WO2013062398A1 - Synthesis of materials for discolouration and degradation of organic pollutants in water: graphene alone and graphene nanocomposite (graphene-titanium dioxide) - Google Patents

Synthesis of materials for discolouration and degradation of organic pollutants in water: graphene alone and graphene nanocomposite (graphene-titanium dioxide) Download PDF

Info

Publication number
WO2013062398A1
WO2013062398A1 PCT/MA2012/000026 MA2012000026W WO2013062398A1 WO 2013062398 A1 WO2013062398 A1 WO 2013062398A1 MA 2012000026 W MA2012000026 W MA 2012000026W WO 2013062398 A1 WO2013062398 A1 WO 2013062398A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
process according
degradation
graphite
organic pollutants
Prior art date
Application number
PCT/MA2012/000026
Other languages
French (fr)
Other versions
WO2013062398A4 (en
Inventor
Mohamed ZAHOUILY
Abderrahim SOLHY
Rachid AIT BELALE
Original Assignee
Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) filed Critical Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Publication of WO2013062398A1 publication Critical patent/WO2013062398A1/en
Publication of WO2013062398A4 publication Critical patent/WO2013062398A4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • Carbon is known to have four allotropic forms namely: diamond, graphite, fullerenes and carbon nanotubes.
  • the tubular structure of nanotubes gives them unique mechanical, electrical and chemical properties. As such, they are commonly used in composite materials.
  • Semiconductor materials are differentiated from non-semiconductor materials by their physically distinct valence and conduction bands.
  • electrons move from the valence band, saturated with electrons, to the electron-free conduction band.
  • This creates positive gaps (holes) in the valence band and the gap between the bands allows the electrons and gaps to keep their excited states longer.
  • the electrons and the gaps rising on the surface of the semiconductor they can be trapped by the compounds absorbed on the surface and participate in oxidation-reduction reactions.
  • the organic compounds will be oxidized and converted into non-toxic compounds such as CO 2 , H 2 O and HCl. After desorption of non-toxic compounds, the semiconductor material regenerates, the process is, by definition, catalytic.
  • Photocatalysis is linked to two complementary phenomena, the first being a surface reaction and the other a reaction internal to the cell, due respectively to the presence of free electrons and hydroxyl radicals.
  • different factors can modify the reactions catalyzed by a semiconductor and we can, by playing on the presence of acceptors or electron donors, the intensity of the light, the temperature, the nature of the semiconductor, the polarity of the solvent and the semiconductor mass, optimize the photocatalytic transformation.
  • Photocatalysis is currently used for the treatment of water for distribution as drinking water, by passing water through semiconductor layers in different forms (woven fabric, powder in suspension, ceramic deposit, beds, etc.) irradiated with UV light.
  • the consumption of the semiconductor is very important because of the large volumes of water to be treated.
  • the invention solves these problems by providing a water treatment process containing organic pollutants (dyes or pesticides), a process in which the degradation of organic pollutants in water is carried out using materials based on graphite, graphene and others under sunlight and in the absence of ultraviolet (UV) irradiation.
  • organic pollutants dye or pesticides
  • UV ultraviolet
  • the present invention is specifically intended to meet this need by providing a process for the preparation and use of graphite or graphene-based materials in the degradation of organic pollutants in water in the absence of UV irradiation.
  • the method comprises the following steps:
  • a process for the treatment of aqueous effluents containing industrial pollutants characterized by the use of heterogeneous photocatalysis in the presence of catalysts based on graphite and / or graphene and in the absence or the presence of ultraviolet (UV) irradiation, and preferably under sunlight.
  • UV ultraviolet
  • a process according to claim 1 characterized by the use of graphite oxide as a photo-catalyst for the degradation of organic pollutants in water.
  • a process according to claim 1 characterized by the use of functionalized graphene, via the creation of functional groups, as a solid support for the degradation of organic pollutants in water.
  • a process according to claim 1 characterized by the use of graphene-titanium dioxide nanocomposites as a photo-catalyst for the degradation of organic pollutants in water.
  • a process according to claim 1 characterized by the use of semiconductor doped graphene for the degradation of organic pollutants in water.
  • a process according to claim 4 characterized by the use of a polar and protic solvent such as ethanol and water.
  • a seventh aspect of the invention there is provided a process according to claim 4, characterized by the use of an anionic or cationic surfactant.
  • a process according to claim 1 characterized in that the reaction is carried out at atmospheric pressure and at temperatures between 18-30 ° C.
  • a process according to claim 1 characterized in that the photocatalysts lead to a partial and / or total mineralization of the organic pollutant.
  • This invention makes it possible to eliminate the technological disadvantages due to the use of semiconductors in the form of powder in suspension and to their degradation.
  • the radiation of the light source is not an obligation which has a practical advantage, economic and avoids the problems associated with transmissions of UV irradiation.
  • Figure 5 Study of the reuse of functionalized graphene nanocomposite - Ti0 2 (GF @ TiO 2 ) during the degradation of methylene blue;
  • Figure 6 Infrared spectra of graphite oxide, graphene and GF 2 TiO 2 ;
  • Figure 7 X-ray diffraction of graphite, graphite oxide and graphene
  • Figure 8 X-Ray Diffraction of Graphene, Titanium Dioxide and Graphene Titanium Dioxide (GF @ TiO 2 );
  • Figure 9 SEM micrograph of graphite oxide (a) and graphene (b);
  • Figure 10 MET micrograph of nanoparticles of titanium dioxide alone
  • Figure 11 MET micrograph of graphene alone
  • Figure 12 TEM micrograph of graphene nanocomposite graphite-titanium dioxide in the absence of surfactant
  • FIG. 13 TEM micrograph of graphene nanocomposite-titanium dioxide (GF @ TiO 2 ) in the presence of functionalization;
  • Figure 14 MET Micrograph of Functionalized Graphene Nanocomposite - Titanium Dioxide
  • the graphite used is a commercial product which is graphite powder, greater than 45 ⁇ m in size and with a greater purity of 99.99%, Sigma-Aldrich.
  • the TiCl 4 used is also of Aldrich quality with a purity of 99%.
  • the catalytic degradation of the organic pollutants was carried out in a Pyrex reactor of 500 ml capacity with openings intended to take samples or which serve for the introduction of oxygen. Before use, it is thoroughly washed with distilled water.
  • the procedure comprises the following steps:
  • the samples taken are filtered on Millipore membrane type 0.45 pm HA.
  • the absorbance measurements were performed using a spectrometer type ASAP MICROMETERS series 2020, UV / Visible.
  • the maximum absorption wavelength is 510 nm.
  • the degradation of the organic pollutants was followed by liquid chromatography coupled to the spectrophotometer.
  • the concentration of the dyes is determined by spectrophotometric determination in the visible range, using the Beer-Lambert law:
  • A Absorbance
  • Specific extinction coefficient of the solute
  • L Thickness of the optical cell
  • C The concentration of the solute.
  • the degradation kinetics of the dyes are monitored using the analysis of samples taken over time by colorimetry.
  • the maximum absorption wavelength of the dyes is 510 nm.
  • Figure 3 reports the degradation kinetics of methylene blue, sodium alzarin sulphonate and bromophenol blue, respectively, as a function of time in the presence of GF and nanocomposite GF @ Ti0 2 and in the absence of UV irradiation.
  • PH is an important factor in any degradation study. It can condition both the surface charge of the photocatalyst and the organic pollutant structure. This quantity characterizes the waters and its value will depend on the origin of the effluent.
  • the treatment technique to be adopted will strongly depend on the pH value. This is why, in any degradation study, optimization of the ability to degrade organic pollutants as a function of pH is essential.
  • FTIR Fourier Transform Infrared Spectroscopy
  • the calibration of the FTIR is performed daily and automatically according to a procedure based on a water vapor absorption band in the ambient air.
  • the contact pressure of the sample on the diamond crystal is controlled manually by means of a fastening system which makes it possible to optimize the contact and to have quality spectra.
  • the scanning of the spectra is carried out between 260 and 4000 cm -1, a resolution of one point per 4 cm -1 is considered optimal for obtaining good spectrum quality in ATR mode.
  • Figure 6 illustrates the infrared absorption spectra of graphene and functionalized graphene. It shows the appearance of hydroxyl groups on the graphene surface after acid functionalization
  • X-ray diffraction is an analytical technique based on electron-matter interaction. The diffraction only takes place on the crystalline material. The identification of the crystalline phases by X-ray diffraction is made possible thanks to the periodicity of the atomic arrangement (structure) of the crystals which are unique from one phase to another. The identification of the phases present in a sample is made by comparing its spectrum (positions and intensities of the diffracted lines) with known phase spectra.
  • Figure 7 shows the XRD lines of graphite, graphite oxide and graphene.
  • Oxidation made it possible to establish oxide bonds between the graphite layers, and consequently an increase in the interplanar spaces of the graphite is observed.
  • FIG. 8 X-Ray Diffraction of Functionalized Graphene (GF) (a), Titanium Dioxide (TiO 2 ) (b) and Functionalized Graphene Nanocomposite-Titanium Dioxide (GF-TiO 2 ) (c)
  • X-ray diffraction figure 8 clearly shows that titanium dioxide is supported on graphene.
  • Scanning electron microscopy provides microstructural characterization of materials that provides information on morphology, component distribution, crystallography, and composition.
  • the device used in this study is "Quanta 200" from FEI Company and can reach a resolution of 3.0 nm to 30 kV. It is a microscope that allows high-resolution observation under so-called environmental conditions (ESEM mode) with a gas pressure in the chamber of up to 26 mbar. The solid samples are glued on copper pestles through a sticky double-sided tape and then a thin layer of gold is deposited under vacuum.
  • Figure 9 shows the SEM images of graphite oxide and graphene obtained after total exfoliation of graphite.
  • Figure 9 SEM micrograph of graphite oxide (a) and functionalized graphene (b) The examination of these images allows us to visualize the morphology and the distribution of its leaves as well as the topography of the surface. 4. Transmission electron microscopy (TEM)
  • Figures 10 to 13 show the sizes of the nanoparticles of titanium dioxide alone or supported on the functionalized graphene, as well as the size of the graphene sheets.
  • Figure 12 TEM micrograph of graphene nanocomposite graphite-titanium dioxide in the absence of surfactant
  • Figure 13 MET micrograph of graphene nanocomposite graphite-titanium dioxide in the absence of fonalisation
  • FIG. 14 TEM Micrograph of Functionalized Graphene Nanocomposite - Titanium Dioxide in the Presence of Surfactant

Abstract

The invention relates to a method for treating water containing organic pollutants (dyes and pesticides), in particular with a view to reusing said water for irrigation, in industry or even as drinking water. This method is also applicable to the treatment of industrial effluents rich in organic impurities. The developed method relates to the use of photo-catalysts based on nanostructured carbon and a nanosized metal oxide. The scientific and technological obstacles of this method actually lie in the preparation of nanocomposites based on graphite and functionalised graphene (graphite oxide, graphene, graphene-titanium dioxide nanocomposite (GF@TiO2)) capable of degrading organic pollutants in water in the absence of ultra-violet (UV) radiation, and the production methods and uses thereof.

