WO2013064774A1 - Substrate for a photovoltaic cell - Google Patents

Substrate for a photovoltaic cell Download PDF

Info

Publication number
WO2013064774A1
WO2013064774A1 PCT/FR2012/052500 FR2012052500W WO2013064774A1 WO 2013064774 A1 WO2013064774 A1 WO 2013064774A1 FR 2012052500 W FR2012052500 W FR 2012052500W WO 2013064774 A1 WO2013064774 A1 WO 2013064774A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
glass
mgo
photovoltaic
substrate according
Prior art date
Application number
PCT/FR2012/052500
Other languages
French (fr)
Inventor
Octavio Cintora
Dominique Sachot
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2013064774A1 publication Critical patent/WO2013064774A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of substrates for photovoltaic cells. It relates more specifically substrates for photovoltaic cells comprising at least one float glass sheet provided on one side with at least one electrode.
  • the use of a thin-film photovoltaic material makes it possible to replace expensive substrates made of silicon with substrates comprising glass sheets.
  • the material with photovoltaic properties, and generally the electrode, are deposited in a thin layer by deposition processes such as evaporation, sputtering, chemical vapor deposition (CVD) or sublimation (CSS) on the glass sheet.
  • CVD chemical vapor deposition
  • SCS sublimation
  • the latter must generally be heated at high temperature, either during the deposition or after the deposition (annealing treatment, selenization, etc.), and therefore undergoes temperatures of the order of 500 ° C. or more.
  • These treatments make it possible, for example, to improve the crystallinity of the layers and therefore their electronic conduction or photovoltaic properties.
  • Glasses of higher thermal resistance have been proposed, but have a high production cost, especially because of the use of expensive raw materials (carriers of barium or strontium for example), or particularly high melting temperatures. In in addition, some of these glasses do not lend themselves to the forming of glass by floating.
  • the object of the invention is to obviate these drawbacks, by proposing a glass composition having improved thermal resistance making it compatible with the processes used in the manufacture of cells based on photovoltaic materials in a thin layer, which also makes it possible to produce a glass, especially by floating, under very favorable economic conditions.
  • an object of the invention is a substrate comprising at least one glass sheet provided on one side with at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content within the limits defined below:
  • the other constituents of the composition may be impurities originating from the raw materials (in particular iron oxide) or due to the degradation of the refractories of the melting furnace or of the refining agents (in particular SO 3 ).
  • Silica (S10 2 ) is the main formative element of glass. In too low levels, the hydrolytic resistance of the glass, especially in basic medium, would be reduced too much. On the other hand, contents above 75% lead to an increase in the viscosity of the highly detrimental glass.
  • the silica content is preferably greater than or equal to 62%, especially 63% and even 64%, and / or less than or equal to 74%, especially 73% or 72%.
  • Alumina Al 2 O 3 makes it possible to increase the hydrolytic resistance of the glass and to reduce its refractive index, this latter advantage being particularly significant when the substrate is intended to constitute the front-face substrate of the photovoltaic cell.
  • the addition of lime (CaO) has the advantage of reducing the high temperature viscosity of the glass, and thus of facilitating its melting and refining, while increasing the lower annealing temperature, and therefore the thermal stability.
  • the increase in the liquidus temperature and the refractive index attributable to this oxide lead to limiting its content.
  • the CaO content is preferably greater than or equal to 8%, especially 9% and / or less than or equal to 14%, especially 13%, and even 12%.
  • Magnesia (MgO) is useful for improving the chemical durability of glass and decreasing its viscosity. High levels, however, lead to increased risks of devitrification.
  • Soda (Na 2 ⁇ 0) is useful for reducing the viscosity at high temperature and liquidus temperature. Too high levels, however, lead to degrade the hydrolytic strength of the glass and its thermal stability, while increasing the cost.
  • the content of Na 2 ⁇ 0 is preferably in a range from 10% to 13%.
  • Potash (K 2 0) has the same advantages and disadvantages, but seems to degrade the thermal stability in an even greater way. Its content is therefore preferably at most 2%, especially 1%, and even 0.5% or 0.1%.
  • Tin oxide increases the thermomechanical strength of glass. Its content is preferably at least 0.9%, especially 1% or even 1.1% and even 1.2%, 1.3% or 1.5% and / or less than or equal to 4%, especially 3.5 ⁇ 6, even 3% and even 2.5% or 2%.
  • the tin oxide content is advantageously greater than 1.1% and even 1.2%. Contents included in a range from 1% (in particular 1.2%) to 4%, in particular from 1% (or 1.2%) to 3% and even from 1% (especially 1.2%) to 2% are particularly advantageous.
  • the glass is preferably colorless. For this purpose, it is preferably free of coloring agents, with the exception of iron oxide, which is an unavoidable impurity.
  • colorless glass a glass such that its colorimetric coordinates a * and b * are each in a range from -2 to +2, in particular from -1 to +1 for a thickness of 3 mm, in taking into consideration the illuminant D65 as defined by ISO / IEC 10526 and the CIE 1931 colorimetric reference observer as defined by ISO / IEC 10527.
  • the glass preferably has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
  • the weight content of MgO is at most 1%, especially 0.5% and even 0.1%.
  • the CaO content is advantageously at least 11.5% or even 12%.
  • the Na 2 0 content is preferably at least 10% or even 11%. It is advantageously at most 12%.
  • Particularly preferred compositions comprise the following constituents, in a weight content varying within the limits defined below:
  • the weight content of MgO is at least 4%, even 4.5% or 5% and / or at most 6%.
  • the CaO content is preferably between 9 and 10.5%.
  • the content of Na 2 0 is preferably at least 9.5% or 10% and / or at most 11%.
  • Particularly preferred compositions comprise the following constituents, in a weight content varying within the limits defined below:
  • the melting of the glass may be carried out in continuous furnaces, heated with electrodes and / or using burners, aerated and / or immersed and / or arranged in the vault of the oven so that the flame impact the raw materials or the glass bath.
  • the raw materials are generally pulverulent and include natural materials (sand, feldspars, limestone, dolomite, nepheline syenite altogether or artificial (sodium or potassium carbonate, sodium sulphate ).
  • the tin oxide may be provided, for example, by cassiterite or malayaite, the latter being a silicate of calcium and tin.
  • the raw materials are charged and then undergo fusion reactions in the physical sense of the term and various chemical reactions leading to obtaining a glass bath.
  • the molten glass is then fed to a forming step during which the glass sheet will take shape.
  • the forming is carried out in known manner, for example by floating, that is to say by pouring molten glass (at a viscosity of the order of 3000 Poises) on a bath of molten tin, or by rolling between rollers.
  • the obtained glass ribbon is then carefully annealed in order to eliminate any thermal stresses within it, before being cut to the desired dimensions.
  • the thickness of the glass sheet is typically between 2 and 6 mm, especially between 2.5 and 4 mm.
