WO2013061493A1 - Induction heating cookware - Google Patents

Induction heating cookware Download PDF

Info

Publication number
WO2013061493A1
WO2013061493A1 PCT/JP2012/004433 JP2012004433W WO2013061493A1 WO 2013061493 A1 WO2013061493 A1 WO 2013061493A1 JP 2012004433 W JP2012004433 W JP 2012004433W WO 2013061493 A1 WO2013061493 A1 WO 2013061493A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter circuit
input power
predetermined
inverter
circuit
Prior art date
Application number
PCT/JP2012/004433
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 大輔
藤井 裕二
富永 博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013540616A priority Critical patent/JP5979386B2/en
Publication of WO2013061493A1 publication Critical patent/WO2013061493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like

Definitions

  • the present invention relates to an induction heating cooker that includes two inverter circuits and drives each inverter circuit by switching individually.
  • FIG. 5 is a block diagram showing the configuration of an induction heating cooker according to the prior art described in Patent Document 1, for example.
  • a rectifier circuit 52 rectifies AC power from an AC power supply 51, and DC output power from the rectifier circuit 52 is smoothed by a smoothing circuit including a choke coil 53 and a smoothing capacitor 54, and an inverter circuit 60a and To 60b.
  • the inverter circuit 60a includes a heating coil 55a, a resonance capacitor 56a, a switching transistor 58a, and a damper diode 57a.
  • the inverter circuit 60b includes a heating coil 55b, a resonance capacitor 56b, A switching transistor 58b and a damper diode 57b are provided.
  • the two inverter circuits 60 a and 60 b share the rectifier circuit 52, the choke coil 53, and the smoothing capacitor 54.
  • the switching elements 58a and 58b perform an on / off operation in accordance with a drive signal from the drive circuit 62.
  • the zero volt detection circuit 61 detects the zero point of the voltage between the terminals of the AC power supply 51 and outputs a zero point detection signal to the drive circuit 62.
  • the drive circuit 62 drives the two inverter circuits 60a and 60b alternately instead of simultaneously, and adjusts the heating power according to the drive time ratio.
  • the drive circuit 62 stops one of the inverter circuits near the zero point of the voltage between the terminals of the AC power supply 51.
  • the other inverter circuit is driven after passing through the zero point. Thereby, it is possible to prevent an inrush current from occurring in the heating coil 55a or 55b every time heating is started, and to eliminate the “knack and knack” sound generated in the pan when the inrush current is generated.
  • the same load such as a single iron plate or pan is placed on two heating coils, and only one heating coil is used for, for example, stewed cooking that requires a strong heating power.
  • an induction heating cooker that can change the heating area according to the cooking content, such as using two heating coils for teppanyaki cooking that requires a wide heating area, etc. Occurrence can be eliminated.
  • different loads are arranged directly above the two heating coils, and 2 similarly to the induction heating cooker according to the prior art.
  • An object of the present invention is to solve the above problems and to provide an induction heating cooker that can eliminate unpleasant sounds such as a pot knack caused by an inrush current when the pot is removed.
  • an induction heating cooker converts a direct current input from an alternating current power source through a rectifying and smoothing circuit into a predetermined first high frequency current, and a first load.
  • a first inverter circuit that supplies a first heating coil for induction heating, converts the direct current into a predetermined second high-frequency current, and supplies the second load to a second heating coil for induction heating
  • Induction heating cooking comprising a second inverter circuit, input current detection means for detecting an input current input from the AC power source to the rectifying and smoothing circuit, and control means for controlling the first and second inverter circuits
  • the control means has the first input power so that the input power of the first inverter circuit becomes a predetermined first input power larger than a predetermined first target input power in a predetermined first period.
  • the first inverter circuit is set so that the input power of the first inverter circuit becomes a predetermined third input power smaller than the first target input power in a predetermined second period following the first period.
  • the first and second inverter circuits are controlled so as to be the second target input power, and when it is detected that the input current is not more than a predetermined threshold value, the first and second inverter circuits are The inverter circuit is controlled to stop the heating operation of one inverter circuit that has been controlled so that the input power becomes the first or fourth input power at the detected timing.
  • the induction heating cooker when the first and second inverter circuits are driven alternately, the pan is removed from the first and second inverter circuits, and no load is applied.
  • the heating operation of the one inverter circuit can be quickly stopped as compared with the prior art. Therefore, the other inverter circuit can be controlled so as not to start the heating operation from the state in which the smoothing capacitor is substantially charged (smooth state), and the occurrence of inrush current to the heating coil is prevented to eliminate the pot knack noise. be able to.
  • FIG. 4 It is a block diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 1 of this invention. It is a timing chart which shows operation
  • movement of the induction heating cooking appliance of FIG. 4 is a timing chart showing temporal changes in input power of the first inverter circuit 4a and the second inverter circuit 4b when switching from time division control to continuous control in the second inverter circuit 4b of FIG. 1; 3B is a timing chart showing a time change of input power equivalent to a time change of input power of the second inverter circuit 4b of FIG. 3A. It is a timing chart which shows the operation
  • the induction heating cooker which concerns on a 1st aspect converts the direct current input from an alternating current power supply via a rectification smoothing circuit into the predetermined 1st high frequency current, and the 1st heating which carries out induction heating of the 1st load
  • an induction heating cooker comprising input current detection means for detecting an input current input from a power source to the rectifying and smoothing circuit, and control means for controlling the first and second inverter circuits, the control means comprises: Controlling the first inverter circuit so that the input power of the first inverter circuit becomes a predetermined first input power larger than a predetermined first target input power in a predetermined first period; The second inverter circuit is controlled so that the input power of the second inverter circuit becomes a predetermined second input power smaller than a predetermined
  • the first inverter circuit is controlled so that the input power of the first inverter circuit becomes a predetermined third input power smaller than the first target input power
  • the second The second inverter circuit is controlled so that the input power of the inverter circuit becomes a predetermined fourth input power larger than the second target input power
  • the first period and the second period are By repeating at a predetermined control cycle, the average input power of the first inverter circuit becomes the first target input power, and the average input power of the second inverter circuit becomes the second target input power.
  • the other inverter circuit can be controlled so as not to start the heating operation from the state in which the smoothing capacitor is substantially charged (smooth state), and the occurrence of inrush current to the heating coil is prevented to eliminate the pot knack noise. be able to.
  • the induction heating cooker according to the second aspect is the induction heating cooker according to the first aspect, wherein when the control means detects that the input current is equal to or less than the threshold value, Of the second inverter circuits, the other inverter circuit is controlled so that the input power of the other inverter circuit becomes a predetermined third target input power.
  • the heating operation of one inverter circuit which has become unloaded after the pan is removed, is quickly stopped as compared with the prior art, and the control method for the other inverter circuit is continuously performed independently. Can be changed to control. For this reason, the other inverter circuit can be controlled so as not to start the heating operation from the state in which the smoothing capacitor is substantially charged (smooth state), and the occurrence of inrush current to the heating coil can be prevented and Can be eliminated.
  • the induction heating cooker according to a third aspect is the induction heating cooker according to the second aspect, wherein the third target input power is the other inverter of the first and second target input powers. It is set to be the same as the target input power of the circuit.
  • the input power is arranged directly above the heating coil connected to the other inverter circuit that has been controlled to become the second or third input power. Stable power supply can be performed regardless of whether the control method of the other inverter circuit is changed with respect to the load to be performed.
  • An induction heating cooker is the induction heating cooker according to any one of the first to third aspects, wherein the second and third input powers are each set to zero. It is characterized by that.
  • An induction heating cooker is the induction heating cooker according to any one of the first to third aspects, wherein the frequency of the drive signal of the second inverter circuit in the first period is Is set to a frequency twice the frequency of the drive signal of the first inverter circuit in the first period, and the frequency of the drive signal of the first inverter circuit in the second period is the second frequency The frequency is set to twice the frequency of the drive signal of the second inverter circuit in the period.
  • An induction heating cooker is the induction heating cooker according to any one of the first to fifth aspects, and notifies the state of the heating operation of the first and second inverter circuits.
  • the control means controls the notifying means so as to notify that the one inverter circuit stops the heating operation after stopping the heating operation of the one inverter circuit. It is characterized by that.
  • the user can easily recognize, for example, visually or audibly that the heating operation is automatically stopped by removing the load immediately above the heating coil.
  • FIG. 1 is a block diagram showing the configuration of the induction heating cooker according to Embodiment 1 of the present invention.
  • the induction heating cooker according to the present embodiment includes an AC power source 1, a rectifying / smoothing circuit 13 including a rectifying circuit 2 and a smoothing capacitor 3, and a first heating coil for induction heating a first load. 5a, the second heating coil 5b for induction heating the second load, the first inverter circuit 4a, the second inverter circuit 4b, the first drive circuit 8a, and the second drive circuit 8b
  • the control means 9, the current detection means 10, the notification means 11 provided with the first notification means 11a and the second notification means 11b, and the zero volt detection circuit 12 are configured.
  • the first inverter circuit 4a includes a first resonant capacitor 6a and two first semiconductor switches 7a and 7b, and the first inverter circuit 4b includes a second resonant capacitor 6b and Two second semiconductor switches 7c and 7d are provided.
  • the rectifier circuit 2 rectifies and outputs an alternating current from the alternating current power source 1. Further, the output current from the rectifier circuit 2 is smoothed by the smoothing capacitor 3. The direct current from the smoothing capacitor 3 is output to the first inverter circuit 4a and the second inverter circuit 4b. Further, the current detection means 10 detects an input current input from the AC power source 1 to the rectifying / smoothing circuit 13 using, for example, a current transformer, detects a peak value of the detected input current, and detects the detected peak value. Is output to the control means 9.
  • the zero volt detection circuit 12 detects the zero point of the voltage between the terminals of the AC power supply 1, generates a zero point detection signal that is a pulse signal indicating the timing at which the zero point is detected, and outputs the zero point detection signal to the control means 9.
  • the control means 9 comprises a microcomputer, and based on the current detection signal from the current detection means 10 and the zero volt detection signal from the zero volt detection circuit 12, the first semiconductor switches 7a and 7b and the second semiconductor switch A control signal for controlling the switches 7c and 7d is generated and output to the first drive circuit 8a and the second drive circuit 8b.
  • the first drive circuit 8a generates a drive signal for driving the first semiconductor switches 7a and 7b based on the control signal from the control means 9, and outputs the drive signal to the first semiconductor switches 7a and 7b.
  • the second drive circuit 8b generates a drive signal for driving the second semiconductor switches 7c and 7d based on the control signal from the control means 9, and outputs the drive signal to the second semiconductor switches 7c and 7d. To do.
  • the control means 9 controls the first inverter circuit 4a and the second inverter so that the peak value of the input current detected by the current detection means 10 is substantially equal to a predetermined set value held in the microcomputer.
  • the first semiconductor switch 7a, 7b and the second semiconductor switch 7c, 7d in the circuit 4b are controlled to control the power of the first inverter circuit 4a and the second inverter circuit 4b.
  • the control means 9 outputs to the notification means 11 a signal indicating whether or not the first inverter circuit 4a is performing a heating operation and whether or not the second inverter circuit 4b is performing a heating operation. A specific method for controlling the first inverter circuit 4a and the second inverter circuit 4b by the control means 9 will be described later.
  • the first notification means 11a is a light-emitting diode, which is turned on when the first inverter circuit 4a is performing the heating operation, and is turned off when the first inverter circuit 4a is not performing the heating operation. The state of the heating operation of the first inverter circuit 4a is notified.
  • the second notification means 11b is a light emitting diode, and lights up when the second inverter circuit 4b is performing a heating operation, while it is turned on when the second inverter circuit 4b is halting a heating operation. The light is turned off and the state of the heating operation of the second inverter circuit 4b is notified.
  • the first inverter circuit 4a is a half bridge circuit.
  • the series connection circuit of the first semiconductor switches 7 a and 7 b is connected in parallel to the smoothing capacitor 3.
  • the series connection circuit of the first heating coil 5a and the first resonance capacitor 6a includes the midpoint of the series connection circuit of the first semiconductor switches 7a and 7b and the reference potential (ground potential) side of the smoothing capacitor 3. Between the two electrodes.
  • the first inverter circuit 4a converts a direct current input from the alternating current power supply 1 through the rectifying and smoothing circuit 13 into a predetermined first high-frequency current, and a first heating coil 5a that induction-heats the first load. To supply.
  • the second inverter circuit 4b is a half-bridge circuit.
  • the series connection circuit of the second semiconductor switches 7 c and 7 d is connected in parallel to the smoothing capacitor 3.
  • the series connection circuit of the second heating coil 5b and the second resonance capacitor 6b includes the midpoint of the series connection circuit of the second semiconductor switches 7c and 7d and the reference potential (ground potential) side of the smoothing capacitor 3.
  • the second inverter circuit 4b converts a direct current input from the alternating current power source 1 through the rectifying and smoothing circuit 13 into a predetermined second high frequency current, and a second heating coil 5b for induction heating the second load. To supply.
  • the first inverter circuit 4 a and the second inverter circuit 4 b share the rectifier circuit 2, the smoothing capacitor 3, and the current detection means 10.
  • first and second inverter circuits 4a and 4b of the present embodiment are each configured by a half bridge circuit, the same effects as those of the present embodiment can be obtained even when configured by a full bridge circuit.
  • the control means 9 controls the heating operation of the first inverter circuit 4a and the second inverter circuit 4b by outputting control signals to the first drive circuit 8a and the second drive circuit 8b.
  • the control means 9 heats only the first inverter circuit 4a
  • the control means 9 sets the first inverter circuit 4a so that the input power continuously becomes the predetermined first target input power P1. 1 inverter circuit 4a is controlled.
  • the second inverter circuit 4b continuously controls the second inverter circuit 4b so that the input power becomes the predetermined second target input power P2.
  • the circuit 4b is controlled.
  • the operation of heating only one of the first inverter circuit 4a and the second inverter circuit 4b as described above is referred to as “the inverter circuit is heated by continuous control”.
  • the control means 9 controls the first inverter circuit 4a and the second inverter circuit 4b as follows when both the first inverter circuit 4a and the second inverter circuit 4b are heated.
  • the control means 9 performs a predetermined control on the energization period in the high power mode and the energization period in the low power mode so that the average input power of the first inverter circuit 4a becomes the predetermined first target input power P1.
  • the first inverter circuit 4a is controlled so as to repeat at a cycle.
  • the input power of the first inverter circuit 4a is controlled to be a predetermined input power P1a larger than the first target input power P1, while in the low power mode.
  • the input power of the first inverter circuit 4a is controlled to be a predetermined input power P1b that is smaller than the first target input power P1.
  • the input power P1b in the low power mode is set to 0 W, and the first inverter circuit 4a stops operating.
  • the control means 9 determines the energization period in the high power mode and the energization period in the low power mode so that the average input power of the second inverter circuit 4b becomes the predetermined second target input power P2.
  • the second inverter circuit 4b is controlled so as to be repeated at the control cycle.
  • the input power of the second inverter circuit 4b is controlled to be a predetermined input power P2a larger than the second target input power P2, while in the low power mode.
  • the input power of the second inverter circuit 4b is controlled to be a predetermined input power P2b that is smaller than the second target input power P2.
  • the input power P2b in the low power mode is set to 0 W, and the second inverter circuit 4b stops operating.
  • the first target input power P1 and the second target input power P2 are set to arbitrary input powers by the user, for example.
  • control means 9 repeats the first inverter circuit 4a and the second inverter circuit 4b alternately and exclusively in the high power mode and in the low power mode at the above-described control cycle. To control.
  • the input powers P1b and P2b in the low power mode are set to 0 W, the first inverter circuit 4a and the second inverter circuit 4b are driven alternately without being driven simultaneously.
  • the control means 9 controls the power of the first heating coil 5a according to the ratio of the operation period of the first inverter circuit 4a in the high power mode, and the operation period of the second inverter circuit 4b in the high power mode.
  • the power of the second heating coil 5b is controlled according to the ratio.
  • the control means 9 switches from energization in the high power mode to energization in the low power mode in each inverter circuit 4a, 4b in accordance with the zero volt detection signal from the zero volt detection circuit 12. Or, switching from energization in the low power mode to energization in the high power mode.
  • the residual voltage of the smoothing capacitor 3 is suppressed to a relatively low voltage, and the first heating coil 5a or the second at the time of starting is suppressed.
  • the inrush current of the heating coil 5b can be suppressed.
  • the heating operation of both the first inverter circuit 4a and the second inverter circuit 4b as described above is "the heating operation of the first inverter circuit 4a and the second inverter circuit 4b is performed by time-sharing control". That's it.
  • control means 9 has a predetermined peak value of the input current detected by the current detection means 10 when the first inverter circuit 4a and the second inverter circuit 4b are heated by time division control.
  • the threshold value is less than or equal to the threshold value Ith
  • one of the first inverter circuit 4a and the second inverter circuit 4b was energized in the high power mode at the detected timing (that is, operated)
  • the heating operation of the inverter circuit was stopped, and the other inverter circuit that was energized in the low power mode at the detected timing (that is, in the present embodiment, the energization was stopped) was heated by continuous control. Make it work.
  • the target input power of the other inverter circuit described above is set to be the same as the target input power of the other inverter circuit just before the timing when the peak value of the input current becomes equal to or lower than the predetermined threshold value Ith. .
  • FIG. 2 is a timing chart showing the operation of the induction heating cooker of FIG.
  • a cooking mode for example, a cooking mode in which a stewed cooking such as curry or stew and a water heater are performed simultaneously is conceivable.
  • different first and second loads pans
  • the control means 9 heat-operates the 1st inverter circuit 4a and the 2nd inverter circuit 4b by time division control.
  • the first notification means 11a turns on the light emitting diode to visually notify the user that the first inverter circuit 4a is performing the heating operation
  • the second notification means 11b turns on the light emitting diode. By doing so, the user is visually informed that the second inverter circuit 4b is performing the heating operation.
  • the first inverter circuit 4a is switched from the energized state in the high power mode to the energized state in the low power mode
  • the inverter circuit 4b is switched from the energized state in the low power mode to the energized state in the high power mode.
  • the first inverter Since the circuit 4a operates in a no-load state, the input current from the AC power source 1 is extremely reduced. For this reason, as shown in FIG. 2, the peak value of the input current becomes equal to or less than the threshold value Ith at timing t51 after timing t5.
  • the control means 9 When the control means 9 detects that the peak value of the input current is equal to or less than the threshold value Ith at timing t51, the control means 9 performs the heating operation of the first inverter circuit 4a that has been energized in the high power mode at timing t51.
  • the first inverter circuit 4a is stopped at the next timing t6 when the energization state of the inverter circuit 4a is switched from energization in the high power mode to energization in the low power mode. Further, the control means 9 causes the second inverter circuit 4b to perform a heating operation independently by continuous control at timing t6.
  • the second inverter circuit 4b After the timing t6, the second inverter circuit 4b does not perform time-division control that repeats the heating operation and the stop at a predetermined control cycle, but performs continuous control so that the input power continuously becomes the second target input power P2. Heating operation. Furthermore, the control means 9 outputs to the notification means 11 a signal indicating that the first inverter circuit 4a has stopped the heating operation at timing t6. In response to this, the light emitting diode of the notification means 11a is turned off, and the user is visually notified that the pan has been removed from the first heating coil 5a.
  • FIG. 3A is a timing chart showing temporal changes in input power of the first inverter circuit 4a and the second inverter circuit 4b when switching from time-division control to continuous control in the second inverter circuit 4b of FIG.
  • FIG. 3B is a timing chart showing the time change of the input power equivalent to the time change of the input power of the second inverter circuit 4b of FIG. 3A.
  • the second target input power P2 of the second inverter circuit 4b is set to 1500 W, and the control period of the time division control is set to 20 milliseconds.
  • the second inverter circuit 4 performs the continuous heating operation so that the input power is continuously 1500 W.
  • the generated power (input power) from the second inverter circuit 4b does not change before and after the change of the control method (see FIG. 3B).
  • the induction heating cooker is (A) A first DC current input from the AC power supply 1 via the rectifying and smoothing circuit 13 is converted into a predetermined first high-frequency current and supplied to the first heating coil 5a for induction heating the first load.
  • input current detection means 10 for detecting an input current input from the AC power supply 1 to the rectifying and smoothing circuit 13;
  • a control means 9 for controlling the first and second inverter circuits 4a and 4b is provided.
  • the control means 9 is such that the input power of the first inverter circuit 4a is greater than the predetermined first target input power P1 in a predetermined first period (for example, the period from the timing t1 to t2 in FIG. 2).
  • the first inverter circuit 4a is controlled so as to have a large predetermined first input power P1a, and the second input power of the second inverter circuit 4b is smaller than the second predetermined target input power P2.
  • the second inverter circuit 4b is controlled so as to be the input power P2b.
  • the control means 9 determines that the input power of the first inverter circuit 4a is the first target input in a predetermined second period (for example, the period from timing t2 to t3 in FIG. 2) following the first period.
  • the first inverter circuit 4a is controlled so as to have a predetermined third input power P1b smaller than the power P1, and the input power of the second inverter circuit 4b is larger than the second target input power P2.
  • the second inverter circuit 4b is controlled so that the input power P2a becomes the same.
  • the control means 9 repeats the first period and the second period at a predetermined control cycle, whereby the average input power of the first inverter circuit 4a becomes the first target input power P1, and the second
  • the first and second inverter circuits 4a and 4b are controlled so that the average input power of the inverter circuit 4b is equal to the second target input power P2.
  • control means 9 detects that the peak value of the input current is less than or equal to a predetermined threshold value Ith, the detected timing (for example, in FIG. 2) of the first and second inverter circuits 4a and 4b. Control is performed so as to stop the heating operation of one inverter circuit that has been controlled so that the input power becomes the first input power P1a or the fourth input power P2a at the timing t51).
  • control means 9 detects that the peak value of the input current is equal to or less than the threshold value Ith, the control means 9 switches the other inverter circuit out of the first and second inverter circuits 4a and 4b to the other inverter. Control is performed so that the input power of the circuit becomes a predetermined third target input power.
  • the third target input power is set to be the same as the target input power of the other inverter circuit among the first and second target input powers P1 and P2.
  • the heating operation of one of the inverter circuits that has been removed from the pan and has become unloaded is quickly stopped as compared with the prior art, and the other The operation mode of the inverter circuit can be changed to an operation mode in which the heating operation is performed by continuous control independently. For this reason, the heating operation is not started from the state in which the smoothing capacitor 3 is substantially charged (smooth state), and the occurrence of inrush current to the first heating coil 5a and the second heating coil 5b is prevented. You can eliminate the sound of hot pot.
  • the input power P1b and P2b in the low power mode during the time division control is set to 0 W, so that the inverter circuit does not operate during the energization period in the low power mode. Therefore, the first and second inverter circuits 4a and 4b are not driven simultaneously. Therefore, it is possible to eliminate an interference sound (buzzing sound) generated by a resonance phenomenon due to a frequency difference between the high-frequency currents flowing in the two heating coils arranged close to each other.
  • the control means 9 is energized in the low power mode at the timing when the input current is detected to be equal to or lower than the threshold value Ith (that is, in the case of the present embodiment, The other inverter circuit that has been de-energized is heated by continuous control.
  • the target input power of the other inverter circuit described above is set to the target input power immediately before the timing when the peak value of the input current becomes equal to or lower than the predetermined threshold value Ith. Therefore, the inverter circuit is controlled by time-sharing control with respect to the load arranged immediately above the heating coil connected to the inverter circuit that has been de-energized at the timing when the input current is detected to be equal to or less than the threshold value Ith.
  • stable power supply can be performed regardless of whether the control is performed by continuous control (that is, regardless of the operation mode).
  • the induction heating cooker according to the first embodiment includes notification means 11 that notifies the state of the heating operation of the first inverter circuit 4a and the second inverter circuit 4b. Further, when the control means 9 stops the heating operation of one of the first inverter circuit 4a and the second inverter circuit 4b based on the input current, the heating of the one inverter circuit is stopped.
  • the notification means 11 notifies that the operation is stopped. Therefore, the user can easily recognize visually that the load is removed from directly above the heating coil and the heating operation is automatically stopped.
  • the first notification means 11a and the second notification means 11b are light emitting diodes, but the present invention is not limited to this, and may be other notification means such as a buzzer. When the 1st alerting
  • control means 9 performs power control using an input current from an AC power supply, but the present invention is not limited to this.
  • the control means 9 may perform power control using a resonance current or voltage generated in the first heating coil 5a and the second heating coil 5b, the first resonance capacitor 6a, and the second resonance capacitor 6b.
  • the control cycle of the first inverter circuit 4a and the second inverter circuit 4b at the time-sharing control is set to 20 milliseconds, and in the high power mode.
  • the energization period length (that is, the operation period length) and the energization period length in the low power mode (that is, the stop period length) were set to 10 milliseconds, respectively, and the operation was performed alternately, but the present invention is not limited to this, Even if the control period, the operation period length, and the stop period length are different from these values, the same effect as the present embodiment can be obtained.
  • the control means 9 switches the input power of the second inverter circuit 4b between 3000 W and 0 W during the time-sharing control so that the average input power is 1500 W, and the input power during the continuous control.
  • the present invention is not limited to this, and even if the target input power is other than 1500 W, the same effect as this embodiment can be obtained. can get.
  • FIG. 4 is a timing chart showing the operation of the induction heating cooker of FIG. 1 according to Embodiment 2 of the present invention.
  • the input power P1b of the first inverter circuit 4a is set to 0 W
  • the second inverter circuit 4b in the low power mode During the energization period, the input power P2b of the second inverter circuit 4b was set to 0W.
  • the input power P1b of the first inverter circuit 4a is other than 0W, which is smaller than the first target input power P1. Control is performed to achieve a predetermined input power. Further, during the energization period of the second inverter circuit 4b in the low power mode, the input power P2b of the second inverter circuit 4b is controlled to be a predetermined input power other than 0 W, which is smaller than the second target input power P2. Is done.
  • the control means 9 outputs control signals to the first drive circuit 8a and the second drive circuit 8b to perform the heating operation of the first inverter circuit 4a and the second inverter circuit 4b. Control. At this time, the first inverter circuit 4a and the second inverter circuit 4b are controlled so that energization in the high power mode and energization in the low power mode are alternately and exclusively repeated at a predetermined control cycle. Further, the control means 9 controls the power of the first heating coil 5a by the average input power for each control cycle of the first inverter circuit 4a, and changes the first by the average input power for each control cycle of the second inverter circuit 4b. The power control of the second heating coil 5b is performed.
  • the high power mode of the first inverter circuit 4a is described as A
  • the low power mode of the first inverter circuit 4a is described as B
  • the high power mode of the second inverter circuit 4b is described as C.
  • the low power mode of the second inverter circuit 4b is denoted as D.
  • the first inverter circuit 4a is operating in the high power mode A
  • the second inverter circuit 4b is operated in the low power mode D
  • the first inverter circuit 4a is operated in the low power mode D
  • the second inverter circuit 4b is operated in the high power mode C.
  • the frequency of the drive signal (hereinafter referred to as drive frequency) of the semiconductor switch elements 7a, 7b, 7c and 7d in each mode A, B, C and D is set as follows. (1) The drive frequency of the semiconductor switch elements 7a and 7b in the high power mode A of the first inverter circuit 4a is set to 25 kHz. (2) The drive frequency of the semiconductor switch elements 7a and 7b in the low power mode B of the first inverter circuit 4a is set to 46 kHz. (3) The drive frequency of the semiconductor switch elements 7c and 7d in the high power mode C of the second inverter circuit 4b is set to 23 kHz. (4) The drive frequency of the semiconductor switch elements 7c and 7d in the low power mode D of the second inverter circuit 4b is set to 50 kHz.
  • the drive frequency (46 kHz) of the low power mode B of the first inverter circuit 4a is set to a frequency twice the drive frequency (23 kHz) of the high power mode C of the second inverter circuit 4b.
  • the drive frequency (50 kHz) of the low power mode D of the inverter circuit 4b is set to a frequency twice the drive frequency (25 kHz) of the high power mode A of the first inverter circuit 4a.
  • the first inverter circuit 4a and the second inverter circuit 4b are heated by time-sharing control, and energization and low power in the high power mode are performed.
  • Control is performed so that energization in the mode is alternately and exclusively repeated at a predetermined control cycle. Furthermore, the drive frequency of one inverter circuit energized in the low power mode is set to a frequency twice that of the other inverter circuit energized in the high power mode. Therefore, there is no frequency difference between the frequency of the second harmonic of the drive signal of one inverter circuit and the frequency of the drive signal of the other inverter circuit.
  • the driving frequency of the semiconductor switch in either the first or second inverter circuit that is operating in the low power mode is the same as that in the high power mode.
  • the frequency of the second harmonic of the drive signal of one inverter circuit and the frequency of the drive signal of the other inverter circuit are set to a frequency twice the drive frequency of the semiconductor switch in the other inverter circuit. Since no frequency difference occurs between the two, the interference sound (buzzing sound) can be eliminated.
  • the driving frequencies in the high power modes A and C of the first inverter circuit 4a and the second inverter circuit 4b are set to 25 kHz and 23 kHz, respectively.
  • the present invention is not limited to this, and the same effect as in the present embodiment can be obtained even at a driving frequency different from the above-described driving frequency.
  • the input current detecting means 10 detects the peak value of the input current input from the AC power supply 1 to the rectifying and smoothing circuit 13, and the control means 9 has a predetermined threshold value of the input current. Although it is detected that the value is equal to or less than the value Ith, the present invention is not limited to this.
  • the input current detection means 10 may detect the input current input from the AC power supply 1 to the rectifying / smoothing circuit 13. Further, the control means 9 has a predetermined threshold value calculated based on the input current between the zero points of the voltage between the terminals of the AC power supply 1 (half period of the AC voltage from the AC power supply 1). What is necessary is just to detect that it is below a value.
  • control means 9 calculates the integrated value of the input current by detecting and summing the input current a plurality of times during the half cycle of the AC voltage from the AC power supply 1, and calculates the calculated integral. You may detect that a value is below a predetermined threshold value. Further, the control means 9 smoothes the input current waveform to such an extent that detection delay does not become a problem in the half cycle period of the AC voltage from the AC power supply 1, and after smoothing at a predetermined timing in the latter half of the half cycle period. It may be detected that the input current is less than or equal to a predetermined threshold value.
  • the induction heating cooker according to the present invention generates a pot knack sound from a pan placed just above the other heating coil even when the load is removed from just above one heating coil. Since it can prevent, it is effective in the induction heating cooking appliances which energize two heating coils alternately and exclusively without being limited by the mounting state of the load immediately above the heating coil.