Description

SYNTHESE DE MATERIAUX POUR LA DÉCOLORATION ET LA DEGRADATION DES POLLUANTS ORGANIQUES DANS L'EAU : GRAPHENE SEUL ET GRAPHÈNE NANO COMPOSITE (GRAPHÈNE /DIOXYDE DE TITANE)  SYNTHESIS OF MATERIALS FOR DECOLORATION AND DEGRADATION OF ORGANIC POLLUTANTS IN WATER: GRAPHENE ALONE AND GRAPHENE NANO COMPOSITE (GRAPHENE / TITANIUM DIOXIDE)
Etat de l'art State of the art
Le carbone est connu pour avoir quatre formes allotropiques à savoir : le diamant, le graphite, les fullerènes et les nanotubes de carbone. La structure tubulaire des nanotubes leur confère des propriétés mécaniques, électriques et chimiques uniques. A ce titre, ils sont couramment utilisés dans les matériaux composites.  Carbon is known to have four allotropic forms namely: diamond, graphite, fullerenes and carbon nanotubes. The tubular structure of nanotubes gives them unique mechanical, electrical and chemical properties. As such, they are commonly used in composite materials.
Le graphène longtemps considéré comme un objet virtuel, a récemment acquis une existence réelle depuis les travaux de Novoselov et al. [K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, et A. A. Firsov « Electric field effect in atomically thin carbon films », Science, Volume 306, pp 666-669 (2004); K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, « Two-dimenional gas of massless Dirac fermions in graphène », Nature, Volume 438, pp 197-200 (2005)] qui décrivent les propriétés électroniques de cet objet singulier. Depuis 2004 et la publication de Novesolov et al., le monde de la physique se passionne pour les propriétés électroniques du graphène ou plan isolé de graphite (Electric field effect in atomically thin carbon films, Novoselov et al. Science Volume 306, 666 (2004)].  Graphene, long considered a virtual object, has recently acquired a real existence since the work of Novoselov et al. [K. S. Novoselov, AK Geim, SV Morozov, D. Jiang, Y. Zhang, SV Dubonos, IV Grigorieva, and AA Firsov "Electric field effect in atomic thin carbon films", Science, Volume 306, pp 666-669 (2004) ; KS Novoselov, AK Geim, SV Morozov, D. Jiang, MI Katsnelson, IV Grigorieva, SV Dubonos, AA Firsov, "Two-dimensional gas of mass Dirac fermions in graphene", Nature, Volume 438, pp 197-200 (2005) ] which describe the electronic properties of this singular object. Since 2004 and the publication of Novesolov et al., The world of physics is passionate about the electronic properties of graphene or graphite insulated plane (Electric field effect in atomic thin carbon films, Novoselov et al., Science Volume 306, 666 (2004)). )].
D'autre part, les traitements classiques de l'eau, afin de le rendre utilisable, comprennent, entre autres étapes, une étape d'élimination des composés organiques. Cette étape devient de plus en plus importante du fait de la contamination croissante des ressources d'eau par l'agriculture, l'industrie et les particuliers utilisant des produits chimiques. Les traitements classiques ne conviennent pas toujours pour résoudre le problème car certains polluants organiques ne sont pas complètement détruits. Certains composés halogénés (en particulier chloroforme, tétrachlorure de carbone, etc.) sont très réfractaires aux traitements conventionnels tels que l'adsorption sur le charbon actif ou l'ozonation seule. On a donc pensé à la destruction photocatalytique des polluants organiques. Cette destruction photocatalytique les transforme en gaz carbonique, eau et acides minéraux dilués, qui sont des substances non toxiques. En outre, il s'est révélé que cette technique n'est pas sélective et permet de traiter la plupart des polluants organiques. Des essais concluants ont été effectués sur des solvants chlorés, des diphényles polychlorés, des dioxydes, des pesticides et des colorants [cf. D. Ollis, E. Pelizetti et N. Serpone, « Photocatalzed Destruction of Water Contaminants », Environmental Science and Technology, Volume 25, N° 9, pp 1532-1528 (1991 ) ; Y. Shaoqing, H. Jun, W. Jianlong « Radiation- inducedcatalyticdegradationof p-nitrophenol (PNP) in the présence of Ti02 nanoparticles », Radiation Physics and Chemistry , Volume 79, pp 1039-1046 (2010) ; X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, G. Zhao « Dégradation of methyl orange by composite photocatalysts nano-Ti02 immobilized on activated carbons of différent porosities » Journal of Hazardous Materials, Volume 169, pp 1061 - 067 (2009).]. La photocatalyse hétérogène utilise le plus souvent des oxydes semi-conducteurs de type Ti02, SrTi03, Fe203, FeTi03, Cr03, Mn02, Si, Ge, ZnO. D'autres matériaux ont été aussi testés, en particulier des quantum-dots CdS et GaP qui ont l'avantage d'absorber, par rapport au Ti02, une fraction plus importante du spectre solaire. Malheureusement ces semi-conducteurs sont dégradés pendant le processus photocatalytique. Le Ti02, au contraire, est stable et constitue un bon compromis entre efficacité et stabilité. Sa non-toxicité et son faible coût présentent par ailleurs des avantages considérables. On the other hand, conventional water treatments, to make it usable, include, among other steps, a step of removing organic compounds. This step is becoming increasingly important because of increasing contamination of water resources by agriculture, industry and individuals using chemicals. Conventional treatments are not always suitable for solving the problem because some organic pollutants are not completely destroyed. Certain halogenated compounds (in particular chloroform, carbon tetrachloride, etc.) are very refractory to conventional treatments such as activated carbon adsorption or ozonation alone. We have therefore thought of the photocatalytic destruction of organic pollutants. This photocatalytic destruction transforms them into carbon dioxide, water and diluted mineral acids, which are non-toxic substances. In addition, it has been shown that this technique is not selective and can treat most organic pollutants. Conclusive tests have been carried out on chlorinated solvents, polychlorinated biphenyls, dioxides, pesticides and dyes [cf. D. Ollis, E. Pelizetti and N. Serpone, "Photocatalzed Destruction of Water Contaminants", Environmental Science and Technology, Volume 25, No. 9, pp. 1532-1528 (1991); Y. Shaoqing, H. Jun, W. Jianlong "Radiation-inducedcatalyticdegradationofp-nitrophenol (PNP) in the Presence of Ti0 2 Nanoparticles", Radiation Physics and Chemistry, Volume 79, pp 1039-1046 (2010); X. Wang, Y. Liu, Z. Hu, Chen Y., Liu W, Zhao G. "Degradation of methyl orange by composite photocatalysts nano-TiO 2 immobilized on activated carbons of different porosities" Journal of Hazardous Materials, Volume 169 , pp. 1061 - 067 (2009).]. Heterogeneous photocatalysis most often uses TiO 2 , SrTiO 3 , Fe 2 O 3 , FeTiO 3 , CrO 3 , MnO 2 , Si, Ge, ZnO type semiconductor oxides. Other materials have also been tested, in particular quantum-dots CdS and GaP which have the advantage of absorbing, relative to TiO 2 , a larger fraction of the solar spectrum. Unfortunately, these semiconductors are degraded during the photocatalytic process. Ti0 2 , on the contrary, is stable and constitutes a good compromise between efficiency and stability. Its non-toxicity and its low cost also have considerable advantages.
Les matériaux semi-conducteurs se différencient des matériaux non semi-conducteurs par leurs bandes de valence et de conduction qui sont physiquement distinctes. Lorsque le semi-conducteur est irradié à une longueur d'onde appropriée, des électrons se déplacent de la bande de valence, saturée en électrons, vers la bande de conduction dépourvue d'électrons. Ceci crée des lacunes positives (trous) dans la bande de valence et l'espace entre les bandes permet aux électrons et aux lacunes de conserver plus longtemps leurs états excités. Les électrons et les lacunes montant à la surface du semi-conducteur, ils peuvent être piégés par les composés absorbés à la surface et participer à des réactions d'oxydoréduction. Ainsi, les composés organiques seront oxydés et transformés en composés non toxiques tels que C02, H20 et HCI. Après désorption des composés non toxiques, le matériau semi-conducteur se régénère, le processus est donc, par définition, catalytique. Semiconductor materials are differentiated from non-semiconductor materials by their physically distinct valence and conduction bands. When the semiconductor is irradiated at an appropriate wavelength, electrons move from the valence band, saturated with electrons, to the electron-free conduction band. This creates positive gaps (holes) in the valence band and the gap between the bands allows the electrons and gaps to keep their excited states longer. The electrons and the gaps rising on the surface of the semiconductor, they can be trapped by the compounds absorbed on the surface and participate in oxidation-reduction reactions. Thus, the organic compounds will be oxidized and converted into non-toxic compounds such as CO 2 , H 2 O and HCl. After desorption of non-toxic compounds, the semiconductor material regenerates, the process is, by definition, catalytic.
La photocatalyse est lié à deux phénomènes complémentaires, le premier étant une réaction de surface et l'autre une réaction interne à la cellule, et dus respectivement à la présence d'électrons libres et de radicaux hydroxyles. En plus de ces deux phénomène, différents facteurs peuvent modifier les réactions catalysées par un semi-conducteur et on peut, en jouant sur la présence d'accepteurs ou de donneurs d'électrons, l'intensité de la lumière, la température, la nature du semi-conducteur, la polarité du solvant et la masse de semi-conducteur, optimiser la transformation photocatalytique. Photocatalysis is linked to two complementary phenomena, the first being a surface reaction and the other a reaction internal to the cell, due respectively to the presence of free electrons and hydroxyl radicals. In addition to these two phenomena, different factors can modify the reactions catalyzed by a semiconductor and we can, by playing on the presence of acceptors or electron donors, the intensity of the light, the temperature, the nature of the semiconductor, the polarity of the solvent and the semiconductor mass, optimize the photocatalytic transformation.
La photocatalyse est utilisée à l'heure actuelle pour le traitement de l'eau en vue de sa distribution en tant qu'eau potable, en faisant passer l'eau à travers des couches de semi-conducteur sous différentes formes (toile tissée, poudre en suspension, dépôt sur céramique, lits, etc.) irradiées par de la lumière UV. La consommation du semi-conducteur est très importante en raison des grands volumes d'eau à traiter. Plusieurs problèmes se posent lors de la dépollution de l'eau, aussi bien au niveau économique qu'au niveau environnemental. En effet, une étape de filtration onéreuse est nécessaire, dans certains cas, pour récupérer le catalyseur. Dans ces conditions, le catalyseur ne peut être récupéré qu'avec un procédé membranaire, ce qui augmente considérablement le coût du traitement. De plus l'importante charge en catalyseur empêche une bonne transmission du rayonnement.  Photocatalysis is currently used for the treatment of water for distribution as drinking water, by passing water through semiconductor layers in different forms (woven fabric, powder in suspension, ceramic deposit, beds, etc.) irradiated with UV light. The consumption of the semiconductor is very important because of the large volumes of water to be treated. There are several problems with water remediation, both economically and environmentally. Indeed, an expensive filtration step is necessary, in some cases, to recover the catalyst. Under these conditions, the catalyst can only be recovered with a membrane process, which considerably increases the cost of the treatment. In addition, the large catalyst load prevents good radiation transmission.
Actuellement les procédés de photocatalyse sont à priori non applicables au traitement des eaux usées chargées en matières en suspension qui augmentent les problèmes de transmission des UV et qui encrasseraient rapidement tant le lit de catalyseur que les lampes UV immergées dans les eaux à traiter.  Currently, photocatalysis processes are a priori not applicable to the treatment of wastewater loaded with suspended solids which increases the UV transmission problems and which would quickly foul both the catalyst bed and the UV lamps immersed in the water to be treated.
L'invention résout ces problèmes en fournissant un procédé de traitement d'eau contenant des polluants organiques (colorants ou pesticides), procédé dans lequel on effectue la dégradation des polluants organiques dans l'eau en utilisant des matériaux à base de graphite, graphène et autres sous la lumière solaire et en absence des irradiations ultra-violets (UV).  The invention solves these problems by providing a water treatment process containing organic pollutants (dyes or pesticides), a process in which the degradation of organic pollutants in water is carried out using materials based on graphite, graphene and others under sunlight and in the absence of ultraviolet (UV) irradiation.
DESCRIPTION DE L'INVENTION DESCRIPTION OF THE INVENTION
La présente invention a précisément pour but de répondre à ce besoin en fournissant un procédé de préparation et d'utilisation des matériaux à base de graphite ou graphène dans la dégradation des polluants organiques dans l'eau en absence des irradiations UV. Le procédé comprend les étapes suivantes : The present invention is specifically intended to meet this need by providing a process for the preparation and use of graphite or graphene-based materials in the degradation of organic pollutants in water in the absence of UV irradiation. The method comprises the following steps:
a) Préparation d'Oxyde de Graphite (GO) : oxydation chimique ;  a) Preparation of Graphite Oxide (GO): chemical oxidation;
b) Graphène exfolié : exfoliation et réduction chimique par hydrate d'hydrazine ;  b) Exfoliated graphene: exfoliation and chemical reduction with hydrazine hydrate;
c) Fonctionnalisation du graphène exfolié par attaque d'un mélange d'acides ;  c) Functionalization of exfoliated graphene by attacking a mixture of acids;
d) Synthèse du nanocomposites graphène-dioxyde de titane en présence ou absence de suriactant anionique ou cationique ;  d) Synthesis of graphene-titanium dioxide nanocomposites in the presence or absence of anionic or cationic suricactant;
e) Dégradation des polluants organiques dans l'eau en absence et en présence des irradiations UV.  e) Degradation of organic pollutants in water in the absence and presence of UV irradiation.
Selon un aspect de l'invention, il est prévu un processus pour le traitement des effiuents aqueux contenant des polluants industriels caractérisé par l'utilisation de la photo-catalyse hétérogène en présence de catalyseurs à base de graphite et/ou de graphène et en absence ou présence des irradiations ultra-violets (UV), et de préférence sous la lumière solaire. According to one aspect of the invention, there is provided a process for the treatment of aqueous effluents containing industrial pollutants characterized by the use of heterogeneous photocatalysis in the presence of catalysts based on graphite and / or graphene and in the absence or the presence of ultraviolet (UV) irradiation, and preferably under sunlight.
Selon un deuxième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par l'utilisation de l'oxyde de graphite comme photo-catalyseur pour la dégradation des polluants organiques dans l'eau.  According to a second aspect of the invention, there is provided a process according to claim 1, characterized by the use of graphite oxide as a photo-catalyst for the degradation of organic pollutants in water.
Selon un troisième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par l'utilisation de graphène fonctionnalisé, via la création des groupements fonctionnels, comme support solide pour la dégradation des polluants organiques dans l'eau.  According to a third aspect of the invention, there is provided a process according to claim 1, characterized by the use of functionalized graphene, via the creation of functional groups, as a solid support for the degradation of organic pollutants in water.
Selon un quatrième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par l'utilisation de nanocomposites graphène - dioxyde de titane comme photo-catalyseur pour la dégradation des polluants organiques dans l'eau.  According to a fourth aspect of the invention, there is provided a process according to claim 1, characterized by the use of graphene-titanium dioxide nanocomposites as a photo-catalyst for the degradation of organic pollutants in water.
Selon un cinquième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par l'utilisation du graphène dopé par les semi-conducteurs pour la dégradation des polluants organiques dans l'eau.  According to a fifth aspect of the invention there is provided a process according to claim 1, characterized by the use of semiconductor doped graphene for the degradation of organic pollutants in water.
Selon un sixième aspect de l'invention, il est prévu un processus selon la revendication 4, caractérisé par l'utilisation d'un solvant polaire et protique tels que l'éthanol et l'eau.  According to a sixth aspect of the invention, there is provided a process according to claim 4, characterized by the use of a polar and protic solvent such as ethanol and water.
Selon un septième aspect de l'invention, il est prévu un processus selon la revendication 4, caractérisé par l'utilisation d'un surfactant anionique ou cationique.  According to a seventh aspect of the invention, there is provided a process according to claim 4, characterized by the use of an anionic or cationic surfactant.
Selon un huitième aspect de l'invention, il est prévu un processus selon la revendication 4, caractérisé par l'utilisation des ultrasons.  According to an eighth aspect of the invention, there is provided a process according to claim 4, characterized by the use of ultrasound.
Selon un neuvième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par le faite que la solution à traiter contient des colorants industriels de type alizarine sulfonate de sodium, bleu de méthylène, bleu de bromophénol ou équivalent de concentrations 3 à 100 ppm.  According to a ninth aspect of the invention, there is provided a process according to claim 1, characterized by the fact that the solution to be treated contains industrial dyes of the sodium alizarin sulfonate type, methylene blue, bromophenol blue or equivalent concentrations 3 to 100 ppm.
Selon un dixième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par le faite que la solution à traiter contient des pesticides organophosphorés ou équivalent de concentrations 3 à 100 ppm. According to a tenth aspect of the invention, there is provided a process according to claim 1, characterized in that the solution to be treated contains organophosphorus pesticides or equivalent of concentrations 3 to 100 ppm.
Selon un onzième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par le fait que la réaction est entreprise à pression atmosphérique et à des températures comprises entre 18-30 °C. Selon un douzième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par le faite que les photo-catalyseurs conduisent à une minéralisation partielle et/ou totale du polluant organique. According to an eleventh aspect of the invention, there is provided a process according to claim 1, characterized in that the reaction is carried out at atmospheric pressure and at temperatures between 18-30 ° C. According to a twelfth aspect of the invention, there is provided a process according to claim 1, characterized in that the photocatalysts lead to a partial and / or total mineralization of the organic pollutant.
Selon un treizième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par le faite que les photo-catalyseurs dégradent d'autres polluants organiques.  According to a thirteenth aspect of the invention, there is provided a process according to claim 1, characterized in that the photocatalysts degrade other organic pollutants.
Selon un quatorzième aspect de l'invention, il est prévu un processus selon la revendication 1 , caractérisé par le faite que les photo-catalyseurs sont réutilisables plusieurs fois.  According to a fourteenth aspect of the invention, there is provided a process according to claim 1, characterized in that the photocatalysts are reusable several times.
Cette invention permet d'éliminer les inconvénients technologiques dus à l'emploi des semi-conducteurs sous forme de poudre en suspension et à leur dégradation. En plus, le rayonnement de la source lumineuse n'est pas une obligation ce qui présente un avantage pratique, économique et évite les problèmes liés aux transmissions des irradiations UV. This invention makes it possible to eliminate the technological disadvantages due to the use of semiconductors in the form of powder in suspension and to their degradation. In addition, the radiation of the light source is not an obligation which has a practical advantage, economic and avoids the problems associated with transmissions of UV irradiation.
D'autres caractéristiques et avantages de la présente invention apparaîtrons à la lecture de la description détaillé qui suit, faite référence aux figures annexées dans lesquelles :  Other characteristics and advantages of the present invention will appear on reading the detailed description which follows, with reference to the appended figures in which:
Figure 1. Evaluation de l'importance des irradiations aux rayonnements ultra-violets lors de la dégradation des polluants organiques ; Figure 1. Evaluation of the importance of irradiation with ultraviolet radiation during the degradation of organic pollutants;
Figure 2. Etude cinétique de la dégradation du bleu de méthylène en présence des différents matériaux (Oxyde de graphite, Graphène et Nanocomposite graphène fonctionnalisé (GF)-Ti02 (GF@Ti02) ; Figure 2. Kinetic study of the degradation of methylene blue in the presence of different materials (graphite oxide, graphene and functionalized graphene nanocomposite (GF) -Ti0 2 (GF @ TiO 2 );
Figure 3. Etude cinétique de la dégradation des différents polluants organiques (BM : Figure 3. Kinetic study of the degradation of different organic pollutants (BM:
Bleu de Méthylène, ASS : Alizarine Sulfonate de Sodium et BBP : Bleu de Bromophénol) ;  Methylene Blue, SSA: Alizarin Sodium Sulfonate and BBP: Bromophenol Blue);
Figure 4. Influence de pH sur la cinétique de dégradation du bleu de méthylène en présence de nanocomposite graphène fonctionnalisé - dioxyde de titane (GF@Ti02) ; Figure 4. Influence of pH on the kinetics of degradation of methylene blue in the presence of functionalized graphene nanocomposite - titanium dioxide (GF @ TiO 2 );
Figure 5 : Etude de la réutilisation de nanocomposite graphène fonctionnalisé - Ti02 (GF@Ti02) lors de la dégradation de bleu de méthylène ; Figure 5: Study of the reuse of functionalized graphene nanocomposite - Ti0 2 (GF @ TiO 2 ) during the degradation of methylene blue;
Figure 6 : Spectres infrarouge de l'oxyde de graphite, de graphène et GF@Ti02 ; Figure 6: Infrared spectra of graphite oxide, graphene and GF 2 TiO 2 ;
Figure 7: Diffraction des rayons X du graphite, d'oxyde graphite et du graphène ; Figure 7: X-ray diffraction of graphite, graphite oxide and graphene;
Figure 8: Diffraction des rayons X du graphène, dioxyde de titane et du graphène- dioxyde de titane (GF@Ti02) ; Figure 8: X-Ray Diffraction of Graphene, Titanium Dioxide and Graphene Titanium Dioxide (GF @ TiO 2 );
Figure 9: Micrographie MEB de l'oxyde de graphite (a) et du graphène (b) ; Figure 9: SEM micrograph of graphite oxide (a) and graphene (b);
Figure 10: Micrographie MET des nanoparticules du dioxyde de titane seul ; Figure 11 : Micrographie MET du graphène seul ; Figure 10: MET micrograph of nanoparticles of titanium dioxide alone; Figure 11: MET micrograph of graphene alone;
Figure 12: Micrographie MET du nanocomposite graphène-dioxyde de titane en absence de surfactant ; Figure 12: TEM micrograph of graphene nanocomposite graphite-titanium dioxide in the absence of surfactant;
Figure 13: Micrographie MET du nanocomposite graphène-dioxyde de titane (GF@Ti02) en présence de fonctionnalisation ; FIG. 13: TEM micrograph of graphene nanocomposite-titanium dioxide (GF @ TiO 2 ) in the presence of functionalization;
Figure 14: Micrographie MET du nanocomposite graphène fonctionnalisé - dioxyde de titane Figure 14: MET Micrograph of Functionalized Graphene Nanocomposite - Titanium Dioxide
(GF@Ti02) en présence de surfactant. (GF @ Ti0 2 ) in the presence of surfactant.
DESCRIPTION DETAILLE E DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
1. Réactifs 1. Reagents
Le graphite utilisé, est un produit commercial qu'est le Graphite poudre, taille supérieure à 45 pm et la pureté supérieure 99,99%, Sigma-AIdrich. Le TiCI4 utilisé est aussi de qualité Aldrich avec une pureté de 99%. The graphite used is a commercial product which is graphite powder, greater than 45 μm in size and with a greater purity of 99.99%, Sigma-Aldrich. The TiCl 4 used is also of Aldrich quality with a purity of 99%.
2. Mode opératoire de dégradation des polluants organiques 2. Method of degradation of organic pollutants
La dégradation catalytique des polluants organiques a été réalisée dans un réacteur en pyrex de capacité 500 ml avec des ouvertures destinées pour faire des prélèvements ou qui servent à l'introduction de l'oxygène. Avant son utilisation ce dernier est abondamment lavé avec de l'eau distillée. The catalytic degradation of the organic pollutants was carried out in a Pyrex reactor of 500 ml capacity with openings intended to take samples or which serve for the introduction of oxygen. Before use, it is thoroughly washed with distilled water.
Le mode opératoire comporte les étapes suivantes :  The procedure comprises the following steps:
> Préparation de la solution du polluant organique (100 ml) ;  > Preparation of the solution of the organic pollutant (100 ml);
> Introduction du photo-catalyseur ;  > Introduction of the photo-catalyst;
> mise en agitation en absence des irradiations UV ;  > stirring in the absence of UV irradiations;
> Les prélèvements effectués aux différents temps de réaction à l'aide d'une seringue suivi par filtration pour séparer les deux phases ;  > Samples taken at different reaction times using a syringe followed by filtration to separate the two phases;
> Analyse par spectrophotomètre UV/visible ;  > UV / visible spectrophotometer analysis;
> Dans les deux cas, le nettoyage de toute la verrerie, a été réalisé par un rinçage à l'eau distillée.  > In both cases, the cleaning of all the glassware was carried out by rinsing with distilled water.
Les échantillons prélevés sont filtrés sur membrane Millipore de type 0,45 pm HA. Les mesures d'absorbance ont été effectuées à l'aide d'un spectromètre type MICROMÈTRES ASAP série 2020, UV/Visible. La longueur d'onde maximum d'absorption est 510 nm. La dégradation des polluants organiques a été suivie par chromatographie liquide couplée au spectrophotomètre. La détermination de la concentration des colorants est effectuée par dosage spectrophotométrique dans le domaine du visible, en utilisant la loi de Beer-Lambert : The samples taken are filtered on Millipore membrane type 0.45 pm HA. The absorbance measurements were performed using a spectrometer type ASAP MICROMETERS series 2020, UV / Visible. The maximum absorption wavelength is 510 nm. The degradation of the organic pollutants was followed by liquid chromatography coupled to the spectrophotometer. The concentration of the dyes is determined by spectrophotometric determination in the visible range, using the Beer-Lambert law:
A = Log 10 / I = e.C.L (Eq. 1 ) A = Log 10 / I = e.C.L (Eq 1)
Avec:  With:
A : Absorbance, ε : Coefficient d'extinction spécifique du soluté, L : Epaisseur de la cellule optique et C : La concentration du soluté.  A: Absorbance, ε: Specific extinction coefficient of the solute, L: Thickness of the optical cell and C: The concentration of the solute.
Les mesures du pH des différentes solutions ont été réalisées à l'aide d'un pH-mètre de laboratoire (Crison model pH 25). Au préalable, l'étalonnage a été effectué à l'aide des solutions tampons commerciales de pH 4,7 et 10. The pH measurements of the various solutions were carried out using a laboratory pH meter (Crison model pH 25). Beforehand, the calibration was carried out using commercial buffer solutions of pH 4.7 and 10.
3. Préparation des matériaux à base du graphite et du graphène a. Préparation d'oxyde de graphite (GO) 3. Preparation of materials based on graphite and graphene a. Preparation of graphite oxide (GO)
A une température comprise entre 0 et 5 °C on mélange 6 g de graphite et 3 g de nitrate de sodium (NaN03) dans 140 ml d'acide sulfurique (H2S04). Après homogénéisation du mélange, 18 g de permanganate de potassium (KMn04) est ajouté. La solution est maintenue à température ambiante sous agitation pendant 30 min puis une quantité d'eau distillée est ajoutée à la suspension. La suspension est traitée par une solution d'eau oxygénée puis filtrée. At a temperature of between 0 and 5 ° C., 6 g of graphite and 3 g of sodium nitrate (NaN0 3 ) are mixed in 140 ml of sulfuric acid (H 2 SO 4 ). After homogenization of the mixture, 18 g of potassium permanganate (KMnO 4 ) is added. The solution is kept at room temperature with stirring for 30 minutes and then a quantity of distilled water is added to the suspension. The suspension is treated with a solution of hydrogen peroxide and then filtered.
Le filtra est re-dispersé, lavé par une solution d'acide chlorhydrique puis lavé plusieurs fois par l'eau distillée. L'oxyde de graphite est obtenu après filtration et séchage dans un four. b. Graphène exfolié  The filtra is re-dispersed, washed with a hydrochloric acid solution and then washed several times with distilled water. Graphite oxide is obtained after filtration and drying in an oven. b. Exfoliated graphene
A une solution aqueuse d'oxyde de graphite dispersé par sonication pendant 1 h 30min est ajoutée, 1 ml d'hydrate d'hydrazine ou produits équivalents. Après 12h de chauffage à 00°C le graphène réduit sera lavé à l'eau distillée plusieurs fois et séché sous vide dans un four. c. Fonctionnalisation du graphène exfolié To an aqueous solution of graphite oxide dispersed by sonication for 1 h 30 min is added, 1 ml of hydrazine hydrate or equivalent products. After 12 hours of heating at 00 ° C., the reduced graphene is washed with distilled water several times and dried under vacuum in an oven. vs. Functionalization of exfoliated graphene
Une quantité du graphène exfolié a été soumis à une attaque acide. Ledit mélange contient au moins deux différents type d'acide, et de préférence trois acides. d. Synthèse des nanocomposites graphène fonctionnalisé - dioxyde de titane (GF@Ti02) An amount of exfoliated graphene was subjected to acid attack. Said mixture contains at least two different types of acid, and preferably three acids. d. Synthesis of functionalized graphene nanocomposites - titanium dioxide (GF @ Ti0 2 )
1) Synthèse de nanoparticules de dioxyde de titane A une solution aqueuse glacée de tétrachlorure de titane (50/50 wt%) est ajoutée un surfactant cationique ou anionique, après la dissolution totale, on ajoute une solution de tétrachlorure de titane et de l'ammoniaque, le pH est maintenu à 8. Après 30 min de sonication, on ajoute l'acide nitrique (1 M) jusqu'au pH égale à 2. Après 1 h d'agitation, on ajoute de TiCI4 et de l'ammoniaque, le pH est maintenu à 8 pendant 30 min puis baisser à pH égale à 2 par l'ajout d'acide nitrique (1 M). Cette étape est répétée huit à dix fois avant de laver le précipité blanc par l'éthanol et l'eau, puis séché à 120°C. La taille des nanoparticules de dioxyde de titane est comprise entre 10 et 20 nm. 1) Synthesis of nanoparticles of titanium dioxide To a frozen aqueous solution of titanium tetrachloride (50/50 wt%) is added a cationic or anionic surfactant, after complete dissolution, a solution of titanium tetrachloride and ammonia is added, the pH is maintained at 8. After 30 minutes of sonication, nitric acid (1 M) is added until the pH is 2. After stirring for 1 hour, TiCl 4 and ammonia are added, the pH is maintained at 8 for 30 hours. min then drop to pH equal to 2 by adding nitric acid (1 M). This step is repeated eight to ten times before washing the white precipitate with ethanol and water, and then dried at 120 ° C. The size of the nanoparticles of titanium dioxide is between 10 and 20 nm.
2) Préparation de nanocomposite graphène fonctionnalisé - dioxyde de titane (GF@ Ti02) 2) Preparation of Functionalized Graphene Nanocomposite - Titanium Dioxide (GF @ TiO 2 )
Des nanocomposites binaires contenant en poids 95% de graphène (obtenu à partir du graphite) et 5% de nanoparticules de dioxyde de titane (préparé à partir de tétrachlorure de titane en présence d'un surfactant) : Sous agitation, une solution aqueuse d'un surfactant cationique ou anionique et de nanoparticules de dioxyde de titane sont ajoutées à une solution de graphène dans éthanol/eau (50/50 v%). Le mélange est placé dans un bain d'ultrason pendant 2h, agité vigoureusement pendant 1 h par un agitateur magnétique puis placé dans un autoclave et chauffé à 150°C pendant 3 h. En fin, le mélange est lavé successivement par l'éthanol et l'eau. Le nanocomposite graphène fonctionnalisé - dioxyde de titane (GF@Ti02) obtenu est séché à 120° C. Binary nanocomposites containing by weight 95% of graphene (obtained from graphite) and 5% of nanoparticles of titanium dioxide (prepared from titanium tetrachloride in the presence of a surfactant): With stirring, an aqueous solution of a cationic or anionic surfactant and titanium dioxide nanoparticles are added to a solution of graphene in ethanol / water (50/50 v%). The mixture is placed in an ultrasound bath for 2 h, stirred vigorously for 1 h by a magnetic stirrer and placed in an autoclave and heated at 150 ° C for 3 h. Finally, the mixture is washed successively with ethanol and water. The functionalized graphene nanocomposite - titanium dioxide (GF @ TiO 2 ) obtained is dried at 120 ° C.
4. Exemple de dégradation des polluants organiques dans l'eau en présence des matériaux à base de graphite et du graphène 4. Example of degradation of organic pollutants in water in the presence of graphite-based materials and graphene
La détermination des cinétiques de réaction de dégradation ainsi que l'influence de certains paramètres physico-chimiques sur cette réaction est une étape importante pour la conception d'un tel photocatalyseur et pour des éventuelles applications à l'échèle industriels. L'étude des cinétiques de réaction photocatalytique du colorant (Bleu de méthylène, Alzarine Sulfonate de sodium, Bromphénol, etc.) en fonction de la concentration initiale a été réalisée en faisant varier les concentrations initiales en colorants (3 - 35 mg/l) à pH initial. Lorsqu'on ajoute le matériau (oxyde de graphite, graphène ou graphène fonctionnalisé -Ti02) dans la solution, le temps nécessaire pour la décoloration est fonction de la concentration initiale. En outre, plus la concentration initiale du colorant est importante, plus le temps nécessaire à sa disparition est long. La photocatalyse avec nos matériaux, surtout graphène et GF@Ti02, est donc une méthode tout à fait adaptée à la dégradation des polluants en très faible concentration en solution aqueuse. The determination of degradation reaction kinetics as well as the influence of certain physicochemical parameters on this reaction is an important step for the design of such a photocatalyst and for possible applications at industrial scale. The study of the photocatalytic reaction kinetics of the dye (methylene blue, sodium Alzarine Sulfonate, Bromphenol, etc.) as a function of the initial concentration was carried out by varying the initial dye concentrations (3 - 35 mg / l). at initial pH. When the material (graphite oxide, graphene or functionalized graphene-TiO 2 ) is added to the solution, the time required for the discoloration is a function of the initial concentration. In addition, the higher the initial concentration of the dye, the longer it takes to disappear. Photocatalysis with our materials, especially graphene and GF @ Ti0 2 , is therefore a very suitable method for the degradation of pollutants in a very low concentration of aqueous solution.
Le suivi de la cinétique de dégradation des colorants (Bleu de méthylène, Alizarine sulfonate de sodium et bleu de bromophénol, etc.) est réalisé à l'aide de l'analyse des prélèvements échelonnés dans le temps par colorimétrie. La longueur d'onde d'absorption maximale des colorants est de 510 nm. The degradation kinetics of the dyes (methylene blue, sodium alizarin sulphonate and bromophenol blue, etc.) are monitored using the analysis of samples taken over time by colorimetry. The maximum absorption wavelength of the dyes is 510 nm.
Comme exemple, nous nous présentons les résultats du suivi de la dégradation du bleu de méthylène, par photolyse (irradiation UV seule), par le GF (en présence d'irradiation UV, photocatalyse) et par le GF en obscurité (absence d'irradiation UV). Les résultats obtenus montrent l'efficacité GF seul et en absence des irradiations UV dans la dégradation du colorant. Ces derniers montrent que l'irradiation par les rayonnements ultra-violets n'a aucune importance (Fiaure 1 ). Figure 1. Evaluation de l'importance des irradiations aux rayonnements ultra-violets lors de la dégradation des polluants organiques As an example, we present the results of the monitoring of the degradation of methylene blue, by photolysis (UV irradiation only), by GF (in the presence of UV irradiation, photocatalysis) and by GF in darkness (absence of irradiation UV). The results obtained show the effectiveness GF alone and in the absence of UV irradiation in the degradation of the dye. These show that irradiation with ultraviolet radiation is of no importance (Fiaure 1). Figure 1. Evaluation of the importance of irradiation with ultraviolet radiation during the degradation of organic pollutants
L'étude des cinétiques de réaction de dégradation, en présence des trois matériaux oxyde de graphite, GF et GF@Ti02, du bleu de méthylène en fonction de la concentration initiale a été réalisée. La figure 2 rapporte les cinétiques de dégradation du colorant en fonction du temps. Les courbes des figures montrent que le colorant, en présence des trois matériaux, et en absence des irradiations UV, est totalement éliminé. Le temps nécessaire pour l'élimination totale varie selon les matériaux utilisés. The study of degradation reaction kinetics, in the presence of the three graphite oxide materials, GF and GF @ TiO 2 , of methylene blue as a function of the initial concentration was carried out. Figure 2 reports the kinetics of degradation of the dye as a function of time. The curves of the figures show that the dye, in the presence of the three materials, and in the absence of UV irradiation, is completely eliminated. The time required for total elimination varies according to the materials used.
Notons que de point de vue cinétique le nanocomposite GF@Ti02 est le plus efficace suivi du GF puis l'oxyde de graphite. Note that from a kinetic point of view the GF @ Ti0 2 nanocomposite is the most effective followed by GF and graphite oxide.
Figure 2. Etude cinétique de la dégradation du bleu de méthylène en présence des différents matériaux (Oxyde de graphite, Graphène fonctionnalisé(GF) et Nanocomposite graphène fonctionnalisé- dioxyde de titane GF-Ti02) Figure 2. Kinetic study of the degradation of methylene blue in the presence of different materials (graphite oxide, functionalized graphene (GF) and functionalized graphene nanocomposite-titanium dioxide GF-TiO 2 )
La figure 3 rapporte les cinétiques de dégradation du bleu de méthylène, de l'alzarine sulfonate de sodium et du bleu de bromophénol, respectivement, en fonction du temps en présence du GF et du nanocomposite GF@Ti02 et en absence des irradiations UV. Figure 3 reports the degradation kinetics of methylene blue, sodium alzarin sulphonate and bromophenol blue, respectively, as a function of time in the presence of GF and nanocomposite GF @ Ti0 2 and in the absence of UV irradiation.
Figure 3. Etude cinétique de la dégradation des différents polluants organiques (BM : Bleu de Méthylène, ASS : Alizarine Sulfonate de Sodium et BBP : Bleu de BromoPhénol)  Figure 3. Kinetic study of the degradation of the different organic pollutants (BM: Methylene Blue, ASS: Alizarin Sodium Sulfonate and BBP: Bromo-Phenol Blue)
a) avant dégradation ; b) après dégradation  a) before degradation; b) after degradation
Le pH est un facteur important dans toute étude de dégradation. Il peut conditionner à la fois la charge superficielle du photo-catalyseur ainsi que la structure de polluant organique. Cette grandeur caractérise les eaux et sa valeur dépendra de l'origine de l'effluent. La technique de traitement à adopter dépendra fortement de la valeur du pH. C'est la raison pour laquelle, dans toute étude relative à la dégradation l'optimisation de la capacité de dégrader les polluants organiques en fonction du pH est indispensable. Dans notre étude, nous avons suivi l'effet du pH sur la dégradation des polluants organiques pour différentes concentrations initiales de 3-35 mg/l. L'acidification du milieu a été réalisée en additionnant quelques gouttes d'acide chlorydrique. De la soude concentrée a été utilisée pour avoir des pH basiques. Les résultats obtenus (Exemple, cas de la dégradation du bleu de méthylène (35 mg/l) en présence de nanocomposite GF@Ti02 sont représentés sur la figure 3. PH is an important factor in any degradation study. It can condition both the surface charge of the photocatalyst and the organic pollutant structure. This quantity characterizes the waters and its value will depend on the origin of the effluent. The treatment technique to be adopted will strongly depend on the pH value. This is why, in any degradation study, optimization of the ability to degrade organic pollutants as a function of pH is essential. In our study, we monitored the effect of pH on the degradation of organic pollutants at different initial concentrations of 3-35 mg / l. The acidification of the medium was carried out by adding a few drops of hydrochloric acid. Concentrated soda was used to have basic pHs. The results obtained (Example, case of the degradation of methylene blue (35 mg / l) in the presence of nanocomposite GF @ Ti0 2 are shown in FIG.
Figure 4. Influence de pH sur la cinétique de dégradation du bleu de méthylène en présence de nanocomposite GF@Ti02 Figure 4. Influence of pH on the kinetics of degradation of methylene blue in the presence of nanocomposite GF @ Ti0 2
Les courbes de la figure 4 montrent une diminution rapide de la quantité du colorant à la fois en milieu acide et basique. Nous pourrons donc conclure que la forme moléculaire présente une meilleure rétention que la forme anionique. Ceci montre que la dégradation des polluants organiques par nos matériaux nanocomoposites n'est pas influencée par le caractère hydrophile ou hydrophobe des composées orqaniques. En plus, sous les mêmes conditions nous avons pu dégrader d'autres polluants organiques tels que l'alzarine sulfonate de sodium, bromophénol et des pesticides organophosphorés tels que fénitrothion, méthidathion, malathion, méthyle parathion, éthyle parathion ). The curves in Figure 4 show a rapid decrease in the amount of the dye both in acidic and basic medium. We can therefore conclude that the molecular form has a better retention than the anionic form. This shows that the degradation of organic pollutants by our nanocomoposite materials is not influenced by the hydrophilic or hydrophobic nature of the organic compounds. In addition, under the same conditions we have been able to degrade other organic pollutants such as sodium alzarin sulfonate, bromophenol and organophosphorus pesticides such as fenitrothion, methidathion, malathion, methyl parathion, ethyl parathion).
