WO2013061818A1 - Novel peptide complex and hybrid complex thereof, and use of said hybrid complex - Google Patents

Novel peptide complex and hybrid complex thereof, and use of said hybrid complex Download PDF

Info

Publication number
WO2013061818A1
WO2013061818A1 PCT/JP2012/076654 JP2012076654W WO2013061818A1 WO 2013061818 A1 WO2013061818 A1 WO 2013061818A1 JP 2012076654 W JP2012076654 W JP 2012076654W WO 2013061818 A1 WO2013061818 A1 WO 2013061818A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
leucine zipper
complex
tmr
egfp
Prior art date
Application number
PCT/JP2012/076654
Other languages
French (fr)
Japanese (ja)
Inventor
瑞生 北松
宏之 道上
飛霏 王
真実 中島
高史 大槻
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Publication of WO2013061818A1 publication Critical patent/WO2013061818A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Definitions

  • the present invention relates to a method for introducing a protein or the like capable of expressing a predetermined function in a cell into the cell, a peptide complex used in the method, and the like.
  • CPP cell-penetrating peptide
  • the production efficiency of the CPP-fused protein used in the above-described technology varies considerably depending on the type of protein to which the CPP is linked, and it may be hardly produced.
  • the CPP may inhibit the function of the protein (CPP is generally positively charged, and this is a nucleic acid that is negatively charged. Adverse effects may be caused by the interaction with biological materials such as
  • Non-Patent Document 1 by the group of Dowdy et al. Introduces six histidines (so-called histidine tags) to the target protein, which are modified with a metal ligand. In addition, a method has been described in which intracellular transportability is provided by linking to a CPP via the metal (nickel) (without using a covalent bond).
  • Non-Patent Document 1 uses a histidine tag, which is generally widely used in protein purification, as a tag that gives intracellular transport ability. Concerns remain when applied to the intended intracellular delivery technology, the so-called drug delivery system (DDS).
  • DDS drug delivery system
  • Non-Patent Documents 2 to 5 by the group of Bosshard et al. Disclose mutant leucine zipper peptides that were artificially developed based on natural leucine zipper peptides.
  • Leucine zippers coiled coils
  • Each peptide that forms a dimer contains an ⁇ -helix of 7 amino acid residues, and leucine is arranged at the fourth (d) position, and the interaction between these hydrophobic amino acid residues. Is characterized by the formation of dimers.
  • the mutant leucine zipper peptide disclosed in the above non-patent document is designed to further include a basic amino acid (lysine) or an acidic amino acid (glutamic acid) at a predetermined position in the amino acid sequence, and is a natural leucine zipper peptide
  • the bond stability is improved more than that.
  • Non-Patent Documents 2 to 5 are only prepared for analysis of the thermodynamic behavior of leucine zipper peptides.
  • a desired substance (such as a peptide) can be efficiently introduced into a cell by linking a cell-invading peptide to one leucine zipper peptide of the dimer or using such a leucine zipper peptide. There is no description or suggestion of becoming.
  • An object of the present invention is to provide a means for delivering a substance to be transported into a cell, which can be exhibited without hindering the intended function later, and does not use a metal that may be affected by the living body.
  • a method may be considered in which this is formed and brought into contact with a cell.
  • the complex may move into the cell, but the complex does not come off after the transfer, and the target protein is not released within the cell. There is a possibility that the performance of a predetermined function is hindered.
  • the present inventors have found that it is preferable to use a pair of leucine zipper peptides (“orthogonal” leucine zipper tags) having a predetermined amino acid sequence, that is, one leucine zipper peptide.
  • a pair of leucine zipper peptides (“orthogonal” leucine zipper tags) having a predetermined amino acid sequence, that is, one leucine zipper peptide.
  • the present invention includes the following inventions.
  • a leucine zipper peptide [LZ (K)] consisting of the amino acid sequence of SEQ ID NO: 1 or a leucine zipper peptide [LZ (K) ′] consisting of an amino acid sequence having a mutation to 1 to 8 amino acids in the amino acid sequence
  • a leucine zipper peptide [LZ (E)] consisting of the amino acid sequence of SEQ ID NO: 2 or a leucine zipper peptide [LZ (E) ′] represented by an amino acid sequence having a mutation to 1 to 8 amino acids in the amino acid sequence
  • N′-EYQALKKKKVAQLKAKNQALKKKKVAQLKHK-C ′ SEQ ID NO: 1
  • N′-EYQALEKEVAQLEAENQALEKEVAQLEHE-C ′ SEQ ID NO: 2 ⁇ 2>
  • a peptide complex [B] comprising a second leucine zipper peptide capable of associating with the first leucine zipper peptide contained in the peptide complex [A], and a substance to be transported into the cells linked thereto;
  • a hybrid complex characterized in that it is formed from:
  • the first leucine zipper peptide is the leucine zipper peptide [LZ (K)] or [LZ (K) ′]
  • the second leucine zipper peptide is the leucine zipper peptide [LZ (E) Or [LZ (E) ′]
  • the first leucine zipper peptide is the leucine zipper peptide [LZ (E)] or [LZ (E) ′]
  • the second leucine zipper peptide is The leucine zipper peptide [LZ (K)] or [LZ (K) ′].
  • ⁇ 5> The hybrid complex according to ⁇ 4>, wherein the transported substance is a protein or a peptide.
  • ⁇ 6> A therapeutic or diagnostic agent containing the hybrid complex according to ⁇ 4> or ⁇ 5>.
  • the complex of the leucine zipper peptide and the transported substance such as protein and the complex of the leucine zipper peptide and the cell invasion peptide used in the present invention can be prepared relatively easily by a known method, There is no need to use metal.
  • the transported substance can be efficiently delivered into the cell, and after being delivered into the cell, the hybrid complex is again Since the substance is separated into two complexes, the transported substance (protein, etc.) linked to one peptide complex exhibits a predetermined function without being affected by the CPP linked to the other peptide complex. can do.
  • a hybrid complex can be expected, for example, as a full-scale intracellular protein delivery technique for the purpose of therapy and diagnosis.
  • Example 3 Schematic diagram of two leucine zipper peptides oriented in parallel (cited from Non-Patent Document 3).
  • the fluorescence spectrum when EGFP-LZ (K) and the peptide which modified various Tmr in Example 3 are mixed in an equivalent amount.
  • Example 3 the change in the fluorescence intensity derived from EGFP when Tmr-LZ (E) and Tmr-LZ (K) were gradually added dropwise to an aqueous solution containing 15 nM of EGFP-LZ (K).
  • On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph).
  • the center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph).
  • the right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • the observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-LZ (E) in Example 4-2.
  • On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph).
  • the center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph).
  • the right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph).
  • the center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph).
  • the right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph).
  • the center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph).
  • the right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • the observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-11R in Example 4-5 On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • the observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-LZ (K) in Example 4-6 On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph).
  • the center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph).
  • the right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
  • ⁇ Peptide complex ⁇ In the present invention, two types of peptide complexes are used in order to deliver the transported substance into the cell.
  • One includes a first leucine zipper peptide having a predetermined amino acid sequence and a cell invasion peptide linked to the first leucine zipper peptide, and further linked to the leucine zipper peptide and / or the cell invasion peptide as necessary.
  • a peptide complex that may contain a fluorescent dye referred to as “peptide complex [A]” for convenience).
  • peptide complex [B] a peptide complex
  • peptide complex [B] a second leucine zipper peptide having a predetermined amino acid sequence and a transported substance linked thereto.
  • the first and second leucine zipper peptides contained in the peptide complexes [A] and [B] only need to constitute a pair of leucine zipper peptides that can be associated, and either of the pair of leucine zipper peptides Either the first leucine zipper peptide may be linked to the cell-invading peptide in the peptide complex [A], or either may be linked to the transported substance in the peptide complex [B] as the second leucine zipper peptide.
  • the peptide complex [A] may be composed of only the above leucine zipper peptide and intracellular invading peptide, or only the above leucine zipper peptide, intracellular invading peptide and fluorescent dye, and inhibits the action and effect of the present invention. Other components may be included as long as they are not.
  • the peptide complex [B] may be composed only of the leucine zipper peptide and the substance to be transported, or may further contain other components within a range that does not inhibit the action and effect of the present invention. May be.
  • the terminal treatment of the peptide complexes [A] and [B] is not particularly limited.
  • the N-terminal side may be a primary amino group, and the C-terminal side (via ⁇ -alanine as necessary). ) Primary amide.
  • leucine zipper peptide constituting the peptide complexes [A] and [B] of the present invention
  • natural leucine zipper peptide or its derivatives (especially improved stability during complex formation between leucine zipper peptides) Can be used.
  • the leucine zipper peptide has a structure in which an ⁇ -helix composed of seven amino acid residues (abcdefg) is repeated several times (see FIG. 1).
  • the two leucine zipper peptides associate in a parallel orientation (aligned from the N-terminus to the C-terminus) with the side chains of the amino acids at positions a, d, e, and g facing inward, A composite (coiled coil) is formed.
  • the stability of this complex is considered to be particularly affected by the interaction between the side chains of amino acids at positions a, d, e and g. Therefore, in the present invention, it is preferable to use a leucine zipper peptide that can obtain high stability by interaction between amino acids at positions a, d, e, and g.
  • a leucine zipper peptide consisting of the amino acid sequence represented by SEQ ID NO: 1 also referred to as “LZ (K)” in the present invention
  • a leucine zipper peptide consisting of the amino acid sequence represented by SEQ ID NO: 2 may be expressed as a leucine zipper peptide in the present invention (LZ (K) and LZ (E)). It is preferred to use one as the first leucine zipper peptide for the peptide complex [A] and the other as the second leucine zipper peptide for the peptide complex [B].
  • the leucine zipper peptides having the amino acid sequences represented by SEQ ID NOs: 1 and 2 are described in Non-Patent Documents 2 and 3 described above.
  • a total of 8 amino acids at positions e and g with respect to the amino acid sequence of the peptide are all substituted with glutamic acid (E). Since the amino acids at positions e and g are oriented outward to some extent, lysine and glutamic acid are positively and negatively charged in aqueous solution, respectively. Therefore, a pair of leucine zipper peptides consisting of LZ (K) and LZ (E) are not only in interaction with leucine at the position d provided in the natural leucine zipper peptide, but also at the positions e and g. A complex can be stably formed by electrostatic interaction with lysine and glutamic acid.
  • leucine zipper peptide which consists of an amino acid sequence in which one or several (for example, 1 to 8) amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 or 2, It is also possible to use leucine zipper peptides LZ (K) ′ and LZ (E) ′ capable of forming a complex with L. As described above, the stability of leucine zipper peptide is considered to be greatly influenced by the interaction of amino acids at positions a, d, e and g. Therefore, the strength of the interaction of these amino acids is set within an appropriate range.
  • amino acid substitution for fluctuation, or to perform deletion, substitution or addition of other amino acids within a range that does not adversely affect the interaction of these amino acids.
  • the strength of amino acid interaction can be adjusted by those skilled in the art without undue trial and error.
  • Intracellular entry peptide The cell-penetrating peptide (CPP) constituting the peptide complex [A] of the present invention generally has an amino acid sequence rich in basic amino acids such as arginine and binds to the cell membrane to itself. It is known as a polypeptide having a function of being incorporated into cells, and is sometimes referred to as a cell membrane permeable peptide, a membrane transduction domain (PTD), or the like. Initially, CPP permeated through the cell membrane and thought to spontaneously enter the cell, so it was sometimes referred to as a “cell membrane permeable peptide”. It is thought that it is taken up into the cell through.
  • CPP Intracellular entry peptide
  • various CPPs can be used as long as they correspond to a target cell (usually a mammalian cell), and the kind thereof is not particularly limited.
  • the CPP may have a wild-type amino acid sequence, or may be substituted for the wild-type amino acid sequence as long as it has the ability to enter cells (preferably better than the wild-type). , May have a mutant amino acid sequence that has been deleted or added.
  • a polyarginine having an amino acid sequence consisting of only about 7 to 11 arginines for example, a polyarginine having an amino acid sequence represented by SEQ ID NO: 3 (denoted as “11R” in the present invention) May be included).
  • RRRRRRRRRRR SEQ ID NO: 3 a polymorphic amino acid sequence represented by YGRKKRRQRRRG contained in a trans-activator of transcription protein (Tat protein) derived from human immunodeficiency virus type I (HIV-1) having an amino acid sequence rich in arginine.
  • CPPs polypeptides comprising the amino acid sequence represented by RRRRNRTRRNNRRRVR derived from flockhouse virus (FHV), and CTP512 (Cytoplasmic Transduction Peptide) comprising the amino acid sequence represented by YGRRRRRRRRRRR are also mentioned as preferred CPPs in the present invention.
  • CTP512 Cytoplasmic Transduction Peptide
  • Rev peptide, feline herpesvirus Coat protein-derived peptide, and the like can also be used as the CPP in the present invention.
  • the order of arrangement of the leucine zipper peptide and the intracellular invading peptide is not particularly limited, and may be the order of leucine zipper peptide-intracellular invading peptide from the N-terminal side.
  • the order of invasion peptide-leucine zipper peptide may be used.
  • the cell invasion peptide and the leucine zipper peptide may be directly linked or may be linked via a linker (spacer) as necessary.
  • a linker it is possible to select a known linker used for linking general peptides or proteins (or compounds having a predetermined functional group) to each other as long as the effects of the present invention are not inhibited. it can.
  • a peptide composed of about 1 to 20 amino acids may be used as a linker so that the entire peptide complex [A] is composed of only amino acids, or a compound other than a peptide (amino acid), such as PEG (polyethylene glycol) ) Etc. can also be used as a linker.
  • the peptide complex [A] in which the intracellular invasion peptide and the leucine zipper peptide are linked can be produced by a known method, and the production method is not particularly limited.
  • the Fmoc-peptide solid-phase synthesis method commonly used as a peptide synthesis method is used to sequentially bind the amino acids constituting the peptide complex to form an amide bond between the intracellular entry peptide and the leucine zipper peptide.
  • Complexes linked by (peptide bonds) can be synthesized.
  • the linker can be used by a general method.
  • the transported substance linked to the peptide complex [B] is transported into the cell through the formation of a hybrid complex by the peptide complex [A] and the peptide complex [B].
  • a fluorescent dye may be linked to at least the peptide complex [A].
  • fluorescent dye various fluorescent dyes used for fluorescently labeling known peptides or proteins can be used, and are not particularly limited.
  • Fmoc-peptide solid phase synthesis It is possible to synthesize the peptide complex integrally by using the method, and the molecular size is sufficiently smaller than that of the fluorescent protein (for example, EGFP), so it is difficult to inhibit the formation of the hybrid complex.
  • fluorescent protein for example, EGFP
  • the “fluorescent amino acid” can be selected from known fluorescent amino acids.
  • fluorescent amino acids include 3- (9-oxo-9,10-dihydro-acridin-2-yl) alanine (Acd), N- ⁇ - (fluorescein-5,6-yl) carbonyl-lysine ( Fam), N- ⁇ - (tetramethylrhodamine-5,6-yl) carbonyl-lysine (Tmr), 3- (1-pyrenyl) alanine (Pyr), N- ⁇ - (10-oxo-2,3, 5,6-tetrahydro-1H, 4H, 10H-11-oxa-3-aza-benzo [de] anthracene-9-carbonyl) -ornithine (Cm3), N- ⁇ - (7-methoxy-coumarin-3-yl ) Carbonyl-lysine (Moc), N- ⁇ - (7-methoxy-coumarin-4-yl) acetyl-lysine (
  • N- ⁇ - (fluorescein-5,6-yl) carbonyl-lysine (Fam) and N- ⁇ - (tetramethylrhodamine-5,6-yl) carbonyl-lysine (Fam) used in Examples below Tmr) is an example of a preferred fluorescent amino acid in the present invention.
  • the generic names of such fluorescent dyes are named based on the main structures (skeletons) in the compounds or registered trademarks, and the scope of fluorescent dyes belonging to each can be appropriately understood by those skilled in the art. .
  • the fluorescent dye is based on a known peptide or protein and a method used for linking the fluorescent dye, and if necessary, using an appropriate linker, an amino group, a carboxyl group, a hydroxyl group, and a thiol possessed by an amino acid. It can be linked to the leucine zipper peptide via a functional group such as a group. From the viewpoint of not inhibiting the formation of the hybrid complex, a fluorescent dye is not present in the middle of the leucine zipper peptide (side chain of amino acid) but near the N-terminus or C-terminus, which does not affect the interaction of the leucine zipper peptide. It is preferable to connect.
  • the fluorescent amino acid can be placed at an arbitrary position by the Fmoc-peptide solid phase synthesis method, so that the fluorescent amino acid is bonded to the N-terminal or C-terminal of the leucine zipper peptide Can be easily manufactured.
  • a unique cysteine in the leucine zipper peptide is placed near the N-terminus or C-terminus (site that does not affect the interaction of the leucine zipper peptide), while the fluorescent dye is selected selectively from the thiol group of the cysteine.
  • the order of arrangement of the leucine zipper peptide, the cell invasion peptide and the fluorescent dye is not particularly limited.
  • the order of fluorescent dye-leucine zipper peptide-invading peptide may be used, or the order of entering intracellular penetrating peptide-fluorescent dye-leucine zipper peptide may be used.
  • the fluorescent dye (fluorescent amino acid, etc.) and the leucine zipper peptide and / or the intracellular invasion peptide may be directly linked or linked via a linker (spacer). It may be.
  • a linker a chemical structure or an appropriate length is selected from known ones used to link known peptides or proteins and fluorescent dyes as long as the effects of the present invention are not inhibited. Should be selected.
  • the transported material constituting the peptide complex [B] of the present invention can be introduced into cells by forming a hybrid complex according to the present invention, and can exhibit a predetermined function in the cells. If it is, it will not specifically limit, What is necessary is just to select in consideration of the use of the hybrid composite_body
  • a protein or peptide that exerts a physiological physiological activity in cells is a preferred transported substance in the present invention. Since the size (molecular weight) of proteins and the like may affect the efficiency of introduction into cells or the functioning of functions in cells, an appropriate range (generally, molecular weight 1,000 to 1,000,000) It is preferable to use a protein or the like having a size of
  • a known method can also be used for the method of preparing peptide complexes [A] and [B] in that case, that is, a method of linking a compound other than a protein such as a nucleic acid or a peptide to a leucine zipper peptide.
  • the arrangement order of the leucine zipper peptide and the transported substance is not particularly limited.
  • the order may be leucine zipper peptide-transported substance or the order of transported substance-leucine zipper peptide from the N-terminal side.
  • the transported substance and the leucine zipper peptide may be directly linked or may be linked via a linker (spacer) as necessary.
  • a linker it is possible to select a known linker used for linking general peptides or proteins (or compounds having a predetermined functional group) to each other as long as the effects of the present invention are not inhibited. it can.
  • a peptide composed of about 1 to 20 amino acids may be used as a linker so that the entire peptide complex [B] is composed of only amino acids, or a compound other than a peptide (amino acid), such as PEG (polyethylene glycol) ) Etc. can also be used as a linker.
  • the peptide complex [B] in which the transported substance and the leucine zipper peptide are linked can be produced by a known method, and the production method is not particularly limited.
  • a known genetic engineering technique such as an expression vector
  • the transported substance is a peptide having a relatively small size (number of amino acid residues)
  • the peptide complex is constructed using the Fmoc-peptide solid phase synthesis method commonly used as a peptide synthesis method.
  • the hybrid complex can be easily formed by mixing the peptide complex [A] prepared in advance and the peptide complex [B] in an appropriate solvent (usually in water or an aqueous solution such as a buffer). it can.
  • the mixed amount (molar ratio) of the peptide complexes [A] and [B] is also 1: 1. Or, if necessary, it may be adjusted in the vicinity thereof.
  • the above mixing ratio deviates from 1: 1
  • another peptide complex [A ] And / or [B] may be adsorbed nonspecifically to the hybrid complex, but such nonspecific adsorption may occur as long as the effect of the present invention is not inhibited. Permissible.
  • the hybrid complex can be introduced into the cell by bringing it into contact with a cell to which the transported substance is to be delivered.
  • a solution containing a hybrid complex is added to a cell, the hybrid complex is naturally taken up into the cell by endocytosis after a certain period of time, and then performs a predetermined function in the cell. become able to.
  • the cells are usually animal cells (including human cells) and may be in vivo or in vitro (cultured cells). That is, the method for delivering a substance to be transported into cells according to the present invention can be applied both in vivo and in vitro.
  • the association After being delivered into the cell, the association is naturally released and the hybrid complex can be separated again into peptide complexes [A] and [B].
  • the transported substance (protein or the like) linked to the peptide complex [B] has a predetermined function without being affected by the CPP (polyarginine: 11R or the like) linked to the peptide complex [A]. Can be achieved.
  • the peptide complex [B] forms a hybrid complex so that the transported substance is delivered into the cell so that the transported substance can more easily perform a predetermined function after being delivered into the cell.
  • a compound that can be cleaved in the intracellular environment for example, inside of lysosome, endosome, caveolae, etc.
  • a linker for linking leucine zipper peptide and transported substance May be.
  • a predetermined function can be exhibited even when the transported substance remains linked to the leucine zipper peptide without using such a specific linker.
  • the hybrid complex according to the present invention (or the peptide complex [A] and [B] for forming the hybrid complex), or the composition containing them, is treated / prevented according to the transported substance contained therein. It can be used as a pharmaceutical for diagnosis or diagnosis.
  • the present invention relates to a hybrid complex (or peptide complexes [A] and [B] for forming the hybrid complex) for the manufacture of a therapeutic (preventive) or diagnostic (composition) medicament.
  • the present invention relates to a use (method) for treatment / prevention or diagnosis comprising administering a hybrid complex (or peptide complexes [A] and [B] for forming the hybrid complex).
  • the subject of administration or application is a human or other animal (preferably a mammal), or a biological material such as a cell collected from them. it can.
  • the hybrid complex according to the present invention (or the peptide complex [A] and [ In addition to B]), it can be prepared as a pharmaceutical composition containing various other substances such as pharmaceutically acceptable carriers, excipients, wetting agents, emulsifiers, pH buffering agents and the like.
  • a microcapsule including a peptide complex [A] and [B] for forming the hybrid complex
  • other substances encapsulating or carrying other substances can be used.
  • liposomes can also be used.
  • pharmaceutical dosage forms can be solutions, suspensions, emulsions, tablets, pills, capsules, powders, excluding formulations and the like.
  • what is necessary is just to adjust suitably the administration method and dosage of the pharmaceutical of this invention according to the chemical
  • Example 1 Synthesis of orthogonal leucine zipper peptide to which fluorescent amino acid and intracellular invasion peptide are bound
  • Leucine zipper peptide having amino acid sequence represented by SEQ ID NO: 1 N'-EYQALKKKVAQLKAKNQALKKKVAQLKHK-C '): LZ (K)
  • a leucine zipper peptide having the amino acid sequence represented by SEQ ID NO: 2 N'-EYQALEKEVAQLEAENQALEKEVAQLEHE-C '): LZ (E)
  • fluorescent amino acid Fam N- ⁇ - (fluorescein-5,6-yl) carbonyl -Lysine
  • Tmr N- ⁇ - (tetramethylrhodamine-5,6-yl) carbonyl-lysine
  • the N-terminus is a primary amino group and the C-terminus is a primary amide.
  • bAla represents ⁇ -alanine.
  • Tmr-LZ (K): H-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-bAla-NH 2 ([M + H] + calc 3972.33)
  • Tmr-LZ (E): H-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH 2 ([M + H] + calc 3979.91)
  • the synthesis of these peptide complexes was performed by the conventional Fmoc-peptide solid phase synthesis method. Specifically, it was synthesized as follows.
  • the resin used for the synthesis was Fmoc-NH-SAL PEG resin (0.24 mmol / g).
  • DMF dimethylformamide
  • a 20% piperidine DMF solution was used as a deprotection reagent
  • an HBTU / NMM DMF solution was used as a coupling solution.
  • the synthesis was performed manually, and the operation of washing the resin with DMF, deprotecting, and then coupling was defined as one cycle.
  • the peptide was extended on the resin surface by repeating this cycle.
  • the peptide solution cut out from the resin was air-dried with N 2 gas.
  • the synthesized peptide was 2 ⁇ mol scale, and after synthesis, it was dissolved in 100 ⁇ L of DMSO and stored in a freezer.
  • the entire 100 ⁇ L DMSO solution was subjected to HPLC, and the peptides were fractionated and purified.
  • the peptide after purification was confirmed with MALDI-TOF-Mass (FIG. 2).
  • the molar concentration of the finally obtained solution was calculated from the absorbance of Fam (500 nm) or Tmr (550 nm) using UV-vis spectrum of these purified solutions.
  • Example 2 Synthesis of an orthogonal leucine zipper to which EGFP is bound A peptide complex in which a His tag, EGFP, a linker and LZ (K) are bound by a genetic engineering technique which is a conventional method (see SEQ ID NO: 4 below. The elements are connected with a hyphen (-)). Specifically, a plasmid (pET28b) containing a gene having a continuous base sequence encoding each element is constructed, expressed in E. coli, and the resulting fusion protein is recovered with an affinity column, and then the His tag is cleaved with a protease. Thus, a peptide complex was obtained.
  • pET28b plasmid containing a gene having a continuous base sequence encoding each element
  • Example 3 Verification of interaction of peptide complex by fluorescence measurement Using the various peptide complexes modified with Tmr prepared in Example 1 and the peptide complex modified with EGFP prepared in 1-2, Whether these complexes interacted with each other was examined using FRET (EGFP is a donor and Tmr is
  • an EGFP-LZ (K) solution having a known concentration was diluted to 1 ⁇ M using a 70 mM HEPES (pH 7.0) buffer solution.
  • a Tmr-modified peptide solution instead of PBS Buffer for Group 1 below
  • the HEPES buffer solution the final concentrations of EGFP-LZ (K) and Tmr-modified peptide are respectively
  • the 15 nM solution was adjusted to 1000 ⁇ L. After incubating for about 30 minutes, measurement was performed at room temperature using a fluorescence spectrum measuring apparatus (FP-6600, manufactured by JASCO Corporation). At this time, the excitation wavelength was measured at 489 nm from which EGFP emitted light.
  • EGFP-LZ (K) and Tmr modified peptides can be combined in the following eight ways in Group 1-8 (Group 1 does not use Tmr modified peptides and is EGFP-LZ (K) alone). Group 1; EGFP-LZ (K) + PBS (Buffer) Group 2; EGFP-LZ (K) + TMR-LZ (E) Group 3; EGFP-LZ (K) + 11R-TMR-LZ (E) Group 4; EGFP-LZ (K) + TMR-LZ (E) -11R Group 5; EGFP-LZ (K) + TMR-11R Group 6; EGFP-LZ (K) + TMR-LZ (K) Group 7; EGFP-LZ (K) + 11R-TMR-LZ (K) Group 8; EGFP-LZ (K) + TMR-LZ (K) -11R
  • FIG. 3 shows the fluorescence spectrum of the mixed solution when EGFP-LZ (K) and a peptide modified with Tmr are added in an equivalent amount (Group 2-8).
  • the peptide concentration was 15 nM in all cases, and a 70 mM HEPES (pH 7.0) buffer solution was used as a solvent.
  • the fluorescence intensity was measured at room temperature at an excitation wavelength of 489 nm.
  • As a control the results of only EGFP-LZ (K) are shown (Group 1). The value of 508 nm of this control curve was taken as 1, and the fluorescence intensity of other curves was relatively shown.
  • EGFP-LZ (K) and 11R-Tmr-LZ (E) (Group 3), Tmr-LZ (E) -11R (Group 4) and Tmr-LZ are capable of interaction between leucine zippers.
  • E Group 2
  • a large decrease in Fam fluorescence intensity was observed. This is because the interaction between LZ (K) and LZ (E) has caused EGFP and Tmr linked to each other to approach each other, thereby causing energy transfer.
  • 11R does not affect these leucine zipper interactions.
  • EGFP-LZ (K) and Tmr-modified LZ (E) (with or without 11R) successfully form a hybrid due to specific interaction between leucine zippers. It is clear.
  • Fig. 4 shows the fluorescence titration curve of Tmr-LZ (E) against EGFP-LZ (K).
  • a buffer solution of 70 mM mM HEPES (pH 7.0) was used.
  • the fluorescence intensity was measured at 508 nm with an excitation wavelength of 489 nm at room temperature. It can be seen that the fluorescence corresponding to EGFP of EGFP-LZ (K) gradually decreases as Tmr-LZ (E) is added. This decrease indicates that EGFP and Tmr are close in distance due to hybridization between leucine zippers and occur in FRET.
  • the fluorescence intensity corresponding to EGFP did not depend on the added Tmr-LZ (K), and almost no decrease in fluorescence intensity was observed. This result indicates that EGFP did not cause Tmr energy transfer because a hybrid could not form between leucine zippers, as expected.
  • Example 4 Intracellular protein transport by CPP via peptide tag (confocal laser microscope) Method First, a glass bottom dish (mini 3 well) was coated with 50 ⁇ g / mL collagen type 1 in order to prepare an environment in which cells are easily adsorbed on the dish surface. Next, 1 ⁇ 10 4 cells / well of U251MG cells, which are a type of glioma, were seeded on the dish and incubated overnight for adhesion. On the other hand, 200 ⁇ M EGFP-LZ (K) and 200 ⁇ M of each solution were added in a microtube, and the mixed solution was incubated at room temperature for 1 hour.
  • K ⁇ M EGFP-LZ
  • This mixed solution was added to U251 cells in the dish to a final concentration of 10 ⁇ M, and further incubated at 37 ° C. for 4 hours. Finally, the dish was washed twice with PBS, replaced with a medium, and then observed with EGFP (green) and Tmr (red) modified with a peptide using a confocal laser microscope. A total of 8 combinations were observed. The observed combinations are shown below.
  • FIG. 5 is a confocal microscope image of U251MG cells incubated with EGFR-LZ (K) (corresponding to Group 1).
  • EGFP-LZ (K) contains some basic amino acid (lysine) in LZ (K) (10 out of 29 residues), so it may be intracellular (without LZ (E))
  • fluorescence green
  • fluorescence red
  • Tmr-modified peptide is not incubated, no fluorescence (red) is observed.
  • FIG. 6 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (E) (corresponding to Group 2).
  • EGFP-LZ (K) and Tmr-LZ (E) form a hybrid between leucine zippers, but are not expected to be introduced into cells because CPP is not added.
  • CPP is not added.
  • EGFP-LZ (K) was not introduced into the cells.
  • FIG. 5 it can be seen that the cell is slightly adsorbed on the “edge”.
  • Tmr-LZ (E) can be seen adsorbing as if the thread was pulled throughout the dish, details are unknown.
  • FIG. 7 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and 11R-Tmr-LZ (E) (corresponding to Group III).
  • EGFP-LZ (K) and 11R-Tmr-LZ (E) form a hybrid between leucine zippers and are expected to be introduced into cells because CPP is added.
  • CPP is added.
  • EGFP-LZ (K) was successfully transported into the cell.
  • 11R-Tmr-LZ (E) is also transported into the cell at the same time, it is considered that EGFP-LZ (K) is transported into the cell via 11R-Tmr-LZ (E).
  • FIG. 8 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (E) -11R (corresponding to Group IV4).
  • K EGFR-LZ
  • E Tmr-LZ
  • -11R Compared to the previous 11R-Tmr-LZ (E), Tmr-LZ (E) -11R differs in the position of 11R in the peptide.
  • FIG. 9 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-11R (corresponding to Group 5). Since EGFP-LZ (K) and Tmr-11R cannot form a hybrid, it is expected that they will not be introduced into cells. As expected, EGFP-LZ (K) was not transported into the cell. On the other hand, since Tmr-11R is added with CPP, it can be seen that it is introduced into the cell alone. These results indicate that EGFP-LZ (K) cannot be introduced into cells simply by mixing with CPP.
  • FIG. 10 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (K) (corresponding to Group 6).
  • EGFP-LZ (K) and Tmr-LZ (K) cannot form a hybrid between leucine zippers.
  • CPP since CPP is not added, it is expected not to be introduced into cells. As expected, EGFP-LZ (K) was not introduced into the cell and Tmr-LZ (K) was not introduced into the cell.
  • FIG. 11 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and 11R-Tmr-LZ (K) (corresponding to Group 7).
  • EGFP-LZ (K) and 11R-Tmr-LZ (K) cannot form a hybrid between leucine zippers.
  • 11R-Tmr-LZ (K) was transported into the cell, but EGFP-LZ (K) was not introduced into the cell.
  • FIG. 12 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (K) -11R. Compared with FIG. 11, the place where 11R was modified in Tmr-LZ (K) was different, but the results were the same.
  • EGFP-LZ (K) acquires the ability to introduce CPP into the cell and is transported into the cell only when it forms a specific hybrid with LZ (E). It was also clarified that the conjugate of LZ (E) and CPP, which is a protein carrier, can be transported into cells independently of the position of CPP in the conjugate. These can be achieved in the future by providing EGFP-LZ (K) to give intracellular transport ability to CPP by low-toxic peptide-peptide interaction without using metal bonds. It can be used as a safe and efficient protein drug delivery system.
  • Sequence number 1 Leucine zipper LZ (K) Sequence number 2: Leucine zipper LZ (E) Sequence number 3: Polyarginine Sequence number 4: Peptide conjugate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a means for delivering a substance of interest into a cell, which, even when the substance of interest is a protein, can introduce the protein into a cell with high efficiency regardless of the type of the protein, enables a given function of the protein to be exerted without inhibiting the function after the introduction of the protein into the cell, and does not use any metal that may affect a living body. A peptide complex [A] according to the present invention is characterized by comprising a leucine zipper peptide [LZ(K)] comprising the amino acid sequence represented by SEQ ID NO: 1: N'-EYQALKKKVAQLKAKNQALKKKVAQLKHK-C' or the like or a leucine zipper peptide [LZ(E)] comprising the amino acid sequence represented by SEQ ID NO: 2: N'-EYQALEKEVAQLEAENQALEKEVAQLEHE-C' or the like and an intracellular invasion peptide [CPP] linked to the leucine zipper peptide.

