディング処理部229に出力する。プリコーディング処理部229は、データ変調部221から入力された信号に対してプリコーディング処理(ビームフォーミング処理)を行ない、多重部207に出力する。ここで、プリコーディング処理は、移動局装置5が効率よく受信できるように(例えば、受信電力が最大になるように、干渉が最小になるように)、生成する信号に対して位相回転などを行なうことが好ましい。 Also, as shown in this figure, the physical downlink shared channel processing unit 201 includes a turbo encoding unit 219, a data modulation unit 221 and a precoding processing unit 229, respectively. Also, as shown in this figure, the physical downlink control channel processing unit 203 includes a convolutional coding unit 223, a QPSK modulation unit 225, and a precoding processing unit 227. The physical downlink shared channel processing unit 201 performs baseband signal processing for transmitting information data to the mobile station apparatus 5 by the OFDM method. The turbo encoding unit 219 performs turbo encoding for increasing the error tolerance of the data at the encoding rate input from the control unit 105 and outputs the input information data to the data modulation unit 221. The data modulation unit 221 uses the data encoded by the turbo coding unit 219 as a modulation method input from the control unit 105, for example, QPSK (quadrature phase shift keying; Quadrature Phase Shift Keying), 16QAM (16-value quadrature amplitude modulation). Modulation is performed using a modulation scheme such as 16 Quadrature Amplitude Modulation) or 64QAM (64-value quadrature amplitude modulation; 64 Quadrature Amplitude Modulation) to generate a signal sequence of modulation symbols. The data modulation unit 221 outputs the generated signal sequence to the precoding processing unit 229. The precoding processing unit 229 performs precoding processing (beamforming processing) on the signal input from the data modulation unit 221 and outputs the result to the multiplexing unit 207. Here, the precoding process performs phase rotation or the like on the generated signal so that the mobile station apparatus 5 can efficiently receive (for example, the interference is minimized so that the reception power is maximized). It is preferable to do so.
 物理下りリンク制御チャネル処理部203は、制御部105から入力されたDCIを、OFDM方式で伝送するためのベースバンド信号処理を行なう。畳み込み符号部223は、制御部105から入力された符号化率に基づき、DCIの誤り耐性を高めるための畳み込み符号化を行なう。ここで、DCIはビット単位で制御される。また、畳み込み符号部223は、制御部105から入力された符号化率に基づき、畳み込み符号化の処理を行なったビットに対して出力ビットの数を調整するためにレートマッチングも行なう。畳み込み符号部223は、符号化したDCIをQPSK変調部225に出力する。QPSK変調部225は、畳み込み符号部223が符号化したDCIを、QPSK変調方式で変調し、変調した変調シンボルの信号系列を、プリコーディング処理部227に出力する。プリコーディング処理部227は、QPSK変調部225から入力された信号に対してプリコーディング処理を行ない、多重部207に出力する。なお、プリコーディング処理部227は、QPSK変調部225から入力された信号に対してプリコーディング処理を行なわず、多重部207に出力することができる。 The physical downlink control channel processing unit 203 performs baseband signal processing for transmitting the DCI input from the control unit 105 in the OFDM scheme. The convolutional coding unit 223 performs convolutional coding for increasing DCI error tolerance based on the coding rate input from the control unit 105. Here, DCI is controlled in bit units. Further, the convolutional coding unit 223 also performs rate matching to adjust the number of output bits for the bits subjected to the convolutional coding process based on the coding rate input from the control unit 105. The convolutional code unit 223 outputs the encoded DCI to the QPSK modulation unit 225. The QPSK modulation unit 225 modulates the DCI encoded by the convolutional coding unit 223 using the QPSK modulation method, and outputs the modulated modulation symbol signal sequence to the precoding processing unit 227. Precoding processing section 227 performs precoding processing on the signal input from QPSK modulation section 225 and outputs the result to multiplexing section 207. Note that the precoding processing unit 227 can output the signal input from the QPSK modulation unit 225 to the multiplexing unit 207 without performing precoding processing.
 下りリンクパイロットチャネル処理部205は、移動局装置5において既知の信号である下りリンク参照信号(CRS、UE specific RS、CSI-RS)を生成し、プリコーディング処理部231に出力する。プリコーディング処理部231は、下りリンクパイロットチャネル処理部205より入力されたCRS、CSI-RSに対してはプリコーディング処理を行なわず、多重部207に出力する。プリコーディング処理部231は、下りリンクパイロットチャネル処理部205より入力されたUE specific RSに対してプリコーディング処理を行ない、多重部207に出力する。プリコーディング処理部231は、プリコーディング処理部229においてPDSCHに行なわれる処理、および/またはプリコーディング処理部227においてPDCCHに行なわれる処理と同様の処理をUE specific RSに対して行なう。そのため、移動局装置5においてプリコーディング処理が適用されたPDSCH、PDCCHの信号を復調するに際し、UE specific RSは、下りリンクにおける伝搬路(伝送路)の変動とプリコーディング処理部229、プリコーディング処理部227による位相回転があわさった等化チャネルを推定することができる。すなわち、基地局装置3は、移動局装置5に対して、プリコーディング処理部229、プリコーディング処理部227によるプリコーディング処理の情報(位相回転量)を通知する必要が無く、移動局装置5はプリコーディング処理された(協調通信で送信された)信号を復調することができる。なお、UE specific RSを用いて伝搬路補償などの復調処理が行なわれるPDSCHにプリコーディング処理が用いられない場合などは、プリコーディング処理部231は、UE specific RSに対してプリコーディング処理を行なわず、多重部207に出力する。 The downlink pilot channel processing unit 205 generates a downlink reference signal (CRS, UE specific RS, CSI-RS) that is a known signal in the mobile station apparatus 5 and outputs the downlink reference signal to the precoding processing unit 231. The precoding processing unit 231 does not perform precoding processing on the CRS and CSI-RS input from the downlink pilot channel processing unit 205 and outputs them to the multiplexing unit 207. The precoding processing unit 231 performs precoding processing on the UE specific RS input from the downlink pilot channel processing unit 205 and outputs the result to the multiplexing unit 207. The precoding processing unit 231 performs the same processing as the processing performed on the PDSCH in the precoding processing unit 229 and / or the processing performed on the PDCCH in the precoding processing unit 227 on the UE specific RS. Therefore, when demodulating the PDSCH and PDCCH signals to which the precoding process is applied in the mobile station apparatus 5, the UE specific RS uses the fluctuation of the propagation path (transmission path) in the downlink, the precoding processing unit 229, and the precoding process. The equalization channel affected by the phase rotation by the unit 227 can be estimated. That is, the base station device 3 does not have to notify the mobile station device 5 of information (phase rotation amount) of the precoding processing by the precoding processing unit 229 and the precoding processing unit 227, and the mobile station device 5 It is possible to demodulate a precoded signal (transmitted in cooperative communication). In addition, when the precoding process is not used for PDSCH in which demodulation processing such as propagation path compensation is performed using the UE specific RS, the precoding processing unit 231 does not perform the precoding process on the UE specific RS. And output to the multiplexing unit 207.
 多重部207は、下りリンクパイロットチャネル処理部205から入力された信号と、物理下りリンク共用チャネル処理部201各々から入力された信号と、物理下りリンク制御チャネル処理部203各々から入力された信号とを、制御部105からの指示に従って、下りリンクサブフレームに多重する。無線リソース制御部103によって設定されたPDSCHに対するDL PRBの割り当て、PDCCHに対するリソースの割り当てに関する制御信号が制御部105に入力され、その制御信号に基づき、制御部105は多重部207の処理を制御する。 Multiplexer 207 receives a signal input from downlink pilot channel processor 205, a signal input from each physical downlink shared channel processor 201, and a signal input from each physical downlink control channel processor 203. Are multiplexed into the downlink subframe according to the instruction from the control unit 105. Control signals related to DL PRB allocation to PDSCH and resource allocation to PDCCH set by the radio resource control unit 103 are input to the control unit 105, and the control unit 105 controls processing of the multiplexing unit 207 based on the control signal .
 なお、多重部207は、PDSCHとPDCCHの多重を、基本的に図9に示したように時間多重で行なう。また、多重部207は、下りリンクパイロットチャネルと、その他のチャネル間の多重は時間・周波数多重で行なう。また、多重部207は、各移動局装置5宛てのPDSCHの多重をDL PRB pair単位で行ない、1つの移動局装置5に対して複数のDL PRB pairを用いてPDSCHを多重することもある。多重部207は、多重化した信号を、IFFT部209に出力する。 The multiplexing unit 207 basically multiplexes PDSCH and PDCCH by time multiplexing as shown in FIG. The multiplexing unit 207 performs multiplexing between the downlink pilot channel and other channels by time / frequency multiplexing. Also, the multiplexing unit 207 may multiplex the PDSCH addressed to each mobile station device 5 in units of DL PRB pairs, and may multiplex the PDSCH to one mobile station device 5 using a plurality of DL PRB pairs. The multiplexing unit 207 outputs the multiplexed signal to the IFFT unit 209.
 IFFT部209は、多重部207が多重化した信号を高速逆フーリエ変換し、OFDM方式の変調を行ない、GI挿入部211に出力する。GI挿入部211は、IFFT部209がOFDM方式の変調を行なった信号に、ガードインターバルを付加することで、OFDM方式におけるシンボルからなるベースバンドのディジタル信号を生成する。周知のように、ガードインターバルは、伝送するOFDMシンボルの先頭または末尾の一部を複製することによって生成される。GI挿入部211は、生成したベースバンドのディジタル信号をD/A部213に出力する。D/A部213は、GI挿入部211から入力されたベースバンドのディジタル信号をアナログ信号に変換し、送信RF部215に出力する。送信RF部215は、D/A部213から入力されたアナログ信号から、中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去する。次に、送信RF部215は、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、送信アンテナ111を介して、移動局装置5に送信する。 The IFFT unit 209 performs fast inverse Fourier transform on the signal multiplexed by the multiplexing unit 207, performs OFDM modulation, and outputs the result to the GI insertion unit 211. The GI insertion unit 211 generates a baseband digital signal including symbols in the OFDM scheme by adding a guard interval to the signal modulated by the OFDM scheme by the IFFT unit 209. As is well known, the guard interval is generated by duplicating a part of the head or tail of the OFDM symbol to be transmitted. The GI insertion unit 211 outputs the generated baseband digital signal to the D / A unit 213. The D / A unit 213 converts the baseband digital signal input from the GI insertion unit 211 into an analog signal and outputs the analog signal to the transmission RF unit 215. The transmission RF unit 215 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 213, and removes an extra frequency component for the intermediate frequency band. Next, the transmission RF section 215 converts (up-converts) the intermediate frequency signal into a high frequency signal, removes excess frequency components, amplifies the power, and transmits to the mobile station apparatus 5 via the transmission antenna 111. Send.
 <基地局装置3の受信処理部101の構成>
 以下、基地局装置3の受信処理部101の詳細について説明する。図3は、本発明の実施形態に係る基地局装置3の受信処理部101の構成を示す概略ブロック図である。この図に示すように、受信処理部101は、受信RF部301、A/D(Analog/Digital converter; アナログディジタル変換)部303、シンボルタイミング検出部309、GI除去部311、FFT部313、サブキャリアデマッピング部315、伝搬路推定部317、PUSCH用の伝搬路等化部319、PUCCH用の伝搬路等化部321、IDFT部323、データ復調部325、ターボ復号部327、物理上りリンク制御チャネル検出部329、プリアンブル検出部331、およびSRS処理部333を含んで構成される。
<Configuration of Reception Processing Unit 101 of Base Station Device 3>
Hereinafter, details of the reception processing unit 101 of the base station apparatus 3 will be described. FIG. 3 is a schematic block diagram showing the configuration of the reception processing unit 101 of the base station apparatus 3 according to the embodiment of the present invention. As shown in this figure, the reception processing unit 101 includes a reception RF unit 301, an A / D (Analog / Digital converter) unit 303, a symbol timing detection unit 309, a GI removal unit 311, an FFT unit 313, a sub Carrier demapping section 315, propagation path estimation section 317, PUSCH propagation path equalization section 319, PUCCH propagation path equalization section 321, IDFT section 323, data demodulation section 325, turbo decoding section 327, physical uplink control A channel detection unit 329, a preamble detection unit 331, and an SRS processing unit 333 are included.
 受信RF部301は、受信アンテナ109で受信された信号を、適切に増幅し、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調する。受信RF部301は、直交復調したアナログ信号を、A/D部303に出力する。A/D部303は、受信RF部301が直交復調したアナログ信号をディジタル信号に変換し、変換したディジタル信号をシンボルタイミング検出部309、GI除去部311およびプリアンブル検出部331に出力する。 The reception RF unit 301 appropriately amplifies the signal received by the reception antenna 109, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained. The level is controlled, and quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal. The reception RF unit 301 outputs the quadrature demodulated analog signal to the A / D unit 303. A / D section 303 converts the analog signal quadrature demodulated by reception RF section 301 into a digital signal, and outputs the converted digital signal to symbol timing detection section 309, GI removal section 311 and preamble detection section 331.
 シンボルタイミング検出部309は、A/D部303より入力された信号に基づいて、シンボルのタイミングを検出し、検出したシンボル境界のタイミングを示す制御信号を、GI除去部311に出力する。GI除去部311は、シンボルタイミング検出部309からの制御信号に基づいて、A/D部303より入力された信号からガードインターバルに相当する部分を除去し、残りの部分の信号を、FFT部313に出力する。FFT部313は、GI除去部311から入力された信号を高速フーリエ変換し、DFT-Spread-OFDM方式の復調を行ない、サブキャリアデマッピング部315に出力する。なお、FFT部313のポイント数は、後述する移動局装置5のIFFT部のポイント数と等しい。 The symbol timing detection unit 309 detects the symbol timing based on the signal input from the A / D unit 303, and outputs a control signal indicating the detected symbol boundary timing to the GI removal unit 311. The GI removal unit 311 removes a portion corresponding to the guard interval from the signal input from the A / D unit 303 based on the control signal from the symbol timing detection unit 309, and converts the remaining portion of the signal to the FFT unit 313. Output to. The FFT unit 313 performs fast Fourier transform on the signal input from the GI removal unit 311, performs demodulation of the DFT-Spread-OFDM scheme, and outputs the result to the subcarrier demapping unit 315. Note that the number of points in the FFT unit 313 is equal to the number of points in the IFFT unit of the mobile station apparatus 5 described later.
 サブキャリアデマッピング部315は、制御部105から入力された制御信号に基づき、FFT部313が復調した信号を、DM RSと、SRSと、PUSCHの信号と、PUCCHの信号とに分離する。サブキャリアデマッピング部315は、分離したDM RSを伝搬路推定部317に出力し、分離したSRSをSRS処理部333に出力し、分離したPUSCHの信号をPUSCH用の伝搬路等化部319に出力し、分離したPUCCHの信号をPUCCH用の伝搬路等化部321に出力する。 The subcarrier demapping unit 315 separates the signal demodulated by the FFT unit 313 into DM RS, SRS, PUSCH signal, and PUCCH signal based on the control signal input from the control unit 105. The subcarrier demapping unit 315 outputs the separated DM RS to the propagation path estimation unit 317, outputs the separated SRS to the SRS processing unit 333, and outputs the separated PUSCH signal to the PUSCH propagation path equalization unit 319. The separated PUCCH signal is output to the PUCCH channel equalization unit 321.
 伝搬路推定部317は、サブキャリアデマッピング部315が分離したDM RSと既知の信号を用いて伝搬路の変動を推定する。伝搬路推定部317は、推定した伝搬路推定値を、PUSCH用の伝搬路等化部319と、PUCCH用の伝搬路等化部321に出力する。PUSCH用の伝搬路等化部319は、サブキャリアデマッピング部315が分離したPUSCHの信号の振幅および位相を、伝搬路推定部317から入力された伝搬路推定値に基づいて等化する。ここで、等化とは、信号が無線通信中に受けた伝搬路の変動を元に戻す処理のことを表す。PUSCH用の伝搬路等化部319は、調整した信号をIDFT部323に出力する。 The propagation path estimation unit 317 estimates propagation path fluctuations using the DM RS separated by the subcarrier demapping unit 315 and a known signal. The propagation path estimation unit 317 outputs the estimated propagation path estimation value to the PUSCH propagation path equalization unit 319 and the PUCCH propagation path equalization unit 321. The PUSCH channel equalization unit 319 equalizes the amplitude and phase of the PUSCH signal separated by the subcarrier demapping unit 315 based on the channel estimation value input from the channel estimation unit 317. Here, equalization refers to a process for restoring the fluctuation of the propagation path received by the signal during wireless communication. PUSCH propagation path equalization section 319 outputs the adjusted signal to IDFT section 323.
 IDFT部323は、PUSCH用の伝搬路等化部319から入力された信号を離散逆フーリエ変換し、データ復調部325に出力する。データ復調部325は、IDFT部323が変換したPUSCHの信号の復調を行ない、復調したPUSCHの信号をターボ復号部327に出力する。この復調は、移動局装置5のデータ変調部で用いられる変調方式に対応した復調であり、変調方式は制御部105より入力される。ターボ復号部327は、データ復調部325から入力され、復調されたPUSCHの信号から、情報データを復号する。符号化率は、制御部105より入力される。 The IDFT unit 323 performs discrete inverse Fourier transform on the signal input from the PUSCH channel equalization unit 319 and outputs the result to the data demodulation unit 325. The data demodulating unit 325 demodulates the PUSCH signal converted by the IDFT unit 323, and outputs the demodulated PUSCH signal to the turbo decoding unit 327. This demodulation is demodulation corresponding to the modulation method used in the data modulation unit of the mobile station apparatus 5, and the modulation method is input from the control unit 105. The turbo decoding unit 327 decodes information data from the PUSCH signal input from the data demodulation unit 325 and demodulated. The coding rate is input from the control unit 105.
 PUCCH用の伝搬路等化部321は、サブキャリアデマッピング部315で分離されたPUCCHの信号の振幅および位相を、伝搬路推定部317から入力された伝搬路推定値に基づいて等化する。PUCCH用の伝搬路等化部321は、等化した信号を物理上りリンク制御チャネル検出部329に出力する。 The PUCCH channel equalization unit 321 equalizes the amplitude and phase of the PUCCH signal separated by the subcarrier demapping unit 315 based on the channel estimation value input from the channel estimation unit 317. The PUCCH channel equalization unit 321 outputs the equalized signal to the physical uplink control channel detection unit 329.
 物理上りリンク制御チャネル検出部329は、PUCCH用の伝搬路等化部321から入力された信号を復調、復号し、UCIを検出する。物理上りリンク制御チャネル検出部329は、周波数領域、および/または周波数領域で符号多重された信号を分離する処理を行なう。物理上りリンク制御チャネル検出部329は、送信側で用いられた符号系列を用いて周波数領域、および/または時間領域で符号多重されたPUCCHの信号からACK/NACK、SR、CQIを検出するための処理を行なう。具体的には、物理上りリンク制御チャネル検出部329は、周波数領域での符号系列を用いた検出処理、つまり周波数領域で符号多重された信号を分離する処理として、PUCCHのサブキャリア毎の信号に対して符号系列の各符号を乗算した後、各符号を乗算した信号を合成する。具体的には、物理上りリンク制御チャネル検出部329は、時間領域での符号系列を用いた検出処理、つまり時間領域での符号多重された信号を分離する処理として、PUCCHのSC-FDMAシンボル毎の信号に対して符号系列の各符号を乗算した後、各符号を乗算した信号を合成する。なお、物理上りリンク制御チャネル検出部329は、制御部105からの制御信号に基づき、PUCCHの信号に対する検出処理を設定する。 The physical uplink control channel detection unit 329 demodulates and decodes the signal input from the PUCCH channel equalization unit 321 and detects UCI. The physical uplink control channel detection unit 329 performs processing for separating the frequency domain and / or the signal code-multiplexed in the frequency domain. The physical uplink control channel detection unit 329 detects ACK / NACK, SR, CQI from the PUCCH signal code-multiplexed in the frequency domain and / or time domain using the code sequence used on the transmission side. Perform processing. Specifically, the physical uplink control channel detection unit 329 performs a detection process using a code sequence in the frequency domain, that is, a process for separating a code-multiplexed signal in the frequency domain, for each PUCCH subcarrier signal. On the other hand, after multiplying each code of the code sequence, a signal multiplied by each code is synthesized. Specifically, the physical uplink control channel detection unit 329 performs detection processing using a code sequence in the time domain, that is, processing for separating code-multiplexed signals in the time domain, for each SC-FDMA symbol of PUCCH. Is multiplied by each code of the code sequence, and then the signal multiplied by each code is synthesized. The physical uplink control channel detection unit 329 sets detection processing for the PUCCH signal based on the control signal from the control unit 105.
 SRS処理部333は、サブキャリアデマッピング部315から入力されたSRSを用いて、チャネル品質を測定し、UL PRBのチャネル品質の測定結果を制御部105に出力する。SRS処理部333は、どの上りリンクサブフレームの、どのUL PRBの信号に対して移動局装置5のチャネル品質の測定を行なうかが制御部105より指示される。また、SRS処理部333は、サブキャリアデマッピング部315から入力されたSRSを用いて、上りリンクの同期ずれを検出し、上りリンクの同期ずれを示す情報(同期ずれ情報)を制御部105に出力する。なお、SRS処理部333は、時間領域の受信信号から上りリンクの同期ずれを検出する処理を行なうようにしてもよい。具体的な処理は、後述するプリアンブル検出部331で行なわれる処理と同等の処理を行なうようにしてもよい。 The SRS processing unit 333 measures the channel quality using the SRS input from the subcarrier demapping unit 315, and outputs the UL PRB channel quality measurement result to the control unit 105. The SRS processing unit 333 is instructed by the control unit 105 as to which UL PRB signal of which uplink subframe the channel quality of the mobile station apparatus 5 is to be measured. Further, the SRS processing unit 333 detects an uplink synchronization shift using the SRS input from the subcarrier demapping unit 315, and sends information (synchronization shift information) indicating the uplink synchronization shift to the control unit 105. Output. Note that the SRS processing unit 333 may perform processing for detecting an uplink synchronization shift from a time domain received signal. The specific process may be the same as the process performed by the preamble detection unit 331 described later.
 プリアンブル検出部331は、A/D部303より入力された信号に基づいて、PRACHに相当する受信信号に対して送信されたプリアンブルを検出(受信)する処理を行なう。具体的には、プリアンブル検出部331は、ガードタイム内の様々なタイミングの受信信号に対して、送信される可能性のある、各プリアンブル系列を用いて生成したレプリカの信号との相関処理を行なう。例えば、プリアンブル検出部331は、相関値が予め設定された閾値よりも高かった場合、相関処理に用いられたレプリカの信号の生成に用いられたプリアンブル系列と同一の信号が、移動局装置5より送信されたと判断する。そして、プリアンブル検出部331は、最も相関値の高いタイミングをプリアンブル系列の到来タイミングと判断する。そして、プリアンブル検出部331は、検出したプリアンブル系列を示す情報と、到来タイミングを示す情報を少なくとも含むプリアンブル検出情報を生成し、制御部105に出力する。 The preamble detection unit 331 performs processing for detecting (receiving) a preamble transmitted from a received signal corresponding to the PRACH based on the signal input from the A / D unit 303. Specifically, the preamble detection unit 331 performs correlation processing on a received signal at various timings within the guard time with a replica signal generated using each preamble sequence that may be transmitted. . For example, if the correlation value is higher than a preset threshold value, the preamble detection unit 331 receives from the mobile station device 5 the same signal as the preamble sequence used to generate the replica signal used for the correlation processing. Judge that it was sent. The preamble detection unit 331 determines that the timing with the highest correlation value is the arrival timing of the preamble sequence. The preamble detection unit 331 generates preamble detection information including at least information indicating the detected preamble sequence and information indicating arrival timing, and outputs the preamble detection information to the control unit 105.
 制御部105は、基地局装置3が、移動局装置5にPDCCHを用いて送信した制御情報(DCI)、およびPDSCHを用いて送信した制御情報に基づいて、サブキャリアデマッピング部315、データ復調部325、ターボ復号部327、伝搬路推定部317、および物理上りリンク制御チャネル検出部329の制御を行なう。また、制御部105は、基地局装置3が移動局装置5に送信した制御情報に基づき、各移動局装置5が送信した(送信した可能性のある)PRACH、PUSCH、PUCCH、SRSがどのリソース(上りリンクサブフレーム、UL PRB、周波数領域の符号系列、時間領域の符号系列、プリアンブル系列)により構成されているかを把握している。 Based on the control information (DCI) transmitted from the base station device 3 to the mobile station device 5 using the PDCCH and the control information transmitted using the PDSCH, the control unit 105 performs subcarrier demapping unit 315, data demodulation Control unit 325, turbo decoding unit 327, propagation path estimation unit 317, and physical uplink control channel detection unit 329. Also, the control unit 105 determines which resource is the PRACH, PUSCH, PUCCH, and SRS that each mobile station device 5 has transmitted (may have transmitted) based on the control information that the base station device 3 has transmitted to the mobile station device 5. It is ascertained whether it is composed of (uplink subframe, UL PRB, frequency domain code sequence, time domain code sequence, preamble sequence).
 <移動局装置5の全体構成>
 以下、図4、図5、図6を用いて、本実施形態に係る移動局装置5の構成について説明する。図4は、本発明の実施形態に係る移動局装置5の構成を示す概略ブロック図である。この図に示すように、移動局装置5は、受信処理部(第一の受信処理部)401、無線リソース制御部(第一の無線リソース制御部)403、制御部(第一の制御部)405、送信処理部407を含んで構成される。また、制御部405は、パスロス計算部4051、送信電力設定部4053、パワーヘッドルーム制御部4055およびパワーヘッドルーム生成部4057、を備える。
<Overall configuration of mobile station apparatus 5>
Hereinafter, the configuration of the mobile station apparatus 5 according to the present embodiment will be described with reference to FIGS. 4, 5, and 6. FIG. 4 is a schematic block diagram showing the configuration of the mobile station apparatus 5 according to the embodiment of the present invention. As shown in this figure, the mobile station apparatus 5 includes a reception processing unit (first reception processing unit) 401, a radio resource control unit (first radio resource control unit) 403, and a control unit (first control unit). 405 and a transmission processing unit 407. The control unit 405 includes a path loss calculation unit 4051, a transmission power setting unit 4053, a power headroom control unit 4055, and a power headroom generation unit 4057.
 受信処理部401は、基地局装置3から信号を受信し、制御部405の指示に従い、受信信号を復調、復号する。受信処理部401は、自装置宛てのPDCCHの信号を検出した場合は、PDCCHの信号を復号して取得したDCIを制御部405に出力する。例えば、受信処理部401は、PDCCHに含まれるPUCCHのリソースに関する制御情報を制御部405に出力する。また、受信処理部401は、PDCCHに含まれるDCIを制御部405に出力した後の制御部405の指示に基づき、自装置宛てのPDSCHを復号して得た情報データを、制御部405を介して上位層に出力する。PDCCHに含まれるDCIの中で下りリンクアサインメントがPDSCHのリソースの割り当てを示す情報を含む。また、受信処理部401は、PDSCHを復号して得た基地局装置3の無線リソース制御部103で生成された制御情報を制御部405に出力し、また制御部405を介して自装置の無線リソース制御部403に出力する。例えば、基地局装置3の無線リソース制御部103で生成された制御情報は、PUCCHとPUSCHの同時送信の構成を示す情報、CSI-RSの構成に関する情報、パスロスの測定に用いる下りリンク参照信号を示す情報、パワーヘッドルームレポーティングに関するパラメータ(例えば、第一のパスロスに対応するdl-PathlossChange、第二のパスロスに対応するdl-PathlossChange)の値を示す情報、PUSCHの送信電力制御に用いるパスロスリファレンスを示す情報、PUCCHの送信電力制御に用いるパスロスリファレンスを示す情報、PUSCHの送信電力に関連する一部のパラメータの値を示す情報、PUCCHの送信電力に関連する一部のパラメータの値を示す情報を含む。 The reception processing unit 401 receives a signal from the base station apparatus 3, and demodulates and decodes the received signal in accordance with an instruction from the control unit 405. When the reception processing unit 401 detects a PDCCH signal addressed to itself, the reception processing unit 401 outputs the DCI obtained by decoding the PDCCH signal to the control unit 405. For example, the reception processing unit 401 outputs control information regarding PUCCH resources included in the PDCCH to the control unit 405. In addition, the reception processing unit 401 receives, via the control unit 405, information data obtained by decoding the PDSCH addressed to itself based on an instruction from the control unit 405 after outputting the DCI included in the PDCCH to the control unit 405. To the upper layer. In the DCI included in the PDCCH, the downlink assignment includes information indicating the allocation of PDSCH resources. Also, the reception processing unit 401 outputs the control information generated by the radio resource control unit 103 of the base station apparatus 3 obtained by decoding the PDSCH to the control unit 405, and the radio of the own apparatus via the control unit 405. Output to the resource control unit 403. For example, the control information generated by the radio resource control unit 103 of the base station apparatus 3 includes information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, information regarding the configuration of CSI-RS, and a downlink reference signal used for path loss measurement. Information indicating power headroom reporting parameters (for example, dl-PathlossChange corresponding to the first path loss, dl-PathlossChange corresponding to the second path loss), path loss reference used for PUSCH transmission power control Information indicating path loss reference used for transmission power control of PUCCH, information indicating values of some parameters related to transmission power of PUSCH, and information indicating values of some parameters related to transmission power of PUCCH Including.
 また、受信処理部401は、PDSCHに含まれる巡回冗長検査(Cyclic Redundancy Check: CRC)符号を制御部405に出力する。基地局装置3の説明では省略したが、基地局装置3の送信処理部107は情報データからCRC符号を生成し、情報データとCRC符号をPDSCHで送信する。CRC符号は、PDSCHに含まれるデータが誤っているか、誤っていないかを判断するために使われる。例えば、移動局装置5において予め決められた生成多項式を用いてデータから生成された情報と、基地局装置3において生成され、PDSCHで送信されたCRC符号とが同じ場合はデータが誤っていないと判断され、移動局装置5において予め決められた生成多項式を用いてデータから生成された情報と、基地局装置3において生成され、PDSCHで送信されたCRC符号とが異なる場合はデータが誤っていると判断される。 Further, the reception processing unit 401 outputs a cyclic redundancy check (Cyclic Redundancy Check: CRC) code included in the PDSCH to the control unit 405. Although omitted in the description of the base station apparatus 3, the transmission processing unit 107 of the base station apparatus 3 generates a CRC code from the information data, and transmits the information data and the CRC code by PDSCH. The CRC code is used to determine whether the data included in the PDSCH is incorrect or not. For example, if the information generated from the data using a generator polynomial determined in advance in the mobile station device 5 is the same as the CRC code generated in the base station device 3 and transmitted on the PDSCH, the data is correct. If the information generated from the data using the generator polynomial determined in advance in the mobile station apparatus 5 is different from the CRC code generated in the base station apparatus 3 and transmitted on the PDSCH, the data is incorrect. It is judged.
 また、受信処理部401は、下りリンクの受信品質(RSRP: Reference Signal Received Power; 参照信号受信電力)を測定し、測定結果を制御部405に出力する。受信処理部401は、制御部405からの指示に基づき、CRS、またはCSI-RSからRSRPを測定(計算)する。受信処理部401の詳細については後述する。 Also, the reception processing unit 401 measures downlink reception quality (RSRP: “Reference” Signal “Received Power”) and outputs the measurement result to the control unit 405. The reception processing unit 401 measures (calculates) RSRP from CRS or CSI-RS based on an instruction from the control unit 405. Details of the reception processing unit 401 will be described later.
 制御部405は、パスロス計算部4051、送信電力設定部4053、パワーヘッドルーム制御部4055およびパワーヘッドルーム生成部4057を備える。制御部405は、PDSCHを用いて基地局装置3から送信され、受信処理部401より入力されたデータを確認し、データの中で情報データを上位層に出力し、データの中で基地局装置3の無線リソース制御部103で生成された制御情報に基づいて、受信処理部401、送信処理部407を制御する。また、制御部405は、無線リソース制御部403からの指示に基づき、受信処理部401、送信処理部407を制御する。例えば、制御部405は、パスロスの測定に用いる下りリンク参照信号を示す情報に基づき、RSRPを測定する下りリンク参照信号を受信処理部401に設定する。例えば、制御部405は、無線リソース制御部403から指示されたPUSCHを用いてパワーヘッドルームの情報を含む信号を送信するように送信処理部407を制御する。例えば、制御部405は、PUSCHの送信電力制御に用いるパスロスリファレンスを示す情報に基づき、PUSCHの送信電力制御に用いるパスロスリファレンスを設定して、PUSCHの送信電力を設定して、送信処理部407に設定する。例えば、制御部405は、PUCCHの送信電力制御に用いるパスロスリファレンスを示す情報に基づき、PUCCHの送信電力制御に用いるパスロスリファレンスを設定して、PUCCHの送信電力を設定して、送信処理部407に設定する。例えば、制御部405は、PUCCHとPUSCHの同時送信の構成を示す情報に基づき、PUCCHとPUSCHの送信電力を設定して、送信処理部407に設定する。例えば、制御部405は、PUCCHとPUSCHの同時送信の構成を示す情報に基づき、PUCCHとPUSCHの同時送信を行なうか否かを設定して、送信処理部407を制御する。 The control unit 405 includes a path loss calculation unit 4051, a transmission power setting unit 4053, a power headroom control unit 4055, and a power headroom generation unit 4057. The control unit 405 confirms the data transmitted from the base station device 3 using the PDSCH and input from the reception processing unit 401, outputs the information data to the upper layer in the data, and the base station device in the data The reception processing unit 401 and the transmission processing unit 407 are controlled based on the control information generated by the third radio resource control unit 103. Further, the control unit 405 controls the reception processing unit 401 and the transmission processing unit 407 based on an instruction from the radio resource control unit 403. For example, the control unit 405 sets a downlink reference signal for measuring RSRP in the reception processing unit 401 based on information indicating a downlink reference signal used for path loss measurement. For example, the control unit 405 controls the transmission processing unit 407 to transmit a signal including power headroom information using the PUSCH instructed from the radio resource control unit 403. For example, the control unit 405 sets the path loss reference used for PUSCH transmission power control based on the information indicating the path loss reference used for PUSCH transmission power control, sets the PUSCH transmission power, and sends it to the transmission processing unit 407. Set. For example, the control unit 405 sets the path loss reference used for PUCCH transmission power control based on the information indicating the path loss reference used for PUCCH transmission power control, sets the PUCCH transmission power, and sends it to the transmission processing unit 407. Set. For example, the control unit 405 sets the transmission power of the PUCCH and PUSCH based on the information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and sets the transmission power in the transmission processing unit 407. For example, the control unit 405 sets whether or not to perform simultaneous transmission of PUCCH and PUSCH based on information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and controls the transmission processing unit 407.
 また、制御部405は、PDCCHを用いて基地局装置3から送信され、受信処理部401より入力されたDCIに基づいて、受信処理部401、送信処理部407を制御する。具体的には、制御部405は検出された下りリンクアサインメントに基づき受信処理部401を制御し、検出された上りリンクグラントに基づき送信処理部407を制御する。また、制御部405は、予め決められた生成多項式を用いて受信処理部401より入力されたデータと受信処理部401より入力されたCRC符号を比較し、データが誤っているか否かを判断し、ACK/NACKを生成する。また、制御部405は、無線リソース制御部403からの指示に基づき、SR、CQIを生成する。また、制御部405は、基地局装置3から通知された上りリンクの送信タイミングの調整値等に基づいて、送信処理部407の信号の送信タイミングを制御する。 Also, the control unit 405 controls the reception processing unit 401 and the transmission processing unit 407 based on the DCI transmitted from the base station apparatus 3 using the PDCCH and input from the reception processing unit 401. Specifically, the control unit 405 controls the reception processing unit 401 based on the detected downlink assignment, and controls the transmission processing unit 407 based on the detected uplink grant. In addition, the control unit 405 compares the data input from the reception processing unit 401 with the CRC code input from the reception processing unit 401 using a predetermined generator polynomial, and determines whether the data is incorrect. ACK / NACK is generated. Further, the control unit 405 generates SR and CQI based on an instruction from the radio resource control unit 403. Further, the control unit 405 controls the transmission timing of the signal of the transmission processing unit 407 based on the adjustment value of the uplink transmission timing notified from the base station apparatus 3.
 パスロス計算部4051は、受信処理部401より入力されたRSRPを用いてパスロスの計算を行なう。受信処理部401は、CRSに対するRSRP、CSI-RSに対するRSRPを測定し、測定した各RSRPをパスロス計算部4051に入力する。パスロス計算部4051は、CRSに対するRSRPを用いてパスロスの計算を行ない、CSI-RSに対するRSRPを用いてパスロスの計算を行なう。例えば、パスロスは、下りリンク参照信号の送信電力の値から平均化したRSRPの値を減算することによって計算される。例えば、平均化は、所定のフィルタ係数(filterCoefficent)を用いて、平均化処理を行なってきた値に(1-filterCoefficent)を乗算した値と、新たに測定した値にfilterCoefficentを乗算した値とを加算することによって行なわれる。なお、移動局装置5において用いられるフィルタ係数(filterCoefficent)の値は基地局装置3、RRH4より設定される。パスロス計算部4051は、計算した、各パスロス(CRSに基づくパスロス、CSI-RSに基づくパスロス)の情報を送信電力設定部4053、パワーヘッドルーム制御部4055およびパワーヘッドルーム生成部4057に出力する。 The path loss calculation unit 4051 calculates a path loss using the RSRP input from the reception processing unit 401. The reception processing unit 401 measures RSRP for CRS and RSRP for CSI-RS, and inputs each measured RSRP to the path loss calculation unit 4051. The path loss calculation unit 4051 performs path loss calculation using RSRP for CRS, and calculates path loss using RSRP for CSI-RS. For example, the path loss is calculated by subtracting the averaged RSRP value from the transmission power value of the downlink reference signal. For example, averaging uses a predetermined filter coefficient (filterCoefficent), a value obtained by multiplying a value obtained by averaging processing by (1-filterCoefficent), and a value obtained by multiplying a newly measured value by filterCoefficient. This is done by adding. In addition, the value of the filter coefficient (filterCoefficent) used in the mobile station apparatus 5 is set by the base station apparatus 3 and RRH4. The path loss calculation unit 4051 outputs the calculated information of each path loss (path loss based on CRS, path loss based on CSI-RS) to the transmission power setting unit 4053, the power headroom control unit 4055, and the power headroom generation unit 4057.
 送信電力設定部4053は、上りリンクの送信電力の設定を行なう。送信電力設定部4053は、PUSCH、PUCCH、DM RS、SRS、PRACHに対する送信電力を設定する。送信電力設定部4053は、パスロス計算部4051より入力されたパスロス、パスロスに乗算される係数、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータ、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータ、基地局装置3、RRH4より通知された送信電力制御コマンドに基づくパラメータ等に基づいて、PUSCHの所望の送信電力の設定を行なう。送信電力設定部4053は、基地局装置3から通知されたPUSCHの送信電力制御に用いるパスロスリファレンスを示す情報に基づき、パスロス計算部4051より入力されたパスロスの何れをPUSCHの送信電力の設定に用いるかを選択する。送信電力設定部4053は、パスロス計算部4051より入力されたパスロス、PUCCHの信号構成に基づくパラメータ、PUCCHで送信される情報量に基づくパラメータ、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータ、基地局装置3、RRH4より通知された送信電力制御コマンドに基づくパラメータ等に基づいて、PUCCHの所望の送信電力の設定を行なう。送信電力設定部4053は、基地局装置3から通知されたPUCCHの送信電力制御に用いるパスロスリファレンスを示す情報に基づき、パスロス計算部4051より入力されたパスロスの何れをPUCCHの送信電力の設定に用いるかを選択する。 The transmission power setting unit 4053 sets uplink transmission power. The transmission power setting unit 4053 sets transmission power for PUSCH, PUCCH, DM RS, SRS, and PRACH. The transmission power setting unit 4053 is a parameter based on the path loss input from the path loss calculation unit 4051, the coefficient multiplied by the path loss, the number of UL PRBs allocated to the PUSCH (the bandwidth of the resources allocated for the PUSCH), Based on the parameters specific to the cell and mobile stations notified from the base station device 3 and RRH4, the parameters based on the transmission power control command notified from the base station device 3 and RRH4, etc., the desired transmission power of the PUSCH Set up. Based on the information indicating the path loss reference used for PUSCH transmission power control notified from the base station apparatus 3, the transmission power setting unit 4053 uses any of the path losses input from the path loss calculation unit 4051 for setting the PUSCH transmission power. Select whether or not. The transmission power setting unit 4053 includes the path loss input from the path loss calculation unit 4051, parameters based on the PUCCH signal configuration, parameters based on the amount of information transmitted on the PUCCH, cell-specific information previously notified from the base station device 3 and RRH4, Based on parameters specific to the mobile station apparatus, parameters based on the transmission power control command notified from the base station apparatus 3 and RRH4, etc., the desired transmission power of PUCCH is set. The transmission power setting unit 4053 uses any of the path loss input from the path loss calculation unit 4051 for setting the transmission power of the PUCCH based on the information indicating the path loss reference used for the transmission power control of the PUCCH notified from the base station apparatus 3. Select whether or not.
 送信電力設定部4053は、パスロス計算部4051より入力されたパスロス、パスロスに乗算される係数、SRSに割り当てられるUL PRBの数に基づくパラメータ、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータ、予め基地局装置3、RRH4より通知されたオフセット、基地局装置3、RRH4より通知された送信電力制御コマンドに基づくパラメータ等に基づいて、SRSの所望の送信電力の設定を行なう。なお、送信電力設定部4053は、DM RSに対しては、DM RSが配置される物理チャネルと同様の送信電力の設定を行なう。 The transmission power setting unit 4053 includes a path loss input from the path loss calculation unit 4051, a coefficient to be multiplied by the path loss, a parameter based on the number of UL PRBs allocated to the SRS, cell-specific information previously notified from the base station apparatus 3 and the RRH 4, And a parameter specific to the mobile station apparatus, an offset previously notified from the base station apparatus 3 and RRH4, a parameter based on a transmission power control command notified from the base station apparatus 3 and RRH4, and the like. Set up. Note that the transmission power setting unit 4053 sets the transmission power for the DM RS, similar to the physical channel in which the DM RS is arranged.
 なお、上記で説明した各種パラメータは、基地局装置3、RRH4からシグナリングを用いて設定される構成でもよいし、仕様で一意に値が設定される構成でもよいし、その他の各種要因に応じて値が設定される構成でもよい。送信電力設定部4053は、上述したように、上りリンクサブフレーム毎に送信されるチャネル、信号に対して、パスロス計算部4051より入力された複数のパスロスの内、何れか1つのパスロスを用いて送信電力の設定を行なう。 The various parameters described above may be configured by using signaling from the base station apparatus 3 and RRH 4, or may be configured to have values that are uniquely set in the specification, or depending on various other factors. A configuration in which a value is set may be used. As described above, the transmission power setting unit 4053 uses any one path loss among a plurality of path losses input from the path loss calculation unit 4051 for the channel and signal transmitted for each uplink subframe. Set the transmission power.
