WO2013065252A1 - Zoom-lens system, imaging device, and camera - Google Patents

Zoom-lens system, imaging device, and camera Download PDF

Info

Publication number
WO2013065252A1
WO2013065252A1 PCT/JP2012/006781 JP2012006781W WO2013065252A1 WO 2013065252 A1 WO2013065252 A1 WO 2013065252A1 JP 2012006781 W JP2012006781 W JP 2012006781W WO 2013065252 A1 WO2013065252 A1 WO 2013065252A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
image
zoom
zoom lens
Prior art date
Application number
PCT/JP2012/006781
Other languages
French (fr)
Japanese (ja)
Inventor
恭一 美藤
毅洋 西岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013065252A1 publication Critical patent/WO2013065252A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145129Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++

Definitions

  • the present disclosure relates to a zoom lens system, an imaging device, and a camera.
  • Patent Documents 1 to 3 have five groups including a first lens group having a positive power and including a lens element having a reflecting surface that bends a light beam from an object, and a second lens group having a negative power.
  • a zoom type lens system is disclosed.
  • the present disclosure provides a compact zoom lens system having not only excellent optical performance but also a relatively high zoom ratio and a short overall lens length.
  • the present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
  • the zoom lens system in the present disclosure is: From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power; A fourth lens group,
  • the first lens group includes a lens element having a reflecting surface for bending light rays from an object, During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
  • An imaging apparatus capable of outputting an optical image of an object as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power;
  • a fourth lens group The first lens group includes a lens element having a reflecting surface for bending light rays from an object, During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
  • the camera in the present disclosure is A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is From the object side to the image side, A first lens group having positive power; A second lens group having negative power; A third lens group having positive power;
  • a fourth lens group The first lens group includes a lens element having a reflecting surface for bending light rays from an object, During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
  • the zoom lens system according to the present disclosure not only has excellent optical performance, but also has a relatively high zoom ratio and a short overall lens length.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1.
  • FIG. 4 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 5 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 2.
  • FIG. FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3.
  • FIG. 10 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • 12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 4.
  • FIG. FIG. 13 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
  • Embodiments 1 to 4) 1, 4, 7, and 10 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
  • the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
  • FIGS. 1, 4, 7 and 10 show directions in which a later-described fourth lens group G4 moves during focusing from an infinite focus state to a close object focus state.
  • the zoom lens system includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power.
  • 3 lens group G3, 4th lens group G4 which has positive power, and 5th lens group G5 which has positive power are provided.
  • the second lens element L2 (prism) in the first lens group G1 corresponds to a lens element that has a reflecting surface that bends light rays from the object, for example, bends an axial principal ray from the object by approximately 90 °. The position is omitted.
  • the lens element having a reflective surface is a prism, but the lens element having the reflective surface may be, for example, a mirror element.
  • the prisms arranged in the zoom lens system according to each embodiment are both flat on the entrance surface and the exit surface, but at least one of the entrance surface and the exit surface depends on the lens configuration. It may be convex or concave.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the third lens group G3 and the fourth lens group G4.
  • the second lens group G2 and the fourth lens group G4 are respectively in the direction along the optical axis so that the distance between the lens group G4 and the distance between the fourth lens group G4 and the fifth lens group G5 are changed.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S, and is located on the object side of the image plane S (between the image plane S and the most image side lens surface of the fifth lens group G5).
  • a parallel plate P equivalent to an optical low-pass filter, a face plate of an image sensor, or the like.
  • the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the entrance surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex sixth lens element L6 and a negative meniscus seventh lens element L7 with a convex surface facing the image side.
  • the sixth lens element L6 and the seventh lens element L7 are cemented, and in the surface data in the corresponding numerical value example described later, an adhesive layer between the sixth lens element L6 and the seventh lens element L7 is used. Surface number 12 is given.
  • the sixth lens element L6 has an aspheric object side surface.
  • An aperture stop A is provided on the most image side of the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. .
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the ninth lens element L9 has an aspheric object side surface.
  • the fifth lens group G5 comprises solely a biconvex eleventh lens element L11.
  • the eleventh lens element L11 has two aspheric surfaces.
  • a parallel plate P is provided on the object side of the image plane S (between the image plane S and the eleventh lens element L11).
  • the zoom lens system according to Embodiment 1 during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the fourth lens group G4 moves toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the incident surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex sixth lens element L6 and a negative meniscus seventh lens element L7 with a convex surface facing the image side.
  • the seventh lens element L7 has an aspheric image side surface.
  • An aperture stop A is provided on the most image side of the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. .
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces.
  • the fifth lens group G5 comprises solely a biconvex eleventh lens element L11.
  • the eleventh lens element L11 has two aspheric surfaces.
  • a parallel plate P is provided on the object side of the image plane S (between the image plane S and the eleventh lens element L11).
  • the zoom lens system according to Embodiment 2 during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the fourth lens group G4 moves toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the incident surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 is composed of a biconvex sixth lens element L6 and a biconcave seventh lens element L7 in order from the object side to the image side.
  • the seventh lens element L7 has an aspheric image side surface.
  • An aperture stop A is provided on the most object side of the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. .
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces.
  • the fifth lens group G5 comprises solely a biconvex eleventh lens element L11.
  • the eleventh lens element L11 has two aspheric surfaces.
  • a parallel plate P is provided on the object side of the image plane S (between the image plane S and the eleventh lens element L11).
  • the zoom lens system according to Embodiment 3 during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the fourth lens group G4 moves toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the entrance surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side.
  • the fourth lens element L4 has two aspheric surfaces.
  • the third lens group G3 is composed of a biconvex sixth lens element L6 and a biconcave seventh lens element L7 in order from the object side to the image side.
  • the sixth lens element L6 and the seventh lens element L7 are cemented, and in the surface data in the corresponding numerical value example described later, an adhesive layer between the sixth lens element L6 and the seventh lens element L7 is used. Surface number 12 is given.
  • the sixth lens element L6 has an aspheric object side surface.
  • An aperture stop A is provided on the most image side of the third lens group G3.
  • the fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. .
  • the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer.
  • the eighth lens element L8 has two aspheric surfaces.
  • the fifth lens group G5 comprises solely a biconvex eleventh lens element L11.
  • the eleventh lens element L11 has two aspheric surfaces.
  • a parallel plate P is provided on the object side of the image plane S (between the image plane S and the eleventh lens element L11).
  • the zoom lens system according to Embodiment 4 during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous.
  • the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens.
  • the second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
  • the fourth lens group G4 moves toward the object side along the optical axis when focusing from the infinite focus state to the close object focus state.
  • the first lens group G1 has a reflecting surface that can bend the light beam from the object, for example, can bend the axial principal ray from the object by approximately 90 °. Since the second lens element L2 (prism) is included, the zoom lens system can be made thin in the optical axis direction of the axial ray from the object in the imaging state.
  • the first lens group G1 does not move along the optical axis during zooming from the wide-angle end to the telephoto end during imaging, so that the zoom lens system is housed.
  • the lens barrel a lens barrel that does not change its shape due to zooming can be used, and a camera with a high degree of freedom in shape and excellent impact resistance can be manufactured.
  • the second lens group since the second lens group has two lens elements and an air space between the two lens elements, various aberrations, particularly distortion, are excellent. Can be corrected.
  • the zoom lens systems according to Embodiments 1 to 4 have a five-group configuration including a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, and a fifth lens group G5.
  • the zoom lens system according to the present disclosure includes a first lens group having a positive power, a second lens group having a negative power, a third lens group having a positive power, and a fourth lens group.
  • a 4-group or 5-group configuration may be used, or any other configuration.
  • the fourth lens group G4 and the fifth lens group G5 disposed immediately on the image side of the fourth lens group G4 have positive power.
  • the zoom lens systems according to Embodiments 1 to 4 when zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 and the fourth lens group G4 are arranged along the optical axis among all the lens groups.
  • the third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact.
  • one lens group is composed of a plurality of lens elements
  • a part of the sub-lens groups of each lens group is any one of the plurality of lens elements or adjacent to each other.
  • Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most useful. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
  • a first lens group having a positive power in order from the object side to the image side, a first lens group having a positive power, a second lens group having a negative power, and a positive power And a fourth lens group, and the first lens group has a lens element having a reflecting surface for bending light rays from the object, from the wide-angle end to the telephoto end during imaging.
  • the first lens group does not move along the optical axis
  • the second lens group and the fourth lens group move along the optical axis.
  • the zoom lens system (referred to as basic configuration of the form) satisfies the following condition (1).
  • L total lens length (distance from the most object side lens surface of the first lens group to the image plane)
  • D 1 the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end during imaging
  • D 2 is the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging.
  • the condition (1) is a condition for defining a ratio between the total lens length and the total movement amount of the second lens group and the fourth lens group during zooming. If the lower limit of the condition (1) is not reached, the total lens length becomes too short with respect to the total amount of movement of the second lens group and the fourth lens group, and the power of each lens group becomes small. As a result, the aberration fluctuations become large and correction of various aberrations becomes difficult. On the contrary, if the upper limit of the condition (1) is exceeded, the total lens length becomes too long with respect to the sum of the movement amount of the second lens group and the movement amount of the fourth lens group. It becomes difficult to provide.
  • the above effect can be further achieved by satisfying at least one of the following conditions (1) ′ and (1) ′′. 3.0 ⁇ L / (D 1 + D 2 ) (1) ′ L / (D 1 + D 2 ) ⁇ 3.8 (1) ′′
  • a zoom lens system having a basic configuration like the zoom lens systems according to Embodiments 1 to 4 is beneficial to satisfy the following condition (2).
  • f W focal length of the entire system at the wide-angle end
  • f T focal length of the entire system at the telephoto end
  • D A the thickness on the optical axis of the lens element having a reflecting surface for bending the light beam from the object
  • ⁇ T half value of the maximum field angle at the telephoto end.
  • the condition (2) is a condition for defining the product of the focal length of the entire system at the wide-angle end and the thickness on the optical axis of the lens element having a reflecting surface for bending the light beam from the object. If the lower limit of the condition (2) is not reached, the thickness of the lens element having the reflecting surface on the optical axis becomes too small, and the effective light beam diameter of the lens element having the reflecting surface becomes too small. It becomes difficult to ensure. On the contrary, if the upper limit of the condition (2) is exceeded, the focal length of the entire system at the wide angle end becomes large, and it becomes difficult to ensure a sufficiently wide angle of view. Or since the thickness on the optical axis of the lens element which has a reflective surface becomes large, it becomes difficult to provide a compact lens barrel, an imaging device, and a camera.
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • an optical low-pass filter, a face plate of an image sensor, or the like is equivalent to the object side of the image plane S (between the image plane S and the most image side lens surface of the fifth lens group G5).
  • this low-pass filter a birefringent low-pass filter made of quartz or the like whose predetermined crystal axis direction is adjusted, or a required optical cutoff frequency.
  • a phase-type low-pass filter or the like that achieves the characteristics by the diffraction effect can be applied.
  • FIG. 13 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
  • the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4.
  • the zoom lens system 1 As the zoom lens system 1, the zoom lens system according to Embodiment 1 is used.
  • the zoom lens system 1 includes a first lens group G1, a second lens group G2, a third lens group G3 including an aperture stop A, a fourth lens group G4, and a fifth lens group G5. It is configured.
  • the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1.
  • a liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
  • any of the zoom lens systems according to Embodiments 2 to 4 may be used instead of the zoom lens system according to Embodiment 1.
  • the optical system of the digital still camera shown in FIG. 13 can also be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
  • the zoom lens system according to the first to fourth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fourth embodiments.
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web
  • the present invention can also be applied to cameras, in-vehicle cameras, and the like.
  • the fifth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • the surface marked with * is an aspherical surface
  • the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • 6, 9 and 12 are lateral aberration diagrams at the telephoto end of the zoom lens systems according to Numerical Examples 1 to 4, respectively.
  • the upper three aberration diagrams show a basic state in which no image blur correction is performed at the telephoto end, and the lower three aberration diagrams move the entire third lens group G3 by a predetermined amount in a direction perpendicular to the optical axis. This corresponds to the image blur correction state at the telephoto end.
  • the upper row shows the lateral aberration at the image point of 70% of the maximum image height
  • the middle row shows the lateral aberration at the axial image point
  • the lower row shows the lateral aberration at the image point of -70% of the maximum image height.
  • the upper stage is the lateral aberration at the image point of 70% of the maximum image height
  • the middle stage is the lateral aberration at the axial image point
  • the lower stage is at the image point of -70% of the maximum image height.
  • the horizontal axis represents the distance from the principal ray on the pupil plane
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line ( C-line) characteristics.
  • the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the third lens group G3.
  • the amount of movement in the direction perpendicular to the optical axis of the third lens group G3 in the image blur correction state at the telephoto end is as follows.
  • Numerical example 1 0.057 mm
  • Numerical example 2 0.063 mm
  • Numerical example 3 0.067 mm
  • Numerical example 4 0.090 mm
  • the image decentering amount is when the entire third lens group G3 is translated by the above values in the direction perpendicular to the optical axis. Is equal to the amount of image eccentricity.
  • Table 13 shows the corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure can be applied to digital input devices such as a digital camera, a camera of a portable information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web camera, and an in-vehicle camera.
  • digital input devices such as a digital camera, a camera of a portable information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web camera, and an in-vehicle camera.
  • the present disclosure is suitable for a photographing optical system that requires high image quality, such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

A zoom-lens system provided with a first lens group having positive power, a second lens group having negative power, a third lens group having positive power, and a fourth lens group, in that order from the object side to the image side. The first lens group has a lens element that has a reflective surface for changing the direction of light rays from the object. When zooming from the wide-angle end to the telephoto end when imaging, the second and fourth lens groups move along the optical axis but the first lens group does not. This zoom-lens system satisfies the condition 2.8 < L/(D1+D2) < 4.0 (L represents the total lens length, D1 represents the distance that the second lens group moves when zooming, and D2 represents the distance that the fourth lens group moves when zooming).