  • the electrode is preferably in the form of a thin layer deposited on the substrate (generally on the entire face of the substrate), directly in contact with the substrate or in contact with at least one underlayer. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It can still be a thin metal layer, for example molybdenum.
  • the transparent layers are generally used when the substrate is intended to form the front face substrate of the photovoltaic cell, as explained in more detail later in the text.
  • the term "front face" is understood to mean the face traversed first by solar radiation.
  • the metal electrode may also be a silver layer, capable of reflecting light radiation, useful for example in an application as a mirror, especially a mirror for concentrating solar energy.
  • the electrode may also consist of a stack of thin layers of which at least one is electroconductive.
  • the electrode in the form of a thin layer may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by a magnetic field (magnetron process).
  • CVD chemical vapor deposition
  • sputtering deposition in particular assisted by a magnetic field (magnetron process).
  • magnetic field magnetic field
  • halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer.
  • the advantage of the CVD process is that it can be implemented in the process of forming the glass sheet by floating. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
  • the CVD process is particularly suitable for depositing fluorine or antimony doped tin oxide layers.
  • the sputtering process will be preferentially used for the deposition of molybdenum layers, doped zinc oxide or ITO.
  • Another object of the invention is a semiconductor device comprising at least one substrate according to the invention and at least one thin layer of a material with photovoltaic properties deposited on said at least one substrate.
  • the material with photovoltaic properties is preferably chosen from compounds of CdTe type and sulphides and / or selenides of copper, in particular of the Cu (In, Ga) (S, Se) 2 and Cu 2 (Zn, Sn) type (S , Se) 4 .
  • (In, Ga) we mean that the material can comprise In and / or Ga, according to any combination of possible contents: Ini_ x Ga x , x can take any value from 0 to 1. In particular, x can be zero (CIS type material). When x and y are non-zero, the material is of CIGS type.
  • CZTS Cu 2 nSn (S, Se) 4 type
  • the material with photovoltaic properties may also be in amorphous or polycrystalline silicon.
  • the photovoltaic material is deposited on the semiconductor device, above the electrode, and generally in contact therewith.
  • Various deposition techniques are possible, examples of which include evaporation, sputtering, chemical vapor deposition (CVD), electrolytic deposition or sublimation (CSS).
  • CVD chemical vapor deposition
  • SCS electrolytic deposition
  • G CI (G) S type layers
  • An additional electrode may be deposited on (and in particular in contact with) the layer of photovoltaic material. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It may still be a metal layer, for example gold or nickel alloy and aluminum.
  • the transparent layers are generally used when the substrate is intended to form the rear-face substrate of the photovoltaic cell, as explained in more detail later in the text. Buffer layers may also be interposed between the photovoltaic material layer and the additional electrode.
  • n of CdS, In x S y or ZnMgO may be interposed between the buffer layer (or the photovoltaic material layer) and the additional electrode.
  • Another object of the invention is a photovoltaic cell comprising a semiconductor device according to the invention.
  • An object of the invention is finally a photovoltaic module comprising a plurality of photovoltaic cells according to the invention.
  • the substrate according to the invention may be the front or rear face substrate of the photovoltaic cell.
  • the photovoltaic material layer is generally deposited on the rear face substrate (provided with its electrode, typically molybdenum). It is therefore the backside substrate which then has a glass sheet having the advantageous chemical composition described above.
  • the photovoltaic material is often deposited on the front-face substrate, so that the aforementioned chemical composition is used for the glass sheet of the front-face substrate.
  • the photovoltaic cell is formed by joining the substrates of the front face and rear face, for example by means of a lamination interlayer of thermosetting plastic material, for example PVB, PU or EVA.
  • the photovoltaic cell according to the invention comprises, as a front-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. at plus 0.02%, especially 0.015%.
  • the optical transmission of the glass is as high as possible.
  • the glass sheet preferably comprises no agent absorbing visible or infrared radiation (especially at a wavelength between 380 and 1000 nm) other than iron oxide (whose presence is unavoidable).
  • the composition of the glass preferably does not contain agents chosen from the following agents, or any of the following agents: transition element oxides such as CoO, CuO, Cr 2 O 3 , MnO 2 , oxides rare earths such as Ce0 2 , La 2 O 3 , d 2 O 3 , or alternatively elemental coloring agents such as Se, Ag, Cu, Au.
  • transition element oxides such as CoO, CuO, Cr 2 O 3 , MnO 2
  • oxides rare earths such as Ce0 2 , La 2 O 3 , d 2 O 3
  • elemental coloring agents such as Se, Ag, Cu, Au.
  • redox defined as the ratio between the ferrous iron content expressed as FeO and the total iron content expressed as Fe 2 O 3
  • redox is preferably at most 0.2, especially 0.1.
  • the glass sheet is preferably such that its energy transmission (T E ) calculated according to the ISO 9050: 2003 standard is greater than or equal to 90%, in particular 90.5%, even 91% and even 91.5%, for a 3.2 mm thick.
  • the front face substrate may be provided, on the face opposite to that carrying the electrode, with an antireflection coating, for example porous silica or comprising a stack of thin layers alternating high and low refractive index layers.
  • a substrate according to the invention is typically used provided with a doped ITO and / or SnO 2 electrode (for example fluorine or antimony), then a photovoltaic material. in CdTe, then an additional electrode made of gold or nickel-aluminum alloy, in order from the substrate.
  • the backside substrate is preferably of standard silico-soda-lime glass.
  • the photovoltaic cell according to the invention comprises, as rear-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. at least 0.05%, in particular ranging from 0.08 to 2%, especially from 0.08 to 0.2%.
  • a substrate according to the invention is typically used, provided with a molybdenum electrode, on which a photovoltaic material is deposited in CI (G) S or in CZTS, followed by an additional electrode made of doped ZnO. , and optionally a CdS n doped buffer layer between these two last layers.
  • a passivating layer for example intrinsic ZnO or intrinsic ZnMgO may be interposed between the buffer layer and the additional electrode.
  • High levels of iron oxide can in this case correct the aesthetic appearance due to the presence of molybdenum.
  • the front face substrate is preferably made of extra-clear glass of standard soda-lime-calcium composition.
  • the tables show the following physical properties: the lower annealing temperature, called S and expressed in ° C, the temperature at which the glass has a viscosity of 100 Poises, called T2 and expressed in ° C, - the temperature at which the glass has a viscosity of 3162 Poises, called T3.5 and expressed in ° C, the forming margin, called ⁇ and expressed in ° C, corresponding to the difference between the temperature T3.5 and liquidus temperature.
  • compositions provide glasses having lower annealing temperatures of about 30 ° C to 50 ° C higher than that of standard glass through the addition of tin oxide. This results in better mechanical behavior, and glass sheets less able to deform during the manufacturing steps of solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Glass Compositions (AREA)

Abstract

The subject of the invention is a substrate comprising at least one sheet of glass provided on a face of at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content that varies within the limits defined below: SiO2: 60‑75%; Al2O3: 0‑7%; CaO: 5‑15%; MgO: 0‑10%; Na2O: 8‑15%; K2O: 0‑5%; SnO2: 0.8‑5%.

Description

SUBSTRAT POUR CELLULE PHOTOVOLTAIQUE  SUBSTRATE FOR PHOTOVOLTAIC CELL
L' invention se rapporte au domaine des substrats pour cellules photovoltaïques . Elle concerne plus précisément des substrats pour cellules photovoltaïques comprenant au moins une feuille de verre flotté munie sur une face d'au moins une électrode. The invention relates to the field of substrates for photovoltaic cells. It relates more specifically substrates for photovoltaic cells comprising at least one float glass sheet provided on one side with at least one electrode.
L'utilisation d'un matériau photovoltaïque en couches minces permet de remplacer des substrats coûteux en silicium par des substrats comprenant des feuilles de verre. Le matériau à propriétés photovoltaïques, et généralement l'électrode, sont déposés en couche mince par des procédés de dépôt du type évaporation, pulvérisation cathodique, dépôt chimique en phase vapeur (CVD) ou encore sublimation (CSS) sur la feuille de verre. Cette dernière doit généralement être chauffée à haute température, soit pendant le dépôt, soit après le dépôt (traitement de recuit, de sélénisation etc..) , et subit de ce fait des températures de l'ordre de 500 °C ou plus. Ces traitements permettent par exemple d'améliorer la cristallinité des couches et donc leurs propriétés de conduction électronique ou photovoltaïques. The use of a thin-film photovoltaic material makes it possible to replace expensive substrates made of silicon with substrates comprising glass sheets. The material with photovoltaic properties, and generally the electrode, are deposited in a thin layer by deposition processes such as evaporation, sputtering, chemical vapor deposition (CVD) or sublimation (CSS) on the glass sheet. The latter must generally be heated at high temperature, either during the deposition or after the deposition (annealing treatment, selenization, etc.), and therefore undergoes temperatures of the order of 500 ° C. or more. These treatments make it possible, for example, to improve the crystallinity of the layers and therefore their electronic conduction or photovoltaic properties.
Les hautes températures présentent toutefois l'inconvénient de provoquer une déformation de la feuille de verre lorsqu'elle est en verre silico-sodo-calcique standard . High temperatures, however, have the disadvantage of causing deformation of the glass sheet when it is standard soda-lime glass.
Des verres de plus haute résistance thermique ont été proposés, mais présentent un coût de production élevé, du fait notamment de l'utilisation de matières premières coûteuses (porteurs de baryum ou de strontium par exemple) , ou de températures de fusion particulièrement élevées. En outre, certains de ces verres se prêtent mal au formage du verre par flottage. Glasses of higher thermal resistance have been proposed, but have a high production cost, especially because of the use of expensive raw materials (carriers of barium or strontium for example), or particularly high melting temperatures. In in addition, some of these glasses do not lend themselves to the forming of glass by floating.
L'invention a pour but d'obvier à ces inconvénients, en proposant une composition de verre présentant une résistance thermique améliorée le rendant compatible avec les procédés utilisés lors de la fabrication de cellules à base de matériaux photovoltaïques en couche mince, permettant en outre de produire un verre, notamment par flottage, dans des conditions économiques très favorables.  The object of the invention is to obviate these drawbacks, by proposing a glass composition having improved thermal resistance making it compatible with the processes used in the manufacture of cells based on photovoltaic materials in a thin layer, which also makes it possible to produce a glass, especially by floating, under very favorable economic conditions.
A cet effet, un objet de l'invention est un substrat comprenant au moins une feuille de verre munie sur une face d'au moins une électrode, caractérisé en ce que ledit verre possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : For this purpose, an object of the invention is a substrate comprising at least one glass sheet provided on one side with at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content within the limits defined below:
Si02 60-75% Si0 2 60-75%
A1203 0-7% A1 2 0 3 0-7%
CaO 5-15% CaO 5-15%
MgO 0-10% MgO 0-10%
Na20 8-15% Na 2 0 8-15%
K20 0-5% K 2 0 0-5%
Sn02 0,8-5%. Sn0 2 0.8-5%.
Tout en étant de type silico-sodo-calcique, comme le verre standard, ces compositions permettent de manière étonnante, grâce à l'ajout d'oxyde d'étain, de conférer des résistances thermiques élevées aux substrats de verre, caractérisées notamment par des températures inférieures de recuit d'au moins 30°C plus élevées que celles du verre standard . Toutes les teneurs exprimées dans le présent texte sont des teneurs pondérales. La somme des teneurs pondérales en S1O2, AI2O3, CaO, MgO, Na2<0, K20 et Sn02 est de préférence d'au moins 95%, notamment 98% et même 99%. La teneur en SrO, BaO, B2O3, Li20, P2O5 et/ou Zr02 est avantageusement nulle afin de ne pas pénaliser le coût de la feuille de verre. Les autres constituants de la composition peuvent être des impuretés provenant des matières premières (notamment l'oxyde de fer) ou dues à la dégradation des réfractaires du four de fusion ou des agents d'affinage (notamment SO3) . La silice (S1O2) est le principal élément formateur du verre. En de trop faibles teneurs, la résistance hydrolytique du verre, notamment en milieu basique, s'en trouverait trop amoindrie. En revanche, les teneurs au-delà de 75% entraînent une augmentation de la viscosité du verre hautement préjudiciable. La teneur en silice est de préférence supérieure ou égale à 62%, notamment 63% et même 64%, et/ou inférieure ou égale à 74%, notamment 73% ou 72%. While being of the silico-soda-lime type, such as standard glass, these compositions make it possible surprisingly, thanks to the addition of tin oxide, to confer high thermal resistances to glass substrates, characterized in particular by lower annealing temperatures of at least 30 ° C higher than those of standard glass. All contents expressed in this text are weight contents. The sum of the weight contents of SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 <0, K 2 0 and SnO 2 is preferably at least 95%, especially 98% and even 99%. The content of SrO, BaO, B 2 O 3 , Li 2 O, P 2 O 5 and / or ZrO 2 is advantageously zero so as not to penalize the cost of the glass sheet. The other constituents of the composition may be impurities originating from the raw materials (in particular iron oxide) or due to the degradation of the refractories of the melting furnace or of the refining agents (in particular SO 3 ). Silica (S10 2 ) is the main formative element of glass. In too low levels, the hydrolytic resistance of the glass, especially in basic medium, would be reduced too much. On the other hand, contents above 75% lead to an increase in the viscosity of the highly detrimental glass. The silica content is preferably greater than or equal to 62%, especially 63% and even 64%, and / or less than or equal to 74%, especially 73% or 72%.
L'alumine (AI2O3) permet d'augmenter la résistance hydrolytique du verre et de diminuer son indice de réfraction, ce dernier avantage étant particulièrement significatif lorsque le substrat est destiné à constituer le substrat de face avant de la cellule photovoltaïque. Alumina (Al 2 O 3) makes it possible to increase the hydrolytic resistance of the glass and to reduce its refractive index, this latter advantage being particularly significant when the substrate is intended to constitute the front-face substrate of the photovoltaic cell.
L'ajout de chaux (CaO) présente l'avantage de diminuer la viscosité à haute température du verre, et donc de faciliter sa fusion et son affinage, tout en augmentant la température inférieure de recuisson, et donc la stabilité thermique. L'augmentation de la température au liquidus et de l'indice de réfraction attribuables à cet oxyde conduisent toutefois à en limiter la teneur. La teneur en CaO est de préférence supérieure ou égale à 8%, notamment 9% et/ou inférieure ou égale à 14%, notamment 13%, et même 12%. La magnésie (MgO) est utile pour améliorer la durabilité chimique du verre et diminuer sa viscosité. De fortes teneurs conduisent toutefois à renforcer les risques de dévitrification. La soude (Na2<0) est utile pour réduire la viscosité à haute température et la température au liquidus. Des teneurs trop élevées conduisent toutefois à dégrader la résistance hydrolytique du verre et sa stabilité thermique, tout en augmentant le coût. La teneur en Na2<0 est de préférence comprise dans un domaine allant de 10% à 13%. La potasse (K20) présente les mêmes avantages et inconvénients, mais semble dégrader la stabilité thermique d'une manière encore plus importante. Sa teneur est donc de préférence d'au plus 2%, notamment 1%, et même 0,5% ou 0,1%. The addition of lime (CaO) has the advantage of reducing the high temperature viscosity of the glass, and thus of facilitating its melting and refining, while increasing the lower annealing temperature, and therefore the thermal stability. The increase in the liquidus temperature and the refractive index attributable to this oxide, however, lead to limiting its content. The CaO content is preferably greater than or equal to 8%, especially 9% and / or less than or equal to 14%, especially 13%, and even 12%. Magnesia (MgO) is useful for improving the chemical durability of glass and decreasing its viscosity. High levels, however, lead to increased risks of devitrification. Soda (Na 2 <0) is useful for reducing the viscosity at high temperature and liquidus temperature. Too high levels, however, lead to degrade the hydrolytic strength of the glass and its thermal stability, while increasing the cost. The content of Na 2 <0 is preferably in a range from 10% to 13%. Potash (K 2 0) has the same advantages and disadvantages, but seems to degrade the thermal stability in an even greater way. Its content is therefore preferably at most 2%, especially 1%, and even 0.5% or 0.1%.
L'oxyde d' étain permet d'accroître la résistance thermomécanique du verre. Sa teneur est de préférence d'au moins 0,9%, notamment 1%, voire 1,1% et même 1,2%, 1,3% ou 1,5% et/ou inférieure ou égale à 4%, notamment 3,5~6 , voire 3% et même 2,5% ou encore 2%. La teneur en oxyde d' étain est avantageusement supérieure à 1,1% et même 1,2%. Des teneurs comprises dans un domaine allant de 1% (notamment 1,2%) à 4%, notamment de 1% (ou 1,2%) à 3% et même de 1% (notamment 1,2%) à 2% sont particulièrement avantageuses. Le verre est de préférence incolore. Pour ce faire, il est de préférence exempt d'agents colorants, à l'exception de l'oxyde de fer qui est une impureté inévitable. Ainsi, les teneurs en oxyde de cobalt, de cuivre, de terres rares (notamment CeC>2) ou en sélénium sont-elles de préférence nulles. On entend par verre incolore un verre tel que ses coordonnées colorimétriques a* et b* sont chacune comprises dans un domaine allant de - 2 à +2, notamment de -1 à +1 pour une épaisseur de 3 mm, en prenant en considération l'illuminant D65 tel que défini par la norme ISO/CIE 10526 et l'observateur de référence colorimétrique C.I.E. 1931 tel que défini par la norme ISO/CIE 10527. Tin oxide increases the thermomechanical strength of glass. Its content is preferably at least 0.9%, especially 1% or even 1.1% and even 1.2%, 1.3% or 1.5% and / or less than or equal to 4%, especially 3.5 ~ 6, even 3% and even 2.5% or 2%. The tin oxide content is advantageously greater than 1.1% and even 1.2%. Contents included in a range from 1% (in particular 1.2%) to 4%, in particular from 1% (or 1.2%) to 3% and even from 1% (especially 1.2%) to 2% are particularly advantageous. The glass is preferably colorless. For this purpose, it is preferably free of coloring agents, with the exception of iron oxide, which is an unavoidable impurity. Thus, the contents of cobalt oxide, copper, rare earth (especially CeC> 2 ) or selenium are preferably zero. By colorless glass is meant a glass such that its colorimetric coordinates a * and b * are each in a range from -2 to +2, in particular from -1 to +1 for a thickness of 3 mm, in taking into consideration the illuminant D65 as defined by ISO / IEC 10526 and the CIE 1931 colorimetric reference observer as defined by ISO / IEC 10527.
Le verre possède de préférence une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : The glass preferably has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
Si02 68-75% A1203 0-3% Si0 2 68-75% A1 2 0 3 0-3%
CaO + MgO 11-16, 2% CaO + MgO 11-16, 2%
MgO 0-6, 5% MgO 0-6, 5%
Na20 9-12% Na 2 0 9-12%
K20 0- 1,5% K 2 0 0-1.5%
Sn02 1-2%, notamment >l,l-2%. Sn0 2 1-2%, especially> l, 1-2%.
Selon un premier mode de réalisation préféré, la teneur pondérale en MgO est d'au plus 1%, notamment 0,5% et même 0,1%. La teneur en CaO est avantageusement d'au moins 11,5%, voire 12%. La teneur en Na20 est de préférence d'au moins 10%, voire 11%. Elle est avantageusement d'au plus 12%. Des compositions particulièrement préférées comprennent les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : According to a first preferred embodiment, the weight content of MgO is at most 1%, especially 0.5% and even 0.1%. The CaO content is advantageously at least 11.5% or even 12%. The Na 2 0 content is preferably at least 10% or even 11%. It is advantageously at most 12%. Particularly preferred compositions comprise the following constituents, in a weight content varying within the limits defined below:
Si02 71-74,2% Si0 2 71-74.2%
AI2O3 0-3% AI2O3 0-3%
CaO 11,5-13% CaO 11.5-13%
MgO 0-1% MgO 0-1%
Na20 11-12,4%, notamment 11-12%, Na 2 0 11-12.4%, especially 11-12%,
K20 0-1,5% Sn02 0,8-5%, notamment >l,l-5%. K 2 0 0-1.5% Sn0 2 0.8-5%, especially> l, 1-5%.
Selon un second mode de réalisation préféré, la teneur pondérale en MgO est d'au moins 4%, voire 4,5% ou 5% et/ou d' au plus 6% . La teneur en CaO est de préférence comprise entre 9 et 10,5%. La teneur en Na20 est avantageusement d'au moins 9,5%, voire 10% et/ou d'au plus 11%. Des compositions particulièrement préférées comprennent les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : According to a second preferred embodiment, the weight content of MgO is at least 4%, even 4.5% or 5% and / or at most 6%. The CaO content is preferably between 9 and 10.5%. The content of Na 2 0 is preferably at least 9.5% or 10% and / or at most 11%. Particularly preferred compositions comprise the following constituents, in a weight content varying within the limits defined below:
Si02 70-74% Si0 2 70-74%
A1203 0-2% A1 2 0 3 0-2%
CaO 9-10,5% CaO 9-10.5%
MgO 4-6,5%, notamment 4-6% MgO 4-6.5%, especially 4-6%
Na20 10-11% Na 2 0 10-11%
K20 0-1% K 2 0 0-1%
Sn02 0,8-5%, notamment >1,1 Sn0 2 0.8-5%, especially> 1.1
La fusion du verre peut être réalisée en fours continus, chauffés à l'aide d'électrodes et/ou à l'aide de brûleurs, aériens et/ou immergés et/ou disposés dans la voûte du four de manière à ce que la flamme vienne impacter les matières premières ou le bain de verre. Les matières premières sont généralement pulvérulentes et comprennent des matières naturelles (sable, feldspaths, calcaire, dolomie, syénite néphélinique...) ou artificielles (carbonate de sodium ou de potassium, sulfate de sodium...) . L'oxyde d' étain peut être apporté, à titre d'exemple, par la cassitérite ou la malayaite, ce dernier étant un silicate de calcium et d' étain. The melting of the glass may be carried out in continuous furnaces, heated with electrodes and / or using burners, aerated and / or immersed and / or arranged in the vault of the oven so that the flame impact the raw materials or the glass bath. The raw materials are generally pulverulent and include natural materials (sand, feldspars, limestone, dolomite, nepheline syenite ...) or artificial (sodium or potassium carbonate, sodium sulphate ...). The tin oxide may be provided, for example, by cassiterite or malayaite, the latter being a silicate of calcium and tin.
Les matières premières sont enfournées puis subissent des réactions de fusion au sens physique du terme et diverses réactions chimiques conduisant à l'obtention d'un bain de verre. Le verre en fusion est ensuite acheminé vers une étape de formage pendant laquelle la feuille de verre va prendre sa forme. Le formage est réalisé de manière connue, par exemple par flottage, c'est-à-dire par déversement du verre fondu (à une viscosité de l'ordre de 3000 Poises) sur un bain d'étain en fusion, ou par laminage entre des rouleaux. Le ruban de verre obtenu est ensuite recuit soigneusement afin d'éliminer toutes contraintes thermiques en son sein, avant d'être découpé aux dimensions voulues. L'épaisseur de la feuille de verre est typiquement comprise entre 2 et 6 mm, notamment entre 2,5 et 4 mm. The raw materials are charged and then undergo fusion reactions in the physical sense of the term and various chemical reactions leading to obtaining a glass bath. The molten glass is then fed to a forming step during which the glass sheet will take shape. The forming is carried out in known manner, for example by floating, that is to say by pouring molten glass (at a viscosity of the order of 3000 Poises) on a bath of molten tin, or by rolling between rollers. The obtained glass ribbon is then carefully annealed in order to eliminate any thermal stresses within it, before being cut to the desired dimensions. The thickness of the glass sheet is typically between 2 and 6 mm, especially between 2.5 and 4 mm.
L'électrode est de préférence sous forme de couche mince déposée sur le substrat (généralement sur l'intégralité d'une face du substrat), directement en contact avec le substrat ou en contact avec au moins une sous-couche. Il peut s'agir d'une couche mince transparente et électroconductrice, par exemple à base d'oxyde d'étain (dopé au fluor ou à l'antimoine), d'oxyde de zinc (dopé à l'aluminium ou au gallium), ou encore à base d'oxyde d'étain et d' indium (ITO) . Il peut encore s'agir d'une couche mince métallique, par exemple en molybdène. Les couches transparentes sont généralement employées lorsque le substrat est destiné à former le substrat de face avant de la cellule photovoltaïque, comme explicité plus en détail dans la suite du texte. On entend par face avant la face traversée en premier par le rayonnement solaire. L'électrode métallique peut aussi être une couche d'argent, susceptible de réfléchir le rayonnement lumineux, utile par exemple dans une application en tant que miroir, notamment miroir destiné à concentrer l'énergie solaire. L'électrode peut également être constituée d'un empilement de couches minces dont l'une au moins est électroconductrice. L'électrode sous forme de couche mince peut être déposée sur le substrat par différents procédés de dépôt, tels que le dépôt chimique en phase vapeur (CVD) ou le dépôt par pulvérisation cathodique, notamment assisté par champ magnétique (procédé magnétron) . Dans le procédé CVD, des précurseurs halogénures ou organométalliques sont vaporisés et transportés par un gaz vecteur jusqu'à la surface du verre chaud, où ils se décomposent sous l'effet de la chaleur pour former la couche mince. L'avantage du procédé CVD est qu' il est possible de le mettre en œuvre au sein du procédé de formage de la feuille de verre par flottage. Il est ainsi possible de déposer la couche au moment où la feuille de verre est sur le bain d'étain, à la sortie du bain d'étain, ou encore dans l'étenderie, c'est- à-dire au moment où la feuille de verre est recuite afin d'éliminer les contraintes mécaniques. Le procédé CVD est particulièrement adapté au dépôt de couches d'oxyde d'étain dopé au fluor ou à l'antimoine. Le procédé de pulvérisation cathodique sera quant à lui préférentiellement employé pour le dépôt de couches de molybdène, d'oxyde de zinc dopé ou encore d' ITO . The electrode is preferably in the form of a thin layer deposited on the substrate (generally on the entire face of the substrate), directly in contact with the substrate or in contact with at least one underlayer. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It can still be a thin metal layer, for example molybdenum. The transparent layers are generally used when the substrate is intended to form the front face substrate of the photovoltaic cell, as explained in more detail later in the text. The term "front face" is understood to mean the face traversed first by solar radiation. The metal electrode may also be a silver layer, capable of reflecting light radiation, useful for example in an application as a mirror, especially a mirror for concentrating solar energy. The electrode may also consist of a stack of thin layers of which at least one is electroconductive. The electrode in the form of a thin layer may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by a magnetic field (magnetron process). In the CVD process, halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer. The advantage of the CVD process is that it can be implemented in the process of forming the glass sheet by floating. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress. The CVD process is particularly suitable for depositing fluorine or antimony doped tin oxide layers. The sputtering process will be preferentially used for the deposition of molybdenum layers, doped zinc oxide or ITO.
Un autre objet de l'invention est un dispositif semi-conducteur comprenant au moins un substrat selon l'invention et au moins une couche mince d'un matériau à propriétés photovoltaïques déposée sur ledit au moins un substrat . Another object of the invention is a semiconductor device comprising at least one substrate according to the invention and at least one thin layer of a material with photovoltaic properties deposited on said at least one substrate.
Le matériau à propriétés photovoltaïques est de préférence choisi parmi les composés de type CdTe et les sulfures et/ou séléniures de cuivre, notamment du type Cu (In, Ga) (S, Se) 2 et Cu2 (Zn, Sn) (S, Se) 4. Par (In,Ga) on entend que le matériau peut comprendre In et/ou Ga, selon toutes combinaisons de teneurs possibles : Ini_xGax, x pouvant prendre toute valeur de 0 à 1. Notamment, x peut être nul (matériau de type CIS) . Lorsque x et y sont non-nuls, le matériau est de type CIGS. Les expressions (Zn,Sn) etThe material with photovoltaic properties is preferably chosen from compounds of CdTe type and sulphides and / or selenides of copper, in particular of the Cu (In, Ga) (S, Se) 2 and Cu 2 (Zn, Sn) type (S , Se) 4 . By (In, Ga) we mean that the material can comprise In and / or Ga, according to any combination of possible contents: Ini_ x Ga x , x can take any value from 0 to 1. In particular, x can be zero (CIS type material). When x and y are non-zero, the material is of CIGS type. The expressions (Zn, Sn) and
(S, Se) doivent se comprendre de la même manière. Un matériau du type Cu2 nSn (S, Se) 4 est appelé CZTS. Le matériau à propriétés photovoltaïques peut également être en silicium amorphe ou polycristallin . (S, Se) must be understood in the same way. A material of the Cu 2 nSn (S, Se) 4 type is called CZTS. The material with photovoltaic properties may also be in amorphous or polycrystalline silicon.
Le matériau photovoltaïque est déposé sur le dispositif semi-conducteur, au-dessus de l'électrode, et généralement au contact de celle-ci. Différentes techniques de dépôt sont possibles, parmi lesquelles on peut citer à titre d'exemples 1 ' évaporation, la pulvérisation cathodique, le dépôt chimique en phase vapeur (CVD) , les dépôts électrolytiques ou encore la sublimation (CSS) . A titre d'exemple, on peut citer dans le cas des couches de type CI (G) S les procédés de pulvérisation cathodique ou de dépôt électrolytique (suivis d'une étape de sélénisation) ou la coévaporation . The photovoltaic material is deposited on the semiconductor device, above the electrode, and generally in contact therewith. Various deposition techniques are possible, examples of which include evaporation, sputtering, chemical vapor deposition (CVD), electrolytic deposition or sublimation (CSS). By way of example, in the case of CI (G) S type layers, there may be mentioned sputtering or electroplating processes (followed by a selenization step) or coevaporation.
Une électrode supplémentaire peut être déposée sur (et notamment en contact avec) la couche de matériau photovoltaïque. Il peut s'agir d'une couche mince transparente et électroconductrice, par exemple à base d'oxyde d' étain (dopé au fluor ou à l'antimoine), d'oxyde de zinc (dopé à l'aluminium ou au gallium), ou à base d'oxyde d' étain et d' indium (ITO) . Il peut encore s'agir d'une couche métallique, par exemple en or ou en alliage de nickel et d'aluminium. Les couches transparentes sont généralement employées lorsque le substrat est destiné à former le substrat de face arrière de la cellule photovoltaïque, comme explicité plus en détail dans la suite du texte. Des couches tampon peuvent aussi être interposées entre la couche de matériau photovoltaïque et l'électrode supplémentaire. Dans le cas des matériaux de type CI (G) S, il peut par exemple s'agir d'une couche dopée n de CdS, de InxSy ou encore de ZnMgO. Enfin, des couches passivantes, typiquement en ZnO intrinsèque ou en ZnMgO intrinsèque peuvent être interposées entre la couche tampon (ou la couche de matériau photovoltaïque) et l'électrode supplémentaire. An additional electrode may be deposited on (and in particular in contact with) the layer of photovoltaic material. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It may still be a metal layer, for example gold or nickel alloy and aluminum. The transparent layers are generally used when the substrate is intended to form the rear-face substrate of the photovoltaic cell, as explained in more detail later in the text. Buffer layers may also be interposed between the photovoltaic material layer and the additional electrode. In the case of materials of type CI (G) S, it may for example be a doped layer n of CdS, In x S y or ZnMgO. Finally, passivating layers, typically intrinsic ZnO or intrinsic ZnMgO may be interposed between the buffer layer (or the photovoltaic material layer) and the additional electrode.
Un autre objet de l'invention est une cellule photovoltaïque comprenant un dispositif semi-conducteur selon l'invention. Un objet de l'invention est enfin un module photovoltaïque comprenant une pluralité de cellules photovoltaïques selon l'invention. Another object of the invention is a photovoltaic cell comprising a semiconductor device according to the invention. An object of the invention is finally a photovoltaic module comprising a plurality of photovoltaic cells according to the invention.
Suivant la technologie employée, le substrat selon l'invention peut être le substrat de face avant ou de face arrière de la cellule photovoltaïque. A titre d'exemple, dans le cas des matériaux photovoltaïques à base de CI (G) S ou de CZTS, la couche de matériau photovoltaïque est généralement déposée sur le substrat de face arrière (muni de son électrode, typiquement en molybdène) . C'est donc le substrat de face arrière qui possède alors une feuille de verre ayant la composition chimique avantageuse décrite précédemment. Dans le cas de la technologie CdTe en revanche, le matériau photovoltaïque est souvent déposé sur le substrat de face avant, de sorte que la composition chimique précitée est utilisée pour la feuille de verre du substrat de face avant. La cellule photovoltaïque est formée en réunissant les substrats de face avant et de face arrière, par exemple au moyen d'un intercalaire de feuilletage en matière plastique thermodurcissable, par exemple en PVB, PU ou EVA. Depending on the technology used, the substrate according to the invention may be the front or rear face substrate of the photovoltaic cell. For example, in the case of photovoltaic materials based on IC (G) S or CZTS, the photovoltaic material layer is generally deposited on the rear face substrate (provided with its electrode, typically molybdenum). It is therefore the backside substrate which then has a glass sheet having the advantageous chemical composition described above. In the case of CdTe technology on the other hand, the photovoltaic material is often deposited on the front-face substrate, so that the aforementioned chemical composition is used for the glass sheet of the front-face substrate. The photovoltaic cell is formed by joining the substrates of the front face and rear face, for example by means of a lamination interlayer of thermosetting plastic material, for example PVB, PU or EVA.
Selon un premier mode de réalisation, la cellule photovoltaïque selon l'invention comprend comme substrat de face avant le substrat selon l'invention, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au plus 0,02%, notamment 0,015%. Dans ce cas, il importe en effet que la transmission optique du verre soit la plus élevée possible. La feuille de verre ne comprend de préférence aucun agent absorbant les rayonnements visibles ou infrarouges (notamment pour une longueur d'ondes comprise entre 380 et 1000 nm) autre que l'oxyde de fer (dont la présence est inévitable) . En particulier, la composition du verre ne contient de préférence pas d'agents choisis parmi les agents suivants, ou aucun des agents suivants : les oxydes d'éléments de transition tels que CoO, CuO, Cr203 , Mn02, les oxydes de terres rares tels que Ce02 , La2Û3 , d2Û3, ou encore les agents colorants à l'état élémentaire tels que Se, Ag, Cu, Au. Ces agents ont bien souvent un effet colorant indésirable très puissant, se manifestant à de très faibles teneurs, parfois de l'ordre de quelques ppm ou moins (1 ppm = 0, 0001%) . Toujours afin de maximiser la transmission optique du verre, le rédox (défini comme le rapport entre la teneur en fer ferreux exprimée sous la forme FeO et la teneur totale en fer exprimée sous la forme Fe2Û3 ) est de préférence d'au plus 0,2, notamment 0,1. La feuille de verre est de préférence telle que sa transmission énergétique (TE) calculée selon la norme ISO 9050:2003 est supérieure ou égale à 90%, notamment 90,5%, voire 91% et même 91,5%, pour une épaisseur de 3,2 mm. Le substrat de face avant peut être muni, sur la face opposée à celle portant l'électrode, d'un revêtement antireflet, par exemple en silice poreuse ou comprenant un empilement de couches minces alternant des couches à haut et bas indice de réfraction. Dans le cadre de ce mode de réalisation, on utilise typiquement un substrat selon l'invention muni d'une électrode en ITO et/ou en Sn02 dopé (par exemple au fluor ou à l'antimoine), puis d'un matériau photovoltaïque en CdTe, puis d'une électrode supplémentaire en or ou en alliage de nickel et d'aluminium, dans l'ordre à partir du substrat. Le substrat de face arrière est de préférence en verre silico-sodo-calcique standard. According to a first embodiment, the photovoltaic cell according to the invention comprises, as a front-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. at plus 0.02%, especially 0.015%. In this case, it is important that the optical transmission of the glass is as high as possible. The glass sheet preferably comprises no agent absorbing visible or infrared radiation (especially at a wavelength between 380 and 1000 nm) other than iron oxide (whose presence is unavoidable). In particular, the composition of the glass preferably does not contain agents chosen from the following agents, or any of the following agents: transition element oxides such as CoO, CuO, Cr 2 O 3 , MnO 2 , oxides rare earths such as Ce0 2 , La 2 O 3 , d 2 O 3 , or alternatively elemental coloring agents such as Se, Ag, Cu, Au. These agents often have a very powerful undesirable coloring effect, occurring at very low levels, sometimes of the order of a few ppm or less (1 ppm = 0, 0001%). Also in order to maximize the optical transmission of glass, redox (defined as the ratio between the ferrous iron content expressed as FeO and the total iron content expressed as Fe 2 O 3 ) is preferably at most 0.2, especially 0.1. The glass sheet is preferably such that its energy transmission (T E ) calculated according to the ISO 9050: 2003 standard is greater than or equal to 90%, in particular 90.5%, even 91% and even 91.5%, for a 3.2 mm thick. The front face substrate may be provided, on the face opposite to that carrying the electrode, with an antireflection coating, for example porous silica or comprising a stack of thin layers alternating high and low refractive index layers. In the context of this embodiment, a substrate according to the invention is typically used provided with a doped ITO and / or SnO 2 electrode (for example fluorine or antimony), then a photovoltaic material. in CdTe, then an additional electrode made of gold or nickel-aluminum alloy, in order from the substrate. The backside substrate is preferably of standard silico-soda-lime glass.
Selon un second mode de réalisation, la cellule photovoltaïque selon l'invention comprend comme substrat de face arrière le substrat selon l'invention, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au moins 0,05%, notamment comprise dans une gamme allant de 0,08 à 2%, notamment de 0,08 à 0,2%. Dans le cadre de ce mode de réalisation, on utilise typiquement un substrat selon l'invention muni d'une électrode en molybdène, sur lequel on dépose un matériau photovoltaïque en CI (G) S ou en CZTS, puis une électrode supplémentaire en ZnO dopé, et optionnellement une couche tampon dopée n en CdS entre ces deux dernières couches. Une couche passivante, par exemple en ZnO intrinsèque ou en ZnMgO intrinsèque peut être interposée entre la couche tampon et l'électrode supplémentaire. De fortes teneurs en oxyde de fer (de 0,5% à 2%) peuvent dans ce cas corriger l'aspect esthétique dû à la présence de molybdène. Le substrat de face avant est de préférence en verre extra-clair, de composition silico- sodo-calcique standard. La présente invention sera mieux comprise à la lecture de la description détaillée ci-après d'exemples de réalisation non limitatifs.  According to a second embodiment, the photovoltaic cell according to the invention comprises, as rear-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. at least 0.05%, in particular ranging from 0.08 to 2%, especially from 0.08 to 0.2%. In the context of this embodiment, a substrate according to the invention is typically used, provided with a molybdenum electrode, on which a photovoltaic material is deposited in CI (G) S or in CZTS, followed by an additional electrode made of doped ZnO. , and optionally a CdS n doped buffer layer between these two last layers. A passivating layer, for example intrinsic ZnO or intrinsic ZnMgO may be interposed between the buffer layer and the additional electrode. High levels of iron oxide (from 0.5% to 2%) can in this case correct the aesthetic appearance due to the presence of molybdenum. The front face substrate is preferably made of extra-clear glass of standard soda-lime-calcium composition. The present invention will be better understood on reading the detailed description below of nonlimiting exemplary embodiments.
Les tableaux ci-après illustrent certaines compositions selon l'invention (exemples 1 à 25) ainsi que des compositions standards (exemples comparatifs Cl et C2) . The following tables illustrate certain compositions according to the invention (Examples 1 to 25) as well as standard compositions (Comparative Examples C1 and C2).
Outre la composition chimique pondérale, les tableaux indiquent les propriétés physiques suivantes : la température inférieure de recuit, appelée S et exprimée en °C, la température à laquelle le verre présente une viscosité de 100 Poises, appelée T2 et exprimée en °C, - la température à laquelle le verre présente une viscosité de 3162 Poises, appelée T3,5 et exprimée en °C, la marge de formage, appelée ΔΤ et exprimée en °C, correspondant à la différence entre la température T3,5 et la température au liquidus. In addition to the chemical weight composition, the tables show the following physical properties: the lower annealing temperature, called S and expressed in ° C, the temperature at which the glass has a viscosity of 100 Poises, called T2 and expressed in ° C, - the temperature at which the glass has a viscosity of 3162 Poises, called T3.5 and expressed in ° C, the forming margin, called ΔΤ and expressed in ° C, corresponding to the difference between the temperature T3.5 and liquidus temperature.
Figure imgf000014_0001
Figure imgf000014_0001
Tableau 1 5 6 7 8 9 10Table 1 5 6 7 8 9 10
S102 70, 9 69, 2 68, 3 69, 9 69, 6 72,4S10 2 70, 9 69, 2 68, 3 69, 9 69, 6 72.4
A1203 1, 68 0,7 0, 6 1,8 1,8 1,8A1 2 0 3 1, 68 0.7 0, 6 1.8 1.8 1.8
CaO 12,7 9,7 9,8 9,8 9,8 11,7CaO 12.7 9.7 9.8 9.8 9.8 11.7
MgO 0,1 3, 95 4,2 6,1 6, 0 0, 9MgO 0.1 3, 95 4.2 6.1 6, 0 0, 9
Na20 12, 0 14, 6 14,8 10,7 10, 6 11,4Na 2 0 12, 0 14, 6 14.8 10.7 10, 6 11.4
K20 1,28 0,01 0,01 0,01 0,01 0,01K 2 0 1.28 0.01 0.01 0.01 0.01 0.01
S03 0,28 0,27 0,27 0,3 0,3 0,3S0 3 0.28 0.27 0.27 0.3 0.3 0.3
Sn02 1,1 1, 6 2,1 1,5 2,0 1,5 Sn0 2 1.1 1, 6 2.1 1.5 2.0 1.5
S (°C) 543 526 525 548 556 556S (° C) 543 526 525 548 556 556
T2 (°C) 1447 1396 1413 1467 1468 1445T2 (° C) 1447 1396 1413 1467 1468 1445
T3,5 (°C) 1123 1087 1094 1146 1147 1147T3.5 (° C) 1123 1087 1094 1146 1147 1147
ΔΤ (°C) 13 57 34 16 17 -23 ΔΤ (° C) 13 57 34 16 17 -23
Tableau 2 Table 2
11 12 13 14 15 1611 12 13 14 15 16
S102 72, 0 67, 9 66,6 64, 1 66, 3 69, 1 2 S 10 72, 0 67, 9 66,6 64, 1 66, 3 69, 1
A1203 1,8 3, 0 4,0 5, 0 3, 95 1,8A1 2 0 3 1.8 3, 0 4.0 5, 0 3, 95 1.8
CaO 11,7 10,4 10,0 10,0 10,5 10,4CaO 11.7 10.4 10.0 10.0 10.5 10.4
MgO 0, 9 4,0 5, 0 5, 0 3, 0 5,5MgO 0, 9 4.0 5, 0 5, 0 3, 0 5.5
Na20 11,4 12,4 12, 1 12, 6 12,4 10, 9Na 2 0 11.4 12.4 12, 1 12, 6 12.4 10, 9
K20 0,01 0,01 0,01 0,01 1,4 0,04K 2 0 0.01 0.01 0.01 0.01 1.4 0.04
S03 0,3 0,3 0,3 0,3 0,27 0,25S0 3 0.3 0.3 0.3 0.3 0.27 0.25
Sn02 2,0 1, 9 2,0 3,1 2,0 1, 9 Sn0 2 2.0 1, 9 2.0 3.1 2.0 1, 9
S (°C) 560 544 546 560 538 552S (° C) 560,544,546 560,538,552
T2 (°C) 1457 1433 1429 1422 1438 1450T2 (° C) 1457 1433 1429 1422 1438 1450
T3,5 (°C) 1148 1126 1123 1124 1128 1148T3.5 (° C) 1148 1126 1123 1124 1128 1148
ΔΤ (°C) -22 36 23 -16 18 -2 ΔΤ (° C) -22 36 23 -16 18 -2
Tableau 3 Table 3
17 18 19 20 2117 18 19 20 21
Si02 67, 1 70,3 70,0 73, 8 70, 9Si0 2 67, 1 70.3 70.0 73, 8 70, 9
A1203 3, 8 2,0 3,7 1,0 1,0A1 2 0 3 3, 8 2.0 3.7 1.0 1.0
CaO 10,8 11,2 8,4 8,0 8,0CaO 10.8 11.2 8.4 8.0 8.0
MgO 3,2 4,0 4,1 3, 0 5, 8MgO 3.2 4.0 4.1 3, 0 5, 8
Na20 12,4 10, 9 11, 6 11, 9 12, 0Na 2 O 12.4 10, 9 11, 6 11, 9 12, 0
K20 0,45 0,03 0,01 0,01 0,01K 2 0 0.45 0.03 0.01 0.01 0.01
S03 0,27 0,26 0,25 0,26 0,26S0 3 0.27 0.26 0.25 0.26 0.26
Sn02 1, 9 1,3 1, 9 2,0 2,1 Sn0 2 1, 9 1.3 1, 9 2.0 2.1
S (°C) 546 547 551 529 541S (° C) 546,547,551,529,541
T2 (°C) 1458 1458 1478 1514 1480T2 (° C) 1458 1458 1478 1514 1480
T3,5 (°C) 1130 1149 1177 1164 1138T3.5 (° C) 1130 1149 1177 1164 1138
ΔΤ (°C) -4 29 87 44 28 ΔΤ (° C) -4 29 87 44 28
Tab. Leau 4 Tab. Water 4
22 23 24 25 22 23 24 25
S102 70, 6 70,7 68, 2 67, 7 S10 2 70, 6 70.7 68, 2 67, 7
A1203 1,0 3, 9 4,0 3, 9 A1 2 0 3 1.0 3, 9 4.0 3, 9
CaO 11,0 8,0 7, 9 11,0 CaO 11.0 8.0 7, 9 11.0
MgO 3, 0 3, 0 5, 9 3, 0 MgO 3, 0 3, 0 5, 9 3, 0
Na20 12, 0 12, 0 11,8 12, 0 Na 2 O 12, O 12, O 11.8 12, 0
K20 0,01 0,01 0,01 0,01 K 2 0 0.01 0.01 0.01 0.01
S03 0,27 0,27 0,27 0,28 S0 3 0.27 0.27 0.27 0.28
Sn02 2,1 2,1 2,1 2,1 Sn0 2 2.1 2.1 2.1 2.1
S (°C) 541 548 555 552 S (° C) 541,548,555,552
T2 (°C) 1427 1496 1541 1442 T2 (° C) 1427 1496 1541 1442
T3,5 (°C) 1116 1170 1150 1141 T3.5 (° C) 1116 1170 1150 1141
ΔΤ (°C) 16 110 0 11 ΔΤ (° C) 16 110 0 11
Tableau 5 Table 5
Les compositions permettent d'obtenir des verres présentant des températures inférieures de recuit d'environ 30°C à 50°C plus élevées que celle du verre standard grâce à l'ajout d'oxyde d'étain. Il en résulte un meilleur comportement mécanique, et des feuilles de verre moins aptes à se déformer durant les étapes de fabrication des cellules solaires. The compositions provide glasses having lower annealing temperatures of about 30 ° C to 50 ° C higher than that of standard glass through the addition of tin oxide. This results in better mechanical behavior, and glass sheets less able to deform during the manufacturing steps of solar cells.
La plupart de ces compositions de verre sont flottables dans de bonnes conditions, comme en témoignent les marges de formage positives. Most of these glass compositions are floatable under good conditions, as evidenced by the positive forming margins.