Nos matériaux présentent l'avantage d'être réutilisable après lavage par le méthanol ou l'eau. La figure 5 montre que l'activité catalytique de nanocomposite GF@Ti02 reste quasiment inchangée après 7 cycles. Our materials have the advantage of being reusable after washing with methanol or water. Figure 5 shows that the catalytic activity of nanocomposite GF @ Ti0 2 remains virtually unchanged after 7 cycles.
Figure 5 : Etude de la réutilisation de nanocomposite GF@Ti02 lors de la dégradation de bleu de méthylène Figure 5: Study of the reuse of nanocomposite GF @ Ti0 2 during the degradation of methylene blue
La caractérisation des matériaux obtenus a été réalisée à travers différentes techniques : The characterization of the materials obtained was carried out through different techniques:
> Infrarouge à transformée de Fourier (FTIR);  > Fourier Transform Infrared (FTIR);
> Diffraction des rayons X (DRX);  > X-ray diffraction (XRD);
> Microscope électronique à transmission (TEM);  > Transmission electron microscope (TEM);
> Microscope électronique à balayage (MEB).  > Scanning Electron Microscope (SEM).
Procédure de caractérisation Characterization procedure
1. Infrarouge à transformée de Fourier (FTIR) 1. Fourier Transform Infrared (FTIR)
L'analyse par spectroscopie infrarouge à transformée de Fourrier (FTIR) a été réalisée dans l'intervalle 400 - 4000 cm"1, grâce à un spectromètre « modèle FTLA2000-102 » commercialisé par la société ABB Bomem. Il est équipé d'un dispositif de mesure en ATR (Attenuated Total Reflexion) modèle Golden Gâte, avec un cristal de diamant modèle Specac. Fourier Transform Infrared Spectroscopy (FTIR) analysis was carried out in the range 400-4000 cm -1 , using a spectrometer "model FTLA2000-102" marketed by ABB Bomem. measuring device in ATR (Attenuated Total Reflexion) model Golden Gatte, with a diamond crystal model Specac.
La calibration du FTIR est effectuée quotidiennement et automatiquement selon une procédure basée sur une bande d'absorption de vapeur d'eau dans l'air ambiant. La pression de contact de l'échantillon sur le cristal de diamant est contrôlée manuellement à l'aide d'un système de fixation qui permet d'optimiser le contact et d'avoir des spectres de qualité. Le balayage des spectres est effectué entre 260 à 4000 cm"1. Une résolution d'un point par 4 cm"1 est considérée optimale pour obtenir une bonne qualité de spectre en mode ATR. The calibration of the FTIR is performed daily and automatically according to a procedure based on a water vapor absorption band in the ambient air. The contact pressure of the sample on the diamond crystal is controlled manually by means of a fastening system which makes it possible to optimize the contact and to have quality spectra. The scanning of the spectra is carried out between 260 and 4000 cm -1, a resolution of one point per 4 cm -1 is considered optimal for obtaining good spectrum quality in ATR mode.
La figure 6 illustre les spectres d'absorption infrarouge du graphène et du graphène fonctionnalisé. Elle montre la l'apparition des groupements hydroxyles sur la surface de graphène après la fonctionnalisation par acide  Figure 6 illustrates the infrared absorption spectra of graphene and functionalized graphene. It shows the appearance of hydroxyl groups on the graphene surface after acid functionalization
Figure 6 : Spectres infrarouge de graphène et graphène fonctionnalisé Figure 6: Infrared spectra of graphene and functionalized graphene
2. Diffraction des rayons X (DRX) 2. X-ray diffraction (XRD)
La diffraction des rayons-X est une technique d'analyse fondée sur l'interaction électron - matière. La diffraction n'ayant lieu que sur la matière cristalline. L'identification des phases cristallines par diffraction rayons X est rendu possible grâce à la périodicité de l'arrangement atomique (structure) des cristaux qui sont uniques d'une phase à l'autre. L'identification des phases présentes dans un échantillon se fait par comparaison de son spectre (positions et intensités des raies diffractées) avec des spectres de phases connues. X-ray diffraction is an analytical technique based on electron-matter interaction. The diffraction only takes place on the crystalline material. The identification of the crystalline phases by X-ray diffraction is made possible thanks to the periodicity of the atomic arrangement (structure) of the crystals which are unique from one phase to another. The identification of the phases present in a sample is made by comparing its spectrum (positions and intensities of the diffracted lines) with known phase spectra.
Les spectres de diffraction des rayons X des matériaux à base de graphite ou graphène ont été enregistrés à température ambiante au moyen d'un diffractomètre Bruker AXS D-8 en utilisant la raie Ka d'une anticathode de cuivre (λ = 1 ,5405 Â) avec une géométrie Bragg-Brentano (Θ-2Θ). The X-ray diffraction spectra of graphite or graphene-based materials were recorded at room temperature using a Bruker AXS D-8 diffractometer using the K a line of a copper anticathode (λ = 1.5405). Â) with Bragg-Brentano geometry (Θ-2Θ).
Figure 7: Diffraction des rayons X du graphite, d'oxyde graphite et du graphène Figure 7: X-Ray Diffraction of Graphite, Graphite Oxide and Graphene
La figure 7 montre les raies DRX du graphite, d'oxyde de graphite et du graphène, La raie de forte intensité du graphite à 2Θ = 26,1 ° indique un espacement interfoliaire de 3,42 À et caractéristique du plan (0 0 2). Après l'oxydation, il est clair que la raie a été remplacée par une raie bien défini dans les zones des thêtas faibles, exactement à 2Θ = 10,8°, ce qui montre une intercalation entre les feuilles de graphène. Nous pouvons estimer cette intercalation de 3,42 À à 8,1 À. Figure 7 shows the XRD lines of graphite, graphite oxide and graphene. The high intensity graphite line at 2Θ = 26.1 ° indicates an interfacial spacing of 3.42 Å and characteristic of the plane (0 0 2 ). After oxidation, it is clear that the line has been replaced by a well-defined line in the weak theta areas, exactly at 2Θ = 10.8 °, which shows an intercalation between the graphene sheets. We can estimate this intercalation from 3.42 Å to 8.1 Å.
L'oxydation permit d'établir des liaisons d'oxydes entre les couches de graphite, par conséquence, on remarque une augmentation des espaces interfoliaires du graphite.  Oxidation made it possible to establish oxide bonds between the graphite layers, and consequently an increase in the interplanar spaces of the graphite is observed.
La réduction de l'oxyde de graphite entraine une exfoliation totale des couches du graphite. Ceci est prouvé par la disparition des la raies caractéristiques de l'oxyde de graphite et l'apparition des la raies caractéristiques du plan (0 0 2).  The reduction of graphite oxide leads to a total exfoliation of the graphite layers. This is proved by the disappearance of the characteristic lines of the graphite oxide and the appearance of the lines characteristic of the plane (0 0 2).
Figure 8: Diffraction des rayons X du graphène fonctionnalisé (GF) (a), dioxyde de titane (Ti02) (b) et du nanocomposite graphène fonctionnalisé-dioxyde de titane (GF-Ti02) (c) Figure 8: X-Ray Diffraction of Functionalized Graphene (GF) (a), Titanium Dioxide (TiO 2 ) (b) and Functionalized Graphene Nanocomposite-Titanium Dioxide (GF-TiO 2 ) (c)
La figure 8 de diffraction des rayons X montre bien que le dioxyde de titane est supporté sur le graphène. X-ray diffraction figure 8 clearly shows that titanium dioxide is supported on graphene.
3. Microscope électronique à balayage 3. Scanning electron microscope
La microscopie électronique à balayage (MEB) permet une caractérisation microstructurale des matériaux qui fournit à la fois des renseignements relatifs à la morphologie, la répartition des constituants, la cristallographique et la composition. Scanning electron microscopy (SEM) provides microstructural characterization of materials that provides information on morphology, component distribution, crystallography, and composition.
L'appareil utilisé lors de cette étude est « Quanta 200 » de la compagnie FEI et qui peut atteindre une résolution de 3,0 nm à 30 kV. C'est un microscope qui permet l'observation à haute résolution dans des conditions dites environnementales (mode ESEM) avec une pression de gaz dans la chambre pouvant aller jusqu'à 26 mbar. Les échantillons solides sont collés sur des pilons en cuivre par le biais d'une bande à double face collante, puis une couche mince d'or est déposée sous vide. La figure 9 montre les clichés de MEB de l'oxyde de graphite et du graphène obtenu après l'exfoliation totale du graphite.  The device used in this study is "Quanta 200" from FEI Company and can reach a resolution of 3.0 nm to 30 kV. It is a microscope that allows high-resolution observation under so-called environmental conditions (ESEM mode) with a gas pressure in the chamber of up to 26 mbar. The solid samples are glued on copper pestles through a sticky double-sided tape and then a thin layer of gold is deposited under vacuum. Figure 9 shows the SEM images of graphite oxide and graphene obtained after total exfoliation of graphite.
Figure 9: Micrographie MEB de l'oxyde de graphite (a) et du graphène fonctionnalisé (b) L'examen de ces clichés nous permet de visualiser la morphologie et la distribution de ses feuilles ainsi que la topographie de la surface. 4. Microscopie électronique à transmission (MET) Figure 9: SEM micrograph of graphite oxide (a) and functionalized graphene (b) The examination of these images allows us to visualize the morphology and the distribution of its leaves as well as the topography of the surface. 4. Transmission electron microscopy (TEM)
L'appareil utilisé dans ce travail est une microscopie électronique à Transmission FEI SIRION-200. Les figures 10 à 13 donnes les tailles des nanoparticules de dioxyde de titane seul ou supporté sur le graphène fonctionnalisé, ainsi que la taille des feuilles du graphène. The apparatus used in this work is FEI SIRION-200 Transmission Electron Microscopy. Figures 10 to 13 show the sizes of the nanoparticles of titanium dioxide alone or supported on the functionalized graphene, as well as the size of the graphene sheets.
Figure 10: Micrographie MET des nanoparticules du dioxyde de titane seul Figure 10: MET micrograph of nanoparticles of titanium dioxide alone
Figure 11 : Micrographie MET du graphène fonctionnalisé seul Figure 11: MET Micrograph of Functionalized Graphene Alone
Figure 12: Micrographie MET du nanocomposite graphène-dioxyde de titane en absence de surfactant Figure 12: TEM micrograph of graphene nanocomposite graphite-titanium dioxide in the absence of surfactant
Figure 13: Micrographie MET du nanocomposite graphène-dioxyde de titane en absence de fontionnalisation Figure 13: MET micrograph of graphene nanocomposite graphite-titanium dioxide in the absence of fonalisation
Figure 14: Micrographie MET du nanocomposite graphène fonctionnalisé -dioxyde de titane en présence de surfactant FIG. 14: TEM Micrograph of Functionalized Graphene Nanocomposite - Titanium Dioxide in the Presence of Surfactant