Description

ズームレンズ系、撮像装置及びカメラZoom lens system, imaging device and camera
 本開示は、ズームレンズ系、撮像装置及びカメラに関する。 The present disclosure relates to a zoom lens system, an imaging device, and a camera.
 デジタルスチルカメラやデジタルビデオカメラ等の、光電変換を行う撮像素子を持つカメラ(以下、単にデジタルカメラという)に対するコンパクト化及び高性能化の要求は極めて強い。特に近年、収納性や可搬性を最優先した薄型のデジタルカメラが要求されてきている。このような薄型のデジタルカメラを実現するための手段の1つとして、物体からの光線を折り曲げるズームレンズ系が種々提案されている。 Demand for downsizing and high performance of a camera having an image sensor that performs photoelectric conversion (hereinafter simply referred to as a digital camera) such as a digital still camera or a digital video camera is extremely strong. In particular, in recent years, there has been a demand for a thin digital camera with the highest priority on storage and portability. As one of means for realizing such a thin digital camera, various zoom lens systems for bending light rays from an object have been proposed.
 例えば、特許文献1~3は、正のパワーを有し、物体からの光線を折り曲げる反射面を有するレンズ素子を含む第1レンズ群と、負のパワーを有する第2レンズ群とを含む5群ズームタイプのレンズ系を開示している。 For example, Patent Documents 1 to 3 have five groups including a first lens group having a positive power and including a lens element having a reflecting surface that bends a light beam from an object, and a second lens group having a negative power. A zoom type lens system is disclosed.
特開2010-107566号公報JP 2010-107566 A 特開2009-103853号公報JP 2009-103853 A 特開2008-065347号公報JP 2008-0665347 A
 本開示は、光学性能に優れるのは勿論のこと、比較的ズーム比が高く、しかもレンズ全長が短く小型なズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置、及び該撮像装置を備えた薄型でコンパクトなカメラを提供する。 The present disclosure provides a compact zoom lens system having not only excellent optical performance but also a relatively high zoom ratio and a short overall lens length. The present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
 本開示におけるズームレンズ系は、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
第4レンズ群とを備え、
前記第1レンズ群は、物体からの光線を折り曲げるための反射面を有するレンズ素子を有し、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群は光軸に沿って移動せず、前記第2レンズ群及び前記第4レンズ群は光軸に沿って移動し、
以下の条件(1):
  2.8<L/(D+D)<4.0 ・・・(1)
(ここで、
 L:レンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 D:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の移動量、
 D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量
である)
を満足することを特徴とする。
The zoom lens system in the present disclosure is:
From the object side to the image side,
A first lens group having positive power;
A second lens group having negative power;
A third lens group having positive power;
A fourth lens group,
The first lens group includes a lens element having a reflecting surface for bending light rays from an object,
During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
The following conditions (1):
2.8 <L / (D 1 + D 2 ) <4.0 (1)
(here,
L: total lens length (distance from the most object side lens surface of the first lens group to the image plane),
D 1 : the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end during imaging,
D 2 is the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging)
It is characterized by satisfying.
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系が、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
第4レンズ群とを備え、
前記第1レンズ群は、物体からの光線を折り曲げるための反射面を有するレンズ素子を有し、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群は光軸に沿って移動せず、前記第2レンズ群及び前記第4レンズ群は光軸に沿って移動し、
以下の条件(1):
  2.8<L/(D+D)<4.0 ・・・(1)
(ここで、
 L:レンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 D:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の移動量、
 D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量
である)
を満足することを特徴とするズームレンズ系である。
An imaging apparatus according to the present disclosure
An imaging apparatus capable of outputting an optical image of an object as an electrical image signal,
A zoom lens system that forms an optical image of the object;
An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
From the object side to the image side,
A first lens group having positive power;
A second lens group having negative power;
A third lens group having positive power;
A fourth lens group,
The first lens group includes a lens element having a reflecting surface for bending light rays from an object,
During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
The following conditions (1):
2.8 <L / (D 1 + D 2 ) <4.0 (1)
(here,
L: total lens length (distance from the most object side lens surface of the first lens group to the image plane),
D 1 : the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end during imaging,
D 2 is the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging)
This zoom lens system satisfies the above.
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系が、
物体側から像側へと順に、
正のパワーを有する第1レンズ群と、
負のパワーを有する第2レンズ群と、
正のパワーを有する第3レンズ群と、
第4レンズ群とを備え、
前記第1レンズ群は、物体からの光線を折り曲げるための反射面を有するレンズ素子を有し、
撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群は光軸に沿って移動せず、前記第2レンズ群及び前記第4レンズ群は光軸に沿って移動し、
以下の条件(1):
  2.8<L/(D+D)<4.0 ・・・(1)
(ここで、
 L:レンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 D:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の移動量、
 D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量
である)
を満足することを特徴とするズームレンズ系である。
The camera in the present disclosure is
A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
From the object side to the image side,
A first lens group having positive power;
A second lens group having negative power;
A third lens group having positive power;
A fourth lens group,
The first lens group includes a lens element having a reflecting surface for bending light rays from an object,
During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
The following conditions (1):
2.8 <L / (D 1 + D 2 ) <4.0 (1)
(here,
L: total lens length (distance from the most object side lens surface of the first lens group to the image plane),
D 1 : the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end during imaging,
D 2 is the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging)
This zoom lens system satisfies the above.
 本開示におけるズームレンズ系は、光学性能に優れるのは勿論のこと、比較的ズーム比が高く、しかもレンズ全長が短い。 The zoom lens system according to the present disclosure not only has excellent optical performance, but also has a relatively high zoom ratio and a short overall lens length.
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1). 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity. 図3は、数値実施例1に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。FIG. 3 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of the zoom lens system according to Numerical Example 1. 図4は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 4 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2). 図5は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 5 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity. 図6は、数値実施例2に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 2. FIG. 図7は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 7 is a lens layout diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3). 図8は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity. 図9は、数値実施例3に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 3. 図10は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 10 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4). 図11は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 11 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity. 図12は、数値実施例4に係るズームレンズ系の望遠端における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at the telephoto end of a zoom lens system according to Numerical Example 4. FIG. 図13は、実施の形態5に係るデジタルスチルカメラの概略構成図である。FIG. 13 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Absent.
 (実施の形態1~4)
 図1、4、7及び10は、各々実施の形態1~4に係るズームレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるズームレンズ系を表している。
(Embodiments 1 to 4)
1, 4, 7, and 10 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
 各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。 In each figure, (a) shows a lens configuration at the wide angle end (shortest focal length state: focal length f W ), and (b) shows an intermediate position (intermediate focal length state: focal length f M = √ (f W * f). The lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ). Also, in each figure, the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
 さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1、4、7及び10では、後述する第4レンズ群G4が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。 Further, in each figure, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIGS. 1, 4, 7 and 10 show directions in which a later-described fourth lens group G4 moves during focusing from an infinite focus state to a close object focus state.
 各実施の形態に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、正のパワーを有する第4レンズ群G4と、正のパワーを有する第5レンズ群G5とを備える。第1レンズ群G1中の第2レンズ素子L2(プリズム)は、物体からの光線を折り曲げる、例えば物体からの軸上主光線を略90°折り曲げる反射面を有するレンズ素子に相当し、反射面の位置は省略している。なお、各実施の形態に係るズームレンズ系では、反射面を有するレンズ素子がプリズムであるが、該反射面を有するレンズ素子は、例えばミラー素子であってもよい。また、各実施の形態に係るズームレンズ系に配置されたプリズムはいずれも、後述するように、入射面及び出射面とも平面であるが、レンズ構成に応じて入射面及び出射面の少なくとも一方が凸面又は凹面であってもよい。 The zoom lens system according to each embodiment includes, in order from the object side to the image side, a first lens group G1 having a positive power, a second lens group G2 having a negative power, and a first lens group having a positive power. 3 lens group G3, 4th lens group G4 which has positive power, and 5th lens group G5 which has positive power are provided. The second lens element L2 (prism) in the first lens group G1 corresponds to a lens element that has a reflecting surface that bends light rays from the object, for example, bends an axial principal ray from the object by approximately 90 °. The position is omitted. In the zoom lens system according to each embodiment, the lens element having a reflective surface is a prism, but the lens element having the reflective surface may be, for example, a mirror element. In addition, as will be described later, the prisms arranged in the zoom lens system according to each embodiment are both flat on the entrance surface and the exit surface, but at least one of the entrance surface and the exit surface depends on the lens configuration. It may be convex or concave.
 ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、及び第4レンズ群G4と第5レンズ群G5との間隔がいずれも変化するように、第2レンズ群G2及び第4レンズ群G4は光軸に沿った方向にそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 During zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the third lens group G3 and the fourth lens group G4. The second lens group G2 and the fourth lens group G4 are respectively in the direction along the optical axis so that the distance between the lens group G4 and the distance between the fourth lens group G4 and the fifth lens group G5 are changed. Moving. The zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
 なお図1、4、7及び10において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表し、該像面Sの物体側(像面Sと第5レンズ群G5の最像側レンズ面との間)には、光学的ローパスフィルタや撮像素子のフェースプレート等と等価な平行平板Pが設けられている。 In FIGS. 1, 4, 7 and 10, an asterisk * attached to a specific surface indicates that the surface is aspherical. In each figure, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a power symbol of each lens group. In each drawing, the straight line described on the rightmost side represents the position of the image plane S, and is located on the object side of the image plane S (between the image plane S and the most image side lens surface of the fifth lens group G5). Are provided with a parallel plate P equivalent to an optical low-pass filter, a face plate of an image sensor, or the like.
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、入射面及び出射面とも平面であり反射面を有する第2レンズ素子L2(プリズム)と、両凸形状の第3レンズ素子L3とからなる。これらのうち、第3レンズ素子L3は、その両面が非球面である。
(Embodiment 1)
As shown in FIG. 1, the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the entrance surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これら第6レンズ素子L6と第7レンズ素子L7とは接合されており、後述する対応数値実施例における面データでは、これら第6レンズ素子L6と第7レンズ素子L7との間の接着剤層に面番号12が付与されている。また、第6レンズ素子L6は、その物体側面が非球面である。なお、該第3レンズ群G3の最像側には、開口絞りAが設けられている。 The third lens group G3 includes, in order from the object side to the image side, a biconvex sixth lens element L6 and a negative meniscus seventh lens element L7 with a convex surface facing the image side. The sixth lens element L6 and the seventh lens element L7 are cemented, and in the surface data in the corresponding numerical value example described later, an adhesive layer between the sixth lens element L6 and the seventh lens element L7 is used. Surface number 12 is given. The sixth lens element L6 has an aspheric object side surface. An aperture stop A is provided on the most image side of the third lens group G3.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第9レンズ素子L9は、その物体側面が非球面である。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. . Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer. The ninth lens element L9 has an aspheric object side surface.
 第5レンズ群G5は、両凸形状の第11レンズ素子L11のみからなる。この第11レンズ素子L11は、その両面が非球面である。 The fifth lens group G5 comprises solely a biconvex eleventh lens element L11. The eleventh lens element L11 has two aspheric surfaces.
 像面Sの物体側(像面Sと第11レンズ素子L11との間)には、平行平板Pが設けられている。 On the object side of the image plane S (between the image plane S and the eleventh lens element L11), a parallel plate P is provided.
 実施の形態1に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2は、単調に像側へ移動し、第4レンズ群G4は、略単調に物体側へ移動し、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増大するように、第2レンズ群G2及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 1, during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
 さらに、実施の形態1に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って物体側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 1, the fourth lens group G4 moves toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state.
(実施の形態2)
 図4に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、入射面及び出射面とも平面であり反射面を有する第2レンズ素子L2(プリズム)と、両凸形状の第3レンズ素子L3とからなる。これらのうち、第3レンズ素子L3は、その両面が非球面である。
(Embodiment 2)
As shown in FIG. 4, the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the incident surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7とからなる。これらのうち、第7レンズ素子L7は、その像側面が非球面である。なお、該第3レンズ群G3の最像側には、開口絞りAが設けられている。 The third lens group G3 includes, in order from the object side to the image side, a biconvex sixth lens element L6 and a negative meniscus seventh lens element L7 with a convex surface facing the image side. Among these, the seventh lens element L7 has an aspheric image side surface. An aperture stop A is provided on the most image side of the third lens group G3.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面である。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. . Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer. The eighth lens element L8 has two aspheric surfaces.