Abstract

A first inverter circuit (4a) and a second inverter circuit (4b) are controlled such that each inverter supplies electricity in a high-power mode and in a low-power mode alternately and exclusively in a repeated manner at a predetermined control cycle. When the peak vale of an input current input from an alternating-current power supply (1) to a rectification smoothing circuit (13) has become equal to or lower than a threshold value Ith, the heating operation of either the first inverter circuit (4a) or the second inverter circuit (4b), whichever is supplying electricity in the high-power mode, is stopped, and the other inverter circuit alone is controlled to perform the heating operation by means of continuous control.

Description

誘導加熱調理器Induction heating cooker
 本発明は、2つのインバータ回路を備え、各インバータ回路を個々に切り替えて駆動する誘導加熱調理器に関する。 The present invention relates to an induction heating cooker that includes two inverter circuits and drives each inverter circuit by switching individually.
 図5は、例えば特許文献1に記載の従来技術に係る誘導加熱調理器の構成を示すブロック図である。図5において、整流回路52は交流電源51からの交流電力を整流し、整流回路52からの直流出力電力は、チョークコイル53及び平滑コンデンサ54を備えた平滑回路によって平滑化され、インバータ回路60aおよび60bに出力される。ここで、インバータ回路60aは、加熱コイル55aと、共振コンデンサ56aと、スイッチング用のトランジスタ58aと、ダンパーダイオード57aとを備えて構成され、インバータ回路60bは、加熱コイル55bと、共振コンデンサ56bと、スイッチング用のトランジスタ58bと、ダンパーダイオード57bとを備えて構成される。2つのインバータ回路60a、60bは、整流回路52と、チョークコイル53と、平滑コンデンサ54とを共有している。また、スイッチング素子58a、58bは駆動回路62からの駆動信号に従ってオン/オフ動作を行う。 FIG. 5 is a block diagram showing the configuration of an induction heating cooker according to the prior art described in Patent Document 1, for example. In FIG. 5, a rectifier circuit 52 rectifies AC power from an AC power supply 51, and DC output power from the rectifier circuit 52 is smoothed by a smoothing circuit including a choke coil 53 and a smoothing capacitor 54, and an inverter circuit 60a and To 60b. Here, the inverter circuit 60a includes a heating coil 55a, a resonance capacitor 56a, a switching transistor 58a, and a damper diode 57a. The inverter circuit 60b includes a heating coil 55b, a resonance capacitor 56b, A switching transistor 58b and a damper diode 57b are provided. The two inverter circuits 60 a and 60 b share the rectifier circuit 52, the choke coil 53, and the smoothing capacitor 54. The switching elements 58a and 58b perform an on / off operation in accordance with a drive signal from the drive circuit 62.
 図5において、ゼロボルト検知回路61は、交流電源51の端子間電圧のゼロ点を検知し、ゼロ点検知信号を駆動回路62に出力する。また、駆動回路62は、2つのインバータ回路60a、60bを同時に駆動せず交互に駆動し、その駆動時間比率により火力を調整する。また、駆動回路62は、インバータ回路60a、60bのうちの一方のインバータ回路の動作中に他方のインバータ回路に切り替えるときは、交流電源51の端子間電圧のゼロ点付近で一方のインバータ回路を停止させ、ゼロ点通過後に他方のインバータ回路を駆動する。これにより、加熱開始毎に加熱コイル55aまたは55bに突入電流が発生することを防止して、突入電流の発生時に鍋に発生する「コツコツ」という鍋コツ音をなくすことができる。 In FIG. 5, the zero volt detection circuit 61 detects the zero point of the voltage between the terminals of the AC power supply 51 and outputs a zero point detection signal to the drive circuit 62. In addition, the drive circuit 62 drives the two inverter circuits 60a and 60b alternately instead of simultaneously, and adjusts the heating power according to the drive time ratio. Further, when switching to the other inverter circuit during the operation of one of the inverter circuits 60a and 60b, the drive circuit 62 stops one of the inverter circuits near the zero point of the voltage between the terminals of the AC power supply 51. The other inverter circuit is driven after passing through the zero point. Thereby, it is possible to prevent an inrush current from occurring in the heating coil 55a or 55b every time heating is started, and to eliminate the “knack and knack” sound generated in the pan when the inrush current is generated.
特開平2-270293号公報JP-A-2-270293
 上述した従来技術によれば、2つの加熱コイル上に単一の鉄板または鍋などの同一の負荷を載置し、例えば、強い火力を必要とする煮込み調理等には1つの加熱コイルのみを使用し、広い加熱面積を必要とする鉄板焼調理等には2つの加熱コイルを使用するというように、調理内容に応じて加熱面積を変化させることができる誘導加熱調理器の場合には鍋コツ音の発生をなくすことができる。しかしながら、例えば、1つの加熱コイルをそれぞれ有する2口の調理ヒーターを備えた誘導加熱調理器において、2つの加熱コイル直上に異なる負荷をそれぞれ配置し、従来技術に係る誘導加熱調理器と同様に2つのインバータ回路を制御すると、一方の加熱コイル直上から負荷が取り除かれた時に他方の加熱コイル直上に配置された鍋から鍋コツ音が発生することがある。 According to the above-described prior art, the same load such as a single iron plate or pan is placed on two heating coils, and only one heating coil is used for, for example, stewed cooking that requires a strong heating power. However, in the case of an induction heating cooker that can change the heating area according to the cooking content, such as using two heating coils for teppanyaki cooking that requires a wide heating area, etc. Occurrence can be eliminated. However, for example, in an induction heating cooker provided with two cooking heaters each having one heating coil, different loads are arranged directly above the two heating coils, and 2 similarly to the induction heating cooker according to the prior art. When one inverter circuit is controlled, when a load is removed from just above one heating coil, a pot knack noise may be generated from a pan placed just above the other heating coil.
 上述した現象が発生する理由を以下に述べる。交流電源からの入力電流と、加熱コイルに流れる共振電流あるいは共振コンデンサに発生する共振電圧とに基づいて、加熱コイル上から負荷が取り除かれたことを検知して加熱動作を停止する方法が既に知られている。ここで、特に素早く負荷が取り除かれた場合には、加熱コイル直上が無負荷の状態となってから加熱動作を停止するまでに若干の時間遅れが生じる場合がある。2つの加熱コイルを備えた誘導加熱調理器において、一方の加熱コイル上から負荷が取り除かれてから当該一方の加熱コイルの動作を停止するまでの期間中は、当該一方の加熱コイルは無負荷での加熱動作を行うことになるので、例えば図5の平滑コンデンサ54から放電される電荷は極めて少なくなり、平滑コンデンサ54は実質的に充電された状態(平滑状態)となる。さらに、2つの加熱コイルは交互に動作するため、負荷が配置されたままの他方の加熱コイルには加熱開始毎に突入電流が流れ、当該他方の加熱コイル上の負荷から鍋コツ音が発生する。 The reason why the above phenomenon occurs will be described below. There is already known a method for detecting that the load has been removed from the heating coil and stopping the heating operation based on the input current from the AC power source and the resonance current flowing in the heating coil or the resonance voltage generated in the resonance capacitor. It has been. Here, in particular, when the load is removed quickly, there may be a slight time delay from when the heating coil is overloaded until the heating operation is stopped. In an induction heating cooker having two heating coils, during the period from when the load is removed from one heating coil until the operation of the one heating coil is stopped, the one heating coil is unloaded. Therefore, for example, the electric charge discharged from the smoothing capacitor 54 in FIG. 5 is extremely small, and the smoothing capacitor 54 is substantially charged (smooth state). In addition, since the two heating coils operate alternately, an inrush current flows to the other heating coil with the load being placed each time heating is started, and a pot knack noise is generated from the load on the other heating coil. .
 本発明の目的は以上の問題点を解決し、鍋が取り除かれた時の突入電流を原因とする鍋コツ音等の不愉快な音をなくすことができる誘導加熱調理器を提供することにある。 An object of the present invention is to solve the above problems and to provide an induction heating cooker that can eliminate unpleasant sounds such as a pot knack caused by an inrush current when the pot is removed.
 前記従来の課題を解決するために、本発明に係る誘導加熱調理器は、交流電源から整流平滑回路を介して入力される直流電流を所定の第1の高周波電流に変換し、第1の負荷を誘導加熱する第1の加熱コイルに供給する第1のインバータ回路と、上記直流電流を所定の第2の高周波電流に変換し、第2の負荷を誘導加熱する第2の加熱コイルに供給する第2のインバータ回路と、交流電源から上記整流平滑回路に入力される入力電流を検知する入力電流検知手段と、上記第1および第2のインバータ回路を制御する制御手段とを備えた誘導加熱調理器において、上記制御手段は、所定の第1の期間において、上記第1のインバータ回路の入力電力が所定の第1の目標入力電力より大きい所定の第1の入力電力になるように上記第1のインバータ回路を制御するとともに、上記第2のインバータ回路の入力電力が所定の第2の目標入力電力より小さい所定の第2の入力電力になるように上記第2のインバータ回路を制御し、上記第1の期間に続く所定の第2の期間において、上記第1のインバータ回路の入力電力が上記第1の目標入力電力より小さい所定の第3の入力電力になるように上記第1のインバータ回路を制御するとともに、上記第2のインバータ回路の入力電力が上記第2の目標入力電力より大きい所定の第4の入力電力になるように上記第2のインバータ回路を制御し、上記第1の期間と上記第2の期間とを所定の制御周期で繰り返すことにより、上記第1のインバータ回路の平均入力電力が上記第1の目標入力電力になり、上記第2のインバータ回路の平均入力電力が上記第2の目標入力電力になるように、上記第1および第2のインバータ回路を制御し、上記入力電流が所定のしきい値以下であることを検知したとき、上記第1および第2のインバータ回路のうち、当該検知したタイミングにおいて入力電力が上記第1または第4の入力電力になるように制御していた一方のインバータ回路の加熱動作を停止するように制御することを特徴とする。 In order to solve the conventional problem, an induction heating cooker according to the present invention converts a direct current input from an alternating current power source through a rectifying and smoothing circuit into a predetermined first high frequency current, and a first load. A first inverter circuit that supplies a first heating coil for induction heating, converts the direct current into a predetermined second high-frequency current, and supplies the second load to a second heating coil for induction heating Induction heating cooking comprising a second inverter circuit, input current detection means for detecting an input current input from the AC power source to the rectifying and smoothing circuit, and control means for controlling the first and second inverter circuits In the apparatus, the control means has the first input power so that the input power of the first inverter circuit becomes a predetermined first input power larger than a predetermined first target input power in a predetermined first period. Inva And controlling the second inverter circuit so that the input power of the second inverter circuit becomes a predetermined second input power smaller than a predetermined second target input power. The first inverter circuit is set so that the input power of the first inverter circuit becomes a predetermined third input power smaller than the first target input power in a predetermined second period following the first period. And controlling the second inverter circuit so that the input power of the second inverter circuit becomes a predetermined fourth input power larger than the second target input power, and the first period; By repeating the second period at a predetermined control cycle, the average input power of the first inverter circuit becomes the first target input power, and the average input power of the second inverter circuit The first and second inverter circuits are controlled so as to be the second target input power, and when it is detected that the input current is not more than a predetermined threshold value, the first and second inverter circuits are The inverter circuit is controlled to stop the heating operation of one inverter circuit that has been controlled so that the input power becomes the first or fourth input power at the detected timing.
 本発明に係る誘導加熱調理器によれば、第1および第2のインバータ回路を交互に駆動しているときに、第1および第2のインバータ回路のうち、鍋が取り除かれて無負荷の状態となった一方のインバータ回路の加熱動作を従来技術に比較して素早く停止させることができる。従って、他方のインバータ回路を、平滑コンデンサが実質的に充電された状態(平滑状態)から加熱動作を開始しないように制御でき、加熱コイルへの突入電流の発生を防止して鍋コツ音をなくすことができる。 According to the induction heating cooker according to the present invention, when the first and second inverter circuits are driven alternately, the pan is removed from the first and second inverter circuits, and no load is applied. Thus, the heating operation of the one inverter circuit can be quickly stopped as compared with the prior art. Therefore, the other inverter circuit can be controlled so as not to start the heating operation from the state in which the smoothing capacitor is substantially charged (smooth state), and the occurrence of inrush current to the heating coil is prevented to eliminate the pot knack noise. be able to.
本発明の実施の形態1に係る誘導加熱調理器の構成を示すブロック図である。It is a block diagram which shows the structure of the induction heating cooking appliance which concerns on Embodiment 1 of this invention. 図1の誘導加熱調理器の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the induction heating cooking appliance of FIG. 図1の第2のインバータ回路4bにおいて時分割制御から連続制御に切り替えるときの第1のインバータ回路4a及び第2のインバータ回路4bの入力電力の時間変化を示すタイミングチャートである。4 is a timing chart showing temporal changes in input power of the first inverter circuit 4a and the second inverter circuit 4b when switching from time division control to continuous control in the second inverter circuit 4b of FIG. 1; 図3Aの第2のインバータ回路4bの入力電力の時間変化と等価な入力電力の時間変化を示すタイミングチャートである。3B is a timing chart showing a time change of input power equivalent to a time change of input power of the second inverter circuit 4b of FIG. 3A. 図1の誘導加熱調理器の本発明の実施の形態2に係る動作を示すタイミングチャートである。It is a timing chart which shows the operation | movement which concerns on Embodiment 2 of this invention of the induction heating cooking appliance of FIG. 従来技術に係る誘導加熱調理器の構成を示すブロック図である。It is a block diagram which shows the structure of the induction heating cooking appliance which concerns on a prior art.