 送信電力設定部4053は、設定した所望の送信電力値、または移動局装置5に予め構成された送信電力値(送信可能最大送信電力値)を用いるように送信処理部407を制御する。送信電力設定部4053は、移動局装置5に予め構成された送信電力値と、所望の送信電力値とを比較して小さい値を選択して、選択した送信電力値を用いるように送信処理部407を制御する。送信電力設定部4053は、無線リソース制御部403よりPUCCHとPUSCHの同時送信が指示された場合、移動局装置5に予め構成された送信電力値と、PUCCHの所望の送信電力値およびPUSCHの所望の送信電力値の合計値とを比較して小さい値を選択して、選択した送信電力値を用いるように送信処理部407を制御する。ここで、移動局装置5に予め構成された送信電力値の方が、PUCCHの所望の送信電力値およびPUSCHの所望の送信電力値の合計値よりも小さい場合、基本的にPUCCHの送信電力値としては所望の送信電力値を設定し、PUSCHの送信電力値としては予め構成された送信電力値(送信可能最大送信電力値)から設定したPUCCHの送信電力値を減算した値を設定する。 The transmission power setting unit 4053 controls the transmission processing unit 407 to use a set desired transmission power value or a transmission power value (maximum transmittable transmission power value that can be transmitted) configured in advance in the mobile station apparatus 5. The transmission power setting unit 4053 compares the transmission power value configured in advance in the mobile station device 5 with a desired transmission power value, selects a smaller value, and uses the selected transmission power value to transmit the transmission processing unit. 407 is controlled. When the radio resource control unit 403 instructs the transmission power setting unit 4053 to simultaneously transmit PUCCH and PUSCH, the transmission power setting unit 4053, the transmission power value configured in advance in the mobile station device 5, the desired transmission power value of the PUCCH, and the desired PUSCH The transmission processing unit 407 is controlled to use a selected transmission power value by selecting a smaller value by comparing with the total transmission power value. Here, when the transmission power value configured in advance in the mobile station apparatus 5 is smaller than the total value of the desired transmission power value of PUCCH and the desired transmission power value of PUSCH, basically, the transmission power value of PUCCH As the transmission power value of PUSCH, a value obtained by subtracting the transmission power value of the set PUCCH from the transmission power value (maximum transmittable transmission power value) configured in advance is set as the transmission power value of PUSCH.
 送信電力設定部4053では、送信電力制御コマンドに基づくパラメータの設定は、2種類のモードが用いられる。一方のモード(Accumulation mode)は、通知された送信電力制御コマンドの値を積算していくモードである。もう一方のモード(Absolute mode)は、通知された複数の送信電力制御コマンドの値を積算することは行なわず、最新の送信電力制御コマンドの値のみを用いるモードである。例えば、PUSCHに対しては、RRCシグナリングを用いて、Accumulation mode、またはAbsolute modeの何れかのモードが移動局装置5に設定され、PUCCHに対しては、Accumulation modeが移動局装置5に設定される。 The transmission power setting unit 4053 uses two types of modes for setting parameters based on the transmission power control command. One mode (Accumulation mode) is a mode in which the notified transmission power control command values are accumulated. The other mode (Absolute mode) is a mode in which only the latest transmission power control command value is used without integrating the notified values of the plurality of transmission power control commands. For example, for PUSCH, either the accumulation mode or the absolute mode is set in the mobile station apparatus 5 using RRC signaling, and the accumulation mode is set in the mobile station apparatus 5 for the PUCCH. The
 送信電力設定部4053は、パスロス計算部4051より入力されたパスロス毎に対して、独立な送信電力制御を実行する。具体的には、送信電力設定部4053は、複数の独立な送信電力設定処理を実行し、それぞれの送信電力設定処理において、異なるパスロスを用いる。異なるパスロスが用いられる送信電力設定処理に対して、独立なパラメータが基地局装置3、RRH4より通知され、通知された独立なパラメータが用いられる。例えば、異なるパスロスが用いられる送信電力設定処理に対して、パスロスに乗算される係数、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータ、基地局装置3、RRH4より通知された送信電力制御コマンドが基地局装置3、RRH4より通知され、用いられる。なお、異なるパスロスが用いられる送信電力設定処理に対する、独立なパラメータは、実際の値は同じであってもよい。なお、一部のパラメータが、異なるパスロスが用いられる送信電力設定処理に対して、共通に用いられる構成であってもよい。なお、一部の上りリンクの信号に対しては上りリンクサブフレーム毎に送信電力の設定に用いられ得るパスロスが切り替えられ得る構成であり、異なる一部の上りリンクの信号に対しては上りリンクサブフレーム毎に送信電力の設定に用いられ得るパスロスが切り替えられず、一方のパスロスのみが用いられる構成でもよい。例えば、PUSCHに対しては上りリンクサブフレーム毎にCRSに基づくパスロス、CSI-RSに基づくパスロスが切り替えられ得る構成であり、PUCCHに対しては上りリンクサブフレーム毎のパスロスの切り替えが行なわれず、CSI-RSに基づくパスロスが用いられる構成でもよい。 The transmission power setting unit 4053 performs independent transmission power control for each path loss input from the path loss calculation unit 4051. Specifically, the transmission power setting unit 4053 executes a plurality of independent transmission power setting processes, and uses different path losses in each transmission power setting process. For the transmission power setting process in which different path loss is used, an independent parameter is notified from the base station apparatus 3 and the RRH 4, and the notified independent parameter is used. For example, for transmission power setting processing in which different path loss is used, a coefficient to be multiplied by the path loss, cell-specific and mobile station device-specific parameters previously notified from the base station device 3 and RRH4, base station device 3 and RRH4 The transmission power control command notified from the base station apparatus 3 and the RRH 4 is notified and used. Note that the actual values of the independent parameters for the transmission power setting process in which different path losses are used may be the same. A configuration may be used in which some parameters are commonly used for transmission power setting processing in which different path losses are used. Note that, for some uplink signals, the path loss that can be used for setting the transmission power can be switched for each uplink subframe, and for some different uplink signals, the uplink A configuration in which path loss that can be used for transmission power setting for each subframe is not switched and only one path loss is used may be used. For example, a path loss based on CRS and a path loss based on CSI-RS can be switched for each uplink subframe for PUSCH, and a path loss for each uplink subframe is not switched for PUCCH. A configuration in which path loss based on CSI-RS is used may be used.
 パワーヘッドルーム制御部4055は、パワーヘッドルームレポーティングの制御を行なう。パワーヘッドルーム制御部4055は、パワーヘッドルームレポーティングに関連するパラメータ(periodicPHR-Timer、prohibitPHR-Timer、dl-PathlossChange)と、パスロス計算部4051から入力されたパスロスを用いて、パワーヘッドルームの送信を制御する。また、パワーヘッドルーム制御部4055は、基地局装置3、RRH4より通知された情報に基づき、パスロス計算部4051から入力されたパスロスの何れのパスロスが、送信電力設定部4053においてPUSCHの送信電力の設定に用いられたパスロス(第一のパスロス)、PUCCHの送信電力の設定に用いられたパスロス(第二のパスロス)かを把握する。また、パワーヘッドルーム制御部4055は、基地局装置3、RRH4より通知された情報に基づき、PUSCHの送信電力制御に用いるパスロスリファレンスが再設定されたことを契機として、パワーヘッドルームの報告処理を始動する(Trigger)と判断してもよい。また、パワーヘッドルーム制御部4055は、基地局装置3、RRH4より通知された情報に基づき、PUCCHとPUSCHの同時送信が構成された場合にPUCCHの送信電力制御に用いるパスロスリファレンスが再設定されたことを契機として、パワーヘッドルームの報告処理を始動すると判断してもよい。また、パワーヘッドルーム制御部4055は、基地局装置3、RRH4より通知された情報に基づき、PUCCHとPUSCHの同時送信が構成されていない場合にPUCCHの送信電力制御に用いるパスロスリファレンスが再設定されたことを契機として、パワーヘッドルームの報告処理を始動すると判断しなくてもよい。 The power headroom control unit 4055 controls power headroom reporting. The power headroom control unit 4055 uses the parameters related to power headroom reporting (periodicPHR-Timer, prohibitPHR-Timer, dl-PathlossChange) and the path loss input from the path loss calculation unit 4051 to transmit power headroom. Control. Also, the power headroom control unit 4055 determines which path loss of the path loss input from the path loss calculation unit 4051 is the transmission power of the PUSCH in the transmission power setting unit 4053 based on the information notified from the base station device 3 and the RRH 4. It is grasped whether the path loss (first path loss) used for the setting or the path loss (second path loss) used for setting the transmission power of the PUCCH. Also, the power headroom control unit 4055 performs the power headroom reporting process when the path loss reference used for PUSCH transmission power control is reset based on the information notified from the base station apparatus 3 and the RRH 4. You may judge that it starts (Trigger). Further, the power headroom control unit 4055 resets the path loss reference used for PUCCH transmission power control when simultaneous transmission of PUCCH and PUSCH is configured based on information notified from the base station device 3 and RRH4. As a trigger, it may be determined to start the power headroom reporting process. Further, the power headroom control unit 4055 resets the path loss reference used for the transmission power control of the PUCCH when simultaneous transmission of the PUCCH and the PUSCH is not configured based on the information notified from the base station device 3 and the RRH 4. As a result, it is not necessary to determine that the power headroom reporting process is started.
 パワーヘッドルーム制御部4055は、移動局装置5にPUCCHとPUSCHの同時送信が構成されていない場合は、第二のパスロスは考慮せず、第一のパスロスに対してdl-PathlossChangeを用いたパワーヘッドルームの報告処理の始動(Trigger)の判断を行なう。パワーヘッドルーム制御部4055は、移動局装置5にPUCCHとPUSCHの同時送信が構成されている場合は、第一のパスロスと第二のパスロスに対してdl-PathlossChangeを用いたパワーヘッドルームの報告処理の始動の判断を行なう。パワーヘッドルーム制御部4055は、パワーヘッドルームの報告処理を始動すると判断した場合、PUSCHを用いてパワーヘッドルームの情報を送信するように送信処理部407を制御する。パワーヘッドルーム制御部4055は、PUSCHを用いてパワーヘッドルームの情報を送信するように送信処理部407を制御する場合、パワーヘッドルーム生成部4057に対して、パワーヘッドルームの生成を指示し、制御する。 When the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 does not consider the second path loss and uses dl-PathlossChange for the first path loss. Judgment of start (Trigger) of reporting process of headroom When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 reports power headroom using dl-PathlossChange for the first path loss and the second path loss. Judge the start of the process. When it is determined that the power headroom reporting process is started, the power headroom control unit 4055 controls the transmission processing unit 407 to transmit the power headroom information using the PUSCH. When the power headroom control unit 4055 controls the transmission processing unit 407 to transmit power headroom information using PUSCH, the power headroom control unit 4055 instructs the power headroom generation unit 4057 to generate the power headroom. Control.
 パワーヘッドルーム制御部4055に対して、パワーヘッドルームレポーティングに関連するパラメータが複数設定される。第一のパスロスを用いたパワーヘッドルームレポーティングと、第二のパスロスを用いたパワーヘッドルームレポーティングとに、独立にパラメータが設定される。パワーヘッドルーム制御部4055において、異なるパスロスリファレンスに対して、異なるdl-PathlossChangeが設定される。パワーヘッドルーム制御部4055において、第一のパスロスと第二のパスロスに対して、異なるdl-PathlossChangeが設定される。なお、第一のパスロスと第二のパスロスに対する、それぞれのdl-PathlossChangeは値が同じであってもよい。パワーヘッドルーム制御部4055は、第一のパスロスと第二のパスロスとに対して異なるdl-PathlossChangeを用いて、パワーヘッドルームの報告処理のトリガーを判断する。パワーヘッドルーム制御部4055は、dl-PathlossChangeとパスロスの変化量との閾値判断を、dl-PathlossChangeが対応するパスロスに対して行なう。パワーヘッドルーム制御部4055は、移動局装置5にPUCCHとPUSCHの同時送信が構成されていない場合は、第二のパスロスは考慮せず、第一のパスロスに対してdl-PathlossChangeを用いたパワーヘッドルームの報告処理の始動の判断を行なう。パワーヘッドルーム制御部4055は、移動局装置5にPUCCHとPUSCHの同時送信が構成されていない場合は、第一のパスロスの変化量がdl-PathlossChangeの値より大きくなった場合にパワーヘッドルームの報告処理を始動すると判断する。パワーヘッドルーム制御部4055は、移動局装置5にPUCCHとPUSCHの同時送信が構成されている場合は、第一のパスロスと第二のパスロスに対してdl-PathlossChangeを用いたパワーヘッドルームの報告処理の始動の判断を行なう。パワーヘッドルーム制御部4055は、移動局装置5にPUCCHとPUSCHの同時送信が構成されている場合は、第一のパスロスの変化量、または第二のパスロスの変化量がdl-PathlossChangeの値より大きくなった場合にパワーヘッドルームの報告処理を始動すると判断する。パワーヘッドルーム制御部4055は、パワーヘッドルームの報告処理を始動すると判断した後に、最初にリソースが割り当てられたPUSCHでパワーヘッドルームの送信を行なうように送信処理部407を制御する。 A plurality of parameters related to power headroom reporting are set for the power headroom control unit 4055. Parameters are set independently for power headroom reporting using the first path loss and power headroom reporting using the second path loss. In the power headroom control unit 4055, different dl-PathlossChanges are set for different path loss references. In the power headroom control unit 4055, different dl-PathlossChanges are set for the first path loss and the second path loss. Note that the dl-PathlossChange for the first path loss and the second path loss may have the same value. The power headroom control unit 4055 determines a trigger for the power headroom reporting process using different dl-PathlossChanges for the first path loss and the second path loss. The power headroom control unit 4055 performs a threshold determination between the dl-PathlossChange and the amount of change in the path loss with respect to the path loss corresponding to the dl-PathlossChange. When the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 does not consider the second path loss and uses dl-PathlossChange for the first path loss. Judgment to start the headroom reporting process. When the mobile station apparatus 5 is not configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 determines the power headroom when the change amount of the first path loss is larger than the value of dl-PathlossChange. Determines to start the reporting process. When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 reports power headroom using dl-PathlossChange for the first path loss and the second path loss. Judge the start of the process. When the mobile station apparatus 5 is configured to simultaneously transmit PUCCH and PUSCH, the power headroom control unit 4055 determines whether the change amount of the first path loss or the change amount of the second path loss is based on the value of dl-PathlossChange. When it becomes larger, it is determined that the power headroom reporting process is started. The power headroom control unit 4055 controls the transmission processing unit 407 so that the power headroom is transmitted on the PUSCH to which the resource is first allocated after determining that the power headroom reporting process is started.
 パワーヘッドルーム制御部4055において、単一のperiodicPHR-Timerが設定される。パワーヘッドルーム制御部4055は、periodicPHR-Timerが満了した場合に、パワーヘッドルームの報告処理を始動するように判断する。パワーヘッドルーム制御部4055は、パワーヘッドルームの報告処理を始動すると判断した後に、最初にリソースが割り当てられたPUSCHでパワーヘッドルームの送信を行なうように送信処理部407を制御する。 In the power headroom control unit 4055, a single periodicPHR-Timer is set. The power headroom control unit 4055 determines to start the power headroom reporting process when the periodicPHR-Timer expires. The power headroom control unit 4055 controls the transmission processing unit 407 so that the power headroom is transmitted on the PUSCH to which the resource is first allocated after determining that the power headroom reporting process is started.
 なお、移動局装置5は、受信したUL grantからPUSCHのリソースが割り当てられたことを認識し、パワーヘッドルーム制御部4055においてPUSCHのリソースが割り当てられたとして関連処理を実行する。割り当てられたPUSCHのリソースの帯域幅に関する情報は、送信電力設定部4053、パワーヘッドルーム生成部4057に入力される。 Note that the mobile station apparatus 5 recognizes that the PUSCH resource has been allocated from the received UL grant, and executes related processing in the power headroom control unit 4055 assuming that the PUSCH resource has been allocated. Information regarding the bandwidth of the allocated PUSCH resource is input to transmission power setting section 4053 and power headroom generation section 4057.
 パワーヘッドルーム生成部4057は、パワーヘッドルームの生成を行なう。パワーヘッドルームは、送信電力の余地に関する情報である。パワーヘッドルーム生成部4057は、パワーヘッドルームとして第一のタイプのレポート、または第二のタイプのレポートの生成を行なう。パワーヘッドルーム生成部4057は、PUCCHとPUSCHの同時送信が構成されていない場合はパワーヘッドルームとして第一のタイプのレポートを生成し、PUCCHとPUSCHの同時送信が構成されている場合はパワーヘッドルームとして第二のタイプのレポートを生成する。 The power headroom generating unit 4057 generates a power headroom. The power headroom is information regarding the room for transmission power. The power headroom generation unit 4057 generates a first type report or a second type report as a power headroom. The power headroom generation unit 4057 generates a first type of report as power headroom when simultaneous transmission of PUCCH and PUSCH is not configured, and power headroom when simultaneous transmission of PUCCH and PUSCH is configured. Generate a second type of report as a room.
 パワーヘッドルーム生成部4057は、名目上の移動局最大送信電力と、パスロス計算部4051より入力されたPUSCHに対するパスロスと、パスロスに乗算される係数と、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知されたPUSCHに対する送信電力制御コマンドに基づくパラメータとに基づき、第一のタイプのレポートの生成を行なう。パワーヘッドルーム生成部4057において、第一のタイプのレポートの生成に用いられるパスロスは、PUSCHの送信電力制御に設定されたパスロスリファレンスのパスロスである。なお、上述以外のパラメータが追加され、第一のタイプのレポートの生成が行なわれてもよい。 The power headroom generation unit 4057 includes a nominal mobile station maximum transmission power, a path loss for the PUSCH input from the path loss calculation unit 4051, a coefficient to be multiplied by the path loss, and the number of UL PRBs allocated to the PUSCH (PUSCH Parameters based on the resource bandwidth allocated to the base station apparatus 3 and cell-specific parameters previously notified from the base station apparatus 3 and RRH4, and PUSCH notified from the base station apparatus 3 and RRH4. A first type of report is generated based on the parameters based on the transmission power control command. In the power headroom generation unit 4057, the path loss used for generating the first type of report is the path loss of the path loss reference set for PUSCH transmission power control. Note that parameters other than those described above may be added to generate the first type of report.
 パワーヘッドルーム生成部4057は、パスロス計算部4051より入力されたパスロスと、パスロスに乗算される係数と、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知された送信電力制御コマンドに基づくパラメータとに基づき、PUSCHに対する所望の送信電力を計算する。パワーヘッドルーム生成部4057は、名目上の移動局最大送信電力からPUSCHに対する所望の送信電力を減算した値を第一のタイプのレポートの情報とする。パワーヘッドルームの生成において用いられるパスロスは、パワーヘッドルームの送信に用いられるPUSCHの送信電力の設定に用いられるパスロスである。パワーヘッドルームの生成において用いられる、パスロスに乗算される係数と、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知された送信電力制御コマンドに基づくパラメータとは、パワーヘッドルームの生成において用いられるパスロスに対応するものが用いられる。パワーヘッドルームの生成において用いられる、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータは、パワーヘッドルームの送信に用いられるPUSCHに設定されたものである。パワーヘッドルーム生成部4057には、パワーヘッドルームの生成に必要な情報、指示が、パワーヘッドルーム制御部4055などの、その他の処理部から入力される。 The power headroom generation unit 4057 is based on the path loss input from the path loss calculation unit 4051, the coefficient multiplied by the path loss, and the number of UL PRBs allocated to PUSCH (the bandwidth of resources allocated for PUSCH). Based on the parameters, the cell-specific and mobile-station-specific parameters previously notified from the base station apparatus 3 and RRH4, and the parameters based on the transmission power control command notified from the base station apparatus 3 and RRH4, the desired for the PUSCH Calculate the transmission power of. The power headroom generation unit 4057 uses the value obtained by subtracting the desired transmission power for the PUSCH from the nominal maximum transmission power of the mobile station as information of the first type report. The path loss used in the generation of power headroom is a path loss used for setting the transmission power of the PUSCH used for power headroom transmission. The coefficient used to generate the power headroom, the coefficient multiplied by the path loss, the cell-specific parameters previously notified from the base station apparatus 3 and RRH4, and the parameters specific to the mobile station apparatus, and notified from the base station apparatus 3 and RRH4 As the parameter based on the transmission power control command, a parameter corresponding to a path loss used in generating the power headroom is used. The parameters based on the number of UL PRBs allocated to PUSCH (resource bandwidth allocated for PUSCH) used in the generation of power headroom are those set in PUSCH used for transmission of power headroom. is there. Information and instructions necessary for generating the power headroom are input to the power headroom generation unit 4057 from other processing units such as the power headroom control unit 4055.
 パワーヘッドルーム生成部4057は、名目上の移動局最大送信電力と、パスロス計算部4051より入力されたPUSCHに対するパスロスおよびPUCCHに対するパスロスと、パスロスに乗算される係数と、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータと、PUCCHの信号構成に基づくパラメータと、PUCCHで送信される情報量に基づくパラメータと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知されたPUSCHに対する送信電力制御コマンドに基づくパラメータと、基地局装置3、RRH4より通知されたPUCCHに対する送信電力制御コマンドに基づくパラメータとに基づき、第二のタイプのレポートの生成を行なう。パワーヘッドルーム生成部4057において、第二のタイプのレポートの生成に用いられるPUSCHに対するパスロスは、PUSCHの送信電力制御に設定されたパスロスリファレンスのパスロスである。パワーヘッドルーム生成部4057において、第二のタイプのレポートの生成に用いられるPUCCHに対するパスロスは、PUCCHの送信電力制御に設定されたパスロスリファレンスのパスロスである。なお、上述以外のパラメータが追加され、第二のタイプのレポートの生成が行なわれてもよい。 The power headroom generation unit 4057 includes the nominal mobile station maximum transmission power, the path loss for the PUSCH and the path loss for the PUCCH input from the path loss calculation unit 4051, the coefficient multiplied by the path loss, and the UL PRB assigned to the PUSCH. Parameters based on the number (bandwidth of resources allocated for PUSCH), parameters based on the PUCCH signal configuration, parameters based on the amount of information transmitted on the PUCCH, and notified in advance from the base station apparatus 3 and RRH4. Cell-specific parameters and mobile station apparatus-specific parameters, parameters based on transmission power control commands for PUSCH notified from the base station apparatus 3 and RRH4, and transmission power control commands for PUCCH notified from the base station apparatus 3 and RRH4 Based on the parameters Based on a motor, for generating the second type of report. In the power headroom generation unit 4057, the path loss for the PUSCH used for generating the second type of report is the path loss of the path loss reference set for the PUSCH transmission power control. In the power headroom generation unit 4057, the path loss for the PUCCH used for generating the second type of report is the path loss of the path loss reference set in the transmission power control of the PUCCH. Note that parameters other than those described above may be added to generate the second type of report.
 パワーヘッドルーム生成部4057は、パスロス計算部4051より入力されたPUSCHに対するパスロスと、パスロスに乗算される係数と、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知されたPUSCHに対する送信電力制御コマンドに基づくパラメータとに基づき、PUSCHに対する所望の送信電力を計算する。パワーヘッドルーム生成部4057は、パスロス計算部4051より入力されたPUCCHに対するパスロスと、PUCCHの信号構成に基づくパラメータと、PUCCHで送信される情報量に基づくパラメータと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知されたPUCCHに対する送信電力制御コマンドに基づくパラメータとに基づき、PUCCHに対する所望の送信電力を計算する。パワーヘッドルーム生成部4057は、名目上の移動局最大送信電力から、PUSCHに対する所望の送信電力値とPUCCHに対する所望の送信電力値との合計値を減算した値を第一のタイプのレポートの情報とする。パワーヘッドルームの生成において用いられるPUSCHに対するパスロスは、パワーヘッドルームの送信に用いられるPUSCHの送信電力の設定に用いられるパスロスである。PUSCHおよびPUCCHの両方に対して、パワーヘッドルームの生成において用いられる、パスロスに乗算される係数と、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知された送信電力制御コマンドに基づくパラメータとは、パワーヘッドルームの生成において用いられるパスロス(PUSCHの送信電力制御に設定されるパスロス、PUCCHの送信電力制御に設定されるパスロスのそれぞれに対応するパスロス)に対応するものが用いられる。パワーヘッドルームの生成において用いられる、PUSCHに割り当てられるUL PRBの数(PUSCHのために割り当てられたリソースの帯域幅)に基づくパラメータは、パワーヘッドルームの送信に用いられるPUSCHに設定されたものである。パワーヘッドルーム生成部4057には、パワーヘッドルームの生成に必要な情報、指示が、パワーヘッドルーム制御部4055などの、その他の処理部から入力される。 The power headroom generation unit 4057 includes a path loss for the PUSCH input from the path loss calculation unit 4051, a coefficient to be multiplied by the path loss, and the number of UL PRBs allocated to the PUSCH (the bandwidth of resources allocated for the PUSCH). , Parameters specific to cells and mobile stations specific previously notified from the base station apparatus 3 and RRH4, and parameters based on transmission power control commands for PUSCH notified from the base station apparatus 3 and RRH4 , Calculate the desired transmit power for the PUSCH. The power headroom generation unit 4057 receives the path loss for the PUCCH input from the path loss calculation unit 4051, the parameter based on the PUCCH signal configuration, the parameter based on the amount of information transmitted on the PUCCH, and the base station apparatus 3 and the RRH 4 in advance. Based on the notified cell-specific and mobile station device-specific parameters and the parameters based on the transmission power control command for the PUCCH notified from the base station device 3 and RRH4, the desired transmission power for the PUCCH is calculated. The power headroom generation unit 4057 obtains a value obtained by subtracting the total value of the desired transmission power value for PUSCH and the desired transmission power value for PUCCH from the nominal maximum transmission power of the mobile station. And The path loss for the PUSCH used in generating the power headroom is a path loss used for setting the transmission power of the PUSCH used for power headroom transmission. For both PUSCH and PUCCH, a coefficient used to generate power headroom, a coefficient multiplied by a path loss, a cell-specific parameter and a mobile station device-specific parameter previously notified from the base station apparatus 3 and RRH 4, The parameters based on the transmission power control command notified from the station apparatus 3 and the RRH 4 are the path loss used in generating the power headroom (path loss set for PUSCH transmission power control, path loss set for PUCCH transmission power control). Corresponding to each of the path loss). The parameters based on the number of UL PRBs allocated to PUSCH (resource bandwidth allocated for PUSCH) used in the generation of power headroom are those set in PUSCH used for transmission of power headroom. is there. Information and instructions necessary for generating the power headroom are input to the power headroom generation unit 4057 from other processing units such as the power headroom control unit 4055.
 なお、送信電力に関連するパラメータとして、セル固有、および移動局装置固有のパラメータ、パスロスに乗算される係数、SRSに対して用いられるオフセットはPDSCHを用いて基地局装置3より通知され、送信電力制御コマンドはPDCCHを用いて基地局装置3より通知される。その他のパラメータは、受信信号から計算され、またはその他の情報に基づいて計算、設定される。PUSCHに対する送信電力制御コマンドは上りリンクグラントに含まれ、PUCCHに対する送信電力制御コマンドは下りリンクアサインメントに含まれる。なお、制御部405は、送信されるUCIの種類に応じてPUCCHの信号構成を制御しており、送信電力設定部4053で用いられるPUCCHの信号構成を制御している。なお、基地局装置3より通知された、送信電力に関連する各種パラメータは無線リソース制御部403において適宜記憶され、記憶された値が送信電力設定部4053、パワーヘッドルーム生成部4057に入力される。 As parameters related to transmission power, cell-specific and mobile station device-specific parameters, a coefficient to be multiplied by the path loss, and an offset used for the SRS are notified from the base station device 3 using the PDSCH, and the transmission power A control command is notified from the base station apparatus 3 using PDCCH. Other parameters are calculated from the received signal or calculated and set based on other information. The transmission power control command for PUSCH is included in the uplink grant, and the transmission power control command for PUCCH is included in the downlink assignment. Note that the control unit 405 controls the PUCCH signal configuration according to the type of UCI to be transmitted, and controls the PUCCH signal configuration used by the transmission power setting unit 4053. Various parameters related to transmission power notified from the base station apparatus 3 are appropriately stored in the radio resource control unit 403, and the stored values are input to the transmission power setting unit 4053 and the power headroom generation unit 4057. .
 なお、パワーヘッドルームとして第二のタイプのレポートが生成される場合、そのパワーヘッドルームの送信に用いられるPUSCHが送信される上りリンクサブフレームにおいて、実際にはPUCCHの送信が行なわれず、PUSCHのみが送信される場合、第二のタイプのレポートのPUCCHに係る送信電力は仮想的な送信電力が用いられる。PUCCHの仮想的な送信電力は、PUCCHに対するパスロスと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知されたPUCCHに対する送信電力制御コマンドに基づくパラメータとに基づき計算される。パワーヘッドルームとして第二のタイプのレポートが生成される場合、そのパワーヘッドルームの送信に用いられるPUSCHが送信される上りリンクサブフレームにおいて、実際にはPUCCHの送信が行なわれず、PUSCHのみが送信される場合、パワーヘッドルーム生成部4057は、パスロス計算部4051より入力されたPUCCHに対するパスロスと、予め基地局装置3、RRH4より通知されたセル固有、および移動局装置固有のパラメータと、基地局装置3、RRH4より通知されたPUCCHに対する送信電力制御コマンドに基づくパラメータとに基づきPUCCHに対する仮想的な送信電力を計算し、名目上の移動局最大送信電力から、PUSCHに対する所望の送信電力値とPUCCHに対する仮想的な送信電力値との合計値を減算した値を第二のタイプのレポートの情報として生成する。 In addition, when the second type report is generated as the power headroom, in the uplink subframe in which the PUSCH used for transmission of the power headroom is transmitted, the PUCCH is not actually transmitted, and only the PUSCH is transmitted. Is transmitted, virtual transmission power is used as the transmission power related to the PUCCH of the second type of report. The virtual transmission power of the PUCCH includes the path loss for the PUCCH, the parameters specific to the cell and mobile station previously notified from the base station apparatus 3 and RRH4, and the transmission to the PUCCH notified from the base station apparatus 3 and RRH4. And a parameter based on the power control command. When the second type report is generated as the power headroom, in the uplink subframe in which the PUSCH used for transmission of the power headroom is transmitted, the PUCCH is not actually transmitted, and only the PUSCH is transmitted. The power headroom generation unit 4057 includes a path loss for the PUCCH input from the path loss calculation unit 4051, cell-specific and mobile station device-specific parameters previously notified from the base station device 3 and the RRH 4, and a base station The virtual transmission power for the PUCCH is calculated based on the parameter based on the transmission power control command for the PUCCH notified from the device 3 and the RRH 4, and the desired transmission power value for the PUSCH and the PUCCH are calculated from the nominal maximum transmission power of the mobile station. Virtual transmit power value for A value obtained by subtracting the total value of the generated as information for the second type of report.
 無線リソース制御部403は、基地局装置3の無線リソース制御部103で生成され、基地局装置3より通知された制御情報を記憶して保持すると共に、制御部405を介して受信処理部401、送信処理部407の制御を行なう。つまり、無線リソース制御部403は、各種パラメータなどを保持するメモリの機能を備える。例えば、無線リソース制御部403は、PUSCH、PUCCH、SRSの送信電力に関連するパラメータを保持し、送信電力設定部4053、パワーヘッドルーム生成部4057において基地局装置3より通知されたパラメータを用いるように制御信号を制御部405に出力する。例えば、無線リソース制御部403は、パスロスの測定に用いる下りリンク参照信号の種類に関する情報を保持し、基地局装置3、RRH4より通知された種類の下りリンク参照信号からパスロスの計算に用いる受信品質(RSRP)を測定するように制御信号を制御部405に出力する。例えば、無線リソース制御部403は、PUSCHの送信電力制御に用いるパスロスリファレンスを示す情報を保持し、送信電力設定部4053、パワーヘッドルーム制御部4055、パワーヘッドルーム生成部4057において基地局装置3より通知されたパスロスリファレンスのパスロスをPUSCHに用いるように制御信号を制御部405に出力する。例えば、無線リソース制御部403は、PUCCHの送信電力制御に用いるパスロスリファレンスを示す情報を保持し、送信電力設定部4053において基地局装置3より通知されたパスロスリファレンスのパスロスをPUCCHに用いるように制御信号を制御部405に出力する。例えば、無線リソース制御部403は、PUCCHとPUSCHの同時送信の構成を示す情報を保持し、送信電力設定部4053、パワーヘッドルーム制御部4055、パワーヘッドルーム生成部4057において基地局装置3より通知されたPUCCHとPUSCHの同時送信の構成を用いるように制御信号を制御部405に出力する。 The radio resource control unit 403 stores and holds the control information generated by the radio resource control unit 103 of the base station device 3 and notified from the base station device 3, and receives the reception processing unit 401 via the control unit 405. The transmission processing unit 407 is controlled. That is, the radio resource control unit 403 has a memory function for holding various parameters. For example, the radio resource control unit 403 holds parameters related to transmission power of PUSCH, PUCCH, and SRS, and uses the parameters notified from the base station apparatus 3 in the transmission power setting unit 4053 and the power headroom generation unit 4057. The control signal is output to the control unit 405. For example, the radio resource control unit 403 holds information on the type of downlink reference signal used for path loss measurement, and the reception quality used for path loss calculation from the type of downlink reference signal notified from the base station apparatus 3 and RRH 4 A control signal is output to the control unit 405 so as to measure (RSRP). For example, the radio resource control unit 403 holds information indicating a path loss reference used for PUSCH transmission power control, and the base station apparatus 3 performs transmission power setting unit 4053, power headroom control unit 4055, and power headroom generation unit 4057. A control signal is output to the control unit 405 so that the notified path loss reference path loss is used for PUSCH. For example, the radio resource control unit 403 holds information indicating a path loss reference used for PUCCH transmission power control, and controls the transmission power setting unit 4053 to use the path loss of the path loss reference notified from the base station apparatus 3 for the PUCCH. The signal is output to the control unit 405. For example, the radio resource control unit 403 holds information indicating the configuration of simultaneous transmission of PUCCH and PUSCH, and notifies the base station apparatus 3 in the transmission power setting unit 4053, the power headroom control unit 4055, and the power headroom generation unit 4057. A control signal is output to the control unit 405 so as to use the configuration for simultaneous transmission of the PUCCH and PUSCH.
 送信処理部407は、制御部405の指示に従い、パワーヘッドルーム、情報データ、UCIを符号化および変調した信号をPUSCH、PUCCHのリソースを用いて、基地局装置3に送信アンテナ411を介してDM RSと共に送信する。また、送信処理部407は、制御部405の指示に従い、SRSを送信する。また、送信処理部407は、制御部405の指示に従い、PRACHのリソースを用いてプリアンブルを基地局装置3、RRH4に送信する。また、送信処理部407は、制御部405の指示に従い、PUSCH、PUCCH、PRACH(説明は省略)、DM RS、SRSの送信電力を設定する。送信処理部407の詳細については後述する。 The transmission processing unit 407 transmits a signal obtained by encoding and modulating power headroom, information data, and UCI according to instructions from the control unit 405 to the base station apparatus 3 via the transmission antenna 411 using the PUSCH and PUCCH resources. Transmit with RS. Also, the transmission processing unit 407 transmits the SRS according to the instruction from the control unit 405. Further, the transmission processing unit 407 transmits a preamble to the base station apparatus 3 and the RRH 4 using the PRACH resource according to the instruction of the control unit 405. Also, the transmission processing unit 407 sets PUSCH, PUCCH, PRACH (not described), DM RS, and SRS transmission power in accordance with instructions from the control unit 405. Details of the transmission processing unit 407 will be described later.
 <移動局装置5の受信処理部401>
 以下、移動局装置5の受信処理部401の詳細について説明する。図5は、本発明の実施形態に係る移動局装置5の受信処理部401の構成を示す概略ブロック図である。この図に示すように、受信処理部401は、受信RF部501、A/D部503、シンボルタイミング検出部505、GI除去部507、FFT部509、多重分離部511、伝搬路推定部513、PDSCH用の伝搬路補償部515、物理下りリンク共用チャネル復号部517、PDCCH用の伝搬路補償部519、物理下りリンク制御チャネル復号部521、および下りリンク受信品質測定部531を含んで構成される。また、この図に示すように、物理下りリンク共用チャネル復号部517は、データ復調部523、および、ターボ復号部525、を備える。また、この図に示すように、物理下りリンク制御チャネル復号部521は、QPSK復調部527、およびビタビデコーダ部529、を備える。
<Reception Processing Unit 401 of Mobile Station Device 5>
Hereinafter, details of the reception processing unit 401 of the mobile station apparatus 5 will be described. FIG. 5 is a schematic block diagram showing the configuration of the reception processing unit 401 of the mobile station apparatus 5 according to the embodiment of the present invention. As shown in this figure, the reception processing unit 401 includes a reception RF unit 501, an A / D unit 503, a symbol timing detection unit 505, a GI removal unit 507, an FFT unit 509, a demultiplexing unit 511, a propagation path estimation unit 513, PDSCH propagation path compensation section 515, physical downlink shared channel decoding section 517, PDCCH propagation path compensation section 519, physical downlink control channel decoding section 521, and downlink reception quality measurement section 531 are configured. . Further, as shown in this figure, the physical downlink shared channel decoding unit 517 includes a data demodulation unit 523 and a turbo decoding unit 525. As shown in this figure, the physical downlink control channel decoding unit 521 includes a QPSK demodulation unit 527 and a Viterbi decoder unit 529.
 受信RF部501は、受信アンテナ409で受信した信号を、適切に増幅し、中間周波数に変換し(ダウンコンバート)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調する。受信RF部501は、直交復調したアナログ信号を、A/D部503に出力する。 The reception RF unit 501 appropriately amplifies the signal received by the reception antenna 409, converts it to an intermediate frequency (down-conversion), removes unnecessary frequency components, and amplifies the signal so that the signal level is properly maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal. The reception RF unit 501 outputs the quadrature demodulated analog signal to the A / D unit 503.
 A/D部503は、受信RF部501が直交復調したアナログ信号をディジタル信号に変換し、変換したディジタル信号を、シンボルタイミング検出部505と、GI除去部507と、に出力する。シンボルタイミング検出部505は、A/D部503が変換したディジタル信号に基づいて、シンボルのタイミングを検出し、検出したシンボル境界のタイミングを示す制御信号を、GI除去部507に出力する。GI除去部507は、シンボルタイミング検出部505からの制御信号に基づいて、A/D部503の出力したディジタル信号からガードインターバルに相当する部分を除去し、残りの部分の信号を、FFT部509に出力する。FFT部509は、GI除去部507から入力された信号を高速フーリエ変換し、OFDM方式の復調を行ない、多重分離部511に出力する。 The A / D unit 503 converts the analog signal quadrature demodulated by the reception RF unit 501 into a digital signal, and outputs the converted digital signal to the symbol timing detection unit 505 and the GI removal unit 507. Symbol timing detection section 505 detects symbol timing based on the digital signal converted by A / D section 503, and outputs a control signal indicating the detected symbol boundary timing to GI removal section 507. GI removal section 507 removes a portion corresponding to the guard interval from the digital signal output from A / D section 503 based on the control signal from symbol timing detection section 505, and converts the remaining portion of the signal to FFT section 509. Output to. The FFT unit 509 performs fast Fourier transform on the signal input from the GI removing unit 507, performs OFDM demodulation, and outputs the result to the demultiplexing unit 511.
 多重分離部511は、制御部405から入力された制御信号に基づき、FFT部509が復調した信号を、PDCCHの信号と、PDSCHの信号とに分離する。多重分離部511は、分離したPDSCHの信号を、PDSCH用の伝搬路補償部515に出力し、また、分離したPDCCHの信号を、PDCCH用の伝搬路補償部519に出力する。また、多重分離部511は、下りリンクパイロットチャネルが配置される下りリンクリソースエレメントを分離し、下りリンクパイロットチャネルの下りリンク参照信号(CRS、UE specific RS)を、伝搬路推定部513に出力する。また、多重分離部511は、下りリンクパイロットチャネルの下りリンク参照信号(CRS、CSI-RS)を下りリンク受信品質測定部531に出力する。なお、多重分離部511は、PDCCHの信号をPDCC用の伝搬路補償部519に出力し、PDSCHの信号をPDSCH用の伝搬路補償部515に出力する。 The demultiplexing unit 511 separates the signal demodulated by the FFT unit 509 into a PDCCH signal and a PDSCH signal based on the control signal input from the control unit 405. The demultiplexing unit 511 outputs the separated PDSCH signal to the PDSCH propagation path compensation unit 515 and outputs the separated PDCCH signal to the PDCCH propagation path compensation unit 519. Also, the demultiplexing unit 511 demultiplexes the downlink resource element in which the downlink pilot channel is arranged, and outputs the downlink reference signal (CRS, UE specific RS) of the downlink pilot channel to the propagation path estimation unit 513. . Also, the demultiplexing unit 511 outputs the downlink reference signals (CRS, CSI-RS) of the downlink pilot channel to the downlink reception quality measuring unit 531. The demultiplexing unit 511 outputs the PDCCH signal to the PDCC channel compensation unit 519, and outputs the PDSCH signal to the PDSCH channel compensation unit 515.
 伝搬路推定部513は、多重分離部511が分離した下りリンクパイロットチャネルの下りリンク参照信号(CRS、UE specific RS)と既知の信号とを用いて伝搬路の変動を推定し、伝搬路の変動を補償するように、振幅および位相を調整するための伝搬路補償値を、PDSCH用の伝搬路補償部515と、PDCCH用の伝搬路補償部519に出力する。伝搬路推定部513は、CRSとUE specific RSをそれぞれ用いて独立に伝搬路の変動を推定し、伝搬路補償値を出力する。または、伝搬路推定部513は、基地局装置3からの指示に基づき、CRS、またはUE specific RSを用いて伝搬路の変動を推定し、伝搬路補償値を出力する。なお、基地局装置3、RRH4では、移動局装置5においてUE specific RSを用いて伝搬路の補償が行なわれる物理チャネル(PDSCH、E-PDCCH)に対しては、UE specific RSに用いられる処理と共通のプリコーディング処理が実行される。 The propagation path estimation unit 513 estimates the propagation path variation using the downlink reference signal (CRS, UE specific RS) of the downlink pilot channel separated by the demultiplexing unit 511 and the known signal, and the propagation path variation. The channel compensation value for adjusting the amplitude and phase is output to the channel compensation unit 515 for PDSCH and the channel compensation unit 519 for PDCCH. The propagation path estimation unit 513 estimates propagation path fluctuations independently using the CRS and the UE specific RS, and outputs a propagation path compensation value. Or the propagation path estimation part 513 estimates the fluctuation | variation of a propagation path using CRS or UE specific RS based on the instruction | indication from the base station apparatus 3, and outputs a propagation path compensation value. In the base station device 3 and the RRH 4, for the physical channels (PDSCH, E-PDCCH) in which the mobile channel device 5 performs propagation channel compensation using the UE specific RS, the processing used for the UE specific RS is performed. A common precoding process is performed.
 PDSCH用の伝搬路補償部515は、多重分離部511が分離したPDSCHの信号の振幅および位相を、伝搬路推定部513から入力された伝搬路補償値に従って調整する。例えば、PDSCH用の伝搬路補償部515は、協調通信を用いて送信されたPDSCHの信号に対して伝搬路推定部513でUE specific RSに基づいて生成された伝搬路補償値に従って調整し、協調通信を用いずに送信されたPDSCHの信号に対して伝搬路推定部513でCRSに基づいて生成された伝搬路補償値に従って調整する。PDSCH用の伝搬路補償部515は、伝搬路を調整した信号を物理下りリンク共用チャネル復号部517のデータ復調部523に出力する。なお、PDSCH用の伝搬路補償部515は、協調通信を用いずに(プリコーディング処理が適用されずに)送信されたPDSCHの信号に対して伝搬路推定部513でUE specific RSに基づいて生成された伝搬路補償値に従って調整することもできる。 The PDSCH channel compensation unit 515 adjusts the amplitude and phase of the PDSCH signal separated by the demultiplexing unit 511 according to the channel compensation value input from the channel estimation unit 513. For example, the PDSCH propagation path compensation unit 515 adjusts the PDSCH signal transmitted using cooperative communication according to the propagation path compensation value generated based on the UE specific RS by the propagation path estimation unit 513. The channel estimation unit 513 adjusts the PDSCH signal transmitted without using communication according to the channel compensation value generated based on the CRS. PDSCH propagation path compensation section 515 outputs the signal whose propagation path has been adjusted to data demodulation section 523 of physical downlink shared channel decoding section 517. The PDSCH channel compensation unit 515 generates a PDSCH signal that is transmitted without using cooperative communication (without applying the precoding process) based on the UE specific RS by the channel channel estimation unit 513. It is also possible to adjust according to the propagation path compensation value.