 第5レンズ群G5は、両凸形状の第11レンズ素子L11のみからなる。この第11レンズ素子L11は、その両面が非球面である。 The fifth lens group G5 comprises solely a biconvex eleventh lens element L11. The eleventh lens element L11 has two aspheric surfaces.
 像面Sの物体側(像面Sと第11レンズ素子L11との間)には、平行平板Pが設けられている。 On the object side of the image plane S (between the image plane S and the eleventh lens element L11), a parallel plate P is provided.
 実施の形態2に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2は、単調に像側へ移動し、第4レンズ群G4は、略単調に物体側へ移動し、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増大するように、第2レンズ群G2及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 2, during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
 さらに、実施の形態2に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って物体側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 2, the fourth lens group G4 moves toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state.
(実施の形態3)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、入射面及び出射面とも平面であり反射面を有する第2レンズ素子L2(プリズム)と、両凸形状の第3レンズ素子L3とからなる。これらのうち、第3レンズ素子L3は、その両面が非球面である。
(Embodiment 3)
As shown in FIG. 7, the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the incident surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。これらのうち、第7レンズ素子L7は、その像側面が非球面である。なお、該第3レンズ群G3の最物体側には、開口絞りAが設けられている。 The third lens group G3 is composed of a biconvex sixth lens element L6 and a biconcave seventh lens element L7 in order from the object side to the image side. Among these, the seventh lens element L7 has an aspheric image side surface. An aperture stop A is provided on the most object side of the third lens group G3.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面である。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. . Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer. The eighth lens element L8 has two aspheric surfaces.
 第5レンズ群G5は、両凸形状の第11レンズ素子L11のみからなる。この第11レンズ素子L11は、その両面が非球面である。 The fifth lens group G5 comprises solely a biconvex eleventh lens element L11. The eleventh lens element L11 has two aspheric surfaces.
 像面Sの物体側(像面Sと第11レンズ素子L11との間)には、平行平板Pが設けられている。 On the object side of the image plane S (between the image plane S and the eleventh lens element L11), a parallel plate P is provided.
 実施の形態3に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2は、単調に像側へ移動し、第4レンズ群G4は、略単調に物体側へ移動し、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増大するように、第2レンズ群G2及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 3, during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
 さらに、実施の形態3に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って物体側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 3, the fourth lens group G4 moves toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state.
(実施の形態4)
 図10に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、入射面及び出射面とも平面であり反射面を有する第2レンズ素子L2(プリズム)と、両凸形状の第3レンズ素子L3とからなる。これらのうち、第3レンズ素子L3は、その両面が非球面である。
(Embodiment 4)
As shown in FIG. 10, the first lens group G1 has a negative meniscus first lens element L1 with a convex surface facing the object side in order from the object side to the image side, and both the entrance surface and the exit surface are flat. It consists of a second lens element L2 (prism) having a reflecting surface and a biconvex third lens element L3. Among these, the third lens element L3 has two aspheric surfaces.
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第4レンズ素子L4は、その両面が非球面である。 The second lens group G2 includes, in order from the object side to the image side, a biconcave fourth lens element L4 and a positive meniscus fifth lens element L5 with a convex surface facing the object side. Among these, the fourth lens element L4 has two aspheric surfaces.
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第6レンズ素子L6と、両凹形状の第7レンズ素子L7とからなる。これら第6レンズ素子L6と第7レンズ素子L7とは接合されており、後述する対応数値実施例における面データでは、これら第6レンズ素子L6と第7レンズ素子L7との間の接着剤層に面番号12が付与されている。また、第6レンズ素子L6は、その物体側面が非球面である。なお、該第3レンズ群G3の最像側には、開口絞りAが設けられている。 The third lens group G3 is composed of a biconvex sixth lens element L6 and a biconcave seventh lens element L7 in order from the object side to the image side. The sixth lens element L6 and the seventh lens element L7 are cemented, and in the surface data in the corresponding numerical value example described later, an adhesive layer between the sixth lens element L6 and the seventh lens element L7 is used. Surface number 12 is given. The sixth lens element L6 has an aspheric object side surface. An aperture stop A is provided on the most image side of the third lens group G3.
 第4レンズ群G4は、物体側から像側へと順に、両凸形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9と、両凹形状の第10レンズ素子L10とからなる。これらのうち、第9レンズ素子L9と第10レンズ素子L10とは接合されており、後述する対応数値実施例における面データでは、これら第9レンズ素子L9と第10レンズ素子L10との間の接着剤層に面番号19が付与されている。また、第8レンズ素子L8は、その両面が非球面である。 The fourth lens group G4 includes, in order from the object side to the image side, a biconvex eighth lens element L8, a biconvex ninth lens element L9, and a biconcave tenth lens element L10. . Among these, the ninth lens element L9 and the tenth lens element L10 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the ninth lens element L9 and the tenth lens element L10. Surface number 19 is given to the agent layer. The eighth lens element L8 has two aspheric surfaces.
 第5レンズ群G5は、両凸形状の第11レンズ素子L11のみからなる。この第11レンズ素子L11は、その両面が非球面である。 The fifth lens group G5 comprises solely a biconvex eleventh lens element L11. The eleventh lens element L11 has two aspheric surfaces.
 像面Sの物体側(像面Sと第11レンズ素子L11との間)には、平行平板Pが設けられている。 On the object side of the image plane S (between the image plane S and the eleventh lens element L11), a parallel plate P is provided.
 実施の形態4に係るズームレンズ系において、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2は、単調に像側へ移動し、第4レンズ群G4は、略単調に物体側へ移動し、第1レンズ群G1、第3レンズ群G3及び第5レンズ群G5は、像面Sに対して固定されている。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増大するように、第2レンズ群G2及び第4レンズ群G4が光軸に沿ってそれぞれ移動する。 In the zoom lens system according to Embodiment 4, during zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 monotonously moves to the image side, and the fourth lens group G4 is substantially monotonous. The first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed with respect to the image plane S. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens. The second lens group G2 and the fourth lens group G4 move along the optical axis so that the distance between the group G4 decreases and the distance between the fourth lens group G4 and the fifth lens group G5 increases.
 さらに、実施の形態4に係るズームレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第4レンズ群G4が光軸に沿って物体側へ移動する。 Furthermore, in the zoom lens system according to Embodiment 4, the fourth lens group G4 moves toward the object side along the optical axis when focusing from the infinite focus state to the close object focus state.
 実施の形態1~4に係るズームレンズ系では、第1レンズ群G1が、物体からの光線を折り曲げることができる、例えば物体からの軸上主光線を略90°折り曲げることができる反射面を有する第2レンズ素子L2(プリズム)を含んでいるので、撮像状態において、ズームレンズ系を物体からの軸上光線の光軸方向に薄く構成することが可能である。 In the zoom lens systems according to Embodiments 1 to 4, the first lens group G1 has a reflecting surface that can bend the light beam from the object, for example, can bend the axial principal ray from the object by approximately 90 °. Since the second lens element L2 (prism) is included, the zoom lens system can be made thin in the optical axis direction of the axial ray from the object in the imaging state.
 実施の形態1~4に係るズームレンズ系では、撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1が光軸に沿って移動しないので、該ズームレンズ系を収納するレンズ鏡筒として、ズーミングによる形状変化がないレンズ鏡筒を使用することができ、形状の自由度が高く、かつ耐衝撃性に優れたカメラを製造することが可能である。 In the zoom lens systems according to Embodiments 1 to 4, the first lens group G1 does not move along the optical axis during zooming from the wide-angle end to the telephoto end during imaging, so that the zoom lens system is housed. As the lens barrel, a lens barrel that does not change its shape due to zooming can be used, and a camera with a high degree of freedom in shape and excellent impact resistance can be manufactured.
 実施の形態1~4に係るズームレンズ系では、第4レンズ群G4及び該第4レンズ群G4のすぐ像側に配置された第5レンズ群G5が、いずれも正のパワーを有するので、ズーム全域に渡って諸収差を良好に補正することができ、高性能を維持しながらさらなるコンパクト化が可能である。 In the zoom lens systems according to Embodiments 1 to 4, since the fourth lens group G4 and the fifth lens group G5 disposed immediately on the image side of the fourth lens group G4 have positive power, Various aberrations can be corrected satisfactorily over the entire area, and further downsizing can be achieved while maintaining high performance.
 実施の形態1~4に係るズームレンズ系では、第2レンズ群が2枚のレンズ素子を有し、該2枚のレンズ素子の間に空気間隔を有するので、諸収差、特に歪曲収差を良好に補正することができる。 In the zoom lens systems according to Embodiments 1 to 4, since the second lens group has two lens elements and an air space between the two lens elements, various aberrations, particularly distortion, are excellent. Can be corrected.
 なお、実施の形態1~4に係るズームレンズ系は、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5の5群構成であるが、本開示におけるズームレンズ系は、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、第4レンズ群とを備える限り、レンズ群の数には特に限定がなく、4群又は5群構成であってもよく、それ以外でもよい。 The zoom lens systems according to Embodiments 1 to 4 have a five-group configuration including a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, and a fifth lens group G5. However, the zoom lens system according to the present disclosure includes a first lens group having a positive power, a second lens group having a negative power, a third lens group having a positive power, and a fourth lens group. As long as the number of lens groups is not particularly limited, a 4-group or 5-group configuration may be used, or any other configuration.
 また、前記したように、第4レンズ群G4及び該第4レンズ群G4のすぐ像側に配置された第5レンズ群G5は、いずれも正のパワーを有することが有益であるが、第4レンズ群G4のパワー及び該第4レンズ群G4よりも像側に配置されるレンズ群のパワーにも特に限定がない。 Further, as described above, it is beneficial that the fourth lens group G4 and the fifth lens group G5 disposed immediately on the image side of the fourth lens group G4 have positive power. There is no particular limitation on the power of the lens group G4 and the power of the lens group disposed on the image side of the fourth lens group G4.
 実施の形態1~4に係るズームレンズ系では、撮像時の広角端から望遠端へのズーミングの際に、全レンズ群のうち、第2レンズ群G2及び第4レンズ群G4を光軸に沿ってそれぞれ移動させてズーミングを行うが、全レンズ群のうちいずれかのレンズ群、あるいは、各レンズ群の一部のサブレンズ群を、例えば第3レンズ群G3を光軸に対して垂直な方向に移動させることによって、全系の振動による像点移動を補正する、すなわち、手ぶれ、振動等による像のぶれを光学的に補正することができる。 In the zoom lens systems according to Embodiments 1 to 4, when zooming from the wide-angle end to the telephoto end during imaging, the second lens group G2 and the fourth lens group G4 are arranged along the optical axis among all the lens groups. Each of the lens groups, or a sub-lens group of a part of each lens group, for example, the third lens group G3 in a direction perpendicular to the optical axis. Therefore, it is possible to correct image point movement due to vibration of the entire system, that is, to optically correct image blur due to camera shake or vibration.
 全系の振動による像点移動を補正する際に、例えば第3レンズ群G3が光軸に対して垂直な方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して像ぶれの補正を行うことができる。 When correcting the image point movement due to the vibration of the entire system, for example, the third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to correct image blur while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
 なお、前記各レンズ群の一部のサブレンズ群とは、1つのレンズ群が複数のレンズ素子で構成される場合、該複数のレンズ素子のうち、いずれか1枚のレンズ素子又は隣り合った複数のレンズ素子をいう。 In addition, when one lens group is composed of a plurality of lens elements, a part of the sub-lens groups of each lens group is any one of the plurality of lens elements or adjacent to each other. A plurality of lens elements.
 以上のように、本出願において開示する技術の例示として、実施の形態1~4を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 以下、例えば実施の形態1~4に係るズームレンズ系のごときズームレンズ系が満足することが有益な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の有益な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も有益である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。 Hereinafter, for example, conditions useful for satisfying a zoom lens system such as the zoom lens systems according to Embodiments 1 to 4 will be described. A plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most useful. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
 例えば実施の形態1~4に係るズームレンズ系のように、物体側から像側へと順に、正のパワーを有する第1レンズ群と、負のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群と、第4レンズ群とを備え、前記第1レンズ群は、物体からの光線を折り曲げるための反射面を有するレンズ素子を有し、撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群は光軸に沿って移動せず、前記第2レンズ群及び前記第4レンズ群は光軸に沿って移動する(以下、このレンズ構成を、実施の形態の基本構成という)ズームレンズ系は、以下の条件(1)を満足する。
  2.8<L/(D+D)<4.0 ・・・(1)
ここで、
 L:レンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
 D:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の移動量、
 D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量
である。
For example, as in the zoom lens systems according to Embodiments 1 to 4, in order from the object side to the image side, a first lens group having a positive power, a second lens group having a negative power, and a positive power And a fourth lens group, and the first lens group has a lens element having a reflecting surface for bending light rays from the object, from the wide-angle end to the telephoto end during imaging. During zooming, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis. The zoom lens system (referred to as basic configuration of the form) satisfies the following condition (1).
2.8 <L / (D 1 + D 2 ) <4.0 (1)
here,
L: total lens length (distance from the most object side lens surface of the first lens group to the image plane),
D 1 : the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end during imaging,
D 2 is the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging.
