WO2013062177A1 - Electrode including a graphene layer and a self-assembled electrode active material aggregate layer, and secondary battery using same, and method for manufacturing same - Google Patents

Electrode including a graphene layer and a self-assembled electrode active material aggregate layer, and secondary battery using same, and method for manufacturing same Download PDF

Info

Publication number
WO2013062177A1
WO2013062177A1 PCT/KR2011/009933 KR2011009933W WO2013062177A1 WO 2013062177 A1 WO2013062177 A1 WO 2013062177A1 KR 2011009933 W KR2011009933 W KR 2011009933W WO 2013062177 A1 WO2013062177 A1 WO 2013062177A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active material
electrode active
electrode
graphene
Prior art date
Application number
PCT/KR2011/009933
Other languages
French (fr)
Korean (ko)
Inventor
최진훈
김일두
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2013062177A1 publication Critical patent/WO2013062177A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • An electrode comprising a graphene layer and a self-assembled electrode active material collector layer, a secondary battery using the same, and a method of manufacturing the same
  • the present invention relates to an electrode including a graphene layer, a secondary battery including the same, an electrochemical capacitor including the same, and a method of manufacturing the same, in order to improve adhesion characteristics between the self-assembled electrode active material layer and the current collector.
  • the graphene layer covers the self-assembled electrode active material nanoparticle aggregate layer, and the graphene layer and the electrode active material nanoparticle aggregate layer alternately form a multilayer film, thereby providing fast electrons through the graphene layer.
  • the transfer occurs, and lithium ions may move rapidly through the empty spaces between the collectors, thereby implementing a thin battery suitable for high-speed layer discharge.
  • the mechanical stability is increased, the long life characteristics can be excellent.
  • a battery having a thickness of several to several tens of microns or less is manufactured and has an advantage that it can be applied to a wireless sensor, RFID, healthcare, and the like.
  • a thin film battery uses a vacuum deposition method to produce a thin positive electrode active material layer such as 1 ⁇ ) 3 ⁇ 4, and solid electrolytes such as UPON are also deposited as a thin film, which leads to restrictions in selecting materials.
  • the positive electrode active material it is difficult to manufacture by chemical vapor deposition because a lot of materials having a complicated composition ratio and structure are used.
  • thin films are deposited using an RF sputtering apparatus, and it is also difficult to uniformly manufacture a ceramic target having a complex composition.
  • the spray technique is an easy technique for forming thin layers of 2-10 microns thick.
  • a thin layer crystallized from the precursor solution is formed by coating the thin layer using a solvent in which the precursor is dissolved as a spray solution and then performing heat treatment at a high temperature, it may be difficult to obtain a thin crystal layer having excellent crystallinity.
  • Al, Cu, or stainless steel used as the current collector substrate is oxidized during the high temperature heat treatment, thereby greatly increasing the resistance of the current collector.
  • a colloidal solution in which fine nanoparticles having a crystalline property of 100 nm or less are well dispersed is prepared and sprayed therefrom.
  • high capacity electrode active materials of SK4200 mAh / g) and Sn (991 mAh / g) series having a higher theoretical capacity than carbon materials (372 mAh / g) or Li 4 Ti 5 0 12 ( 175 mAh / g) material and the like by forming a colloidal solution for spray to form a thin layer, it is possible to significantly reduce the process cost compared to the vacuum deposition process.
  • An object of the present invention is to provide an electrode and a method for manufacturing the electrode, in which the self-assembled electrode active material nanoparticle aggregate layer and the graphene layer are deposited alternately.
  • the present invention provides an electrode active material nanoparticle aggregate layer self-assembled in at least one shape selected from spherical, elliptical, and donut shapes, an electrode having a graphene layer inserted in an upper layer and a lower layer thereof, and a method of manufacturing the same.
  • the electron transfer with the self-assembled electrode active material nanoparticle aggregates occurs quickly due to the excellent electrical conduction characteristics of the graphene layer, and the graphene holds the electrode active material nanoparticle aggregate layer, resulting in high mechanical strength.
  • the present invention provides an electrode and a method of manufacturing the same.
  • an electrode is free to move an electrolyte through an open space between the self-assembled electrode active material nanoparticle aggregates, and thus has excellent high power characteristics and can serve as a complete layer for volume expansion. And a method of manufacturing the same,
  • the electrode active material nanoparticle aggregates networked by the carbon layer.
  • the layer is thermally compressed to provide an electrode having high mechanical and electrical stability and a secondary battery and a supercapacitor using the same.
  • An electrode of an aspect of the present invention is a current collector; Graphene stacked on the current collector
  • graphene layer A collector layer of electrode active material nanoparticles laminated on the graphene layer; And it may include a carbon layer laminated on the collector layer.
  • a secondary battery or a supercapacitor may include the electrode.
  • a method of manufacturing an electrode comprising: forming a laminated structure by electrospraying a graphene dispersion solution, an electrode active material nanoparticle dispersion solution, and a carbon layer dispersion solution in order on a current collector; And it may include a step of compressing the laminated structure.
  • the collector prepared by electrospraying a solution in which the electrode active material nanoparticles for secondary batteries is dispersed is coated on the current collector in at least one shape selected from spherical, donut-shaped, or elliptical.
  • the electrode active material nanoparticle aggregate layer and the graphene layer may be alternately coated with a multilayer to prepare a thick multilayer thin film having a thickness of 10 microns or more.
  • the carbon layer coated on the electrode active material nanoparticle coagulation layer may be a carbon nano-lever layer instead of the graphene layer.
  • the graphene layer wraps the electrode active material collector layer, thereby enhancing the mechanical stability of the nanoparticle aggregates, and in the case of carbon nano-lube, networking and dyeing the aggregates between the aggregates increases mechanical durability.
  • the graphene layer and the carbon nanotube layer have very fast electron transfer characteristics, and may provide an electrode active material nanoparticle aggregate layer that is advantageous for high-speed charging and discharging.
  • the self-assembled aggregate of the electrode active material of the present invention is manufactured from the nanoparticles of the positive electrode active material, the negative electrode active material or a mixture thereof, the secondary battery full cell (full cel l) Since the polymer binder is not used in the preparation of the electrode active material nanoparticle aggregate layer, the electron transfer can be performed quickly, and the mechanical stability problem that can be caused by not using the binder is the graphene layer or the carbon layer. By introducing the nanotube layer on top of the self-assembled electrode active material nanoparticle aggregate layer, the stability can be increased, and excellent long-life characteristics can be expected.
  • the thickness of the thin layer can be controlled by controlling the electrostratic spray time used in the preparation of the electrode active material, and the current collector-graphene layer (A) -electrode active material nanoparticles carrier layer (B) —carbon layer (C By stacking sequentially, a graphene layer or a carbon nanotube layer), a multilayer thin film can be realized.
  • the electrode active material nanoparticle layer (B) -carbon layer (C) may be laminated one to five times more successively. Through the lamination process, the thickness of the electrode active material layer may be increased.
  • 1 shows a laminated structure of an electrode according to an embodiment of the present invention.
  • 2 shows a laminated structure of an electrode according to another embodiment of the present invention.
  • 3 is a scanning electron micrograph of Li 4 Ti 5 0 12 nanofibers obtained from the embodiment of the present invention.
  • FIG. 6 is a scanning electron micrograph of an electrode active material in which a carbon nanotube network layer is formed on a Li 4 Ti 5 0 12 nanoparticle aggregate layer.
  • FIG. 7 is an enlarged scanning electron micrograph of a selected region of FIG. 6.
  • FIG. 10 is a graph of a 0.2C to 20C rate discharge versus a cycle number of electrodes in which Li 4 Ti 5 0 12 electrode active material nanoparticle aggregate layers and graphene layers are repeatedly stacked three times.
  • An electrode of one aspect of the present invention is an electrode of one aspect of the present invention.
  • the electrode may include a current collector 100, a graphene layer 200, an ion collector layer 300 of an electrode active material nanoparticle, and a carbon layer 400.
  • a graphene layer is formed on the current collector, an electrode active material nanoparticle coagulator layer is formed on the graphene layer, and a carbon layer is formed on the nanoparticle coagulator layer.
  • the collector layer and the carbon layer of the electrode active material nanoparticles may be formed in multiple layers on the carbon layer in order.
  • Figure 2 shows another embodiment of the electrode of the present invention.
  • the electrode includes a graphene layer 200, a collector layer 300 of electrode active material nanoparticles, and a carbon layer 400 sequentially stacked on the current collector 100, and on the carbon layer 400.
  • the collector layer 300 and the carbon layer 400 of the electrode active material nanoparticles are further formed.
  • the multilayer structure of the collector layer 300 and the carbon layer 400 of the electrode active material nanoparticles is additionally formed once, it may be formed into a multilayer structure. It may preferably be formed once to 10 times, more preferably once to seven times, most preferably once to five times.
  • the current collector at least one selected from the group consisting of nickel (Ni), stainless steel (SUS), aluminum (A1), copper (Cu), and titanium (TO) can be used.
  • the graphene layer improves the adhesion properties between the electrode active material nanoparticle coarse layer coated on the top and the current collector on the bottom.
  • the graphene layer is graphene, graphene oxide, reduced graphene. Oxide, or a mixture thereof, because graphene, graphene oxide, reduced graphene oxide, or a mixture thereof has a high surface energy, which greatly increases the bonding strength with the electrode active material coated thereon.
  • the electrode active material nano on the current collector without the graphene layer When the particle aggregate layer is coated, the adhesive strength with the current collector is weak, and the electrode active material nanoparticle aggregate layer can be easily detached.
  • Electrode active material nanoparticle aggregate layer is composed of aggregates in which nanoparticles are self-assembled.
  • the electrode active material nanoparticle aggregate layer may be generated by spraying a dispersion solution in which the electrode active material nanoparticles are dispersed under an electric field.
  • the nanoparticles charged by the polar solution are spawned in order to minimize the surface energy during the spraying process. This cohort process is referred to herein as 'self-assembly'.
  • the graphene layer and the electrode active material nanoparticle aggregate layer may be laminated alternately. At this time, the thickness of the foam layer going up to the multilayer film does not need to be the same, and the graphene layer may be applied to the uppermost portion.
  • the graphene layer-electrode active material nanoparticle aggregate layer is preferably laminated at least once to five times, preferably two to three times.
  • the electrode active material nanoparticle aggregate layer is sandwiched between the graphene layer and the carbon layer.
  • the aggregate may have at least one shape selected from the group consisting of a spherical shape, a donut shape, and an oval shape.
  • nanoparticles having electrode active material properties are self-assembled to form a aggregate layer.
  • the pore structure is very well developed between the collectors, which facilitates the penetration of the electrolyte.
  • the electrode active material nanoparticle aggregate layer and the thickness may be 500 nm to 20. If the thickness of the collector layer is 500 nm or less, the energy density becomes low. When the thickness of the foam layer is 20 or more, the bonding force between the foam and the graphene layer is weakened, causing a problem that the foam falls off from the current collector during battery cell operation.
  • the thickness of the male layer may be 2 / Hi ⁇ 10 // m.
  • the nanoparticles constituting the electrode active material nanoparticle aggregate layer may be selected from a cathode active material for a secondary battery, a cathode active material, or a mixture thereof.
  • a cathode active material for a secondary battery a cathode active material
  • At least one alloy selected from the group consisting of Al, Ce and La; LiMn 2 0 4 , V 2 0 5 ,
  • LiNii- y Co y 0 2 Li [Ni 1/2 Mn 1/2 ] 0 2 or a combination thereof; Mg 2+ , Al 3+ , Ti + , Zr + , Nb 5+ , doped with lithium in place of LiFeP0 4 , Li [Ni 1/3 Co 1/3 Mn 1/3 ] 0 2 , Li [Ni 1/2 Mn 1/2 ] 0 2 , LiNi ⁇ , LiNi— x Ti x / 2 Mg x / 2 0 2 or their marks It may be one or more selected from the group consisting of compounds, but is not limited thereto.
  • the said doping amount is 0.01-weight? May be 3 ⁇ 4-1% by weight.
  • the self-assembled aggregates may have a size of 100 nm to 3000 nm.
  • Nanoparticles constituting the self-assembled aggregates may have a size of 2 nm ⁇ 100 nm.
  • the electrode of the present invention does not use a separate polymeric binder in the nanoparticle aggregate layer. Since the binder is not used, the conductivity characteristics can be maximized. On the other hand, because the self-assembled coagulation is weakly bonded by van der Waals attraction, it may fall from the current collector through the repeated electrochemical reaction process, or separation between aggregates may occur.
  • a carbon layer is formed on the self-assembled electrode active material collector layer.
  • the carbon layer is formed on the collector layer of the electrode active material nanoparticles.
  • the carbon layer may be a graphene layer, a carbon nanotube layer, or a mixed layer in which graphene and carbon nanotubes are mixed.
  • Graphene and carbon nanotubes have excellent electrical conductivity, which can improve the conductivity of electrode active material nanoparticle aggregate layers.
  • the carbon layer may be networked with each other between graphene or carbon nanotubes to surround the electrode active material aggregates or to connect the aggregates.
  • the carbon layer may be a single layer or a plurality of layers, but is not limited thereto.
  • the carbon layer may preferably be a graphene layer. If the graphene layer is coated on the electrode layer of the electrode active material nanoparticles, the electrode active material layer is coated by a graphene layer having a wide plate-like structure, the adhesion strength with the substrate is greatly improved.
  • the electrode active material nanoparticle aggregate layer may be well wrapped. Therefore, since the electrode active material collector layer is formed by sandwiching between the graphene filling, mechanical stability may be higher than when only the single electrode active material aggregate layer is formed.
  • graphene is excellent in electrical conductivity as a material for transparent electrodes. The graphene layer is formed on the upper and lower portions of the electrode active material nanoparticle aggregate layer, thereby providing a fast electron transfer passage. Therefore, a battery having excellent output characteristics can be constituted.
  • carbon nanotubes can improve adhesion strength by holding nanoparticle aggregates as straws.
  • the graphene layers are connected to each other while covering the self-assembled nanoparticle aggregate layers.
  • the electrode active material nanoparticle aggregate layer-graphene layer in which a graphene layer is continuously stacked on the self-assembled nanoparticle electrode active material layer is a nanoparticle aggregate self-assembled with a graphene layer having excellent conductivity characteristics.
  • the electron conduction characteristics are excellent, and the wide graphene layer captures the aggregates, thereby improving mechanical stability.
  • the collector layer formed by self-assembly of nanoparticles can be relatively well detached from the current collector during cell assembly or layer discharge cycle.
  • Electrode active material nanoparticle aggregate layer-graphene layer through the compression and heat treatment process to increase the layer density, it is possible to reduce the contact resistance between the nanoparticles or aggregates and graphene.
  • a secondary battery according to another aspect of the present invention may include the electrode.
  • the secondary battery may be composed of the electrode, the electrolyte, the separator, the case and the terminal.
  • the electrolyte is not limited as long as it is a composite electrode active material having a continuous stacked structure of a graphene layer / self-assembled nanoparticle aggregate layer / carbon layer and an electrolyte capable of causing electrochemical reaction.
  • An example is LiPF 6 .
  • Another aspect of the invention a method for producing an electrode
  • (2) may comprise pressing the laminated structure.
  • At least one selected from the group consisting of nickel (Ni), stainless steel (SUS), aluminum (A1), copper (Cu), and titanium (Ti) may be used.
  • Electrode active material nanoparticles may have a size of 1 nm ⁇ 100 nm.
  • the electrode active material may be a negative electrode active material, a positive electrode active material or a combination thereof.
  • a solvent for dispersing the electrode active material nanoparticles, graphene or carbon nanotubes a solvent having a boiling point (volatile point) of 80 ° C or lower, or a solvent having a boiling point (volatile point) of 80 or lower can be It may be a solvent mixture containing at least% by weight.
  • solvents include ethanol, methanol, propanol, butanol, IPA (isopropyl alcohol), dimethyl formamide (DMF), acetone, detrahydrofuran, toluene, water, and combinations thereof. It can be one species selected from.
  • the boiling point may preferably be 56 ° C.-80 ° C.
  • the manufacturing method may further include forming a multilayer structure by electrospraying the electrode active material nanoparticle dispersion solution and the carbon layer-forming dispersion solution in sequence a plurality of times before the pressing step.
  • the manufacturing method may further include a step of heat-treating the compressed laminated structure in order to increase the density of the laminated layer and improve the adhesive strength with the current collector after the pressing step.
  • the manufacturing method of the electrode of the present invention will be described in detail step by step.
  • a dispersion solution in which graphene is dispersed is prepared.
  • Commercially available graphene can be used and it does not matter if the graphene is not composed of a single layer.
  • Graphene can be purchased from commercially available XG-SCIENCE or other manufacturers.
  • Carbon nanotubes may use single-walled, double-walled, multi-walled carbon nanotubes, and a small amount of surfactant may be used for uniform dispersion. These surfactants can be removed through repeated washing or high temperature heat treatment after assembling the layer of all active material nanoparticle aggregates.
  • Electrode active material nanoparticle dispersion solution may comprise 0.5 to 20 wt% of the electrode active material.
  • microbead milling can be used to remove pores between nanoparticles, and microbead milling can be performed so that fine particle dispersion can be achieved in a solution without a binder.
  • the milling method is not limited, but milling can be performed in a wet atmosphere using zirconia balls (or beads) of 0.1 mm to 0.015 mm in size.
  • Graphite layer Low electrode active material nanoparticles collector layer and carbon filler red aggregate Collecting the graphene dispersion solution prepared above using an air-spray coating machine Coating on top. Then, the electrode active material nanoparticle dispersion solution is installed in an electrostatic spray (electrospray) apparatus to perform spraying.
  • electrostatic spray electrostatic spray
  • the electric spray device used here is composed of a spray nozzle, a high voltage generator, a grounded conductive substrate, and the like connected to a metering pump capable of quantitatively dispersing the dispersion solution.
  • a voltage of 8 to 30 kV and adjusting the solution discharge rate to 10 to 300 minutes the thickness of the insecticide can be sprayed on the current collector until a thickness of 500 nm-20 mi is formed, but is not limited thereto.
  • the graphene dispersion solution is sprayed to cover the whole house. Since graphene is a very high surface energy material, it can be strongly bound on the current collector.
  • Nanoparticles tend to condense with each other because of their large surface energy, reducing the surface energy. Especially in the electrostatic spray injection process used in the present invention
  • the size of the bubble may have a size of 100nm ⁇ 3000nm, the size of the bubble is determined according to the concentration of the nanoparticles contained in the dispersion solution.
  • the shape of these enclosures can be influenced by the volatilization rate, scattering distance and applied voltage of the solution.
  • the spherical shape is most preferable for regular pore distribution and the formation of a rigid form, but may have an elliptical or donut shaped form, and some may reach the current collector with a non-formed form, and form spherical aggregates and nanoparticles. Particles may be common to form a coated thin layer.
  • the carbon layer is coated on the electrode active material nanoparticle aggregate prepared by using an air-spray method. Since graphene has a wide plate-like structure, it is possible to wrap the electrode active material nanoparticle aggregate layer to prevent the aggregates from falling off the substrate. In the case of carbon nano hubs, the mechanical binding strength is greatly increased by connecting the coarse bodies to each other by carbon nanotubes having a very high aspect ratio.
  • the above-mentioned electrode active material nanoparticle aggregate layer and the carbon layer stacked thereon may be continuously stacked to form a thicker thin layer.
  • This continuous stacking structure repeats the electrode active material nanoparticle coarse layer and the carbon layer several times in succession. By doing so, it is helpful to construct an electrode active material layer having excellent mechanical binding force and fast electrical electron transfer.
  • the thick film cell may be constituted by at least two times from a single stack, preferably 1 to 10 times, more preferably 1 to 7 times, and most preferably 1 to 5 times. have. However, considering the price of nanoparticles and the efficiency of the process, a thin film battery of less than 10 is expected to have the greatest effect.
  • Pressing may include compressing the current collector / graphene layer / electrode active material nanoparticle coarse layer / carbon layer to increase the density and improve the adhesive strength with the current collector. Compression may be possible and the compressive strength can be adjusted. For example, it can be 5-15 MPa, but it is not limited to this.
  • the method may further include heat treating the composite electrode active material formed by networking the self-assembled nanoparticle aggregate layer and the carbon layer formed through the pressing step.
  • the heat treatment may increase the binding force between the nanoparticles, and may increase the mechanical stability by increasing the binding force between the self-assembled nanoparticle aggregate layer and the carbon layer.
  • a secondary battery or an electrochemical capacitor may include the electrode. Secondary batteries or electrochemical capacitors can be prepared by conventional methods.
  • Example 1 Preparation of an Electrode of Graphene Layer / Self-assembled Li 4 Ti 5 0 12 Nanoparticle Collector Layer / Graphene Layer
  • Li 4 Ti 5 0 12 nanofibers were prepared by the electrospinning method.
  • a lithium acetylacetonate precursor and a titanium tetraipropoxide precursor were prepared so that the ratio of Li: Ti was 4: 5, and polyvinylpyrrolidone (PVP, 1,300,000 g / mol ) Dissolve the polymer in DMP (dimethyl phthalate) solvent to prepare a spinning solution,
  • Electrospinning was performed to prepare Li 4 Ti 5 0 12 precursor / PVP composite nanofibers.
  • the polymer was removed by heat treatment in air at 750 for 1 hour to prepare pure Li 4 Ti 5 0 12 nanofibers. Referring to Figure 3, prepared by the electrospinning method
  • Li 4 Ti 5 0i 2 nanofibers have polycrystalline properties composed of fine nanoparticles.
  • microbead milling was performed in a wet manner using 0.1 m zirconia balls. Microbeads (Kyotobuki) were run at a speed of 4000 rpm for 30 minutes. At this time, the dispersion solvent was ethanol, 10 g of Li 4 Ti 5 0 12 nanofiber was added to 190 g of ethanol to prepare a 5% dispersion solution, and microbead milling was performed. 4 is a scanning electron micrograph of a nanoparticle dispersion solution obtained by grinding from nanofibers after microbead milling.
  • Graphene was purchased from XG Sciences for the preparation of graphene dispersions and 3 ⁇ 4 sonanoleube dispersions used for the coating of carbon layers, and carbon nanotubes were purchased from Hanwha Nanotech in a single-walled structure. Graphene is dispersed in IPA solution, and carbon nanotubes are sodium dodecyl sul fate (C 12 H 25 0 4 S. Na, FW
  • a uniformly dispersed carbon nanotube dispersion solution was prepared by adding a surfactant together by ultrasonication and centrifugation. And graphene dispersion solution and carbon nanotube dispersion solution was coated by air-spray method. The dispersion solution in which graphene and single-walled carbon or norebe were dispersed showed excellent dispersion even after 15 days.
  • the graphene dispersion solution was spray-coated on a stainless steel substrate as a current collector by using an air-spray gun to form a graphene layer first. Then, the Li 4 Ti 5 0 12 nanoparticle dispersion solution was electrosprayed onto the gurifin layer to coat the self-assembled nanoparticle aggregate layer.
  • FIG. 6 shows a scanning electron micrograph observed in a thin layer in which a single-walled carbon nanotube network layer was formed on a Li 4 Ti 5 0 12 nanoparticle aggregate layer.
  • FIG. 7 is an enlarged scanning electron micrograph of the region indicated in yellow in FIG. 6, and it can be seen that the globules themselves are also coated by carbon nanotubes. It can be seen that carbon nanotubes not only play a role of connecting the aggregates, but also surround the aggregates, thereby significantly lowering the resistance of the aggregates. Thus, by forming a carbon layer on the upper layer of the electrode active material nanoparticle aggregates, it is expected to ensure the mechanical stability of the electrode and a sharp decrease in the impedance resistance due to fast electron transfer.
  • Example 2 Electrode Preparation of Graphene Layer / Self-assembled Li 4 Ti 5 0 12 Nanoparticle Ensemble Layer / Graphene Layer / Self-assembled Li 4 Ti 5 0 12 Nanoparticle Ensemble Layer / Graphene Layer Graphene layer / self-assembled Li 4 Ti 5 0 12 nanoparticles sample layer / graphene layer / self-assembled by the pin layer, the sandwiching electrode active material nanoparticle aggregate layer is laminated twice in succession Li 4 Ti 5 0 12 nanoparticle aggregate layer / graphene layer was prepared.
  • each layer was the same as in Example 1, by coating the Li 4 Ti 5 0 12 nanoparticle aggregate layer / graphene layer once more successively, to prepare a multilayer electrode active material shown in FIG.
  • a carbon layer such as graphene or carbon nanotubes is introduced before two or three electrode active material layers are stacked, thereby maintaining excellent electrical conductivity in the thickness direction, and mechanical stability. It is a structure that is advantageous to realize a battery with high energy density and high thickness. Comparative Example 1 Preparation of Electrode Active Material Having Self-Assembled Li 4 Ti 5 0 12 Nanoparticle Cumulus Layer
  • Example 1 Carried out in Example 1, the electrostatic directly the Li 4 Ti 5 0 12 nano-particle dispersion solution was obtained by crushing the Li 4 Ti 5 0 12 nanofibers obtained on the current collector in the injection Li 4 Ti 5 0 12 nano Hung particles are made of self-assembled The aggregate layer was comprised.
  • Comparative Example 1 unlike Example 1, the graphene layer was not introduced between the current collector and the electrode active material retainer layer, and no carbon layer was introduced into the upper layer of the electrode active material nanoparticle aggregate layer.
  • Electrodes composed of Li 4 Ti 5 0 12 coarse layer (LTO notation) self-assembled on the current collector in Comparative Example 1 and the electrode having a continuous laminated structure of) were prepared, respectively, and compared with each other. Battery characteristics were evaluated by preparing a coin cell (CR2032—type coin cell). In the sal composition, an EC / DEC (1/1 volume%) solution in which 1 M LiPF 6 was dissolved was used as an electrolyte.
  • a thin layer consisting of a Li 4 Ti 5 0i 2 aggregate layer / graphene layer, 3. self assembled Li 4 Ti 5 0 12 aggregate layer was used.
  • Polypropylene film (Celgard Inc.) was used as a separator to prevent the electrical short between the cathode and the anode.
  • the cell was fabricated after creating an argon (Ar) atmosphere in a VAC glove box. It was.
  • the layer-discharge test apparatus used here was WonATech's WBCS3000 model, which examined the voltage change under constant current with Multi Potent Iost at System (MPS), which was able to measure 16 channels by adding 16 boards.
  • MPS Multi Potent Iost at System
  • Current mill used for charging and discharging The intensity of the figure was calculated by 50 cycles on the basis of 0.2 C-rate ⁇ 20 C-rate by calculating the theoretical capacity of each material. Cut off voltage was 0.01 ⁇ 3.0 V.
  • Figure 8 shows the negative electrode active material characteristics of the cell measured from the three samples, the characterization was made at a very high rate of 10 C-rate.
  • the electroconductivity is greatly improved, and the capacity value is 20 mAh / g higher than that of the battery composed of the pure LT0 layer.
  • the stacked structure in which the graphene layer and the electrode active material layer were repeated twice consecutively showed the highest discharge capacity value. Therefore, it was confirmed that the graphene layer having excellent electron conduction characteristics was introduced into the upper and lower layers of the electrode active material collector, thereby greatly improving the battery performance.
  • the LT0 layer was not prepared from the nanoparticle dispersion solution pulverized from the Li 4 Ti 5 0 12 nanofibers used in Example 1, 20 nm ⁇ 60 nm
  • a nano-nano to sell the nanopowder was purchased after the microbead milling to obtain a dispersion solution, it was electrostatically sprayed to form the LTO electrode active material layer.
  • Figure 9 shows the characteristics of the negative active material g / LTO / g / LTO / g / LTO / g / LTO / g thin layer evaluated at 1 C rate.
  • the initial discharge capacity value is 375 mAh / g
  • the second discharge capacity value is 282 mAh / g
  • the fifth discharge capacity value is 240 mAh / g
  • the capacity value is higher than that.
  • the graphene layer is used as the carbon layer, but the results are shown.
  • the carbon nano-lever network layer can also have the same effect, and is an invention that can be applied to various negative electrode active material and positive electrode active material nanoparticle aggregate layers in addition to LTQ, and there are various types of electrode active materials used to obtain a thin layer. It is not limited to matter,
  • the present invention is applied to the production of high performance secondary batteries suitable for high speed charging and charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to: an electrode including a graphene layer, for improving the adhesion properties between a self-assembled electrode active nanoparticle aggregate layer and a collector; a secondary battery including same; an electrochemical capacitor including same; and a method for manufacturing same. More particularly, the graphene layer covers the self-assembled electrode active nano particle aggregate layer, and the graphene layer and the electrode active nano particle aggregate layer form an alternating multilayer so that fast electron transfer is achieved through the graphene layer and lithium ions can move quickly through the empty spaces between the aggregates. Thus, a thin battery suitable for fast charging and discharging can be realized. In particular, mechanical stability can be increased to provide good long lasting characteristics.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
그래핀 층과 자기조립된 전극활물질 웅집체 층을 포함하는 전극 및 이를 이 용한 이차전지, 및 그 제조방법  An electrode comprising a graphene layer and a self-assembled electrode active material collector layer, a secondary battery using the same, and a method of manufacturing the same
【기술분야】  Technical Field
본 발명은 자기조립된 전극활물질 웅집체 층과 집전체와의 접착 특성을 개선 시켜주기 위하여 그래핀 층을 포함하는 전극, 이를 포함하는 이차 전지, 이를 포함 하는 전기화학적 커패시터 및 이의 제조 방법에 관한 것이다. 더욱 상세하게는, 그 래핀 층이 자기조립된 전극활물질 나노입자 웅집체 층을 덮어 주고, 그래핀 층과 전극활물질 나노입자 웅집체 층이 교대로 다층막을 형성하여 줌으로써, 그래핀 층 을 통한 빠른 전자 전달이 발생하고, 웅집체들 사이의 빈 공간을 통하여 리튬 이온 이 빠르게 이동할 수 있어, 고속층방전에 적합한 얇은 전지를 구현할 수 있다. 특 히 기계적인 안정성이 증대되어 장수명 특성이 우수할 수 있다.  The present invention relates to an electrode including a graphene layer, a secondary battery including the same, an electrochemical capacitor including the same, and a method of manufacturing the same, in order to improve adhesion characteristics between the self-assembled electrode active material layer and the current collector. . More specifically, the graphene layer covers the self-assembled electrode active material nanoparticle aggregate layer, and the graphene layer and the electrode active material nanoparticle aggregate layer alternately form a multilayer film, thereby providing fast electrons through the graphene layer. The transfer occurs, and lithium ions may move rapidly through the empty spaces between the collectors, thereby implementing a thin battery suitable for high-speed layer discharge. In particular, the mechanical stability is increased, the long life characteristics can be excellent.
【배경기술】  Background Art
첨단 기술의 발전에 따라 전자소자의 전력 공급원으로 이용되는 이차전지도 고출력, 고안정성, 긴 수명의 특성이 요구가 되고 있으며, 소형화 관점에서 박막 전지가 큰 주목을 받고 있다. 박막 전지의 경우 수 〜 수십 마이크론 이하의 두께를 갖는 전지를 제조하여, 무선센서, RFID, 헬스케어 등에 적용할 수 있는 장점을 갖 는다. 그러나 이러한 박막전지는 진공증착 방법을 이용하여 1^ )¾와 같은 양극활물 질 박층을 제조하고, UPON과 같은 고체전해질 또한 박막으로 증착을 하기 때문에 , 소재의 선정에 있어서 제약이 따르게 된다. 특히 양극활물질의 경우 복잡한 조성비 와 구조를 갖는 소재들이 많이 사용이 되가 때문에 화학기상 증착법으로 제조하기 어렵다. 현재의 기술로는 RF 스퍼터링 장치를 이용하여 박막을 증착하고 있는데, 복잡한조성을 갖는 세라믹 타겟을 균일하게 제조하는 것 또한 까다롭다.  With the development of advanced technologies, secondary batteries used as power sources for electronic devices are also required to have high output, high stability, and long life characteristics, and thin film batteries are receiving great attention from the viewpoint of miniaturization. In the case of a thin film battery, a battery having a thickness of several to several tens of microns or less is manufactured and has an advantage that it can be applied to a wireless sensor, RFID, healthcare, and the like. However, such a thin film battery uses a vacuum deposition method to produce a thin positive electrode active material layer such as 1 ^) ¾, and solid electrolytes such as UPON are also deposited as a thin film, which leads to restrictions in selecting materials. In particular, in the case of the positive electrode active material, it is difficult to manufacture by chemical vapor deposition because a lot of materials having a complicated composition ratio and structure are used. In current technology, thin films are deposited using an RF sputtering apparatus, and it is also difficult to uniformly manufacture a ceramic target having a complex composition.
2 - 10마이크론 두께의 얇은 박층을 형성하는 손쉬운 기술로 스프레이 기법 이 있다. 그러나 전구체가 용해되어 있는 용매를 스프레이용 용액으로 사용하여 박 층을 코팅한 후에 고온에서 열처리를 하여 전구체 용액으로부터 결정화된 박층을 형성하는 경우, 조성이 복잡한 경우에는 결정성이 우수한 박막을 얻기가 어려을 수 있다. 또한 집전체 기판으로 사용되는 Al, Cu, 또는 스테인레스 스틸이 고온 열처 리 과정에서 산화되어 집전체의 저항이 크게 올라가게 된다.  The spray technique is an easy technique for forming thin layers of 2-10 microns thick. However, in the case where a thin layer crystallized from the precursor solution is formed by coating the thin layer using a solvent in which the precursor is dissolved as a spray solution and then performing heat treatment at a high temperature, it may be difficult to obtain a thin crystal layer having excellent crystallinity. Can be. In addition, Al, Cu, or stainless steel used as the current collector substrate is oxidized during the high temperature heat treatment, thereby greatly increasing the resistance of the current collector.
이러한 문제점을 해결하기 위해서는 이미 결정질 특성을 갖는 100 nm 이하의 미세한 나노입자들이 잘 분산된 콜로이달 용액을 제조하여, 이로부터 스프레이하여 박층을 형성하는 기술이 필요하다. 특히 탄소물질 (372 mAh/g) 보다 이론용량 값이 큰 SK4200 mAh/g) , Sn(991 mAh/g) 계열의 고용량 전극활물질 소재 또는 출력특성 과 싸이클 특성 이 매우 우수한 Li4Ti5012(175 mAh/g) 소재 등을 스프레이용 콜로이달 용액으로 제조하여 박층을 형성하면, 진공 증착 공정에 비하여 공정 비용을 크게 줄일 수 있다. 이 러한 콜로이달 나노입자 분산용액으로부터 스프레이 코팅되어 얻 어진 박층의 경우 , 바인더를 포함하고 있지 않기 때문에, 집전체 기판에서 쉽 게 탈 리되는 문제점이 발생할 수 있다 . 따라서, 바인더를 사용하지 않으면서 집전체 기 판과 높은 접착 강도를 유지할 수 있는 전극활물질 층의 제조가 중요하며, 이를 통 해 수명 특성 이 우수한 박막형 이차전지 전극을 제조할 수 있다. In order to solve this problem, a colloidal solution in which fine nanoparticles having a crystalline property of 100 nm or less are well dispersed is prepared and sprayed therefrom. There is a need for a technique for forming a thin layer. In particular, high capacity electrode active materials of SK4200 mAh / g) and Sn (991 mAh / g) series having a higher theoretical capacity than carbon materials (372 mAh / g) or Li 4 Ti 5 0 12 ( 175 mAh / g) material and the like by forming a colloidal solution for spray to form a thin layer, it is possible to significantly reduce the process cost compared to the vacuum deposition process. In the case of the thin layer obtained by spray coating from such a colloidal nanoparticle dispersion solution, since it does not contain a binder, a problem of easily detaching from the current collector substrate may occur. Therefore, it is important to manufacture an electrode active material layer capable of maintaining high adhesive strength with a current collector substrate without using a binder, and thus, a thin film type secondary battery electrode having excellent life characteristics can be manufactured.
[발명의 상세한 설명】  Detailed description of the invention
[기술적 과제】  [Technical Challenges]
본 발명의 목적은, 자기조립된 전극활물질 나노입자 웅집체 층과 그래핀 층 이 교차적으로 증착이 되어 있는 전극 및 그 제조방법을 제공하는 것으로서,  SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode and a method for manufacturing the electrode, in which the self-assembled electrode active material nanoparticle aggregate layer and the graphene layer are deposited alternately.
구체적으로 본 발명의 목적은,  Specifically, the object of the present invention,
첫째 구형 , 타원형 , 도우넛형 중에서 선택된 적어도 하나의 형상으로 자기 조립된 전극활물질 나노입자 웅집체 층과 그 웅집체 층의 상층부와 하층부에 그래 핀 층이 삽입된 전극 및 그 제조 방법을 제공하고,  First, the present invention provides an electrode active material nanoparticle aggregate layer self-assembled in at least one shape selected from spherical, elliptical, and donut shapes, an electrode having a graphene layer inserted in an upper layer and a lower layer thereof, and a method of manufacturing the same.
둘째, 그래핀 층의 우수한 전기 전도 특성에 의해 자기조립된 전극활물질 나 노입자 웅집체와의 전자 전달이 빠르게 일어나고, 그래핀이 전극활물질 나노입자 웅집체 층을 잡아주어 , 기 계적 인 강도가 높은 전극 및 그 제조방법을 제공하며, 셋째, 상기 자기조립된 전극활물질 나노입자 웅집 체간의 열린 공간을 통해 전해질의 이동이 자유로워 , 고출력 특성 이 우수하며, 부피 팽창에 대한 완층 역할 을 할 수 있는 전극 및 그 제조 방법을 제공하고 ,  Second, the electron transfer with the self-assembled electrode active material nanoparticle aggregates occurs quickly due to the excellent electrical conduction characteristics of the graphene layer, and the graphene holds the electrode active material nanoparticle aggregate layer, resulting in high mechanical strength. The present invention provides an electrode and a method of manufacturing the same. Third, an electrode is free to move an electrolyte through an open space between the self-assembled electrode active material nanoparticle aggregates, and thus has excellent high power characteristics and can serve as a complete layer for volume expansion. And a method of manufacturing the same,
넷째 , 집전체 위에 그래핀 층을 형성하고 , 그래핀 층 위에 자기조립된 전극 활물질 나노입자 웅집체 층을 형성한 후에, 최종적으로 자기조립된 전극활물질 나 노입자 웅집체 층 위에 그래핀 또는 탄소나노튜브가 서로 네트워크 (그물망) 되어 형성된 박층을 복수의 노즐을 이용한 정전분사 방식을 이용하여 빠른 수율로 대면 적으로 생산할 수 있는 전극의 방법을 제공하고 ,  Fourth, after forming a graphene layer on the current collector, and a self-assembled electrode active material nanoparticle aggregate layer on the graphene layer, and finally on the self-assembled electrode active material nanoparticle aggregate layer graphene or carbon nano Provides a method of an electrode that can produce a thin layer formed by the network (net) of the tube with a large yield in a large yield by using an electrostatic spray method using a plurality of nozzles,
다섯째, 집전체 /그래핀 층 /자기조립된 전극활물질 나노입자 웅집체 층 /탄소 층 위에 자기조립된 전극활물질 나노입자 웅집체 층과 탄소 층이 복수회 연속적으 로 형성된 전극 및 이를 이용한 이차 전지 및 슈퍼커패시터를 제공하고,  Fifth, the current collector / graphene layer / self-assembled electrode active material nanoparticle aggregate layer / electrode on which the self-assembled electrode active material nanoparticle aggregate layer and the carbon layer is formed a plurality of times and a secondary battery using the same Providing supercapacitors ,
여섯째 , 상기의 탄소 층에 의해 네트워크화된 전극활물질 나노입자 웅집체 층을 열 압착하여, 기계적, 전기적 안정성이 높은 전극 및 이를 이용한 이차전지 및 수퍼커패시터를 제공하는 것이다. Sixth, the electrode active material nanoparticle aggregates networked by the carbon layer. The layer is thermally compressed to provide an electrode having high mechanical and electrical stability and a secondary battery and a supercapacitor using the same.
【기술적 해결방법】  Technical Solution
본 발명의 일 관점인 전극은 집전체; 상기 집전체 위에 적층된 그래핀 An electrode of an aspect of the present invention is a current collector; Graphene stacked on the current collector
(graphene) 층; 상기 그래핀 층 위에 적층된 전극활물질 나노입자의 웅집체 층; 및 상기 웅집체 층 위에 적층된 탄소 층을 포함할 수 있다. (graphene) layer; A collector layer of electrode active material nanoparticles laminated on the graphene layer; And it may include a carbon layer laminated on the collector layer.
본 발명의 다른 관점인 이차 전지 또는 수퍼커패시터는 상기 전극을 포함할 수 있다.  In another aspect of the present invention, a secondary battery or a supercapacitor may include the electrode.
본 발명의 또 다른 관점인 전극의 제조 방법은 집전체 위에 그래핀 분산 용 액, 전극활물질 나노입자 분산 용액, 탄소 층 형성용 분산 용액을 순서대로 전기 분사하여 적층 구조를 형성하는 단계; 및 상기 적층 구조를 압착하는 단계를 포함 할수 있다.  According to another aspect of the present invention, there is provided a method of manufacturing an electrode, the method comprising: forming a laminated structure by electrospraying a graphene dispersion solution, an electrode active material nanoparticle dispersion solution, and a carbon layer dispersion solution in order on a current collector; And it may include a step of compressing the laminated structure.
【유리한 효과]  Advantageous Effects
본 발명에 의하면, 이차전지용 전극활물질 나노입자가 분산된 용액을 전기 분사하여 제조된 웅집체는, 구형, 도우넛형, 또는 타원형 중에서 선택된 적어도 어 느 하나 이상의 형상으로 집전체 위에 코팅이 된다. 이러한 웅집체들로 이루어진 웅집체 층의 상부 및 하부에 그래핀 층을 도입함으로써, 웅집체들간에 서로 분리되 어 떨어지는 문제점을 해결하고, 그래핀의 빠른 전자전달 특성으로 인하여, 전체 전극의 저항이 크게 저하된다. 전극활물질 나노입자 웅집체 층과 그래핀 층을 교대 적으로 다층으로 코팅하여, 10 마이크론 이상의 두께를 갖는 두꺼운 다층 박막을 제조할 수도 있다. 이때 전극활물질 나노입자 웅집체 층의 상부에 코팅되는 탄소 층은 그래핀 층을 대신한 탄소나노류브 층일 수도 있다. 그래핀 층은 전극활물질 웅집체 층을 감싸 줌으로써, 나노입자 웅집체의 기계적인 안정성을 높여 주고, 탄 소나노류브의 경우 웅집체 사이를 서로 네트뤄크화하여 염어 줌으로써, 기계적인 내구성이 높아지게 된다. 또한 그래핀 층과 탄소나노튜브 층은 매우 빠른 전자전달 특성을 가지고 있어, 고속 충방전에 유리한 전극활물질 나노입자 웅집체 층을 제공 할 수 있다.  According to the present invention, the collector prepared by electrospraying a solution in which the electrode active material nanoparticles for secondary batteries is dispersed is coated on the current collector in at least one shape selected from spherical, donut-shaped, or elliptical. By introducing a graphene layer on the upper and lower portions of the foam layer consisting of these bubbles, the problem of separation between the cubes is solved, and due to the fast electron transfer characteristics of the graphene, the resistance of the entire electrode It is greatly reduced. Alternatively, the electrode active material nanoparticle aggregate layer and the graphene layer may be alternately coated with a multilayer to prepare a thick multilayer thin film having a thickness of 10 microns or more. In this case, the carbon layer coated on the electrode active material nanoparticle coagulation layer may be a carbon nano-lever layer instead of the graphene layer. The graphene layer wraps the electrode active material collector layer, thereby enhancing the mechanical stability of the nanoparticle aggregates, and in the case of carbon nano-lube, networking and dyeing the aggregates between the aggregates increases mechanical durability. In addition, the graphene layer and the carbon nanotube layer have very fast electron transfer characteristics, and may provide an electrode active material nanoparticle aggregate layer that is advantageous for high-speed charging and discharging.
특하 웅집체가구형, 도우넛형 및 타원형으로 이루어진 군에서 선택된 적어 도 어느 하나의 형태를 가짐으로써, 개별 나노입자가 아닌 집합체적인 특성을 갖게 되어, 입자간의 전자 및 Li 전달 특성이 더욱 용이해 진다.  In particular, by having at least one form selected from the group consisting of spherical, donut and elliptic, it has an aggregate characteristic rather than individual nanoparticles, and facilitates electron and Li transfer characteristics between particles.
본 발명의 전극활물질의 자기조립된 응집체는 양극활물질, 음극활물질 또는 이들의 흔합물의 나노입자로부터 제조가 되기 때문에, 이차전지 전체 셀 (full cel l )을 제공할 수 있다. 전극활물질 나노입자 응집체 층 제조시에 고분자 바인더 가 사용이 되지 않기 때문에, 전자 전달이 빠르게 이루어 질 수 있으며 , 바인더를 사용하지 않음으로 발생할 수 있는 기 계적 인 안정성 문제를 탄소 층으로 그래핀 층 또는 탄소나노튜브 층을 자기조립된 전극활물질 나노입자 웅집체 층의 상부에 도입 하여 줌으로써, 안정성을 높일 수 있어 우수한 장수명 특성을 기대할 수 있다. 또한, 단일축 열압착 및 를 압착 과정을 통해, 그래핀 층과 전극활물질 나노 입자 웅지체 층간의 접착 강도를 높여 줄 수 있으며 , 층진 밀도와 접촉 특성을 개 선시켜 , 전기 전도 특성 이 우수한 박층을 구성할 수 있다. 또한 전극활물질 제조에 사용된 정전분사 (electrostrat ic spray) 시간을 조절하여 박층의 두께를 조절할 수 있으며, 집전체-그래핀층 (A)-전극활물질 나노입자 웅지체 층 (B)—탄소 층 (C, 그래핀 층 내지는 탄소나노튜브 층)을 순차적으로 연속적으로 쌓아 줌으로써, 다층 박막을 구현할 수 있다. 이때 전극활물질 나노입자 층 (B)-탄소 층 (C)은 1회 내지는 5회 더 연속적으로 적층될 수 있다. 적층 과정을 통해 전극활물질 층의 두께를 높게 쌓아 올라갈 수 있다. Since the self-assembled aggregate of the electrode active material of the present invention is manufactured from the nanoparticles of the positive electrode active material, the negative electrode active material or a mixture thereof, the secondary battery full cell (full cel l) Since the polymer binder is not used in the preparation of the electrode active material nanoparticle aggregate layer, the electron transfer can be performed quickly, and the mechanical stability problem that can be caused by not using the binder is the graphene layer or the carbon layer. By introducing the nanotube layer on top of the self-assembled electrode active material nanoparticle aggregate layer, the stability can be increased, and excellent long-life characteristics can be expected. In addition, through the single-axis thermocompression and compression process, it is possible to increase the adhesive strength between the graphene layer and the electrode active material nanoparticle enclosure layer, improve the layer density and contact characteristics, Can be configured. In addition, the thickness of the thin layer can be controlled by controlling the electrostratic spray time used in the preparation of the electrode active material, and the current collector-graphene layer (A) -electrode active material nanoparticles carrier layer (B) —carbon layer (C By stacking sequentially, a graphene layer or a carbon nanotube layer), a multilayer thin film can be realized. In this case, the electrode active material nanoparticle layer (B) -carbon layer (C) may be laminated one to five times more successively. Through the lamination process, the thickness of the electrode active material layer may be increased.
【도면와 간단한 설명】  [Drawing and brief description]
도 1은 본 발명의 일 실시 예에 따른 전극의 적층 구조를 나타낸 것이다. 도 2는 본 발명의 다른 실시 예에 따른 전극의 적층 구조를 나타낸 것이다. 도 3은 본 발명의 실시 예로부터 얻어진 Li4Ti5012 나노섬유의 주사전자 현미 경 사진이다. 1 shows a laminated structure of an electrode according to an embodiment of the present invention. 2 shows a laminated structure of an electrode according to another embodiment of the present invention. 3 is a scanning electron micrograph of Li 4 Ti 5 0 12 nanofibers obtained from the embodiment of the present invention.
도 4는 본 발명의 실시 예로부터 얻어진 Li4Ti5012 콜로이달 나노입자의 주사 전자 현미경 사진이다. 4 is a scanning electron micrograph of Li 4 Ti 5 0 12 colloidal nanoparticles obtained from the embodiment of the present invention.
도 5는 Li4Ti5012 나노입자 콜로이달 분산용액을 정전 분사하여 얻어진 자기 조립된 구형의 나노입자 웅집체들의 주사전자 현미경 사진이다. 5 is a scanning electron micrograph of the self-assembled spherical nanoparticle pools obtained by electrostatic spraying Li 4 Ti 5 0 12 nanoparticle colloidal dispersion solution.
도 6은 Li4Ti5012 나노입자 웅집체 층 위에 탄소나노튜브 네트워크 층이 형성 되어 이루어진 전극활물질의 주사전자 현미경 사진이다 . 6 is a scanning electron micrograph of an electrode active material in which a carbon nanotube network layer is formed on a Li 4 Ti 5 0 12 nanoparticle aggregate layer.
도 7은 도 6의 선택된 영 역의 확대된 주사전자 현미경 사진이다.  FIG. 7 is an enlarged scanning electron micrograph of a selected region of FIG. 6.
도 8은 Li4Ti5012 전극활물질 나노입자 웅집체 층, 그래핀 층 /Li4Ti5012 전극활 물질 나노입자 웅집체 층 /그래핀 층, 그래핀 층 /Li4Ti5012 전극활물질 나노입자 웅 집체 층 /그래핀 층 /Li4Ti5012 전극활물질 나노입자 웅집체 층 /그래핀 층의 이차전지 특성 평가 (10 C rate 방전) 그래프이다 . 도 9는 Li4Ti5012전극활물질 나노입자 웅집체 층과 그래핀 층이 3회 반복적으 로 적층된 전극의 사이클 수에 대한 1C rate 방전 그래프이다. 8 shows Li 4 Ti 5 0 12 electrode active material nanoparticle aggregate layer, graphene layer / Li 4 Ti 5 0 12 electrode active material nanoparticle aggregate layer / graphene layer, graphene layer / Li 4 Ti 5 0 12 Characterization of secondary battery characteristics (10 C rate discharge) of electrode active material nanoparticle aggregate layer / graphene layer / Li 4 Ti 5 0 12 electrode active material nanoparticle aggregate layer / graphene layer. 9 is a graph of 1C rate discharge versus cycle number of an electrode in which Li 4 Ti 5 0 12 electrode active material nanoparticle aggregate layers and graphene layers are repeatedly stacked three times.
도 10은 Li4Ti5012전극활물질 나노입자 웅집체 층과 그래핀 층이 3회 반복적 으로 적층된 전극의 사이클 수에 대한 0.2C ~ 20C rate 방전 그래프이다. FIG. 10 is a graph of a 0.2C to 20C rate discharge versus a cycle number of electrodes in which Li 4 Ti 5 0 12 electrode active material nanoparticle aggregate layers and graphene layers are repeatedly stacked three times.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
본 발명의 일 관점인 전극은  An electrode of one aspect of the present invention
집전체;  Current collector;
상기 집전체 위에 적층된 그래핀 (graphene) 층;  A graphene layer stacked on the current collector;
상기 그래핀 층 위에 적층된 전극활물질 나노입자의 웅집체 층; 및 상기 웅집체 층 위에 적층된 탄소 층을 포함할 수 있다.  A collector layer of electrode active material nanoparticles laminated on the graphene layer; And it may include a carbon layer laminated on the collector layer.
도 1은 본 발명의 전극의 일 구체예를 나타낸 것이다. 도 1에 따르면, 전극 은 집전체 (100), 그래핀 층 (200), 전극활물질 나노입자의 옹집체 층 (300) 및 탄소 층 (400)을 포함할 수 있다. 집전체 위에 그래핀 층이 형성되고 있고, 그래핀 층 상 부에 전극활물질 나노입자 웅집제 층이 형성되어 있고, 나노입자 웅집체 층 상부에 탄소 층이 형성되어 있다.  1 shows an embodiment of the electrode of the present invention. According to FIG. 1, the electrode may include a current collector 100, a graphene layer 200, an ion collector layer 300 of an electrode active material nanoparticle, and a carbon layer 400. A graphene layer is formed on the current collector, an electrode active material nanoparticle coagulator layer is formed on the graphene layer, and a carbon layer is formed on the nanoparticle coagulator layer.
상기 탄소 층 위에는 전극활물질 나노입자의 웅집체 층과 탄소 층이 순서대 로 복층으로 형성될 수 있다. 도 2는 본 발명의 전극의 다른 구체예를 나타낸 것이 다. 도 2에 따르면, 전극은 집전체 (100) 위에 그래핀 층 (200), 전극활물질 나노입 자의 웅집체 층 (300), 탄소 층 (400)이 순서대로 적층되어 있고, 탄소 층 (400) 위에 전극활물질 나노입자의 웅집체 층 (300)과 탄소 층 (400)이 추가로 형성되어 있다. 도 2에 따르면, 전극활물질 나노입자의 웅집체 층 (300)과 탄소 층 (400)의 복 층 구조가 1회 추가로 형성되어 있지만, 수회 복층 구조로 형성될 수도 있다. 바람 직하게는 1회 내지 10회, 더 바람직하게는 1회 내지 7회, 가장 바람직하게는 1회 내지 5회 형성될 수도 있다.  The collector layer and the carbon layer of the electrode active material nanoparticles may be formed in multiple layers on the carbon layer in order. Figure 2 shows another embodiment of the electrode of the present invention. According to FIG. 2, the electrode includes a graphene layer 200, a collector layer 300 of electrode active material nanoparticles, and a carbon layer 400 sequentially stacked on the current collector 100, and on the carbon layer 400. The collector layer 300 and the carbon layer 400 of the electrode active material nanoparticles are further formed. According to FIG. 2, although the multilayer structure of the collector layer 300 and the carbon layer 400 of the electrode active material nanoparticles is additionally formed once, it may be formed into a multilayer structure. It may preferably be formed once to 10 times, more preferably once to seven times, most preferably once to five times.
집전체로는 니켈 (Ni), 스테인리스스틸 (SUS), 알루미늄 (A1), 구리 (Cu) 및 티타늄 (TO으로 이루어진 군에서 선택된 적어도 어느 하나를 사용할 수 있다. 그래핀 (graphene) 층은 집전체 위에 코팅되어 있다. 그래핀 층은 상부에 코 팅되는 전극활물질 나노입자 웅집체 층과 하부의 집전체 간의 접착 특성을 개선시 켜 준다. 그래핀 층은 그래핀, 그래핀 산화물, 환원된 그래핀 산화물 또는 이들의 흔합물로 구성된다. 그래핀, 그래핀 산화물, 환원된 그래핀 산화물 또는 이들의 흔 합물은 표면에너지가 높기 때문에, 그 상부에 코팅돠는 전극활물질과의 결합력을 크게 증대시키는 특성을 제공한다. 그래핀 층이 없는 집전체 위에 전극활물질 나노 입자 응집체 층이 코팅되는 경우, 집전체와의 접착 강도가 약해, 전극활물질 나노 입자 웅집체 층이 쉽게 탈리될 수 있다. As the current collector, at least one selected from the group consisting of nickel (Ni), stainless steel (SUS), aluminum (A1), copper (Cu), and titanium (TO) can be used. The graphene layer improves the adhesion properties between the electrode active material nanoparticle coarse layer coated on the top and the current collector on the bottom.The graphene layer is graphene, graphene oxide, reduced graphene. Oxide, or a mixture thereof, because graphene, graphene oxide, reduced graphene oxide, or a mixture thereof has a high surface energy, which greatly increases the bonding strength with the electrode active material coated thereon. The electrode active material nano on the current collector without the graphene layer When the particle aggregate layer is coated, the adhesive strength with the current collector is weak, and the electrode active material nanoparticle aggregate layer can be easily detached.
전극활물질 나노입자 응집체 층은 나노입자들이 자기조립된 웅집체로 구성되 어 있다. 전극활물질 나노입자 웅집체 층은 전극활물질 나노입자가 분산된 분산 용 액을 전기장 하에서 스프레이를 하여 생성할 수 있다. 극성 용액에 의하여 전하를 띄고 있는 나노입자들은 스프레이 과정에서 표면에너지를 최소화하기 위하여, 웅집 이 일어난다. 이러한웅집 과정을 본 명세서에서는 '자기조립 '이라고 하였다.  Electrode active material nanoparticle aggregate layer is composed of aggregates in which nanoparticles are self-assembled. The electrode active material nanoparticle aggregate layer may be generated by spraying a dispersion solution in which the electrode active material nanoparticles are dispersed under an electric field. The nanoparticles charged by the polar solution are spawned in order to minimize the surface energy during the spraying process. This cohort process is referred to herein as 'self-assembly'.
또한, 상기의 스프레이 공정은 간단한 공정이기 때문에, 상기 그래핀 층과 전극활물질 나노입자 웅집체 층을 교차로 적층할 수도 있다. 이때 다층막으로 올라 가는 웅집체 층의 두께는 동일할 필요는 없으며, 최 상충부에는 그래핀 층이 도포 될 수 있도록 한다. 충분한 에너지 밀도를 유지하기 위하여, 그래핀 층 -전극활물질 나노입자 웅집체 층은 적어도 1회 내지 5회, 바람직하게는 2회 내지 3회 적층되는 것이 좋다.  In addition, since the spray process is a simple process, the graphene layer and the electrode active material nanoparticle aggregate layer may be laminated alternately. At this time, the thickness of the foam layer going up to the multilayer film does not need to be the same, and the graphene layer may be applied to the uppermost portion. In order to maintain a sufficient energy density, the graphene layer-electrode active material nanoparticle aggregate layer is preferably laminated at least once to five times, preferably two to three times.
전극활물질 나노입자 응집체 층은 그래핀 층과 탄소 층 사이에 샌드위치 형 태로 삽입되어 있다. 상기의 웅집체는 구형, 도우넛형 및 타원형으로 이루어진 군 에서 선택된 적어도 어느 하나의 형태를 가질 수 있다.  The electrode active material nanoparticle aggregate layer is sandwiched between the graphene layer and the carbon layer. The aggregate may have at least one shape selected from the group consisting of a spherical shape, a donut shape, and an oval shape.
상기 응집체 층은 전극활물질 특성을 가지는 나노입자가 자기조립되어 웅집 체 층을 구성한다. 그 결과, 웅집체들 사이에는 기공 구조가 매우 잘 발달되어져 있어, 전해질의 침투를 용이하게 할 수 있다.  In the aggregate layer, nanoparticles having electrode active material properties are self-assembled to form a aggregate layer. As a result, the pore structure is very well developed between the collectors, which facilitates the penetration of the electrolyte.
전극활물질 나노입자 응집체 층와 두께는 500 nm 내지 20 가 될 수 있다. 웅집체 층의 두께가 500 nm이하이면, 에너지 밀도가 낮아지게 된다. 웅집체 층의 두께가 20 이상이 되면, 웅집체와 그래핀 층과의 결합력이 약해져서, 전지 셀 가 동 중에 웅집체가 집전체로부터 떨어져 나오는 문제가 발생한다. 바람직하게는 웅 집체층의 두께는 2 /Hi ~ 10 //m가 될 수 있다.  The electrode active material nanoparticle aggregate layer and the thickness may be 500 nm to 20. If the thickness of the collector layer is 500 nm or less, the energy density becomes low. When the thickness of the foam layer is 20 or more, the bonding force between the foam and the graphene layer is weakened, causing a problem that the foam falls off from the current collector during battery cell operation. Preferably, the thickness of the male layer may be 2 / Hi ~ 10 // m.
전극활물질 나노입자 웅집체 층을 구성하는 나노입자는 이차전지용 음극활물 질, 양극활물질 또는 이들의 흔합물로부터 선택될 수 있다. 예를 들면, Si, Sn, Li4Ti5012, Sn02, Ti02, Fe203, Fe304, Co304, 또는 이들의 흔합물; Si, Sn, Ti, Cu,The nanoparticles constituting the electrode active material nanoparticle aggregate layer may be selected from a cathode active material for a secondary battery, a cathode active material, or a mixture thereof. For example, Si, Sn, Li 4 Ti 5 0 12 , Sn 0 2 , Ti 0 2 , Fe 2 0 3 , Fe 3 0 4 , Co 3 0 4 , or a combination thereof; Si, Sn, Ti, Cu,
Al, Ce 및 La으로 이루어진 군으로부터 선택되는 하나 이상의 합금; LiMn204, V205,At least one alloy selected from the group consisting of Al, Ce and La; LiMn 2 0 4 , V 2 0 5 ,
LiCo02, LiNi02, LiFeP04, LiFeP04. LiNii-yCoy02, Li [Ni1/2Mn1/2]02또는 이들의 흔합물; 리튬 자리에 Mg2+, Al3+, Ti +, Zr+, Nb5+, 를 1중량 ¾ 이하로 도핑한 LiFeP04, Li[Ni1/3Co1/3Mn1/3]02, Li [Ni1/2Mn1/2]02, LiNi^^, LiNi— xTix/2Mgx/202또는 이들의 흔 합물로 이루어진 군으로부터 선택되는 하나 이상이 될 수 있지만, 이에 제한되지 않는다. 상기 도핑량은 바람직하게는 0.01-중량? ¾-1중량 %가될 수 있다. LiCo0 2 , LiNi0 2 , LiFeP0 4 , LiFeP0 4 . LiNii- y Co y 0 2 , Li [Ni 1/2 Mn 1/2 ] 0 2 or a combination thereof; Mg 2+ , Al 3+ , Ti + , Zr + , Nb 5+ , doped with lithium in place of LiFeP0 4 , Li [Ni 1/3 Co 1/3 Mn 1/3 ] 0 2 , Li [Ni 1/2 Mn 1/2 ] 0 2 , LiNi ^^, LiNi— x Ti x / 2 Mg x / 2 0 2 or their marks It may be one or more selected from the group consisting of compounds, but is not limited thereto. Preferably the said doping amount is 0.01-weight? May be ¾-1% by weight.
상기 자기조립된 웅집체는 100 nm ~ 3000 nm의 크기를 가질 수 있다.  The self-assembled aggregates may have a size of 100 nm to 3000 nm.
상기 자기조립된 웅집체를 구성하는 나노입자는 2 nm ~ 100 nm의 크기를 가 질 수 있다.  Nanoparticles constituting the self-assembled aggregates may have a size of 2 nm ~ 100 nm.
본 발명의 전극은 나노입자 웅집체 층에서 별도의 고분자 바인더를 사용하지 않는다. 이러한 바인더를사용하지 않으므로 전기전도도 특성을 극대화할 수 있다. 한편, 자기조립된 웅집체들 간에는 반데르발스 인력에 의하여 약한 결합을 하고 있기 때문에, 반복적인 전기화학적 반웅 과정을 거쳐 집전체에서부터 떨어지 거나, 응집체들 간의 분리가 일어날 수 있다.  The electrode of the present invention does not use a separate polymeric binder in the nanoparticle aggregate layer. Since the binder is not used, the conductivity characteristics can be maximized. On the other hand, because the self-assembled coagulation is weakly bonded by van der Waals attraction, it may fall from the current collector through the repeated electrochemical reaction process, or separation between aggregates may occur.
이러한 바인더의 부재로부터 발생하는 결합 안정성의 문제점을 최소화하기 위하여, 자기조립된 전극활물질 웅집체 층 위에 탄소 층을 형성한다.  In order to minimize the problems of bonding stability resulting from the absence of such a binder, a carbon layer is formed on the self-assembled electrode active material collector layer.
탄소 층은 전극활물질 나노입자의 웅집체 층의 상부에 형성되어 있다. 탄소 층은 그래핀 층, 탄소나노튜브 층, 또는 그래핀과 탄소나노튜브가 섞여있는 흔합층 이 될 수 있다. 그래핀과 탄소나노튜브는 전기전도 특성이 우수하여 전극활물질 나 노입자웅집체 층의 전도도를 개선시킬 수 있다.  The carbon layer is formed on the collector layer of the electrode active material nanoparticles. The carbon layer may be a graphene layer, a carbon nanotube layer, or a mixed layer in which graphene and carbon nanotubes are mixed. Graphene and carbon nanotubes have excellent electrical conductivity, which can improve the conductivity of electrode active material nanoparticle aggregate layers.
탄소 층은 그래핀 또는 탄소나노튜브 간에 서로 네트워크화되어 전극활물질 웅집체를 둘러싸거나, 웅집체들사이를 연결시켜 줄 수 있다.  The carbon layer may be networked with each other between graphene or carbon nanotubes to surround the electrode active material aggregates or to connect the aggregates.
탄소 층은 단일 층 또는 복수개의 층으로 될 수 있지만, 이에 제한되지 않는 다. ᅳ  The carbon layer may be a single layer or a plurality of layers, but is not limited thereto. ᅳ
탄소 층은 바람직하게는 그래핀 층이 될 수 있다. 전극활물질 나노입자의 웅 집체 층 위에 그래핀 층이 코팅이 될 경우, 넓은 판상 구조를 가지는 그래핀 층에 의하여 전극활물질 웅집체 층이 코팅이 되면서, 기판과의 접착 강도가 크게 개선이 된다.  The carbon layer may preferably be a graphene layer. If the graphene layer is coated on the electrode layer of the electrode active material nanoparticles, the electrode active material layer is coated by a graphene layer having a wide plate-like structure, the adhesion strength with the substrate is greatly improved.
통상적으로 그래핀 ¾의 크기는 1 이상으로 크기 때문에, 그래핀 층들이 잘 펼쳐질 경우, 전극활물질 나노입자 응집체 층을 잘 감쌀 수 있다. 따라서 전극 활물질 웅집체 층이 그래핀 충 사이에 샌드위치되어 형성이 되기 때문에, 단일 전 극활물질 응집체 층으로만 구성된 경우보다 기계적인 안정성이 더 높아질 수 있다. 또한 그래핀은 투명전극용 소재로서 전기전도도가 매우 우수하다. 이러한 그 래핀 층이 전극활물질 나노입자 웅집체 층의 상부와 하부에 형성됨으로써, 빠른 전 자 전달 통로를 제공할 수 있다. 따라서, 출력 특성이 매우 우수한 전지를 구성할 수 있게 된다. 또한, 탄소나노튜브는 나노입자 웅집체들을 지푸라기처럼 잡아 줌으로써, 접 착 강도를 개선시킬 수 있다. Since the size of graphene ¾ is generally greater than 1, when the graphene layers are well spread, the electrode active material nanoparticle aggregate layer may be well wrapped. Therefore, since the electrode active material collector layer is formed by sandwiching between the graphene filling, mechanical stability may be higher than when only the single electrode active material aggregate layer is formed. In addition, graphene is excellent in electrical conductivity as a material for transparent electrodes. The graphene layer is formed on the upper and lower portions of the electrode active material nanoparticle aggregate layer, thereby providing a fast electron transfer passage. Therefore, a battery having excellent output characteristics can be constituted. In addition, carbon nanotubes can improve adhesion strength by holding nanoparticle aggregates as straws.
도 1 및 도 2와 같이, 그래핀 층은 자기조립된 나노입자 웅집체 층을 서로 덮으면서 연결되어 있다.  As shown in FIGS. 1 and 2, the graphene layers are connected to each other while covering the self-assembled nanoparticle aggregate layers.
상기 자기조립된 나노입자 전극활물질 웅집체 층 위에 그래핀 층이 연속적으 로 적층된 전극활물질 나노입자 웅집체 층-그래핀 층은, 전도성 특성이 우수한 그 래핀 층이 자기조립된 나노입자 웅집체를 둘러싸면서 응집체간을 둘러싸서, 전자전 도 특성이 우수하고, 넓은 그래핀 층이 웅집체들을 잡아 줌으로써, 기계적인 안정 성을 높일 수 있다. 그래핀 층이 없는 경우, 나노입자가 자기조립되어 형성된 웅집 체 층은 전지 조립과정 또는 층방전 사이클 동안에 집전체로부터 비교적 잘 탈리될 수 있다.  The electrode active material nanoparticle aggregate layer-graphene layer in which a graphene layer is continuously stacked on the self-assembled nanoparticle electrode active material layer is a nanoparticle aggregate self-assembled with a graphene layer having excellent conductivity characteristics. By enclosing and enclosing the aggregates, the electron conduction characteristics are excellent, and the wide graphene layer captures the aggregates, thereby improving mechanical stability. In the absence of a graphene layer, the collector layer formed by self-assembly of nanoparticles can be relatively well detached from the current collector during cell assembly or layer discharge cycle.
전극활물질 나노입자 웅집체 층-그래핀 층은 압착 및 열처리 과정을 거쳐 층 진 밀도를 높이고, 나노입자 간 또는 응집체와 그래핀 간의 접촉저항을 낮출 수 있 다. 본 발명의 다른 관점인 이차전지는 상기 전극올 포함할 수 있다.  Electrode active material nanoparticle aggregate layer-graphene layer through the compression and heat treatment process to increase the layer density, it is possible to reduce the contact resistance between the nanoparticles or aggregates and graphene. A secondary battery according to another aspect of the present invention may include the electrode.
구체적으로, 상기 이차전지는 상기 전극, 전해질, 분리막, 케이스 및 단자 등으로 구성될 수 있다. 전해질로는 그래핀 층 /자기조립된 나노입자 웅집체 층 /탄 소 층의 연속적인 적층 구조를 가지는 복합 전극활물질과 전기화학 반웅을 일으킬 수 있는 전해질이라면 제한되지 않는다. 예로는 LiPF6를 들 수 있다. 본 발명의 또 다른 관점인 전극의 제조 방법은 Specifically, the secondary battery may be composed of the electrode, the electrolyte, the separator, the case and the terminal. The electrolyte is not limited as long as it is a composite electrode active material having a continuous stacked structure of a graphene layer / self-assembled nanoparticle aggregate layer / carbon layer and an electrolyte capable of causing electrochemical reaction. An example is LiPF 6 . Another aspect of the invention a method for producing an electrode
(1) 집전체 상에 그래핀 분산 용액, 전극활물질 나노입자 분산 용액, 탄소 층 형성용 분산 용액을 순서대로 전기 분사하여 적층 구조를 형성하는 단계; 및 (1) forming a laminated structure by electrospraying a graphene dispersion solution, an electrode active material nanoparticle dispersion solution, and a dispersion solution for forming a carbon layer on a current collector in order; And
(2) 상기 적층 구조를 압착하는 단계를 포함할수 있다. (2) may comprise pressing the laminated structure.
상기 집전체로는 니켈 (Ni), 스테인리스스틸 (SUS), 알루미늄 (A1), 구리 (Cu) 및 티타늄 (Ti)으로 이루어진 군에서 선택된 적어도 어느 하나를 사용할 수 있다.  As the current collector, at least one selected from the group consisting of nickel (Ni), stainless steel (SUS), aluminum (A1), copper (Cu), and titanium (Ti) may be used.
전극활물질 나노입자는 1 nm ~ 100 nm의 크기를 가질 수 있다.  Electrode active material nanoparticles may have a size of 1 nm ~ 100 nm.
전극활물질은 음극활물질, 양극활물질 또는 이들의 흔합물이 될 수 있다. 전극활물질 나노입자, 그래핀 또는 탄소나노튜브를 분산하기 위한 용매로는 비점 (휘발점)이 80 °C 이하인 용매, 또는 비점 (휘발점)이 80 이하인 용매를 50중 량% 이상 함유하는 용매 흔합물일 수 있다. 이러한 용매로는 에탄올, 메탄올, 프로 판올, 부탄올, IPA (이소프로필알콜), 디메틸포름아마이드 (dimethyl formamide; DMF), 아세톤, 데트라하이드로퓨란, 를루엔, 물 및 이들의 흔합물로 이루어진 군에 서 선택되는 1종이 될 수 있다. 비점은 바람직하게는 56 oC-80°C가 될 수 있다. 또한, 상기 제조 방법은 압착하는 단계 전에, 전극활물질 나노입자 분산 용 액과 탄소 층 형성용 분산 용액을 순서대로 복수 회 전기 분사하여 복층 구조를 형 성하는 단계를 더 포함할수 있다. The electrode active material may be a negative electrode active material, a positive electrode active material or a combination thereof. As a solvent for dispersing the electrode active material nanoparticles, graphene or carbon nanotubes, a solvent having a boiling point (volatile point) of 80 ° C or lower, or a solvent having a boiling point (volatile point) of 80 or lower can be It may be a solvent mixture containing at least% by weight. Such solvents include ethanol, methanol, propanol, butanol, IPA (isopropyl alcohol), dimethyl formamide (DMF), acetone, detrahydrofuran, toluene, water, and combinations thereof. It can be one species selected from. The boiling point may preferably be 56 ° C.-80 ° C. In addition, the manufacturing method may further include forming a multilayer structure by electrospraying the electrode active material nanoparticle dispersion solution and the carbon layer-forming dispersion solution in sequence a plurality of times before the pressing step.
또한, 상기 제조 방법은 압착하는 단계 이후에, 적층된 층의 밀도를 높이고 집전체와의 접착 강도를 개선시켜 주기 위하여 압착된 적층 구조를 열처리하는 단 계를 더 포함할수 있다. 본 발명의 전극의 제조 방법을 단계별로 상세히 설명하면 다음과 같다.  In addition, the manufacturing method may further include a step of heat-treating the compressed laminated structure in order to increase the density of the laminated layer and improve the adhesive strength with the current collector after the pressing step. The manufacturing method of the electrode of the present invention will be described in detail step by step.
그래휘 분산 용액 및 타소나노튜브 분산용액의 준비 ' Preparation of Graphite Dispersion and Tasonanotube Dispersion Solution ''
먼저, 집전체 위에 그래핀 층을 코팅하기 위하여, 그래핀이 분산된 분산 용 액을 준비한다. 상업적으로 판매가 되는 그래핀을 사용할 수 있으며, 그래핀이 단 일 층으로 구성되지 않아도 상관이 없다. 그래핀은 상업적으로 판매가 가능한 XG- SCIENCE사나 기타 제조업체로부터 구입이 가능하다.  First, in order to coat the graphene layer on the current collector, a dispersion solution in which graphene is dispersed is prepared. Commercially available graphene can be used and it does not matter if the graphene is not composed of a single layer. Graphene can be purchased from commercially available XG-SCIENCE or other manufacturers.
탄소나노튜브는 단일벽, 이중벽, 다중벽 탄소나노튜브를 사용할 수 있으며, 균일한 분산을 위해 계면활성제를 소량 사용할 수도 있다. 이러한 계면활성제는 전 극활물질 나노입자 웅집체 층 조립 후에, 반복적인 세척 과정이나 고온 열처리를 통해서 제거하는 것이 가능하다.  Carbon nanotubes may use single-walled, double-walled, multi-walled carbon nanotubes, and a small amount of surfactant may be used for uniform dispersion. These surfactants can be removed through repeated washing or high temperature heat treatment after assembling the layer of all active material nanoparticle aggregates.
저극활물짐 분산 용액의 준비  Preparation of Low Cathode Dispersion Solution
전극활물질 나노입자가 균일하게 용매 속에 분산된 콜로이달 분산 용액을 준 비한다. 전극활물질 나노입자 분산 용액은 전극활물질을 0.5 ~ 20 wt%로 포함할 수 있다.  Prepare a colloidal dispersion solution in which the electrode active material nanoparticles are uniformly dispersed in a solvent. Electrode active material nanoparticle dispersion solution may comprise 0.5 to 20 wt% of the electrode active material.
안정적인 나노입자의 분산을 위하여, 마이크로 비드 밀링기를 이용하여, 나 노입자 간의 웅집을 제거하며, 미세한 입자 분산이 바인더 없이도 용액 속에서 이 루어지도록 마이크로 비드 밀링을 진행할 수 있다. 밀링 방법은 제한되지 않지만, 0.1 醒 〜 0.015 mm 크기의 지르코니아 볼 (또는 비드)을 이용하여 습식 분위기 하에 서 밀링을 진행할수 있다.  For the stable dispersion of nanoparticles, microbead milling can be used to remove pores between nanoparticles, and microbead milling can be performed so that fine particle dispersion can be achieved in a solution without a binder. The milling method is not limited, but milling can be performed in a wet atmosphere using zirconia balls (or beads) of 0.1 mm to 0.015 mm in size.
그래휘 층. 저극활물침 나노입자용집체 층 및 탄소 충의 적총 상기에서 준비된 그래핀 분산 용액을 Air-spray 코팅기를 이용하여 집전체 위에 코팅 한다. 그리고 나서 전극활물질 나노입자 분산 용액을 정전 스프레이 (전기 분사) 장치에 설치하여 분사를 진행한다. Graphite layer. Low electrode active material nanoparticles collector layer and carbon filler red aggregate Collecting the graphene dispersion solution prepared above using an air-spray coating machine Coating on top. Then, the electrode active material nanoparticle dispersion solution is installed in an electrostatic spray (electrospray) apparatus to perform spraying.
이때 사용되는 전기 분사 장치는 분산 용액을 정량적으로 투입할 수 있는 정 량 펌프에 연결된 분사 노즐, 고전압 발생기, 접지된 전도성 기판 등으로 구성된 다. 전압 8 - 30 kV를 인가하고 용액 토출 속도를 10 - 300 분으로 조절하여 박 충의 두께가 500 nm - 20 mi의 두께가 형성될 때까지 집전체 위에 분사할 수 있지 만, 이에 제한되지 않는다.  The electric spray device used here is composed of a spray nozzle, a high voltage generator, a grounded conductive substrate, and the like connected to a metering pump capable of quantitatively dispersing the dispersion solution. By applying a voltage of 8 to 30 kV and adjusting the solution discharge rate to 10 to 300 minutes, the thickness of the insecticide can be sprayed on the current collector until a thickness of 500 nm-20 mi is formed, but is not limited thereto.
그래핀 분산 용액을 집 전체를 덮을 정도로 분사를 진행한다. 그래핀은 표면 에너지가 매우 높은 소재이기 때문에 , 집전체 위에 강하게 결착될 수 있다.  The graphene dispersion solution is sprayed to cover the whole house. Since graphene is a very high surface energy material, it can be strongly bound on the current collector.
나노입자들은 표면에너지가 크기 때문에 서로 웅집되어 표면에너지를 줄이 려 는 경향을 보인다. 특히 본 발명에서 사용된 정전 스프레이 분사과정에서는 비 점이 Nanoparticles tend to condense with each other because of their large surface energy, reducing the surface energy. Especially in the electrostatic spray injection process used in the present invention
80 °C 이하로 낮은 용매가 사용이 되기 때문에 , 정 전 스프레이 분사 과정에서 용매 는 쉽게 휘발해 버리고, 순수한 입자들이 전기장 하에서 가속되면서 집전체 위에 코팅된다. Since solvents lower than 80 ° C are used, the solvent easily volatilizes during electrostatic spray injection, and pure particles are coated on the current collector as they accelerate under an electric field.
집전체와 노즐간의 간격이 10 ~ 20 cm 로 떨어져 있기 때문에 , 나노입자들이 집전체를 향해 가속되는 과정에서 서로 웅집 이 일어나 , 구형에 가까운 웅집체를 자 발적으로 형성하게 된다 . 이러한 웅집체의 크기는 lOOnm ~ 3000nm의 크기를 가질 수 있으며, 분산 용액에 포함된 나노입자의 농도에 따라서 웅집체의 크기가 결정 이 된다.  Since the gap between the current collector and the nozzle is 10 to 20 cm apart, the nanoparticles are spun together as the nanoparticles accelerate toward the current collector, thereby spontaneously forming a spherical coarse body. The size of the bubble may have a size of 100nm ~ 3000nm, the size of the bubble is determined according to the concentration of the nanoparticles contained in the dispersion solution.
이 러한 웅집체의 형상은 용액의 휘발 속도 및 비산 거 리, 가해진 전압 등에 영향을 받을 수 있다. 규칙적 인 기공 분포와 단단한 웅집체의 구성을 위해 구형 이 가장 바람직하지만, 타원형 내지는 도우넛 형상의 웅집체를 가질 수도 있으며 , 일 부는 웅집 이 이루어지지 않은 체로 집전체에 도달되어, 구형의 응집체들과 나노입 자들이 흔재되어 코팅 된 박층을 형성할 수도 있다.  The shape of these enclosures can be influenced by the volatilization rate, scattering distance and applied voltage of the solution. The spherical shape is most preferable for regular pore distribution and the formation of a rigid form, but may have an elliptical or donut shaped form, and some may reach the current collector with a non-formed form, and form spherical aggregates and nanoparticles. Particles may be common to form a coated thin layer.
상기에 제조된 전극활물질 나노입자 웅집체 층 위에 탄소 층을 Air-spray 방 식을 이용하여 코팅을 한다 . 그래핀의 경우 넓은 판상 구조를 가지고 있기 때문에 , 전극활물질 나노입자 응집체 층을 감싸서 웅집체들이 기판에서 떨어지는 것을 방지 할 수 있다. 탄소나노휴브의 경우 횡경비가 매우 큰 탄소나노튜브들에 의하여 웅집 체들이 서로 네트워크화 되어 연결됨으로써 기 계적 인 결착력이 크게 증대된다.  The carbon layer is coated on the electrode active material nanoparticle aggregate prepared by using an air-spray method. Since graphene has a wide plate-like structure, it is possible to wrap the electrode active material nanoparticle aggregate layer to prevent the aggregates from falling off the substrate. In the case of carbon nano hubs, the mechanical binding strength is greatly increased by connecting the coarse bodies to each other by carbon nanotubes having a very high aspect ratio.
상기에서 명시한 전극활물질 나노입자 웅집체 층과 그 위에 적층된 탄소 층 은 연속적으로 적층이 되어 더 두꺼운 박층을 형성할 수도 있다. 이 러한 연속적 인 적층 구조는 전극활물질 나노입자 웅집체 층과 탄소 층을 연속적으로 수차례 반복 함으로써, 기계적인 결착력이 우수하면서도 전기적인 전자 전달이 빠른 전극활물질 층을 구성하는데 도움이 된다. 적게는 단일 적층에서부터 2회 이상, 바람직하게는 1회 내지 10회, 더 바람직하게는 1회 내지 7회, 가장 바람직하게는 1회 내지 5회 반복 적층을 통해 두께가 두꺼운 후막 전지를 구성할 수도 있다. 그러나 나노입자 의 가격과 공정의 효율을 고려하여 10 이하의 얇은 박막 전지를 구성하는 것이 기대효과가가장크다.The above-mentioned electrode active material nanoparticle aggregate layer and the carbon layer stacked thereon may be continuously stacked to form a thicker thin layer. This continuous stacking structure repeats the electrode active material nanoparticle coarse layer and the carbon layer several times in succession. By doing so, it is helpful to construct an electrode active material layer having excellent mechanical binding force and fast electrical electron transfer. The thick film cell may be constituted by at least two times from a single stack, preferably 1 to 10 times, more preferably 1 to 7 times, and most preferably 1 to 5 times. have. However, considering the price of nanoparticles and the efficiency of the process, a thin film battery of less than 10 is expected to have the greatest effect.
Figure imgf000012_0001
Figure imgf000012_0001
집전체 /그래핀 층 /전극활물질 나노입자 웅집체 층 /탄소 층의 밀도를 높이고 집전체와의 접착 강도를 개선시켜 주기 위하여 압착하는 단계를 포함할 수 있다ᅳ 압착은 열을 가하면서 진행되는 열 압착일 수도 있으며, 압착 강도는 조절할 수 있 다. 예를 들면, 5-15MPa로 할 수 있지만 이에 제한되지 않는다.  Pressing may include compressing the current collector / graphene layer / electrode active material nanoparticle coarse layer / carbon layer to increase the density and improve the adhesive strength with the current collector. Compression may be possible and the compressive strength can be adjusted. For example, it can be 5-15 MPa, but it is not limited to this.
열 처리  Heat treatment
압착하는 단계를 거쳐 형성된 자기조립된 나노입자 웅집체 층과 탄소 층이 네트워크되어 형성된 복합체 전극활물질을 열처리하는 단계를 더 포함할 수 있다. 열처리는 나노입자간의 결합력을 증대시킬 수 있고, 자기조랍된 나노입자 웅집체 층과 탄소 층의 결합력을 증대시켜 기계적 안성정을 높일 수 있다.  The method may further include heat treating the composite electrode active material formed by networking the self-assembled nanoparticle aggregate layer and the carbon layer formed through the pressing step. The heat treatment may increase the binding force between the nanoparticles, and may increase the mechanical stability by increasing the binding force between the self-assembled nanoparticle aggregate layer and the carbon layer.
열 처리는 300 - 500 °C의 범위에서 탄소 층이 탄화에 의해 분해가 일어나지 않는 온도 범위에서 수행될 수 있다. 본 발명의 또 다른 관점인 이차 전지 또는 전기화학적 커패시터는 상기 전극 을 포함할 수 있다. 이차 전지 또는 전기화학적 커패시터는 통상의 방법으로 제조 할수 있다. The heat treatment can be carried out at a temperature range in the range of 300-500 ° C, in which the carbon layer does not decompose by carbonization. In another aspect of the present invention, a secondary battery or an electrochemical capacitor may include the electrode. Secondary batteries or electrochemical capacitors can be prepared by conventional methods.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 다만, 이러한 실시예 는 본 발명을 좀 더 명확하게 이해하기 위하여 제시되는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다. 실시예 1: 그래핀 층 /자기조립된 Li4Ti5012 나노입자 웅집체 층 /그래핀 층의 전극 제조 Hereinafter, the present invention will be described in detail through examples. However, these examples are only presented to more clearly understand the present invention, but the present invention is not limited thereto. Example 1 Preparation of an Electrode of Graphene Layer / Self-assembled Li 4 Ti 5 0 12 Nanoparticle Collector Layer / Graphene Layer
Li4Ti5012 나노섬유를 전기방사 방법으로 제조하였다. Li4Ti5012 나노섬유 제조 를 위해 리튬 아세틸아세토네이트 전구체와 티타늄 테트라이 ί프로폭사이드 전구체 를 Li : Ti의 비율이 4:5가 되도록 하고, 폴리비닐피롤리돈 (PVP, 1,300,000 g/mol) 고분자를 DMP (dimethyl phthalate) 용매에 녹여서, 방사용액을 제조하고, 전기방사를 하여 Li4Ti5012 전구체 /PVP 복합 나노섬유를 제조하였다. 그리고 최종적 으로 750 에서 1시간 동안 공기 중에서 열처리 하여 고분자를 제거시키고, 순수한 Li4Ti5012 나노섬유를 제조하였다. 도 3을 참조하면, 상기의 전기방사 법으로 제조된 Li 4 Ti 5 0 12 nanofibers were prepared by the electrospinning method. In order to prepare Li 4 Ti 5 0 12 nanofibers, a lithium acetylacetonate precursor and a titanium tetraipropoxide precursor were prepared so that the ratio of Li: Ti was 4: 5, and polyvinylpyrrolidone (PVP, 1,300,000 g / mol ) Dissolve the polymer in DMP (dimethyl phthalate) solvent to prepare a spinning solution, Electrospinning was performed to prepare Li 4 Ti 5 0 12 precursor / PVP composite nanofibers. Finally, the polymer was removed by heat treatment in air at 750 for 1 hour to prepare pure Li 4 Ti 5 0 12 nanofibers. Referring to Figure 3, prepared by the electrospinning method
Li4Ti50i2 나노섬유는 미세한 나노입자로 구성된 다결정 특성을 가지고 있다. Li 4 Ti 5 0i 2 nanofibers have polycrystalline properties composed of fine nanoparticles.
상기에서 얻어진 다결정 Li4Ti5012 나노섬유로부터 나노입자 분산 용액을 제 조하기 위하여 , 0.1 m 크기의 지르코니아 볼을 이용하여 마이크로비드 밀링을 습식 방식으로 진행을 하였다. 마이크로비드 (Kyotobuki )는 30분 동안 4000 rpm의 속도로 진행을 하였다. 이때 분산용매는 에탄올을 이용하였고, 에탄올 190 g에 Li4Ti5012 나 노섬유 10 g을 첨가하여 5 %의 분산용액을 제조하여 , 마이크로 비드밀링을 진행 하였다 . 도 4는 마이크로 비드 밀링 후에 나노섬유로부터 분쇄되어 얻어진 나노입 자 분산용액의 주사전자현미경 사진이다. 분산용액에서 일정량을 추출하여, 주자전 자현미경 홀더에 뿌리고 , 건조하여 미세구조를 관찰하였다. 도 4에서 관찰되듯이 , Li4Ti50i2 나노섬유가 완전히 분쇄가 되어, 20 ~ 50 nm의 크기를 갖는 나노입자로 분 쇄가 잘 이루어져 있음을 확인할 수 있었다. 주사전자현미경 분석을 위한 샘플 준 비 과정에서 일부 입자들간의 웅집도 관찰이 되지만, 초기 입자의 크기는 20 nm 정 도로 매우 작음을 알 수 있었다. In order to prepare a nanoparticle dispersion solution from the polycrystalline Li 4 Ti 5 0 12 nanofibers obtained above, microbead milling was performed in a wet manner using 0.1 m zirconia balls. Microbeads (Kyotobuki) were run at a speed of 4000 rpm for 30 minutes. At this time, the dispersion solvent was ethanol, 10 g of Li 4 Ti 5 0 12 nanofiber was added to 190 g of ethanol to prepare a 5% dispersion solution, and microbead milling was performed. 4 is a scanning electron micrograph of a nanoparticle dispersion solution obtained by grinding from nanofibers after microbead milling. A certain amount was extracted from the dispersion solution, sprinkled on a magnetoscopic microscope holder, and dried to observe the microstructure. As observed in FIG. 4, the Li 4 Ti 5 0i 2 nanofibers were completely pulverized, and it was confirmed that the pulverization was well performed with nanoparticles having a size of 20 to 50 nm. In the sample preparation process for scanning electron microscopic analysis, the size of some particles was observed, but the initial particle size was found to be very small at about 20 nm.
탄소 층의 코팅을 위해 사용된 그래핀 분산용액과 ¾소나노류브 분산용액의 제조를 위하여, 그래핀은 XG Sciences 사로부터 구입을 하였고, 탄소나노튜브는 단 일벽 구조로 한화나노텍에서 구입을 하여 , 그래핀은 IPA 용액에 분산을 시키고 , 탄 소나노튜브는 소듐도데실 설페이트 (sodium dodecyl sul fate , C12H2504S . Na, FW Graphene was purchased from XG Sciences for the preparation of graphene dispersions and ¾ sonanoleube dispersions used for the coating of carbon layers, and carbon nanotubes were purchased from Hanwha Nanotech in a single-walled structure. Graphene is dispersed in IPA solution, and carbon nanotubes are sodium dodecyl sul fate (C 12 H 25 0 4 S. Na, FW
288.38) 계면활성제를 함께 첨가하여 초음파 처리와 원심분리 방법으로 균일하게 분산된 탄소나노튜브 분산용액을 제조하였다. 그리고 그래핀 분산용액과 탄소나노 튜브 분산용액은 Air-spray 방식으로 코팅을 진행하였다 . 그래핀과 단일벽 탄소나 노류브가 분산된 분산용액은 15일이 경과된 후에도 분산 상태가 매우 우수하였다. 그래핀 분산용액을 Air-spray 건을 이용하여 집전체인 스테인레스 스틸 기판 위에 스프레이 코팅하여 , 그래핀 층을 먼저 형성을 하였다. 그리고 나서 Li4Ti5012 나노입자 분산용액을 그쾌핀 층 위에 전기 분사를 진행하여 자기조립된 나노입자 웅집체 층을 코팅하였다. 288.38) A uniformly dispersed carbon nanotube dispersion solution was prepared by adding a surfactant together by ultrasonication and centrifugation. And graphene dispersion solution and carbon nanotube dispersion solution was coated by air-spray method. The dispersion solution in which graphene and single-walled carbon or norebe were dispersed showed excellent dispersion even after 15 days. The graphene dispersion solution was spray-coated on a stainless steel substrate as a current collector by using an air-spray gun to form a graphene layer first. Then, the Li 4 Ti 5 0 12 nanoparticle dispersion solution was electrosprayed onto the gurifin layer to coat the self-assembled nanoparticle aggregate layer.
도 5를 참조하면 , 300 nm ~ 1 an의 크기를 가지는 구형상의 Li4Ti5012 나노입 자 웅집체들이 집전체 위에 잘 형성되어져 있음을 알 수 있었다. Li4Ti5012 나노입자 웅집체는 구형상에 가까웠으며, 웅집체들은 도 5에서와 같이, 미세한 나노입자들이 자기조립되어 이루어져 있음을 확인할 수 있다. Referring to FIG. 5, a spherical Li 4 Ti 5 0 12 nanoparticle having a size of 300 nm to 1 an It can be seen that the male populations are well formed on the current collector. Li 4 Ti 5 0 12 nanoparticle aggregates were close to the spherical shape, as shown in Figure 5, it can be seen that the fine nanoparticles are self-assembled as shown in FIG.
나노입자 웅집체 층 상부에 그래핀 층과 탄소나노튜브 네트워크 층을 도입하 였다. 연속적으로 적층구조를 만든 후에, 전극활물질간의 층진밀도를 높이고, 탄소 층과 전극활물질 웅집체 층 간의 결착력을 높여주기 위하여, 10 MPa의 압력에서 압 착을 진행하였다. 본 실시예에서는 따로 후열처리를 진행하지는 않았다. 그래핀 층 의 경우, 하얀 색깔의 Li4Ti5012 나노입자 웅집체 층이 그래핀 층의 코팅 후에 검은 색으로 변형됨을 확인할 수 있었다. 도 6은 Li4Ti5012 나노입자 웅집체 층 위에 단일 벽 탄소나노튜브 네트워크 층이 형성된 박층에서 관찰된 주사전자현미경 사진을 보 여준다. 도 6에서와 같이, 웅집체들 사이에 탄소나노튜브가 서로 연결이 되어 웅집 체간의 전자 전달이 용이하게 일어날 수 있음을 알 수 있다. 도 7은 도 6의 노란색 으로 표시된 영역의 확대된 주사전자현미경 사진으로 웅집체들 자체 또한 탄소나노 튜브에 의해 둘러 싸여져 코팅이 되어 있음을 확인할 수 있다. 이는 탄소나노튜브 가 웅집체들 간을 연결시켜 주는 역할 뿐만 아니라 웅집체를 둘러 싸서, 웅집체의 저항을 크게 낮출 수 있음을 확인할 수 있다. 이로써 탄소 층을 전극활물질 나노입 자 웅집체의 상층에 형성시킴으로써, 전극의 기계적인 안정성의 확보와 빠른 전자 전달로 인한 임피던스 저항의 급격한 감소를 기대할수 있다. 실시예 2: 그래핀 층 /자기조립된 Li4Ti5012 나노입자 웅집체 층 /그래핀 층 /자 기조립된 Li4Ti5012 나노입자웅집체 층 /그래핀 층의 전극 제조 그래핀 층에 의해, 샌드위치 되어 있는 전극활물질 나노입자 웅집체 층이 두 번 연속적으로 적층이 되어, 이루어진 그래핀 층 /자기조립된 Li4Ti5012 나노입자 웅 집체 층 /그래핀 층 /자기조립된 Li4Ti5012 나노입자 웅집체 층 /그래핀 층을 제조하였 다. 각 층의 제조조건은 실시예 1과 동일하며, Li4Ti5012 나노입자 웅집체 층 /그래핀 층을 연속적으로 한 번씩 더 코팅함으로써, 도 2에서 보여지는 다층 전극활물질을 제조하였다. 이와 같은 다충 구조의 경우, 전극활물질 웅집체 층이 두¾게 쌓이기 전에 그래핀이나 탄소나노튜브와 같은 탄소 층이 도입이 됨으로써, 두께 방향으로 의 전기전도 특성이 우수하게 유지가 되고, 기계적인 안정성도 높으면서 층분한 두 께를 가져서 에너지 밀도가높은 전지를 구현하는데 유리한 구조이다. 비교예 1: 자기조립된 Li4Ti5012 나노입자 웅집체 층을 갖는 전극활물질의 제 조 A graphene layer and a carbon nanotube network layer were introduced on top of the nanoparticle aggregate layer. After the laminated structure was continuously formed, compression was performed at a pressure of 10 MPa to increase the layer density between the electrode active materials and to increase the binding force between the carbon layer and the electrode active material layer. In the present embodiment, no post heat treatment was performed separately. In the case of the graphene layer, the white Li 4 Ti 5 0 12 nanoparticle aggregate layer was found to be transformed to black after coating the graphene layer. FIG. 6 shows a scanning electron micrograph observed in a thin layer in which a single-walled carbon nanotube network layer was formed on a Li 4 Ti 5 0 12 nanoparticle aggregate layer. As shown in Figure 6, it can be seen that the carbon nanotubes are connected to each other between the collectors can easily occur electron transfer between the collectors. FIG. 7 is an enlarged scanning electron micrograph of the region indicated in yellow in FIG. 6, and it can be seen that the globules themselves are also coated by carbon nanotubes. It can be seen that carbon nanotubes not only play a role of connecting the aggregates, but also surround the aggregates, thereby significantly lowering the resistance of the aggregates. Thus, by forming a carbon layer on the upper layer of the electrode active material nanoparticle aggregates, it is expected to ensure the mechanical stability of the electrode and a sharp decrease in the impedance resistance due to fast electron transfer. Example 2 Electrode Preparation of Graphene Layer / Self-assembled Li 4 Ti 5 0 12 Nanoparticle Ensemble Layer / Graphene Layer / Self-assembled Li 4 Ti 5 0 12 Nanoparticle Ensemble Layer / Graphene Layer Graphene layer / self-assembled Li 4 Ti 5 0 12 nanoparticles sample layer / graphene layer / self-assembled by the pin layer, the sandwiching electrode active material nanoparticle aggregate layer is laminated twice in succession Li 4 Ti 5 0 12 nanoparticle aggregate layer / graphene layer was prepared. The manufacturing conditions of each layer were the same as in Example 1, by coating the Li 4 Ti 5 0 12 nanoparticle aggregate layer / graphene layer once more successively, to prepare a multilayer electrode active material shown in FIG. In the case of such a multi-layer structure, a carbon layer such as graphene or carbon nanotubes is introduced before two or three electrode active material layers are stacked, thereby maintaining excellent electrical conductivity in the thickness direction, and mechanical stability. It is a structure that is advantageous to realize a battery with high energy density and high thickness. Comparative Example 1 Preparation of Electrode Active Material Having Self-Assembled Li 4 Ti 5 0 12 Nanoparticle Cumulus Layer
실시예 1에서 얻어진 Li4Ti5012 나노섬유를 분쇄하여 얻어진 Li4Ti5012 나노입 자 분산 용액을 집전체 위에 직접 정전 분사하여 Li4Ti5012 나노입자가자기조립되어 이루어진 웅집체 층을 구성을 하였다. 비교예 1에서는 실시예 1과 달리, 그래핀 층 을 집전체와 전극활물질 옹집체 층 사이에 도입을 하지 않았으며, 또한 전극활물질 나노입자응집체 층의 상층에도 탄소 층을 도입하지 않았다. 실험예: 자기조립된 Li4Ti5012 나누입자 웅집체 층과 그래핀 층이 포함된 이 차전지의 특성 평가 Carried out in Example 1, the electrostatic directly the Li 4 Ti 5 0 12 nano-particle dispersion solution was obtained by crushing the Li 4 Ti 5 0 12 nanofibers obtained on the current collector in the injection Li 4 Ti 5 0 12 nano Hung particles are made of self-assembled The aggregate layer was comprised. In Comparative Example 1, unlike Example 1, the graphene layer was not introduced between the current collector and the electrode active material retainer layer, and no carbon layer was introduced into the upper layer of the electrode active material nanoparticle aggregate layer. Experimental Example: Characterization of Self-Assembled Lithium Battery with Li 4 Ti 5 0 12 Split Particle Layer and Graphene Layer
실시예 1에서 진행된 두가지 샘플  Two samples from Example 1
1. 그래핀 층 /자기조립된 Li4Ti5012웅집체 층 /그래핀 층 (g/LTO/g표기)1. Graphene layer / self-assembled Li 4 Ti 5 0 12 coarse layer / graphene layer (g / LTO / g notation)
2. 그래핀 층 /자기조립된 Li4Ti5012 웅집체 층 /그래핀 층 /자기조립된 Li4Ti5012 웅집체 층 /그래핀 층 (g/LTO/g/LTO/g 표기)의 연속 적층 구조를 가진 전극과 비교 예 1에서 진행된 집전체 위에 자기조립된 Li4Ti5012 웅집체 층 (LTO표기)으로만구성 된 전극을 각각 제조하여, 전기화학 특성을 비교분석 하였다. 전지 특성은 코인 셀 (CR2032— type coin cell)을 제조하여 평가하였다. 샐의 구성에 있어서 전해질로 는 1 M의 LiPF6가 용해된 EC/DEC (1/1 volume%)용액을 사용하였다. 기준 전극과 상 대 전극으로 사용한 음극으로는 순도 99.99)의 금속 리튬 호일 (Foote Mineral Co.)을 사용하였고, 작동 전극으로 1. 그래핀 층 /자기조립된 Li4Ti5012 웅집체 층 /그 래핀 층, 2. 그래핀 층 /자기조립된 Li4Ti5012 웅집체 층 /그래핀 층 /자기조립된2. Graphene layer / self-assembled Li 4 Ti 5 0 12 coarse layer / graphene layer / self-assembled Li 4 Ti 5 0 12 coarse layer / graphene layer (g / LTO / g / LTO / g notation) Electrodes composed of Li 4 Ti 5 0 12 coarse layer (LTO notation) self-assembled on the current collector in Comparative Example 1 and the electrode having a continuous laminated structure of) were prepared, respectively, and compared with each other. Battery characteristics were evaluated by preparing a coin cell (CR2032—type coin cell). In the sal composition, an EC / DEC (1/1 volume%) solution in which 1 M LiPF 6 was dissolved was used as an electrolyte. As a cathode used as the reference electrode and the counter electrode, metal lithium foil (Foote Mineral Co.) of purity 99.99) was used, and as a working electrode, 1. graphene layer / self-assembled Li 4 Ti 5 0 12 coarse layer / Graphene layer, 2. graphene layer / self-assembled Li 4 Ti 5 0 12 aggregate layer / graphene layer / self-assembled
Li4Ti50i2 웅집체 층 /그래핀 층, 3. 자기조립된 Li4Ti5012 응집체 층으로 구성된 박층 을 사용하였다. 음극과 양극 사이에 전기적인 단락을 막아줄 분리막으로는 폴리프 로필렌 필름 (Celgard Inc.)을 사용하였으며, 이와 같은 셀의 제작은 VAC 사의 글 러브 박스 내에서 아르곤 (Ar) 분위기를 만든 후 시행하였다. A thin layer consisting of a Li 4 Ti 5 0i 2 aggregate layer / graphene layer, 3. self assembled Li 4 Ti 5 0 12 aggregate layer was used. Polypropylene film (Celgard Inc.) was used as a separator to prevent the electrical short between the cathode and the anode. The cell was fabricated after creating an argon (Ar) atmosphere in a VAC glove box. It was.
여기서 사용된 층 .방전 실험 장치는 WonATech사의 WBCS3000 모델로서 , 16 개의 보드를 첨가하여 16채널로 측정이 가능하도록 한 MPS (Multi Potent iost at System)로 정전류 하에서 전압의 변화를 살펴보았다. 충 ·방전시 사용된 전류 밀 도의 세기는 각 물질의 이론 용량을 계산하여 0.2 C-rate ~ 20 C-rate 기준으로 하 여 50 사이클씩 측정하였다. 컷오프 (Cut off ) 전압은 0.01 ~ 3.0 V 였다 . The layer-discharge test apparatus used here was WonATech's WBCS3000 model, which examined the voltage change under constant current with Multi Potent Iost at System (MPS), which was able to measure 16 channels by adding 16 boards. Current mill used for charging and discharging The intensity of the figure was calculated by 50 cycles on the basis of 0.2 C-rate ~ 20 C-rate by calculating the theoretical capacity of each material. Cut off voltage was 0.01 ~ 3.0 V.
도 8은 상기 세 가지의 샘플로부터 측정된 전지의 음극활물질 특성을 보여주 고 있다, 10 C-rate의 매우 빠른 고율에서 특성평가가 이루어졌다. 그래핀 (g) 층 이 포함되지 않은 순수한 LTO (Li4Ti5012) 웅집체 (sample #1)로 이루어잔 전극의 경 우 도 8에서 보여지듯이 고율 특성에서 LT0의 이론용량 값인 175 mAh/g에도 미치지 못하는 120 mAh/g 정도의 값이 초기에 관찰이 되 었으며, 사이클이 진행이 됨에 따 라서 100 mAh/g의 정도로 용량이 감소됨을 확인할 수 있다 . 이에 비해 그래핀 층이 LT0 웅집체 층의 윗면과 아랫면에 샌드위치 형 태로 코팅 이 되는 경우 , 전자전도 특 성 이 크게 개선이 되어 순수한 LT0 층으로 구성된 전지보다 용량 값이 20 mAh/g 정 도 더 높게 나오는 것을 확인할 수 있었다. 특히 그래핀 층과 전극활물질 층이 연 속적으로 2회 반복된 적층 구조 (sample #3)은 가장 높은 방전용량 값을 보여주었 다 . 따라서 전자전도 특성이 우수한 그래핀 층이 전극활물질 웅집체의 상층과 하층 에 도입이 됨으로써 , 전지 성능이 크게 개선될 수 있음을 확인할 수 있었다. Figure 8 shows the negative electrode active material characteristics of the cell measured from the three samples, the characterization was made at a very high rate of 10 C-rate. An electrode made of pure LTO (Li 4 Ti 5 0 12 ) aggregates (sample # 1) without a graphene (g) layer (175 mAh /), which is the theoretical value of LT0 at high rate characteristics, as shown in FIG. The value of 120 mAh / g, which is less than g, was observed initially, and as the cycle progressed, the capacity was reduced to about 100 mAh / g. On the other hand, when the graphene layer is sandwiched on the upper and lower surfaces of the LT0 coarse layer, the electroconductivity is greatly improved, and the capacity value is 20 mAh / g higher than that of the battery composed of the pure LT0 layer. I could confirm that it came out. In particular, the stacked structure (sample # 3) in which the graphene layer and the electrode active material layer were repeated twice consecutively showed the highest discharge capacity value. Therefore, it was confirmed that the graphene layer having excellent electron conduction characteristics was introduced into the upper and lower layers of the electrode active material collector, thereby greatly improving the battery performance.
도 9는 LTO 나노입자 웅집체 층과 그라핀 층이 연속적으로 3회 적층되어 . 이 루어진 (g/LTO/g/LTO/g/LTO/g) 박층의 전지 성능을 보여준다. 특히 3층 구조를 갖 는 박층을 제조할 때, 실시 예 1에서 사용된 Li4Ti5012 나노섬유로부터 분쇄되어 이루 어진 나노입자 분산용액으로부터 LT0 층을 제조한 것이 아니고, 20 nm ~ 60 nm 크 기의 형 태로 나노아모 (Nanoamor)에서 판매하는 나노분말을 구입하여 마이크로 비 드 밀링을 진행한 후에 분산용액을 얻고, 이를 정전 스프레이하여 LTO 전극활물질 웅집체 층을 구성하였다. 9 is an LTO nanoparticle aggregate layer and a graphene layer stacked three times in succession. The cell performance of this thin layer (g / LTO / g / LTO / g / LTO / g) is shown. In particular, when manufacturing a thin layer having a three-layer structure, the LT0 layer was not prepared from the nanoparticle dispersion solution pulverized from the Li 4 Ti 5 0 12 nanofibers used in Example 1, 20 nm ~ 60 nm In the form of a nano-nano (Nanoamor) to sell the nanopowder was purchased after the microbead milling to obtain a dispersion solution, it was electrostatically sprayed to form the LTO electrode active material layer.
도 9는 g/LTO/g/LTO/g/LTO/g 박층을 1 C rate에서 평가한 음극활물질 특성을 보여주고 있다. 초기 방전 용량 값이 375 mAh/g 이고 , 2번째 방전 용량값이 282 mAh/g, 5번째 방전용량 값이 240 mAh/g이고 , 10 회를 넘어 가면서 LTO의 이론용량 값인 175 mAh/g 을 조금 더 상회하는 용량 값을 보여주고 있다.  Figure 9 shows the characteristics of the negative active material g / LTO / g / LTO / g / LTO / g thin layer evaluated at 1 C rate. The initial discharge capacity value is 375 mAh / g, the second discharge capacity value is 282 mAh / g, the fifth discharge capacity value is 240 mAh / g, and slightly exceeds the theoretical capacity value of LTO 175 mAh / g over 10 times. The capacity value is higher than that.
이는 도 10의 0.2 c rate에서 20 C rate까지 사이클 변화에 따라서 측정된 전기화학 셀 평가에서도 매우 우수한 결과 값을 보여줌을 알 수 있다 . 20 C rate의 매우 빠른 고율 특성에서도 180 mAh/g 정도의 높은 방전 용량 값을 보여줌을 알 수 있다. 이는 그래핀에 의 한 용량 증대와 더불어 , 전극활물질 층이 그래핀 층 사이에 샌드위치 되면서 기계적 인 안정성과 전기적 인 전도 특성 이 크게 개선이 되어 얻어 진 결과라 할 수 있다.  This can be seen that even in the electrochemical cell evaluation measured according to the cycle change from 0.2 c rate to 20 C rate of FIG. 10 shows very good results. It can be seen that the high discharge capacity value of about 180 mAh / g is shown even at a very fast high rate characteristic of 20 C rate. This is a result of the increase in capacity due to the graphene, the electrode active material layer sandwiched between the graphene layer and the mechanical stability and electrical conduction properties are greatly improved.
본 실시 예에서는 탄소 층으로 그래핀 층을 이용하여 결과를 보여주었지만, 탄소나노류브 네트워크 층 또한 동일한 효과를 기 대할 수 있으며 , LTQ 이외에 다양 한 음극활물질 및 양극활물질 나노입자 웅집체 층에 적용이 가능한 발명 이며 , 박층 을 얻기 위해 사용되는 전극활물질의 종류는 다양하며 , 특정 물질에 국한된 것은 아니다, In this embodiment, the graphene layer is used as the carbon layer, but the results are shown. The carbon nano-lever network layer can also have the same effect, and is an invention that can be applied to various negative electrode active material and positive electrode active material nanoparticle aggregate layers in addition to LTQ, and there are various types of electrode active materials used to obtain a thin layer. It is not limited to matter,
이상, 본 발명을 도시된 예를 중심으로 하여 설명하였으나 이는 예시에 지나 지 아니하며, 본 발명은 본 발명의 기술분야에서 통상의 지식을 가진 자에게 자명 한 다양한 변형 및 균등한 기타의 실시 예를 수행할 수 있다는 사실을 이해하여야 한다 .  In the above, the present invention has been described with reference to the illustrated examples, which are only examples, and the present invention performs various modifications and other equivalent embodiments that are obvious to those skilled in the art. Understand that you can.
【산업상 이용가능성】  Industrial Applicability
본 발명은 고속 충반전에 적합한 고성능 이차전지의 제조에 적용된다.  The present invention is applied to the production of high performance secondary batteries suitable for high speed charging and charging.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
집전체;  Current collector;
상기 집전체 위에 적층된 그래핀 (graphene) 층;  A graphene layer stacked on the current collector;
상기 그래핀 층 위에 적층된 자기조립된 전극활물질 나노입자의 옹집체 층; 상기 웅집체 층 위에 적층된 탄소 층을 포함하는 전극.  An aggregate layer of self-assembled electrode active material nanoparticles laminated on the graphene layer; An electrode comprising a carbon layer laminated on the collector layer.
【청구항 2】  [Claim 2]
청구항 1에 있어서, 상기 탄소 층 위에는 전극활물질 나노입자의 웅집체 층 과 탄소 층이 복수회로 더 적층되어 있는 것을 특징으로 하는 전극.  The electrode according to claim 1, wherein a plurality of layers and a carbon layer of electrode active material nanoparticles are further stacked on the carbon layer.
[청구항 3】  [Claim 3]
청구항 1에 있어서, 상기 전극활물질 나노입자의 직경은 5 nm - 100 nm인 것 을 특징으로 하는 전극.  The electrode according to claim 1, wherein the electrode active material nanoparticles have a diameter of 5 nm-100 nm.
[창구항 4】  [Window 4]
청구항 1에 있어서, 상기 웅집체 층에 포함되는 전극활물질 나노입자의 웅집 체의 크기는 100 nm - 3000 nm인 것을 특징으로 하는 전극.  The electrode according to claim 1, wherein the size of the aggregates of the electrode active material nanoparticles included in the aggregate layer is 100 nm-3000 nm.
【청구항 5】  [Claim 5]
청구항 1에 있어서, 상기 전극활물질 나노입자의 웅집체 층의 두께는 500 nm ~ 20 mi인 것을 특징으로 하는 전극.  The electrode according to claim 1, wherein the thickness of the aggregate layer of the electrode active material nanoparticles is 500 nm to 20 mi.
[청구항 6】  [Claim 6]
청구항 1에 있어서, 상기 전극활물질은 Si, Sn, Li4Ti5012, Sn02, Ti02> Fe203) Fe304> C03O4, 또는 이들의 흔합물; Si, Sn, Ti, Cu, Al, Ce 및 La으로 이루어진 군 으로부터 선택되는 하나 이상의 합금; LiMn204, V205, LiCo02, LiNi02, LiFeP04, The method according to claim 1, wherein the electrode active material is Si, Sn, Li 4 Ti 5 0 12 , Sn0 2 , Ti0 2> Fe 2 0 3) Fe 3 0 4> C03O4, or a mixture thereof; At least one alloy selected from the group consisting of Si, Sn, Ti, Cu, Al, Ce and La; LiMn 2 0 4 , V 2 0 5 , LiCo0 2 , LiNi0 2 , LiFeP0 4 ,
LiFeP04. LiNi!-yCoy02, Li [Ni1/2Mn1/2]02또는 이들의 흔합물; 리륨 자리에 Mg2+, Al3+, LiFeP0 4 . LiNi ! y Co y 0 2 , Li [Ni 1/2 Mn 1/2 ] 0 2 or a combination thereof; Mg 2+ , Al 3+ ,
Ti4+, Zr+, Nb5+, W6+를 1증량 ¾ 이하로 도핑한 LiFeP04, Li [Nii/sCoi/sMni/slOz, Li[Ni1/2Mn1/2]02, LiNihCoA, LiNi -Ji^Mgx/ 또는 이들의 흔합물로 이루어진 군으 로부터 선택되는 하나 이상인 것을 특징으로 하는 전극. LiFeP0 4 , Li [Nii / sCoi / sMni / slOz, Li [Ni 1/2 Mn 1/2 ] 0 2 , LiNi doped with Ti 4+ , Zr + , Nb 5+ , W 6+ to below 1 ¾ h CoA, LiNi-Ji ^ Mgx / or an electrode, characterized in that at least one selected from the group consisting of these.
[청구항 7】  [Claim 7]
계 1항에 있어서, 상기 탄소 층은 그래핀 층, 탄소나노튜브 층 또는 그래핀과 탄소나노튜브가섞여 있는 흔합층인 것을 특징으로 하는 전극. The electrode of claim 1, wherein the carbon layer is a graphene layer, a carbon nanotube layer, or a mixed layer in which graphene and carbon nanotubes are mixed.
[청구항 8】 [Claim 8]
청구항 1에 있어서, 상기 응집체 층에 포함되는 전극활물질 나노입자의 웅집 체는 구형, 도우덧형, 타원형 또는 이들의 흔합 형태인 것을 특징으로 하는 전극.  The electrode according to claim 1, wherein the aggregates of the electrode active material nanoparticles included in the aggregate layer are spherical, dough-shaped, elliptical, or a combination thereof.
【청구항 9】 [Claim 9]
청구항 7에 있어서 , 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소 나노튜브, 다중벽 탄소나노튜브 또는 이들의 흔합물인 것을 특징으로 하는 전극.  The electrode according to claim 7, wherein the carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or a mixture thereof.
【청구항 10] [Claim 10]
청구항 1내지 청구항 9중 어느 한 항의 전극을 포함하는 이차 전지.  A secondary battery comprising the electrode of any one of claims 1 to 9.
【청구항 11】  [Claim 11]
청구항 1 내지 청구항 9 중 어느 한 항의 전극을 포함하는 전기화학 커패시 터.  An electrochemical capacitor comprising the electrode of claim 1.
[청구항 12】  [Claim 12]
집전체 상에 그래핀 분산 용액, 전극활물질 나노입자 분산 용액, 탄소 층 형 성용 분산 용액을 순서대로 전기 분사하여 적층 구조를 형성하는 단계; 및  Forming a laminated structure by electrically spraying a graphene dispersion solution, an electrode active material nanoparticle dispersion solution, and a dispersion solution for forming a carbon layer on a current collector in order; And
상기 적층 구조를 압착하는 단계를 포함하는 전극의 제조 방법.  A method of manufacturing an electrode comprising the step of pressing the laminated structure.
【청구항 13]  [Claim 13]
청구항 12에 있어서, 상기 압착하는 단계 전에, 전극활물질 나노입자 분산 용액과 탄소 층 형성용 분산 용액을 순서대로 복수회 전기 분사하여 복층 구조를 형성하는 단계를 더 포함하는 것을 특징으로 하는 전극의 제조 방법.  The method of manufacturing an electrode according to claim 12, further comprising forming a multilayer structure by electrospraying the electrode active material nanoparticle dispersion solution and the dispersion solution for forming a carbon layer in a plurality of times before the pressing step. .
【청구항 14】  [Claim 14]
제 12항에 있어서, 상기 압착하는 단계 이후에, 압착된 적층 구조를 열처리하 는 단계를 더 포함하는 것을 특징으로 하는 전극의 제조 방법 .  The method of claim 12, further comprising, after the pressing step, heat treating the compressed laminated structure.
【청구항 15】  [Claim 15]
청구항 12에 있어서, 상기 그래핀 분산 용액, 전극활물질 나노입자 분산 용 액, 탄소 층 형성용 분산 용액의 용매는 비점이 80 °C 이하인 용매 또는 비점이 80  The solvent of claim 12, wherein the solvent of the graphene dispersion solution, the electrode active material nanoparticle dispersion solution, and the carbon layer-forming dispersion solution has a boiling point of 80 ° C. or lower, or a boiling point of 80
°C 이하인 용매를 50중량 % 이상 함유하는 용매 흔합물인 것을 특징으로 하는 전극의 제조 방법 . A method for producing an electrode, characterized in that the solvent mixture containing 50% by weight or more of the solvent of not more than ° C.
【청구항 16】  [Claim 16]
청구항 12에 있어서, 상기 전극활물질 나노입자 분사 용액은 전극활물질을 0.5 ~ 20 %로 포함하는 것을 특징으로 하는 전극의 제조 방법 .  The method of claim 12, wherein the electrode active material nanoparticle injection solution comprises 0.5 to 20% of the electrode active material.
PCT/KR2011/009933 2011-10-28 2011-12-21 Electrode including a graphene layer and a self-assembled electrode active material aggregate layer, and secondary battery using same, and method for manufacturing same WO2013062177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110111489A KR101357241B1 (en) 2011-10-28 2011-10-28 Electrode including mixed composites of self-assembled electrode active material and graphene layer, and secondary battery using the same, and the fabrication method thereof
KR10-2011-0111489 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013062177A1 true WO2013062177A1 (en) 2013-05-02

Family

ID=48167989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009933 WO2013062177A1 (en) 2011-10-28 2011-12-21 Electrode including a graphene layer and a self-assembled electrode active material aggregate layer, and secondary battery using same, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101357241B1 (en)
WO (1) WO2013062177A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843733A1 (en) * 2013-09-03 2015-03-04 Samsung SDI Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN107579201A (en) * 2017-09-14 2018-01-12 珠海格力电器股份有限公司 A kind of polylayer forest and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456477B1 (en) * 2013-08-26 2014-10-31 한국에너지기술연구원 Graphene-based Device of Thin-film Supercapacitor Electrode directly using Graphene-oxide Solution and Maunufacturing Method thereof
KR101602435B1 (en) * 2014-07-28 2016-03-15 고려대학교 산학협력단 Nanocomposite Multilayer Film Using Janus Layer-by-Layer Assembly and Method of Preparing the Same and Electrode Comprising the Same
KR101829101B1 (en) * 2014-09-30 2018-02-13 주식회사 엘지화학 Cathode active material for lithium-sulfur battery and method of preparing the same
KR101721916B1 (en) * 2014-10-14 2017-03-31 에스케이이노베이션 주식회사 Electrode for a lithium secondary battery with a heating layer and lithium secondary battery comprising the same
KR101879502B1 (en) * 2015-09-11 2018-07-18 한양대학교 산학협력단 Secondary battery anode having the interface layer and method of preparing the same
KR20180034120A (en) 2016-09-27 2018-04-04 삼성전자주식회사 Positive electrode for metal-air battery and matal-air battery including the same
KR102358448B1 (en) 2017-11-21 2022-02-04 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and preparing method thereof
EP4050678A4 (en) * 2020-11-02 2023-04-19 LG Energy Solution, Ltd. Negative electrode for lithium metal battery, manufacturing method thereof, and lithium metal battery comprising same
KR20220059278A (en) * 2020-11-02 2022-05-10 주식회사 엘지에너지솔루션 Negative electrode for lithium metal battery, manufacturing method thereof, and lithium metal battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173476A (en) * 2008-01-22 2009-08-06 Panasonic Corp Carbon nanotube structure, method for manufacturing the same and energy device using the same
US20100081057A1 (en) * 2008-07-28 2010-04-01 Jun Liu Nanocomposite of graphene and metal oxide materials
JP2011503804A (en) * 2007-11-05 2011-01-27 ナノテク インスツルメンツ インク Composite negative electrode compound for lithium-ion batteries mainly composed of nanographene platelets
US20110033746A1 (en) * 2009-08-10 2011-02-10 Jun Liu Self assembled multi-layer nanocomposite of graphene and metal oxide materials
KR20110064072A (en) * 2009-12-07 2011-06-15 주식회사 케이씨텍 Method and apparatus for manufacturing graphene sheet using atomic layer deposition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733404B2 (en) 2001-05-22 2006-01-11 富士重工業株式会社 Positive electrode for lithium secondary battery and lithium secondary battery
KR101041932B1 (en) * 2008-10-15 2011-06-16 한국과학기술연구원 Electrode for secondary battery and the fabrication method thereof, and secondary battery using the same
KR101194716B1 (en) * 2009-09-15 2012-10-25 주식회사 엘지화학 Electrode for lithium secondary battery and Lithium secondary battery comprising the same
KR101113976B1 (en) 2010-10-27 2012-03-13 한국과학기술연구원 Composites of self-assembled electrode active material-carbon nanotube, their method of fabrication and secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503804A (en) * 2007-11-05 2011-01-27 ナノテク インスツルメンツ インク Composite negative electrode compound for lithium-ion batteries mainly composed of nanographene platelets
JP2009173476A (en) * 2008-01-22 2009-08-06 Panasonic Corp Carbon nanotube structure, method for manufacturing the same and energy device using the same
US20100081057A1 (en) * 2008-07-28 2010-04-01 Jun Liu Nanocomposite of graphene and metal oxide materials
US20110033746A1 (en) * 2009-08-10 2011-02-10 Jun Liu Self assembled multi-layer nanocomposite of graphene and metal oxide materials
KR20110064072A (en) * 2009-12-07 2011-06-15 주식회사 케이씨텍 Method and apparatus for manufacturing graphene sheet using atomic layer deposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843733A1 (en) * 2013-09-03 2015-03-04 Samsung SDI Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US9905854B2 (en) 2013-09-03 2018-02-27 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN107579201A (en) * 2017-09-14 2018-01-12 珠海格力电器股份有限公司 A kind of polylayer forest and preparation method thereof
CN107579201B (en) * 2017-09-14 2023-07-18 珠海格力电器股份有限公司 Multilayer body and preparation method thereof

Also Published As

Publication number Publication date
KR20130046851A (en) 2013-05-08
KR101357241B1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
KR101357241B1 (en) Electrode including mixed composites of self-assembled electrode active material and graphene layer, and secondary battery using the same, and the fabrication method thereof
Zhang et al. Latest development of nanostructured Si/C materials for lithium anode studies and applications
US20210399289A1 (en) Silicon-carbon composite anode material
EP3518328B1 (en) Silicon-containing structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
US8968934B2 (en) Electrode for secondary battery, fabrication method thereof, and secondary battery comprising same
Zhou et al. A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries
JP6136788B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR101622355B1 (en) Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same
US10211448B2 (en) Hybrid nanostructured materials and methods
Su et al. Silicon@ graphene composite prepared by spray–drying method as anode for lithium ion batteries
Wang et al. A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries
KR20110063375A (en) Multi-component nano composite oxide powders, manufacturing method thereof, method of manufacturing electrodes, thin film battery and manufacturing method thereof
Luo et al. Templated assembly of LiNi0· 8Co0· 15Al0· 05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ion battery
Wei et al. 1D highly porous Li3V2 (PO4) 3/C nanofibers as superior high-rate and ultralong cycle-life cathode material for electrochemical energy storage
Chen et al. Graphene-carbon nanotubes-modified LiFePO4 cathode materials for high-performance lithium-ion batteries
KR20160042859A (en) Solid electrolytes for all solid state rechargeable lithium battery, and all solid state rechargeable lithium battery including the same
Wang et al. Ultra-flexible lithium ion batteries fabricated by electrodeposition and solvothermal synthesis
KR101366023B1 (en) Manufacturing method of electrodes
KR101324295B1 (en) Aglomerated electroactive materials including Ag nanowire network and method for manufacturing the same
Zhang et al. An advanced design concept of mansion-like freestanding silicon anodes with improved lithium storage performances
Wang et al. Graphene supported Zn2SnO4 nanoflowers with superior electrochemical performance as lithium-ion battery anode
Li et al. Electrochemical properties of Li2ZrO3-coated silicon/graphite/carbon composite as anode material for lithium ion batteries
Wang et al. A mini review: Nanostructured silicon-based materials for lithium ion battery
Tian et al. One-step synthesis of SnS2 nanoflower/graphene nanocomposites with enhanced lithium ion storage performance
Wang et al. Enhanced electrochemical performance of Li3V2 (PO4) 3 structurally converted from LiVOPO4 by graphite nanofiber addition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874665

Country of ref document: EP

Kind code of ref document: A1