Claims

REVENDICATIONS
1. Substrat comprenant au moins une feuille de verre munie sur une face d'au moins une électrode, caractérisé en ce que ledit verre possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : 1. Substrate comprising at least one glass sheet provided on one side with at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
Si02 60-75% Si0 2 60-75%
A1203 0-7% A1 2 0 3 0-7%
CaO 5-15% CaO 5-15%
MgO 0-10% MgO 0-10%
Na20 8-15% Na 2 0 8-15%
K20 0-5% K 2 0 0-5%
Sn02 0,8-5%. Sn0 2 0.8-5%.
2. Substrat selon la revendication précédente, tel que la somme des teneurs pondérales en Si02, AI2O3, CaO, MgO, a20, K2O et SnÛ2 est d'au moins 95%, notamment 98%. 2. Substrate according to the preceding claim, such that the sum of the weight contents of Si0 2 , Al 2 O 3 , CaO, MgO, a 2 0, K 2 O and SnO 2 is at least 95%, especially 98%.
3. Substrat selon l'une des revendications précédentes, tel que la teneur pondérale en MgO est d'au plus 1%, notamment 0,5%. 3. Substrate according to one of the preceding claims, such that the weight content of MgO is at most 1%, especially 0.5%.
4. Substrat selon la revendication 1 ou 2, tel que la teneur pondérale en MgO est d' au moins 4~6.  4. Substrate according to claim 1 or 2, such that the weight content of MgO is at least 4 ~ 6.
5. Substrat selon l'une des revendications précédentes, tel que la teneur en SnÛ2 est d'au moins 1,1%, notamment 1,5%. 5. Substrate according to one of the preceding claims, such that the content of SnO 2 is at least 1.1%, especially 1.5%.
6. Substrat selon l'une des revendications précédentes, tel que la teneur en SnÛ2 est comprise dans un domaine allant de 1 à 4%, notamment de 1 à 3%. 6. Substrate according to one of the preceding claims, such that the content of SnÛ 2 is in a range from 1 to 4%, especially 1 to 3%.
7. Substrat selon l'une des revendications précédentes, tel que le verre possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : 7. Substrate according to one of the preceding claims, such that the glass has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
Si02 68-75% Si0 2 68-75%
A1203 0-3% A1 2 0 3 0-3%
CaO + MgO 11-16, 2% CaO + MgO 11-16, 2%
MgO 0-6, 5% MgO 0-6, 5%
Na20 9-12% Na 2 0 9-12%
K20 0-1,5% K 2 0 0-1.5%
Sn02 1-2%. Sn0 2 1-2%.
Substrat selon 1 ' une des revendications précédentes, tel que l'électrode est une couche mince transparente et électroconductrice à base d'oxyde d'étain dopé au fluor ou à l'antimoine, d'oxyde de zinc dopé à l'aluminium ou au gallium, à base d'oxyde d'étain et d' indium ou une couche mince en molybdène. Substrate according to one of the preceding claims, such that the electrode is a thin transparent and electroconductive layer based on tin oxide doped with fluorine or antimony, with zinc oxide doped with aluminum or with gallium, based on tin oxide and indium or a thin layer of molybdenum.
9. Dispositif semi-conducteur comprenant au moins un substrat selon l'une des revendications précédentes et au moins une couche mince d'un matériau à propriétés photovoltaïques déposée sur ledit au moins un substrat. 9. Semiconductor device comprising at least one substrate according to one of the preceding claims and at least one thin layer of a material with photovoltaic properties deposited on said at least one substrate.
10. Dispositif semi-conducteur selon la revendication précédente, tel que le matériau à propriétés photovoltaïques est choisi parmi les composés de type CdTe et les sulfures et/ou séléniures de cuivre, notamment du type Cu(In,Ga) (S,Se)2 et Cu2(Zn,Sn) (S,Se)4. 10. Semiconductor device according to the preceding claim, such that the material with photovoltaic properties is chosen from compounds of CdTe type and sulphides and / or selenides of copper, in particular of Cu (In, Ga) (S, Se) type. 2 and Cu 2 (Zn, Sn) (S, Se) 4 .
11. Cellule photovoltaïque comprenant un dispositif semi-conducteur selon l'une des revendications de dispositif précédentes. Photovoltaic cell comprising a semiconductor device according to one of the preceding device claims.
12. Cellule photovoltaïque selon la revendication précédente, comprenant comme substrat de face avant un substrat selon l'une des revendications 1 à 8, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au plus 0,02%, notamment 0,015%. 12. Photovoltaic cell according to the preceding claim, comprising as substrate front face a substrate according to one of claims 1 to 8, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content not more than 0,02%, in particular 0,015%.
13. Cellule photovoltaïque selon la revendication 10, comprenant comme substrat de face arrière un substrat selon l'une des revendications 1 à 8, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au moins 0,05%, notamment comprise dans une gamme allant de 0,08 à 2%. 13. Photovoltaic cell according to claim 10, comprising as a rear face substrate a substrate according to one of claims 1 to 8, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content at least 0.05%, in particular ranging from 0.08 to 2%.
14. Module photovoltaïque comprenant une pluralité de cellules photovoltaïques selon l'une des revendications de cellule précédentes. Photovoltaic module comprising a plurality of photovoltaic cells according to one of the preceding cell claims.
PCT/FR2012/052500 2011-11-03 2012-10-30 Substrate for a photovoltaic cell WO2013064774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159943 2011-11-03
FR1159943A FR2982256A1 (en) 2011-11-03 2011-11-03 SUBSTRATE FOR PHOTOVOLTAIC CELL

Publications (1)

Publication Number Publication Date
WO2013064774A1 true WO2013064774A1 (en) 2013-05-10

Family

ID=47263437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052500 WO2013064774A1 (en) 2011-11-03 2012-10-30 Substrate for a photovoltaic cell

Country Status (2)

Country Link
FR (1) FR2982256A1 (en)
WO (1) WO2013064774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080862A1 (en) 2018-05-07 2019-11-08 I-Ten METHOD FOR MANUFACTURING ANODES FOR LITHIUM ION BATTERIES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128707A1 (en) * 2021-11-04 2023-05-05 Arc France Composition of colorless soda-lime glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446031A (en) * 1990-06-12 1992-02-17 Asahi Glass Co Ltd Uv-ir absorbing glass
JPH04270138A (en) * 1991-02-22 1992-09-25 Nippon Sheet Glass Co Ltd Heat ray and ultraviolet ray absorbing glass
US6461736B1 (en) * 1998-09-04 2002-10-08 Nippon Sheet Glass Co., Ltd. Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article
EP1291330A2 (en) * 2001-09-05 2003-03-12 Nippon Sheet Glass Co., Ltd. High transmittance glass sheet and method of manufacturing the same
JP2003095691A (en) * 2001-09-21 2003-04-03 Nippon Sheet Glass Co Ltd High transmissive glass and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446031A (en) * 1990-06-12 1992-02-17 Asahi Glass Co Ltd Uv-ir absorbing glass
JPH04270138A (en) * 1991-02-22 1992-09-25 Nippon Sheet Glass Co Ltd Heat ray and ultraviolet ray absorbing glass
US6461736B1 (en) * 1998-09-04 2002-10-08 Nippon Sheet Glass Co., Ltd. Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article
EP1291330A2 (en) * 2001-09-05 2003-03-12 Nippon Sheet Glass Co., Ltd. High transmittance glass sheet and method of manufacturing the same
JP2003095691A (en) * 2001-09-21 2003-04-03 Nippon Sheet Glass Co Ltd High transmissive glass and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080862A1 (en) 2018-05-07 2019-11-08 I-Ten METHOD FOR MANUFACTURING ANODES FOR LITHIUM ION BATTERIES
WO2019215406A1 (en) 2018-05-07 2019-11-14 I-Ten Method for manufacturing anodes for lithium-ion batteries

Also Published As

Publication number Publication date
FR2982256A1 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
EP2683665B1 (en) Substrate for a photovoltaic cell
EP2331472B1 (en) Process for obtaining glass
TWI565674B (en) Fusion formable sodium containing glass
EP2456727B1 (en) Fusion formable silica and sodium containing glasses
EP2119681B1 (en) Glass substrate for solar battery
TWI614224B (en) Glass
EP2401234B1 (en) Glass sheet
WO2010138784A2 (en) Fusion formable sodium free glass
US20130306145A1 (en) Glass substrate for cu-in-ga-se solar cell and solar cell using same
EP2686278A1 (en) Substrate for a photovoltaic cell
US20150068595A1 (en) GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
US20130053233A1 (en) Method for producing a sheet of glass
US20150325725A1 (en) Glass substrate for solar cell
WO2013064774A1 (en) Substrate for a photovoltaic cell
JP6673360B2 (en) Glass substrate for solar cell and solar cell
WO2013068698A1 (en) Glass sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12794402

Country of ref document: EP

Kind code of ref document: A1