 前記条件(1)は、レンズ全長と、ズーミング時の第2レンズ群の移動量及び第4レンズ群の移動量の合計との比を規定するための条件である。条件(1)の下限を下回ると、第2レンズ群の移動量及び第4レンズ群の移動量の合計に対してレンズ全長が短くなり過ぎ、各レンズ群のパワーが小さくなることから、ズーミング時の収差変動が大きくなって諸収差の補正が困難となる。逆に条件(1)の上限を上回ると、第2レンズ群の移動量及び第4レンズ群の移動量の合計に対してレンズ全長が長くなり過ぎ、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。 The condition (1) is a condition for defining a ratio between the total lens length and the total movement amount of the second lens group and the fourth lens group during zooming. If the lower limit of the condition (1) is not reached, the total lens length becomes too short with respect to the total amount of movement of the second lens group and the fourth lens group, and the power of each lens group becomes small. As a result, the aberration fluctuations become large and correction of various aberrations becomes difficult. On the contrary, if the upper limit of the condition (1) is exceeded, the total lens length becomes too long with respect to the sum of the movement amount of the second lens group and the movement amount of the fourth lens group. It becomes difficult to provide.
 なお、さらに以下の条件(1)’及び(1)’’の少なくとも1つを満足することにより、前記効果をさらに奏功させることができる。
  3.0<L/(D+D) ・・・(1)’
  L/(D+D)<3.8 ・・・(1)’’
The above effect can be further achieved by satisfying at least one of the following conditions (1) ′ and (1) ″.
3.0 <L / (D 1 + D 2 ) (1) ′
L / (D 1 + D 2 ) <3.8 (1) ″
 例えば実施の形態1~4に係るズームレンズ系のように、基本構成を有するズームレンズ系は、以下の条件(2)を満足することが有益である。
  1.5<f×D/{f×tan(ω)}<2.5 ・・・(2)
ここで、
 f:広角端における全系の焦点距離、
 f:望遠端における全系の焦点距離、
 D:物体からの光線を折り曲げるための反射面を有するレンズ素子の光軸上での厚み、
 ω:望遠端における最大画角の半値
である。
For example, a zoom lens system having a basic configuration like the zoom lens systems according to Embodiments 1 to 4 is beneficial to satisfy the following condition (2).
1.5 <f W × D A / {f T × tan (ω T )} 2 <2.5 (2)
here,
f W : focal length of the entire system at the wide-angle end,
f T : focal length of the entire system at the telephoto end,
D A : the thickness on the optical axis of the lens element having a reflecting surface for bending the light beam from the object,
ω T : half value of the maximum field angle at the telephoto end.
 前記条件(2)は、広角端における全系の焦点距離と物体からの光線を折り曲げるための反射面を有するレンズ素子の光軸上での厚みとの積を規定するための条件である。条件(2)の下限を下回ると、反射面を有するレンズ素子の光軸上での厚みが小さくなり過ぎ、該反射面を有するレンズ素子の有効光束径も小さくなり過ぎることから、必要な光束径を確保することが困難となる。逆に条件(2)の上限を上回ると、広角端における全系の焦点距離が大きくなることから、充分に広い画角を確保することが困難となる。あるいは、反射面を有するレンズ素子の光軸上での厚みが大きくなることから、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。 The condition (2) is a condition for defining the product of the focal length of the entire system at the wide-angle end and the thickness on the optical axis of the lens element having a reflecting surface for bending the light beam from the object. If the lower limit of the condition (2) is not reached, the thickness of the lens element having the reflecting surface on the optical axis becomes too small, and the effective light beam diameter of the lens element having the reflecting surface becomes too small. It becomes difficult to ensure. On the contrary, if the upper limit of the condition (2) is exceeded, the focal length of the entire system at the wide angle end becomes large, and it becomes difficult to ensure a sufficiently wide angle of view. Or since the thickness on the optical axis of the lens element which has a reflective surface becomes large, it becomes difficult to provide a compact lens barrel, an imaging device, and a camera.
 なお、さらに以下の条件(2)’を満足することにより、前記効果をさらに奏功させることができる。
  2.0<f×D/{f×tan(ω)} ・・・(2)’
In addition, when the following condition (2) ′ is further satisfied, the above effect can be further achieved.
2.0 <f W × D A / {f T × tan (ω T )} 2 (2) ′
 実施の形態1~4に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。 Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes) However, the present invention is not limited to this. For example, a diffractive lens element that deflects incident light by diffraction, a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium Each lens group may be composed of a distributed lens element or the like. In particular, in a refractive / diffractive hybrid lens element, forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
 さらに各実施の形態では、像面Sの物体側(像面Sと第5レンズ群G5の最像側レンズ面との間)には、光学的ローパスフィルタや撮像素子のフェースプレート等と等価な平行平板Pを配置する構成を示したが、このローパスフィルタとしては、所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周波数の特性を回折効果により達成する位相型ローパスフィルタ等が適用可能である。 Further, in each embodiment, an optical low-pass filter, a face plate of an image sensor, or the like is equivalent to the object side of the image plane S (between the image plane S and the most image side lens surface of the fifth lens group G5). Although the configuration in which the parallel plate P is arranged is shown, as this low-pass filter, a birefringent low-pass filter made of quartz or the like whose predetermined crystal axis direction is adjusted, or a required optical cutoff frequency. A phase-type low-pass filter or the like that achieves the characteristics by the diffraction effect can be applied.
(実施の形態5)
 図13は、実施の形態5に係るデジタルスチルカメラの概略構成図である。図13において、デジタルスチルカメラは、ズームレンズ系1とCCDである撮像素子2とを含む撮像装置と、液晶モニタ3と、筐体4とから構成される。ズームレンズ系1として、実施の形態1に係るズームレンズ系が用いられている。図13において、ズームレンズ系1は、第1レンズ群G1と、第2レンズ群G2と、開口絞りAを含む第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5とから構成されている。筐体4は、前側にズームレンズ系1が配置され、ズームレンズ系1の後側には、撮像素子2が配置されている。筐体4の後側に液晶モニタ3が配置され、ズームレンズ系1による被写体の光学的な像が像面Sに形成される。
(Embodiment 5)
FIG. 13 is a schematic configuration diagram of a digital still camera according to the fifth embodiment. In FIG. 13, the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4. As the zoom lens system 1, the zoom lens system according to Embodiment 1 is used. In FIG. 13, the zoom lens system 1 includes a first lens group G1, a second lens group G2, a third lens group G3 including an aperture stop A, a fourth lens group G4, and a fifth lens group G5. It is configured. In the housing 4, the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1. A liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
 こうして、デジタルスチルカメラに実施の形態1に係るズームレンズ系を用いることにより、解像度及び像面湾曲を補正する能力が高く、非使用時のレンズ全長が短い小型のデジタルスチルカメラを提供することができる。なお、図13に示したデジタルスチルカメラには、実施の形態1に係るズームレンズ系の替わりに実施の形態2~4に係るズームレンズ系のいずれかを用いてもよい。また、図13に示したデジタルスチルカメラの光学系は、動画像を対象とするデジタルビデオカメラに用いることもできる。この場合、静止画像だけでなく、解像度の高い動画像を撮影することができる。 Thus, by using the zoom lens system according to Embodiment 1 for a digital still camera, it is possible to provide a small digital still camera that has a high ability to correct resolution and curvature of field and has a short overall lens length when not in use. it can. In the digital still camera shown in FIG. 13, any of the zoom lens systems according to Embodiments 2 to 4 may be used instead of the zoom lens system according to Embodiment 1. Further, the optical system of the digital still camera shown in FIG. 13 can also be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
 なお、本実施の形態5に係るデジタルスチルカメラでは、ズームレンズ系1として実施の形態1~4に係るズームレンズ系を示したが、これらのズームレンズ系は、全てのズーミング域を使用しなくてもよい。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、実施の形態1~4で説明したズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。 In the digital still camera according to the fifth embodiment, the zoom lens system according to the first to fourth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fourth embodiments.
 また、以上説明した実施の形態1~4に係るズームレンズ系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。 In addition, an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web The present invention can also be applied to cameras, in-vehicle cameras, and the like.
 以上のように、本出願において開示する技術の例示として、実施の形態5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the fifth embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 以下、実施の形態1~4に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
Hereinafter, numerical examples in which the zoom lens systems according to Embodiments 1 to 4 are specifically implemented will be described. In each numerical example, the unit of length in the table is “mm”, and the unit of angle of view is “°”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and vd is an Abbe number with respect to the d line. In each numerical example, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
here,
Z: distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex,
h: height from the optical axis,
r: vertex radius of curvature,
κ: conic constant,
An: n-order aspherical coefficient.
 図2、5、8及び11は、各々数値実施例1~4に係るズームレンズ系の無限遠合焦状態の縦収差図である。 2, 5, 8 and 11 are longitudinal aberration diagrams of the zoom lens system according to Numerical Examples 1 to 4 in an infinitely focused state, respectively.
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line). In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
 図3、6、9及び12は、各々数値実施例1~4に係るズームレンズ系の望遠端における横収差図である。 3, 6, 9 and 12 are lateral aberration diagrams at the telephoto end of the zoom lens systems according to Numerical Examples 1 to 4, respectively.
 各横収差図において、上段3つの収差図は、望遠端における像ぶれ補正を行っていない基本状態、下段3つの収差図は、第3レンズ群G3全体を光軸と垂直な方向に所定量移動させた望遠端における像ぶれ補正状態に、それぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。像ぶれ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の-70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。なお各横収差図において、メリディオナル平面を、第1レンズ群G1の光軸と第3レンズ群G3の光軸とを含む平面としている。 In each lateral aberration diagram, the upper three aberration diagrams show a basic state in which no image blur correction is performed at the telephoto end, and the lower three aberration diagrams move the entire third lens group G3 by a predetermined amount in a direction perpendicular to the optical axis. This corresponds to the image blur correction state at the telephoto end. Of the lateral aberration diagrams in the basic state, the upper row shows the lateral aberration at the image point of 70% of the maximum image height, the middle row shows the lateral aberration at the axial image point, and the lower row shows the lateral aberration at the image point of -70% of the maximum image height. Respectively. Of each lateral aberration diagram in the image blur correction state, the upper stage is the lateral aberration at the image point of 70% of the maximum image height, the middle stage is the lateral aberration at the axial image point, and the lower stage is at the image point of -70% of the maximum image height. Each corresponds to lateral aberration. In each lateral aberration diagram, the horizontal axis represents the distance from the principal ray on the pupil plane, the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line ( C-line) characteristics. In each lateral aberration diagram, the meridional plane is a plane including the optical axis of the first lens group G1 and the optical axis of the third lens group G3.
 なお、各数値実施例のズームレンズ系について、望遠端における、像ぶれ補正状態での第3レンズ群G3の光軸と垂直な方向への移動量は、以下に示すとおりである。
数値実施例1 0.057mm
数値実施例2 0.063mm
数値実施例3 0.067mm
数値実施例4 0.090mm
For the zoom lens systems of the numerical examples, the amount of movement in the direction perpendicular to the optical axis of the third lens group G3 in the image blur correction state at the telephoto end is as follows.
Numerical example 1 0.057 mm
Numerical example 2 0.063 mm
Numerical example 3 0.067 mm
Numerical example 4 0.090 mm
 撮影距離が∞で望遠端において、ズームレンズ系が0.3°だけ傾いた場合の像偏心量は、第3レンズ群G3全体が光軸と垂直な方向に上記の各値だけ平行移動するときの像偏心量に等しい。 When the shooting distance is ∞ and the zoom lens system is tilted by 0.3 ° at the telephoto end, the image decentering amount is when the entire third lens group G3 is translated by the above values in the direction perpendicular to the optical axis. Is equal to the amount of image eccentricity.
 各横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に必要な平行移動量が減少する。したがって、いずれのズーム位置であっても、0.3°までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。 As is clear from each lateral aberration diagram, it is understood that the symmetry of the lateral aberration at the axial image point is good. In addition, when the lateral aberration at the + 70% image point and the lateral aberration at the −70% image point are compared in the basic state, the curvature is small and the inclinations of the aberration curves are almost equal. It can be seen that the aberration is small. This means that sufficient imaging performance is obtained even in the image blur correction state. When the image blur correction angle of the zoom lens system is the same, the amount of parallel movement required for image blur correction decreases as the focal length of the entire zoom lens system decreases. Accordingly, at any zoom position, it is possible to perform sufficient image blur correction without deteriorating the imaging characteristics for an image blur correction angle up to 0.3 °.
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に示す。
(Numerical example 1)
The zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the zoom lens system of Numerical Example 1, Table 2 shows aspheric data, and Table 3 shows various data.
表 1(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         55.32020     0.30000     2.00272    19.3               
     2         10.05990     1.91420                                   
     3               ∞     7.74970     1.84666    23.8               
     4               ∞     0.15000                                   
     5*        10.81330     2.45960     1.76681    49.7               
     6*       -18.10640        可変                                   
     7*       -10.66560     0.50000     1.76681    49.7               
     8*         3.71540     0.69640                                   
     9          6.01790     0.91440     1.94595    18.0               
    10         11.60840        可変                                   
    11*        13.82380     1.13390     1.80470    41.0               
    12         -6.06820     0.01000     1.56732    42.8               
    13         -6.06820     0.30000     1.72825    28.3               
    14        -54.37500     1.40000                                   
  15(絞り)           ∞        可変                                   
    16          5.55560     2.57520     1.49700    81.6               
    17        -17.53130     0.15000                                   
    18*        10.31070     2.48730     1.58332    59.1               
    19         -4.58010     0.01000     1.56732    42.8               
    20         -4.58010     0.54650     1.90366    31.3               
    21          5.80420        可変                                   
    22*        11.38970     2.11630     1.52996    55.8               
    23*       -22.47300     1.56810                                   
    24               ∞     0.60000     1.51680    64.2               
    25               ∞     0.37000                                   
    像面             ∞                                               
Table 1 (surface data)