 物理下りリンク共用チャネル復号部517は、制御部405からの指示に基づき、PDSCHの復調、復号を行ない、情報データを検出する。データ復調部523は、PDSCH用の伝搬路補償部515から入力されたPDSCHの信号の復調を行ない、復調したPDSCHの信号をターボ復号部525に出力する。この復調は、基地局装置3のデータ変調部221で用いられる変調方式に対応した復調である。ターボ復号部525は、データ復調部523から入力され、復調されたPDSCHの信号から情報データを復号し、制御部405を介して上位層に出力する。なお、PDSCHを用いて送信された、基地局装置3の無線リソース制御部103で生成された制御情報等も制御部405に出力され、制御部405を介して無線リソース制御部403にも出力される。なお、PDSCHに含まれるCRC符号も制御部405に出力される。 The physical downlink shared channel decoding unit 517 performs demodulation and decoding of the PDSCH based on an instruction from the control unit 405, and detects information data. The data demodulating unit 523 demodulates the PDSCH signal input from the PDSCH channel compensation unit 515 and outputs the demodulated PDSCH signal to the turbo decoding unit 525. This demodulation is demodulation corresponding to the modulation method used in the data modulation unit 221 of the base station apparatus 3. The turbo decoding unit 525 decodes information data from the demodulated PDSCH signal input from the data demodulation unit 523 and outputs the decoded information data to the upper layer via the control unit 405. Note that the control information generated by the radio resource control unit 103 of the base station apparatus 3 transmitted using the PDSCH is also output to the control unit 405, and is also output to the radio resource control unit 403 via the control unit 405. The Note that the CRC code included in the PDSCH is also output to the control unit 405.
 PDCCH用の伝搬路補償部519は、多重分離部511が分離したPDCCHの信号の振幅および位相を、伝搬路推定部513から入力された伝搬路補償値に従って調整する。例えば、PDCCH用の伝搬路補償部519は、PDCCHの信号に対して伝搬路推定部513でCRSに基づいて生成された伝搬路補償値に従って調整し、協調通信を用いて送信されたPDCCH(E-PDCCH)の信号に対して伝搬路推定部513でUE specific RSに基づいて生成された伝搬路補償値に従って調整する。PDCCH用の伝搬路補償部519は、調整した信号を物理下りリンク制御チャネル復号部521のQPSK復調部527に出力する。なお、PDCCH用の伝搬路補償部519は、協調通信を用いずに(プリコーディング処理が適用されずに)送信されたPDCCH(E-PDCCHを含む)の信号に対して伝搬路推定部513でUE specific RSに基づいて生成された伝搬路補償値に従って調整することもできる。 The PDCCH channel compensation unit 519 adjusts the amplitude and phase of the PDCCH signal separated by the demultiplexing unit 511 according to the channel compensation value input from the channel estimation unit 513. For example, the PDCCH channel compensation unit 519 adjusts the PDCCH signal according to the channel compensation value generated based on the CRS by the channel estimation unit 513 and transmits the PDCCH (E -PDCCH) is adjusted according to the propagation path compensation value generated based on the UE specific RS by the propagation path estimation unit 513. PDCCH propagation path compensation section 519 outputs the adjusted signal to QPSK demodulation section 527 of physical downlink control channel decoding section 521. Note that the channel compensation unit 519 for PDCCH uses a channel estimation unit 513 for a signal of PDCCH (including E-PDCCH) transmitted without using cooperative communication (without applying precoding processing). It can also adjust according to the propagation path compensation value produced | generated based on UE specific RS.
 物理下りリンク制御チャネル復号部521は、以下のように、PDCCH用の伝搬路補償部519から入力された信号を復調、復号し、制御データを検出する。QPSK復調部527は、PDCCHの信号に対してQPSK復調を行ない、ビタビデコーダ部529に出力する。ビタビデコーダ部529は、QPSK復調部527が復調した信号を復号し、復号したDCIを制御部405に出力する。ここで、この信号はビット単位で表現され、ビタビデコーダ部529は、入力ビットに対してビタビデコーディング処理を行なうビットの数を調整するためにレートデマッチングも行なう。 The physical downlink control channel decoding unit 521 demodulates and decodes the signal input from the PDCCH channel compensation unit 519 as described below, and detects control data. The QPSK demodulator 527 performs QPSK demodulation on the PDCCH signal and outputs the result to the Viterbi decoder 529. The Viterbi decoder unit 529 decodes the signal demodulated by the QPSK demodulator 527 and outputs the decoded DCI to the controller 405. Here, this signal is expressed in bit units, and the Viterbi decoder unit 529 also performs rate dematching in order to adjust the number of bits for which Viterbi decoding processing is performed on the input bits.
 移動局装置5は、複数の符号化率を想定して、PDCCHに対して自装置宛てのDCIを検出する処理を行なう。移動局装置5は、想定する符号化率毎に異なる復号処理をPDCCHの信号に対して行ない、DCIと一緒にPDCCHに付加されるCRC符号に誤りが検出されなかったPDCCHに含まれるDCIを取得する。このような処理をブラインドデコーディングと呼称する。なお、移動局装置5は、下りリンクシステム帯域の全てのリソースの信号に対してブラインドデコーディングを行なうのではなく、一部のリソースの信号に対してのみブラインドデコーディングを行なうようにしてもよい。ブラインドデコーディングが行なわれる一部のリソースの領域をSearch spaceと呼称する。また、移動局装置5は、符号化率毎に異なるリソースに対してブラインドデコーディングを行なうようにしてもよい。 The mobile station apparatus 5 performs a process of detecting DCI addressed to itself for the PDCCH, assuming a plurality of coding rates. The mobile station apparatus 5 performs a different decoding process on the PDCCH signal for each assumed coding rate, and acquires DCI included in the PDCCH in which no error was detected in the CRC code added to the PDCCH together with the DCI. To do. Such a process is called blind decoding. Note that the mobile station apparatus 5 may perform blind decoding only on signals of some resources instead of performing blind decoding on signals of all resources in the downlink system band. . An area of a part of the resource where blind decoding is performed is referred to as “Search space”. Further, the mobile station apparatus 5 may perform blind decoding on different resources for each coding rate.
 なお、制御部405は、ビタビデコーダ部529より入力されたDCIが誤りなく、自装置宛てのDCIかを判定し、誤りなく、自装置宛てのDCIと判定した場合、DCIに基づいて多重分離部511、データ復調部523、ターボ復号部525、および送信処理部407、を制御する。例えば、制御部405は、DCIが下りリンクアサインメントである場合、受信処理部401にPDSCHの信号を復号するように制御する。なお、PDCCHにおいてもPDSCHと同様にCRC符号が含まれており、制御部405はCRC符号を用いてPDCCHのDCIが誤っているか否かを判断する。 The control unit 405 determines whether the DCI input from the Viterbi decoder unit 529 is error-free and is addressed to the own device. If the control unit 405 determines that the DCI is addressed to the device without error, the demultiplexing unit is based on the DCI. 511, a data demodulating unit 523, a turbo decoding unit 525, and a transmission processing unit 407 are controlled. For example, when the DCI is a downlink assignment, the control unit 405 controls the reception processing unit 401 to decode the PDSCH signal. Note that the CRC code is also included in the PDCCH as in the PDSCH, and the control unit 405 determines whether or not the DCI of the PDCCH is incorrect using the CRC code.
 下りリンク受信品質測定部531は、下りリンクパイロットチャネルの下りリンク参照信号(CRS、CSI-RS)を用いてセルの下りリンクの受信品質(RSRP)を測定し、測定した下りリンクの受信品質情報を制御部405に出力する。また、下りリンク受信品質測定部531は、移動局装置5において基地局装置3、RRH4に通知するCQIの生成のための、瞬時的なチャネル品質の測定も行なう。下りリンク受信品質測定部531は、制御部405を介して基地局装置3、RRH4より、何れの種類の下りリンク参照信号(CRS、CSI-RS、CRSとCSI-RS)を用いてRSRPを測定するかを制御される。この制御は、パスロスの測定に用いる下りリンク参照信号を示す情報により制御される。例えば、下りリンク受信品質測定部531は、CRSを用いてRSRPの測定を行なう。例えば、下りリンク受信品質測定部531は、CSI-RSを用いてRSRPの測定を行なう。例えば、下りリンク受信品質測定部531は、CRSを用いてRSRPの測定を行ない、且つCSI-RSを用いてRSRPの測定を行なう。または、下りリンク受信品質測定部531は、CRSを用いてRSRPの測定を常時行ない、基地局装置3、RRH4より指示された場合、追加でCSI-RSを用いてRSRPの測定を行なう。下りリンク受信品質測定部531は、測定したRSRP等の情報を制御部405に出力する。 The downlink reception quality measurement unit 531 measures the downlink reception quality (RSRP) of the cell using the downlink reference signals (CRS, CSI-RS) of the downlink pilot channel, and the measured downlink reception quality information. Is output to the control unit 405. The downlink reception quality measurement unit 531 also performs instantaneous channel quality measurement for generating CQI to be notified to the base station apparatus 3 and the RRH 4 in the mobile station apparatus 5. The downlink reception quality measurement unit 531 measures RSRP using any kind of downlink reference signals (CRS, CSI-RS, CRS and CSI-RS) from the base station apparatus 3 and the RRH 4 via the control unit 405. To be controlled. This control is controlled by information indicating a downlink reference signal used for path loss measurement. For example, the downlink reception quality measurement unit 531 measures RSRP using CRS. For example, the downlink reception quality measurement unit 531 measures RSRP using CSI-RS. For example, the downlink reception quality measurement unit 531 measures RSRP using CRS and measures RSRP using CSI-RS. Alternatively, the downlink reception quality measurement unit 531 always performs RSRP measurement using CRS, and additionally performs RSRP measurement using CSI-RS when instructed by the base station apparatus 3 and RRH4. The downlink reception quality measurement unit 531 outputs information such as the measured RSRP to the control unit 405.
 <移動局装置5の送信処理部407>
 図6は、本発明の実施形態に係る移動局装置5の送信処理部407の構成を示す概略ブロック図である。この図に示すように、送信処理部407は、ターボ符号部611、データ変調部613、DFT部615、上りリンクパイロットチャネル処理部617、物理上りリンク制御チャネル処理部619、サブキャリアマッピング部621、IFFT部623、GI挿入部625、送信電力調整部627、ランダムアクセスチャネル処理部629、D/A部605、送信RF部607、および、送信アンテナ411を含んで構成される。送信処理部407は、情報データ、UCIに対して符号化、変調を行ない、PUSCH、PUCCHを用いて送信する信号を生成し、PUSCH、PUCCHの送信電力を調整する。送信処理部407は、PRACHを用いて送信する信号を生成し、PRACHの送信電力を調整する。送信処理部407は、DM RS、SRSを生成し、DM RS、SRSの送信電力を調整する。
<Transmission Processing Unit 407 of Mobile Station Device 5>
FIG. 6 is a schematic block diagram showing the configuration of the transmission processing unit 407 of the mobile station apparatus 5 according to the embodiment of the present invention. As shown in this figure, the transmission processing unit 407 includes a turbo coding unit 611, a data modulation unit 613, a DFT unit 615, an uplink pilot channel processing unit 617, a physical uplink control channel processing unit 619, a subcarrier mapping unit 621, An IFFT unit 623, a GI insertion unit 625, a transmission power adjustment unit 627, a random access channel processing unit 629, a D / A unit 605, a transmission RF unit 607, and a transmission antenna 411 are configured. The transmission processing unit 407 performs coding and modulation on information data and UCI, generates a signal to be transmitted using PUSCH and PUCCH, and adjusts transmission power of PUSCH and PUCCH. The transmission processing unit 407 generates a signal to be transmitted using the PRACH and adjusts the transmission power of the PRACH. The transmission processing unit 407 generates DM RSs and SRSs, and adjusts the transmission powers of the DM RSs and SRSs.
 ターボ符号部611は、入力された情報データを、制御部405から指示された符号化率で、データの誤り耐性を高めるためのターボ符号化を行ない、データ変調部613に出力する。データ変調部613は、ターボ符号部611が符号化した符号データを、制御部405から指示された変調方式、例えば、QPSK、16QAM、64QAMのような変調方式で変調し、変調シンボルの信号系列を生成する。データ変調部613は、生成した変調シンボルの信号系列を、DFT部615に出力する。DFT部615は、データ変調部613が出力した信号を離散フーリエ変換し、サブキャリアマッピング部621に出力する。 The turbo coding unit 611 performs turbo coding for increasing the error tolerance of the data at the coding rate instructed by the control unit 405, and outputs the input information data to the data modulation unit 613. The data modulation unit 613 modulates the code data encoded by the turbo coding unit 611 using a modulation method instructed by the control unit 405, for example, a modulation method such as QPSK, 16QAM, or 64QAM, and converts the signal sequence of modulation symbols. Generate. Data modulation section 613 outputs the generated modulation symbol signal sequence to DFT section 615. The DFT unit 615 performs discrete Fourier transform on the signal output from the data modulation unit 613 and outputs the result to the subcarrier mapping unit 621.
 物理上りリンク制御チャネル処理部619は、制御部405から入力されたUCIを伝送するためのベースバンド信号処理を行なう。物理上りリンク制御チャネル処理部619に入力されるUCIは、ACK/NACK、SR、CQIである。物理上りリンク制御チャネル処理部619は、ベースバンド信号処理を行ない、生成した信号をサブキャリアマッピング部621に出力する。物理上りリンク制御チャネル処理部619は、UCIの情報ビットを符号化して信号を生成する。 The physical uplink control channel processing unit 619 performs baseband signal processing for transmitting the UCI input from the control unit 405. The UCI input to the physical uplink control channel processing unit 619 is ACK / NACK, SR, and CQI. The physical uplink control channel processing unit 619 performs baseband signal processing and outputs the generated signal to the subcarrier mapping unit 621. The physical uplink control channel processing unit 619 encodes UCI information bits to generate a signal.
 また、物理上りリンク制御チャネル処理部619は、UCIから生成される信号に対して周波数領域の符号多重および/または時間領域の符号多重に関連する信号処理を行なう。物理上りリンク制御チャネル処理部619は、ACK/NACKの情報ビット、またはSRの情報ビット、またはCQIの情報ビットから生成されるPUCCHの信号に対して周波数領域の符号多重を実現するために制御部405から指示された符号系列を乗算する。物理上りリンク制御チャネル処理部619は、ACK/NACKの情報ビット、またはSRの情報ビットから生成されるPUCCHの信号に対して時間領域の符号多重を実現するために制御部405から指示された符号系列を乗算する。 Also, the physical uplink control channel processing unit 619 performs signal processing related to frequency domain code multiplexing and / or time domain code multiplexing on a signal generated from UCI. The physical uplink control channel processing unit 619 is a control unit for realizing frequency domain code multiplexing for PUCCH signals generated from ACK / NACK information bits, SR information bits, or CQI information bits. Multiply the code sequence indicated by 405. The physical uplink control channel processing unit 619 uses a code instructed by the control unit 405 to implement time-domain code multiplexing for PUCCH signals generated from ACK / NACK information bits or SR information bits. Multiply series.
 上りリンクパイロットチャネル処理部617は、基地局装置3において既知の信号であるSRS、DM RSを制御部405からの指示に基づき生成し、サブキャリアマッピング部621に出力する。 The uplink pilot channel processing unit 617 generates SRS and DM RS, which are known signals in the base station apparatus 3, based on an instruction from the control unit 405, and outputs the SRS and DM RS to the subcarrier mapping unit 621.
 サブキャリアマッピング部621は、上りリンクパイロットチャネル処理部617から入力された信号と、DFT部615から入力された信号と、物理上りリンク制御チャネル処理部619から入力された信号とを、制御部405からの指示に従ってサブキャリアに配置し、IFFT部623に出力する。 The subcarrier mapping unit 621 converts the signal input from the uplink pilot channel processing unit 617, the signal input from the DFT unit 615, and the signal input from the physical uplink control channel processing unit 619 into the control unit 405. Are arranged on subcarriers according to instructions from, and output to IFFT section 623.
 IFFT部623は、サブキャリアマッピング部621が出力した信号を高速逆フーリエ変換し、GI挿入部625に出力する。ここで、IFFT部623のポイント数はDFT部615のポイント数よりも多く、移動局装置5は、DFT部615、サブキャリアマッピング部621、IFFT部623を用いることにより、PUSCHを用いて送信する信号に対してDFT-Spread-OFDM方式の変調を行なう。GI挿入部625は、IFFT部623から入力された信号に、ガードインターバルを付加し、送信電力調整部627に出力する。 The IFFT unit 623 performs fast inverse Fourier transform on the signal output from the subcarrier mapping unit 621 and outputs the result to the GI insertion unit 625. Here, the number of points of IFFT section 623 is larger than the number of points of DFT section 615, and mobile station apparatus 5 transmits using PUSCH by using DFT section 615, subcarrier mapping section 621, and IFFT section 623. DFT-Spread-OFDM modulation is performed on the signal. GI insertion section 625 adds a guard interval to the signal input from IFFT section 623 and outputs the signal to transmission power adjustment section 627.
 ランダムアクセスチャネル処理部629は、制御部405から指示されたプリアンブル系列を用いて、PRACHで送信する信号を生成し、生成した信号を送信電力調整部627に出力する。 The random access channel processing unit 629 generates a signal to be transmitted by PRACH using the preamble sequence instructed by the control unit 405, and outputs the generated signal to the transmission power adjustment unit 627.
 送信電力調整部627は、GI挿入部625から入力された信号、またはランダムアクセスチャネル処理部629から入力された信号に対して、制御部405(送信電力設定部4053)からの制御信号に基づき送信電力を調整してD/A部605に出力する。なお、送信電力調整部627では、PUSCH、PUCCH、DM RS、SRS、PRACHの平均送信電力が上りリンクサブフレーム毎に制御される。 The transmission power adjustment unit 627 transmits a signal input from the GI insertion unit 625 or a signal input from the random access channel processing unit 629 based on a control signal from the control unit 405 (transmission power setting unit 4053). The power is adjusted and output to the D / A unit 605. The transmission power adjustment unit 627 controls the average transmission power of PUSCH, PUCCH, DM RS, SRS, and PRACH for each uplink subframe.
 D/A部605は、送信電力調整部627から入力されたベースバンドのディジタル信号をアナログ信号に変換し、送信RF部607に出力する。送信RF部607は、D/A部605から入力されたアナログ信号から、中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去する。次に、送信RF部607は、中間周波数の信号を高周波数の信号に変換(アップコンバート)し、余分な周波数成分を除去し、電力増幅し、送信アンテナ411を介して、基地局装置3に送信する。 The D / A unit 605 converts the baseband digital signal input from the transmission power adjustment unit 627 into an analog signal and outputs the analog signal to the transmission RF unit 607. The transmission RF unit 607 generates an in-phase component and a quadrature component of the intermediate frequency from the analog signal input from the D / A unit 605, and removes an extra frequency component for the intermediate frequency band. Next, the transmission RF unit 607 converts (up-converts) the intermediate frequency signal into a high frequency signal, removes excess frequency components, amplifies the power, and transmits to the base station apparatus 3 via the transmission antenna 411. Send.
 図7は、本発明の実施形態に係る移動局装置5のパワーヘッドルームの報告処理の始動(トリガー)を判断する処理の一例を示すフローチャートである。移動局装置5は、PUCCHとPUSCHの同時送信が構成されているか否かを判定する(ステップS101)。移動局装置5は、PUCCHとPUSCHの同時送信が構成されていると判定した場合(ステップS101:YES)、第一のパスロスと第二のパスロスに対してdl-PathlossChangeを用いてパワーヘッドルームの報告処理の始動を判断する(ステップS102)。次に、移動局装置5は、第一のパスロスの変化量、または第二のパスロスの変化量がdl-PathlossChangeの値より大きいか否かを判定する(ステップS103)。移動局装置5は、第一のパスロスの変化量、または第二のパスロスの変化量がdl-PathlossChangeの値より大きいと判定した場合(ステップS103:YES)、パワーヘッドルームの報告処理を始動すると判断する(ステップS104)。移動局装置5は、第一のパスロスの変化量、または第二のパスロスの変化量がdl-PathlossChangeの値より大きくないと判定した場合(ステップS103:NO)、パワーヘッドルームの報告処理を始動すると判断しない(ステップS105)。移動局装置5は、PUCCHとPUSCHの同時送信が構成されていないと判定した場合(ステップS101:NO)、第一のパスロスに対してdl-PathlossChangeを用いてパワーヘッドルームの報告処理の始動を判断する(ステップS106)。次に、移動局装置5は、第一のパスロスの変化量がdl-PathlossChangeの値より大きいか否かを判定する(ステップS107)。移動局装置5は、第一のパスロスの変化量がdl-PathlossChangeの値より大きいと判定した場合(ステップS107:YES)、パワーヘッドルームの報告処理を始動すると判断する(ステップS108)。移動局装置5は、第一のパスロスの変化量がdl-PathlossChangeの値より大きくないと判定した場合(ステップS107:NO)、パワーヘッドルームの報告処理を始動すると判断しない(ステップS109)。移動局装置5は、パワーヘッドルームの報告処理を始動すると判断した後、新規にリソースが割り当てられたPUSCHを用いてパワーヘッドルームの送信を行なう。 FIG. 7 is a flowchart showing an example of processing for determining the start (trigger) of the power headroom reporting process of the mobile station apparatus 5 according to the embodiment of the present invention. The mobile station device 5 determines whether or not simultaneous transmission of PUCCH and PUSCH is configured (step S101). If it is determined that simultaneous transmission of PUCCH and PUSCH is configured (step S101: YES), the mobile station device 5 uses dl-PathlossChange for the first path loss and the second path loss. The start of the reporting process is determined (step S102). Next, the mobile station apparatus 5 determines whether or not the change amount of the first path loss or the change amount of the second path loss is larger than the value of dl-PathlossChange (step S103). When the mobile station apparatus 5 determines that the first path loss change amount or the second path loss change amount is greater than the value of dl-PathlossChange (step S103: YES), the mobile station device 5 starts the power headroom reporting process. Judgment is made (step S104). If the mobile station apparatus 5 determines that the change amount of the first path loss or the change amount of the second path loss is not larger than the value of dl-PathlossChange (step S103: NO), the mobile station device 5 starts the power headroom reporting process. Then, it is not determined (step S105). If it is determined that simultaneous transmission of PUCCH and PUSCH is not configured (step S101: NO), the mobile station device 5 starts power headroom reporting processing using dl-PathlossChange for the first path loss. Judgment is made (step S106). Next, the mobile station apparatus 5 determines whether or not the amount of change in the first path loss is larger than the value of dl-PathlossChange (step S107). If the mobile station apparatus 5 determines that the amount of change in the first path loss is greater than the value of dl-PathlossChange (step S107: YES), the mobile station apparatus 5 determines to start the power headroom reporting process (step S108). If the mobile station apparatus 5 determines that the amount of change in the first path loss is not greater than the value of dl-PathlossChange (step S107: NO), the mobile station apparatus 5 does not determine to start the power headroom reporting process (step S109). After determining that the power headroom reporting process is started, the mobile station apparatus 5 transmits the power headroom using the PUSCH to which the resource is newly allocated.