Description

新規ペプチド複合体、そのハイブリッド複合体およびその用途Novel peptide complex, hybrid complex thereof and use thereof
 本発明は、細胞内で所定の機能を発現しうるタンパク質等を細胞内に導入するための方法および当該方法に用いられるペプチド複合体などに関する。 The present invention relates to a method for introducing a protein or the like capable of expressing a predetermined function in a cell into the cell, a peptide complex used in the method, and the like.
 従来、所望のタンパク質を細胞内に運搬するための技術として、当該タンパク質に細胞内侵入ペプチド(cell-penetrating peptide; CPP)を導入する技術が一般的に広く用いられている。 Conventionally, as a technique for transporting a desired protein into a cell, a technique for introducing a cell-penetrating peptide (CPP) into the protein is generally widely used.
 しかしながら、上記の技術に用いられるCPP融合化タンパク質は、CPPが連結される対象となるタンパク質の種類によって作製効率が著しく変動し、ほとんど作製することができない場合がある。また、CPP融合化タンパク質が細胞内に導入された後、CPPがタンパク質の機能を阻害する場合がある(CPPは一般的に正に荷電していることが多く、これが負に荷電している核酸等の生体物質と相互作用することにより悪影響がもたらされている可能性がある)。 However, the production efficiency of the CPP-fused protein used in the above-described technology varies considerably depending on the type of protein to which the CPP is linked, and it may be hardly produced. In addition, after the CPP-fused protein is introduced into the cell, the CPP may inhibit the function of the protein (CPP is generally positively charged, and this is a nucleic acid that is negatively charged. Adverse effects may be caused by the interaction with biological materials such as
 このような問題に対処するための技術として、Dowdyらのグループによる非特許文献1には、目的とするタンパク質に6つのヒスチジン(いわゆるヒスチジンタグ)を導入し、これを金属配位子で修飾されたCPPに当該金属(ニッケル)を介して(共有結合を用いずに)連結することによって、細胞内運搬能を与えるという方法が記載されている。 As a technique for dealing with such a problem, Non-Patent Document 1 by the group of Dowdy et al. Introduces six histidines (so-called histidine tags) to the target protein, which are modified with a metal ligand. In addition, a method has been described in which intracellular transportability is provided by linking to a CPP via the metal (nickel) (without using a covalent bond).
 この非特許文献1に記載された技術は、タンパク質精製において一般的に広く使用されるヒスチジンタグを細胞内運搬能を与えるタグとして利用しているが、金属を用いる点で、本格的な治療を目的とした細胞内運搬技術、いわゆるドラッグデリバリーシステム(DDS)に適用する上では不安が残る。 The technique described in this Non-Patent Document 1 uses a histidine tag, which is generally widely used in protein purification, as a tag that gives intracellular transport ability. Concerns remain when applied to the intended intracellular delivery technology, the so-called drug delivery system (DDS).
 一方、Bosshardらのグループによる非特許文献2~5には、天然型のロイシンジッパーペプチドに基づいて人工的に開発された、変異型のロイシンジッパーペプチドが開示されている。ロイシンジッパー(コイルドコイル)は、DNA結合性の転写因子等の二量体形成ドメインに見られるモチーフである。二量体を形成するそれぞれのペプチドには7アミノ酸残基の繰り返しによるαヘリックスが含まれており、その4番目(d)の位置にロイシンが配列し、それらの疎水性アミノ酸残基の相互作用により二量体が形成されるという特徴がある。上記非特許文献に開示された変異型のロイシンジッパーペプチドは、アミノ酸配列中の所定の位置にさらに塩基性アミノ酸(リジン)または酸性アミノ酸(グルタミン酸)を含むように設計され、天然型のロイシンジッパーペプチドよりも結合安定性が向上したものとなっている。 On the other hand, Non-Patent Documents 2 to 5 by the group of Bosshard et al. Disclose mutant leucine zipper peptides that were artificially developed based on natural leucine zipper peptides. Leucine zippers (coiled coils) are motifs found in dimer formation domains such as DNA-binding transcription factors. Each peptide that forms a dimer contains an α-helix of 7 amino acid residues, and leucine is arranged at the fourth (d) position, and the interaction between these hydrophobic amino acid residues. Is characterized by the formation of dimers. The mutant leucine zipper peptide disclosed in the above non-patent document is designed to further include a basic amino acid (lysine) or an acidic amino acid (glutamic acid) at a predetermined position in the amino acid sequence, and is a natural leucine zipper peptide The bond stability is improved more than that.
 しかしながら、非特許文献2~5に開示された変異型ロイシンジッパーペプチドは、ロイシンジッパーペプチドの熱力学的な挙動の解析のために作製されたものにすぎない。二量体の一方のロイシンジッパーペプチドに細胞内侵入ペプチドを連結することや、そのようなロイシンジッパーペプチドを利用することにより所望の物質(ペプチド等)を効率的に細胞内に導入することができるようになることなどは、記載も示唆もされていない。 However, the mutant leucine zipper peptides disclosed in Non-Patent Documents 2 to 5 are only prepared for analysis of the thermodynamic behavior of leucine zipper peptides. A desired substance (such as a peptide) can be efficiently introduced into a cell by linking a cell-invading peptide to one leucine zipper peptide of the dimer or using such a leucine zipper peptide. There is no description or suggestion of becoming.
 本発明は、たとえばタンパク質を被運搬物質とする場合であっても、そのタンパク質の種類に大きく左右されることなく効率的に細胞内に導入することができ、またタンパク質が細胞内に導入された後に所期の機能が阻害されることなく発揮でき、しかも生体への影響が懸念される金属を用いない、被運搬物質を細胞内に送達するための手段を提供することを目的とする。 In the present invention, for example, even when a protein is used as a transported substance, it can be efficiently introduced into a cell without being greatly affected by the type of the protein, and the protein is introduced into the cell. An object of the present invention is to provide a means for delivering a substance to be transported into a cell, which can be exhibited without hindering the intended function later, and does not use a metal that may be affected by the living body.
 上記課題を解決するため、結合能を有するタンパク質、たとえばアビジンおよびビオチンを利用して、目的とするタンパク質にアビジンを導入し、一方でCPPにビオチンを導入し、アビジン-ビオチン間で結合した複合体を形成させ、これを細胞に接触させるという方法が考えられるかもしれない。 In order to solve the above problem, a complex in which avidin is introduced into a target protein using a protein having binding ability, for example, avidin and biotin, while biotin is introduced into CPP and bound between avidin and biotin. A method may be considered in which this is formed and brought into contact with a cell.
 しかしながら、アビジンのように比較的分子量の大きなタンパク質を目的タンパク質に導入すると、上記複合体は細胞内に移行するかもしれないが、移行後も複合体の結合が外れず、細胞内で目的タンパク質が所定の機能を発揮することが阻害されるおそれがある。 However, when a protein having a relatively large molecular weight such as avidin is introduced into the target protein, the complex may move into the cell, but the complex does not come off after the transfer, and the target protein is not released within the cell. There is a possibility that the performance of a predetermined function is hindered.
 本発明者らは鋭意研究を進めた結果、所定のアミノ酸配列を有する一組のロイシンジッパーペプチド(「直交型」ロイシンジッパータグ)を利用することが好適であること、すなわち、一方のロイシンジッパーペプチドに目的タンパク質を連結し、もう一方のロイシンジッパーペプチドにCPPを連結し、これらのロイシンジッパーペプチド同士が会合した複合体を形成させたのちに細胞に接触させるようにすると、目的タンパク質を効率的に細胞内に送達することができ、しかも目的タンパク質はその後細胞内で所定の機能を発揮しうることを見いだし、本発明を完成させるに至った。 As a result of diligent research, the present inventors have found that it is preferable to use a pair of leucine zipper peptides (“orthogonal” leucine zipper tags) having a predetermined amino acid sequence, that is, one leucine zipper peptide. When the target protein is linked to the other leucine zipper peptide and CPP is linked to form a complex in which these leucine zipper peptides are associated with each other and then contacted with cells, the target protein is efficiently It has been found that the target protein can be delivered into the cell and that the target protein can then exhibit a predetermined function in the cell, and the present invention has been completed.
 すなわち、本発明は下記の発明を包含する。 That is, the present invention includes the following inventions.
 〈1〉配列番号1のアミノ酸配列からなるロイシンジッパーペプチド[LZ(K)]もしくは当該アミノ酸配列中の1~8個のアミノ酸に対する変異を有するアミノ酸配列からなるロイシンジッパーペプチド[LZ(K)']または配列番号2のアミノ酸配列からなるロイシンジッパーペプチド[LZ(E)]もしくは当該アミノ酸配列中の1~8個のアミノ酸に対する変異を有するアミノ酸配列で表されるロイシンジッパーペプチド[LZ(E)']と、これに連結された細胞内侵入ペプチド[CPP]とを含むことを特徴とする、ペプチド複合体[A]。
N'-EYQALKKKVAQLKAKNQALKKKVAQLKHK-C'                                                        配列番号1
N'-EYQALEKEVAQLEAENQALEKEVAQLEHE-C'                                                        配列番号2
 〈2〉さらに、前記ロイシンジッパーペプチドおよび/または細胞内侵入ペプチドに連結された蛍光色素を含む、〈1〉に記載のペプチド複合体[A]。
<1> A leucine zipper peptide [LZ (K)] consisting of the amino acid sequence of SEQ ID NO: 1 or a leucine zipper peptide [LZ (K) ′] consisting of an amino acid sequence having a mutation to 1 to 8 amino acids in the amino acid sequence Alternatively, a leucine zipper peptide [LZ (E)] consisting of the amino acid sequence of SEQ ID NO: 2 or a leucine zipper peptide [LZ (E) ′] represented by an amino acid sequence having a mutation to 1 to 8 amino acids in the amino acid sequence And a peptide intrusion peptide [CPP] linked to the peptide complex [A].
N′-EYQALKKKKVAQLKAKNQALKKKKVAQLKHK-C ′ SEQ ID NO: 1
N′-EYQALEKEVAQLEAENQALEKEVAQLEHE-C ′ SEQ ID NO: 2
<2> The peptide complex [A] according to <1>, further comprising a fluorescent dye linked to the leucine zipper peptide and / or the intracellular invasion peptide.
 〈3〉前記蛍光色素が蛍光性アミノ酸である、〈2〉に記載のペプチド複合体[A]。 <3> The peptide complex [A] according to <2>, wherein the fluorescent dye is a fluorescent amino acid.
 〈4〉〈1〉~〈3〉のいずれかに記載のペプチド複合体[A]と、
 当該ペプチド複合体[A]に含まれる第一のロイシンジッパーペプチドと会合可能な第二のロイシンジッパーペプチドと、これに連結された細胞内への被運搬物質とを含むペプチド複合体[B]と
 から形成されることを特徴とする、ハイブリッド複合体;
 ここで、前記第一のロイシンジッパーペプチドが前記ロイシンジッパーペプチド[LZ(K)]もしくは[LZ(K)']である場合、前記第二のロイシンジッパーペプチドは前記ロイシンジッパーペプチド[LZ(E)]もしくは[LZ(E)']であり、前記第一のロイシンジッパーペプチドが前記ロイシンジッパーペプチド[LZ(E)]もしくは[LZ(E)']である場合、前記第二のロイシンジッパーペプチドは前記ロイシンジッパーペプチド[LZ(K)]もしくは[LZ(K)']である。
<4> The peptide complex [A] according to any one of <1> to <3>,
A peptide complex [B] comprising a second leucine zipper peptide capable of associating with the first leucine zipper peptide contained in the peptide complex [A], and a substance to be transported into the cells linked thereto; A hybrid complex characterized in that it is formed from:
Here, when the first leucine zipper peptide is the leucine zipper peptide [LZ (K)] or [LZ (K) ′], the second leucine zipper peptide is the leucine zipper peptide [LZ (E) Or [LZ (E) ′], and the first leucine zipper peptide is the leucine zipper peptide [LZ (E)] or [LZ (E) ′], the second leucine zipper peptide is The leucine zipper peptide [LZ (K)] or [LZ (K) ′].
 〈5〉前記被運搬物質がタンパク質またはペプチドである、〈4〉に記載のハイブリッド複合体。 <5> The hybrid complex according to <4>, wherein the transported substance is a protein or a peptide.
 〈6〉〈4〉または〈5〉に記載のハイブリッド複合体を含有する治療薬または診断薬。 <6> A therapeutic or diagnostic agent containing the hybrid complex according to <4> or <5>.
 本発明で用いるロイシンジッパーペプチドとタンパク質等の被運搬物質との複合体およびロイシンジッパーペプチドと細胞内侵入ペプチドとの複合体はいずれも、公知の手法によって比較的容易に作製することができ、また金属を用いる必要もない。 The complex of the leucine zipper peptide and the transported substance such as protein and the complex of the leucine zipper peptide and the cell invasion peptide used in the present invention can be prepared relatively easily by a known method, There is no need to use metal.
 これらの2つの複合体同士を会合させてハイブリッド複合体を形成させることにより、被運搬物質を細胞内に効率的に送達することができ、また細胞内に送達された後はハイブリッド複合体は再び2つの複合体に分離するため、一方のペプチド複合体に連結された被運搬物質(タンパク質等)は、もう一方のペプチド複合体に連結されたCPPの影響を受けることなく、所定の機能を発揮することができる。このようなハイブリッド複合体は、たとえば治療や診断を目的とした本格的なタンパク質の細胞内運搬技術として期待することができる。 By associating these two complexes with each other to form a hybrid complex, the transported substance can be efficiently delivered into the cell, and after being delivered into the cell, the hybrid complex is again Since the substance is separated into two complexes, the transported substance (protein, etc.) linked to one peptide complex exhibits a predetermined function without being affected by the CPP linked to the other peptide complex. can do. Such a hybrid complex can be expected, for example, as a full-scale intracellular protein delivery technique for the purpose of therapy and diagnosis.
パラレルに配向した二本のロイシンジッパーペプチドの模式図(非特許文献3より引用)。Schematic diagram of two leucine zipper peptides oriented in parallel (cited from Non-Patent Document 3). 実施例で合成したペプチド複合体のMALDI-TOF Massスペクトル。MALDI-TOF Mass spectrum of the peptide complex synthesized in the example. 実施例3における、EGFP-LZ(K)と種々のTmrを修飾したペプチドを当量混合した時の蛍光スペクトル。The fluorescence spectrum when EGFP-LZ (K) and the peptide which modified various Tmr in Example 3 are mixed in an equivalent amount. 実施例3において、EGFP-LZ(K)を15 nM含んだ水溶液にTmr-LZ(E)およびTmr-LZ(K)を徐々に滴下していったときの、EGFP由来の蛍光強度の変化。In Example 3, the change in the fluorescence intensity derived from EGFP when Tmr-LZ (E) and Tmr-LZ (K) were gradually added dropwise to an aqueous solution containing 15 nM of EGFP-LZ (K). 実施例4-1における、EGFP-LZ(K)でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with EGFP-LZ (K) in Example 4-1. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-2における、EGFP-LZ(K)とTmr-LZ(E)との混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-LZ (E) in Example 4-2. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-3における、EGFP-LZ(K)と11R-Tmr-LZ(E)との混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and 11R-Tmr-LZ (E) in Example 4-3. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-4における、EGFP-LZ(K)とTmr-LZ(E)-11Rとの混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-LZ (E) -11R in Example 4-4. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-5における、EGFP-LZ(K)とTmr-11Rとの混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-11R in Example 4-5. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-6における、EGFP-LZ(K)とTmr-LZ(K)との混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-LZ (K) in Example 4-6. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-7における、EGFP-LZ(K)と11R-Tmr-LZ(K)との混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡の結果。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The result of the confocal laser scanning microscope of U251MG cell incubated with the mixed solution of EGFP-LZ (K) and 11R-Tmr-LZ (K) in Example 4-7. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow). 実施例4-8における、EGFP-LZ(K)とTmr-LZ(K)-11Rとの混合溶液でインキュベートしたU251MG細胞の共焦点レーザー顕微鏡による観察画像。左はEGFPの蛍光を捕らえた画像である(カラー写真においては緑色で表示される)。中央はTmr(ペプチドに修飾されている)を捕らえた画像である(カラー写真においては赤色で表示される)。右側は左および中央の画像を重ね合わせた画像である(カラー写真においてはEGFPとTmrが重なった部分は黄色に表示される)。The observation image by the confocal laser microscope of the U251MG cell incubated with the mixed solution of EGFP-LZ (K) and Tmr-LZ (K) -11R in Example 4-8. On the left is an image that captures the fluorescence of EGFP (displayed in green in a color photograph). The center is an image that captures Tmr (modified with a peptide) (displayed in red in a color photograph). The right side is an image in which the left and center images are superimposed (in the color photograph, the part where EGFP and Tmr overlap is displayed in yellow).
 ―ペプチド複合体―
 本発明では、被運搬物質を細胞内に送達させるために、2種類のペプチド複合体を利用する。
―Peptide complex―
In the present invention, two types of peptide complexes are used in order to deliver the transported substance into the cell.
 一つは、所定のアミノ酸配列を有する第一のロイシンジッパーペプチドと、これに連結された細胞内侵入ペプチドとを含み、必要に応じてさらに、ロイシンジッパーペプチドおよび/または細胞内侵入ペプチドに連結された蛍光色素を含んでいてもよいペプチド複合体(便宜的に「ペプチド複合体[A]」と称する。)である。 One includes a first leucine zipper peptide having a predetermined amino acid sequence and a cell invasion peptide linked to the first leucine zipper peptide, and further linked to the leucine zipper peptide and / or the cell invasion peptide as necessary. A peptide complex that may contain a fluorescent dye (referred to as “peptide complex [A]” for convenience).
 もう一つは、所定のアミノ酸配列を有する第二のロイシンジッパーペプチドと、これに連結された被運搬物質とを含むペプチド複合体(便宜的に「ペプチド複合体[B]」と称する。)である。 The other is a peptide complex (referred to as “peptide complex [B]” for the sake of convenience) comprising a second leucine zipper peptide having a predetermined amino acid sequence and a transported substance linked thereto. is there.
 上記ペプチド複合体[A]および[B]に含まれる第一および第二のロイシンジッパーペプチドは、会合可能な一組のロイシンジッパーペプチドを構成するものであればよく、その一組のうちのどちらが第一のロイシンジッパーペプチドとしてペプチド複合体[A]において細胞内侵入ペプチドと連結されても、どちらが第二のロイシンジッパーペプチドとしてペプチド複合体[B]において被運搬物質と連結されてもよい。 The first and second leucine zipper peptides contained in the peptide complexes [A] and [B] only need to constitute a pair of leucine zipper peptides that can be associated, and either of the pair of leucine zipper peptides Either the first leucine zipper peptide may be linked to the cell-invading peptide in the peptide complex [A], or either may be linked to the transported substance in the peptide complex [B] as the second leucine zipper peptide.
 ペプチド複合体[A]は、上記ロイシンジッパーペプチドおよび細胞内侵入ペプチドのみ、または上記ロイシンジッパーペプチド、細胞内侵入ペプチドおよび蛍光色素のみからなるものであってもよいし、本発明の作用効果を阻害しない範囲でその他の構成要素をさらに含むものであってもよい。同様に、ペプチド複合体[B]は、上記ロイシンジッパーペプチドおよび被運搬物質のみからなるものであってもよいし、本発明の作用効果を阻害しない範囲でその他の構成要素をさらに含むものであってもよい。 The peptide complex [A] may be composed of only the above leucine zipper peptide and intracellular invading peptide, or only the above leucine zipper peptide, intracellular invading peptide and fluorescent dye, and inhibits the action and effect of the present invention. Other components may be included as long as they are not. Similarly, the peptide complex [B] may be composed only of the leucine zipper peptide and the substance to be transported, or may further contain other components within a range that does not inhibit the action and effect of the present invention. May be.
 ペプチド複合体[A]および[B]の末端処理は特に限定されるものではないが、たとえば、N末端側を第一級アミノ基、C末端側を(必要に応じてβ-アラニンを介して)第一アミドとすることができる。 The terminal treatment of the peptide complexes [A] and [B] is not particularly limited. For example, the N-terminal side may be a primary amino group, and the C-terminal side (via β-alanine as necessary). ) Primary amide.
 ・ロイシンジッパーペプチド
 本発明のペプチド複合体[A]および[B]を構成するロイシンジッパーペプチドとしては、天然のロイシンジッパーペプチドまたはその誘導体(特にロイシンジッパーペプチド同士の複合体形成時の安定性が向上したもの)を用いることができる。
-Leucine zipper peptide As the leucine zipper peptide constituting the peptide complexes [A] and [B] of the present invention, natural leucine zipper peptide or its derivatives (especially improved stability during complex formation between leucine zipper peptides) Can be used.
 ロイシンジッパーペプチドは、7つのアミノ酸残基(abcdefg)で構成されるαヘリックスが数回繰り返される構造を有する(図1参照)。2つのロイシンジッパーペプチドは、パラレル配向(N末端からC末端への向きが揃った状態)をもって、a、d、eおよびgの位置のアミノ酸の側鎖が内側に向かいあった状態で会合し、複合体(コイルドコイル)を形成する。この複合体の安定性はa、d、eおよびgの位置のアミノ酸の側鎖間の相互作用による影響が特に大きいと考えられる。したがって、本発明においては、a、d、eおよびgの位置のアミノ酸同士の相互作用により高い安定性が得られるロイシンジッパーペプチドを用いることが好ましい。 The leucine zipper peptide has a structure in which an α-helix composed of seven amino acid residues (abcdefg) is repeated several times (see FIG. 1). The two leucine zipper peptides associate in a parallel orientation (aligned from the N-terminus to the C-terminus) with the side chains of the amino acids at positions a, d, e, and g facing inward, A composite (coiled coil) is formed. The stability of this complex is considered to be particularly affected by the interaction between the side chains of amino acids at positions a, d, e and g. Therefore, in the present invention, it is preferable to use a leucine zipper peptide that can obtain high stability by interaction between amino acids at positions a, d, e, and g.
 たとえば、配列番号1で表されるアミノ酸配列からなるロイシンジッパーペプチド(本発明において「LZ(K)」と表記することもある。)および配列番号2で表されるアミノ酸配列からなるロイシンジッパーペプチド(本発明において「LZ(E)」と表記することもある。)は、複合体形成時の安定性に優れているため、本発明におけるロイシンジッパーペプチドとして(LZ(K)およびLZ(E)の一方をペプチド複合体[A]のための第一のロイシンジッパーペプチドとして、他方をペプチド複合体[B]のための第二のロイシンジッパーペプチドとして)用いることが好適である。なお、配列番号1および2で表されるアミノ酸配列を有するロイシンジッパーペプチド(それぞれのC末端側にさらにGが付加されている)は、前掲の非特許文献2および3に記載されている。 For example, a leucine zipper peptide consisting of the amino acid sequence represented by SEQ ID NO: 1 (also referred to as “LZ (K)” in the present invention) and a leucine zipper peptide consisting of the amino acid sequence represented by SEQ ID NO: 2 ( In the present invention, “LZ (E)” may be expressed as a leucine zipper peptide in the present invention (LZ (K) and LZ (E)). It is preferred to use one as the first leucine zipper peptide for the peptide complex [A] and the other as the second leucine zipper peptide for the peptide complex [B]. The leucine zipper peptides having the amino acid sequences represented by SEQ ID NOs: 1 and 2 (G is further added to the respective C-terminal sides) are described in Non-Patent Documents 2 and 3 described above.
  (g-abcdefg-abcdefg-abcdefg-abcdefg)
N'-E-YQALKKK-VAQLKAK-NQALKKK-VAQLKHK-C'                                  配列番号1(LZ(K))
  (g-abcdefg-abcdefg-abcdefg-abcdefg)
N'-E-YQALEKE-VAQLEAE-NQALEKE-VAQLEHE-C'                                  配列番号2(LZ(E))
 LZ(K)は天然型のロイシンジッパーペプチドのアミノ酸配列に対してeおよびgの位置にある合計8個のアミノ酸が全てリジン(K)に置換され、一方LZ(E)は天然型のロイシンジッパーペプチドのアミノ酸配列に対してeおよびgの位置にある合計8個のアミノ酸が全てグルタミン酸(E)に置換されている。eおよびgの位置のアミノ酸はある程度外向きに配向しているため、水溶液中でリジンおよびグルタミン酸はそれぞれ正および負に荷電する。そのため、LZ(K)およびLZ(E)からなる一組のロイシンジッパーペプチドは、天然型のロイシンジッパーペプチドに備わっているdの位置のロイシンによる相互作用等に加えて、eおよびgの位置のリジンおよびグルタミン酸による静電的相互作用でもって、安定的に複合体を形成することができる。LZ(K)またはLZ(E)の一方のみを用いてペプチド複合体[A]および[B]を作製した場合、eおよびgの位置にあるリジンまたはグルタミン酸同士の静電的な反発力の影響により、ハイブリッド複合体の形成効率は極めて悪くなる(ほとんどハイブリッド複合体を形成することができない)。
(G-abcdefg-abcdefg-abcdefg-abcdefg)
N′-E-YQALKKK-VAQLKAK-NQALKKKK-VAQLKHK-C ′ SEQ ID NO: 1 (LZ (K))
(G-abcdefg-abcdefg-abcdefg-abcdefg)
N′-E-YQALEKE-VAQLEAE-NQALEKE-VAQLEHE-C ′ SEQ ID NO: 2 (LZ (E))
In LZ (K), a total of 8 amino acids at positions e and g with respect to the amino acid sequence of the natural leucine zipper peptide are all substituted with lysine (K), while LZ (E) is a natural leucine zipper. A total of 8 amino acids at positions e and g with respect to the amino acid sequence of the peptide are all substituted with glutamic acid (E). Since the amino acids at positions e and g are oriented outward to some extent, lysine and glutamic acid are positively and negatively charged in aqueous solution, respectively. Therefore, a pair of leucine zipper peptides consisting of LZ (K) and LZ (E) are not only in interaction with leucine at the position d provided in the natural leucine zipper peptide, but also at the positions e and g. A complex can be stably formed by electrostatic interaction with lysine and glutamic acid. When peptide complexes [A] and [B] are prepared using only one of LZ (K) or LZ (E), the influence of electrostatic repulsion between lysine or glutamic acid at positions e and g Thus, the formation efficiency of the hybrid complex is extremely deteriorated (almost no hybrid complex can be formed).
 また、配列番号1または2で表されるアミノ酸配列において1もしくは数個(たとえば1~8個)のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、ペアとなるもう一方のロイシンジッパーペプチドと複合体を形成することが可能なロイシンジッパーペプチドLZ(K)'およびLZ(E)'を用いることもできる。前述のように、ロイシンジッパーペプチドの安定性はa、d、eおよびgの位置にあるアミノ酸の相互作用による影響が大きいと考えられるため、これらのアミノ酸の相互作用の強さを適切な範囲で変動させるためのアミノ酸の置換を施すか、あるいはこれらのアミノ酸の相互作用に悪影響を与えない範囲でその他のアミノ酸の欠失、置換もしくは付加を施すことが好ましい。アミノ酸の相互作用の強さは、当業者であれば過度の試行錯誤を要することなく調整することが可能である。 The other leucine zipper peptide which consists of an amino acid sequence in which one or several (for example, 1 to 8) amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 or 2, It is also possible to use leucine zipper peptides LZ (K) ′ and LZ (E) ′ capable of forming a complex with L. As described above, the stability of leucine zipper peptide is considered to be greatly influenced by the interaction of amino acids at positions a, d, e and g. Therefore, the strength of the interaction of these amino acids is set within an appropriate range. It is preferable to perform amino acid substitution for fluctuation, or to perform deletion, substitution or addition of other amino acids within a range that does not adversely affect the interaction of these amino acids. The strength of amino acid interaction can be adjusted by those skilled in the art without undue trial and error.
 ・細胞内侵入ペプチド(CPP)
 本発明のペプチド複合体[A]を構成する細胞内侵入ペプチド(cell-penetrating peptide: CPP)は、一般的にアルギニンなどの塩基性アミノ酸に富んだアミノ酸配列を有する、細胞膜と結合し自身を細胞内に取り込ませる働きを持つポリペプチドとして知られており、細胞膜透過性ペプチド、膜透過性ドメイン(Protein Transduction Domain: PTD)などと称されることもある。当初、CPPは、細胞膜を透過して自発的に細胞内に侵入すると考えられたため「細胞膜透過性ペプチド」と称されることもあるが、現在では一般的に、主に細胞のエンドサイトーシス経路を経て細胞内に取り込まれると考えられている。
Intracellular entry peptide (CPP)
The cell-penetrating peptide (CPP) constituting the peptide complex [A] of the present invention generally has an amino acid sequence rich in basic amino acids such as arginine and binds to the cell membrane to itself. It is known as a polypeptide having a function of being incorporated into cells, and is sometimes referred to as a cell membrane permeable peptide, a membrane transduction domain (PTD), or the like. Initially, CPP permeated through the cell membrane and thought to spontaneously enter the cell, so it was sometimes referred to as a “cell membrane permeable peptide”. It is thought that it is taken up into the cell through.
 本発明では様々なCPPを用いることができ、目的とする細胞(通常は哺乳動物細胞)に対応するものであればよく、その種類は特に限定されるものではない。また、CPPは、野生型のアミノ酸配列を有するものであってもよいし、細胞内に侵入する(好ましくは野生型よりも優れた)能力を有する範囲で、野生型のアミノ酸配列に対して置換、欠失、付加を施した変異型のアミノ酸配列を有するものであってもよい。 In the present invention, various CPPs can be used as long as they correspond to a target cell (usually a mammalian cell), and the kind thereof is not particularly limited. The CPP may have a wild-type amino acid sequence, or may be substituted for the wild-type amino acid sequence as long as it has the ability to enter cells (preferably better than the wild-type). , May have a mutant amino acid sequence that has been deleted or added.
 本発明における好ましいCPPの代表例として、7~11個程度のアルギニンのみからなるアミノ酸配列を有するポリアルギニン、たとえば配列番号3で表されるアミノ酸配列を有するポリアルギニン(本発明において「11R」と表記することもある。)が挙げられる。
RRRRRRRRRRR                  配列番号3
 また、同様にアルギニンに富んだアミノ酸配列を有する、ヒト免疫不全ウイルスI型(HIV-1)に由来するTrans-activator of transcription protein(Tatタンパク質)に含まれるYGRKKRRQRRRGで表されるアミノ酸配列からなるポリペプチド、フロックハウスウイルス(FHV)に由来するRRRRNRTRRNRRRVRで表されるアミノ酸配列からなるポリペプチド、およびYGRRARRRRRRRで表されるアミノ酸配列からなるCTP512(Cytoplasmic Transduction Peptide)なども、本発明における好ましいCPPとして挙げられる。その他、Revペプチド、ネコヘルペスウイルスCoatタンパク質由来ペプチドなども、本発明におけるCPPとして用いることができる。
As a typical example of a preferable CPP in the present invention, a polyarginine having an amino acid sequence consisting of only about 7 to 11 arginines, for example, a polyarginine having an amino acid sequence represented by SEQ ID NO: 3 (denoted as “11R” in the present invention) May be included).
RRRRRRRRRRR SEQ ID NO: 3
Similarly, a polymorphic amino acid sequence represented by YGRKKRRQRRRG contained in a trans-activator of transcription protein (Tat protein) derived from human immunodeficiency virus type I (HIV-1) having an amino acid sequence rich in arginine. Peptides, polypeptides comprising the amino acid sequence represented by RRRRNRTRRNNRRRVR derived from flockhouse virus (FHV), and CTP512 (Cytoplasmic Transduction Peptide) comprising the amino acid sequence represented by YGRRRRRRRRR are also mentioned as preferred CPPs in the present invention. . In addition, Rev peptide, feline herpesvirus Coat protein-derived peptide, and the like can also be used as the CPP in the present invention.
 ペプチド複合体[A]において、ロイシンジッパーペプチドおよび細胞内侵入ペプチドの配置の順序は特に限定されるものではなく、N末端側から、ロイシンジッパーペプチド-細胞内侵入ペプチドとなる順序でもよいし、細胞内侵入ペプチド-ロイシンジッパーペプチドとなる順序でもよい。 In the peptide complex [A], the order of arrangement of the leucine zipper peptide and the intracellular invading peptide is not particularly limited, and may be the order of leucine zipper peptide-intracellular invading peptide from the N-terminal side. The order of invasion peptide-leucine zipper peptide may be used.
 ペプチド複合体[A]中、細胞内侵入ペプチドとロイシンジッパーペプチドとは、直接連結されていてもよいし、必要に応じてリンカー(スペーサー)を介して連結されていてもよい。リンカーを用いる場合、本発明の作用効果を阻害しない範囲で、一般的なペプチドないしタンパク質(あるいは所定の官能基を有する化合物)同士を連結するために用いられている公知のリンカーを選択することができる。たとえば、ペプチド複合体[A]全体がアミノ酸のみで構成されるよう、1~20個程度のアミノ酸からなるペプチドをリンカーとして用いてもよいし、ペプチド(アミノ酸)以外の化合物、たとえばPEG(ポリエチレングリコール)などをリンカーとして用いることも可能である。 In the peptide complex [A], the cell invasion peptide and the leucine zipper peptide may be directly linked or may be linked via a linker (spacer) as necessary. When using a linker, it is possible to select a known linker used for linking general peptides or proteins (or compounds having a predetermined functional group) to each other as long as the effects of the present invention are not inhibited. it can. For example, a peptide composed of about 1 to 20 amino acids may be used as a linker so that the entire peptide complex [A] is composed of only amino acids, or a compound other than a peptide (amino acid), such as PEG (polyethylene glycol) ) Etc. can also be used as a linker.
 細胞内侵入ペプチドとロイシンジッパーペプチドとが連結したペプチド複合体[A]は公知の方法により作製することができ、作製方法は特に限定されるものではない。たとえば、ペプチドの合成法として慣用されているFmoc-ペプチド固相合成法を用いて当該ペプチド複合体を構成するアミノ酸を順次結合させていくことにより、細胞内侵入ペプチドとロイシンジッパーペプチドとがアミド結合(ペプチド結合)で連結された複合体を合成することができる。ペプチド複合体[A]がリンカーを含む場合も、一般的な方法によりリンカーを利用することができる。 The peptide complex [A] in which the intracellular invasion peptide and the leucine zipper peptide are linked can be produced by a known method, and the production method is not particularly limited. For example, the Fmoc-peptide solid-phase synthesis method commonly used as a peptide synthesis method is used to sequentially bind the amino acids constituting the peptide complex to form an amide bond between the intracellular entry peptide and the leucine zipper peptide. Complexes linked by (peptide bonds) can be synthesized. When the peptide complex [A] contains a linker, the linker can be used by a general method.
 ・蛍光色素
 本発明では、たとえばペプチド複合体[A]とペプチド複合体[B]とによるハイブリッド複合体の形成を通じて、ペプチド複合体[B]に連結された被運搬物質が細胞内に運搬されることを確認できるようにする等の目的のために、少なくともペプチド複合体[A]の方に蛍光色素を連結させておいてもよい。
-Fluorescent dye In the present invention, for example, the transported substance linked to the peptide complex [B] is transported into the cell through the formation of a hybrid complex by the peptide complex [A] and the peptide complex [B]. For the purpose of making it possible to confirm this, a fluorescent dye may be linked to at least the peptide complex [A].
 「蛍光色素」としては、公知のペプチドないしタンパク質を蛍光標識化するために用いられている各種の蛍光色素を用いることができ、特に限定されるものではないが、たとえば、Fmoc-ペプチド固相合成法を用いることによりペプチド複合体と一体的に合成することが可能であり、また分子サイズも蛍光タンパク質(たとえばEGFP)に比べて十分に小さいためハイブリッド複合体の形成を阻害しにくい「蛍光性アミノ酸」は、本発明の蛍光色素として好ましい。 As the “fluorescent dye”, various fluorescent dyes used for fluorescently labeling known peptides or proteins can be used, and are not particularly limited. For example, Fmoc-peptide solid phase synthesis It is possible to synthesize the peptide complex integrally by using the method, and the molecular size is sufficiently smaller than that of the fluorescent protein (for example, EGFP), so it is difficult to inhibit the formation of the hybrid complex. "Is preferred as the fluorescent dye of the present invention.
 「蛍光性アミノ酸」は公知の蛍光性アミノ酸から選択することができる。蛍光性アミノ酸としては、たとえば、3-(9-オキソ-9,10-ジヒドロ-アクリジン-2-イル)アラニン(Acd)、N-ε-(フルオルセイン-5,6-イル)カルボニル-リシン(Fam)、N-ε-(テトラメチルローダミン-5,6-イル)カルボニル-リシン(Tmr)、3-(1-ピレニル)アラニン(Pyr)、N-δ-(10-オキソ-2,3,5,6-テトラヒドロ-1H,4H,10H-11-オキサ-3-アザ-ベンゾ[de]アンスラセン-9-カルボニル)-オルニチン(Cm3)、N-ε-(7-メトキシ-クマリン-3-イル)カルボニル-リシン(Moc)、N-ε-(7-メトキシ-クマリン-4-イル)アセチル-リシン(Mca)、N-ε-(7-ヒドロキシ-クマリン-3-イル)カルボニル-リシン(Hoc)、N-ε-(7-ヒドロキシ-4-メチル-クマリン-3-イル)アセチル-リシン(Hmc)、N-ε-(7-ジメチルアミノ-クマリン-4-イル)アセチル-リシン(Mac)が挙げられる。たとえば、後記実施例で用いられているN-ε-(フルオルセイン-5,6-イル)カルボニル-リシン(Fam)やN-ε-(テトラメチルローダミン-5,6-イル)カルボニル-リシン(Tmr)は、本発明における好ましい蛍光性アミノ酸の例である。 The “fluorescent amino acid” can be selected from known fluorescent amino acids. Examples of fluorescent amino acids include 3- (9-oxo-9,10-dihydro-acridin-2-yl) alanine (Acd), N-ε- (fluorescein-5,6-yl) carbonyl-lysine ( Fam), N-ε- (tetramethylrhodamine-5,6-yl) carbonyl-lysine (Tmr), 3- (1-pyrenyl) alanine (Pyr), N-δ- (10-oxo-2,3, 5,6-tetrahydro-1H, 4H, 10H-11-oxa-3-aza-benzo [de] anthracene-9-carbonyl) -ornithine (Cm3), N-ε- (7-methoxy-coumarin-3-yl ) Carbonyl-lysine (Moc), N-ε- (7-methoxy-coumarin-4-yl) acetyl-lysine (Mca), N-ε- (7-hydroxy-coumarin-3-yl) carbonyl-lysine (Hoc) ), N-ε- (7-hydroxy-4-methyl-coumarin-3-yl) acetyl-lysine (Hmc), N-ε- (7-dimethylamino-coumarin-4-yl) acetyl-lysine (Mac) Is mentioned. For example, N-ε- (fluorescein-5,6-yl) carbonyl-lysine (Fam) and N-ε- (tetramethylrhodamine-5,6-yl) carbonyl-lysine (Fam) used in Examples below Tmr) is an example of a preferred fluorescent amino acid in the present invention.
 その他にも、蛍光色素として一般的に用いられている、フルオレセイン・ファミリー、クマリン・ファミリー、ローダミン・ファミリー、シアニン・ファミリーなどの色素分子、あるいはAlexa Fluor(登録商標、インビトロジェン社)、BODIPY(登録商標、インビトロジェン社)、Cy(登録商標、GEヘルスケア社)、DY(登録商標、DYOMICS社)、HiLyte(登録商標、アナスペック社)、DyLight(登録商標、サーモサイエンティフィック社)、ATTO(登録商標、ATTO-TEC社)、MFP(登録商標、Mobitec社)などの商品名で上市されている色素分子などを用いることも可能である。なお、このような蛍光色素の総称は、化合物中の主要な構造(骨格)または登録商標に基づき命名されており、それぞれに属する蛍光色素の範囲は当業者であれば適切に把握することができる。 In addition, fluorescein family, coumarin family, rhodamine family, cyanine family and other dye molecules generally used as fluorescent dyes, Alexa Fluor (registered trademark, Invitrogen), BODIPY (registered trademark) Invitrogen), Cy (registered trademark, GE Healthcare), DY (registered trademark, DYOMICICS), HiLyte (registered trademark, Anaspec), DyLight (registered trademark, Thermo Scientific), ATTO (registered) It is also possible to use a dye molecule marketed under a trade name such as a trademark, ATTO-TEC) or MFP (registered trademark, Mobitec). The generic names of such fluorescent dyes are named based on the main structures (skeletons) in the compounds or registered trademarks, and the scope of fluorescent dyes belonging to each can be appropriately understood by those skilled in the art. .
 蛍光色素は、公知のペプチドないしタンパク質と蛍光色素とを連結するために用いられている方法に準じて、必要に応じて適切なリンカーを用いて、アミノ酸が有するアミノ基、カルボキシル基、水酸基、チオール基等の官能基を介して、ロイシンジッパーペプチドに結合させることができる。ハイブリッド複合体の形成を阻害しないようにする観点からは、ロイシンジッパーペプチドの途中(アミノ酸の側鎖)ではなく、ロイシンジッパーペプチドの相互作用に影響を与えにくいN末端またはC末端近傍に蛍光色素を連結することが好ましい。蛍光色素として蛍光性アミノ酸を用いる場合、Fmoc-ペプチド固相合成法により蛍光性アミノ酸を任意の位置に配置することができるため、ロイシンジッパーペプチドのN末端またはC末端に蛍光性アミノ酸が結合したものを容易に作製することができる。あるいは、ロイシンジッパーペプチド中唯一のシステインをN末端付近またはC末端付近(ロイシンジッパーペプチドの相互作用に影響を与えない部位)に配置しておき、一方蛍光色素には当該システインのチオール基と選択的に反応する(ペプチド複合体中の他のアミノ酸残基とは反応しない)マレイミド基を導入しておき、これらの官能基を反応させることにより、上記ロイシンジッパーペプチドの末端付近に蛍光色素を結合させることも可能である。 The fluorescent dye is based on a known peptide or protein and a method used for linking the fluorescent dye, and if necessary, using an appropriate linker, an amino group, a carboxyl group, a hydroxyl group, and a thiol possessed by an amino acid. It can be linked to the leucine zipper peptide via a functional group such as a group. From the viewpoint of not inhibiting the formation of the hybrid complex, a fluorescent dye is not present in the middle of the leucine zipper peptide (side chain of amino acid) but near the N-terminus or C-terminus, which does not affect the interaction of the leucine zipper peptide. It is preferable to connect. When a fluorescent amino acid is used as a fluorescent dye, the fluorescent amino acid can be placed at an arbitrary position by the Fmoc-peptide solid phase synthesis method, so that the fluorescent amino acid is bonded to the N-terminal or C-terminal of the leucine zipper peptide Can be easily manufactured. Alternatively, a unique cysteine in the leucine zipper peptide is placed near the N-terminus or C-terminus (site that does not affect the interaction of the leucine zipper peptide), while the fluorescent dye is selected selectively from the thiol group of the cysteine. Introducing a maleimide group that reacts with (does not react with other amino acid residues in the peptide complex) and reacts with these functional groups to bind the fluorescent dye near the end of the leucine zipper peptide It is also possible.
 ペプチド複合体[A]に蛍光色素(蛍光アミノ酸)を連結させる場合、ロイシンジッパーペプチド、細胞内侵入ペプチドおよび蛍光色素の配置の順序は特に限定されるものではない。たとえば、N末端側から、蛍光色素-ロイシンジッパーペプチド-細胞内侵入ペプチドとなる順序でもよいし、細胞内侵入ペプチド-蛍光色素-ロイシンジッパーペプチドとなる順序でもよい。 In the case where a fluorescent dye (fluorescent amino acid) is linked to the peptide complex [A], the order of arrangement of the leucine zipper peptide, the cell invasion peptide and the fluorescent dye is not particularly limited. For example, from the N-terminal side, the order of fluorescent dye-leucine zipper peptide-invading peptide may be used, or the order of entering intracellular penetrating peptide-fluorescent dye-leucine zipper peptide may be used.
 また、ペプチド複合体[A]中、蛍光色素(蛍光性アミノ酸等)とロイシンジッパーペプチドおよび/または細胞内侵入ペプチドとは、直接連結されていてもよいし、リンカー(スペーサー)を介して連結されていてもよい。リンカーを用いる場合、公知のペプチドないしタンパク質と蛍光色素とを連結するために用いられている公知のものの中から、本発明の作用効果を阻害しない範囲で、化学的構造や長さが適切なものを選択すればよい。 In the peptide complex [A], the fluorescent dye (fluorescent amino acid, etc.) and the leucine zipper peptide and / or the intracellular invasion peptide may be directly linked or linked via a linker (spacer). It may be. When a linker is used, a chemical structure or an appropriate length is selected from known ones used to link known peptides or proteins and fluorescent dyes as long as the effects of the present invention are not inhibited. Should be selected.
 ・被運搬物質
 本発明のペプチド複合体[B]を構成する被運搬物質は、本発明によるハイブリッド複合体の形成により細胞内に導入し、細胞内で所定の機能を発揮することが可能な物質であれば特に限定されるものではなく、本発明のハイブリッド複合体の用途、特に治療・予防用または診断用の医薬としての用途を考慮しながら選択すればよい。
-Transported material The transported material constituting the peptide complex [B] of the present invention can be introduced into cells by forming a hybrid complex according to the present invention, and can exhibit a predetermined function in the cells. If it is, it will not specifically limit, What is necessary is just to select in consideration of the use of the hybrid composite_body | complex of this invention, especially the use as a medicine for treatment / prevention or diagnosis.
 細胞内で医薬的な生理活性作用を発揮するタンパク質またはペプチド(たとえばp53タンパク質)は、本発明における好ましい被運搬物質となる。タンパク質等のサイズ(分子量)が細胞内への導入効率または細胞内における機能の発揮に影響を及ぼす可能性があるので、適切な範囲(一般的には分子量1,000~1,000,000)のサイズを有するタンパク質等を被運搬物質とすることが好ましい。 A protein or peptide (for example, p53 protein) that exerts a physiological physiological activity in cells is a preferred transported substance in the present invention. Since the size (molecular weight) of proteins and the like may affect the efficiency of introduction into cells or the functioning of functions in cells, an appropriate range (generally, molecular weight 1,000 to 1,000,000) It is preferable to use a protein or the like having a size of
 また、タンパク質またはペプチド以外の化合物、たとえば核酸を被運搬物質として、細胞内に送達させることも可能である。その場合のペプチド複合体[A]および[B]の作製方法、すなわち核酸等のタンパク質またはペプチド以外の化合物をロイシンジッパーペプチドに連結する方法も、公知の手法を利用することができる。 It is also possible to deliver a compound other than a protein or peptide, such as a nucleic acid, into a cell as a transported substance. A known method can also be used for the method of preparing peptide complexes [A] and [B] in that case, that is, a method of linking a compound other than a protein such as a nucleic acid or a peptide to a leucine zipper peptide.
 ペプチド複合体[B]において、ロイシンジッパーペプチドおよび被運搬物質の配置の順序は特に限定されるものではない。被運搬物質がタンパク質またはペプチドである場合、N末端側から、ロイシンジッパーペプチド-被運搬物質となる順序でもよいし、被運搬物質-ロイシンジッパーペプチドとなる順序でもよい。 In the peptide complex [B], the arrangement order of the leucine zipper peptide and the transported substance is not particularly limited. When the transported substance is a protein or peptide, the order may be leucine zipper peptide-transported substance or the order of transported substance-leucine zipper peptide from the N-terminal side.
 ペプチド複合体[B]中、被運搬物質とロイシンジッパーペプチドとは、直接連結されていてもよいし、必要に応じてリンカー(スペーサー)を介して連結されていてもよい。リンカーを用いる場合、本発明の作用効果を阻害しない範囲で、一般的なペプチドないしタンパク質(あるいは所定の官能基を有する化合物)同士を連結するために用いられている公知のリンカーを選択することができる。たとえば、ペプチド複合体[B]全体がアミノ酸のみで構成されるよう、1~20個程度のアミノ酸からなるペプチドをリンカーとして用いてもよいし、ペプチド(アミノ酸)以外の化合物、たとえばPEG(ポリエチレングリコール)などをリンカーとして用いることも可能である。 In the peptide complex [B], the transported substance and the leucine zipper peptide may be directly linked or may be linked via a linker (spacer) as necessary. When using a linker, it is possible to select a known linker used for linking general peptides or proteins (or compounds having a predetermined functional group) to each other as long as the effects of the present invention are not inhibited. it can. For example, a peptide composed of about 1 to 20 amino acids may be used as a linker so that the entire peptide complex [B] is composed of only amino acids, or a compound other than a peptide (amino acid), such as PEG (polyethylene glycol) ) Etc. can also be used as a linker.
 被運搬物質とロイシンジッパーペプチドとが連結したペプチド複合体[B]は公知の方法により作製することができ、作製方法は特に限定されるものではない。たとえば、被運搬物質が比較的大きなサイズ(アミノ酸数)を有するタンパク質である場合、公知の遺伝子工学的手法(発現ベクター等)を用いて、当該タンパク質とロイシンジッパーペプチドとが連結した融合タンパク質を合成することができる。また、被運搬物質が比較的小さなサイズ(アミノ酸残基数)を有するペプチドである場合は、ペプチドの合成法として慣用されているFmoc-ペプチド固相合成法を用いて当該ペプチド複合体を構成するアミノ酸を順次結合させていくことにより、当該ペプチドとロイシンジッパーペプチドとがアミド結合(ペプチド結合)で連結された複合体を一体的に合成することもできる。 The peptide complex [B] in which the transported substance and the leucine zipper peptide are linked can be produced by a known method, and the production method is not particularly limited. For example, when the transported substance is a protein having a relatively large size (number of amino acids), a known genetic engineering technique (such as an expression vector) is used to synthesize a fusion protein in which the protein and leucine zipper peptide are linked. can do. When the transported substance is a peptide having a relatively small size (number of amino acid residues), the peptide complex is constructed using the Fmoc-peptide solid phase synthesis method commonly used as a peptide synthesis method. By sequentially binding amino acids, a complex in which the peptide and leucine zipper peptide are linked by an amide bond (peptide bond) can also be synthesized integrally.
 ―ハイブリッド複合体―
 ハイブリッド複合体は、あらかじめ作製したペプチド複合体[A]とペプチド複合体[B]とを適切な溶媒中(通常水または緩衝液等の水溶液中)で混合することにより、容易に形成させることができる。
―Hybrid complex―
The hybrid complex can be easily formed by mixing the peptide complex [A] prepared in advance and the peptide complex [B] in an appropriate solvent (usually in water or an aqueous solution such as a buffer). it can.
 ペプチド複合体[A]および[B]は理論的には1:1の量(モル比)で反応するため、ペプチド複合体[A]および[B]の混合量(モル比)も1:1とするか、必要であればその近傍で調整すればよい。なお、上記の混合比が1:1から離れる場合、ペプチド複合体[A]および[B]のロイシンジッパーペプチドが結合してハイブリッド複合体が形成された状態において、さらに他のペプチド複合体[A]および/または[B]が前記ハイブリッド複合体に非特異的に吸着する可能性があるが、本発明の作用効果を阻害しない範囲であれば、そのような非特異的な吸着が起きることも許容される。 Since the peptide complexes [A] and [B] theoretically react in an amount (molar ratio) of 1: 1, the mixed amount (molar ratio) of the peptide complexes [A] and [B] is also 1: 1. Or, if necessary, it may be adjusted in the vicinity thereof. In the case where the above mixing ratio deviates from 1: 1, in the state where the leucine zipper peptide of the peptide complex [A] and [B] is bound to form a hybrid complex, another peptide complex [A ] And / or [B] may be adsorbed nonspecifically to the hybrid complex, but such nonspecific adsorption may occur as long as the effect of the present invention is not inhibited. Permissible.