Surface number r d nd vd
Object ∞
1 55.32020 0.30000 2.00272 19.3
2 10.05990 1.91420
3 ∞ 7.74970 1.84666 23.8
4 ∞ 0.15000
5 * 10.81330 2.45960 1.76681 49.7
6 * -18.10640 variable
7 * -10.66560 0.50000 1.76681 49.7
8 * 3.71540 0.69640
9 6.01790 0.91440 1.94595 18.0
10 11.60840 Variable
11 * 13.82380 1.13390 1.80470 41.0
12 -6.06820 0.01000 1.56732 42.8
13 -6.06820 0.30000 1.72825 28.3
14 -54.37500 1.40000
15 (Aperture) ∞ Variable
16 5.55560 2.57520 1.49700 81.6
17 -17.53130 0.15000
18 * 10.31070 2.48730 1.58332 59.1
19 -4.58010 0.01000 1.56732 42.8
20 -4.58010 0.54650 1.90366 31.3
21 5.80420 Variable
22 * 11.38970 2.11630 1.52996 55.8
23 * -22.47300 1.56810
24 ∞ 0.60000 1.51680 64.2
25 ∞ 0.37000
Image plane ∞
表 2(非球面データ)
 
  第5面
   K= 0.00000E+00, A4=-1.39779E-04, A6=-5.69411E-07, A8=-1.06898E-08 
   A10=-4.12215E-10 
  第6面
   K= 0.00000E+00, A4= 6.81171E-05, A6=-6.39098E-07, A8= 2.83872E-09 
   A10=-3.85521E-10 
  第7面
   K= 0.00000E+00, A4=-2.99952E-05, A6= 6.80376E-05, A8=-5.33952E-06 
   A10= 1.83170E-07 
  第8面
   K=-2.40921E-01, A4=-2.01561E-03, A6= 1.98430E-05, A8=-4.11420E-06 
   A10= 2.47916E-08 
  第11面
   K= 0.00000E+00, A4=-1.36112E-04, A6=-2.03260E-05, A8= 4.87452E-06 
   A10=-4.67253E-07 
  第18面
   K= 0.00000E+00, A4=-5.80086E-04, A6= 4.16760E-07, A8=-2.13784E-06 
   A10= 1.86164E-07 
  第22面
   K= 0.00000E+00, A4= 9.63663E-04, A6=-1.11055E-05, A8=-6.03768E-07 
   A10= 1.87812E-08 
  第23面
   K= 0.00000E+00, A4= 1.57684E-03, A6=-2.51251E-05, A8=-2.66167E-06 
   A10= 7.78641E-08
Table 2 (Aspheric data)

5th surface K = 0.00000E + 00, A4 = -1.39779E-04, A6 = -5.69411E-07, A8 = -1.06898E-08
A10 = -4.12215E-10
6th surface K = 0.00000E + 00, A4 = 6.81171E-05, A6 = -6.39098E-07, A8 = 2.83872E-09
A10 = -3.85521E-10
7th surface K = 0.00000E + 00, A4 = -2.99952E-05, A6 = 6.80376E-05, A8 = -5.33952E-06
A10 = 1.83170E-07
8th surface K = -2.40921E-01, A4 = -2.01561E-03, A6 = 1.98430E-05, A8 = -4.11420E-06
A10 = 2.47916E-08
11th surface K = 0.00000E + 00, A4 = -1.36112E-04, A6 = -2.03260E-05, A8 = 4.87452E-06
A10 = -4.67253E-07
18th surface K = 0.00000E + 00, A4 = -5.80086E-04, A6 = 4.16760E-07, A8 = -2.13784E-06
A10 = 1.86164E-07
22nd surface K = 0.00000E + 00, A4 = 9.63663E-04, A6 = -1.11055E-05, A8 = -6.03768E-07
A10 = 1.87812E-08
23rd face K = 0.00000E + 00, A4 = 1.57684E-03, A6 = -2.51251E-05, A8 = -2.66167E-06
A10 = 7.78641E-08
表 3(各種データ)
 
  ズーム比     3.83406
                広角      中間      望遠
  焦点距離       4.5567    8.9170   17.4707
 Fナンバー     4.04304   5.08877   6.11134
    画角        41.8496   23.6451   12.3700
    像高         3.4770    3.8920    3.8920
 レンズ全長     45.4477   45.4476   45.4477
    d6           0.6000    3.5833    6.3433 
    d10          6.3933    3.4099    0.6500 
    d15          9.1028    5.2370    2.2000 
    d21          1.4000    5.2658    8.3028 
 入射瞳位置      7.4758   10.1072   13.6383
 射出瞳位置    -23.1762  -37.0339  -66.1507
 前側主点位置   11.1387   16.8758   26.4913
 後側主点位置   40.9447   36.5061   27.9252
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1      -12.3033
     2         3          ∞
     3         5        9.1673
     4         7       -3.5401
     5         9       12.2370
     6        11        5.3772
     7        13       -9.4039
     8        16        8.8148
     9        18        5.7932
    10        20       -2.7639
    11        22       14.5785
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    11.38835    12.57350         8.59125      17.93305
   2      7    -5.15889     2.11080         0.08035       0.76996
   3     11    12.03419     2.84390         0.22330       0.84940
   4     16    27.99456     5.76900       -17.21681      -7.06120
   5     22    14.57852     4.28440         0.47555       1.38243
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.47292   -0.65093   -0.99874
   3     11   -3.41699   -8.26051  -24.49682
   4     16    0.32078    0.18735    0.08048
   5     22    0.77188    0.77724    0.77912
Table 3 (various data)

Zoom ratio 3.83406
Wide angle Medium telephoto Focal length 4.5567 8.9170 17.4707
F number 4.04304 5.08877 6.11134
Angle of View 41.8496 23.6451 12.3700
Image height 3.4770 3.8920 3.8920
Total lens length 45.4477 45.4476 45.4477
d6 0.6000 3.5833 6.3433
d10 6.3933 3.4099 0.6500
d15 9.1028 5.2370 2.2000
d21 1.4000 5.2658 8.3028
Entrance pupil position 7.4758 10.1072 13.6383
Exit pupil position -23.1762 -37.0339 -66.1507
Front principal point position 11.1387 16.8758 26.4913
Rear principal point position 40.9447 36.5061 27.9252

Single lens data Lens Start surface Focal length 1 1 -12.3033
2 3 ∞
3 5 9.1673
4 7 -3.5401
5 9 12.2370
6 11 5.3772
7 13 -9.4039
8 16 8.8148
9 18 5.7932
10 20 -2.7639
11 22 14.5785

Zoom lens group data Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 11.38835 12.57350 8.59125 17.93305
2 7 -5.15889 2.11080 0.08035 0.76996
3 11 12.03419 2.84390 0.22330 0.84940
4 16 27.99456 5.76900 -17.21681 -7.06120
5 22 14.57852 4.28440 0.47555 1.38243

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.47292 -0.65093 -0.99874
3 11 -3.41699 -8.26051 -24.49682
4 16 0.32078 0.18735 0.08048
5 22 0.77188 0.77724 0.77912
(数値実施例2)
 数値実施例2のズームレンズ系は、図4に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表4に、非球面データを表5に、各種データを表6に示す。
(Numerical example 2)
The zoom lens system of Numerical Example 2 corresponds to Embodiment 2 shown in FIG. Table 4 shows surface data of the zoom lens system of Numerical Example 2, Table 5 shows aspheric data, and Table 6 shows various data.
表 4(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         68.65880     0.30000     2.00272    19.3               
     2          9.88400     1.99840                                   
     3               ∞     7.90000     1.84666    23.8               
     4               ∞     0.15000                                   
     5*        12.48580     2.80000     1.76681    49.7               
     6*       -16.29730        可変                                   
     7*       -12.30580     0.50000     1.76681    49.7               
     8*         3.97600     0.66450                                   
     9          5.96940     1.01000     1.94595    18.0               
    10         11.51950        可変                                   
    11          8.43790     1.21000     1.53172    48.8               
    12         -8.43790     0.15000                                   
    13         -9.63780     0.60000     1.63550    23.9               
    14*       -46.55380     1.40000                                   
  15(絞り)           ∞        可変                                   
    16*         5.63940     2.22000     1.52996    55.8               
    17*       -15.45380     0.15000                                   
    18          5.61390     2.24000     1.49700    81.6               
    19         -6.31550     0.01000     1.56732    42.8               
    20         -6.31550     0.70000     2.00100    29.1               
    21          4.35230        可変                                   
    22*        12.48100     2.00000     1.52996    55.8               
    23*       -34.69420     1.00000                                   
    24               ∞     0.60000     1.51680    64.2               
    25               ∞     0.37000                                   
    像面             ∞                                               
Table 4 (surface data)