Claims

REVENDICATIONS
1 - Procédé pour produire des matériaux nanocomposites ayant une activité photo-catalytique potentielle de dégrader des polluants organiques. Lesdits nanocomposites sont constitués au moins d'un matériau carboné nano-structuré et/ou un oxyde métallique semi-conducteur, selon les étapes suivantes : 1 - Process for producing nanocomposite materials with potential photocatalytic activity to degrade organic pollutants Said nanocomposites consist of at least one nano-structured carbon material and / or a semiconductor metal oxide, according to the following steps:
a. Préparation d'Oxyde de Graphite (GO) à partir du graphite commercial via une oxydation chimique ;  at. Preparation of Graphite Oxide (GO) from commercial graphite via chemical oxidation;
b. L'exfoliation du GO mentionné dans (a) en utilisant un mode d'agitation spécial, précisément la sonication, et puis par la suite une réduction chimique par au moins un agent réducteur (par exemple l'hydrate d'hydrazine) ;  b. The exfoliation of the GO mentioned in (a) using a special agitation mode, specifically sonication, and then subsequently a chemical reduction with at least one reducing agent (eg hydrazine hydrate);
c. Fonctionnalisation du graphène exfolié obtenu selon (b) via une attaque par un mélange d'acides contenant au moins deux acides et de préférence trois type d'acide et avec un certain pourcentage bien définit ;  vs. Functionalization of the exfoliated graphene obtained according to (b) via an attack with a mixture of acids containing at least two acids and preferably three types of acid and with a certain percentage well defined;
d. Contrôle de la croissance des nanoparticules de Ti02 en les stabilisants par au moins un surfactant de nature anionique ou cationique d. Controlling the growth of TiO 2 nanoparticles by stabilizing them with at least one surfactant of anionic or cationic nature
e. Synthèse du nanocomposite graphène fonctionnalisé-dioxyde de titane (GF@Ti02) via la dispersion des nanoparticules de Ti02 préformées, selon (d), sur la surface du graphène fonctionnalisé en présence ou absence de surfactant anionique ou cationique ; e. Synthesis of functionalized graphene nanocomposite-titanium dioxide (GF @ TiO 2 ) via the dispersion of preformed TiO 2 nanoparticles, according to (d), on the surface of functionalized graphene in the presence or absence of anionic or cationic surfactant;
f. Dégradation des polluants organiques colorants ou pesticides dans l'eau en absence et en présence des irradiations UV et de préférence en absence de la source d'UV.  f. Degradation of organic coloring pollutants or pesticides in water in the absence and presence of UV irradiation and preferably in the absence of the UV source.
2- Procédé selon la revendication 1 , dont le semi-conducteur est l'oxyde de titane qui a une taille nano- scopique supporté sur un matériau carboné à base de graphite, graphène et/ou graphène fonctionnalisé, de sorte à avoir une performance remarquable sur le plan photo-catalytique. 2. The process as claimed in claim 1, in which the semiconductor is titanium oxide which has a nano-scopic size supported on a carbon material based on graphite, graphene and / or functionalized graphene, so as to have a remarkable performance. on the photo-catalytic plane.
3- Procédé selon la revendication 1 , caractérise en ce que la nucléation et la croissance de l'oxyde semi-conducteur est réalisée d'une façon contrôlable sur la surface de graphite, graphène ou graphène fonctionnalisé afin de produire un matériau nancomposite homogène en taille, morphologie et porosité. 3. Process according to claim 1, characterized in that the nucleation and growth of the semiconductor oxide is carried out in a controllable manner on the surface of graphite, graphene or functionalized graphene in order to produce a nancomposite material homogeneous in size. , morphology and porosity.
4- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le pourcentage du semi-conducteur entre 3 à 50% en poids du nanocomposite photo-catalyseur et de préférence en faible quantité. 4. Process according to any one of the preceding claims, characterized in that the percentage of the semiconductor between 3 to 50% by weight of the photo-catalyst nanocomposite and preferably in small amounts.
5- Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la taille du semiconducteur est de dimension nanométrique incluse entre 5 à 50 nm. 5. Process according to any one of claims 1 to 4, characterized in that the size of the semiconductor is of nanometric dimension included between 5 to 50 nm.
6- Composition photo-catalytique selon l'une des revendications 1 à 4, caractérisée en ce que le semiconducteur est pur cristallographiquement et sous sa forme anatase ou équivalent. 7- Processus selon la revendication 1 , caractérisé par l'utilisation de dioxyde de graphite comme support solide pour la dégradation des polluants organiques. 6. Photo-catalytic composition according to one of claims 1 to 4, characterized in that the semiconductor is crystallographically pure and in anatase form or equivalent. 7- Process according to claim 1, characterized by the use of graphite dioxide as a solid support for the degradation of organic pollutants.
8- Processus selon la revendication 1 , caractérisé par l'utilisation de graphène comme support solide pour la dégradation des polluants organiques. 8. Process according to claim 1, characterized by the use of graphene as a solid support for the degradation of organic pollutants.
9- Processus selon la revendication 1 , caractérisé par l'utilisation de nanocomposites graphène - semiconducteur (exemple le dioxyde de titane) comme photo-catalyseur solide pour la dégradation des polluants organiques. 9- Process according to claim 1, characterized by the use of graphene-semiconductor nanocomposites (eg titanium dioxide) as a solid photo-catalyst for the degradation of organic pollutants.
10- Processus selon la revendication 1 , caractérisé par le faite que la solution à traiter est un colorant industriel de concentrations de 3 à 100 ppm. 10- Process according to claim 1, characterized in that the solution to be treated is an industrial dye concentrations of 3 to 100 ppm.
11 - Processus selon la revendication 1 , caractérisé par le fait que la réaction est entreprise à pression atmosphérique et à une température comprise entre 18 et 30°C. 11 - Process according to claim 1, characterized in that the reaction is carried out at atmospheric pressure and at a temperature between 18 and 30 ° C.
12- Processus selon la revendication 1 , caractérisé par le faite que ces photo-catalyseurs conduisent à une minéralisation totale du polluant organique. 12- Process according to claim 1, characterized by the fact that these photocatalysts lead to a total mineralization of the organic pollutant.
13- Processus selon la revendication 1 , caractérisé par le faite que ces photo-catalyseurs dégradent d'autres polluants organiques tels que les pesticides organophosphorés de concentrations de 3 à 100 ppm. 13- Process according to claim 1, characterized by the fact that these photo-catalysts degrade other organic pollutants such as organophosphorus pesticides of concentrations of 3 to 100 ppm.
14- Processus selon la revendication 1 , caractérisé par le faite que ces photo-catalyseurs sont réutilisables plusieurs fois. 14- Process according to claim 1, characterized in that these photocatalysts are reusable several times.
PCT/MA2012/000026 2011-10-26 2012-10-25 Synthesis of materials for discolouration and degradation of organic pollutants in water: graphene alone and graphene nanocomposite (graphene-titanium dioxide) WO2013062398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA34304 2011-10-26
MA34304A MA34204B1 (en) 2011-10-26 2011-10-26 SYNTHESIS OF MATERIALS FOR DECOLORATION AND DEGRADATION OF ORGANIC POLLUTANTS IN WATER: GRAPHENE ALONE AND GRAPHENE NANO COMPOSITE (GRAPHENE / TITANIUM DIOXIDE)

Publications (2)

Publication Number Publication Date
WO2013062398A1 true WO2013062398A1 (en) 2013-05-02
WO2013062398A4 WO2013062398A4 (en) 2013-07-25

Family

ID=47631683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2012/000026 WO2013062398A1 (en) 2011-10-26 2012-10-25 Synthesis of materials for discolouration and degradation of organic pollutants in water: graphene alone and graphene nanocomposite (graphene-titanium dioxide)

Country Status (2)

Country Link
MA (1) MA34204B1 (en)
WO (1) WO2013062398A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028309A (en) * 2014-06-26 2014-09-10 浙江理工大学 Composite type visible-light-induced photocatalyst and preparation method thereof
WO2014185616A1 (en) * 2013-05-13 2014-11-20 제주대학교 산학협력단 Waste-water treatment device and method using dielectric barrier discharge plasma
CN106076303A (en) * 2016-06-29 2016-11-09 湖南大学 Graphene oxide/nano titania pin composite and its preparation method and application
CN110201723A (en) * 2019-07-09 2019-09-06 西南石油大学 A kind of dopamine/redox graphene/silver orthophosphate composite photocatalyst material and its preparation
CN110252414A (en) * 2019-07-09 2019-09-20 西南石油大学 A kind of preparation and application of poly-dopamine/redox graphene/silver orthophosphate PVDF photocatalysis membrana
CN110316890A (en) * 2019-08-05 2019-10-11 中国水产科学研究院淡水渔业研究中心 A method of organic matter in processing grass carp breeding wastewater
CN112516978A (en) * 2020-11-20 2021-03-19 哈尔滨工业大学(深圳) Graphene nanocomposite and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104058516B (en) * 2014-05-30 2015-11-25 安徽国星生物化学有限公司 A kind for the treatment of process of the phosphorus-containing wastewater in glyphosate production process generation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143405A2 (en) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthesis of graphene sheets and nanoparticle composites comprising same
WO2010014215A2 (en) * 2008-07-28 2010-02-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
CN101691204A (en) * 2009-08-13 2010-04-07 苏州纳米技术与纳米仿生研究所 Stable nano graphene oxide under physiological condition and preparation method thereof
WO2010096665A1 (en) * 2009-02-19 2010-08-26 William Marsh Rice University Dissolution of graphite, graphite oxide and graphene nanoribbons in superacid solutions and manipulation thereof
WO2010115905A2 (en) * 2009-04-06 2010-10-14 Sa Envitech S.R.L. Combination of materials for the treatment of contaminated liquids by means of photocatalytic oxidation
US20110017587A1 (en) * 2009-07-27 2011-01-27 Aruna Zhamu Production of chemically functionalized nano graphene materials
US20110157772A1 (en) * 2009-12-28 2011-06-30 Aruna Zhamu Spacer-modified nano graphene electrodes for supercapacitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143405A2 (en) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthesis of graphene sheets and nanoparticle composites comprising same
WO2010014215A2 (en) * 2008-07-28 2010-02-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
WO2010096665A1 (en) * 2009-02-19 2010-08-26 William Marsh Rice University Dissolution of graphite, graphite oxide and graphene nanoribbons in superacid solutions and manipulation thereof
WO2010115905A2 (en) * 2009-04-06 2010-10-14 Sa Envitech S.R.L. Combination of materials for the treatment of contaminated liquids by means of photocatalytic oxidation
US20110017587A1 (en) * 2009-07-27 2011-01-27 Aruna Zhamu Production of chemically functionalized nano graphene materials
CN101691204A (en) * 2009-08-13 2010-04-07 苏州纳米技术与纳米仿生研究所 Stable nano graphene oxide under physiological condition and preparation method thereof
US20110157772A1 (en) * 2009-12-28 2011-06-30 Aruna Zhamu Spacer-modified nano graphene electrodes for supercapacitors

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
D. OLLIS; E. PELIZETTI; N. SERPONE: "Photocatalzed Destruction of Water Contaminants", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 25, no. 9, 1991, pages 1532 - 1528, XP000231928, DOI: doi:10.1021/es00021a001
DEBENEDETTI B ET AL: "Synthesis of TiO2nanospheres through microemulsion reactive precipitation", JOURNAL OF ELECTROCERAMICS, KLUWER ACADEMIC PUBLISHERS, BO, vol. 17, no. 1, 1 September 2006 (2006-09-01), pages 37 - 40, XP019450647, ISSN: 1573-8663, DOI: 10.1007/S10832-006-9932-Y *
GUODONG JIANG ET AL: "TiOnanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants", CARBON, ELSEVIER, OXFORD, GB, vol. 49, no. 8, 22 February 2011 (2011-02-22), pages 2693 - 2701, XP028188626, ISSN: 0008-6223, [retrieved on 20110226], DOI: 10.1016/J.CARBON.2011.02.059 *
JINTAO ZHANG ET AL: "Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 11, 26 January 2011 (2011-01-26), pages 3634, XP055058152, ISSN: 0959-9428, DOI: 10.1039/c0jm03827j *
K. S. NOVOSELOV; A. K. GEIM; S. V. MOROZOV; D. JIANG; M. 1. KATSNELSON; V. GRIGORIEVA; S. V. DUBONOS; A. A. FIRSOV: "Two-dimenional gas of massless Dirac fermions in graphène", NATURE, vol. 438, 2005, pages 197 - 200
K. S. NOVOSELOV; A. K. GEIM; S. V. MOROZOV; D. JIANG; Y. ZHANG; S. V. DUBONOS; 1. V. GRIGORIEVA; A. A. FIRSOV: "Electric field effect in atomically thin carbon films", SCIENCE, vol. 306, 2004, pages 666 - 669, XP009086357, DOI: doi:10.1126/science.1102896
NOVOSELOV ET AL., SCIENCE, vol. 306, 2004, pages 666
STANKOVICH ET AL: "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", CARBON, ELSEVIER, OXFORD, GB, vol. 45, no. 7, 6 March 2007 (2007-03-06), pages 1558 - 1565, XP022101693, ISSN: 0008-6223, DOI: 10.1016/J.CARBON.2007.02.034 *
THUY-DUONG NGUYEN-PHAN ET AL: "The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites", CHEMICAL ENGINEERING JOURNAL, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 170, no. 1, 14 March 2011 (2011-03-14), pages 226 - 232, XP028208625, ISSN: 1385-8947, [retrieved on 20110323], DOI: 10.1016/J.CEJ.2011.03.060 *
TIMOTHY N. LAMBERT ET AL: "Synthesis and Characterization of Titania-Graphene Nanocomposites", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 113, no. 46, 19 November 2009 (2009-11-19), pages 19812 - 19823, XP055003443, ISSN: 1932-7447, DOI: 10.1021/jp905456f *
VIRENDRA SINGH ET AL: "Graphene based materials: Past, present and future", PROGRESS IN MATERIALS SCIENCE, PERGAMON PRESS, GB, vol. 56, no. 8, 30 March 2011 (2011-03-30), pages 1178 - 1271, XP028375493, ISSN: 0079-6425, [retrieved on 20110403], DOI: 10.1016/J.PMATSCI.2011.03.003 *
X. WANG; Y. LIU; Z. HU; Y. CHEN; W. LIU; G. ZHAO: "Degradation of methyl orange by composite photocatalysts nano-Ti02 immobilized on activated carbons of different porosities", JOURNAL OF HAZARDOUS MATERIALS, vol. 169, 2009, pages 1061 - 1067, XP026282773, DOI: doi:10.1016/j.jhazmat.2009.04.058
XIAOBO CHEN ET AL: "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications", CHEMICAL REVIEWS, vol. 107, no. 7, 23 June 2007 (2007-06-23), pages 2891 - 2959, XP055002733, DOI: 10.1021/cr0500535 *
Y. SHAOQING; H. JUN; W. JIANLONG: "Radiation- inducedcatalyticdegradationof p-nitrophenol (PNP) in the presence of Ti02 nanoparticles", RADIATION PHYSICS AND CHEMISTRY, vol. 79, 2010, pages 1039 - 1046
YANHUI ZHANG ET AL: "TiO 2 -Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO 2 -Graphene Truly Different from Other TiO 2 -Carbon Composite Materials?", ACS NANO, vol. 4, no. 12, 28 December 2010 (2010-12-28), pages 7303 - 7314, XP055058153, ISSN: 1936-0851, DOI: 10.1021/nn1024219 *
YUN HAU NG ET AL: "Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions", CATALYSIS TODAY, ELSEVIER, NL, vol. 164, no. 1, 26 October 2010 (2010-10-26), pages 353 - 357, XP028384336, ISSN: 0920-5861, [retrieved on 20101111], DOI: 10.1016/J.CATTOD.2010.10.090 *
YUPENG ZHANG ET AL: "TiO/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light", JOURNAL OF MATERIALS SCIENCE, KLUWER ACADEMIC PUBLISHERS, BO, vol. 46, no. 8, 7 December 2010 (2010-12-07), pages 2622 - 2626, XP019876898, ISSN: 1573-4803, DOI: 10.1007/S10853-010-5116-X *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185616A1 (en) * 2013-05-13 2014-11-20 제주대학교 산학협력단 Waste-water treatment device and method using dielectric barrier discharge plasma
CN104028309A (en) * 2014-06-26 2014-09-10 浙江理工大学 Composite type visible-light-induced photocatalyst and preparation method thereof
CN106076303A (en) * 2016-06-29 2016-11-09 湖南大学 Graphene oxide/nano titania pin composite and its preparation method and application
CN110201723A (en) * 2019-07-09 2019-09-06 西南石油大学 A kind of dopamine/redox graphene/silver orthophosphate composite photocatalyst material and its preparation
CN110252414A (en) * 2019-07-09 2019-09-20 西南石油大学 A kind of preparation and application of poly-dopamine/redox graphene/silver orthophosphate PVDF photocatalysis membrana
CN110316890A (en) * 2019-08-05 2019-10-11 中国水产科学研究院淡水渔业研究中心 A method of organic matter in processing grass carp breeding wastewater
CN112516978A (en) * 2020-11-20 2021-03-19 哈尔滨工业大学(深圳) Graphene nanocomposite and preparation method and application thereof

Also Published As

Publication number Publication date
MA34204B1 (en) 2013-05-02
WO2013062398A4 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2013062398A1 (en) Synthesis of materials for discolouration and degradation of organic pollutants in water: graphene alone and graphene nanocomposite (graphene-titanium dioxide)
Lei et al. Synergetic photocatalysis/piezocatalysis of bismuth oxybromide for degradation of organic pollutants
Nasrollahzadeh et al. Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions
Lin et al. Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals
Ghosh et al. The characteristic study and sonocatalytic performance of CdSe–graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions
Saikia et al. Formation of carbon quantum dots and graphene nanosheets from different abundant carbonaceous materials
Liu et al. One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis
Magdalane et al. Structural and morphological properties of Co3O4 nanostructures: investigation of low temperature oxidation for photocatalytic application for waste water treatment
Rong et al. Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation
Ghosh et al. High photonic effect of organic dye degradation by CdSe–graphene–TiO2 particles
Cozzoli et al. Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions
Abdolhosseinzadeh et al. UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance
Zhang et al. Calcination of reduced graphene oxide decorated TiO2 composites for recovery and reuse in photocatalytic applications
El-Maghrabi et al. One pot environmental friendly nanocomposite synthesis of novel TiO2-nanotubes on graphene sheets as effective photocatalyst
Divya et al. Chemical synthesis of zinc oxide nanoparticles and its application of dye decolourization
Nair et al. TiO2 nanosheet-graphene oxide based photocatalytic hierarchical membrane for water purification
Altin et al. Hydrothermal preparation of B–TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiation
Hasanpour et al. Investigation of operation parameters on the removal efficiency of methyl orange pollutant by cellulose/zinc oxide hybrid aerogel
WO2013085469A1 (en) Photocatalytic metal oxide nanomaterials; method of making via h2-plasma treatment; use for organic waste decontamination in water
Meenakshi et al. Synthesis and characterization of zinc oxide nanorods and its photocatalytic activities towards degradation of 2, 4-D
Elias et al. Fabrication of Zn3 (PO4) 2/carbon nanotubes nanocomposite thin film via sol-gel drop coating method with enhanced photocatalytic activity
Tran et al. Novel N, C, S-TiO2/WO3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance
WO2016146944A1 (en) Method for preparing materials made from sulfur-doped titanium dioxide, materials obtained and applications in photocatalysis
Ravichandran et al. Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2
Salomatina et al. Preparation and photocatalytic properties of titanium dioxide modified with gold or silver nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821072

Country of ref document: EP

Kind code of ref document: A1