 第1の態様に係る誘導加熱調理器は、交流電源から整流平滑回路を介して入力される直流電流を所定の第1の高周波電流に変換し、第1の負荷を誘導加熱する第1の加熱コイルに供給する第1のインバータ回路と、上記直流電流を所定の第2の高周波電流に変換し、第2の負荷を誘導加熱する第2の加熱コイルに供給する第2のインバータ回路と、交流電源から上記整流平滑回路に入力される入力電流を検知する入力電流検知手段と、上記第1および第2のインバータ回路を制御する制御手段とを備えた誘導加熱調理器において、上記制御手段は、所定の第1の期間において、上記第1のインバータ回路の入力電力が所定の第1の目標入力電力より大きい所定の第1の入力電力になるように上記第1のインバータ回路を制御するとともに、上記第2のインバータ回路の入力電力が所定の第2の目標入力電力より小さい所定の第2の入力電力になるように上記第2のインバータ回路を制御し、上記第1の期間に続く所定の第2の期間において、上記第1のインバータ回路の入力電力が上記第1の目標入力電力より小さい所定の第3の入力電力になるように上記第1のインバータ回路を制御するとともに、上記第2のインバータ回路の入力電力が上記第2の目標入力電力より大きい所定の第4の入力電力になるように上記第2のインバータ回路を制御し、上記第1の期間と上記第2の期間とを所定の制御周期で繰り返すことにより、上記第1のインバータ回路の平均入力電力が上記第1の目標入力電力になり、上記第2のインバータ回路の平均入力電力が上記第2の目標入力電力になるように、上記第1および第2のインバータ回路を制御し、上記入力電流が所定のしきい値以下であることを検知したとき、上記第1および第2のインバータ回路のうち、当該検知したタイミングにおいて入力電力が上記第1または第4の入力電力になるように制御していた一方のインバータ回路の加熱動作を停止するように制御することを特徴とする。 The induction heating cooker which concerns on a 1st aspect converts the direct current input from an alternating current power supply via a rectification smoothing circuit into the predetermined 1st high frequency current, and the 1st heating which carries out induction heating of the 1st load A first inverter circuit to be supplied to the coil, a second inverter circuit to convert the DC current into a predetermined second high-frequency current and to supply a second heating coil for induction heating the second load, and AC In an induction heating cooker comprising input current detection means for detecting an input current input from a power source to the rectifying and smoothing circuit, and control means for controlling the first and second inverter circuits, the control means comprises: Controlling the first inverter circuit so that the input power of the first inverter circuit becomes a predetermined first input power larger than a predetermined first target input power in a predetermined first period; The second inverter circuit is controlled so that the input power of the second inverter circuit becomes a predetermined second input power smaller than a predetermined second target input power, and a predetermined value following the first period is determined. In the second period, the first inverter circuit is controlled so that the input power of the first inverter circuit becomes a predetermined third input power smaller than the first target input power, and the second The second inverter circuit is controlled so that the input power of the inverter circuit becomes a predetermined fourth input power larger than the second target input power, and the first period and the second period are By repeating at a predetermined control cycle, the average input power of the first inverter circuit becomes the first target input power, and the average input power of the second inverter circuit becomes the second target input power. As described above, when the first and second inverter circuits are controlled and it is detected that the input current is equal to or lower than a predetermined threshold value, the detected timing of the first and second inverter circuits. The control is performed to stop the heating operation of one inverter circuit that has been controlled so that the input power becomes the first or fourth input power.
 従って、第1および第2のインバータ回路を交互に駆動しているときに、第1および第2のインバータ回路のうち、鍋が取り除かれて無負荷の状態となった一方のインバータ回路の加熱動作を従来技術に比較して素早く停止させることができる。従って、他方のインバータ回路を、平滑コンデンサが実質的に充電された状態(平滑状態)から加熱動作を開始しないように制御でき、加熱コイルへの突入電流の発生を防止して鍋コツ音をなくすことができる。 Therefore, when the first and second inverter circuits are driven alternately, the heating operation of one of the first and second inverter circuits that has been removed from the pan and has no load. Can be quickly stopped as compared with the prior art. Therefore, the other inverter circuit can be controlled so as not to start the heating operation from the state in which the smoothing capacitor is substantially charged (smooth state), and the occurrence of inrush current to the heating coil is prevented to eliminate the pot knack noise. be able to.
 第2の態様に係る誘導加熱調理器は、第1の態様に係る誘導加熱調理器において、上記制御手段は、上記入力電流が上記しきい値以下であることを検知したとき、上記第1および第2のインバータ回路のうち、他方のインバータ回路を、当該他方のインバータ回路の入力電力が所定の第3の目標入力電力になるように制御することを特徴とする。 The induction heating cooker according to the second aspect is the induction heating cooker according to the first aspect, wherein when the control means detects that the input current is equal to or less than the threshold value, Of the second inverter circuits, the other inverter circuit is controlled so that the input power of the other inverter circuit becomes a predetermined third target input power.
 従って、鍋が取り除かれて無負荷の状態となった一方のインバータ回路の加熱動作を従来技術に比較して素早く停止させ、他方のインバータ回路の制御方法を単独で連続的に加熱動作を行う連続制御に変更することができる。このため、平滑コンデンサが実質的に充電された状態(平滑状態)から加熱動作を開始しないように、他方のインバータ回路を制御でき、加熱コイルへの突入電流の発生を防止して鍋コツ音をなくすことができる。 Therefore, the heating operation of one inverter circuit, which has become unloaded after the pan is removed, is quickly stopped as compared with the prior art, and the control method for the other inverter circuit is continuously performed independently. Can be changed to control. For this reason, the other inverter circuit can be controlled so as not to start the heating operation from the state in which the smoothing capacitor is substantially charged (smooth state), and the occurrence of inrush current to the heating coil can be prevented and Can be eliminated.
 第3の態様に係る誘導加熱調理器は、第2の態様に係る誘導加熱調理器において、上記第3の目標入力電力は、上記第1および第2の目標入力電力のうち、上記他方のインバータ回路の目標入力電力と同一であるように設定されることを特徴とする。 The induction heating cooker according to a third aspect is the induction heating cooker according to the second aspect, wherein the third target input power is the other inverter of the first and second target input powers. It is set to be the same as the target input power of the circuit.
 従って、入力電流がしきい値以下であることを検出したタイミングにおいて、入力電力が第2または第3の入力電力になるように制御していた他方のインバータ回路に接続された加熱コイル直上に配置される負荷に対して、当該他方のインバータ回路の制御方法が変更されたことに関わらず、安定した電力供給を行うことができる。 Therefore, at the timing when it is detected that the input current is less than the threshold value, the input power is arranged directly above the heating coil connected to the other inverter circuit that has been controlled to become the second or third input power. Stable power supply can be performed regardless of whether the control method of the other inverter circuit is changed with respect to the load to be performed.
 第4の態様に係る誘導加熱調理器は、第1から第3のうちのいずれか1つの態様に係る誘導加熱調理器において、上記第2および第3の入力電力は、それぞれゼロに設定されることを特徴とする。 An induction heating cooker according to a fourth aspect is the induction heating cooker according to any one of the first to third aspects, wherein the second and third input powers are each set to zero. It is characterized by that.
 従って、第1および第2のインバータ回路は同時に駆動されないので、干渉音(唸り音)をなくすことができる。 Therefore, since the first and second inverter circuits are not driven at the same time, it is possible to eliminate interference sound (buzzing sound).
 第5の態様に係る誘導加熱調理器は、第1から第3のうちのいずれか1つの態様に係る誘導加熱調理器において、上記第1の期間における上記第2のインバータ回路の駆動信号の周波数は、上記第1の期間における上記第1のインバータ回路の駆動信号の周波数の2倍の周波数に設定され、上記第2の期間における上記第1のインバータ回路の駆動信号の周波数は、上記第2の期間における上記第2のインバータ回路の駆動信号の周波数の2倍の周波数に設定されたことを特徴とする。 An induction heating cooker according to a fifth aspect is the induction heating cooker according to any one of the first to third aspects, wherein the frequency of the drive signal of the second inverter circuit in the first period is Is set to a frequency twice the frequency of the drive signal of the first inverter circuit in the first period, and the frequency of the drive signal of the first inverter circuit in the second period is the second frequency The frequency is set to twice the frequency of the drive signal of the second inverter circuit in the period.
 従って、一方のインバータ回路の駆動信号の2次高調波の周波数と他方のインバータ回路の駆動信号の周波数との間に周波数差が発生しないため、干渉音(唸り音)をなくすことができる。 Therefore, since there is no frequency difference between the frequency of the second harmonic of the drive signal of one inverter circuit and the frequency of the drive signal of the other inverter circuit, it is possible to eliminate interference sound (buzzing sound).
 第6の態様に係る誘導加熱調理器は、第1から第5のうちのいずれか1つの態様に係る誘導加熱調理器において、上記第1および第2のインバータ回路の加熱動作の状態を報知する報知手段をさらに備え、上記制御手段は、上記一方のインバータ回路の加熱動作を停止した後、上記一方のインバータ回路が加熱動作を停止していることを報知するように、上記報知手段を制御することを特徴とする。 An induction heating cooker according to a sixth aspect is the induction heating cooker according to any one of the first to fifth aspects, and notifies the state of the heating operation of the first and second inverter circuits. In addition, the control means controls the notifying means so as to notify that the one inverter circuit stops the heating operation after stopping the heating operation of the one inverter circuit. It is characterized by that.
 従って、使用者は、加熱コイル直上から負荷が取り除かれて加熱動作が自動停止した旨を、例えば視覚的にあるいは聴覚的に容易に認識することができる。 Accordingly, the user can easily recognize, for example, visually or audibly that the heating operation is automatically stopped by removing the load immediately above the heating coil.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1に係る誘導加熱調理器の構成を示すブロック図である。図1において、本実施の形態に係る誘導加熱調理器は、交流電源1と、整流回路2および平滑コンデンサ3を備えた整流平滑回路13と、第1の負荷を誘導加熱する第1の加熱コイル5aと、第2の負荷を誘導加熱する第2の加熱コイル5bと、第1のインバータ回路4aと、第2のインバータ回路4bと、第1の駆動回路8aと、第2の駆動回路8bと、制御手段9と、電流検知手段10と、第1の報知手段11aおよび第2の報知手段11bを備えた報知手段11と、ゼロボルト検知回路12とを備えて構成される。なお、例えば鍋などの第1の負荷は第1の加熱コイル5aの直上に載置され、例えば鍋などの第2の負荷は第2の加熱コイル5bの直上に載置される。また、第1のインバータ回路4aは、第1の共振コンデンサ6aと、2つの第1の半導体スイッチ7a、7bとを備えて構成され、第1のインバータ回路4bは、第2の共振コンデンサ6bと、2つの第2の半導体スイッチ7c、7dとを備えて構成される。
(Embodiment 1)
FIG. 1 is a block diagram showing the configuration of the induction heating cooker according to Embodiment 1 of the present invention. 1, the induction heating cooker according to the present embodiment includes an AC power source 1, a rectifying / smoothing circuit 13 including a rectifying circuit 2 and a smoothing capacitor 3, and a first heating coil for induction heating a first load. 5a, the second heating coil 5b for induction heating the second load, the first inverter circuit 4a, the second inverter circuit 4b, the first drive circuit 8a, and the second drive circuit 8b The control means 9, the current detection means 10, the notification means 11 provided with the first notification means 11a and the second notification means 11b, and the zero volt detection circuit 12 are configured. For example, a first load such as a pan is placed immediately above the first heating coil 5a, and a second load such as a pan is placed directly above the second heating coil 5b. The first inverter circuit 4a includes a first resonant capacitor 6a and two first semiconductor switches 7a and 7b, and the first inverter circuit 4b includes a second resonant capacitor 6b and Two second semiconductor switches 7c and 7d are provided.
 ここで、整流回路2は、交流電源1からの交流電流を整流して出力する。さらに、整流回路2からの出力電流は平滑コンデンサ3により平滑される。そして、平滑コンデンサ3からの直流電流は第1のインバータ回路4aおよび第2のインバータ回路4bに出力される。また、電流検知手段10は、交流電源1から整流平滑回路13に入力される入力電流を、例えばカレントトランスを用いて検知し、検知された入力電流のピーク値を検知し、検知されたピーク値を示す電流検知信号を制御手段9に出力する。さらに、ゼロボルト検知回路12は、交流電源1の端子間電圧のゼロ点を検知し、ゼロ点を検知したタイミングを示すパルス信号であるゼロ点検知信号を発生して、制御手段9に出力する。 Here, the rectifier circuit 2 rectifies and outputs an alternating current from the alternating current power source 1. Further, the output current from the rectifier circuit 2 is smoothed by the smoothing capacitor 3. The direct current from the smoothing capacitor 3 is output to the first inverter circuit 4a and the second inverter circuit 4b. Further, the current detection means 10 detects an input current input from the AC power source 1 to the rectifying / smoothing circuit 13 using, for example, a current transformer, detects a peak value of the detected input current, and detects the detected peak value. Is output to the control means 9. Further, the zero volt detection circuit 12 detects the zero point of the voltage between the terminals of the AC power supply 1, generates a zero point detection signal that is a pulse signal indicating the timing at which the zero point is detected, and outputs the zero point detection signal to the control means 9.
 制御手段9はマイクロコンピューターを備えて構成され、電流検知手段10からの電流検知信号と、ゼロボルト検知回路12からのゼロボルト検知信号とに基づいて、第1の半導体スイッチ7a、7bおよび第2の半導体スイッチ7c、7dを制御するための制御信号を発生して、第1の駆動回路8aおよび第2の駆動回路8bに出力する。また、第1の駆動回路8aは、制御手段9からの制御信号に基づいて、第1の半導体スイッチ7a、7bを駆動するための駆動信号を発生して第1の半導体スイッチ7a、7bに出力し、第2の駆動回路8bは、制御手段9からの制御信号に基づいて、第2の半導体スイッチ7c、7dを駆動するための駆動信号を発生して第2の半導体スイッチ7c、7dに出力する。制御手段9は、電流検知手段10により検知される入力電流のピーク値がマイクロコンピューター内に保持された所定の設定値と実質的に等しくなるように、第1のインバータ回路4aおよび第2のインバータ回路4b内の第1の半導体スイッチ7a、7bおよび第2の半導体スイッチ7c、7dを制御して第1のインバータ回路4aおよび第2のインバータ回路4bのパワーコントロールを行う。さらに、制御手段9は、第1のインバータ回路4aが加熱動作を行っているか否か、および第2のインバータ回路4bが加熱動作を行っているか否かを示す信号を報知手段11に出力する。なお、制御手段9による第1のインバータ回路4aおよび第2のインバータ回路4bの具体的な制御方法は、後述する。 The control means 9 comprises a microcomputer, and based on the current detection signal from the current detection means 10 and the zero volt detection signal from the zero volt detection circuit 12, the first semiconductor switches 7a and 7b and the second semiconductor switch A control signal for controlling the switches 7c and 7d is generated and output to the first drive circuit 8a and the second drive circuit 8b. The first drive circuit 8a generates a drive signal for driving the first semiconductor switches 7a and 7b based on the control signal from the control means 9, and outputs the drive signal to the first semiconductor switches 7a and 7b. The second drive circuit 8b generates a drive signal for driving the second semiconductor switches 7c and 7d based on the control signal from the control means 9, and outputs the drive signal to the second semiconductor switches 7c and 7d. To do. The control means 9 controls the first inverter circuit 4a and the second inverter so that the peak value of the input current detected by the current detection means 10 is substantially equal to a predetermined set value held in the microcomputer. The first semiconductor switch 7a, 7b and the second semiconductor switch 7c, 7d in the circuit 4b are controlled to control the power of the first inverter circuit 4a and the second inverter circuit 4b. Furthermore, the control means 9 outputs to the notification means 11 a signal indicating whether or not the first inverter circuit 4a is performing a heating operation and whether or not the second inverter circuit 4b is performing a heating operation. A specific method for controlling the first inverter circuit 4a and the second inverter circuit 4b by the control means 9 will be described later.
 第1の報知手段11aは発光ダイオードであって、第1のインバータ回路4aが加熱動作を行っているときは点灯する一方、第1インバータ回路4aが加熱動作を停止しているときは消灯して、第1のインバータ回路4aの加熱動作の状態を報知する。また、第2の報知手段11bは発光ダイオードであって、第2のインバータ回路4bが加熱動作を行っているときは点灯する一方、第2のインバータ回路4bが加熱動作を停止しているときは消灯して、第2のインバータ回路4bの加熱動作の状態を報知する。 The first notification means 11a is a light-emitting diode, which is turned on when the first inverter circuit 4a is performing the heating operation, and is turned off when the first inverter circuit 4a is not performing the heating operation. The state of the heating operation of the first inverter circuit 4a is notified. The second notification means 11b is a light emitting diode, and lights up when the second inverter circuit 4b is performing a heating operation, while it is turned on when the second inverter circuit 4b is halting a heating operation. The light is turned off and the state of the heating operation of the second inverter circuit 4b is notified.
 また、第1のインバータ回路4aはハーフブリッジ回路である。ここで、第1の半導体スイッチ7a、7bの直列接続回路は平滑コンデンサ3に並列に接続される。また、第1の加熱コイル5aと第1の共振コンデンサ6aとの直列接続回路は、第1の半導体スイッチ7a、7bの直列接続回路の中点と、平滑コンデンサ3の基準電位(接地電位)側の電極との間に接続される。第1のインバータ回路4aは、交流電源1から整流平滑回路13を介して入力される直流電流を所定の第1の高周波電流に変換し、第1の負荷を誘導加熱する第1の加熱コイル5aに供給する。 The first inverter circuit 4a is a half bridge circuit. Here, the series connection circuit of the first semiconductor switches 7 a and 7 b is connected in parallel to the smoothing capacitor 3. Further, the series connection circuit of the first heating coil 5a and the first resonance capacitor 6a includes the midpoint of the series connection circuit of the first semiconductor switches 7a and 7b and the reference potential (ground potential) side of the smoothing capacitor 3. Between the two electrodes. The first inverter circuit 4a converts a direct current input from the alternating current power supply 1 through the rectifying and smoothing circuit 13 into a predetermined first high-frequency current, and a first heating coil 5a that induction-heats the first load. To supply.
 第1のインバータ回路4aと同様に、第2のインバータ回路4bはハーフブリッジ回路である。ここで、第2の半導体スイッチ7c、7dの直列接続回路は平滑コンデンサ3に並列に接続される。また、第2の加熱コイル5bと第2の共振コンデンサ6bとの直列接続回路は、第2の半導体スイッチ7c、7dの直列接続回路の中点と、平滑コンデンサ3の基準電位(接地電位)側の電極との間に接続される。第2のインバータ回路4bは、交流電源1から整流平滑回路13を介して入力される直流電流を所定の第2の高周波電流に変換し、第2の負荷を誘導加熱する第2の加熱コイル5bに供給する。第1のインバータ回路4aおよび第2のインバータ回路4bは、整流回路2と、平滑コンデンサ3と、電流検知手段10とを共有する。 Similarly to the first inverter circuit 4a, the second inverter circuit 4b is a half-bridge circuit. Here, the series connection circuit of the second semiconductor switches 7 c and 7 d is connected in parallel to the smoothing capacitor 3. Further, the series connection circuit of the second heating coil 5b and the second resonance capacitor 6b includes the midpoint of the series connection circuit of the second semiconductor switches 7c and 7d and the reference potential (ground potential) side of the smoothing capacitor 3. Between the two electrodes. The second inverter circuit 4b converts a direct current input from the alternating current power source 1 through the rectifying and smoothing circuit 13 into a predetermined second high frequency current, and a second heating coil 5b for induction heating the second load. To supply. The first inverter circuit 4 a and the second inverter circuit 4 b share the rectifier circuit 2, the smoothing capacitor 3, and the current detection means 10.
 なお、本実施の形態の第1および第2のインバータ回路4a、4bを、それぞれハーフブリッジ回路で構成したが、フルブリッジ回路で構成しても本実施の形態と同様の効果が得られる。 Although the first and second inverter circuits 4a and 4b of the present embodiment are each configured by a half bridge circuit, the same effects as those of the present embodiment can be obtained even when configured by a full bridge circuit.
 次に、制御手段9の動作を詳細説明する。上述したように、制御手段9は、第1の駆動回路8aおよび第2の駆動回路8bに制御信号を出力することにより、第1のインバータ回路4aおよび第2のインバータ回路4bの加熱動作を制御する。具体的には、制御手段9は、第1のインバータ回路4aのみを加熱動作させるとき、第1のインバータ回路4aの入力電力が連続的に所定の第1の目標入力電力P1になるように第1のインバータ回路4aを制御する。さらに、制御手段9は、第2のインバータ回路4bのみを加熱動作させるとき、第2のインバータ回路4bの入力電力が連続的に所定の第2の目標入力電力P2になるように第2のインバータ回路4bを制御する。以下、第1のインバータ回路4aおよび第2のインバータ回路4bのうち、一方のインバータ回路のみを上述したように加熱動作させることを、「インバータ回路を連続制御により加熱動作させる」という。 Next, the operation of the control means 9 will be described in detail. As described above, the control means 9 controls the heating operation of the first inverter circuit 4a and the second inverter circuit 4b by outputting control signals to the first drive circuit 8a and the second drive circuit 8b. To do. Specifically, when the control means 9 heats only the first inverter circuit 4a, the control means 9 sets the first inverter circuit 4a so that the input power continuously becomes the predetermined first target input power P1. 1 inverter circuit 4a is controlled. Further, when the control means 9 heats only the second inverter circuit 4b, the second inverter circuit 4b continuously controls the second inverter circuit 4b so that the input power becomes the predetermined second target input power P2. The circuit 4b is controlled. Hereinafter, the operation of heating only one of the first inverter circuit 4a and the second inverter circuit 4b as described above is referred to as “the inverter circuit is heated by continuous control”.
 また、制御手段9は、第1のインバータ回路4aおよび第2のインバータ回路4bをともに加熱動作させるとき、第1のインバータ回路4aおよび第2のインバータ回路4bを以下のように制御する。制御手段9は、第1のインバータ回路4aの平均入力電力が所定の第1の目標入力電力P1になるように、高電力モードでの通電期間と低電力モードでの通電期間とを所定の制御周期で繰り返すように、第1のインバータ回路4aを制御する。ここで、高電力モードでの通電期間において、第1のインバータ回路4aの入力電力は第1の目標入力電力P1より大きい所定の入力電力P1aになるように制御される一方、低電力モードでの通電期間において、第1のインバータ回路4aの入力電力は第1の目標入力電力P1より小さい所定の入力電力P1bになるように制御される。なお、本実施の形態において、低電力モードでの入力電力P1bは0Wに設定され、第1のインバータ回路4aは動作を停止する。さらに、制御手段9は、第2のインバータ回路4bの平均入力電力が所定の第2の目標入力電力P2になるように、高電力モードでの通電期間と低電力モードでの通電期間とを所定の制御周期で繰り返すように、第2のインバータ回路4bを制御する。ここで、高電力モードでの通電期間において、第2のインバータ回路4bの入力電力は第2の目標入力電力P2より大きい所定の入力電力P2aになるように制御される一方、低電力モードでの通電期間において、第2のインバータ回路4bの入力電力は第2の目標入力電力P2より小さい所定の入力電力P2bになるように制御される。なお、本実施の形態において、低電力モードでの入力電力P2bは0Wに設定され、第2のインバータ回路4bは動作を停止する。また、第1の目標入力電力P1および第2の目標入力電力P2はそれぞれ、例えば使用者によって任意の入力電力に設定される。 The control means 9 controls the first inverter circuit 4a and the second inverter circuit 4b as follows when both the first inverter circuit 4a and the second inverter circuit 4b are heated. The control means 9 performs a predetermined control on the energization period in the high power mode and the energization period in the low power mode so that the average input power of the first inverter circuit 4a becomes the predetermined first target input power P1. The first inverter circuit 4a is controlled so as to repeat at a cycle. Here, during the energization period in the high power mode, the input power of the first inverter circuit 4a is controlled to be a predetermined input power P1a larger than the first target input power P1, while in the low power mode. During the energization period, the input power of the first inverter circuit 4a is controlled to be a predetermined input power P1b that is smaller than the first target input power P1. In the present embodiment, the input power P1b in the low power mode is set to 0 W, and the first inverter circuit 4a stops operating. Further, the control means 9 determines the energization period in the high power mode and the energization period in the low power mode so that the average input power of the second inverter circuit 4b becomes the predetermined second target input power P2. The second inverter circuit 4b is controlled so as to be repeated at the control cycle. Here, during the energization period in the high power mode, the input power of the second inverter circuit 4b is controlled to be a predetermined input power P2a larger than the second target input power P2, while in the low power mode. During the energization period, the input power of the second inverter circuit 4b is controlled to be a predetermined input power P2b that is smaller than the second target input power P2. In the present embodiment, the input power P2b in the low power mode is set to 0 W, and the second inverter circuit 4b stops operating. Further, the first target input power P1 and the second target input power P2 are set to arbitrary input powers by the user, for example.
 さらに、制御手段9は、第1のインバータ回路4aおよび第2のインバータ回路4bを、高電力モードでの通電と低電力モードでの通電とを交互に且つ排他的に、上述した制御周期で繰り返すように制御する。本実施の形態において、低電力モードでの入力電力P1b、P2bは0Wに設定されるので、第1のインバータ回路4aおよび第2のインバータ回路4bは同時に駆動されずに交互に駆動される。また、制御手段9は、第1のインバータ回路4aの高電力モードでの動作期間の比率により第1の加熱コイル5aのパワーコントロールを行い、第2のインバータ回路4bの高電力モードでの動作期間の比率により第2の加熱コイル5bのパワーコントロールを行う。 Further, the control means 9 repeats the first inverter circuit 4a and the second inverter circuit 4b alternately and exclusively in the high power mode and in the low power mode at the above-described control cycle. To control. In the present embodiment, since the input powers P1b and P2b in the low power mode are set to 0 W, the first inverter circuit 4a and the second inverter circuit 4b are driven alternately without being driven simultaneously. The control means 9 controls the power of the first heating coil 5a according to the ratio of the operation period of the first inverter circuit 4a in the high power mode, and the operation period of the second inverter circuit 4b in the high power mode. The power of the second heating coil 5b is controlled according to the ratio.
 さらに、制御手段9は、従来技術に係る誘導加熱と同様に、ゼロボルト検知回路12からのゼロボルト検知信号に従って、各インバータ回路4a、4bにおいて、高電力モードでの通電から低電力モードでの通電に、または低電力モードでの通電から高電力モードでの通電に切り替える。これにより、高電力モードでの通電と低電力モードでの通電との間での切り替え時に平滑コンデンサ3の残留電圧を比較的低い電圧に抑えて、始動時の第1の加熱コイル5aまたは第2の加熱コイル5bの突入電流を抑えることができる。従って、高電力モードでの通電と低電力モードでの通電との間での切り替え毎に発生する鍋コツ音を使用者にとって問題のないレベルにまで下げることができる。以下、第1のインバータ回路4aおよび第2のインバータ回路4bをともに上述したように加熱動作させることを、「第1のインバータ回路4aおよび第2のインバータ回路4bを時分割制御により加熱動作させる」という。 Further, similarly to the induction heating according to the prior art, the control means 9 switches from energization in the high power mode to energization in the low power mode in each inverter circuit 4a, 4b in accordance with the zero volt detection signal from the zero volt detection circuit 12. Or, switching from energization in the low power mode to energization in the high power mode. Thus, when switching between energization in the high power mode and energization in the low power mode, the residual voltage of the smoothing capacitor 3 is suppressed to a relatively low voltage, and the first heating coil 5a or the second at the time of starting is suppressed. The inrush current of the heating coil 5b can be suppressed. Accordingly, it is possible to reduce the pot knack sound generated each time switching between energization in the high power mode and energization in the low power mode to a level that is not problematic for the user. Hereinafter, the heating operation of both the first inverter circuit 4a and the second inverter circuit 4b as described above is "the heating operation of the first inverter circuit 4a and the second inverter circuit 4b is performed by time-sharing control". That's it.
 また、制御手段9は、第1のインバータ回路4aおよび第2のインバータ回路4bを時分割制御により加熱動作させているときに、電流検知手段10によって検知された入力電流のピーク値が所定のしきい値Ith以下であることを検知すると、第1のインバータ回路4aおよび第2のインバータ回路4bのうち当該検知したタイミングにおいて高電力モードでの通電を行っていた(すなわち、動作していた)一方のインバータ回路の加熱動作を停止し、当該検知したタイミングにおいて低電力モードで通電を行っていた(すなわち、本実施の形態の場合、通電を停止していた)他方のインバータ回路を連続制御により加熱動作させる。このとき、上述した他方のインバータ回路の目標入力電力は、入力電流のピーク値が所定のしきい値Ith以下になったタイミングの直前の当該他方のインバータ回路の目標入力電力と同一に設定される。 Further, the control means 9 has a predetermined peak value of the input current detected by the current detection means 10 when the first inverter circuit 4a and the second inverter circuit 4b are heated by time division control. When it is detected that the threshold value is less than or equal to the threshold value Ith, one of the first inverter circuit 4a and the second inverter circuit 4b was energized in the high power mode at the detected timing (that is, operated) The heating operation of the inverter circuit was stopped, and the other inverter circuit that was energized in the low power mode at the detected timing (that is, in the present embodiment, the energization was stopped) was heated by continuous control. Make it work. At this time, the target input power of the other inverter circuit described above is set to be the same as the target input power of the other inverter circuit just before the timing when the peak value of the input current becomes equal to or lower than the predetermined threshold value Ith. .
 以上説明したように構成された誘導加熱調理器の動作および作用を説明する。 The operation and action of the induction heating cooker configured as described above will be described.
 図2は、図1の誘導加熱調理器の動作を示すタイミングチャートである。図2において、はじめに、第1のインバータ回路4aおよび第2のインバータ回路4bに対応する2口の調理ヒーターが同時に使用されている。このような調理形態として、例えばカレーまたはシチュー等の煮込み調理と湯沸しとを同時に行う等の調理形態が考えられる。この場合、第1の加熱コイル5aおよび第2の加熱コイル5b直上には、互いに異なる第1および第2の負荷(鍋)が配置される。そして、制御手段9は、第1のインバータ回路4aおよび第2のインバータ回路4bを時分割制御により加熱動作させる。また、第1の報知手段11aは発光ダイオード点灯させることにより、第1のインバータ回路4aが加熱動作を行っていることを使用者に視覚的に報知し、第2の報知手段11bは発光ダイオード点灯させることにより、第2のインバータ回路4bが加熱動作を行っていることを使用者に視覚的に報知する。 FIG. 2 is a timing chart showing the operation of the induction heating cooker of FIG. In FIG. 2, first, two cooking heaters corresponding to the first inverter circuit 4a and the second inverter circuit 4b are used at the same time. As such a cooking mode, for example, a cooking mode in which a stewed cooking such as curry or stew and a water heater are performed simultaneously is conceivable. In this case, different first and second loads (pans) are disposed immediately above the first heating coil 5a and the second heating coil 5b. And the control means 9 heat-operates the 1st inverter circuit 4a and the 2nd inverter circuit 4b by time division control. Further, the first notification means 11a turns on the light emitting diode to visually notify the user that the first inverter circuit 4a is performing the heating operation, and the second notification means 11b turns on the light emitting diode. By doing so, the user is visually informed that the second inverter circuit 4b is performing the heating operation.
 図2において、第1のインバータ回路4aおよび第2のインバータ回路4bが時分割制御により制御される期間中は、ゼロボルト検知回路12からのゼロ点検知信号の立ち上がりタイミングt1、t3、t5において、第1のインバータ回路4aは低電力モードでの通電状態から高電力モードでの通電状態に切り替えられる一方、第2のインバータ回路4bは高電力モードでの通電状態から低電力モードでの通電状態に切り替えられる。また、ゼロボルト検知回路12からのゼロ点検知信号の立ち上がりタイミングt4、t4において、第1のインバータ回路4aは高電力モードでの通電状態から低電力モードでの通電状態に切り替えられる一方、第2のインバータ回路4bは低電力モードでの通電状態から高電力モードでの通電状態に切り替えられる。 In FIG. 2, during the period when the first inverter circuit 4a and the second inverter circuit 4b are controlled by time-sharing control, at the rising timings t1, t3, and t5 of the zero point detection signal from the zero volt detection circuit 12, The first inverter circuit 4a is switched from the energized state in the low power mode to the energized state in the high power mode, while the second inverter circuit 4b is switched from the energized state in the high power mode to the energized state in the low power mode. It is done. In addition, at the rising timing t4 and t4 of the zero point detection signal from the zero volt detection circuit 12, the first inverter circuit 4a is switched from the energized state in the high power mode to the energized state in the low power mode, The inverter circuit 4b is switched from the energized state in the low power mode to the energized state in the high power mode.