Surface number r d nd vd
Object ∞
1 68.65880 0.30000 2.00272 19.3
2 9.88400 1.99840
3 ∞ 7.90000 1.84666 23.8
4 ∞ 0.15000
5 * 12.48580 2.80000 1.76681 49.7
6 * -16.29730 Variable
7 * -12.30580 0.50000 1.76681 49.7
8 * 3.97600 0.66450
9 5.96940 1.01000 1.94595 18.0
10 11.51950 Variable
11 8.43790 1.21000 1.53172 48.8
12 -8.43790 0.15000
13 -9.63780 0.60000 1.63550 23.9
14 * -46.55380 1.40000
15 (Aperture) ∞ Variable
16 * 5.63940 2.22000 1.52996 55.8
17 * -15.45380 0.15000
18 5.61390 2.24000 1.49700 81.6
19 -6.31550 0.01000 1.56732 42.8
20 -6.31550 0.70000 2.00100 29.1
21 4.35230 Variable
22 * 12.48100 2.00000 1.52996 55.8
23 * -34.69420 1.00000
24 ∞ 0.60000 1.51680 64.2
25 ∞ 0.37000
Image plane ∞
表 5(非球面データ)
 
  第5面
   K= 0.00000E+00, A4=-1.40047E-04, A6= 6.05607E-07, A8=-3.01600E-08 
   A10= 3.95126E-10 
  第6面
   K= 0.00000E+00, A4= 3.34858E-05, A6= 7.64444E-07, A8=-3.22057E-08 
   A10= 4.96677E-10 
  第7面
   K= 0.00000E+00, A4=-4.56081E-04, A6= 6.69082E-05, A8=-4.34674E-06 
   A10= 1.26585E-07 
  第8面
   K=-5.56317E-01, A4=-1.15487E-03, A6= 6.31133E-05, A8=-4.41083E-06 
   A10= 1.49813E-07 
  第14面
   K= 0.00000E+00, A4= 3.09872E-04, A6= 8.49527E-05, A8=-2.32049E-05 
   A10= 2.71920E-06 
  第16面
   K= 0.00000E+00, A4= 1.86586E-04, A6= 3.98838E-06, A8= 2.75127E-07 
   A10= 3.78214E-09 
  第17面
   K= 0.00000E+00, A4= 7.52446E-04, A6=-1.85390E-06, A8=-9.89481E-08 
   A10=-1.42653E-08 
  第22面
   K= 0.00000E+00, A4=-2.55948E-04, A6= 1.82614E-04, A8=-1.07529E-05 
   A10= 2.26616E-07 
  第23面
   K= 0.00000E+00, A4=-1.66318E-03, A6= 3.93105E-04, A8=-2.34599E-05 
   A10= 4.54497E-07
Table 5 (Aspheric data)

5th surface K = 0.00000E + 00, A4 = -1.40047E-04, A6 = 6.05607E-07, A8 = -3.01600E-08
A10 = 3.95126E-10
6th surface K = 0.00000E + 00, A4 = 3.34858E-05, A6 = 7.64444E-07, A8 = -3.22057E-08
A10 = 4.96677E-10
7th surface K = 0.00000E + 00, A4 = -4.56081E-04, A6 = 6.69082E-05, A8 = -4.34674E-06
A10 = 1.26585E-07
8th surface K = -5.56317E-01, A4 = -1.15487E-03, A6 = 6.31133E-05, A8 = -4.41083E-06
A10 = 1.49813E-07
14th surface K = 0.00000E + 00, A4 = 3.09872E-04, A6 = 8.49527E-05, A8 = -2.32049E-05
A10 = 2.71920E-06
16th surface K = 0.00000E + 00, A4 = 1.86586E-04, A6 = 3.98838E-06, A8 = 2.75127E-07
A10 = 3.78214E-09
17th surface K = 0.00000E + 00, A4 = 7.52446E-04, A6 = -1.85390E-06, A8 = -9.89481E-08
A10 = -1.42653E-08
22nd surface K = 0.00000E + 00, A4 = -2.55948E-04, A6 = 1.82614E-04, A8 = -1.07529E-05
A10 = 2.26616E-07
23rd surface K = 0.00000E + 00, A4 = -1.66318E-03, A6 = 3.93105E-04, A8 = -2.34599E-05
A10 = 4.54497E-07
表 6(各種データ)
 
  ズーム比     3.82543
                広角      中間      望遠
  焦点距離       4.5541    8.9082   17.4212
 Fナンバー     4.04192   5.09009   6.10335
    画角        41.4983   23.5044   12.4026
    像高         3.4410    3.9020    3.9020
 レンズ全長     45.4524   45.4523   45.4525
    d6           0.6000    3.9847    7.1170 
    d10          7.1670    3.7822    0.6500 
    d15          7.5501    4.5293    2.0582 
    d21          2.1624    5.1832    7.6544 
 入射瞳位置      7.5314   10.2427   13.8970
 射出瞳位置    -15.1272  -21.0354  -28.8206
 前側主点位置   10.7187   15.3811   20.7842
 後側主点位置   40.9457   36.5588   28.0221
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1      -11.5443
     2         3          ∞
     3         5        9.6259
     4         7       -3.8674
     5         9       12.0333
     6        11        8.1371
     7        13      -19.2466
     8        16        8.0912
     9        18        6.3776
    10        20       -2.4922
    11        22       17.5782
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    12.29616    13.14840         9.26915      19.79405
   2      7    -5.85662     2.17450         0.10408       0.85188
   3     11    13.53803     3.36000         0.08243       0.73130
   4     16    24.16146     5.32000       -18.42739      -6.93327
   5     22    17.57820     3.60000         0.35100       1.22873
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.47303   -0.65099   -0.99872
   3     11   -3.69792  -10.26802  -60.77135
   4     16    0.25165    0.12853    0.02764
   5     22    0.84136    0.84322    0.84457
Table 6 (various data)

Zoom ratio 3.82543
Wide angle Medium telephoto Focal length 4.5541 8.9082 17.4212
F number 4.04192 5.09009 6.10335
Angle of View 41.4983 23.5044 12.4026
Image height 3.4410 3.9020 3.9020
Total lens length 45.4524 45.4523 45.4525
d6 0.6000 3.9847 7.1170
d10 7.1670 3.7822 0.6500
d15 7.5501 4.5293 2.0582
d21 2.1624 5.1832 7.6544
Entrance pupil position 7.5314 10.2427 13.8970
Exit pupil position -15.1272 -21.0354 -28.8206
Front principal point position 10.7187 15.3811 20.7842
Rear principal point position 40.9457 36.5588 28.0221

Single lens data Lens Start surface Focal length 1 1 -11.5443
2 3 ∞
3 5 9.6259
4 7 -3.8674
5 9 12.0333
6 11 8.1371
7 13 -19.2466
8 16 8.0912
9 18 6.3776
10 20 -2.4922
11 22 17.5782

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 12.29616 13.14840 9.26915 19.79405
2 7 -5.85662 2.17450 0.10408 0.85188
3 11 13.53803 3.36000 0.08243 0.73130
4 16 24.16146 5.32000 -18.42739 -6.93327
5 22 17.57820 3.60000 0.35100 1.22873

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.47303 -0.65099 -0.99872
3 11 -3.69792 -10.26802 -60.77135
4 16 0.25 165 0.12853 0.02764
5 22 0.84136 0.84322 0.84457
(数値実施例3)
 数値実施例3のズームレンズ系は、図7に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に示す。
(Numerical Example 3)
The zoom lens system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG. Table 7 shows surface data of the zoom lens system of Numerical Example 3, Table 8 shows aspheric data, and Table 9 shows various data.
表 7(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         46.93000     0.30000     2.00272    19.3               
     2          8.93120     1.99410                                   
     3               ∞     7.42000     1.84666    23.8               
     4               ∞     0.15000                                   
     5*        12.39480     2.60000     1.76681    49.7               
     6*       -16.60730        可変                                   
     7*       -13.34410     0.50000     1.76681    49.7               
     8*         4.20360     0.63280                                   
     9          6.14600     1.00000     1.94595    18.0               
    10         12.01580        可変                                   
  11(絞り)           ∞     0.85000                                   
    12          9.35300     1.12000     1.54814    45.8               
    13         -9.35300     0.15000                                   
    14        -12.35180     0.60000     1.63550    23.9               
    15*       154.69170        可変                                   
    16*         5.28630     2.42000     1.52996    55.8               
    17*       -22.48140     0.15000                                   
    18          5.56290     2.67000     1.49700    81.6               
    19         -4.67160     0.01000     1.56732    42.8               
    20         -4.67160     0.70000     2.00100    29.1               
    21          4.14970        可変                                   
    22*        17.29270     2.44000     1.52996    55.8               
    23*        -9.49880     0.78850                                   
    24               ∞     0.50000     1.51680    64.2               
    25               ∞     0.37000                                   
    像面             ∞                                               
Table 7 (surface data)

Surface number r d nd vd
Object ∞
1 46.93000 0.30000 2.00272 19.3
2 8.93120 1.99410
3 ∞ 7.42000 1.84666 23.8
4 ∞ 0.15000
5 * 12.39480 2.60000 1.76681 49.7
6 * -16.60730 variable
7 * -13.34410 0.50000 1.76681 49.7
8 * 4.20360 0.63280
9 6.14600 1.00000 1.94595 18.0
10 12.01580 Variable
11 (Aperture) ∞ 0.85000
12 9.35 300 1.12000 1.54814 45.8
13 -9.35300 0.15000
14 -12.35 180 0.60000 1.63550 23.9
15 * 154.69170 variable
16 * 5.28630 2.42000 1.52996 55.8
17 * -22.48140 0.15000
18 5.56290 2.67000 1.49700 81.6
19 -4.67160 0.01000 1.56732 42.8
20 -4.67160 0.70000 2.00100 29.1
21 4.14970 Variable
22 * 17.29270 2.44000 1.52996 55.8
23 * -9.49880 0.78850
24 ∞ 0.50000 1.51680 64.2
25 ∞ 0.37000
Image plane ∞
表 8(非球面データ)
 
  第5面
   K= 0.00000E+00, A4=-1.90274E-04, A6=-7.99606E-07, A8= 9.39275E-08 
   A10=-2.73985E-09, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第6面
   K= 0.00000E+00, A4=-5.45762E-05, A6= 1.03639E-06, A8= 3.04122E-08 
   A10=-1.70060E-09, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4=-7.72244E-04, A6= 7.82721E-05, A8=-3.32334E-06 
   A10= 7.79930E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第8面
   K=-4.84027E-01, A4=-1.32994E-03, A6= 6.48856E-05, A8=-1.22011E-06 
   A10= 7.21849E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第15面
   K= 0.00000E+00, A4= 3.74799E-04, A6= 1.39103E-05, A8=-2.98561E-06 
   A10= 3.81732E-07, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第16面
   K= 0.00000E+00, A4= 3.94704E-04, A6=-1.89999E-05, A8= 2.84952E-06 
   A10=-8.17298E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第17面
   K= 0.00000E+00, A4= 8.82886E-04, A6=-4.05639E-05, A8= 3.70916E-06 
   A10=-1.77627E-07, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第22面
   K= 0.00000E+00, A4= 6.63960E-05, A6=-3.20982E-05, A8= 1.28816E-05 
   A10=-1.03818E-06, A12= 2.73096E-08, A14= 2.22328E-10, A16=-1.98662E-11 
  第23面
   K= 0.00000E+00, A4=-1.07874E-04, A6=-1.33878E-04, A8= 2.54473E-05 
   A10=-1.19583E-06, A12=-2.04052E-09, A14= 1.25835E-09, A16=-2.36606E-11
Table 8 (Aspherical data)