 また、このようなハイブリッド複合体が形成された後、それを被運搬物質を送達させたい細胞と接触させることにより、ハイブリッド複合体を細胞内に導入することができる。通常、細胞にハイブリッド複合体を含む溶液を添加すれば、一定の時間の経過の後、エンドサイトーシスにより自ずと当該ハイブリッド複合体は細胞内に取り込まれ、その後細胞内で所定の機能を果たすことができるようになる。細胞は、通常は動物細胞(ヒトの細胞を含む)であり、生体内にあるものでも、生体外にあるもの(培養細胞)でもよい。つまり、本発明による細胞内への被運搬物質の送達方法は、生体内、生体外どちらにおいても適用することができる。 Further, after such a hybrid complex is formed, the hybrid complex can be introduced into the cell by bringing it into contact with a cell to which the transported substance is to be delivered. Usually, if a solution containing a hybrid complex is added to a cell, the hybrid complex is naturally taken up into the cell by endocytosis after a certain period of time, and then performs a predetermined function in the cell. become able to. The cells are usually animal cells (including human cells) and may be in vivo or in vitro (cultured cells). That is, the method for delivering a substance to be transported into cells according to the present invention can be applied both in vivo and in vitro.
 細胞内に送達された後、自ずと会合がほどけて、ハイブリッド複合体はペプチド複合体[A]および[B]に再び分離することができる。これにより、ペプチド複合体[B]に連結された被運搬物質(タンパク質等)は、ペプチド複合体[A]に連結されたCPP(ポリアルギニン:11R等)の影響を受けることなく、所定の機能を発揮することが可能となる。 After being delivered into the cell, the association is naturally released and the hybrid complex can be separated again into peptide complexes [A] and [B]. Thus, the transported substance (protein or the like) linked to the peptide complex [B] has a predetermined function without being affected by the CPP (polyarginine: 11R or the like) linked to the peptide complex [A]. Can be achieved.
 なお、必要であれば、細胞内に送達後に被運搬物質が所定の機能をより発揮しやすくなるよう、ペプチド複合体[B]がハイブリッド複合体を形成して被運搬物質が細胞内に送達されるまでの細胞外環境においては切断されず、細胞内環境(たとえば、リソソーム、エンドソーム、カベオラ等の内部)において切断可能な化合物を、ロイシンジッパーペプチドと被運搬物質とを連結するためのリンカーとして用いてもよい。ただし本発明では、このような特定のリンカーを用いず被運搬物質がロイシンジッパーペプチドと連結した状態のままであっても、所定の機能を発揮することができるようになっている。 If necessary, the peptide complex [B] forms a hybrid complex so that the transported substance is delivered into the cell so that the transported substance can more easily perform a predetermined function after being delivered into the cell. A compound that can be cleaved in the intracellular environment (for example, inside of lysosome, endosome, caveolae, etc.) as a linker for linking leucine zipper peptide and transported substance May be. However, in the present invention, a predetermined function can be exhibited even when the transported substance remains linked to the leucine zipper peptide without using such a specific linker.
 ―用途―
 本発明によるハイブリッド複合体(または当該ハイブリッド複合体を形成するためのペプチド複合体[A]および[B])、あるいはこれらを含む組成物は、それに含まれる被運搬物質に応じた、治療・予防用または診断用の医薬として使用することができる。
―Application―
The hybrid complex according to the present invention (or the peptide complex [A] and [B] for forming the hybrid complex), or the composition containing them, is treated / prevented according to the transported substance contained therein. It can be used as a pharmaceutical for diagnosis or diagnosis.
 換言すれば、本発明は、治療・予防用または診断用の医薬(組成物)の製造のための、ハイブリッド複合体(または当該ハイブリッド複合体を形成するためのペプチド複合体[A]および[B])の使用(方法)を提供する。あるいは、本発明は、ハイブリッド複合体(または当該ハイブリッド複合体を形成するためのペプチド複合体[A]および[B])を投与することを含む、治療・予防または診断のための使用(方法)を提供する。上記のような医薬(組成物)ないし使用(方法)は、投与ないし適用の対象を、ヒトまたはそれ以外の動物(好ましくは哺乳動物)、あるいはそれらから採取した細胞等の生体物質とすることができる。 In other words, the present invention relates to a hybrid complex (or peptide complexes [A] and [B] for forming the hybrid complex) for the manufacture of a therapeutic (preventive) or diagnostic (composition) medicament. ] Use (method). Alternatively, the present invention relates to a use (method) for treatment / prevention or diagnosis comprising administering a hybrid complex (or peptide complexes [A] and [B] for forming the hybrid complex). I will provide a. In the medicine (composition) or use (method) as described above, the subject of administration or application is a human or other animal (preferably a mammal), or a biological material such as a cell collected from them. it can.
 上記のような治療・予防用または診断用の医薬を調製する際には、必要に応じて、本発明によるハイブリッド複合体(または当該ハイブリッド複合体を形成するためのペプチド複合体[A]および[B])以外に、製薬学的に許容しうるキャリア、賦形剤、湿潤剤、乳化剤、pH緩衝剤等、その他の各種の物質を含む医薬組成物として調製することが可能である。DDSにおける使用の態様として、本発明によるハイブリッド複合体(または当該ハイブリッド複合体を形成するためのペプチド複合体[A]および[B])ならびにその他の物質を内包ないし担持しうる、微小なカプセル(たとえばリポソーム)を用いることも可能である。また、医薬の剤形は、溶液、懸濁液、エマルジョン、錠剤、丸薬、カプセル、粉剤、除法処方物等とすることが可能である。また、本発明の医薬の投与方法や投与量も、使用する薬剤類に応じて適切に調整すればよい。 When preparing a medicament for treatment / prevention or diagnosis as described above, the hybrid complex according to the present invention (or the peptide complex [A] and [ In addition to B]), it can be prepared as a pharmaceutical composition containing various other substances such as pharmaceutically acceptable carriers, excipients, wetting agents, emulsifiers, pH buffering agents and the like. As an aspect of use in DDS, a microcapsule (including a peptide complex [A] and [B] for forming the hybrid complex) and other substances encapsulating or carrying other substances can be used. For example, liposomes can also be used. In addition, pharmaceutical dosage forms can be solutions, suspensions, emulsions, tablets, pills, capsules, powders, excluding formulations and the like. Moreover, what is necessary is just to adjust suitably the administration method and dosage of the pharmaceutical of this invention according to the chemical | medical agent to be used.
 実施例1:蛍光性アミノ酸および細胞内侵入ペプチドが結合した直交型ロイシンジッパーペプチドの合成
 配列番号1で表されるアミノ酸配列(N'-EYQALKKKVAQLKAKNQALKKKVAQLKHK-C')を有するロイシンジッパーペプチド:LZ(K)および配列番号2で表されるアミノ酸配列(N'-EYQALEKEVAQLEAENQALEKEVAQLEHE-C')を有するロイシンジッパーペプチド:LZ(E)、蛍光性アミノ酸Fam(N-ε-(フルオルセイン-5,6-イル)カルボニル-リシン)およびTmr(N-ε-(テトラメチルローダミン-5,6-イル)カルボニル-リシン)(それぞれの化学構造は下記の通り)、ならびに細胞内侵入ペプチド11Rを用いて、下記のペプチド複合体を作製した。いずれのペプチドもN末端は第一級アミノ基であり、C末端は第一アミドである。bAlaはβ-アラニンを示す。Tmr-11RはLZを含まないコントロールのCPPである。
Fam-LZ(E):
  H-Fam-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH2
  ([M+H]+calc = 3924.81)
Tmr-LZ(K):
  H-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-bAla-NH2
  ([M+H]+calc = 3972.33)
Tmr-LZ(E):
  H-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH2
  ([M+H]+calc = 3979.91)
11R-Tmr-LZ(K):
  H-RRRRRRRRRRR-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-bAla-NH2
  ([M+H]+calc = 5689.44)
Tmr-LZ(K)-11R:
  H-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-RRRRRRRRRRR-bAla-NH2
  ([M+H]+calc = 5689.44)
11R-Tmr-LZ(E):
  H-RRRRRRRRRRR-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH2
  ([M+H]+calc = 5697.02)
Tmr-LZ(E)-11R:
  H-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-RRRRRRRRRRR-bAla-NH2
  ([M+H]+calc = 5697.02)
Tmr-11R:
  H-Tmr-RRRRRRRRRRR-NH2
  ([M+H]+calc = 2276.35)
Example 1: Synthesis of orthogonal leucine zipper peptide to which fluorescent amino acid and intracellular invasion peptide are bound Leucine zipper peptide having amino acid sequence represented by SEQ ID NO: 1 (N'-EYQALKKKVAQLKAKNQALKKKVAQLKHK-C '): LZ (K) And a leucine zipper peptide having the amino acid sequence represented by SEQ ID NO: 2 (N'-EYQALEKEVAQLEAENQALEKEVAQLEHE-C '): LZ (E), fluorescent amino acid Fam (N-ε- (fluorescein-5,6-yl) carbonyl -Lysine) and Tmr (N-ε- (tetramethylrhodamine-5,6-yl) carbonyl-lysine) (each of which has the following chemical structure) and intracellular invasion peptide 11R, the following peptide complex The body was made. In any peptide, the N-terminus is a primary amino group and the C-terminus is a primary amide. bAla represents β-alanine. Tmr-11R is a control CPP that does not contain LZ.
Fam-LZ (E):
H-Fam-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH 2
([M + H] + calc = 3924.81)
Tmr-LZ (K):
H-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-bAla-NH 2
([M + H] + calc = 3972.33)
Tmr-LZ (E):
H-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH 2
([M + H] + calc = 3979.91)
11R-Tmr-LZ (K):
H-RRRRRRRRRRR-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-bAla-NH 2
([M + H] + calc = 5689.44)
Tmr-LZ (K) -11R:
H-Tmr-EYQALKKKVAQLKAKNQALKKKVAQLKHK-RRRRRRRRRRR-bAla-NH 2
([M + H] + calc = 5689.44)
11R-Tmr-LZ (E):
H-RRRRRRRRRRR-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-bAla-NH 2
([M + H] + calc = 5697.02)
Tmr-LZ (E) -11R:
H-Tmr-EYQALEKEVAQLEAENQALEKEVAQLEHE-RRRRRRRRRRR-bAla-NH 2
([M + H] + calc = 5697.02)
Tmr-11R:
H-Tmr-RRRRRRRRRRR-NH 2
([M + H] + calc = 2276.35)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 これらのペプチド複合体の合成は、慣例法であるFmoc-ペプチド固相合成法により行なった。具体的には以下のように合成した。合成に用いた樹脂はFmoc-NH-SAL PEG resin (0.24 mmol/g)である。まず、樹脂を膨潤させるためジメチルホルムアミド(DMF)中で3時間、室温で放置した。脱保護試薬として20%ピペリジン DMF溶液、カップリング溶液としてHBTU/NMM DMF溶液を用いた。合成は手合成で行ない、樹脂をDMFで洗浄した後、脱保護を行ない、次いでカップリングするという操作を1サイクルとした。このサイクルを繰り返すことで樹脂表面上にペプチドを伸長させた。目的の配列まで伸長したペプチドの樹脂はトリフルオロ酢酸/水/イソプロピルシラン(= 95/2.5/2.5 (v/v/v))を加えて、ペプチドを切り出した。樹脂から切り出したペプチドの溶液はN2ガスで風乾した。合成されたペプチドは2 μmolスケールであり、合成後、100 μLのDMSOに溶解させ、冷凍庫で保存した。 The synthesis of these peptide complexes was performed by the conventional Fmoc-peptide solid phase synthesis method. Specifically, it was synthesized as follows. The resin used for the synthesis was Fmoc-NH-SAL PEG resin (0.24 mmol / g). First, in order to swell the resin, it was left in dimethylformamide (DMF) for 3 hours at room temperature. A 20% piperidine DMF solution was used as a deprotection reagent, and an HBTU / NMM DMF solution was used as a coupling solution. The synthesis was performed manually, and the operation of washing the resin with DMF, deprotecting, and then coupling was defined as one cycle. The peptide was extended on the resin surface by repeating this cycle. The peptide resin extended to the target sequence was cleaved with trifluoroacetic acid / water / isopropylsilane (= 95 / 2.5 / 2.5 (v / v / v)). The peptide solution cut out from the resin was air-dried with N 2 gas. The synthesized peptide was 2 μmol scale, and after synthesis, it was dissolved in 100 μL of DMSO and stored in a freezer.
 蛍光測定および共焦点顕微鏡による観測に使用する前に、上記100 μLのDMSO溶液全量をHPLCにかけ、ペプチドを分取精製した。精製後のペプチドの確認はMALDI-TOF Massで行なった(図2)。最終的に得られた溶液のモル濃度はこれらの精製した溶液をUV-visスペクトルを用いて、Fam(500 nm)もしくはTmr(550 nm)の吸光度から算出した。 Prior to use for fluorescence measurement and observation with a confocal microscope, the entire 100 μL DMSO solution was subjected to HPLC, and the peptides were fractionated and purified. The peptide after purification was confirmed with MALDI-TOF-Mass (FIG. 2). The molar concentration of the finally obtained solution was calculated from the absorbance of Fam (500 nm) or Tmr (550 nm) using UV-vis spectrum of these purified solutions.
 実施例2:EGFPが結合した直交型ロイシンジッパーの合成
 慣例法である遺伝子工学的手法により、Hisタグ、EGFP、リンカーおよびLZ(K)が結合したペプチド複合体(下記配列番号4参照。上記各要素をハイフン(-)でつないである。)を合成した。すなわち、上記各要素をコードする塩基配列が連続した遺伝子を含むプラスミド(pET28b)を構築し、大腸菌内で発現させ、生成した融合タンパク質をアフィニティーカラムで回収した後、プロテアーゼで上記Hisタグを切断して、ペプチド複合体を得た。
MGSSHHHHHHSSGLVPRGSH-MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK-AS-EYQALKKKVAQLKAKNQALKKKVAQLKHKG       配列番号4
 実施例3:蛍光測定によるペプチド複合体の相互作用の検証
 実施例1で作製したTmrで修飾された各種のペプチド複合体および1-2で作製したEGFPで修飾されたペプチド複合体を用いて、これらの複合体が相互作用しているかを、蛍光基間で起きるFRET(EGFPがドナー、Tmrがアクセプター)を利用して調べた。
Example 2: Synthesis of an orthogonal leucine zipper to which EGFP is bound A peptide complex in which a His tag, EGFP, a linker and LZ (K) are bound by a genetic engineering technique which is a conventional method (see SEQ ID NO: 4 below. The elements are connected with a hyphen (-)). Specifically, a plasmid (pET28b) containing a gene having a continuous base sequence encoding each element is constructed, expressed in E. coli, and the resulting fusion protein is recovered with an affinity column, and then the His tag is cleaved with a protease. Thus, a peptide complex was obtained.
MGSSHHHHHHSSGLVPRGSH-MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK-AS-EYQALKKKVAQLKAKNQALKKKVAQLKHKG SEQ ID NO: 4
Example 3: Verification of interaction of peptide complex by fluorescence measurement Using the various peptide complexes modified with Tmr prepared in Example 1 and the peptide complex modified with EGFP prepared in 1-2, Whether these complexes interacted with each other was examined using FRET (EGFP is a donor and Tmr is an acceptor) generated between fluorescent groups.
 方法
 まず、濃度が既知のEGFP-LZ(K)の水溶液から70 mM HEPES (pH7.0)緩衝溶液を用いて、1 μMにまで希釈した。この希釈液と、Tmrで修飾されたペプチドの溶液(下記Group 1については代わりにPBS Buffer)と、前記HEPES緩衝溶液とを用いて、EGFP-LZ(K)およびTmr修飾ペプチドの終濃度がそれぞれ15 nMの溶液が1000 μLになるように調整した。30分間程度インキュベートした後、蛍光スペクトル測定装置(FP-6600, 日本分光社製)で室温で測定した。このとき励起波長はEGFPが発光する489 nmで測定した。EGFP-LZ(K)およびTmr修飾ペプチドの組み合わせ方はGroup 1-8の下記の8通りである(Group 1ではTmr修飾ペプチドを用いておらず、EGFP-LZ(K)単独である)。
Group 1; EGFP-LZ(K)+ PBS (Buffer)
Group 2; EGFP-LZ(K)+ TMR-LZ(E)
Group 3; EGFP-LZ(K)+ 11R-TMR-LZ(E)
Group 4; EGFP-LZ(K)+ TMR-LZ(E)-11R
Group 5; EGFP-LZ(K)+ TMR-11R
Group 6; EGFP-LZ(K)+ TMR-LZ(K)
Group 7; EGFP-LZ(K)+ 11R-TMR-LZ(K)
Group 8; EGFP-LZ(K)+ TMR-LZ(K)-11R
Method First, an EGFP-LZ (K) solution having a known concentration was diluted to 1 μM using a 70 mM HEPES (pH 7.0) buffer solution. Using this diluted solution, a Tmr-modified peptide solution (instead of PBS Buffer for Group 1 below) and the HEPES buffer solution, the final concentrations of EGFP-LZ (K) and Tmr-modified peptide are respectively The 15 nM solution was adjusted to 1000 μL. After incubating for about 30 minutes, measurement was performed at room temperature using a fluorescence spectrum measuring apparatus (FP-6600, manufactured by JASCO Corporation). At this time, the excitation wavelength was measured at 489 nm from which EGFP emitted light. EGFP-LZ (K) and Tmr modified peptides can be combined in the following eight ways in Group 1-8 (Group 1 does not use Tmr modified peptides and is EGFP-LZ (K) alone).
Group 1; EGFP-LZ (K) + PBS (Buffer)
Group 2; EGFP-LZ (K) + TMR-LZ (E)
Group 3; EGFP-LZ (K) + 11R-TMR-LZ (E)
Group 4; EGFP-LZ (K) + TMR-LZ (E) -11R
Group 5; EGFP-LZ (K) + TMR-11R
Group 6; EGFP-LZ (K) + TMR-LZ (K)
Group 7; EGFP-LZ (K) + 11R-TMR-LZ (K)
Group 8; EGFP-LZ (K) + TMR-LZ (K) -11R
 結果
 図3にEGFP-LZ(K)とTmrを修飾したペプチドを当量加えた時の混合溶液の蛍光スペクトルを示す(Group 2-8)。ペプチドの濃度はいずれも15 nMであり、溶媒として70 mM HEPES (pH7.0)緩衝溶液を用いた。蛍光強度は、489 nmの励起波長において、室温で測定した。コントロールとしてEGFP-LZ(K)のみの結果を示す(Group 1)。このコントロールの曲線の508 nmの値を1として、相対的にその他の曲線の蛍光強度を示した。まず、EGFP-LZ(K)とTmr-LZ(K)との混合溶液(Group 6)では、EGFP-LZ(K)とほぼ同じ蛍光強度を示した。EGFP-LZ(K)とTmr-LZ(K)が相互作用できないことで両者は一定の距離内に近づくことができず、そのためFRETが生じなかったと推測される。このような結果は、11R-Tmr-LZ(K)(Group 7)やTmr-LZ(K)-11R(Group 8)でも同様である。しかしながら一方で、ロイシンジッパー間の相互作用が可能であるEGFP-LZ(K)と11R-Tmr-LZ(E)(Group 3), Tmr-LZ(E)-11R(Group 4)およびTmr-LZ(E)(Group 2)では期待したとおり、Famの大きな蛍光強度の減少が認められた。これは、LZ(K)とLZ(E)との相互作用が起きたことでそれぞれに連結されたEGFPとTmrとが位置的に近づき、それによりエネルギー移動が生じたためである。これらの結果はまた、11Rがこれらロイシンジッパーの相互作用に影響を及ぼさないことを示唆している。以上の結果より、EGFP-LZ(K)とTmrが修飾されたLZ(E)(11Rがある場合でも無い場合でも)とはうまくロイシンジッパー間の特異的な相互作用によりハイブリッドを形成していることが明らかである。
Results FIG. 3 shows the fluorescence spectrum of the mixed solution when EGFP-LZ (K) and a peptide modified with Tmr are added in an equivalent amount (Group 2-8). The peptide concentration was 15 nM in all cases, and a 70 mM HEPES (pH 7.0) buffer solution was used as a solvent. The fluorescence intensity was measured at room temperature at an excitation wavelength of 489 nm. As a control, the results of only EGFP-LZ (K) are shown (Group 1). The value of 508 nm of this control curve was taken as 1, and the fluorescence intensity of other curves was relatively shown. First, a mixed solution of EGFP-LZ (K) and Tmr-LZ (K) (Group 6) showed almost the same fluorescence intensity as EGFP-LZ (K). Since EGFP-LZ (K) and Tmr-LZ (K) cannot interact, it is presumed that they could not approach within a certain distance, and therefore FRET did not occur. Such a result is the same in 11R-Tmr-LZ (K) (Group 7) and Tmr-LZ (K) -11R (Group 8). On the other hand, however, EGFP-LZ (K) and 11R-Tmr-LZ (E) (Group 3), Tmr-LZ (E) -11R (Group 4) and Tmr-LZ are capable of interaction between leucine zippers. (E) (Group 2), as expected, a large decrease in Fam fluorescence intensity was observed. This is because the interaction between LZ (K) and LZ (E) has caused EGFP and Tmr linked to each other to approach each other, thereby causing energy transfer. These results also suggest that 11R does not affect these leucine zipper interactions. Based on the above results, EGFP-LZ (K) and Tmr-modified LZ (E) (with or without 11R) successfully form a hybrid due to specific interaction between leucine zippers. It is clear.
 図4(左)にEGFP-LZ(K)に対するTmr-LZ(E)の蛍光滴定曲線を示す。溶媒として70 mM HEPES (pH7.0)緩衝溶液を用いた。蛍光強度は、室温で、励起波長を489 nmとして、508 nmの発光を測定した。Tmr-LZ(E)を添加していくに従って、EGFP-LZ(K)のEGFPに対応する蛍光が徐々に減少することがわかる。この減少は、EGFPとTmrとがロイシンジッパー間のハイブリッド形成により距離的に近くなり、FRETに生じたことを示している。この蛍光の減少の割合は、EGFP-LZ(K)とTmr-LZ(E)とが当量(それぞれ15 nM)のときを境に変化することがわかる。すなわちTmr-LZ(E)を15 nM以上加えてもEGFPに対応する蛍光は、15 nM以下のときと比べて変化の割合が小さくなった。この結果は、EGFP-LZ(K)とTmr-LZ(E)とは1:1対応でハイブリッドを形成していることを示唆している。さらにコントロールとして、EGFP-LZ(K)とはハイブリッドを形成しないことが予想されるTmr-LZ(K)でも同様に滴定曲線を測定した(図4の黒丸)。その結果、EGFPに対応する蛍光強度は加えたTmr-LZ(K)には依存せず、またほとんど蛍光強度の減少は認められなかった。この結果は予想されたように、ロイシンジッパー間でハイブリッドが形成できないため、EGFPがTmrによるエネルギー移動を生じなかったことを示している。 Fig. 4 (left) shows the fluorescence titration curve of Tmr-LZ (E) against EGFP-LZ (K). As a solvent, a buffer solution of 70 mM mM HEPES (pH 7.0) was used. The fluorescence intensity was measured at 508 nm with an excitation wavelength of 489 nm at room temperature. It can be seen that the fluorescence corresponding to EGFP of EGFP-LZ (K) gradually decreases as Tmr-LZ (E) is added. This decrease indicates that EGFP and Tmr are close in distance due to hybridization between leucine zippers and occur in FRET. It can be seen that the ratio of the decrease in fluorescence changes when EGFP-LZ (K) and Tmr-LZ (E) are equivalent (each 15 nM). That is, even when Tmr-LZ (E) was added in an amount of 15 nM or more, the fluorescence corresponding to EGFP had a smaller rate of change than when it was 15 nM or less. This result suggests that EGFP-LZ (K) and Tmr-LZ (E) form a hybrid in a 1: 1 correspondence. Further, as a control, a titration curve was similarly measured for Tmr-LZ (K), which is expected not to form a hybrid with EGFP-LZ (K) (black circle in FIG. 4). As a result, the fluorescence intensity corresponding to EGFP did not depend on the added Tmr-LZ (K), and almost no decrease in fluorescence intensity was observed. This result indicates that EGFP did not cause Tmr energy transfer because a hybrid could not form between leucine zippers, as expected.
 以上の結果より、EGFP-LZ(K)はEGFP-LZ(E)と特異的に1:1対応でハイブリッドを形成していることが明らかとなった。この結果は図4(右)からも明らかである。溶媒として70 mM HEPES (pH7.0)緩衝溶液を用い、室温で、励起波長を489 nmとして、580 nmの発光を測定した。 From the above results, it was revealed that EGFP-LZ (K) specifically formed a hybrid with EGFP-LZ (E) in a 1: 1 correspondence. This result is also apparent from FIG. 4 (right). Using a buffer solution of 70 mM mM HEPES (pH 7.0) as a solvent, emission at 580 nm was measured at room temperature and an excitation wavelength of 489 nm.
 実施例4:ペプチドタグを介したCPPによるタンパク質の細胞内運搬(共焦点レーザー顕微鏡)
 方法
 まず、細胞がディッシュ表面に吸着しやすい環境を作製するために、50μg/mL collagen type1をガラスボトムディッシュ(mini 3well)にコーティングした。次に、そのディッシュ上にグリオーマの一種であるU251MG細胞を1×104 cells/well播き、接着のために一晩インキュベートした。一方、200 μM EGFP-LZ(K)と200 μMのそれぞれの溶液とをマイクロチューブ中に10μLずつ加え、その混合溶液は室温で1時間インキュベートした。この混合溶液を終濃度が10 μMになるようにディッシュ中のU251細胞に加え、さらに37℃で4時間インキュベートした。最後に、ディッシュをPBSで2回洗浄し、培地に置換後、共焦点レーザー顕微鏡にてEGFP(緑色)およびペプチドに修飾したTmr(赤色)にて観察した。全部で8種類の組み合わせについて観測した。観測したそれらの組み合わせを以下に示す。
Example 4: Intracellular protein transport by CPP via peptide tag (confocal laser microscope)
Method First, a glass bottom dish (mini 3 well) was coated with 50 μg / mL collagen type 1 in order to prepare an environment in which cells are easily adsorbed on the dish surface. Next, 1 × 10 4 cells / well of U251MG cells, which are a type of glioma, were seeded on the dish and incubated overnight for adhesion. On the other hand, 200 μM EGFP-LZ (K) and 200 μM of each solution were added in a microtube, and the mixed solution was incubated at room temperature for 1 hour. This mixed solution was added to U251 cells in the dish to a final concentration of 10 μM, and further incubated at 37 ° C. for 4 hours. Finally, the dish was washed twice with PBS, replaced with a medium, and then observed with EGFP (green) and Tmr (red) modified with a peptide using a confocal laser microscope. A total of 8 combinations were observed. The observed combinations are shown below.
 結果
 (4-1)図5はEGFR-LZ(K)(前記Group 1に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。EGFP-LZ(K)は、LZ(K)が塩基性アミノ酸(リジン)をいくらか含む(29残基中10残基)ので、もしかしたら単独で(LZ(E)を併用せずに)細胞内に導入される可能性もあったが、実際には細胞に導入されることはなかった、ごくわずかに細胞の「へり」の部分に蛍光(緑色)が確認できるが、これはEGFP-LZ(K)が細胞の表面に非特異的に吸着しているものかと思われる。Tmr修飾ペプチドはインキュベートされていないので蛍光(赤色)は認められない。
Results (4-1) FIG. 5 is a confocal microscope image of U251MG cells incubated with EGFR-LZ (K) (corresponding to Group 1). EGFP-LZ (K) contains some basic amino acid (lysine) in LZ (K) (10 out of 29 residues), so it may be intracellular (without LZ (E)) Although there was a possibility that it was introduced into the cell, fluorescence (green) was observed in the “edge” of the cell, which was not actually introduced into the cell, but this was confirmed by EGFP-LZ ( It seems that K) is adsorbed nonspecifically on the cell surface. Since the Tmr-modified peptide is not incubated, no fluorescence (red) is observed.
 (4-2)図6はEGFR-LZ(K)とTmr-LZ(E)との混合溶液(前記Group 2に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。EGFP-LZ(K)とTmr-LZ(E)とはロイシンジッパー間でハイブリッドを形成するが、CPPが付加されていないために細胞内に導入されないことが予想される。結果として、EGFP-LZ(K)は細胞内に導入されていないことが観測できた。図5と同様にごくわずかに細胞の「へり」に吸着している様子が見て取れる。Tmr-LZ(E)はディッシュ全体に糸を引いたような感じで吸着している様子が見て取れるが詳細は不明である。 (4-2) FIG. 6 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (E) (corresponding to Group 2). EGFP-LZ (K) and Tmr-LZ (E) form a hybrid between leucine zippers, but are not expected to be introduced into cells because CPP is not added. As a result, it was observed that EGFP-LZ (K) was not introduced into the cells. As in FIG. 5, it can be seen that the cell is slightly adsorbed on the “edge”. Although Tmr-LZ (E) can be seen adsorbing as if the thread was pulled throughout the dish, details are unknown.
 (4-3)図7はEGFR-LZ(K)と11R-Tmr-LZ(E)との混合溶液(前記Group 3に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。EGFP-LZ(K)と11R-Tmr-LZ(E)とはロイシンジッパー間でハイブリッドを形成し、さらにCPPが付加されているために細胞内に導入されることが予想される。結果として、うまくEGFP-LZ(K)が細胞内に運搬されたことがわかった。また、11R-Tmr-LZ(E)も同時に細胞内に運搬されていることからEGFP-LZ(K)が11R-Tmr-LZ(E)を介して細胞内に運搬されていると考えられる。さらに興味深いことに両者の重ね合わせの画像(右側)では、EGFP-LZ(K)と11R-Tmr-LZ(E)が同じ位置に存在しているものだけでなく、それぞれが別々に細胞内に存在している様子も見て取れる。これは細胞内でEGFP-LZ(K)と11R-Tmr-LZ(E)とが分離していることを示唆している。このことは細胞内に運搬された後、タンパク質がCPPの影響を受けないことにつながる可能性もあり、本発明はタンパク質の効率的な細胞内での機能発現を期待できるものである。 (4-3) FIG. 7 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and 11R-Tmr-LZ (E) (corresponding to Group III). EGFP-LZ (K) and 11R-Tmr-LZ (E) form a hybrid between leucine zippers and are expected to be introduced into cells because CPP is added. As a result, it was found that EGFP-LZ (K) was successfully transported into the cell. Moreover, since 11R-Tmr-LZ (E) is also transported into the cell at the same time, it is considered that EGFP-LZ (K) is transported into the cell via 11R-Tmr-LZ (E). More interestingly, in the superimposed image of the two (right side), not only EGFP-LZ (K) and 11R-Tmr-LZ (E) are in the same position, You can see how it exists. This suggests that EGFP-LZ (K) and 11R-Tmr-LZ (E) are separated in the cell. This may lead to the protein not being affected by CPP after being transported into the cell, and the present invention can be expected to efficiently express the function of the protein in the cell.
 (4-4)図8はEGFR-LZ(K)とTmr-LZ(E)-11Rとの混合溶液(前記Group 4に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。これらの組み合わせでも結果として、うまくEGFP-LZ(K)を細胞内に運搬できることが分かった。先程の11R-Tmr-LZ(E)と比較して、Tmr-LZ(E)-11Rはペプチド中の11Rの位置が異なる。すなわち、11R-Tmr-LZ(E)はEGFP-LZ(K)とハイブリッドを形成すると、EGFPとCPPとが同じ向き(LZ(E)およびLZ(K)に対して同じ側)に存在するのに対し、Tmr-LZ(E)-11RはEGFP-LZ(K)とハイブリッドを形成すると、EGFPとCPPとが離れた向き(LZ(E)およびLZ(K)を挟んで反対側)に存在する。結果としては11Rがどちらの方向でペプチドに修飾されていても、同様にEGFP-LZ(K)を細胞内に運搬でき、それらの挙動に差は認められないことがわかった。 (4-4) FIG. 8 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (E) -11R (corresponding to Group IV4). As a result, it was found that EGFP-LZ (K) can be successfully transported into the cells even with these combinations. Compared to the previous 11R-Tmr-LZ (E), Tmr-LZ (E) -11R differs in the position of 11R in the peptide. That is, when 11R-Tmr-LZ (E) hybridizes with EGFP-LZ (K), EGFP and CPP are in the same orientation (on the same side as LZ (E) and LZ (K)) On the other hand, when Tmr-LZ (E) -11R forms a hybrid with EGFP-LZ (K), EGFP and CPP exist in the direction away (the opposite side across LZ (E) and LZ (K)) To do. As a result, it was found that EGFP-LZ (K) can be similarly transported into the cell regardless of which direction 11R is modified with the peptide, and there is no difference in their behavior.
 (4-5)図9はEGFR-LZ(K)とTmr-11Rとの混合溶液(前記Group 5に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。EGFP-LZ(K)とTmr-11Rとはハイブリッドを形成できないので、細胞内に導入されないことが予想される。予想通り、EGFP-LZ(K)は細胞内に運搬されなかった。一方、Tmr-11RはCPPが付加しているので、単独で細胞内に導入されている様子が見て取れる。これらの結果はEGFP-LZ(K)は単にCPPと混合しただけでは細胞内に導入できないことを示している。 (4-5) FIG. 9 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-11R (corresponding to Group 5). Since EGFP-LZ (K) and Tmr-11R cannot form a hybrid, it is expected that they will not be introduced into cells. As expected, EGFP-LZ (K) was not transported into the cell. On the other hand, since Tmr-11R is added with CPP, it can be seen that it is introduced into the cell alone. These results indicate that EGFP-LZ (K) cannot be introduced into cells simply by mixing with CPP.
 (4-6)図10はEGFR-LZ(K)とTmr-LZ(K)との混合溶液(前記Group 6に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。EGFP-LZ(K)とTmr-LZ(K)とはロイシンジッパー間でのハイブリッドは形成できない。さらにCPPが付加されていないために細胞内に導入されないことが予想される。予想通り、EGFP-LZ(K)は細胞内に導入されないし、Tmr-LZ(K)も細胞内に導入されなかった。 (4-6) FIG. 10 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (K) (corresponding to Group 6). EGFP-LZ (K) and Tmr-LZ (K) cannot form a hybrid between leucine zippers. Furthermore, since CPP is not added, it is expected not to be introduced into cells. As expected, EGFP-LZ (K) was not introduced into the cell and Tmr-LZ (K) was not introduced into the cell.
 (4-7)図11はEGFR-LZ(K)と11R-Tmr-LZ(K)との混合溶液(前記Group 7に対応)でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。EGFP-LZ(K)と11R-Tmr-LZ(K)とはロイシンジッパー間でのハイブリッドは形成できない。予想通り、11R-Tmr-LZ(K)は細胞内に運搬されるが、EGFP-LZ(K)は細胞内に導入されなかった。これらの結果は、EGFP-LZ(K)はLZ(E)と特異的なハイブリッドの結合を介してCPPと結合し、細胞内に運搬されることを明らかにしている。 (4-7) FIG. 11 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and 11R-Tmr-LZ (K) (corresponding to Group 7). EGFP-LZ (K) and 11R-Tmr-LZ (K) cannot form a hybrid between leucine zippers. As expected, 11R-Tmr-LZ (K) was transported into the cell, but EGFP-LZ (K) was not introduced into the cell. These results demonstrate that EGFP-LZ (K) binds to CPP through the binding of LZ (E) and a specific hybrid and is transported into the cell.
 (4-8)図12はEGFR-LZ(K)とTmr-LZ(K)-11Rとの混合溶液でインキュベートしたU251MG細胞の共焦点顕微鏡画像である。図11と比較してTmr-LZ(K)に11Rの修飾された場所が異なるが結果は同じであった。 (4-8) FIG. 12 is a confocal microscope image of U251MG cells incubated with a mixed solution of EGFR-LZ (K) and Tmr-LZ (K) -11R. Compared with FIG. 11, the place where 11R was modified in Tmr-LZ (K) was different, but the results were the same.
 以上の結果より、EGFP-LZ(K)はLZ(E)との特異的なハイブリッドを形成したときにだけ、CPPの細胞内導入能を獲得し、細胞内に運搬されることが分かった。またタンパク質の運搬体となるLZ(E)とCPPのコンジュゲートはそのコンジュゲート中のCPPの位置に依存せずに細胞内に運搬できることが明らかとなった。これらのことは、EGFP-LZ(K)を作成しておけば後からCPPを、金属結合等を用いずに毒性の低いペプチド-ペプチド相互作用によって細胞内運搬能を与えることができ、将来的に安全で効率的なタンパク質のドラッグデリバリーシステムとして活用できることを示している。 From the above results, it was found that EGFP-LZ (K) acquires the ability to introduce CPP into the cell and is transported into the cell only when it forms a specific hybrid with LZ (E). It was also clarified that the conjugate of LZ (E) and CPP, which is a protein carrier, can be transported into cells independently of the position of CPP in the conjugate. These can be achieved in the future by providing EGFP-LZ (K) to give intracellular transport ability to CPP by low-toxic peptide-peptide interaction without using metal bonds. It can be used as a safe and efficient protein drug delivery system.
配列番号1:Leucine zipper LZ(K)
配列番号2:Leucine zipper LZ(E)
配列番号3:Polyarginine
配列番号4:Peptide conjugate
Sequence number 1: Leucine zipper LZ (K)
Sequence number 2: Leucine zipper LZ (E)
Sequence number 3: Polyarginine
Sequence number 4: Peptide conjugate

Claims (6)

  1.  配列番号1のアミノ酸配列からなるロイシンジッパーペプチド[LZ(K)]もしくは当該アミノ酸配列中の1~8個のアミノ酸に対する変異を有するアミノ酸配列からなるロイシンジッパーペプチド[LZ(K)']または配列番号2のアミノ酸配列からなるロイシンジッパーペプチド[LZ(E)]もしくは当該アミノ酸配列中の1~8個のアミノ酸に対する変異を有するアミノ酸配列で表されるロイシンジッパーペプチド[LZ(E)']と、これに連結された細胞内侵入ペプチド[CPP]とを含むことを特徴とする、ペプチド複合体[A]。
    N'-EYQALKKKVAQLKAKNQALKKKVAQLKHK-C'                                                        配列番号1
    N'-EYQALEKEVAQLEAENQALEKEVAQLEHE-C'                                                        配列番号2
    A leucine zipper peptide [LZ (K)] consisting of the amino acid sequence of SEQ ID NO: 1 or a leucine zipper peptide [LZ (K) '] consisting of an amino acid sequence having a mutation with respect to 1 to 8 amino acids in the amino acid sequence or SEQ ID NO: A leucine zipper peptide [LZ (E)] consisting of two amino acid sequences or a leucine zipper peptide [LZ (E) '] represented by an amino acid sequence having a mutation to 1 to 8 amino acids in the amino acid sequence, and A peptide complex [A], comprising a cell-invading peptide [CPP] linked to a peptide.
    N′-EYQALKKKKVAQLKAKNQALKKKKVAQLKHK-C ′ SEQ ID NO: 1
    N′-EYQALEKEVAQLEAENQALEKEVAQLEHE-C ′ SEQ ID NO: 2
  2.  さらに、前記ロイシンジッパーペプチドおよび/または細胞内侵入ペプチドに連結された蛍光色素を含む、請求項1に記載のペプチド複合体[A]。 The peptide complex [A] according to claim 1, further comprising a fluorescent dye linked to the leucine zipper peptide and / or a cell-invading peptide.
  3.  前記蛍光色素が蛍光性アミノ酸である、請求項2に記載のペプチド複合体[A]。 The peptide complex [A] according to claim 2, wherein the fluorescent dye is a fluorescent amino acid.
  4.  請求項1~3のいずれかに記載のペプチド複合体[A]と、
     当該ペプチド複合体[A]に含まれる第一のロイシンジッパーペプチドと会合可能な第二のロイシンジッパーペプチドと、これに連結された細胞内への被運搬物質とを含むペプチド複合体[B]と
     から形成されることを特徴とする、ハイブリッド複合体;
     ここで、前記第一のロイシンジッパーペプチドが前記ロイシンジッパーペプチド[LZ(K)]もしくは[LZ(K)']である場合、前記第二のロイシンジッパーペプチドは前記ロイシンジッパーペプチド[LZ(E)]もしくは[LZ(E)']であり、前記第一のロイシンジッパーペプチドが前記ロイシンジッパーペプチド[LZ(E)]もしくは[LZ(E)']である場合、前記第二のロイシンジッパーペプチドは前記ロイシンジッパーペプチド[LZ(K)]もしくは[LZ(K)']である。
    The peptide complex [A] according to any one of claims 1 to 3,
    A peptide complex [B] comprising a second leucine zipper peptide capable of associating with the first leucine zipper peptide contained in the peptide complex [A], and a substance to be transported into the cells linked thereto; A hybrid complex characterized in that it is formed from:
    Here, when the first leucine zipper peptide is the leucine zipper peptide [LZ (K)] or [LZ (K) ′], the second leucine zipper peptide is the leucine zipper peptide [LZ (E) Or [LZ (E) ′], and the first leucine zipper peptide is the leucine zipper peptide [LZ (E)] or [LZ (E) ′], the second leucine zipper peptide is The leucine zipper peptide [LZ (K)] or [LZ (K) ′].
  5.  前記被運搬物質がタンパク質またはペプチドである、請求項4に記載のハイブリッド複合体。 The hybrid complex according to claim 4, wherein the transported substance is a protein or a peptide.
  6.  請求項4または5に記載のハイブリッド複合体を含有する治療薬または診断薬。 A therapeutic or diagnostic agent comprising the hybrid complex according to claim 4 or 5.
PCT/JP2012/076654 2011-10-25 2012-10-16 Novel peptide complex and hybrid complex thereof, and use of said hybrid complex WO2013061818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-233812 2011-10-25
JP2011233812 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013061818A1 true WO2013061818A1 (en) 2013-05-02

Family

ID=48167651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076654 WO2013061818A1 (en) 2011-10-25 2012-10-16 Novel peptide complex and hybrid complex thereof, and use of said hybrid complex

Country Status (2)

Country Link
JP (1) JPWO2013061818A1 (en)
WO (1) WO2013061818A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071279A2 (en) * 2009-12-11 2011-06-16 광주과학기술원 Bpb-based cargo delivery system
WO2011071280A2 (en) * 2009-12-11 2011-06-16 광주과학기술원 Intracelluar targeting bipodal peptide binder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537856B2 (en) * 1993-12-06 2004-06-14 株式会社パイオラックス Treatment device for tubular organs
GB2333772A (en) * 1998-01-31 1999-08-04 Procter & Gamble Complexing agents (eg ethylenediamine disuccinic acid) for use in selectively complexing copper, iron, zinc, nickel and cobalt in the presence of calcium
US20120264684A1 (en) * 2009-10-30 2012-10-18 Yasuhiro Kajihara Glycosylated Form of Antigenic GLP-1 Analogue
US9046520B2 (en) * 2010-02-10 2015-06-02 The United States of America, as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention Serologic correlates of protection against Bacillis anthracis infection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071279A2 (en) * 2009-12-11 2011-06-16 광주과학기술원 Bpb-based cargo delivery system
WO2011071280A2 (en) * 2009-12-11 2011-06-16 광주과학기술원 Intracelluar targeting bipodal peptide binder

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
APOSTOLOVIC B. ET AL.: "Hybrid polymer therapeutics incorporating bioresponsive, coiled coil peptide linkers", BIOMACROMOLECULES, vol. 11, 2010, pages 1187 - 1195, XP055069311 *
DURR E. ET AL.: "Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices", BIOCHEMISTRY, vol. 38, 1999, pages 870 - 880, XP055069326 *
HANSEN, M. B. ET AL.: "A modular and noncovalent transduction system for leucine-zipper-tagged proteins", CHEMBIOCHEM, vol. 12, August 2011 (2011-08-01), pages 2294 - 2297, XP055069309 *
JUN LU ET AL.: "Recombinant MafA protein containing its own protein transduction domain stimulates insulin gene expression in IEC-6 cells", LIFE SCIIENCES, vol. 89, July 2011 (2011-07-01), pages 72 - 77, XP003031626 *
WENDT, H. ET AL.: "Very rapid, ionic strength-dependent association and folding of a heterodimeric leucine zipper", BIOCHEMISTRY, vol. 36, 1997, pages 204 - 213, XP055069323 *

Also Published As

Publication number Publication date
JPWO2013061818A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
Apostolovic et al. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials
Jha et al. CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes
ES2547121T3 (en) Single chain antiparallel superhelix proteins
JP5295785B2 (en) Cell membrane permeable peptide
Klein et al. Lactam-stapled cell-penetrating peptides: cell uptake and membrane binding properties
CA2943228C (en) Stabilized fibronectin based scaffold molecules
Futaki et al. Arginine carrier peptide bearing Ni (II) chelator to promote cellular uptake of histidine-tagged proteins
US11046739B2 (en) BH4 stabilized peptides and uses thereof
WO2021167107A1 (en) Human transferrin receptor binding peptide
CN109475638B (en) Capsule for target tissue-specific delivery-type drug delivery system using carbosilane dendrimer
Nanda et al. 4 (R/S)-Guanidinylprolyl collagen peptides: on-resin synthesis, complexation with plasmid DNA, and the role of peptides in enhancement of transfection
Papadopoulos et al. Intracellular targets: A multiple cargo transporting molecule
WO2013061818A1 (en) Novel peptide complex and hybrid complex thereof, and use of said hybrid complex
Xu et al. A Template‐assembled Model of the N‐peptide Helix Bundle from HIV‐1 Gp‐41 with High Affinity for C‐peptide
EP4410816A1 (en) Peptide
WO2021040022A1 (en) Cell-penetrating peptide and use thereof
Cai et al. Peptides and peptidomimetics as tools to probe protein-protein interactions–disruption of HIV-1 gp41 fusion core and fusion inhibitor design
Ritchey et al. Bismuth-Cyclized Cell-Penetrating Peptides
Garcia Pindado Synthesis of biaryl bicyclic peptides for recognition of protein surfaces
Ghosh et al. Site-Selective Functionalization of Molecularly Imprinted Nanoparticles to Recognize Lysine-Rich Peptides
Wen Development and Application of Cell Penetrating Beta-Hairpin and Alpha-Helical Peptides
JP6373762B2 (en) Peptides for intracellular introduction of target molecules
Parlak Peptide-based drug systems
JP2022037654A (en) Compound localized in golgi body, and use of the same
TW202342494A (en) Peptide complex having TrkB binding activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843489

Country of ref document: EP

Kind code of ref document: A1