 次に、タイミングt5より後の所定のタイミングにおいて、2口の調理ヒーターの同時使用中に第1の加熱コイル5aに対応する一方の調理ヒーターから第1の負荷が取り除かれると、第1のインバータ回路4aが無負荷状態で動作するので、交流電源1からの入力電流は極めて少なくなる。このため、図2に示すように、タイミングt5の後のタイミングt51において、入力電流のピーク値はしきい値Ith以下になる。 Next, when the first load is removed from one cooking heater corresponding to the first heating coil 5a during the simultaneous use of the two cooking heaters at a predetermined timing after the timing t5, the first inverter Since the circuit 4a operates in a no-load state, the input current from the AC power source 1 is extremely reduced. For this reason, as shown in FIG. 2, the peak value of the input current becomes equal to or less than the threshold value Ith at timing t51 after timing t5.
 制御手段9は、タイミングt51において入力電流のピーク値がしきい値Ith以下であることを検知すると、タイミングt51において高電力モードで通電を行っていた第1のインバータ回路4aの加熱動作を、第1のインバータ回路4aの通電状態を高電力モードでの通電から低電力モードでの通電に切り替える次のタイミングt6で停止させる。さらに、制御手段9は、タイミングt6において、第2のインバータ回路4bを、連続制御により単独で加熱動作させる。 When the control means 9 detects that the peak value of the input current is equal to or less than the threshold value Ith at timing t51, the control means 9 performs the heating operation of the first inverter circuit 4a that has been energized in the high power mode at timing t51. The first inverter circuit 4a is stopped at the next timing t6 when the energization state of the inverter circuit 4a is switched from energization in the high power mode to energization in the low power mode. Further, the control means 9 causes the second inverter circuit 4b to perform a heating operation independently by continuous control at timing t6.
 タイミングt6以降、第2のインバータ回路4bは、所定の制御周期で加熱動作と停止とを繰り返す時分割制御ではなく、入力電力が連続的に第2の目標入力電力P2になるように連続制御により加熱動作する。更に、制御手段9は、タイミングt6において、第1のインバータ回路4aが加熱動作を停止していることを示す信号を報知手段11に出力する。これに応答して、報知手段11aの発光ダイオードは消灯し、第1の加熱コイル5a上から鍋が取り除かれたことを、使用者に視覚的に報知する。 After the timing t6, the second inverter circuit 4b does not perform time-division control that repeats the heating operation and the stop at a predetermined control cycle, but performs continuous control so that the input power continuously becomes the second target input power P2. Heating operation. Furthermore, the control means 9 outputs to the notification means 11 a signal indicating that the first inverter circuit 4a has stopped the heating operation at timing t6. In response to this, the light emitting diode of the notification means 11a is turned off, and the user is visually notified that the pan has been removed from the first heating coil 5a.
 図3Aは、図1の第2のインバータ回路4bにおいて時分割制御から連続制御に切り替えるときの第1のインバータ回路4a及び第2のインバータ回路4bの入力電力の時間変化を示すタイミングチャートであり、図3Bは、図3Aの第2のインバータ回路4bの入力電力の時間変化と等価な入力電力の時間変化を示すタイミングチャートである。 FIG. 3A is a timing chart showing temporal changes in input power of the first inverter circuit 4a and the second inverter circuit 4b when switching from time-division control to continuous control in the second inverter circuit 4b of FIG. FIG. 3B is a timing chart showing the time change of the input power equivalent to the time change of the input power of the second inverter circuit 4b of FIG. 3A.
 図3Aにおいて、第2のインバータ回路4bの第2の目標入力電力P2は1500Wに設定されており、時分割制御の制御周期は20ミリ秒に設定されている。このとき、時分割制御中の第2のインバータ回路4bの平均入力電力は、高電力モードでの入力電力P2a×(動作期間長/制御周期)となるため、動作期間長は10ミリ秒に設定される。すなわち、第2のインバータ回路4bは、3000W×(10ミリ秒/20ミリ秒)=1500Wの平均入力電力で加熱動作される。さらに、第2のインバータ回路4bの制御方法が時分割制御から連続制御に変更された後は、第2のインバータ回路4は、入力電力が連続的に1500Wになるように連続加熱動作するため、制御方法の変更前後で第2のインバータ回路4bからの発生電力(入力電力)は変化しない(図3B参照)。 3A, the second target input power P2 of the second inverter circuit 4b is set to 1500 W, and the control period of the time division control is set to 20 milliseconds. At this time, the average input power of the second inverter circuit 4b during the time-sharing control is the input power P2a × (operation period length / control cycle) in the high power mode, so the operation period length is set to 10 milliseconds. Is done. That is, the second inverter circuit 4b is heated with an average input power of 3000 W × (10 milliseconds / 20 milliseconds) = 1500 W. Furthermore, after the control method of the second inverter circuit 4b is changed from the time division control to the continuous control, the second inverter circuit 4 performs the continuous heating operation so that the input power is continuously 1500 W. The generated power (input power) from the second inverter circuit 4b does not change before and after the change of the control method (see FIG. 3B).
 以上説明したように、本実施の形態1に係る誘導加熱調理器は、
(a)交流電源1から整流平滑回路13を介して入力される直流電流を所定の第1の高周波電流に変換し、第1の負荷を誘導加熱する第1の加熱コイル5aに供給する第1のインバータ回路4aと、
(b)上記直流電流を所定の第2の高周波電流に変換し、第2の負荷を誘導加熱する第2の加熱コイル5bに供給する第2のインバータ回路4bと、
(c)交流電源1から整流平滑回路13に入力される入力電流を検知する入力電流検知手段10と、
(d)第1および第2のインバータ回路4a、4bを制御する制御手段9とを備えて構成される。
As described above, the induction heating cooker according to the first embodiment is
(A) A first DC current input from the AC power supply 1 via the rectifying and smoothing circuit 13 is converted into a predetermined first high-frequency current and supplied to the first heating coil 5a for induction heating the first load. Inverter circuit 4a of
(B) a second inverter circuit 4b that converts the direct current into a predetermined second high-frequency current and supplies the second load to a second heating coil 5b that induction-heats the second load;
(C) input current detection means 10 for detecting an input current input from the AC power supply 1 to the rectifying and smoothing circuit 13;
(D) A control means 9 for controlling the first and second inverter circuits 4a and 4b is provided.
 ここで、制御手段は9、所定の第1の期間(例えば、図2のタイミングt1からt2までの期間)において、第1のインバータ回路4aの入力電力が所定の第1の目標入力電力P1より大きい所定の第1の入力電力P1aになるように第1のインバータ回路4aを制御するとともに、第2のインバータ回路4bの入力電力が所定の第2の目標入力電力P2より小さい所定の第2の入力電力P2bになるように第2のインバータ回路4bを制御する。また、制御手段9は、第1の期間に続く所定の第2の期間(例えば、図2のタイミングt2からt3までの期間)において、第1のインバータ回路4aの入力電力が第1の目標入力電力P1より小さい所定の第3の入力電力P1bになるように第1のインバータ回路4aを制御するとともに、第2のインバータ回路4bの入力電力が第2の目標入力電力P2より大きい所定の第4の入力電力P2aになるように第2のインバータ回路4bを制御する。そして、制御手段9は、第1の期間と第2の期間とを所定の制御周期で繰り返すことにより、第1のインバータ回路4aの平均入力電力が第1の目標入力電力P1になり、第2のインバータ回路4bの平均入力電力が第2の目標入力電力P2になるように、第1および第2のインバータ回路4a、4bを制御する。 Here, the control means 9 is such that the input power of the first inverter circuit 4a is greater than the predetermined first target input power P1 in a predetermined first period (for example, the period from the timing t1 to t2 in FIG. 2). The first inverter circuit 4a is controlled so as to have a large predetermined first input power P1a, and the second input power of the second inverter circuit 4b is smaller than the second predetermined target input power P2. The second inverter circuit 4b is controlled so as to be the input power P2b. Further, the control means 9 determines that the input power of the first inverter circuit 4a is the first target input in a predetermined second period (for example, the period from timing t2 to t3 in FIG. 2) following the first period. The first inverter circuit 4a is controlled so as to have a predetermined third input power P1b smaller than the power P1, and the input power of the second inverter circuit 4b is larger than the second target input power P2. The second inverter circuit 4b is controlled so that the input power P2a becomes the same. Then, the control means 9 repeats the first period and the second period at a predetermined control cycle, whereby the average input power of the first inverter circuit 4a becomes the first target input power P1, and the second The first and second inverter circuits 4a and 4b are controlled so that the average input power of the inverter circuit 4b is equal to the second target input power P2.
 制御手段9は、入力電流のピーク値が所定のしきい値Ith以下であることを検知したとき、第1および第2のインバータ回路4a、4bのうち、当該検知したタイミング(例えば、図2のタイミングt51)において入力電力が第1の入力電力P1aまたは第4の入力電力P2aになるように制御していた一方のインバータ回路の加熱動作を停止するように制御することを特徴とする。 When the control means 9 detects that the peak value of the input current is less than or equal to a predetermined threshold value Ith, the detected timing (for example, in FIG. 2) of the first and second inverter circuits 4a and 4b. Control is performed so as to stop the heating operation of one inverter circuit that has been controlled so that the input power becomes the first input power P1a or the fourth input power P2a at the timing t51).
 また、制御手段9は、入力電流のピーク値がしきい値Ith以下であることを検知したとき、第1および第2のインバータ回路4a、4bのうち、他方のインバータ回路を、当該他方のインバータ回路の入力電力が所定の第3の目標入力電力になるように制御することを特徴とする。ここで、第3の目標入力電力は、第1および第2の目標入力電力P1、P2のうち、他方のインバータ回路の目標入力電力と同一であるように設定されることを特徴とする。 Further, when the control means 9 detects that the peak value of the input current is equal to or less than the threshold value Ith, the control means 9 switches the other inverter circuit out of the first and second inverter circuits 4a and 4b to the other inverter. Control is performed so that the input power of the circuit becomes a predetermined third target input power. Here, the third target input power is set to be the same as the target input power of the other inverter circuit among the first and second target input powers P1 and P2.
 従って、第1のインバータ回路4aおよび第2のインバータ回路4bのうち、鍋が取り除かれて無負荷の状態となった一方のインバータ回路の加熱動作を従来技術に比較して素早く停止させ、他方のインバータ回路の動作モードを、単独で連続制御により加熱動作させる動作モードに変更することができる。このため、平滑コンデンサ3が実質的に充電された状態(平滑状態)から加熱動作を開始することがなくなり、第1の加熱コイル5aおよび第2の加熱コイル5bへの突入電流の発生を防止して鍋コツ音をなくすことができる。 Therefore, of the first inverter circuit 4a and the second inverter circuit 4b, the heating operation of one of the inverter circuits that has been removed from the pan and has become unloaded is quickly stopped as compared with the prior art, and the other The operation mode of the inverter circuit can be changed to an operation mode in which the heating operation is performed by continuous control independently. For this reason, the heating operation is not started from the state in which the smoothing capacitor 3 is substantially charged (smooth state), and the occurrence of inrush current to the first heating coil 5a and the second heating coil 5b is prevented. You can eliminate the sound of hot pot.
 また、本実施の形態1においては、時分割制御時の低電力モードでの入力電力P1b、P2bは0Wに設定されるので、低電力モードでの通電期間においてインバータ回路は動作しない。従って、第1および第2のインバータ回路4a、4bは同時に駆動されない。従って、近接して配置される2つの加熱コイルに流れる高周波電流に周波数差が生じて共鳴現象により発生する干渉音(唸り音)をなくすことができる。 Further, in the first embodiment, the input power P1b and P2b in the low power mode during the time division control is set to 0 W, so that the inverter circuit does not operate during the energization period in the low power mode. Therefore, the first and second inverter circuits 4a and 4b are not driven simultaneously. Therefore, it is possible to eliminate an interference sound (buzzing sound) generated by a resonance phenomenon due to a frequency difference between the high-frequency currents flowing in the two heating coils arranged close to each other.
 また、本実施の形態1においては、制御手段9は、入力電流がしきい値Ith以下であることを検出したタイミングにおいて低電力モードで通電を行っていた(すなわち、本実施の形態の場合、通電を停止していた)他方のインバータ回路を連続制御により加熱動作させる。このとき、上述した他方のインバータ回路の目標入力電力は、入力電流のピーク値が所定のしきい値Ith以下になったタイミングの直前の目標入力電力に設定される。従って、入力電流がしきい値Ith以下であることを検出したタイミングにおいて通電を停止していたインバータ回路に接続された加熱コイル直上に配置される負荷に対して、インバータ回路を時分割制御によって制御するか、連続制御によって制御するかに関わらず(すなわち、動作モードに関わらず)安定した電力供給を行うことができる。 In the first embodiment, the control means 9 is energized in the low power mode at the timing when the input current is detected to be equal to or lower than the threshold value Ith (that is, in the case of the present embodiment, The other inverter circuit that has been de-energized is heated by continuous control. At this time, the target input power of the other inverter circuit described above is set to the target input power immediately before the timing when the peak value of the input current becomes equal to or lower than the predetermined threshold value Ith. Therefore, the inverter circuit is controlled by time-sharing control with respect to the load arranged immediately above the heating coil connected to the inverter circuit that has been de-energized at the timing when the input current is detected to be equal to or less than the threshold value Ith. Thus, stable power supply can be performed regardless of whether the control is performed by continuous control (that is, regardless of the operation mode).
 また、本実施の形態1に係る誘導加熱調理器は、第1のインバータ回路4aおよび第2のインバータ回路4bの加熱動作の状態を報知する報知手段11を備える。さらに、制御手段9は、入力電流に基づいて、第1のインバータ回路4aおよび第2のインバータ回路4bのうちのいずれか一方のインバータ回路の加熱動作を停止するとき、当該一方のインバータ回路の加熱動作が停止状態であることを報知手段11により報知する。従って、加熱コイル直上から負荷が取り除かれて加熱動作が自動停止したことを、使用者が視覚的に容易に認識することができる。なお、本実施の形態において、第1の報知手段11aおよび第2の報知手段11bは発光ダイオードであったが、本発明はこれに限られず、ブザーなどの他の報知手段であってもよい。第1の報知手段11aおよび第2の報知手段11bがブザーである場合、使用者は、インバータ回路が停止したことを聴覚的に認識できる。 Moreover, the induction heating cooker according to the first embodiment includes notification means 11 that notifies the state of the heating operation of the first inverter circuit 4a and the second inverter circuit 4b. Further, when the control means 9 stops the heating operation of one of the first inverter circuit 4a and the second inverter circuit 4b based on the input current, the heating of the one inverter circuit is stopped. The notification means 11 notifies that the operation is stopped. Therefore, the user can easily recognize visually that the load is removed from directly above the heating coil and the heating operation is automatically stopped. In the present embodiment, the first notification means 11a and the second notification means 11b are light emitting diodes, but the present invention is not limited to this, and may be other notification means such as a buzzer. When the 1st alerting | reporting means 11a and the 2nd alerting | reporting means 11b are buzzers, the user can recognize audibly that the inverter circuit stopped.
 なお、本実施の形態1では、制御手段9は、交流電源からの入力電流を用いてパワーコントロールを行ったが、本発明はこれに限られない。制御手段9は、第1の加熱コイル5aおよび第2の加熱コイル5bや第1の共振コンデンサ6aおよび第2の共振コンデンサ6bに発生する共振電流または電圧を用いてパワーコントロールを行ってもよい。 In the first embodiment, the control means 9 performs power control using an input current from an AC power supply, but the present invention is not limited to this. The control means 9 may perform power control using a resonance current or voltage generated in the first heating coil 5a and the second heating coil 5b, the first resonance capacitor 6a, and the second resonance capacitor 6b.
 また、本実施の形態1では、図3Aに示すように、時分割制御時の第1のインバータ回路4aおよび第2のインバータ回路4bの制御周期を20ミリ秒に設定し、高電力モードでの通電期間長(すなわち、動作期間長)および低電力モードでの通電期間長(すなわち、停止期間長)をそれぞれ10ミリ秒に設定して交互に動作させたが、本発明はこれに限られず、制御周期、動作期間長および停止期間長はこれらの値と異なっていても、本実施の形態と同様の効果が得られる。 In the first embodiment, as shown in FIG. 3A, the control cycle of the first inverter circuit 4a and the second inverter circuit 4b at the time-sharing control is set to 20 milliseconds, and in the high power mode. The energization period length (that is, the operation period length) and the energization period length in the low power mode (that is, the stop period length) were set to 10 milliseconds, respectively, and the operation was performed alternately, but the present invention is not limited to this, Even if the control period, the operation period length, and the stop period length are different from these values, the same effect as the present embodiment can be obtained.
 また、本実施の形態1では、制御手段9は、時分割制御時には第2のインバータ回路4bの入力電力を3000Wと0Wとの間で切り替えて平均入力電力を1500Wとし、また連続制御時には入力電力が連続的に1500Wになるように第2のインバータ回路4bを連続加熱動作させたが、本発明はこれに限られず、1500W以外の目標入力電力であっても本実施の形態と同様の効果が得られる。 In the first embodiment, the control means 9 switches the input power of the second inverter circuit 4b between 3000 W and 0 W during the time-sharing control so that the average input power is 1500 W, and the input power during the continuous control. However, the present invention is not limited to this, and even if the target input power is other than 1500 W, the same effect as this embodiment can be obtained. can get.
 (実施の形態2)
 本発明の実施の形態2について図面を参照しながら説明する。なお、実施の形態1と比較して異なる点は時分割制御における低電力モードでの動作方法のみであり、その他同様の内容については説明を省略する。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to the drawings. The difference from the first embodiment is only the operation method in the low power mode in the time division control, and the description of the other similar contents is omitted.
 図4は、図1の誘導加熱調理器の本発明の実施の形態2に係る動作を示すタイミングチャートである。実施の形態1では、第1のインバータ回路4aの低電力モードでの通電期間において、第1のインバータ回路4aの入力電力P1bは0Wに設定され、第2のインバータ回路4bの低電力モードでの通電期間において、第2のインバータ回路4bの入力電力P2bは0Wに設定された。これに対して、本実施の形態では、第1のインバータ回路4aの低電力モードでの通電期間において、第1のインバータ回路4aの入力電力P1bは第1の目標入力電力P1より小さい0W以外の所定の入力電力になるように制御される。また、第2のインバータ回路4bの低電力モードでの通電期間において、第2のインバータ回路4bの入力電力P2bは第2の目標入力電力P2より小さい0W以外の所定の入力電力になるように制御される。 FIG. 4 is a timing chart showing the operation of the induction heating cooker of FIG. 1 according to Embodiment 2 of the present invention. In the first embodiment, during the energization period of the first inverter circuit 4a in the low power mode, the input power P1b of the first inverter circuit 4a is set to 0 W, and the second inverter circuit 4b in the low power mode During the energization period, the input power P2b of the second inverter circuit 4b was set to 0W. In contrast, in the present embodiment, during the energization period of the first inverter circuit 4a in the low power mode, the input power P1b of the first inverter circuit 4a is other than 0W, which is smaller than the first target input power P1. Control is performed to achieve a predetermined input power. Further, during the energization period of the second inverter circuit 4b in the low power mode, the input power P2b of the second inverter circuit 4b is controlled to be a predetermined input power other than 0 W, which is smaller than the second target input power P2. Is done.
 制御手段9は、実施の形態1と同様に、第1の駆動回路8a,第2の駆動回路8bに制御信号を出力して第1のインバータ回路4aおよび第2のインバータ回路4bの加熱動作を制御する。このとき、第1のインバータ回路4aおよび第2のインバータ回路4bを、高電力モードでの通電と低電力モードでの通電とを交互に且つ排他的に所定の制御周期で繰り返すように制御する。また、制御手段9は、第1のインバータ回路4aの制御周期毎の平均入力電力により第1の加熱コイル5aのパワーコントロールを行い、第2のインバータ回路4bの制御周期毎の平均入力電力により第2の加熱コイル5bのパワーコントロールを行う。 As in the first embodiment, the control means 9 outputs control signals to the first drive circuit 8a and the second drive circuit 8b to perform the heating operation of the first inverter circuit 4a and the second inverter circuit 4b. Control. At this time, the first inverter circuit 4a and the second inverter circuit 4b are controlled so that energization in the high power mode and energization in the low power mode are alternately and exclusively repeated at a predetermined control cycle. Further, the control means 9 controls the power of the first heating coil 5a by the average input power for each control cycle of the first inverter circuit 4a, and changes the first by the average input power for each control cycle of the second inverter circuit 4b. The power control of the second heating coil 5b is performed.
 図4において、第1のインバータ回路4aの高電力モードをAと記載し、第1のインバータ回路4aの低電力モードをBと記載し、第2のインバータ回路4bの高電力モードをCと記載し、第2のインバータ回路4bの低電力モードをDと記載する。図4に示すように、第1のインバータ回路4aが高電力モードAで動作中には、第2のインバータ回路4bを低電力モードDで動作させて、第1のインバータ回路4aが低電力モードBで動作中には第2のインバータ回路4bを高電力モードCで動作させる。 In FIG. 4, the high power mode of the first inverter circuit 4a is described as A, the low power mode of the first inverter circuit 4a is described as B, and the high power mode of the second inverter circuit 4b is described as C. The low power mode of the second inverter circuit 4b is denoted as D. As shown in FIG. 4, when the first inverter circuit 4a is operating in the high power mode A, the second inverter circuit 4b is operated in the low power mode D, and the first inverter circuit 4a is operated in the low power mode D. During the operation in B, the second inverter circuit 4b is operated in the high power mode C.
 更に、本実施の形態において、各モードA、B、CおよびDにおける半導体スイッチ素子7a、7b、7cおよび7dの駆動信号の周波数(以下、駆動周波数という。)は以下のように設定される。
(1)第1のインバータ回路4aの高電力モードAにおける半導体スイッチ素子7a、7bの駆動周波数を25kHzに設定する。
(2)第1のインバータ回路4aの低電力モードBにおける半導体スイッチ素子7a、7bの駆動周波数を46kHzに設定する。
(3)第2のインバータ回路4bの高電力モードCにおける半導体スイッチ素子7c、7dの駆動周波数を23kHzに設定する。
(4)第2のインバータ回路4bの低電力モードDにおける半導体スイッチ素子7c、7dの駆動周波数を50kHzに設定する。
Furthermore, in the present embodiment, the frequency of the drive signal (hereinafter referred to as drive frequency) of the semiconductor switch elements 7a, 7b, 7c and 7d in each mode A, B, C and D is set as follows.
(1) The drive frequency of the semiconductor switch elements 7a and 7b in the high power mode A of the first inverter circuit 4a is set to 25 kHz.
(2) The drive frequency of the semiconductor switch elements 7a and 7b in the low power mode B of the first inverter circuit 4a is set to 46 kHz.
(3) The drive frequency of the semiconductor switch elements 7c and 7d in the high power mode C of the second inverter circuit 4b is set to 23 kHz.
(4) The drive frequency of the semiconductor switch elements 7c and 7d in the low power mode D of the second inverter circuit 4b is set to 50 kHz.
 すなわち、第1のインバータ回路4aの低電力モードBの駆動周波数(46kHz)は、第2のインバータ回路4bの高電力モードCの駆動周波数(23kHz)の2倍の周波数に設定され、第2のインバータ回路4bの低電力モードDの駆動周波数(50kHz)は、第1のインバータ回路4aの高電力モードAの駆動周波数(25kHz)の2倍の周波数に設定される。このように、本実施の形態では、実施の形態1と同様に、第1のインバータ回路4aおよび第2のインバータ回路4bを時分割制御により加熱動作させて、高電力モードでの通電と低電力モードでの通電とを交互に且つ排他的に、所定の制御周期で繰り返すように制御する。さらに、低電力モードで通電される一方のインバータ回路の駆動周波数は、高電力モードで通電される他方のインバータ回路の駆動周波数の2倍の周波数に設定される。従って、一方のインバータ回路の駆動信号の2次高調波の周波数と、他方のインバータ回路の駆動信号の周波数との間に周波数差が発生しない。 That is, the drive frequency (46 kHz) of the low power mode B of the first inverter circuit 4a is set to a frequency twice the drive frequency (23 kHz) of the high power mode C of the second inverter circuit 4b. The drive frequency (50 kHz) of the low power mode D of the inverter circuit 4b is set to a frequency twice the drive frequency (25 kHz) of the high power mode A of the first inverter circuit 4a. As described above, in the present embodiment, as in the first embodiment, the first inverter circuit 4a and the second inverter circuit 4b are heated by time-sharing control, and energization and low power in the high power mode are performed. Control is performed so that energization in the mode is alternately and exclusively repeated at a predetermined control cycle. Furthermore, the drive frequency of one inverter circuit energized in the low power mode is set to a frequency twice that of the other inverter circuit energized in the high power mode. Therefore, there is no frequency difference between the frequency of the second harmonic of the drive signal of one inverter circuit and the frequency of the drive signal of the other inverter circuit.
 以上説明したように、本実施の形態2においては、低電力モードでの動作中である第1および第2のいずれか一方のインバータ回路内の半導体スイッチの駆動周波数は、高電力モードでの動作中である他方のインバータ回路内の半導体スイッチの駆動周波数の2倍の周波数に設定されるので、一方のインバータ回路の駆動信号の2次高調波の周波数と他方のインバータ回路の駆動信号の周波数との間に周波数差が発生しないため、干渉音(唸り音)をなくすことができる。 As described above, in the second embodiment, the driving frequency of the semiconductor switch in either the first or second inverter circuit that is operating in the low power mode is the same as that in the high power mode. The frequency of the second harmonic of the drive signal of one inverter circuit and the frequency of the drive signal of the other inverter circuit are set to a frequency twice the drive frequency of the semiconductor switch in the other inverter circuit. Since no frequency difference occurs between the two, the interference sound (buzzing sound) can be eliminated.
 また、本実施の形態2では、時分割制御には第1のインバータ回路4aおよび第2のインバータ回路4bの高電力モードA,Cでの駆動周波数を各々25kHz、23kHzと設定しているが、本発明はこれに限られず、上述した駆動周波数と異なる駆動周波数であっても本実施の形態と同様の効果が得られる。 In the second embodiment, in the time division control, the driving frequencies in the high power modes A and C of the first inverter circuit 4a and the second inverter circuit 4b are set to 25 kHz and 23 kHz, respectively. The present invention is not limited to this, and the same effect as in the present embodiment can be obtained even at a driving frequency different from the above-described driving frequency.
 なお、上記各実施の形態において、入力電流検知手段10は交流電源1から整流平滑回路13に入力される入力電流のピーク値を検知し、制御手段9は入力電流のピーク値が所定のしきい値Ith以下であることを検知したが、本発明はこれに限られない。入力電流検知手段10は、交流電源1から整流平滑回路13に入力される入力電流を検知すればよい。また、制御手段9は、交流電源1の端子間電圧のゼロ点間(交流電源1からの交流電圧の半周期の期間)において、入力電流に基づいて算出される所定の値が所定のしきい値以下であることを検知すればよい。具体的には、制御手段9は、交流電源1からの交流電圧の半周期の期間において、入力電流を複数回検知して合計することによって入力電流の積分値を算出し、当該算出された積分値が所定のしきい値以下であることを検知してもよい。また、制御手段9は、交流電源1からの交流電圧の半周期の期間において、検知遅れが問題にならない程度に入力電流波形を平滑して、半周期期間の後半の所定のタイミングにおいて、平滑後の入力電流が所定のしきい値以下であることを検知してもよい。 In each of the above embodiments, the input current detecting means 10 detects the peak value of the input current input from the AC power supply 1 to the rectifying and smoothing circuit 13, and the control means 9 has a predetermined threshold value of the input current. Although it is detected that the value is equal to or less than the value Ith, the present invention is not limited to this. The input current detection means 10 may detect the input current input from the AC power supply 1 to the rectifying / smoothing circuit 13. Further, the control means 9 has a predetermined threshold value calculated based on the input current between the zero points of the voltage between the terminals of the AC power supply 1 (half period of the AC voltage from the AC power supply 1). What is necessary is just to detect that it is below a value. Specifically, the control means 9 calculates the integrated value of the input current by detecting and summing the input current a plurality of times during the half cycle of the AC voltage from the AC power supply 1, and calculates the calculated integral. You may detect that a value is below a predetermined threshold value. Further, the control means 9 smoothes the input current waveform to such an extent that detection delay does not become a problem in the half cycle period of the AC voltage from the AC power supply 1, and after smoothing at a predetermined timing in the latter half of the half cycle period. It may be detected that the input current is less than or equal to a predetermined threshold value.
 以上説明したように、本発明に係る誘導加熱調理器は、いずれか一方の加熱コイル直上から負荷が取り除かれた場合にも他方の加熱コイル直上に配置された鍋からの鍋コツ音の発生を防止できるため、加熱コイル直上の負荷の載置状態によって限定されることなく、2つの加熱コイルに交互に且つ排他的に通電する誘導加熱調理器全般において有効である。 As described above, the induction heating cooker according to the present invention generates a pot knack sound from a pan placed just above the other heating coil even when the load is removed from just above one heating coil. Since it can prevent, it is effective in the induction heating cooking appliances which energize two heating coils alternately and exclusively without being limited by the mounting state of the load immediately above the heating coil.
 1、51 交流電源
 2、52 整流回路
 3、54 平滑コンデンサ
 4a 第1のインバータ回路
 4b 第2のインバータ回路
 5a 第1の加熱コイル
 5b 第2の加熱コイル
 6a 第1の共振コンデンサ
 6b 第2の共振コンデンサ
 7a、7b 第1の半導体スイッチ
 7c、7d 第2の半導体スイッチ
 8a 第1の駆動回路
 8b 第2の駆動回路
 9 制御手段
 10 電流検知手段
 11 報知手段
 11a 第1の報知手段
 11b 第2の報知手段
 12、61 ゼロボルト検知回路
 13 整流平滑回路
DESCRIPTION OF SYMBOLS 1, 51 AC power supply 2, 52 Rectifier circuit 3, 54 Smoothing capacitor 4a 1st inverter circuit 4b 2nd inverter circuit 5a 1st heating coil 5b 2nd heating coil 6a 1st resonance capacitor 6b 2nd resonance Capacitors 7a, 7b First semiconductor switch 7c, 7d Second semiconductor switch 8a First drive circuit 8b Second drive circuit 9 Control means 10 Current detection means 11 Notification means 11a First notification means 11b Second notification Means 12, 61 Zero Volt Detection Circuit 13 Rectification Smoothing Circuit

Claims (6)

  1.  交流電源から整流平滑回路を介して入力される直流電流を所定の第1の高周波電流に変換し、第1の負荷を誘導加熱する第1の加熱コイルに供給する第1のインバータ回路と、
     上記直流電流を所定の第2の高周波電流に変換し、第2の負荷を誘導加熱する第2の加熱コイルに供給する第2のインバータ回路と、
     交流電源から上記整流平滑回路に入力される入力電流を検知する入力電流検知手段と、
     上記第1および第2のインバータ回路を制御する制御手段とを備えた誘導加熱調理器において、
     上記制御手段は、
     所定の第1の期間において、上記第1のインバータ回路の入力電力が所定の第1の目標入力電力より大きい所定の第1の入力電力になるように上記第1のインバータ回路を制御するとともに、上記第2のインバータ回路の入力電力が所定の第2の目標入力電力より小さい所定の第2の入力電力になるように上記第2のインバータ回路を制御し、
     上記第1の期間に続く所定の第2の期間において、上記第1のインバータ回路の入力電力が上記第1の目標入力電力より小さい所定の第3の入力電力になるように上記第1のインバータ回路を制御するとともに、上記第2のインバータ回路の入力電力が上記第2の目標入力電力より大きい所定の第4の入力電力になるように上記第2のインバータ回路を制御し、
     上記第1の期間と上記第2の期間とを所定の制御周期で繰り返すことにより、上記第1のインバータ回路の平均入力電力が上記第1の目標入力電力になり、上記第2のインバータ回路の平均入力電力が上記第2の目標入力電力になるように、上記第1および第2のインバータ回路を制御し、
     上記入力電流が所定のしきい値以下であることを検知したとき、上記第1および第2のインバータ回路のうち、当該検知したタイミングにおいて入力電力が上記第1または第4の入力電力になるように制御していた一方のインバータ回路の加熱動作を停止するように制御することを特徴とする誘導加熱調理器。
    A first inverter circuit for converting a direct current input from an alternating current power source through a rectifying and smoothing circuit into a predetermined first high-frequency current and supplying the first load to a first heating coil for induction heating;
    A second inverter circuit for converting the direct current into a predetermined second high-frequency current and supplying the second load to a second heating coil for induction heating;
    An input current detection means for detecting an input current input to the rectifying / smoothing circuit from an AC power supply;
    In an induction heating cooker comprising control means for controlling the first and second inverter circuits,
    The control means includes
    Controlling the first inverter circuit so that the input power of the first inverter circuit becomes a predetermined first input power larger than a predetermined first target input power in a predetermined first period; Controlling the second inverter circuit so that the input power of the second inverter circuit becomes a predetermined second input power smaller than a predetermined second target input power;
    The first inverter so that the input power of the first inverter circuit becomes a predetermined third input power smaller than the first target input power in a predetermined second period following the first period. Controlling the circuit and controlling the second inverter circuit so that the input power of the second inverter circuit becomes a predetermined fourth input power larger than the second target input power,
    By repeating the first period and the second period at a predetermined control cycle, the average input power of the first inverter circuit becomes the first target input power, and the second inverter circuit Controlling the first and second inverter circuits so that the average input power becomes the second target input power;
    When it is detected that the input current is less than or equal to a predetermined threshold value, the input power becomes the first or fourth input power at the detected timing in the first and second inverter circuits. An induction heating cooker that controls to stop the heating operation of one of the inverter circuits that has been controlled.
  2.  上記制御手段は、上記入力電流が上記しきい値以下であることを検知したとき、上記第1および第2のインバータ回路のうち、他方のインバータ回路を、当該他方のインバータ回路の入力電力が所定の第3の目標入力電力になるように制御することを特徴とする請求項1記載の誘導加熱調理器。 When the control means detects that the input current is less than or equal to the threshold value, the control circuit controls the other inverter circuit of the first and second inverter circuits so that the input power of the other inverter circuit is predetermined. The induction heating cooker according to claim 1, wherein control is performed so that the third target input power is obtained.
  3.  上記第3の目標入力電力は、上記第1および第2の目標入力電力のうち、上記他方のインバータ回路の目標入力電力と同一であるように設定されることを特徴とする請求項2記載の誘導加熱調理器。 3. The third target input power is set to be the same as the target input power of the other inverter circuit among the first and second target input powers. Induction heating cooker.
  4.  上記第2および第3の入力電力は、それぞれゼロに設定されることを特徴とする請求項1から3のうちのいずれか1つに記載の誘導加熱調理器。 The induction heating cooker according to any one of claims 1 to 3, wherein the second and third input powers are each set to zero.
  5.  上記第1の期間における上記第2のインバータ回路の駆動信号の周波数は、上記第1の期間における上記第1のインバータ回路の駆動信号の周波数の2倍の周波数に設定され、
     上記第2の期間における上記第1のインバータ回路の駆動信号の周波数は、上記第2の期間における上記第2のインバータ回路の駆動信号の周波数の2倍の周波数に設定されたことを特徴とする請求項1から3のうちのいずれか1つに記載の誘導加熱調理器。
    The frequency of the drive signal of the second inverter circuit in the first period is set to a frequency twice the frequency of the drive signal of the first inverter circuit in the first period,
    The frequency of the drive signal of the first inverter circuit in the second period is set to twice the frequency of the drive signal of the second inverter circuit in the second period. The induction heating cooker according to any one of claims 1 to 3.
  6.  上記第1および第2のインバータ回路の加熱動作の状態を報知する報知手段をさらに備え、
     上記制御手段は、上記一方のインバータ回路の加熱動作を停止した後、上記一方のインバータ回路が加熱動作を停止していることを報知するように、上記報知手段を制御することを特徴とする請求項1から5のうちのいずれか1つに記載の誘導加熱調理器。
    A notification means for notifying the state of the heating operation of the first and second inverter circuits;
    The control means controls the notifying means so as to notify that the one inverter circuit stops the heating operation after stopping the heating operation of the one inverter circuit. Item 6. The induction heating cooker according to any one of Items 1 to 5.
PCT/JP2012/004433 2011-10-28 2012-07-09 Induction heating cookware WO2013061493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013540616A JP5979386B2 (en) 2011-10-28 2012-07-09 Induction heating cooker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236885 2011-10-28
JP2011-236885 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061493A1 true WO2013061493A1 (en) 2013-05-02

Family

ID=48167351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004433 WO2013061493A1 (en) 2011-10-28 2012-07-09 Induction heating cookware

Country Status (2)

Country Link
JP (1) JP5979386B2 (en)
WO (1) WO2013061493A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192268A (en) * 2015-03-31 2016-11-10 パナソニックIpマネジメント株式会社 Heating cooker
JPWO2014203468A1 (en) * 2013-06-18 2017-02-23 パナソニックIpマネジメント株式会社 Induction heating cooker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102620662B1 (en) * 2018-10-18 2024-01-04 삼성전자주식회사 Cooking apparatus and method for controlling thereof
KR20210120660A (en) * 2020-03-27 2021-10-07 엘지전자 주식회사 Induction heating apparatus and method for controlling induction heating apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235032A (en) * 2003-01-30 2004-08-19 Mitsubishi Electric Corp Induction heating cooker
JP2009043700A (en) * 2007-07-19 2009-02-26 Panasonic Corp Induction heating device
JP2009272241A (en) * 2008-05-09 2009-11-19 Mitsubishi Electric Corp Induction cooker
JP2010212052A (en) * 2009-03-10 2010-09-24 Panasonic Corp Induction heating device
JP2011150797A (en) * 2010-01-19 2011-08-04 Panasonic Corp Induction heating cooker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270293A (en) * 1989-04-10 1990-11-05 Matsushita Electric Ind Co Ltd Induction heat cooking appliance
JP2008034397A (en) * 2007-10-12 2008-02-14 Mitsubishi Electric Corp Induction heating cooker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235032A (en) * 2003-01-30 2004-08-19 Mitsubishi Electric Corp Induction heating cooker
JP2009043700A (en) * 2007-07-19 2009-02-26 Panasonic Corp Induction heating device
JP2009272241A (en) * 2008-05-09 2009-11-19 Mitsubishi Electric Corp Induction cooker
JP2010212052A (en) * 2009-03-10 2010-09-24 Panasonic Corp Induction heating device
JP2011150797A (en) * 2010-01-19 2011-08-04 Panasonic Corp Induction heating cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014203468A1 (en) * 2013-06-18 2017-02-23 パナソニックIpマネジメント株式会社 Induction heating cooker
JP2016192268A (en) * 2015-03-31 2016-11-10 パナソニックIpマネジメント株式会社 Heating cooker

Also Published As

Publication number Publication date
JPWO2013061493A1 (en) 2015-04-02
JP5979386B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5938718B2 (en) Induction heating cooker and its control method
WO2013061595A1 (en) Inductive heating device
JP5909674B2 (en) Induction heating device
JP4865699B2 (en) Induction heating device
JP5979386B2 (en) Induction heating cooker
CA2828390C (en) Induction heating device
JP6854826B2 (en) Induction cookware and its power control method
JP5906441B2 (en) Induction heating device
JP6931792B2 (en) Induction heating device and its drive control method
JP2006294287A (en) Induction heating device
JP5895123B2 (en) Induction heating device
JP5906454B2 (en) Induction heating apparatus and control method thereof
JP4325446B2 (en) Induction heating device
JPWO2018150614A1 (en) Induction heating apparatus and drive control method for induction heating apparatus
JP5895175B2 (en) Induction heating cooker
JP2007234278A (en) Induction heating cooker
JP5870247B2 (en) rice cooker
KR101846358B1 (en) Electric range having multiple inverter circuits driven by same frequency and control method for the electric range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844025

Country of ref document: EP

Kind code of ref document: A1