5th surface K = 0.00000E + 00, A4 = -1.90274E-04, A6 = -7.99606E-07, A8 = 9.39275E-08
A10 = -2.73985E-09, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
6th surface K = 0.00000E + 00, A4 = -5.45762E-05, A6 = 1.03639E-06, A8 = 3.04122E-08
A10 = -1.70060E-09, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
7th surface K = 0.00000E + 00, A4 = -7.72244E-04, A6 = 7.82721E-05, A8 = -3.32334E-06
A10 = 7.79930E-08, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
8th surface K = -4.84027E-01, A4 = -1.32994E-03, A6 = 6.48856E-05, A8 = -1.22011E-06
A10 = 7.21849E-08, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
15th surface K = 0.00000E + 00, A4 = 3.74799E-04, A6 = 1.39103E-05, A8 = -2.98561E-06
A10 = 3.81732E-07, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
16th surface K = 0.00000E + 00, A4 = 3.94704E-04, A6 = -1.89999E-05, A8 = 2.84952E-06
A10 = -8.17298E-08, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
17th surface K = 0.00000E + 00, A4 = 8.82886E-04, A6 = -4.05639E-05, A8 = 3.70916E-06
A10 = -1.77627E-07, A12 = 0.00000E + 00, A14 = 0.00000E + 00, A16 = 0.00000E + 00
22nd surface K = 0.00000E + 00, A4 = 6.63960E-05, A6 = -3.20982E-05, A8 = 1.28816E-05
A10 = -1.03818E-06, A12 = 2.73096E-08, A14 = 2.22328E-10, A16 = -1.98662E-11
23rd surface K = 0.00000E + 00, A4 = -1.07874E-04, A6 = -1.33878E-04, A8 = 2.54473E-05
A10 = -1.19583E-06, A12 = -2.04052E-09, A14 = 1.25835E-09, A16 = -2.36606E-11
表 9(各種データ)
 
  ズーム比     3.81912
                広角      中間      望遠
  焦点距離       4.5736    8.9432   17.4670
 Fナンバー     4.04409   5.06880   6.07256
    画角        41.1750   23.5289   12.5047
    像高         3.4210    3.9180    3.9180
 レンズ全長     45.4459   45.4459   45.4460
    d6           0.4179    3.9219    7.2285 
    d10          8.0106    4.5065    1.2000 
    d15          7.3038    4.4812    2.0667 
    d21          2.3482    5.1709    7.5854 
 入射瞳位置      7.0260    9.2911   11.7303
 射出瞳位置    -26.5688  -59.0389 -347.0251
 前側主点位置   10.8137   16.8797   28.3181
 後側主点位置   40.9190   36.5072   27.9654
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1      -11.0441
     2         3          ∞
     3         5        9.6307
     4         7       -4.1178
     5         9       12.2829
     6        12        8.7164
     7        14      -17.9741
     8        16        8.3273
     9        18        5.5936
    10        20       -2.1116
    11        22       11.9457
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    12.97951    12.46410         9.32493      19.55689
   2      7    -6.35228     2.13280         0.10767       0.84838
   3     11    15.97947     2.72000         0.73357       1.37859
   4     16    25.53240     5.95000       -25.87620      -8.67772
   5     22    11.94573     3.72850         1.06291       2.02651
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.48144   -0.65552   -0.99505
   3     11   -4.61886  -15.05595  180.87758
   4     16    0.19262    0.08450   -0.00903
   5     22    0.82264    0.82618    0.82768
Table 9 (various data)

Zoom ratio 3.81912
Wide angle Medium telephoto Focal length 4.5736 8.9432 17.4670
F number 4.04409 5.06880 6.07256
Angle of View 41.1750 23.5289 12.5047
Image height 3.4210 3.9180 3.9180
Total lens length 45.4459 45.4459 45.4460
d6 0.4179 3.9219 7.2285
d10 8.0106 4.5065 1.2000
d15 7.3038 4.4812 2.0667
d21 2.3482 5.1709 7.5854
Entrance pupil position 7.0260 9.2911 11.7303
Exit pupil position -26.5688 -59.0389 -347.0251
Front principal point position 10.8137 16.8797 28.3181
Rear principal point position 40.9190 36.5072 27.9654

Single lens data Lens Start surface Focal length 1 1 -11.0441
2 3 ∞
3 5 9.6307
4 7 -4.1178
5 9 12.2829
6 12 8.7164
7 14 -17.9741
8 16 8.3273
9 18 5.5936
10 20 -2.1116
11 22 11.9457

Zoom lens group data Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 12.97951 12.46410 9.32493 19.55689
2 7 -6.35228 2.13280 0.10767 0.84838
3 11 15.97947 2.72000 0.73357 1.37859
4 16 25.53240 5.95000 -25.87620 -8.67772
5 22 11.94573 3.72850 1.06291 2.02651

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.48144 -0.65552 -0.99505
3 11 -4.61886 -15.05595 180.87758
4 16 0.19262 0.08450 -0.00903
5 22 0.82264 0.82618 0.82768
(数値実施例4)
 数値実施例4のズームレンズ系は、図10に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表10に、非球面データを表11に、各種データを表12に示す。
(Numerical example 4)
The zoom lens system of Numerical Example 4 corresponds to Embodiment 4 shown in FIG. Table 10 shows surface data of the zoom lens system of Numerical Example 4, Table 11 shows aspheric data, and Table 12 shows various data.
表 10(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        103.02920     0.30000     2.00272    19.3               
     2         12.77880     2.43840                                   
     3               ∞     8.51710     1.84666    23.8               
     4               ∞     0.15000                                   
     5*        12.07530     2.90120     1.69385    53.1               
     6*       -19.43760        可変                                   
     7*       -13.20660     0.50000     1.77200    50.0               
     8*         4.30020     0.60010                                   
     9          6.12960     1.14610     1.94595    18.0               
    10         11.83500        可変                                   
    11*        13.22100     1.15260     1.81000    41.0               
    12         -7.02210     0.01000     1.56732    42.8               
    13         -7.02210     0.30000     1.72825    28.3               
    14         56.59210     1.00000                                   
  15(絞り)           ∞        可変                                   
    16*         5.78150     2.55090     1.51760    63.5               
    17*       -14.52750     0.12000                                   
    18         11.23090     3.89340     1.59282    68.6               
    19         -4.69070     0.01000     1.56732    42.8               
    20         -4.69070     0.77140     2.00100    29.1               
    21          5.20420        可変                                   
    22*        54.36630     2.33920     1.52996    55.8               
    23*        -5.79710     0.50000                                   
    24               ∞     0.60000     1.51680    64.2               
    25               ∞     0.37000                                   
    像面             ∞                                               
Table 10 (surface data)

Surface number r d nd vd
Object ∞
1 103.02920 0.30000 2.00272 19.3
2 12.77880 2.43840
3 ∞ 8.51710 1.84666 23.8
4 ∞ 0.15000
5 * 12.07530 2.90120 1.69385 53.1
6 * -19.43760 Variable
7 * -13.20660 0.50000 1.77200 50.0
8 * 4.30020 0.60010
9 6.12960 1.14610 1.94595 18.0
10 11.83500 Variable
11 * 13.22100 1.15260 1.81000 41.0
12 -7.02210 0.01000 1.56732 42.8
13 -7.02210 0.30000 1.72825 28.3
14 56.59210 1.00000
15 (Aperture) ∞ Variable
16 * 5.78150 2.55090 1.51760 63.5
17 * -14.52750 0.12000
18 11.23090 3.89340 1.59282 68.6
19 -4.69070 0.01000 1.56732 42.8
20 -4.69070 0.77140 2.00100 29.1
21 5.20420 Variable
22 * 54.36630 2.33920 1.52996 55.8
23 * -5.79710 0.50000
24 ∞ 0.60000 1.51680 64.2
25 ∞ 0.37000
Image plane ∞
表 11(非球面データ)
 
  第5面
   K= 0.00000E+00, A4=-1.10379E-04, A6=-7.58116E-07, A8= 2.12080E-08 
   A10=-2.17300E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第6面
   K= 0.00000E+00, A4= 4.11448E-05, A6=-6.19577E-07, A8= 2.88216E-08 
   A10=-3.35617E-10, A12= 0.00000E+00, A14= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4=-1.55355E-04, A6= 3.05392E-05, A8=-1.37779E-06 
   A10= 2.66649E-08, A12= 0.00000E+00, A14= 0.00000E+00 
  第8面
   K=-8.75131E-01, A4=-6.43005E-05, A6= 4.28077E-05, A8=-8.03509E-07 
   A10=-3.45587E-09, A12= 0.00000E+00, A14= 0.00000E+00 
  第11面
   K= 0.00000E+00, A4=-1.28454E-04, A6=-3.70424E-06, A8= 7.78067E-07 
   A10=-1.63998E-07, A12= 0.00000E+00, A14= 0.00000E+00 
  第16面
   K= 7.74219E-01, A4=-5.39950E-04, A6=-2.81182E-05, A8= 2.74443E-06 
   A10=-3.89462E-07, A12= 1.60693E-08, A14= 0.00000E+00 
  第17面
   K= 0.00000E+00, A4= 8.64892E-04, A6=-1.99521E-05, A8= 7.95379E-06 
   A10=-9.71022E-07, A12= 5.04694E-08, A14= 0.00000E+00 
  第22面
   K= 0.00000E+00, A4= 6.33384E-04, A6= 1.76866E-04, A8=-3.12044E-05 
   A10= 2.81700E-06, A12=-1.19783E-07, A14= 2.01452E-09 
  第23面
   K= 0.00000E+00, A4= 4.63863E-03, A6=-2.83007E-04, A8= 1.37042E-05 
   A10=-1.71417E-07, A12= 0.00000E+00, A14= 0.00000E+00
Table 11 (Aspheric data)

5th surface K = 0.00000E + 00, A4 = -1.10379E-04, A6 = -7.58116E-07, A8 = 2.12080E-08
A10 = -2.17300E-10, A12 = 0.00000E + 00, A14 = 0.00000E + 00
6th surface K = 0.00000E + 00, A4 = 4.11448E-05, A6 = -6.19577E-07, A8 = 2.88216E-08
A10 = -3.35617E-10, A12 = 0.00000E + 00, A14 = 0.00000E + 00
7th surface K = 0.00000E + 00, A4 = -1.55355E-04, A6 = 3.05392E-05, A8 = -1.37779E-06
A10 = 2.66649E-08, A12 = 0.00000E + 00, A14 = 0.00000E + 00
8th surface K = -8.75131E-01, A4 = -6.43005E-05, A6 = 4.28077E-05, A8 = -8.03509E-07
A10 = -3.45587E-09, A12 = 0.00000E + 00, A14 = 0.00000E + 00
11th surface K = 0.00000E + 00, A4 = -1.28454E-04, A6 = -3.70424E-06, A8 = 7.78067E-07
A10 = -1.63998E-07, A12 = 0.00000E + 00, A14 = 0.00000E + 00
16th surface K = 7.74219E-01, A4 = -5.39950E-04, A6 = -2.81182E-05, A8 = 2.74443E-06
A10 = -3.89462E-07, A12 = 1.60693E-08, A14 = 0.00000E + 00
17th surface K = 0.00000E + 00, A4 = 8.64892E-04, A6 = -1.99521E-05, A8 = 7.95379E-06
A10 = -9.71022E-07, A12 = 5.04694E-08, A14 = 0.00000E + 00
22nd surface K = 0.00000E + 00, A4 = 6.33384E-04, A6 = 1.76866E-04, A8 = -3.12044E-05
A10 = 2.81700E-06, A12 = -1.19783E-07, A14 = 2.01452E-09
23rd face K = 0.00000E + 00, A4 = 4.63863E-03, A6 = -2.83007E-04, A8 = 1.37042E-05
A10 = -1.71417E-07, A12 = 0.00000E + 00, A14 = 0.00000E + 00
表 12(各種データ)
 
  ズーム比     4.69855
                広角      中間      望遠
  焦点距離       4.5820    9.8677   21.5290
 Fナンバー     4.04821   5.29652   6.48773
    画角        41.8161   21.2048   10.0533
    像高         3.4770    3.8920    3.8920
 レンズ全長     49.9390   49.9391   49.9391
    d6           0.6483    4.7796    8.7047 
    d10          8.7064    4.5751    0.6500 
    d15          8.5553    5.5891    3.1998 
    d21          1.8586    4.8249    7.2142 
 入射瞳位置      8.7977   12.3604   17.1413
 射出瞳位置    -44.1878-2867.4296   71.2474
 前側主点位置   12.9051   22.1941   45.1718
 後側主点位置   45.4011   40.0775   28.3672
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1      -14.5728
     2         3          ∞
     3         5       11.1554
     4         7       -4.1504
     5         9       12.2457
     6        11        5.8101
     7        13       -8.5610
     8        16        8.3477
     9        18        6.1402
    10        20       -2.3721
    11        22       10.0197
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    14.41338    14.30670        10.32859      20.98416
   2      7    -6.35041     2.24620         0.16249       0.99225
   3     11    16.59194     2.46260        -0.05346       0.59657
   4     16    19.18236     7.34570       -19.43101      -4.45387
   5     22    10.01968     3.43920         1.40047       2.39430
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      7   -0.45589   -0.64811   -1.08124
   3     11   -6.48009   47.38009   10.88193
   4     16    0.12595   -0.02598   -0.14709
   5     22    0.85438    0.85818    0.86307
Table 12 (various data)