 以上のように、本発明の実施形態では、移動局装置5が、CRS(第一の参照信号)とCSI-RS(第二の参照信号)とに基づき、複数のパスロスの計算を行ない、複数のパスロスの内、何れか1つのパスロスを用いてPUSCHに対する送信電力を設定し、複数のパスロスの内、何れか1つのパスロスを用いてPUCCHに対する送信電力を設定し、PUSCHのために割り当てられたリソースの帯域幅と、PUSCHの送信電力の設定に用いられたパスロスとを用いて第一のタイプのレポートを生成し、PUSCHのために割り当てられたリソースの帯域幅と、PUSCHの送信電力の設定に用いられたパスロスと、PUCCHの送信電力の設定に用いられたパスロスとを用いて第二のタイプのレポートを生成し、PUCCHとPUSCHの同時送信が構成されていない場合は第一のパスロス(PUSCHの送信電力の設定に用いられたパスロス)の変化量がdl-PathlossChangeより大きい場合にパワーヘッドルームの報告処理を始動すると判断し、PUCCHとPUSCHの同時送信が構成されている場合は第一のパスロスの変化量、または第二のパスロス(PUCCHの送信電力の設定に用いられたパスロス)の変化量がdl-PathlossChangeより大きい場合にパワーヘッドルームの報告処理を始動すると判断することにより、PUCCHとPUSCHの同時送信が行なわれる場合に基地局装置3がPUSCHに対する送信電力の制御の判断に用いることができる情報が移動局装置5から基地局装置3に通知される場合に、PUSCH、またはPUCCHの送信電力値の計算に用いられるパスロスの変化量が大きくなった場合に早急にPUCCHとPUSCHの同時送信に対するパワーヘッドルームに関する情報が基地局装置3、RRH4に通知されるので、基地局装置3、RRH4は移動局装置5に対して上りリンクのスケジューリング(PUSCHのリソース割り当て、変調方式の決定)を効率良く行なうことができつつ、PUCCHとPUSCHの同時送信が行なわれず、PUCCHとPUSCHの同時送信に対するパワーヘッドルームに関する情報が不必要な場合はPUCCHに対しては考慮せず、PUSCHの送信電力値の計算に用いられるパスロスの変化量が大きくなった場合に早急にPUSCHの送信に対するパワーヘッドルームに関する情報が基地局装置3、RRH4に通知されるので、パワーヘッドルームレポーティングに関連するシグナリングのオーバヘッドの増大を防ぎつつ、基地局装置3、RRH4は移動局装置5に対して上りリンクのスケジューリング(PUSCHのリソース割り当て、変調方式の決定)を効率良く行なうことができる。 As described above, in the embodiment of the present invention, the mobile station apparatus 5 calculates a plurality of path losses based on the CRS (first reference signal) and the CSI-RS (second reference signal). The transmission power for the PUSCH is set using any one of the path losses, and the transmission power for the PUCCH is set using any one of the plurality of path losses, and assigned for the PUSCH. A first type of report is generated using the resource bandwidth and the path loss used to set the PUSCH transmission power, and the resource bandwidth allocated for the PUSCH and the PUSCH transmission power setting. A second type of report is generated using the path loss used for the PUCCH and the path loss used for setting the transmission power of the PUCCH, and the PUCCH and PU When simultaneous transmission of CH is not configured, it is determined that the power headroom reporting process is started when the amount of change in the first path loss (path loss used for setting the PUSCH transmission power) is larger than dl-PathlossChange. When the simultaneous transmission of PUCCH and PUSCH is configured, the change amount of the first path loss or the change amount of the second path loss (path loss used for setting the transmission power of the PUCCH) is larger than dl-PathlossChange. By determining that the power headroom reporting process is started, information that can be used by the base station apparatus 3 to determine transmission power control for the PUSCH when simultaneous transmission of PUCCH and PUSCH is performed is the mobile station apparatus 5. When notified to the base station apparatus 3 from the PUSCH or PUC When the amount of change in path loss used for calculating the transmission power value of H becomes large, information on the power headroom for simultaneous transmission of PUCCH and PUSCH is immediately notified to the base station apparatus 3 and RRH4. 3. RRH 4 can efficiently perform uplink scheduling (PUSCH resource allocation, modulation scheme determination) with respect to mobile station apparatus 5, but PUCCH and PUSCH are not simultaneously transmitted, and PUCCH and PUSCH are simultaneously transmitted. When information on power headroom for transmission is unnecessary, PUCCH is not considered, and when the amount of change in path loss used for calculation of PUSCH transmission power value becomes large, the power head for PUSCH transmission immediately Information on the room is notified to the base station device 3 and the RRH 4 Therefore, the base station apparatus 3 and RRH 4 efficiently perform uplink scheduling (PUSCH resource allocation and modulation scheme determination) for the mobile station apparatus 5 while preventing an increase in signaling overhead related to power headroom reporting. Can be done.
 また、移動局装置5とは、移動する端末に限らず、固定端末に移動局装置5の機能を実装することなどにより本発明を実現しても良い。 Further, the mobile station device 5 is not limited to a mobile terminal, and the present invention may be realized by implementing the function of the mobile station device 5 in a fixed terminal.
 以上説明した本発明の特徴的な手段は、集積回路に機能を実装し、制御することによっても実現することができる。すなわち、本発明の集積回路は、基地局装置3、RRH4と通信を行なう移動局装置5に実装される集積回路であって、あるセルにおいて基地局装置3、RRH4から信号を受信する第一の受信処理部と、前記第一の受信処理部で受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうパスロス計算部と、前記パスロス計算部で計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する送信電力設定部と、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するパワーヘッドルーム生成部と、前記パワーヘッドルーム生成部で生成された前記パワーヘッドルームの送信を制御するパワーヘッドルーム制御部と、を有し、前記パワーヘッドルーム制御部は、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする。 The characteristic means of the present invention described above can also be realized by mounting and controlling functions in an integrated circuit. That is, the integrated circuit of the present invention is an integrated circuit mounted on the mobile station apparatus 5 that communicates with the base station apparatus 3 and the RRH 4, and receives a signal from the base station apparatus 3 and the RRH 4 in a certain cell. Calculated by a reception processing unit, a path loss calculation unit that calculates a plurality of path losses based on the first reference signal and the second reference signal received by the first reception processing unit, and the path loss calculation unit. Transmission for setting a transmission power for a physical uplink control channel using any one of the path losses, and setting a transmission power for a physical uplink shared channel using any one of the path losses Used to set the power setting unit, the bandwidth of the resources allocated for the physical uplink shared channel, and the transmission power of the physical uplink shared channel A first type of report is generated as a power headroom, which is information related to a room for transmission power for transmission of only the physical uplink shared channel, for the physical uplink shared channel. Bandwidth of the resource allocated to the first path loss used to set the transmission power of the physical uplink shared channel, and second path loss used to set the transmission power of the physical uplink control channel And a power headroom generating unit that generates a second type of report as a power headroom that is information on the room for transmission power for simultaneous transmission of the physical uplink shared channel and the physical uplink control channel, and the power A parameter for controlling transmission of the power headroom generated by the headroom generation unit. A headroom controller, and the power headroom controller changes the first path loss when the mobile station device is not configured to simultaneously transmit a physical uplink shared channel and a physical uplink control channel. When the amount is larger than the value of dl-PathlossChange, it is determined that the power headroom reporting process is started, and when the mobile station apparatus is configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel, When the amount of change in the first path loss or the amount of change in the second path loss is greater than the value of dl-PathlossChange, it is determined that the power headroom reporting process is started.
 このように、本発明の集積回路を用いた移動局装置5は、CRS(第一の参照信号)とCSI-RS(第二の参照信号)とに基づき、複数のパスロスの計算を行ない、複数のパスロスの内、何れか1つのパスロスを用いてPUSCHに対する送信電力を設定し、複数のパスロスの内、何れか1つのパスロスを用いてPUCCHに対する送信電力を設定し、PUSCHのために割り当てられたリソースの帯域幅と、PUSCHの送信電力の設定に用いられたパスロスとを用いて第一のタイプのレポートを生成し、PUSCHのために割り当てられたリソースの帯域幅と、PUSCHの送信電力の設定に用いられたパスロスと、PUCCHの送信電力の設定に用いられたパスロスとを用いて第二のタイプのレポートを生成し、PUCCHとPUSCHの同時送信が構成されていない場合は第一のパスロス(PUSCHの送信電力の設定に用いられたパスロス)の変化量がdl-PathlossChangeより大きい場合にパワーヘッドルームの報告処理を始動すると判断し、PUCCHとPUSCHの同時送信が構成されている場合は第一のパスロスの変化量、または第二のパスロス(PUCCHの送信電力の設定に用いられたパスロス)の変化量がdl-PathlossChangeより大きい場合にパワーヘッドルームの報告処理を始動すると判断することにより、PUCCHとPUSCHの同時送信が行なわれる場合に基地局装置3がPUSCHに対する送信電力の制御の判断に用いることができる情報が移動局装置5から基地局装置3に通知される場合に、PUSCH、またはPUCCHの送信電力値の計算に用いられるパスロスの変化量が大きくなった場合に早急にPUCCHとPUSCHの同時送信に対するパワーヘッドルームに関する情報が基地局装置3、RRH4に通知されるので、基地局装置3、RRH4は移動局装置5に対して上りリンクのスケジューリング(PUSCHのリソース割り当て、変調方式の決定)を効率良く行なうことができつつ、PUCCHとPUSCHの同時送信が行なわれず、PUCCHとPUSCHの同時送信に対するパワーヘッドルームに関する情報が不必要な場合はPUCCHに対しては考慮せず、PUSCHの送信電力値の計算に用いられるパスロスの変化量が大きくなった場合に早急にPUSCHの送信に対するパワーヘッドルームに関する情報が基地局装置3、RRH4に通知されるので、パワーヘッドルームレポーティングに関連するシグナリングのオーバヘッドの増大を防ぎつつ、基地局装置3、RRH4は移動局装置5に対して上りリンクのスケジューリング(PUSCHのリソース割り当て、変調方式の決定)を効率良く行なうことができる。 As described above, the mobile station device 5 using the integrated circuit of the present invention calculates a plurality of path losses based on the CRS (first reference signal) and the CSI-RS (second reference signal). The transmission power for the PUSCH is set using any one of the path losses, and the transmission power for the PUCCH is set using any one of the plurality of path losses, and assigned for the PUSCH. A first type of report is generated using the resource bandwidth and the path loss used to set the PUSCH transmission power, and the resource bandwidth allocated for the PUSCH and the PUSCH transmission power setting. A second type of report is generated using the path loss used for the PUCCH and the path loss used for setting the transmission power of the PUCCH, and the PUCCH and PU When simultaneous transmission of CH is not configured, it is determined that the power headroom reporting process is started when the amount of change in the first path loss (path loss used for setting the PUSCH transmission power) is larger than dl-PathlossChange. When the simultaneous transmission of PUCCH and PUSCH is configured, the change amount of the first path loss or the change amount of the second path loss (path loss used for setting the transmission power of the PUCCH) is larger than dl-PathlossChange. By determining that the power headroom reporting process is started, information that can be used by the base station apparatus 3 to determine transmission power control for the PUSCH when simultaneous transmission of PUCCH and PUSCH is performed is the mobile station apparatus 5. When notified to the base station apparatus 3 from the PUSCH or PUC When the amount of change in path loss used for calculating the transmission power value of H becomes large, information on the power headroom for simultaneous transmission of PUCCH and PUSCH is immediately notified to the base station apparatus 3 and RRH4. 3. RRH 4 can efficiently perform uplink scheduling (PUSCH resource allocation, modulation scheme determination) with respect to mobile station apparatus 5, but PUCCH and PUSCH are not simultaneously transmitted, and PUCCH and PUSCH are simultaneously transmitted. When information on power headroom for transmission is unnecessary, PUCCH is not considered, and when the amount of change in path loss used for calculation of PUSCH transmission power value becomes large, the power head for PUSCH transmission immediately Information on the room is notified to the base station device 3 and the RRH 4 Therefore, the base station apparatus 3 and RRH 4 efficiently perform uplink scheduling (PUSCH resource allocation and modulation scheme determination) for the mobile station apparatus 5 while preventing an increase in signaling overhead related to power headroom reporting. Can be done.
 (第2の実施形態)
 本発明の第2の実施形態は、第1の実施形態と比較して、複数のパスロスの測定に用いられる下りリンク参照信号が異なる。第2の実施形態では、複数のパスロスのそれぞれは、CSI-RSに基づき計算されるが、それぞれのパスロスは異なるアンテナポートに対応するCSI-RS(第一の参照信号、第二の参照信号)に基づき計算される。移動局装置5は、基地局装置3、RRH4から、それぞれのパスロスの測定に用いられるCSI-RSのアンテナポート(複数のアンテナポートを含む)が指定される。一部のCSI-RSは基地局装置3のアンテナポートからのみ送信され、一部のCSI-RSはRRH4のみから送信される。基地局装置3、RRH4の指定により、移動局装置5では、一方のパスロスは基地局装置3のアンテナポートからのみ送信されるCSI-RSに基づき計算され、もう一方のパスロスはRRH4のアンテナポートからのみ送信されるCSI-RSに基づき計算される。
(Second Embodiment)
The second embodiment of the present invention differs from the first embodiment in downlink reference signals used for measuring a plurality of path losses. In the second embodiment, each of the plurality of path losses is calculated based on the CSI-RS, but each path loss is a CSI-RS corresponding to a different antenna port (first reference signal, second reference signal). Calculated based on The mobile station apparatus 5 is designated by the base station apparatus 3 and RRH 4 as CSI-RS antenna ports (including a plurality of antenna ports) used for measuring the path loss. Some CSI-RSs are transmitted only from the antenna port of the base station apparatus 3, and some CSI-RSs are transmitted only from the RRH 4. By specifying the base station apparatus 3 and RRH4, in the mobile station apparatus 5, one path loss is calculated based on CSI-RS transmitted only from the antenna port of the base station apparatus 3, and the other path loss is calculated from the antenna port of RRH4. Only based on CSI-RS transmitted only.
 移動局装置5は、異なるアンテナポートのCSI-RSに基づき計算したパスロスの何れか一方を用いてPUSCHの所望の送信電力の設定を行なう。例えば、PUSCHの受信先が基地局装置3である場合は、基地局装置3のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUSCHの所望の送信電力の設定に用いられ、PUSCHの受信先がRRH4である場合は、RRH4のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUSCHの所望の送信電力の設定に用いられる。移動局装置5は、異なるアンテナポートに対応するCSI-RSに基づき計算された複数のパスロスの内、何れかのパスロスがPUSCHの送信電力制御に対して設定される。移動局装置5は、異なるアンテナポートに対応するCSI-RSの何れかが、PUSCHの送信電力制御に用いるパスロスのパスロスリファレンスに設定される。 The mobile station apparatus 5 sets the desired transmission power of the PUSCH using any one of the path losses calculated based on the CSI-RS of different antenna ports. For example, when the PUSCH receiving destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for setting the desired transmission power of the PUSCH. When the destination of PUSCH is RRH4, the path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for setting the desired transmission power of PUSCH. In the mobile station apparatus 5, any one of the path losses calculated based on the CSI-RS corresponding to different antenna ports is set for transmission power control of PUSCH. In the mobile station apparatus 5, one of CSI-RSs corresponding to different antenna ports is set as a path loss reference for path loss used for PUSCH transmission power control.
 移動局装置5は、異なるアンテナポートのCSI-RSに基づき計算したパスロスの何れか一方を用いてPUCCHの所望の送信電力の設定を行なう。例えば、PUCCHの受信先が基地局装置3である場合は、基地局装置3のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUCCHに用いられ、PUCCHの受信先がRRH4である場合は、RRH4のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUCCHに用いられる。移動局装置5は、異なるアンテナポートに対応するCSI-RSに基づき計算された複数のパスロスの内、何れかのパスロスがPUCCHの送信電力制御に対して設定される。移動局装置5は、異なるアンテナポートに対応するCSI-RSの何れかが、PUCCHの送信電力制御に用いるパスロスのパスロスリファレンスに設定される。 The mobile station apparatus 5 sets the desired transmission power of the PUCCH using any one of the path losses calculated based on the CSI-RS of different antenna ports. For example, when the PUCCH reception destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for the PUCCH, and the PUCCH reception destination is RRH4. In some cases, path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for PUCCH. In the mobile station apparatus 5, one of path losses calculated based on CSI-RSs corresponding to different antenna ports is set for PUCCH transmission power control. In the mobile station apparatus 5, one of CSI-RSs corresponding to different antenna ports is set as a path loss reference for path loss used for transmission power control of PUCCH.
 例えば、移動局装置5は、PUSCHの送信電力制御に用いるパスロス(第一のパスロス)のパスロスリファレンスとして、あるアンテナポートに対応するCSI-RSが設定される。例えば、移動局装置5は、PUCCHの送信電力制御に用いるパスロス(第二のパスロス)のパスロスリファレンスとして、あるアンテナポートに対応するCSI-RSが設定される。例えば、第一のパスロスの測定に用いられるCSI-RSと、第二のパスロスの測定に用いられるCSI-RSとは、異なるアンテナポートに対応する。このような場合にも、移動局装置5は、PUCCHとPUSCHの同時送信が構成されている場合は、第一のパスロスと第二のパスロスとに対してdl-PathlossChangeを用いてパワーヘッドルームの報告処理のトリガーを判断する処理を行ない、PUCCHとPUSCHの同時送信が構成されていない場合は、第一のパスロスに対してdl-PathlossChangeを用いてパワーヘッドルームの報告処理のトリガーを判断する処理を行なう。 For example, in the mobile station apparatus 5, a CSI-RS corresponding to a certain antenna port is set as a path loss reference of a path loss (first path loss) used for PUSCH transmission power control. For example, the mobile station apparatus 5 sets a CSI-RS corresponding to a certain antenna port as a path loss reference of a path loss (second path loss) used for transmission power control of PUCCH. For example, the CSI-RS used for the first path loss measurement and the CSI-RS used for the second path loss measurement correspond to different antenna ports. Even in such a case, when simultaneous transmission of PUCCH and PUSCH is configured, the mobile station device 5 uses dl-PathlossChange for the first path loss and the second path loss. Processing to determine the trigger of the reporting process, and when simultaneous transmission of PUCCH and PUSCH is not configured, a process to determine the trigger of the power headroom reporting process using dl-PathlossChange for the first path loss To do.
 第2の実施形態では、第一のパスロスと第二のパスロスのそれぞれのパスロスが異なるアンテナポートに対応するCSI-RSに基づき計算される場合(それぞれのパスロスリファレンスが異なるアンテナポートに対応するCSI-RSの場合)においても、移動局装置5が、PUCCHとPUSCHの同時送信の構成(PUCCHとPUSCHの同時送信を行なう、PUCCHとPUSCHの同時送信を行なわない)に応じてdl-PathlossChangeを用いてパワーヘッドルームの報告処理のトリガーを判断する処理を適用するパスロス(第一のパスロス、または第一のパスロスと第二のパスロス)を制御することにより、第1の実施形態と同様の効果を得ることができる。パワーヘッドルームの通知が有効な場合にはパワーヘッドルームの通知が即座に行なわれて上りリンクのスケジューリングを効率良く行なうことができ、且つシグナリングオーバヘッドの増大を防ぐことができる。 In the second embodiment, when the path loss of each of the first path loss and the second path loss is calculated based on the CSI-RS corresponding to different antenna ports (CSI− corresponding to each antenna port corresponding to different antenna ports). Also in the case of RS), the mobile station apparatus 5 uses dl-PathlossChange according to the configuration of simultaneous transmission of PUCCH and PUSCH (simultaneous transmission of PUCCH and PUSCH is performed, but not simultaneous transmission of PUCCH and PUSCH). By controlling the path loss (the first path loss, or the first path loss and the second path loss) to which the process for determining the trigger of the power headroom reporting process is controlled, the same effect as in the first embodiment is obtained. be able to. When the notification of power headroom is valid, the notification of power headroom is immediately performed so that uplink scheduling can be performed efficiently and an increase in signaling overhead can be prevented.
 なお、実質的に異なるアンテナポートに対応するCSI-RSは、1つのCSI-RSの構成の中のアンテナポートを用いた、明示的に番号の異なるアンテナポートの表現により移動局装置5に示されるのではなく、異なるCSI-RSのコンフィギュレーションにより移動局装置5に示されてもよい。例えば、複数のCSI-RSの構成(CSI-RS-Config-r10)が、移動局装置5に通知される。各CSI-RSの構成において、CSI-RSに設定されるアンテナポートの数が同じでもよいし、異なってもよい。つまり、各CSI-RSの構成におけるアンテナポートの番号は同じ番号が用いられてもよい。例えば、各CSI-RSの構成において、CSI-RSが配置される下りリンクサブフレームが異なる。例えば、各CSI-RSの構成において、CSI-RSが配置される周波数領域が異なる。 Note that CSI-RSs corresponding to substantially different antenna ports are indicated to the mobile station apparatus 5 by expressing the antenna ports with different numbers explicitly using the antenna ports in one CSI-RS configuration. Instead, the mobile station apparatus 5 may be indicated by different CSI-RS configurations. For example, the mobile station apparatus 5 is notified of a plurality of CSI-RS configurations (CSI-RS-Config-r10). In each CSI-RS configuration, the number of antenna ports set in the CSI-RS may be the same or different. That is, the same number may be used as the antenna port number in each CSI-RS configuration. For example, in each CSI-RS configuration, the downlink subframe in which the CSI-RS is arranged is different. For example, in the configuration of each CSI-RS, the frequency region where the CSI-RS is arranged is different.
 例えば、あるCSI-RSの構成は、実質的には、基地局装置3のアンテナポートからのみ送信されるCSI-RSの構成である。例えば、あるCSI-RSの構成は、実質的には、RRH4のアンテナポートからのみ送信されるCSI-RSの構成である。移動局装置5に対しては、複数のCSI-RSの構成が通知されるだけで、明示的に基地局装置3のアンテナポートからのみ送信されるCSI-RSの構成なのか、RRH4のアンテナポートからのみ送信されるCSI-RSの構成なのかは通知されなくてもよい。 For example, a certain CSI-RS configuration is substantially a CSI-RS configuration that is transmitted only from the antenna port of the base station apparatus 3. For example, a certain CSI-RS configuration is substantially a CSI-RS configuration transmitted only from the antenna port of RRH4. The mobile station apparatus 5 is only notified of the configuration of a plurality of CSI-RSs, and is explicitly configured to transmit only from the antenna port of the base station apparatus 3, or the antenna port of the RRH4. It is not necessary to notify whether the configuration of the CSI-RS is transmitted only from.
 移動局装置5は、異なる構成のCSI-RSに基づき計算したパスロスの何れか一方を用いてPUSCHの所望の送信電力の設定を行なう。例えば、PUSCHの受信先が基地局装置3である場合は、基地局装置3のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUSCHに用いられ、PUSCHの受信先がRRH4である場合は、RRH4のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUSCHに用いられる。移動局装置5は、異なる構成のCSI-RSに基づき計算された複数のパスロスの内、何れかのパスロスがPUSCHの送信電力制御に対して設定される。移動局装置5は、異なる構成のCSI-RSの何れかが、PUSCHの送信電力制御に用いるパスロスのパスロスリファレンスに設定される。なお、移動局装置5においては、何れの構成のCSI-RSに基づき計算したパスロスをPUSCHの所望の送信電力の設定に用いるかが基地局装置3、RRH4により指示されるだけで、PUSCHの受信先が基地局装置3なのか、RRH4なのかが明示的に通知されなくてもよい。 The mobile station apparatus 5 sets the desired transmission power of the PUSCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the PUSCH receiving destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for the PUSCH, and the PUSCH receiving destination is RRH4. In some cases, the path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for PUSCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUSCH transmission power control. In the mobile station apparatus 5, one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUSCH transmission power control. Note that the mobile station apparatus 5 receives the PUSCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUSCH. Whether the destination is the base station apparatus 3 or RRH4 does not have to be explicitly notified.
 移動局装置5は、異なる構成のCSI-RSに基づき計算したパスロスの何れか一方を用いてPUCCHの所望の送信電力の設定を行なう。例えば、PUCCHの受信先が基地局装置3である場合は、基地局装置3のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUCCHに用いられ、PUCCHの受信先がRRH4である場合は、RRH4のアンテナポートのみから送信されるCSI-RSに基づき計算されたパスロスがPUCCHに用いられる。移動局装置5は、異なる構成のCSI-RSに基づき計算された複数のパスロスの内、何れかのパスロスがPUCCHの送信電力制御に対して設定される。移動局装置5は、異なる構成のCSI-RSの何れかが、PUCCHの送信電力制御に用いるパスロスのパスロスリファレンスに設定される。なお、移動局装置5においては、何れの構成のCSI-RSに基づき計算したパスロスをPUCCHの所望の送信電力の設定に用いるかが基地局装置3、RRH4により指示されるだけで、PUCCHの受信先が基地局装置3なのか、RRH4なのかが明示的に通知されなくてもよい。 The mobile station apparatus 5 sets the desired transmission power of the PUCCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the PUCCH reception destination is the base station apparatus 3, the path loss calculated based on the CSI-RS transmitted only from the antenna port of the base station apparatus 3 is used for the PUCCH, and the PUCCH reception destination is RRH4. In some cases, path loss calculated based on CSI-RS transmitted only from the antenna port of RRH4 is used for PUCCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUCCH transmission power control. In the mobile station apparatus 5, one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUCCH transmission power control. Note that the mobile station apparatus 5 receives the PUCCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUCCH. Whether the destination is the base station apparatus 3 or RRH4 does not have to be explicitly notified.
 例えば、移動局装置5は、PUSCHの送信電力制御に用いるパスロス(第一のパスロス)のパスロスリファレンスとして、第一のCSI-RSの構成のCSI-RSが設定される。例えば、移動局装置5は、PUCCHの送信電力制御に用いるパスロス(第二のパスロス)のパスロスリファレンスとして、第二のCSI-RSの構成のCSI-RSが設定される。例えば、第一のパスロスの測定に用いられるCSI-RSの構成と、第二のパスロスの測定に用いられるCSI-RSの構成とは、異なるCSI-RSの構成である。このような場合にも、移動局装置5は、PUCCHとPUSCHの同時送信が構成されている場合は、第一のパスロスと第二のパスロスとに対してdl-PathlossChangeを用いてパワーヘッドルームの報告処理のトリガーを判断する処理を行ない、PUCCHとPUSCHの同時送信が構成されていない場合は、第一のパスロスに対してdl-PathlossChangeを用いてパワーヘッドルームの報告処理のトリガーを判断する処理を行なう。 For example, in the mobile station apparatus 5, the CSI-RS having the first CSI-RS configuration is set as the path loss reference of the path loss (first path loss) used for PUSCH transmission power control. For example, in the mobile station apparatus 5, the CSI-RS having the second CSI-RS configuration is set as a path loss reference of a path loss (second path loss) used for PUCCH transmission power control. For example, the CSI-RS configuration used for the first path loss measurement and the CSI-RS configuration used for the second path loss measurement are different CSI-RS configurations. Even in such a case, when simultaneous transmission of PUCCH and PUSCH is configured, the mobile station device 5 uses dl-PathlossChange for the first path loss and the second path loss. Processing to determine the trigger of the reporting process, and when simultaneous transmission of PUCCH and PUSCH is not configured, a process to determine the trigger of the power headroom reporting process using dl-PathlossChange for the first path loss To do.
 第一のパスロスと第二のパスロスのそれぞれのパスロスが異なる構成のCSI-RSに基づき計算される場合においても、PUCCHとPUSCHの同時送信の構成(PUCCHとPUSCHの同時送信を行なう、PUCCHとPUSCHの同時送信を行なわない)に応じてdl-PathlossChangeを用いてパワーヘッドルームの報告処理のトリガーを判断する処理を適用するパスロス(第一のパスロス、または第一のパスロスと第二のパスロス)を制御することにより、第1の実施形態と同様の効果を得ることができる。パワーヘッドルームの通知が有効な場合にはパワーヘッドルームの通知が即座に行なわれて上りリンクのスケジューリングを効率良く行なうことができ、且つシグナリングオーバヘッドの増大を防ぐことができる。 Even when each path loss of the first path loss and the second path loss is calculated based on CSI-RS having different configurations, a configuration of simultaneous transmission of PUCCH and PUSCH (PUCCH and PUSCH that perform simultaneous transmission of PUCCH and PUSCH) The path loss (the first path loss, or the first path loss and the second path loss) to which the process of determining the trigger of the power headroom reporting process using dl-PathlossChange is applied. By controlling, the same effect as in the first embodiment can be obtained. When the notification of power headroom is valid, the notification of power headroom is immediately performed so that uplink scheduling can be performed efficiently and an increase in signaling overhead can be prevented.
 また、基地局装置3とRRH4とで異なる周波数帯域が用いられ、異なるRRH4間で協調通信が用いられてもよい。例えば、移動局装置5は、それぞれのRRH4で信号が受信されるのに適した送信電力で上りリンクの信号を送信する。 Further, different frequency bands may be used between the base station apparatus 3 and the RRH 4, and cooperative communication may be used between different RRHs 4. For example, the mobile station apparatus 5 transmits an uplink signal with transmission power suitable for receiving a signal by each RRH 4.
 また、基地局装置3により構成されるセルとRRH4により構成されるセルとが異なる周波数帯域である場合、RRH4から構成されるセルにおいて、CRSは構成されず、CSI-RSしか構成されなくてもよい。例えば、この場合、移動局装置5は、RRH4により構成されるセルに対して、CRSに基づきパスロスを計算し、計算したパスロスを用いて上りリンクの送信電力値を計算する処理を初期状態(デフォルト状態)とするのではなく、CSI-RSに基づきパスロスを計算し、計算したパスロスを用いて上りリンクの送信電力値を計算する処理を初期状態(デフォルト状態)としてもよい。基地局装置5が、移動局装置5に対して協調通信に用いるRRH4の追加が必要と判断した場合、そのRRH4により構成されるセルに対するCSI-RSの構成を移動局装置5に通知し、移動局装置5のパスロスリファレンスの追加変更(再設定、再構成)を行なう。 In addition, when the cell configured by the base station apparatus 3 and the cell configured by the RRH 4 have different frequency bands, the CRS is not configured in the cell configured by the RRH 4 and only the CSI-RS is configured. Good. For example, in this case, the mobile station apparatus 5 calculates a path loss based on the CRS for the cell configured by the RRH 4, and performs an initial state (default) using the calculated path loss to calculate an uplink transmission power value. In this case, a process of calculating a path loss based on CSI-RS and calculating an uplink transmission power value using the calculated path loss may be set as an initial state (default state). When the base station device 5 determines that the mobile station device 5 needs to add RRH4 used for cooperative communication, the base station device 5 notifies the mobile station device 5 of the configuration of the CSI-RS for the cell configured by the RRH4, and moves The path loss reference of the station device 5 is added or changed (reset or reconfigured).
 異なるRRH4のそれぞれに異なるCSI-RSの構成が適用されてもよい。例えば、異なるRRH4の異なるCSI-RSの構成において、CSI-RSが配置される下りリンクサブフレームが異なってもよい。例えば、異なるRRH4の異なるCSI-RSの構成において、CSI-RSが配置される周波数領域が異なってもよい。例えば、異なるRRH4の異なるCSI-RSの構成において、CSI-RSのアンテナポートの数が異なってもよい。協調通信が適用される、それぞれのRRH4に対するCSI-RSの構成に関する情報がRRCシグナリングを用いて、基地局装置3から移動局装置5に通知される。移動局装置5は、通知されたCSI-RSの構成に基づき、それぞれのRRH4が送信するCSI-RSを受信して、それぞれのRRH4に対するパスロスを測定し、測定したパスロスを用いて上りリンクの信号の送信電力を設定する。これにより、移動局装置5は、信号の受信先である、それぞれのRRH4に対して適した送信電力を設定することができる。このように、信号の受信先に適した送信電力を設定するようにすることにより、信号の要求品質を満足しつつ、他の信号に与える干渉を抑え、通信システムの効率を向上させることができる。 Different CSI-RS configurations may be applied to different RRHs 4. For example, in the configuration of different CSI-RSs of different RRH4, downlink subframes in which CSI-RSs are arranged may be different. For example, in the configuration of different CSI-RSs of different RRHs 4, the frequency regions where the CSI-RSs are arranged may be different. For example, in the configuration of different CSI-RSs of different RRH4, the number of CSI-RS antenna ports may be different. Information regarding the configuration of the CSI-RS for each RRH 4 to which the cooperative communication is applied is notified from the base station apparatus 3 to the mobile station apparatus 5 using RRC signaling. The mobile station apparatus 5 receives the CSI-RS transmitted by each RRH 4 based on the notified CSI-RS configuration, measures the path loss for each RRH 4, and uses the measured path loss to signal an uplink signal. Set the transmission power. Thereby, the mobile station apparatus 5 can set transmission power suitable for each RRH 4 that is a signal reception destination. In this way, by setting the transmission power suitable for the signal receiving destination, it is possible to improve the efficiency of the communication system while suppressing the interference given to other signals while satisfying the required quality of the signal. .
 例えば、あるCSI-RSの構成は、実質的には、第一のRRH4のアンテナポートからのみ送信されるCSI-RSの構成である。例えば、あるCSI-RSの構成は、実質的には、第二のRRH4のアンテナポートからのみ送信されるCSI-RSの構成である。移動局装置5に対しては、複数のCSI-RSの構成が通知されるだけで、明示的に何れのRRH4のアンテナポートからのみ送信されるCSI-RSの構成なのかは通知されなくてもよい。 For example, a certain CSI-RS configuration is substantially a CSI-RS configuration that is transmitted only from the antenna port of the first RRH4. For example, a certain CSI-RS configuration is substantially a CSI-RS configuration that is transmitted only from the antenna port of the second RRH4. The mobile station apparatus 5 is only notified of the configuration of a plurality of CSI-RSs, and is not explicitly notified of the configuration of the CSI-RS transmitted only from the antenna port of any RRH4. Good.
 移動局装置5は、異なる構成のCSI-RSに基づき計算したパスロスの何れか一方を用いてPUSCHの所望の送信電力の設定を行なう。例えば、PUSCHの受信先が第一のRRH4である場合は、第一のRRH4のアンテナポートから送信されるCSI-RSに基づき計算されたパスロスがPUSCHに用いられ、PUSCHの受信先が第二のRRH4である場合は、第二のRRH4のアンテナポートから送信されるCSI-RSに基づき計算されたパスロスがPUSCHに用いられる。移動局装置5は、異なる構成のCSI-RSに基づき計算された複数のパスロスの内、何れかのパスロスがPUSCHの送信電力制御に対して設定される。移動局装置5は、異なる構成のCSI-RSの何れかが、PUSCHの送信電力制御に用いるパスロスのパスロスリファレンスに設定される。なお、移動局装置5においては、何れの構成のCSI-RSに基づき計算したパスロスをPUSCHの所望の送信電力の設定に用いるかが基地局装置3、RRH4により指示されるだけで、PUSCHの受信先が何れのRRH4なのかが明示的に通知されなくてもよい。 The mobile station apparatus 5 sets the desired transmission power of the PUSCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the PUSCH destination is the first RRH4, the path loss calculated based on the CSI-RS transmitted from the antenna port of the first RRH4 is used for the PUSCH, and the PUSCH destination is the second RSCH4. In the case of RRH4, the path loss calculated based on the CSI-RS transmitted from the antenna port of the second RRH4 is used for PUSCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUSCH transmission power control. In the mobile station apparatus 5, one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUSCH transmission power control. Note that the mobile station apparatus 5 receives the PUSCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUSCH. It is not necessary to explicitly notify which RRH4 is the destination.
 移動局装置5は、異なる構成のCSI-RSに基づき計算したパスロスの何れか一方を用いてPUCCHの所望の送信電力の設定を行なう。例えば、PUCCHの受信先が第一のRRH4である場合は、第一のRRH4のアンテナポートから送信されるCSI-RSに基づき計算されたパスロスがPUCCHに用いられ、PUCCHの受信先が第二のRRH4である場合は、第二のRRH4のアンテナポートから送信されるCSI-RSに基づき計算されたパスロスがPUCCHに用いられる。移動局装置5は、異なる構成のCSI-RSに基づき計算された複数のパスロスの内、何れかのパスロスがPUCCHの送信電力制御に対して設定される。移動局装置5は、異なる構成のCSI-RSの何れかが、PUCCHの送信電力制御に用いるパスロスのパスロスリファレンスに設定される。なお、移動局装置5においては、何れの構成のCSI-RSに基づき計算したパスロスをPUCCHの所望の送信電力の設定に用いるかが基地局装置3、RRH4により指示されるだけで、PUCCHの受信先が何れのRRH4なのかが明示的に通知されなくてもよい。 The mobile station apparatus 5 sets the desired transmission power of the PUCCH using any one of the path losses calculated based on the CSI-RSs having different configurations. For example, when the destination of the PUCCH is the first RRH4, the path loss calculated based on the CSI-RS transmitted from the antenna port of the first RRH4 is used for the PUCCH, and the destination of the PUCCH is the second In the case of RRH4, the path loss calculated based on CSI-RS transmitted from the antenna port of the second RRH4 is used for PUCCH. In the mobile station apparatus 5, any one of a plurality of path losses calculated based on CSI-RSs having different configurations is set for PUCCH transmission power control. In the mobile station apparatus 5, one of CSI-RSs having different configurations is set as a path loss reference for path loss used for PUCCH transmission power control. Note that the mobile station apparatus 5 receives the PUCCH only by instructing the base station apparatus 3 and the RRH 4 to use the path loss calculated based on the CSI-RS of the configuration to set the desired transmission power of the PUCCH. It is not necessary to explicitly notify which RRH4 is the destination.
 本発明の実施形態に記載の動作をプログラムで実現してもよい。本発明に関わる移動局装置5および基地局装置3で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。 The operation described in the embodiment of the present invention may be realized by a program. The program that operates in the mobile station device 5 and the base station device 3 related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention. Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary. As a recording medium for storing the program, a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient. In addition, by executing the loaded program, not only the functions of the above-described embodiment are realized, but also based on the instructions of the program, the processing is performed in cooperation with the operating system or other application programs. The function of the invention may be realized.
 また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送することができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における移動局装置5および基地局装置3の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置5および基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。移動局装置5および基地局装置3の各機能ブロックは、複数の回路により実現してもよい。 Also, when distributing to the market, the program can be stored and distributed on a portable recording medium, or transferred to a server computer connected via a network such as the Internet. In this case, the storage device of the server computer is also included in the present invention. Moreover, you may implement | achieve part or all of the mobile station apparatus 5 and the base station apparatus 3 in embodiment mentioned above as LSI which is typically an integrated circuit. Each functional block of the mobile station device 5 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used. Each functional block of the mobile station device 5 and the base station device 3 may be realized by a plurality of circuits.
 情報および信号が、種々の異なるあらゆる技術および方法を用いて示され得る。例えば上記説明を通して参照され得るチップ、シンボル、ビット、信号、情報、コマンド、命令、およびデータは、電圧、電流、電磁波、磁場または磁性粒子、光学場または光粒子、またはこれらの組み合わせによって示され得る。 Information and signals can be presented using a variety of different techniques and methods. For example, chips, symbols, bits, signals, information, commands, instructions, and data that may be referred to throughout the above description may be indicated by voltage, current, electromagnetic waves, magnetic or magnetic particles, optical or light particles, or combinations thereof .
 本明細書の開示に関連して述べられた種々の例示的な論理ブロック、処理部、およびアルゴリズムステップが、電子的なハードウェア、コンピュータソフトウェア、または両者の組み合わせとして実装され得る。ハードウェアとソフトウェアとのこの同義性を明瞭に示すために、種々の例示的な要素、ブロック、モジュール、回路、およびステップが、概してその機能性に関して述べられてきた。そのような機能性がハードウェアとして実装されるかソフトウェアとして実装されるかは、個々のアプリケーション、およびシステム全体に課された設計の制約に依存する。当業者は、各具体的なアプリケーションにつき種々の方法で、述べられた機能性を実装し得るが、そのような実装の決定は、この開示の範囲から逸脱するものとして解釈されるべきではない。 The various exemplary logic blocks, processing units, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or a combination of both. To clearly illustrate this synonym between hardware and software, various illustrative elements, blocks, modules, circuits, and steps have been described generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Those skilled in the art may implement the described functionality in a variety of ways for each specific application, but such implementation decisions should not be construed as departing from the scope of this disclosure.
 本明細書の開示に関連して述べられた種々の例示的な論理ブロック、処理部は、本明細書で述べられた機能を実行するように設計された汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイシグナル(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものによって、実装または実行され得る。汎用用途プロセッサは、マイクロプロセッサであっても良いが、代わりにプロセッサは従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。プロセッサはまた、コンピューティングデバイスを組み合わせたものとして実装されても良い。例えば、DSPとマイクロプロセッサ、複数のマイクロプロセッサ、DSPコアと接続された一つ以上のマイクロプロセッサ、またはその他のそのような構成を組み合わせたものである。 The various exemplary logic blocks, processing units described in connection with the disclosure herein are general purpose processors, digital signal processors (DSPs) designed to perform the functions described herein. Can be implemented or implemented by an application specific integrated circuit (ASIC), field programmable gate array signal (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or combinations thereof . A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor may also be implemented as a combination of computing devices. For example, a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors connected to a DSP core, or a combination of other such configurations.
 本明細書の開示に関連して述べられた方法またはアルゴリズムのステップは、ハードウェア、プロセッサによって実行されるソフトウェアモジュール、またはこれら2つを組み合わせたものによって、直接的に具体化され得る。ソフトウェアモジュールは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、または本分野で既知のあらゆる形態の記録媒体内に存在し得る。典型的な記録媒体は、プロセッサが情報を記録媒体から読み出すことが出来、また記録媒体に情報を書き込むことができるように、プロセッサに結合され得る。別の方法では、記録媒体はプロセッサに一体化されても良い。プロセッサと記録媒体は、ASIC内にあっても良い。ASICは、移動局装置(ユーザ端末)内にあり得る。あるいは、プロセッサおよび記録媒体は、ディスクリート要素として移動局装置5内にあっても良い。 The method or algorithm steps described in connection with the disclosure herein may be directly embodied by hardware, software modules executed by a processor, or a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any form of recording medium known in the art. A typical recording medium may be coupled to the processor such that the processor can read information from, and write information to, the recording medium. In the alternative, the recording medium may be integral to the processor. The processor and the recording medium may be in the ASIC. The ASIC can be in the mobile station device (user terminal). Or a processor and a recording medium may exist in the mobile station apparatus 5 as a discrete element.
 1つまたはそれ以上の典型的なデザインにおいて、述べられた機能は、ハードウェア、ソフトウェア、ファームウェア、またはこれらを組み合わせたもので実装され得る。もしソフトウェアによって実装されるのであれば、機能は、コンピュータ読み取り可能な媒体上の一つ以上の命令またはコードとして保持され、または伝達され得る。コンピュータ読み取り可能な媒体は、コンピュータプログラムをある場所から別の場所への持ち運びを助ける媒体を含むコミュニケーションメディアやコンピュータ記録メディアの両方を含む。記録媒体は、汎用または特殊用途のコンピュータによってアクセスされることが可能な市販のいずれの媒体であって良い。一例であってこれに限定するものではないものとして、このようなコンピュータ読み取り可能な媒体は、RAM、ROM、EEPROM、CDROMまたはその他の光ディスク媒体、磁気ディスク媒体またはその他の磁気記録媒体、または汎用または特殊用途のコンピュータまたは汎用または特殊用途のプロセッサによりアクセス可能とされ且つ命令またはデータ構造の形で所望のプログラムコード手段を持ち運びまたは保持するために使用可能な媒体を含むことができる。また、あらゆる接続が、適切にコンピュータ読み取り可能な媒体と呼ばれる。例えば、もしソフトウェアが同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外、無線、またマイクロ波のような無線技術を用いて、ウェブサイト、サーバ、またはその他の遠隔ソースから送信される場合には、これらの同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外、無線、またマイクロ波のような無線技術が、媒体の定義に含まれる。本明細書で使用されるディスク(disk、disc)は、コンパクトディスク(CD)、レーザーディスク(登録商標)、光学ディスク、デジタルバーサタイルディスク(DVD)、フロッピー(登録商標)ディスク、ブルーレイディスク、を含み、ディスク(disk)は、一般的に、磁気的にデータを再生する一方で、ディスク(disc)はレーザによって光学的にデータを再生する。上記のものを組み合わせたものもまた、コンピュータ読み取り可能な媒体に含まれるべきである。 In one or more typical designs, the functions described can be implemented in hardware, software, firmware, or a combination thereof. If implemented by software, the functions may be maintained or transmitted as one or more instructions or code on a computer-readable medium. Computer-readable media includes both communication media and computer recording media including media that facilitate carrying a computer program from one place to another. The recording medium may be any commercially available medium that can be accessed by a general purpose or special purpose computer. By way of example and not limitation, such computer readable media may be RAM, ROM, EEPROM, CDROM or other optical disc media, magnetic disc media or other magnetic recording media, or general purpose or A medium can be included that is accessible by a special purpose computer or general purpose or special purpose processor and that can be used to carry or retain the desired program code means in the form of instructions or data structures. Any connection is also properly termed a computer-readable medium. For example, if the software uses a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, wireless, or microwave, a website, server, or other remote source When transmitting from, these coaxial cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the definition of the medium. Discs used in this specification include compact discs (CD), laser discs (registered trademark), optical discs, digital versatile discs (DVD), floppy (registered trademark) discs, and Blu-ray discs. A disk generally reproduces data magnetically, while a disk optically reproduces data by a laser. Combinations of the above should also be included on the computer-readable medium.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the design and the like within the scope not departing from the gist of the present invention are also claimed. Included in the range.
3 基地局装置
4(A~C) RRH
5(A~C) 移動局装置
101 受信処理部
103 無線リソース制御部
105 制御部
107 送信処理部
109 受信アンテナ
111 送信アンテナ
201、201-1~201-M 物理下りリンク共用チャネル処理部
203、203-1~203-M 物理下りリンク制御チャネル処理部
205 下りリンクパイロットチャネル処理部
207 多重部
209 IFFT部
211 GI挿入部
213 D/A部
215 送信RF部
219 ターボ符号部
221 データ変調部
223 畳み込み符号部
225 QPSK変調部
227 プリコーディング処理部(PDCCH用)
229 プリコーディング処理部(PDSCH用)
231 プリコーディング処理部(下りリンクパイロットチャネル用)
301 受信RF部
303 A/D部
309 シンボルタイミング検出部
311 GI除去部
313 FFT部
315 サブキャリアデマッピング部
317 伝搬路推定部
319 伝搬路等化部(PUSCH用)
321 伝搬路等化部(PUCCH用)
323 IDFT部
325 データ復調部
327 ターボ復号部
329 物理上りリンク制御チャネル検出部
331 プリアンブル検出部
333 SRS処理部
401 受信処理部
403 無線リソース制御部
405 制御部
407 送信処理部
409 受信アンテナ
411 送信アンテナ
501 受信RF部
503 A/D部
505 シンボルタイミング検出部
507 GI除去部
509 FFT部
511 多重分離部
513 伝搬路推定部
515 伝搬路補償部(PDSCH用)
517 物理下りリンク共用チャネル復号部
519 伝搬路補償部(PDCCH用)
521 物理下りリンク制御チャネル復号部
523 データ復調部
525 ターボ復号部
527 QPSK復調部
529 ビタビデコーダ部
531 下りリンク受信品質測定部
605 D/A部
607 送信RF部
611 ターボ符号部
613 データ変調部
615 DFT部
617 上りリンクパイロットチャネル処理部
619 物理上りリンク制御チャネル処理部
621 サブキャリアマッピング部
623 IFFT部
625 GI挿入部
627 送信電力調整部
629 ランダムアクセスチャネル処理部
4051 パスロス計算部
4053 送信電力設定部
4055 パワーヘッドルーム制御部
4057 パワーヘッドルーム生成部
3 Base station apparatus 4 (A to C) RRH
5 (A to C) Mobile station apparatus 101 Reception processing unit 103 Radio resource control unit 105 Control unit 107 Transmission processing unit 109 Reception antenna 111 Transmission antenna 201, 201-1 to 201-M Physical downlink shared channel processing units 203 and 203 −1 to 203-M Physical downlink control channel processing unit 205 Downlink pilot channel processing unit 207 Multiplexing unit 209 IFFT unit 211 GI insertion unit 213 D / A unit 215 Transmission RF unit 219 Turbo coding unit 221 Data modulation unit 223 Convolutional code Unit 225 QPSK modulation unit 227 precoding processing unit (for PDCCH)
229 Precoding processing unit (for PDSCH)
231 Precoding processing unit (for downlink pilot channel)
301 reception RF section 303 A / D section 309 symbol timing detection section 311 GI removal section 313 FFT section 315 subcarrier demapping section 317 propagation path estimation section 319 propagation path equalization section (for PUSCH)
321 Channel equalization unit (for PUCCH)
323 IDFT unit 325 Data demodulation unit 327 Turbo decoding unit 329 Physical uplink control channel detection unit 331 Preamble detection unit 333 SRS processing unit 401 reception processing unit 403 radio resource control unit 405 control unit 407 transmission processing unit 409 reception antenna 411 transmission antenna 501 Reception RF unit 503 A / D unit 505 Symbol timing detection unit 507 GI removal unit 509 FFT unit 511 Demultiplexing unit 513 Channel estimation unit 515 Channel compensation unit (for PDSCH)
517 Physical downlink shared channel decoding unit 519 Propagation channel compensation unit (for PDCCH)
521 Physical downlink control channel decoding unit 523 Data demodulation unit 525 Turbo decoding unit 527 QPSK demodulation unit 529 Viterbi decoder unit 531 Downlink reception quality measurement unit 605 D / A unit 607 Transmission RF unit 611 Turbo coding unit 613 Data modulation unit 615 DFT Unit 617 uplink pilot channel processing unit 619 physical uplink control channel processing unit 621 subcarrier mapping unit 623 IFFT unit 625 GI insertion unit 627 transmission power adjustment unit 629 random access channel processing unit 4051 path loss calculation unit 4053 transmission power setting unit 4055 power Headroom controller 4057 Power headroom generator

Claims (6)

  1.  少なくとも1つの基地局装置と通信を行なう移動局装置であって、
     あるセルにおいて前記基地局装置から信号を受信する第一の受信処理部と、
     前記第一の受信処理部で受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうパスロス計算部と、
     前記パスロス計算部で計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する送信電力設定部と、
     前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するパワーヘッドルーム生成部と、
     前記パワーヘッドルーム生成部で生成された前記パワーヘッドルームの送信を制御するパワーヘッドルーム制御部と、を有し、
     前記パワーヘッドルーム制御部は、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする移動局装置。
    A mobile station apparatus that communicates with at least one base station apparatus,
    A first reception processing unit for receiving a signal from the base station apparatus in a certain cell;
    A path loss calculation unit that calculates a plurality of path losses based on the first reference signal and the second reference signal received by the first reception processing unit;
    The transmission power for the physical uplink control channel is set using any one of the plurality of path losses calculated by the path loss calculation unit, and the physical uplink shared channel is used using any one of the path losses. A transmission power setting unit for setting transmission power for
    Transmission of only the physical uplink shared channel using the bandwidth of the resources allocated for the physical uplink shared channel and the first path loss used for setting the transmission power of the physical uplink shared channel Generating a first type of report as power headroom, which is information about the room for transmission power for the physical uplink shared channel, and the transmission power of the physical uplink shared channel Simultaneous transmission of the physical uplink shared channel and the physical uplink control channel using the first path loss used for setting the transmission power and the second path loss used for setting the transmission power of the physical uplink control channel The second type of repo as power headroom, which is information about the scope of transmission power for And power headroom generation unit for generating a door,
    A power headroom control unit that controls transmission of the power headroom generated by the power headroom generation unit,
    The power headroom control unit has a change amount of the first path loss greater than a value of dl-PathlossChange when the mobile station apparatus is not configured to simultaneously transmit a physical uplink shared channel and a physical uplink control channel. If the simultaneous transmission of the physical uplink shared channel and the physical uplink control channel is configured in the own mobile station device, the amount of change in the first path loss, or A mobile station apparatus, characterized in that, when the amount of change in the second path loss is larger than a value of dl-PathlossChange, it is determined to start a power headroom reporting process.
  2.  前記第一の参照信号は、CRS(Cell specific Reference Signal)またはCSI-RS(Channel State Information Reference Signal)の何れかであり、
     前記第二の参照信号は、前記第一の参照信号とは異なる信号であって、CRSまたはCSI-RSの何れかであることを特徴とする請求項1に記載の移動局装置。
    The first reference signal is either CRS (Cell Specific Reference Signal) or CSI-RS (Channel State Information Reference Signal),
    The mobile station apparatus according to claim 1, wherein the second reference signal is a signal different from the first reference signal and is either CRS or CSI-RS.
  3.  前記第一の参照信号と前記第二の参照信号は、それぞれ異なる構成のCSI-RS(Channel State Information Reference Signal)であることを特徴とする請求項1に記載の移動局装置。 2. The mobile station apparatus according to claim 1, wherein the first reference signal and the second reference signal are CSI-RSs (Channel State Information Reference Signal) having different configurations.
  4.  複数の移動局装置および前記複数の移動局装置と通信を行なう少なくとも1つの基地局装置から構成される通信システムであって、
     前記基地局装置は、
     前記移動局装置に信号を送信する送信処理部と、
     前記移動局装置から信号を受信する第二の受信処理部と、を有し、
     前記移動局装置は、
     あるセルにおいて前記基地局装置から信号を受信する第一の受信処理部と、
     前記第一の受信処理部で受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうパスロス計算部と、
     前記パスロス計算部で計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する送信電力設定部と、
     前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するパワーヘッドルーム生成部と、
     前記パワーヘッドルーム生成部で生成された前記パワーヘッドルームの送信を制御するパワーヘッドルーム制御部と、を有し、
     前記パワーヘッドルーム制御部は、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする通信システム。
    A communication system comprising a plurality of mobile station apparatuses and at least one base station apparatus communicating with the plurality of mobile station apparatuses,
    The base station device
    A transmission processing unit for transmitting a signal to the mobile station device;
    A second reception processing unit for receiving a signal from the mobile station device,
    The mobile station device
    A first reception processing unit for receiving a signal from the base station apparatus in a certain cell;
    A path loss calculation unit that calculates a plurality of path losses based on the first reference signal and the second reference signal received by the first reception processing unit;
    The transmission power for the physical uplink control channel is set using any one of the plurality of path losses calculated by the path loss calculation unit, and the physical uplink shared channel is used using any one of the path losses. A transmission power setting unit for setting transmission power for
    Transmission of only the physical uplink shared channel using the bandwidth of the resources allocated for the physical uplink shared channel and the first path loss used for setting the transmission power of the physical uplink shared channel Generating a first type of report as power headroom, which is information about the room for transmission power for the physical uplink shared channel, and the transmission power of the physical uplink shared channel Simultaneous transmission of the physical uplink shared channel and the physical uplink control channel using the first path loss used for setting the transmission power and the second path loss used for setting the transmission power of the physical uplink control channel The second type of repo as power headroom, which is information about the scope of transmission power for And power headroom generation unit for generating a door,
    A power headroom control unit that controls transmission of the power headroom generated by the power headroom generation unit,
    The power headroom control unit has a change amount of the first path loss larger than a value of dl-PathlossChange when the mobile station apparatus is not configured to simultaneously transmit a physical uplink shared channel and a physical uplink control channel. If the simultaneous transmission of the physical uplink shared channel and the physical uplink control channel is configured in the mobile station device, the amount of change in the first path loss, or A communication system, characterized in that when the amount of change in the second path loss is larger than the value of dl-PathlossChange, it is determined that the power headroom reporting process is started.
  5.  少なくとも1つの基地局装置と通信を行なう移動局装置に用いられる通信方法であって、
     あるセルにおいて前記基地局装置から信号を受信するステップと、
     前記受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なうステップと、
     前記計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定するステップと、
     前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成するステップと、
     前記生成された前記パワーヘッドルームの送信を制御するステップと、を有し、
     自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする通信方法。 
    A communication method used in a mobile station apparatus that communicates with at least one base station apparatus,
    Receiving a signal from the base station apparatus in a cell;
    Performing a plurality of path loss calculations based on the received first reference signal and second reference signal;
    The transmission power for the physical uplink control channel is set using any one of the calculated path losses, and the transmission power for the physical uplink shared channel is set using any one of the path losses. Steps to set,
    Transmission of only the physical uplink shared channel using the bandwidth of the resources allocated for the physical uplink shared channel and the first path loss used for setting the transmission power of the physical uplink shared channel Generating a first type of report as power headroom, which is information about the room for transmission power for the physical uplink shared channel, and the transmission power of the physical uplink shared channel Simultaneous transmission of the physical uplink shared channel and the physical uplink control channel using the first path loss used for setting the transmission power and the second path loss used for setting the transmission power of the physical uplink control channel The second type of repo as power headroom, which is information about the scope of transmission power for The method comprising the steps of: generating a door,
    Controlling the transmission of the generated power headroom,
    When the mobile station apparatus is not configured to simultaneously transmit the physical uplink shared channel and the physical uplink control channel, the power headroom reporting process is performed when the change amount of the first path loss is larger than the value of dl-PathlossChange. If the simultaneous transmission of the physical uplink shared channel and the physical uplink control channel is configured in the mobile station apparatus, the amount of change in the first path loss or the amount of change in the second path loss Is determined to start the reporting process of the power headroom when dl is greater than the value of dl-PathlossChange.
  6.  少なくとも1つの基地局装置と通信を行なう移動局装置に実装され、前記移動局装置に複数の機能を発揮させる集積回路であって、
     あるセルにおいて前記基地局装置から信号を受信する機能と、
     前記受信された第一の参照信号と第二の参照信号とに基づき、複数のパスロスの計算を行なう機能と、
     前記計算された複数の前記パスロスの内、何れか1つの前記パスロスを用いて物理上りリンク制御チャネルに対する送信電力を設定し、何れか1つの前記パスロスを用いて物理上りリンク共用チャネルに対する送信電力を設定する機能と、
     前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスとを用いて、物理上りリンク共用チャネルのみの送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第一のタイプのレポートを生成し、前記物理上りリンク共用チャネルのために割り当てられたリソースの帯域幅と、前記物理上りリンク共用チャネルの送信電力の設定に用いられた第一のパスロスと、前記物理上りリンク制御チャネルの送信電力の設定に用いられた第二のパスロスとを用いて、物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信に対する送信電力の余地に関する情報であるパワーヘッドルームとして第二のタイプのレポートを生成する機能と、
     前記生成された前記パワーヘッドルームの送信を制御する機能と、を前記移動局装置に発揮させ、
     自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されていない場合は前記第一のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断し、自移動局装置に物理上りリンク共用チャネルと物理上りリンク制御チャネルの同時送信が構成されている場合は前記第一のパスロスの変化量、または前記第二のパスロスの変化量がdl-PathlossChangeの値より大きい場合にパワーヘッドルームの報告処理を始動すると判断することを特徴とする集積回路。
    An integrated circuit that is mounted on a mobile station device that communicates with at least one base station device, and that allows the mobile station device to perform a plurality of functions,
    A function of receiving a signal from the base station apparatus in a certain cell;
    A function of calculating a plurality of path losses based on the received first reference signal and second reference signal;
    The transmission power for the physical uplink control channel is set using any one of the calculated path losses, and the transmission power for the physical uplink shared channel is set using any one of the path losses. The function to set,
    Transmission of only the physical uplink shared channel using the bandwidth of the resources allocated for the physical uplink shared channel and the first path loss used for setting the transmission power of the physical uplink shared channel Generating a first type of report as power headroom, which is information about the room for transmission power for the physical uplink shared channel and the transmission power of the physical uplink shared channel Simultaneous transmission of the physical uplink shared channel and the physical uplink control channel using the first path loss used for setting the transmission power and the second path loss used for setting the transmission power of the physical uplink control channel The second type of repo as power headroom, which is information about the scope of transmission power for A function of generating a door,
    A function of controlling the transmission of the generated power headroom, and causing the mobile station device to exhibit,
    When simultaneous transmission of the physical uplink shared channel and the physical uplink control channel is not configured in the own mobile station device, the power headroom reporting process is performed when the change amount of the first path loss is larger than the value of dl-PathlossChange If the simultaneous transmission of the physical uplink shared channel and the physical uplink control channel is configured in the mobile station apparatus, the amount of change in the first path loss or the amount of change in the second path loss The integrated circuit is characterized in that it determines that the power headroom reporting process is to be started if dl is greater than the value of dl-PathlossChange.
PCT/JP2012/074745 2011-11-01 2012-09-26 Mobile station, communication system, communication method and integrated circuit WO2013065425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-239894 2011-11-01
JP2011239894 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065425A1 true WO2013065425A1 (en) 2013-05-10

Family

ID=48191783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074745 WO2013065425A1 (en) 2011-11-01 2012-09-26 Mobile station, communication system, communication method and integrated circuit

Country Status (2)

Country Link
JP (1) JP2013118617A (en)
WO (1) WO2013065425A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623942A (en) * 2016-07-14 2018-01-23 中兴通讯股份有限公司 The method of adjustment and device of ascending power
CN112868209A (en) * 2018-08-17 2021-05-28 株式会社Ntt都科摩 User terminal and wireless communication method
CN112867153A (en) * 2020-12-30 2021-05-28 中电科仪器仪表(安徽)有限公司 Method for decoding RRC (radio resource control) message of protocol stack in 5G terminal simulator
CN114223266A (en) * 2019-06-13 2022-03-22 株式会社Ntt都科摩 Terminal and wireless communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043572A2 (en) * 2009-10-09 2011-04-14 Samsung Electronics Co., Ltd. Methods for power headroom reporting, resource allocation, and power control
US20110243016A1 (en) * 2010-04-06 2011-10-06 Yuanyuan Zhang Method for performing power headroom reporting procedure and phr mac control element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043572A2 (en) * 2009-10-09 2011-04-14 Samsung Electronics Co., Ltd. Methods for power headroom reporting, resource allocation, and power control
US20110243016A1 (en) * 2010-04-06 2011-10-06 Yuanyuan Zhang Method for performing power headroom reporting procedure and phr mac control element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623942A (en) * 2016-07-14 2018-01-23 中兴通讯股份有限公司 The method of adjustment and device of ascending power
CN107623942B (en) * 2016-07-14 2022-06-17 中兴通讯股份有限公司 Method and device for adjusting uplink power
CN112868209A (en) * 2018-08-17 2021-05-28 株式会社Ntt都科摩 User terminal and wireless communication method
CN112868209B (en) * 2018-08-17 2024-03-12 株式会社Ntt都科摩 User terminal and wireless communication method
CN114223266A (en) * 2019-06-13 2022-03-22 株式会社Ntt都科摩 Terminal and wireless communication method
CN114223266B (en) * 2019-06-13 2024-04-02 株式会社Ntt都科摩 Terminal and wireless communication method
CN112867153A (en) * 2020-12-30 2021-05-28 中电科仪器仪表(安徽)有限公司 Method for decoding RRC (radio resource control) message of protocol stack in 5G terminal simulator
CN112867153B (en) * 2020-12-30 2023-01-17 中电科思仪科技(安徽)有限公司 Method for decoding RRC (radio resource control) message of protocol stack in 5G terminal simulator

Also Published As

Publication number Publication date
JP2013118617A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP6101980B2 (en) Terminal apparatus, base station apparatus, and communication method
US10477487B2 (en) Terminal apparatus, base station apparatus, and method for terminal apparatus which can set appropriate uplink transmission power
US10779247B2 (en) Communication system, terminal, and base station
WO2013061716A1 (en) Mobile station device, communication system, communication method and integrated circuit
WO2013046965A1 (en) Mobile station device, communication system, communication method, and integrated circuit
US9516650B2 (en) Terminal apparatus, communication system, communication method, and base station apparatus
JP5990815B2 (en) Base station, terminal, communication system and communication method
JP5832914B2 (en) COMMUNICATION SYSTEM, MOBILE STATION DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2013065426A1 (en) Mobile station, communication system, communication method and integrated circuit
JP5843390B2 (en) COMMUNICATION SYSTEM, MOBILE STATION DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2013183749A1 (en) Communication system, mobile station apparatus, base station apparatus, communication method, and integrated circuit
US20140169322A1 (en) Terminal, communication system, and communication method
US20140169321A1 (en) Communication system, terminal, and base station
JP5832913B2 (en) COMMUNICATION SYSTEM, MOBILE STATION DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
JP5886639B2 (en) COMMUNICATION SYSTEM, MOBILE STATION DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2013065425A1 (en) Mobile station, communication system, communication method and integrated circuit
JP5868717B2 (en) COMMUNICATION SYSTEM, MOBILE STATION DEVICE, BASE STATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2013065424A1 (en) Mobile station, communication system, communication method and integrated circuit
JP2013123138A (en) Communication system, mobile station device, base station device, communication method and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844839

Country of ref document: EP

Kind code of ref document: A1