Zoom ratio 4.69855
Wide angle Medium telephoto Focal length 4.5820 9.8677 21.5290
F number 4.04821 5.29652 6.48773
Angle of View 41.8161 21.2048 10.0533
Image height 3.4770 3.8920 3.8920
Total lens length 49.9390 49.9391 49.9391
d6 0.6483 4.7796 8.7047
d10 8.7064 4.5751 0.6500
d15 8.5553 5.5891 3.1998
d21 1.8586 4.8249 7.2142
Entrance pupil position 8.7977 12.3604 17.1413
Exit pupil position -44.1878-2867.4296 71.2474
Front principal point position 12.9051 22.1941 45.1718
Rear principal point position 45.4011 40.0775 28.3672

Single lens data Lens Start surface Focal length 1 1 -14.5728
2 3 ∞
3 5 11.1554
4 7 -4.1504
5 9 12.2457
6 11 5.8101
7 13 -8.5610
8 16 8.3477
9 18 6.1402
10 20 -2.3721
11 22 10.0197

Zoom lens group data Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 14.41338 14.30670 10.32859 20.98416
2 7 -6.35041 2.24620 0.16249 0.99225
3 11 16.59194 2.46260 -0.05346 0.59657
4 16 19.18236 7.34570 -19.43101 -4.45387
5 22 10.01968 3.43920 1.40047 2.39430

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 7 -0.45589 -0.64811 -1.08124
3 11 -6.48009 47.38009 10.88193
4 16 0.12595 -0.02598 -0.14709
5 22 0.85438 0.85818 0.86307
 以下の表13に、各数値実施例のズームレンズ系における各条件の対応値を示す。 Table 13 below shows the corresponding values for each condition in the zoom lens system of each numerical example.
表 13(条件の対応値)
Figure JPOXMLDOC01-appb-T000001
Table 13 (corresponding values of conditions)
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、例えばデジタルカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等のデジタル入力装置に適用可能である。特に本開示は、デジタルカメラ等の高画質が要求される撮影光学系に好適である。 The present disclosure can be applied to digital input devices such as a digital camera, a camera of a portable information terminal such as a smartphone, a monitoring camera in a monitoring system, a Web camera, and an in-vehicle camera. In particular, the present disclosure is suitable for a photographing optical system that requires high image quality, such as a digital camera.
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
G5  第5レンズ群
L1  第1レンズ素子
L2  第2レンズ素子(プリズム)
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
A   開口絞り
P   平行平板
S   像面
1   ズームレンズ系
2   撮像素子
3   液晶モニタ
4   筐体
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group L1 1st lens element L2 2nd lens element (prism)
L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element L7 7th lens element L8 8th lens element L9 9th lens element L10 10th lens element L11 11th lens element A Aperture stop P Parallel Flat plate S Image surface 1 Zoom lens system 2 Image sensor 3 Liquid crystal monitor 4 Case

Claims (7)

  1.  物体側から像側へと順に、
    正のパワーを有する第1レンズ群と、
    負のパワーを有する第2レンズ群と、
    正のパワーを有する第3レンズ群と、
    第4レンズ群とを備え、
    前記第1レンズ群は、物体からの光線を折り曲げるための反射面を有するレンズ素子を有し、
    撮像時の広角端から望遠端へのズーミングの際に、前記第1レンズ群は光軸に沿って移動せず、前記第2レンズ群及び前記第4レンズ群は光軸に沿って移動し、
    以下の条件(1)を満足することを特徴とする、ズームレンズ系:
      2.8<L/(D+D)<4.0 ・・・(1)
    ここで、
     L:レンズ全長(第1レンズ群の最物体側レンズ面から像面までの距離)、
     D:撮像時の広角端から望遠端へのズーミングの際の、第2レンズ群の移動量、
     D:撮像時の広角端から望遠端へのズーミングの際の、第4レンズ群の移動量
    である。
    From the object side to the image side,
    A first lens group having positive power;
    A second lens group having negative power;
    A third lens group having positive power;
    A fourth lens group,
    The first lens group includes a lens element having a reflecting surface for bending light rays from an object,
    During zooming from the wide-angle end to the telephoto end during imaging, the first lens group does not move along the optical axis, and the second lens group and the fourth lens group move along the optical axis,
    A zoom lens system characterized by satisfying the following condition (1):
    2.8 <L / (D 1 + D 2 ) <4.0 (1)
    here,
    L: total lens length (distance from the most object side lens surface of the first lens group to the image plane),
    D 1 : the amount of movement of the second lens group during zooming from the wide-angle end to the telephoto end during imaging,
    D 2 is the amount of movement of the fourth lens group during zooming from the wide-angle end to the telephoto end during imaging.
  2.  前記第4レンズ群は、正のパワーを有する、請求項1に記載のズームレンズ系。 The zoom lens system according to claim 1, wherein the fourth lens group has positive power.
  3.  前記第4レンズ群のすぐ像側に、第5レンズ群を有する、請求項1に記載のズームレンズ系。 The zoom lens system according to claim 1, further comprising a fifth lens group immediately on the image side of the fourth lens group.
  4.  前記第5レンズ群は、正のパワーを有する、請求項3に記載のズームレンズ系。 The zoom lens system according to claim 3, wherein the fifth lens group has a positive power.
  5.  前記第2レンズ群は、2枚のレンズ素子を有し、該2枚のレンズ素子の間に空気間隔を有する、請求項1に記載のズームレンズ系。 The zoom lens system according to claim 1, wherein the second lens group includes two lens elements, and an air gap is provided between the two lens elements.
  6.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、撮像装置。
    An imaging apparatus capable of outputting an optical image of an object as an electrical image signal,
    A zoom lens system that forms an optical image of the object;
    An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    An imaging apparatus, wherein the zoom lens system is the zoom lens system according to claim 1.
  7.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、カメラ。
    A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
    An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    The camera according to claim 1, wherein the zoom lens system is the zoom lens system according to claim 1.
PCT/JP2012/006781 2011-11-04 2012-10-23 Zoom-lens system, imaging device, and camera WO2013065252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-242803 2011-11-04
JP2011242803 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065252A1 true WO2013065252A1 (en) 2013-05-10

Family

ID=48191632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006781 WO2013065252A1 (en) 2011-11-04 2012-10-23 Zoom-lens system, imaging device, and camera

Country Status (1)

Country Link
WO (1) WO2013065252A1 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202500A (en) * 2002-01-08 2003-07-18 Minolta Co Ltd Imaging apparatus
JP2004347712A (en) * 2003-05-20 2004-12-09 Minolta Co Ltd Imaging lens device
JP2004354869A (en) * 2003-05-30 2004-12-16 Sony Corp Zoom lens and imaging apparatus
JP2005181635A (en) * 2003-12-18 2005-07-07 Sony Corp Zoom lens and image pickup device
JP2005321452A (en) * 2004-05-06 2005-11-17 Sony Corp Zoom lens and image pickup apparatus
JP2005338143A (en) * 2004-05-24 2005-12-08 Konica Minolta Photo Imaging Inc Imaging lens device
JP2006011186A (en) * 2004-06-29 2006-01-12 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2006071993A (en) * 2004-09-02 2006-03-16 Sony Corp Zoom lens and imaging apparatus
JP2006098686A (en) * 2004-09-29 2006-04-13 Olympus Corp Zoom lens and electronic imaging apparatus using the same
JP2006113565A (en) * 2004-09-16 2006-04-27 Konica Minolta Opto Inc Zoom lens and imaging apparatus
JP2006195071A (en) * 2005-01-12 2006-07-27 Konica Minolta Photo Imaging Inc Variable power optical system
JP2006209100A (en) * 2004-12-28 2006-08-10 Konica Minolta Opto Inc Zoom lens and imaging apparatus
JP2006251037A (en) * 2005-03-08 2006-09-21 Sony Corp Bent optical system and imaging apparatus
JP2006323051A (en) * 2005-05-18 2006-11-30 Konica Minolta Photo Imaging Inc Variable power optical system
JP2007093980A (en) * 2005-09-28 2007-04-12 Nikon Corp Zoom lens
JP2007094135A (en) * 2005-09-29 2007-04-12 Konica Minolta Opto Inc Zoom lens

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202500A (en) * 2002-01-08 2003-07-18 Minolta Co Ltd Imaging apparatus
JP2004347712A (en) * 2003-05-20 2004-12-09 Minolta Co Ltd Imaging lens device
JP2004354869A (en) * 2003-05-30 2004-12-16 Sony Corp Zoom lens and imaging apparatus
JP2005181635A (en) * 2003-12-18 2005-07-07 Sony Corp Zoom lens and image pickup device
JP2005321452A (en) * 2004-05-06 2005-11-17 Sony Corp Zoom lens and image pickup apparatus
JP2005338143A (en) * 2004-05-24 2005-12-08 Konica Minolta Photo Imaging Inc Imaging lens device
JP2006011186A (en) * 2004-06-29 2006-01-12 Konica Minolta Photo Imaging Inc Imaging apparatus
JP2006071993A (en) * 2004-09-02 2006-03-16 Sony Corp Zoom lens and imaging apparatus
JP2006113565A (en) * 2004-09-16 2006-04-27 Konica Minolta Opto Inc Zoom lens and imaging apparatus
JP2006098686A (en) * 2004-09-29 2006-04-13 Olympus Corp Zoom lens and electronic imaging apparatus using the same
JP2006209100A (en) * 2004-12-28 2006-08-10 Konica Minolta Opto Inc Zoom lens and imaging apparatus
JP2006195071A (en) * 2005-01-12 2006-07-27 Konica Minolta Photo Imaging Inc Variable power optical system
JP2006251037A (en) * 2005-03-08 2006-09-21 Sony Corp Bent optical system and imaging apparatus
JP2006323051A (en) * 2005-05-18 2006-11-30 Konica Minolta Photo Imaging Inc Variable power optical system
JP2007093980A (en) * 2005-09-28 2007-04-12 Nikon Corp Zoom lens
JP2007094135A (en) * 2005-09-29 2007-04-12 Konica Minolta Opto Inc Zoom lens

Similar Documents

Publication Publication Date Title
JP5816845B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5891447B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5519928B2 (en) Zoom lens system, imaging device and camera
JP5919519B2 (en) Zoom lens system, imaging device and camera
WO2012101959A1 (en) Zoom-lens system, imaging device, and camera
JP2012133230A (en) Zoom lens system, interchangeable lens device and camera system
JP2010152145A (en) Zoom lens system, imaging apparatus, and camera
JP2010152147A (en) Zoom lens system, image capturing apparatus, and camera
JP2011232542A (en) Zoom lens system, imaging apparatus and camera
JP2010152148A (en) Zoom lens system, image capturing apparatus, and camera
JP2012198505A (en) Zoom lens system, imaging device, and camera
WO2014006653A1 (en) Zoom lens system, image capturing device and camera
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JP5919518B2 (en) Zoom lens system, imaging device and camera
JP2011085654A (en) Zoom lens system, imaging apparatus and camera
JP2011064933A (en) Zoom lens system, imaging apparatus and camera
WO2013105190A1 (en) Zoom lens system, imaging device, and camera
JP2010152144A (en) Zoom lens system, image capturing apparatus, and camera
JP5519929B2 (en) Zoom lens system, imaging device and camera
JP2010160278A (en) Zoom lens system, imaging device, and camera
JP6198071B2 (en) Zoom lens system, imaging device and camera
JP2010160334A (en) Zoom lens system, imaging apparatus, and camera
JP5669105B2 (en) Zoom lens system, imaging device and camera
JP5271090B2 (en) Zoom lens system, imaging device and camera
JP5320080B2 (en) Zoom lens system, imaging device and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP