WO2013061439A1 - Three-dimensional video display device - Google Patents

Three-dimensional video display device Download PDF

Info

Publication number
WO2013061439A1
WO2013061439A1 PCT/JP2011/074791 JP2011074791W WO2013061439A1 WO 2013061439 A1 WO2013061439 A1 WO 2013061439A1 JP 2011074791 W JP2011074791 W JP 2011074791W WO 2013061439 A1 WO2013061439 A1 WO 2013061439A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
eyepiece
angle
mirror
image
Prior art date
Application number
PCT/JP2011/074791
Other languages
French (fr)
Japanese (ja)
Inventor
一雄 関家
望月 亮
Original Assignee
アスミタステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アスミタステクノロジー株式会社 filed Critical アスミタステクノロジー株式会社
Priority to PCT/JP2011/074791 priority Critical patent/WO2013061439A1/en
Publication of WO2013061439A1 publication Critical patent/WO2013061439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays

Definitions

  • the present invention relates to a stereoscopic image display device.
  • stereoscopic video display devices that display binocular stereoscopic left and right images captured by an imaging device on a pair of left and right video display devices and stereoscopically view through a pair of left and right eyepieces have become widespread.
  • stereoscopic image display devices used in operations such as medical diagnosis reduce the fatigue of the operator during surgery and the like, and display characteristics equivalent to those observed with an optical microscope are required.
  • the stereoscopic image display device uses a normal color filter type liquid crystal display device (hereinafter referred to as “CF-LCD”) as the image display device, thereby improving resolution and color reproducibility compared with the case of using a CRT display.
  • CF-LCD normal color filter type liquid crystal display device
  • the present invention provides an image projected on the virtual image plane using a pair of left and right eyepieces arranged so that optical axes orthogonal to the virtual image plane are parallel to each other.
  • a stereoscopic image display device that stereoscopically displays a left-side image for binocular stereoscopic viewing that is mirror-inverted and having a first display screen that displays the left-side image with a definition corresponding to an HDTV (high-definition television) system
  • a color sequential display type second liquid crystal display device having a size corresponding to an angle of view of the left eyepiece, and an image displayed on the first display screen is within the angle of view.
  • the eyepiece is formed in a size corresponding to the angle of view of the first mirror placed on the right side and the eyepiece on the right side, and the image displayed on the second display screen is within this angle of view.
  • a second mirror disposed at a predetermined angle with respect to the optical axis.
  • a color sequential display type field sequential color type: FSC type
  • FSC type field sequential color type
  • FIG. 1 is a diagram schematically illustrating the appearance of a stereoscopic video display apparatus according to an embodiment of the present invention.
  • FIG. 2 is a first diagram for explaining an arrangement relationship of a display screen or the like for stereoscopic viewing on the stereoscopic video display device.
  • FIG. 3 is a second diagram for explaining the arrangement relationship of a display screen and the like for stereoscopic viewing on the stereoscopic video display device.
  • FIG. 1 is a diagram schematically showing the appearance of a stereoscopic video display device 100 according to an embodiment of the present invention.
  • FIG. 2 shows the arrangement relationship of display screens and the like for stereoscopic viewing on the stereoscopic video display device 100.
  • FIG. 3 is a first diagram for explaining the arrangement relationship of a display screen and the like for stereoscopic viewing on the stereoscopic video display device 100.
  • the three-dimensional image display device 100 mainly includes a left display device 6a which is a color sequential display type liquid crystal display device (FSC-LCD) corresponding to the left eyepiece 2a and an FSC-LCD corresponding to the right eyepiece 2b.
  • a right mirror 5b that leads to the right eyepiece 2b and a case 1 are provided.
  • the left display device 6a has a left display screen 4a that displays a left-side image for binocular stereoscopic viewing that is mirror-inverted with a definition corresponding to an HDTV (high definition television) system.
  • the right display device 6b is disposed in parallel to the left display screen 4a at a position facing the left display screen 4a, and displays a right image for binocular stereoscopic viewing that is mirror-inverted with the above-mentioned definition. It has a screen 4b.
  • the stereoscopic video display device 100 When the stereoscopic video display device 100 is used for medical purposes, it corresponds to Full-HD. It is desirable to have a definition (horizontal 1920 ⁇ vertical 1080).
  • the left eyepiece 2a and the right eyepiece 2b are provided in the case 1, the left eyepiece 2a is provided with an eyepiece 3a, and the right eyepiece 2b is provided with an eyepiece 3b.
  • the pair of left and right eyepieces 3a and 3b has an optical axis 10 that is parallel to the left display screen 4a and the right display screen 4b and extends in the horizontal direction, and the left display screen 4a and the right display screen 4b are opposed to each other. And located on the end side in the longitudinal direction (lower side in FIG. 2) from the center of each display screen (4a, 4b).
  • the optical axes 10 of the eyepieces 3a and 3b are provided in parallel with each other at a width (eye width b: average of about 65 mm) between the center of the left eye P and the center of the right eye P.
  • a left mirror 5a and a right mirror 5b are arranged in an inverted C shape toward the eyepieces 3a and 3b.
  • the left mirror 5a As the distance from the eyepiece 2a increases, the distance from the left display screen 4a decreases.
  • the right mirror 5b decreases from the right eyepiece 2b as the distance from the right display screen 4b decreases. Has been.
  • the left mirror 5a is formed in a size corresponding to the angle of view of the eyepiece 3a (horizontal angle of view ⁇ and vertical angle of view) so as to guide the image displayed on the left display screen 4a to the eyepiece 3a. Further, they are arranged at a predetermined angle (mirror angle ⁇ ) with respect to the optical axis 10 of the eyepiece 3a.
  • the left display screen 4a side end of the left mirror 5a is provided at a position in contact with the extension line g1a of the horizontal angle of view ⁇ with respect to the optical axis 10 of the eyepiece 3a, and the eyepiece 3a side end of the left mirror 5a.
  • the left mirror 5a is provided with a mirror angle ⁇ of, for example, 45 ° so that the optical axis 10 of the eyepiece 3a is perpendicularly incident near the center of the left display screen 4a.
  • the lengths of the bases of the isosceles triangles having the same length of each hypotenuse (extension lines g1a, g1b) having the angle of view ⁇ as the apex angle are the same as the horizontal width H of the left display screen 4a. That is, the left display screen 4a is disposed at a position where the optical axis 10 of the eyepiece lens 3a is folded back by the left mirror 5a from a position that should originally be in front of the left eyepiece 2a (the base).
  • the right mirror 5b is formed to have a size corresponding to the angle of view of the eyepiece 3b (horizontal angle of view ⁇ and vertical angle of view), and the image displayed on the right display screen 4b is directed to the eyepiece 3b. In order to guide, it is arranged at a predetermined angle (mirror angle ⁇ ) with respect to the optical axis 10 of the eyepiece 3b.
  • the right side display screen 4b side end of the right mirror 5b is provided at a position in contact with the extension line g2a of the horizontal angle of view ⁇ with respect to the optical axis 10 of the eyepiece 3b, and the eyepiece 3b side end of the right mirror 5b.
  • the right mirror 5b is provided with a mirror angle ⁇ of 45 °, for example, so that the optical axis 10 of the eyepiece 3b is perpendicularly incident near the center of the right display screen 4b.
  • the lengths of the bases of the isosceles triangles having the same hypotenuses (extension lines g2a, g2b) having the angle of view ⁇ as the apex angle are the same as the horizontal width H of the right display screen 4b.
  • the right display screen 4b is disposed at a position where the optical axis 10 of the eyepiece 3b is folded back by the right mirror 5b from a position that should originally be in front of the right eyepiece 2b (the base).
  • An image displayed on the left display screen 4a (an image obtained by mirror-reversing the left image for binocular stereoscopic viewing) reaches the left mirror 5a at a predetermined incident angle with respect to the normal of the left mirror 5a and is equal to this incident angle. It reaches the eyepiece 3a at an angle of reflection and is observed by the left eye P.
  • an image displayed on the right display screen 4b (an image obtained by mirror-inverting the right image for binocular stereoscopic viewing) reaches the right mirror 5b at a predetermined incident angle with respect to the normal of the right mirror 5b, and this incident The eye reaches the eyepiece lens 3b at a reflection angle equal to the angle and is observed by the right eye P.
  • the virtual image position e will be described.
  • the virtual image position e shown in FIG. 3 must be farther than the shortest distance that the eye P can focus on. This is because the focus cannot be achieved when the virtual image position e is equal to or shorter than the shortest distance. Since this shortest distance is about 25 cm for young people, the virtual image position e is assumed to be 400 mm or more as an easy-to-see distance.
  • H the horizontal screen size (width) of each display screen (4a, 4b).
  • f / (fa) of the virtual image position e and the virtual image size H1 is a virtual image magnification ⁇ described later.
  • r the distance from each eyepiece (2a, 2b) to any point on each display screen (4a, 4b).
  • f> r In order for any point on each display screen to appear as a virtual image at a finite distance, f> r must be satisfied at all points. Since the maximum value of r is a ⁇ sec ⁇ , it must be f> a ⁇ sec ⁇ . However, under this condition, when f is approximately equal to a ⁇ sec ⁇ , the distance to the virtual image position of the end point becomes infinite, and the focus of the eye must be changed greatly between the center of each screen and the end point.
  • change of the virtual image magnification ⁇ (change of virtual image position) is 2 It is desirable to keep it below twice. That is, the virtual image magnification ⁇ when the central portion of each display screen (4a, 4b) is viewed from each eyepiece 2 (2a, 2b) on the optical axis 10 and the angle of view ⁇ is ⁇ 30 ° and each eyepiece. It is desirable that the ratio with the virtual image magnification ⁇ ′ when viewing the end of each display screen (4a, 4b) from 2 (2a, 2b) is 2 times or less.
  • the younger age group (from about 15 years old to about 34 years old) has a wide focus adjustment range of the eye P, so even if the change in the virtual image magnification ⁇ between the display screen center and the display screen edge is large, it does not matter. This is because, since the focus adjustment range of the eye P is narrow, if the magnification change between the screen center and the screen periphery, that is, the virtual image position change is large, either the display screen center or the display screen edge will appear blurred.
  • the virtual image magnification ⁇ at the optical axis 10 is , ⁇ ⁇ 4.23, that is, 4.23 times or less.
  • the conditions under which the virtual image position e is 400 mm or more are as follows.
  • each display screen (4a, 4b) having a lateral width H of 144 mm is provided at a position in contact with the extension lines g1a, g1b, g2a, g2b with a horizontal angle of view ⁇ ⁇ 30 °, each eyepiece 2 (2a, 2b) )
  • To the vicinity of the center of each display screen (4a, 4b) is 125 mm. Therefore, the virtual image magnification ⁇ at which the virtual image position e is 400 mm or more is as follows.
  • the conditions for focusing are as follows. Since the distance a is 125 mm, the virtual image magnification ⁇ is 3.2 ⁇ ⁇ ⁇ 4.23, and the coefficient k is 1.31 ⁇ k ⁇ 1.455, the lens focal length f is 164 mm ⁇ f ⁇ 182 mm. That is, when a 6.5-inch display screen of 144 mm ⁇ 81 mm is arranged at a position where the distance a is 125 mm using the eyepiece 2 (2a, 2b) having a lens focal length f of 170 mm, the horizontal image is displayed. A virtual image with a virtual image magnification ⁇ of 3.8 times can be seen where the angle ⁇ and the vertical field angle (not shown) are ⁇ 30 ° ⁇ ⁇ 18 ° and the virtual image position e is 472 mm.
  • the apertures of the eyepieces 3a and 3b are not considered.
  • the eyepiece 3a may be reflected on the left mirror 5a.
  • the eyepiece 3b when the eyepiece 3b is disposed on the line 7b connecting the eyepiece side end of the right mirror 5b and the eyepiece side end of the right display screen 4b, the eyepiece 3b There is a possibility of reflection in the right mirror 5b.
  • the distance a is set to a value larger than 125 mm and the lens focal length f is set to a large value, or the mirror angle ⁇ of each mirror (5a, 5b) is set to 45.
  • the degree of freedom of the viewpoint decreases when the lens diameter h is reduced, it is desirable to avoid the reflection of the eyepieces 3a and 3b while keeping the lens diameter h at 40 mm.
  • the conditions for focusing without reducing the lens diameter h are as follows.
  • the distance a is 135 mm
  • the virtual image magnification ⁇ is 3.0 ⁇ ⁇ ⁇ 4.23
  • the constant k is 1.31 ⁇ k ⁇ 1.5
  • the lens focal length f is 164 mm ⁇ f ⁇ 202 mm.
  • the horizontal field angle ⁇ and the vertical field angle are ⁇ 28.1 ° ⁇ ⁇ 16.7 ° and the virtual image position e is 466 mm, and the virtual image magnification ⁇ Can see a 3.45x virtual image.
  • the mirror angle ⁇ is set to 45 °, and the distance c from the intersection j1 between the optical axis 10 of the eyepiece 3a and the left mirror 5a to the intersection j2 between the optical axis 10 of the eyepiece 3b and the right mirror 5b is , 61 mm. That is, from the position (intersection j1, j2) where the distance between the left mirror 5a and the right mirror 5b is equal to the eye width b when the center of each display screen (4a, 4b) is viewed in parallel, each eyepiece 3a.
  • the distance to 3b is set to 61 mm.
  • the optical axis 10 of the eyepiece 3a reflected by the left mirror 5a is positioned in the vertical direction of the left display screen 4a at the center of the left display screen 4a, and the optical axis of the eyepiece 3b reflected by the right mirror 5b. 10 is located in the vertical direction of the right display screen 4b at the center of the right display screen 4b.
  • the boundary between subpixels is recognized as a color break.
  • an inappropriate color mixture may be seen, or a pseudo line of another color may be seen due to a break.
  • a monochromatic thin line is displayed on the CF-LCD, only the red sub-pixel is displayed, so that the red thin line appears to be interrupted.
  • the FSC-LCD used in the stereoscopic image display apparatus 100 is a method of switching RGB at high speed at 180 Hz or higher on the same pixel of the FSC-LCD and performing full color display with one pixel. Therefore, the FSC-LCD requires only one-third the number of signal wirings compared to the CF-LCD, so that high definition and a wide aperture ratio can be easily achieved and pixel boundary recognition is reduced. Therefore, in the FSC-LCD, there is no possibility of seeing discontinuities, color mixing, pseudo lines, and the like.
  • the color of the light source for example, LED
  • the color gamut can be freely adjusted without causing any trouble. Therefore, in the FSC-LCD, it is possible to obtain a glossy feeling as if a film photograph is seen due to the connectivity of each pixel.
  • the eyepieces 3a and 3b can have a large aperture, and even if the distance between the eyepieces 3a and 3b and the eye P is increased, the position of the pupil is 2 Stereoscopic viewing is possible even with a deviation of ⁇ 3 cm. In addition, brightness reduction and flicker do not occur as in the conventional liquid crystal shutter glasses method, and natural stereoscopic viewing is possible.
  • the biggest difficulty of FSC-LCD is that “color breakup” occurs. That is, when a certain display object is moving on the display screen of the FSC-LCD, the front end and the rear end appear to be rainbow colors. With regard to this color breakup, black can be added to one or more fields before and / or after the set of three primary colors, and the colors in the added set can be displayed sequentially to improve the level without any problem. is there.
  • each display screen (4a, 4b) is Full-HD definition (1920 ⁇ 1080).
  • the present invention is not limited to this, and the display screen (4a, 4b)
  • the definition may be HD definition such as 1440 ⁇ 1080 or 1280 ⁇ 720, for example. Even in such a configuration, there is no problem with the prior art that the monochromatic thin line is interrupted and the color mixture and the pseudo-line are visible at the boundary of the color plane, so that it is possible to improve the image quality.
  • the configuration example has been described in which the mirror angle ⁇ is 45 ° with respect to the optical axis 10, but the mirror angle ⁇ is not limited to 45 ° and is within the above-described conditions of the virtual image position e.
  • the mirror angle ⁇ is set to an angle other than 45 °, and each display screen (4a, 4b) is You may comprise so that it may arrange
  • the stereoscopic image display apparatus 100 uses the pair of left and right eyepieces 3a and 3b arranged so that the optical axis 10 orthogonal to the virtual image plane is parallel to the virtual image plane.
  • a first display screen (left display screen 4a) that displays a mirror-inverted left-side image for binocular stereoscopic viewing with a resolution corresponding to the HDTV system ) Having a color sequential display type first liquid crystal display device (left display device 6a) and a right-side image for binocular stereoscopic viewing that is disposed opposite to the left display screen 4a and is mirror-inverted.
  • the right eyepiece 3b and the first mirror (left side mirror 5a) arranged at a predetermined angle ⁇ with respect to the optical axis 10 of the eyepiece 3a so that the image to be captured falls within this angle of view ⁇ .
  • the overall size of the device can be reduced as compared with the conventional stereoscopic image display device, and the display screens (4a, 4b) are displayed.
  • the image can be observed with the original binocular parallax, and the eye P does not get tired or have a headache even when observed for a long time.
  • the stereoscopic image display apparatus 100 according to the present embodiment can easily achieve higher definition and a wider aperture ratio than the CF-LCD, and can reduce pixel boundary recognition. As a result, it is possible to reduce the installation space of the stereoscopic image display apparatus 100 as compared with the prior art and realize a wide color reproduction range.
  • the stereoscopic image display apparatus 100 displays the virtual image magnification ⁇ when viewing the central portion of the left display screen 4a from the left eyepiece lens 3a and the end portion of the left display screen 4a from the left eyepiece lens 3a.
  • the ratio with the virtual image magnification ⁇ ′ when viewed is configured to be 2 times or less, and the virtual image magnification ⁇ when viewing the central portion of the right display screen 4b from the right eyepiece 3b and the right eyepiece 3b.
  • the horizontal screen dimensions of the left display screen 4a and the right display screen 4b are formed to be approximately twice the eye width, so the horizontal screen dimensions are the conventional ones.
  • the horizontal screen size (about 442 mm in the case of 20 inches) of the CF-LCD used in the stereoscopic image display device can be reduced to about one third. Therefore, the depth dimension of the stereoscopic image display apparatus 100 can be greatly reduced, and the weight of the entire stereoscopic image display apparatus 100 can be reduced.
  • the stereoscopic video display apparatus 100 shown in the present embodiment shows an example of the content of the present invention, and can be combined with another known technique, and departs from the gist of the present invention. Of course, it is possible to change and configure such as omitting a part within the range.
  • the present invention is mainly applicable to a stereoscopic video display device, and is particularly useful as an invention capable of reducing the size and improving the image quality of a stereoscopic video display device.

Abstract

A three-dimensional video display device, comprising: a color sequential display-type, left-side display device (6a) which has a left-side display screen (4a) that displays, in a definition corresponding to HDTV (high-definition television) format, mirror-inverted, left-side video for twin lens stereoscopic viewing; a color sequential display-type right-side display device (6b) arranged facing the left-side display screen (4a) and having a right-side display screen (4b) that displays, in said definition, mirror-inverted, right-side video for twin lens stereoscopic viewing; a left-side mirror (5a) formed at a size corresponding to the angle of view (θ) for a left-side eyepiece (3a), and arranged at a prescribed angle (φ) relative to the optical axis (10) of the eyepiece (3a) such that the video displayed in the left-side display screen (4a) fits into the angle of view (θ); and a right-side mirror (5b) formed at a size corresponding to the angle of view (θ) for a right-side eyepiece (3b), and arranged at the prescribed angle (φ) relative to the optical axis (10) of the eyepiece (3b) such that the video displayed in the right-side display screen (4b) fits into the angle of view (θ).

Description

立体映像表示装置3D image display device
 本発明は、立体映像表示装置に関する。 The present invention relates to a stereoscopic image display device.
 近年、撮像装置で撮像された二眼立体視用の左右映像を左右一対の映像表示装置に表示し、左右一対の接眼レンズを通して立体視する立体映像表示装置が普及している。特に、医療診断をはじめとする手術の際に用いられる立体映像表示装置には、手術等における術者の疲労を軽減すると共に、光学顕微鏡による観察像と同等の表示特性が求められるため、従来の立体映像表示装置は、映像表示装置として通常のカラーフィルタ方式の液晶表示装置(以下「CF-LCD」と表記)を用いることによってCRTディスプレイを用いた場合に比べて解像度および色再現性を高めている(例えば下記特許文献1)。 In recent years, stereoscopic video display devices that display binocular stereoscopic left and right images captured by an imaging device on a pair of left and right video display devices and stereoscopically view through a pair of left and right eyepieces have become widespread. In particular, stereoscopic image display devices used in operations such as medical diagnosis reduce the fatigue of the operator during surgery and the like, and display characteristics equivalent to those observed with an optical microscope are required. The stereoscopic image display device uses a normal color filter type liquid crystal display device (hereinafter referred to as “CF-LCD”) as the image display device, thereby improving resolution and color reproducibility compared with the case of using a CRT display. (For example, Patent Document 1 below).
 しかしながら、上記特許文献1に代表される従来技術においては、Full-HDTV(高精細度テレビジョン)方式に対応する精細度を実現するため、例えば20インチ以上の大型のCF-LCDを用いる必要があり、立体映像表示装置全体の小型化を図ることが困難であった。CF-LCDでは1画素が光の3原色である赤(R)、緑(G)、青(B)の3つのサブ画素に分割されるため、表示画面を小さくした場合、各画素の開口率(画素面積に対する有効画素面積の比)が小さく成り過ぎる(画素の開口率を確保することができない)ためである。 However, in the conventional technique represented by the above-mentioned Patent Document 1, it is necessary to use a large CF-LCD of, for example, 20 inches or more in order to realize the definition corresponding to the Full-HDTV (high definition television) system. Therefore, it has been difficult to reduce the size of the entire stereoscopic video display device. In a CF-LCD, one pixel is divided into three sub-pixels of red (R), green (G), and blue (B), which are the three primary colors of light. Therefore, when the display screen is reduced, the aperture ratio of each pixel This is because (ratio of effective pixel area to pixel area) becomes too small (a pixel aperture ratio cannot be ensured).
 一方、Full-HD精細度(横1920×縦1080)のCF-LCDを、虚像位置が数10cm~1m程度、かつ、十分な画角(上下左右それぞれ20度程度以上)で見た場合、Full-HD精細度のCF-LCDでは1画素が視角1分(1分は1度の60分の1の角度)以上になる。視力1.0の人間の視覚の分解能は、1分であるため、視力1.0のユーザであれば、Full-HD精細度のCF-LCDの1画素以下が識別できてしまうこととなる。たとえCF-LCDで上記の水平画面寸法を実現できた場合でも、CF-LCDでは、サブ画素が見えてしまうため、単色の細線が途切れて見えてしまうという問題や、色面の境界で不適切な混色あるいは途切れによる別な色の疑似線が見えてしまうという問題があった。従って、上記特許文献1に代表される従来技術は、立体映像表示装置の更なる小型化および画質向上を図りたいというニーズに対応することができないという課題があった。 On the other hand, when a Full-HD definition (horizontal 1920 × vertical 1080) CF-LCD is viewed at a virtual image position of about several tens of centimeters to 1 m and a sufficient angle of view (up and down, right and left of about 20 degrees or more), -In a CF-LCD with HD definition, one pixel has a viewing angle of 1 minute (1 minute is 1 / 60th of an angle) or more. Since the visual resolution of a human with a visual acuity of 1.0 is 1 minute, a user with a visual acuity of 1.0 can identify one pixel or less in a CF-LCD with a Full-HD definition. Even if the above-mentioned horizontal screen dimensions can be realized with a CF-LCD, sub-pixels can be seen with the CF-LCD, so that a single-color thin line may appear to be interrupted, and it is inappropriate for the boundary of the color plane. There is a problem in that pseudo-wires of different colors are visible due to various color mixing or interruptions. Therefore, the prior art represented by the above-mentioned Patent Document 1 has a problem that it cannot meet the needs to further reduce the size and improve the image quality of the stereoscopic video display device.
 本発明は、立体映像表示装置の更なる小型化および画質向上を図ることができる立体映像表示装置を得ることを目的とする。 It is an object of the present invention to obtain a stereoscopic video display device that can further reduce the size and improve the image quality of the stereoscopic video display device.
 上述した課題を解決し、目的を達成するために、本発明は、虚像面に直交する光軸が平行になるように配置された左右一対の接眼レンズを用いて前記虚像面に投影される映像を立体視する立体映像表示装置であって、鏡像反転された二眼立体視用の左側映像をHDTV(高精細度テレビジョン)方式に対応する精細度で表示する第1の表示画面を有する色順次表示方式の第1の液晶表示装置と、前記第1の表示画面と対向して配設され、鏡像反転された二眼立体視用の右側映像を前記精細度で表示する第2の表示画面を有する色順次表示方式の第2の液晶表示装置と、左側の前記接眼レンズの画角に対応する大きさに形成され、前記第1の表示画面に表示される映像がこの画角内に収まるようにこの接眼レンズの光軸に対して所定の角度で配置された第1の鏡と、右側の前記接眼レンズの画角に対応する大きさに形成され、前記第2の表示画面に表示される映像がこの画角内に収まるようにこの接眼レンズの光軸に対して所定の角度で配置された第2の鏡と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides an image projected on the virtual image plane using a pair of left and right eyepieces arranged so that optical axes orthogonal to the virtual image plane are parallel to each other. A stereoscopic image display device that stereoscopically displays a left-side image for binocular stereoscopic viewing that is mirror-inverted and having a first display screen that displays the left-side image with a definition corresponding to an HDTV (high-definition television) system A first liquid crystal display device of a sequential display system, and a second display screen that is disposed to face the first display screen and displays a right-side image for binocular stereoscopic viewing that is mirror-inverted with the above-described definition. A color sequential display type second liquid crystal display device having a size corresponding to an angle of view of the left eyepiece, and an image displayed on the first display screen is within the angle of view. At a predetermined angle with respect to the optical axis of this eyepiece The eyepiece is formed in a size corresponding to the angle of view of the first mirror placed on the right side and the eyepiece on the right side, and the image displayed on the second display screen is within this angle of view. And a second mirror disposed at a predetermined angle with respect to the optical axis.
 この発明によれば、色順次表示方式(フィールドシーケンシャルカラー方式:FSC方式)のLCDを用いるようにしたので、立体映像表示装置の更なる小型化および画質向上を図ることができるという効果を奏する。 According to the present invention, since a color sequential display type (field sequential color type: FSC type) LCD is used, it is possible to further reduce the size and improve the image quality of the stereoscopic video display device.
図1は、本発明の実施の形態にかかる立体映像表示装置の外観を模式的に示す図である。FIG. 1 is a diagram schematically illustrating the appearance of a stereoscopic video display apparatus according to an embodiment of the present invention. 図2は、立体映像表示装置で立体視するための表示画面等の配置関係を説明するための第1の図である。FIG. 2 is a first diagram for explaining an arrangement relationship of a display screen or the like for stereoscopic viewing on the stereoscopic video display device. 図3は、立体映像表示装置で立体視するための表示画面等の配置関係を説明するための第2の図である。FIG. 3 is a second diagram for explaining the arrangement relationship of a display screen and the like for stereoscopic viewing on the stereoscopic video display device.
 以下に、本発明にかかる立体映像表示装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a stereoscopic video display device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかる立体映像表示装置100の外観を模式的に示す図であり、図2は、立体映像表示装置100で立体視するための表示画面等の配置関係を説明するための第1の図であり、図3は、立体映像表示装置100で立体視するための表示画面等の配置関係を説明するための第2の図である。
Embodiment.
FIG. 1 is a diagram schematically showing the appearance of a stereoscopic video display device 100 according to an embodiment of the present invention. FIG. 2 shows the arrangement relationship of display screens and the like for stereoscopic viewing on the stereoscopic video display device 100. FIG. 3 is a first diagram for explaining the arrangement relationship of a display screen and the like for stereoscopic viewing on the stereoscopic video display device 100. FIG.
 立体映像表示装置100は、主たる構成として、左側接眼部2aに対応する色順次表示方式液晶表示装置(FSC-LCD)である左側表示装置6aと、右側接眼部2bに対応するFSC-LCDである右側表示装置6bと、左側表示装置6aの左側表示画面4aに表示される映像を左側接眼部2aへ導く左側鏡5aと、右側表示装置6bの右側表示画面4bに表示される映像を右側接眼部2bへ導く右側鏡5bと、ケース1とを有して構成されている。 The three-dimensional image display device 100 mainly includes a left display device 6a which is a color sequential display type liquid crystal display device (FSC-LCD) corresponding to the left eyepiece 2a and an FSC-LCD corresponding to the right eyepiece 2b. The right display device 6b, the left mirror 5a for guiding the video displayed on the left display screen 4a of the left display device 6a to the left eyepiece 2a, and the video displayed on the right display screen 4b of the right display device 6b. A right mirror 5b that leads to the right eyepiece 2b and a case 1 are provided.
 左側表示装置6aは、鏡像反転された二眼立体視用の左側映像をHDTV(高精細度テレビジョン)方式に対応する精細度で表示する左側表示画面4aを有する。また、右側表示装置6bは、左側表示画面4aと対向する位置にて左側表示画面4aと平行に配設され、鏡像反転された二眼立体視用の右側映像を上記精細度で表示する右側表示画面4bを有する。左側表示画面4aおよび右側表示画面4bは、アスペクト比が16対9(H:V=16:9)に形成されており、立体映像表示装置100を医療用として用いる場合にはFull-HD相当の精細度(横1920×縦1080)であることが望ましい。 The left display device 6a has a left display screen 4a that displays a left-side image for binocular stereoscopic viewing that is mirror-inverted with a definition corresponding to an HDTV (high definition television) system. The right display device 6b is disposed in parallel to the left display screen 4a at a position facing the left display screen 4a, and displays a right image for binocular stereoscopic viewing that is mirror-inverted with the above-mentioned definition. It has a screen 4b. The left display screen 4a and the right display screen 4b have an aspect ratio of 16: 9 (H: V = 16: 9). When the stereoscopic video display device 100 is used for medical purposes, it corresponds to Full-HD. It is desirable to have a definition (horizontal 1920 × vertical 1080).
 左側接眼部2aおよび右側接眼部2bはケース1に設けられ、左側接眼部2aには接眼レンズ3aが設けられ、右側接眼部2bには接眼レンズ3bが設けられている。左右一対の接眼レンズ3a、3bは、左側表示画面4aおよび右側表示画面4bと平行、かつ、水平方向に延びる光軸10を有し、左側表示画面4aと右側表示画面4bとが対向する位置にて各表示画面(4a、4b)の中心よりも長手方向端部側(図2において下側)に位置する。各接眼レンズ3a、3bの光軸10は、左眼Pの中心と右眼Pの中心との間の幅(眼幅b:平均約65mm)にて互いに平行に設けられている。 The left eyepiece 2a and the right eyepiece 2b are provided in the case 1, the left eyepiece 2a is provided with an eyepiece 3a, and the right eyepiece 2b is provided with an eyepiece 3b. The pair of left and right eyepieces 3a and 3b has an optical axis 10 that is parallel to the left display screen 4a and the right display screen 4b and extends in the horizontal direction, and the left display screen 4a and the right display screen 4b are opposed to each other. And located on the end side in the longitudinal direction (lower side in FIG. 2) from the center of each display screen (4a, 4b). The optical axes 10 of the eyepieces 3a and 3b are provided in parallel with each other at a width (eye width b: average of about 65 mm) between the center of the left eye P and the center of the right eye P.
 左側表示画面4aと右側表示画面4bとの間には、左側鏡5aおよび右側鏡5bが各接眼レンズ3a、3bに向かって逆ハの字状に配設されており、左側鏡5aは、左側接眼部2aから遠ざかるに従って左側表示画面4aとの距離が近くなるように配設され、右側鏡5bは、右側接眼部2bから遠ざかるに従って右側表示画面4bとの距離が近くなるように配設されている。 Between the left display screen 4a and the right display screen 4b, a left mirror 5a and a right mirror 5b are arranged in an inverted C shape toward the eyepieces 3a and 3b. The left mirror 5a As the distance from the eyepiece 2a increases, the distance from the left display screen 4a decreases. The right mirror 5b decreases from the right eyepiece 2b as the distance from the right display screen 4b decreases. Has been.
 より具体的に説明する。左側鏡5aは、接眼レンズ3aの画角(水平方向の画角θおよび垂直方向の画角)に対応する大きさに形成され、左側表示画面4aに表示される映像を接眼レンズ3aへ導くように、接眼レンズ3aの光軸10に対して所定の角度(鏡角度φ)で配置されている。左側鏡5aの左側表示画面4a側端部は、接眼レンズ3aの光軸10に対して水平方向の画角θの延長線g1aと接する位置に設けられ、左側鏡5aの接眼レンズ3a側端部は、この光軸10に対して水平方向の画角θの延長線g1bと接する位置に設けられている。そして、左側鏡5aは、接眼レンズ3aの光軸10が左側表示画面4aの中心付近にて垂直に入射するように、鏡角度φが例えば45°で設けられている。なお、図2において、画角θを頂角とする各斜辺(延長線g1a、g1b)の長さが等しい二等辺三角形の底辺の長さは、左側表示画面4aの横幅Hと同じである。すなわち、左側表示画面4aは、本来、左側接眼部2aの正面(上記底辺)にあるべき位置から、左側鏡5aで接眼レンズ3aの光軸10を折り返した位置に配設されている。 More specific explanation. The left mirror 5a is formed in a size corresponding to the angle of view of the eyepiece 3a (horizontal angle of view θ and vertical angle of view) so as to guide the image displayed on the left display screen 4a to the eyepiece 3a. Further, they are arranged at a predetermined angle (mirror angle φ) with respect to the optical axis 10 of the eyepiece 3a. The left display screen 4a side end of the left mirror 5a is provided at a position in contact with the extension line g1a of the horizontal angle of view θ with respect to the optical axis 10 of the eyepiece 3a, and the eyepiece 3a side end of the left mirror 5a. Is provided at a position in contact with the extension line g1b of the field angle θ in the horizontal direction with respect to the optical axis 10. The left mirror 5a is provided with a mirror angle φ of, for example, 45 ° so that the optical axis 10 of the eyepiece 3a is perpendicularly incident near the center of the left display screen 4a. In FIG. 2, the lengths of the bases of the isosceles triangles having the same length of each hypotenuse (extension lines g1a, g1b) having the angle of view θ as the apex angle are the same as the horizontal width H of the left display screen 4a. That is, the left display screen 4a is disposed at a position where the optical axis 10 of the eyepiece lens 3a is folded back by the left mirror 5a from a position that should originally be in front of the left eyepiece 2a (the base).
 また、右側鏡5bは、接眼レンズ3bの画角(水平方向の画角θおよび垂直方向の画角)に対応する大きさに形成され、右側表示画面4bに表示される映像を接眼レンズ3bへ導くように、接眼レンズ3bの光軸10に対して所定の角度(鏡角度φ)で配置されている。右側鏡5bの右側表示画面4b側端部は、接眼レンズ3bの光軸10に対して水平方向の画角θの延長線g2aと接する位置に設けられ、右側鏡5bの接眼レンズ3b側端部は、この光軸10に対して水平方向の画角θの延長線g2bと接する位置に設けられている。そして、右側鏡5bは、接眼レンズ3bの光軸10が右側表示画面4bの中心付近にて垂直に入射するように、鏡角度φが例えば45°で設けられている。なお、図2において、画角θを頂角とする各斜辺(延長線g2a、g2b)の長さが等しい二等辺三角形の底辺の長さは、右側表示画面4bの横幅Hと同じである。すなわち、右側表示画面4bは、本来、右側接眼部2bの正面(上記底辺)にあるべき位置から、右側鏡5bで接眼レンズ3bの光軸10を折り返した位置に配設されている。 The right mirror 5b is formed to have a size corresponding to the angle of view of the eyepiece 3b (horizontal angle of view θ and vertical angle of view), and the image displayed on the right display screen 4b is directed to the eyepiece 3b. In order to guide, it is arranged at a predetermined angle (mirror angle φ) with respect to the optical axis 10 of the eyepiece 3b. The right side display screen 4b side end of the right mirror 5b is provided at a position in contact with the extension line g2a of the horizontal angle of view θ with respect to the optical axis 10 of the eyepiece 3b, and the eyepiece 3b side end of the right mirror 5b. Is provided at a position in contact with the extension line g2b of the field angle θ in the horizontal direction with respect to the optical axis 10. The right mirror 5b is provided with a mirror angle φ of 45 °, for example, so that the optical axis 10 of the eyepiece 3b is perpendicularly incident near the center of the right display screen 4b. In FIG. 2, the lengths of the bases of the isosceles triangles having the same hypotenuses (extension lines g2a, g2b) having the angle of view θ as the apex angle are the same as the horizontal width H of the right display screen 4b. In other words, the right display screen 4b is disposed at a position where the optical axis 10 of the eyepiece 3b is folded back by the right mirror 5b from a position that should originally be in front of the right eyepiece 2b (the base).
 左側表示画面4aに表示された映像(二眼立体視用の左側映像を鏡像反転した映像)は、左側鏡5aの法線に対する所定の入射角で左側鏡5aに到達し、この入射角と等しい角度の反射角で接眼レンズ3aに到達し左の眼Pで観察される。同様に、右側表示画面4bに表示された映像(二眼立体視用の右側映像を鏡像反転した映像)は、右側鏡5bの法線に対する所定の入射角で右側鏡5bに到達し、この入射角と等しい角度の反射角で接眼レンズ3bに到達し右の眼Pで観察される。 An image displayed on the left display screen 4a (an image obtained by mirror-reversing the left image for binocular stereoscopic viewing) reaches the left mirror 5a at a predetermined incident angle with respect to the normal of the left mirror 5a and is equal to this incident angle. It reaches the eyepiece 3a at an angle of reflection and is observed by the left eye P. Similarly, an image displayed on the right display screen 4b (an image obtained by mirror-inverting the right image for binocular stereoscopic viewing) reaches the right mirror 5b at a predetermined incident angle with respect to the normal of the right mirror 5b, and this incident The eye reaches the eyepiece lens 3b at a reflection angle equal to the angle and is observed by the right eye P.
 次に、各表示画面(4a、4b)の中心付近だけでなく、各表示画面(4a、4b)の端部付近でも眼のピントが合う条件を説明する。 Next, conditions for focusing on the eyes not only near the center of each display screen (4a, 4b) but also near the end of each display screen (4a, 4b) will be described.
 まず、虚像位置eに関して説明する。図3に示される虚像位置eは、眼Pが焦点を合わすことが可能な最短距離よりも遠くになければならない。虚像位置eがこの最短距離以下の場合、ピントを合わせることができないためである。この最短距離は若年層で約25cmであるため、見やすい距離として虚像位置eは400mm以上と仮定する。虚像位置eは、e=a・f/(f-a)で表すことができ、aは各接眼レンズ3a、3bから表示面までの距離であり、fはレンズ焦点距離である。なお、虚像位置eにおける虚像サイズH1は、H1=H・f/(f-a)で表すことができ、Hは、各表示画面(4a、4b)の水平画面寸法(横幅)である。また虚像位置eおよび虚像サイズH1の項「f/(f-a)」は、後述する虚像倍率βである。 First, the virtual image position e will be described. The virtual image position e shown in FIG. 3 must be farther than the shortest distance that the eye P can focus on. This is because the focus cannot be achieved when the virtual image position e is equal to or shorter than the shortest distance. Since this shortest distance is about 25 cm for young people, the virtual image position e is assumed to be 400 mm or more as an easy-to-see distance. The virtual image position e can be expressed by e = a · f / (fa), where a is the distance from each eyepiece 3a, 3b to the display surface, and f is the lens focal length. The virtual image size H1 at the virtual image position e can be expressed by H1 = H · f / (fa), where H is the horizontal screen size (width) of each display screen (4a, 4b). The term “f / (fa)” of the virtual image position e and the virtual image size H1 is a virtual image magnification β described later.
 次に、画角θおよびレンズ焦点距離fに関して説明する。各接眼部(2a、2b)から各表示画面(4a、4b)上の任意の点までの距離をrとする。各表示画面(4a、4b)が各接眼部(2a、2b)からaの距離に配置された場合、各接眼部から各画面中心までの距離はr=aであるが、画角θである各画面の端点までの距離はr=a・secθとなる。距離rに対する虚像位置までの距離はe=r・f/(f-r)、虚像倍率はβ=f/(f-r)となる。各表示画面の任意の点が有限距離にある虚像として見えるためには、全ての点でf>rでなければならない。rの最大値はa・secθであるのでf>a・secθでなければならない。しかしこの条件のままでは、fがa・secθにほぼ等しい場合、端点の虚像位置までの距離は無限大になり、各画面中心と端点で眼のピントを大きく変更しなければならなくなってしまう。 Next, the angle of view θ and the lens focal length f will be described. Let r be the distance from each eyepiece (2a, 2b) to any point on each display screen (4a, 4b). When each display screen (4a, 4b) is arranged at a distance from each eyepiece (2a, 2b), the distance from each eyepiece to the center of each screen is r = a, but the angle of view θ The distance to the end point of each screen is r = a · secθ. The distance to the virtual image position with respect to the distance r is e = r · f / (fr), and the virtual image magnification is β = f / (fr). In order for any point on each display screen to appear as a virtual image at a finite distance, f> r must be satisfied at all points. Since the maximum value of r is a · secθ, it must be f> a · secθ. However, under this condition, when f is approximately equal to a · secθ, the distance to the virtual image position of the end point becomes infinite, and the focus of the eye must be changed greatly between the center of each screen and the end point.
 例えば、各表示画面(4a、4b)の横幅H方向の画角θが±30°程で眼のピントが容易に合うようにするためには、虚像倍率βの変化(虚像位置変化)を2倍以下に留めることが望ましい。すなわち、光軸10で各接眼部2(2a、2b)から各表示画面(4a、4b)の中央部を観たときの虚像倍率βと、画角θが±30°で各接眼部2(2a、2b)から各表示画面(4a、4b)の端部を観たときの虚像倍率β’との比率が2倍以下となることが望ましい。若年層(約15歳から約34歳まで)は、眼Pのピント調整範囲が広いため、表示画面中心と表示画面端部との虚像倍率βの変化が大きくとも問題にはならないが、高齢者は眼Pのピント調整範囲が狭いため、画面中心と画面周辺での倍率変化即ち虚像位置変化が大きい場合、表示画面中心と表示画面端部との何れかがぼやけて見えてしまうためである。 For example, in order to make the eye easily focus when the angle of view θ in the horizontal width H direction of each display screen (4a, 4b) is about ± 30 °, change of the virtual image magnification β (change of virtual image position) is 2 It is desirable to keep it below twice. That is, the virtual image magnification β when the central portion of each display screen (4a, 4b) is viewed from each eyepiece 2 (2a, 2b) on the optical axis 10 and the angle of view θ is ± 30 ° and each eyepiece. It is desirable that the ratio with the virtual image magnification β ′ when viewing the end of each display screen (4a, 4b) from 2 (2a, 2b) is 2 times or less. The younger age group (from about 15 years old to about 34 years old) has a wide focus adjustment range of the eye P, so even if the change in the virtual image magnification β between the display screen center and the display screen edge is large, it does not matter. This is because, since the focus adjustment range of the eye P is narrow, if the magnification change between the screen center and the screen periphery, that is, the virtual image position change is large, either the display screen center or the display screen edge will appear blurred.
 ここで、1以上の値を取る係数kを用いて、レンズ焦点距離fをf=k・aとして「β’/β<2」と仮定したとき、(f/(f-a・secθ))/(f/(f-a)=(k-1)/(k-sec30°)≦2より、2sec30°-1≒1.31≦kとなる。すなわち、光軸10での虚像倍率βは、β≦4.23、すなわち4.23倍以下にしかできない。 Here, when using a coefficient k having a value of 1 or more and assuming that the lens focal length f is f = k · a and “β ′ / β <2”, (f / (fa−secθ)) / (F / (fa) = (k−1) / (k−sec30 °) ≦ 2 2sec30 ° −1≈1.31 ≦ k In other words, the virtual image magnification β at the optical axis 10 is , Β ≦ 4.23, that is, 4.23 times or less.
 一方、虚像位置eが400mm以上となる条件は、以下の通りである。144mmの横幅Hの各表示画面(4a、4b)を水平方向の画角θ±30°の延長線g1a、g1b、g2a、g2bと接する位置に設けた場合、各接眼部2(2a、2b)から各表示画面(4a、4b)の中心付近までの距離aは、125mmである。従って、虚像位置eが400mm以上となる虚像倍率βは、以下の通りである。すなわち、虚像位置e=a・f/(f-a)=a・k/(k-1)=125・k/(k-1)≧400mmより、虚像倍率βは、β=k/(k-1)≧3.2、すなわち3.2倍以上である。なお、kの値は、β=k/(k-1)≧3.2より、1.455以下である。 On the other hand, the conditions under which the virtual image position e is 400 mm or more are as follows. When each display screen (4a, 4b) having a lateral width H of 144 mm is provided at a position in contact with the extension lines g1a, g1b, g2a, g2b with a horizontal angle of view θ ± 30 °, each eyepiece 2 (2a, 2b) ) To the vicinity of the center of each display screen (4a, 4b) is 125 mm. Therefore, the virtual image magnification β at which the virtual image position e is 400 mm or more is as follows. That is, from the virtual image position e = a · f / (fa) = a · k / (k−1) = 125 · k / (k−1) ≧ 400 mm, the virtual image magnification β is β = k / (k -1) ≧ 3.2, that is, 3.2 times or more. The value of k is 1.455 or less from β = k / (k−1) ≧ 3.2.
 ピントが合う条件を整理すると以下の通りである。距離aは125mm、虚像倍率βは3.2≦β≦4.23、係数kは1.31≦k≦1.455であるため、レンズ焦点距離fは164mm≦f≦182mmとなる。すなわち、レンズ焦点距離fが170mmの接眼部2(2a、2b)を用いて、距離aが125mmの位置に144mm×81mmの6.5インチの表示画面を配設した場合、水平方向の画角θおよび垂直方向の画角(図示せず)がそれぞれ±30°×±18°で、虚像位置eが472mmの場所に虚像倍率βが3.8倍の虚像が見える。 整理 The conditions for focusing are as follows. Since the distance a is 125 mm, the virtual image magnification β is 3.2 ≦ β ≦ 4.23, and the coefficient k is 1.31 ≦ k ≦ 1.455, the lens focal length f is 164 mm ≦ f ≦ 182 mm. That is, when a 6.5-inch display screen of 144 mm × 81 mm is arranged at a position where the distance a is 125 mm using the eyepiece 2 (2a, 2b) having a lens focal length f of 170 mm, the horizontal image is displayed. A virtual image with a virtual image magnification β of 3.8 times can be seen where the angle θ and the vertical field angle (not shown) are ± 30 ° × ± 18 ° and the virtual image position e is 472 mm.
 ここまでの説明では、各接眼レンズ3a、3bの口径が考慮されていないため、例えば、左側鏡5aの接眼レンズ側端部と左側表示画面4aの接眼レンズ側端部とを結ぶ線7a上に接眼レンズ3aが配設されている場合、接眼レンズ3aが左側鏡5aに映り込む可能性がある。接眼レンズ3bに関しても同様に、右側鏡5bの接眼レンズ側端部と右側表示画面4bの接眼レンズ側端部とを結ぶ線7b上に接眼レンズ3bが配設されている場合、接眼レンズ3bが右側鏡5bに映り込む可能性がある。この映り込みを避けるためには、例えば、距離aを125mmより大きな値に設定し、かつ、レンズ焦点距離fを大きな値に設定する方法や、各鏡(5a、5b)の鏡角度φを45°以下に配置し、あるいはレンズ口径hの小さい接眼レンズ3a、3bを用いるなどの方法がある。 In the description so far, the apertures of the eyepieces 3a and 3b are not considered. For example, on the line 7a connecting the eyepiece side end of the left mirror 5a and the eyepiece side end of the left display screen 4a. When the eyepiece 3a is provided, the eyepiece 3a may be reflected on the left mirror 5a. Similarly for the eyepiece 3b, when the eyepiece 3b is disposed on the line 7b connecting the eyepiece side end of the right mirror 5b and the eyepiece side end of the right display screen 4b, the eyepiece 3b There is a possibility of reflection in the right mirror 5b. In order to avoid this reflection, for example, the distance a is set to a value larger than 125 mm and the lens focal length f is set to a large value, or the mirror angle φ of each mirror (5a, 5b) is set to 45. There are methods such as using an ocular lens 3a, 3b having a small lens aperture h, or the like.
 ただし、レンズ口径hを小さくした場合には視点の自由度が減少するため、レンズ口径hを40mmに保ったまま接眼レンズ3a、3bの映り込みを避けることが望ましい。レンズ口径hを小さくすることなくピントが合う条件は、以下の通りである。距離aは135mm、虚像倍率βは3.0≦β≦4.23、定数kは1.31≦k≦1.5とした場合、レンズ焦点距離fは164mm≦f≦202mmとなる。レンズ焦点距離fとして190mmを選択した場合、レンズ焦点距離fが190mmの各接眼部2(2a、2b)を用いて距離a(=135mm)に144mm×81mmの6.5インチの表示画面を配設したときに、水平方向の画角θおよび垂直方向の画角(図示せず)がそれぞれ±28.1°×±16.7°で、虚像位置eが466mmの場所に、虚像倍率βが3.45倍の虚像が見える。 However, since the degree of freedom of the viewpoint decreases when the lens diameter h is reduced, it is desirable to avoid the reflection of the eyepieces 3a and 3b while keeping the lens diameter h at 40 mm. The conditions for focusing without reducing the lens diameter h are as follows. When the distance a is 135 mm, the virtual image magnification β is 3.0 ≦ β ≦ 4.23, and the constant k is 1.31 ≦ k ≦ 1.5, the lens focal length f is 164 mm ≦ f ≦ 202 mm. When 190 mm is selected as the lens focal length f, a 6.5-inch display screen of 144 mm × 81 mm is displayed at a distance a (= 135 mm) using each eyepiece 2 (2a, 2b) having a lens focal length f of 190 mm. When arranged, the horizontal field angle θ and the vertical field angle (not shown) are ± 28.1 ° × ± 16.7 ° and the virtual image position e is 466 mm, and the virtual image magnification β Can see a 3.45x virtual image.
 なお、鏡角度φは、45°に設定され、接眼レンズ3aの光軸10と左側鏡5aとの交点j1から、接眼レンズ3bの光軸10と右側鏡5bとの交点j2までの距離cは、61mmに設定されている。すなわち、各表示画面(4a、4b)の中心を平行視したときに左側鏡5aと右側鏡5bとの間の距離が眼幅bと等しくなる位置(交点j1、j2)から、各接眼レンズ3a、3bまでの距離は、61mmに設定されている。そして、左側鏡5aで反射された接眼レンズ3aの光軸10は、左側表示画面4aの中心にて左側表示画面4aの垂直方向に位置し、右側鏡5bで反射された接眼レンズ3bの光軸10は、右側表示画面4bの中心にて右側表示画面4bの垂直方向に位置する。 The mirror angle φ is set to 45 °, and the distance c from the intersection j1 between the optical axis 10 of the eyepiece 3a and the left mirror 5a to the intersection j2 between the optical axis 10 of the eyepiece 3b and the right mirror 5b is , 61 mm. That is, from the position (intersection j1, j2) where the distance between the left mirror 5a and the right mirror 5b is equal to the eye width b when the center of each display screen (4a, 4b) is viewed in parallel, each eyepiece 3a. The distance to 3b is set to 61 mm. The optical axis 10 of the eyepiece 3a reflected by the left mirror 5a is positioned in the vertical direction of the left display screen 4a at the center of the left display screen 4a, and the optical axis of the eyepiece 3b reflected by the right mirror 5b. 10 is located in the vertical direction of the right display screen 4b at the center of the right display screen 4b.
 従来技術では、Full-HDTV方式に対応する精細度を実現するために、例えば20インチ以上の大型のCF-LCDを用いる必要があり、立体映像表示装置全体の小型化を図ることが困難であった。CF-LCDではRGBの3つのサブ画素を1つの組みとしているため、6.5インチ程度のCF-LCDを実現しようとしても画素の開口率が小さく成り過ぎるためである。たとえCF-LCDで上記の水平画面寸法を実現できた場合でも、CF-LCDではサブ画素が見えてしまうため、単色の細線が途切れて見えてしまうという問題がある。また、視力1.0のユーザが、例えば466mm程度の虚像位置eでCF-LCDを見た場合、サブ画素の境界が色の途切れとして認識されてしまう。その結果、各画素が隣接する部分において、不適切な混色が見えてしまう場合や途切れによって別な色の疑似線が見えてしまう場合がある。また、単色の細線をCF-LCDに表示した場合、赤色のサブ画素のみが表示されるため、赤の細線が途切れて見えてしまう。 In the prior art, in order to realize the definition corresponding to the Full-HDTV system, it is necessary to use a large CF-LCD of, for example, 20 inches or more, and it is difficult to reduce the size of the entire stereoscopic video display device. It was. This is because, in the CF-LCD, three sub-pixels of RGB are combined into one set, so that even if an attempt is made to realize a CF-LCD of about 6.5 inches, the aperture ratio of the pixel becomes too small. Even when the above-mentioned horizontal screen size can be realized with a CF-LCD, the sub-pixels are visible on the CF-LCD, so that there is a problem that the monochromatic thin lines appear to be interrupted. In addition, when a user with a visual acuity of 1.0 views the CF-LCD at a virtual image position e of, for example, about 466 mm, the boundary between subpixels is recognized as a color break. As a result, in a portion where each pixel is adjacent, an inappropriate color mixture may be seen, or a pseudo line of another color may be seen due to a break. Further, when a monochromatic thin line is displayed on the CF-LCD, only the red sub-pixel is displayed, so that the red thin line appears to be interrupted.
 本実施の形態にかかる立体映像表示装置100で用いられているFSC-LCDは、RGBをFSC-LCDの同一画素上において180Hz以上で高速に切り替え、1つの画素でフルカラー表示を行う方式である。そのため、FSC-LCDは、CF-LCDに比べて信号配線数が3分の1で済むため、高精細化および広開口率化が容易であり、また画素境界の認識が低減される。従って、FSC-LCDでは、途切れ、混色、および擬似線などが見えるということがない。また、FSC-LCDでは、光源(例えばLEDなど)の色が略そのまま表現されるため、広い色再現域を実現できると共に、最大色再現域の内部であれば、他の特性(輝度など)に支障を及ぼさずに自由に色再現域を調整できるといった利点を有する。従って、FSC-LCDでは、各画素の連結性により、フィルム写真を見るような光沢感を得ることができる。 The FSC-LCD used in the stereoscopic image display apparatus 100 according to the present embodiment is a method of switching RGB at high speed at 180 Hz or higher on the same pixel of the FSC-LCD and performing full color display with one pixel. Therefore, the FSC-LCD requires only one-third the number of signal wirings compared to the CF-LCD, so that high definition and a wide aperture ratio can be easily achieved and pixel boundary recognition is reduced. Therefore, in the FSC-LCD, there is no possibility of seeing discontinuities, color mixing, pseudo lines, and the like. In addition, in the FSC-LCD, the color of the light source (for example, LED) is expressed almost as it is, so that a wide color gamut can be realized, and other characteristics (luminance, etc.) can be achieved within the maximum color gamut. There is an advantage that the color gamut can be freely adjusted without causing any trouble. Therefore, in the FSC-LCD, it is possible to obtain a glossy feeling as if a film photograph is seen due to the connectivity of each pixel.
 また、本実施の形態にかかる立体映像表示装置100によれば、接眼レンズ3a、3bを大口径にでき、接眼レンズ3a、3bと眼Pとの距離を空けても、また瞳孔の位置が2~3cmずれても立体視が可能である。また、従来用いられている液晶シャッターメガネ方式のような輝度の低下、ちらつきが生じず自然な立体視が可能であり、長時間の視認でも疲れにくい。 In addition, according to the stereoscopic image display apparatus 100 according to the present embodiment, the eyepieces 3a and 3b can have a large aperture, and even if the distance between the eyepieces 3a and 3b and the eye P is increased, the position of the pupil is 2 Stereoscopic viewing is possible even with a deviation of ~ 3 cm. In addition, brightness reduction and flicker do not occur as in the conventional liquid crystal shutter glasses method, and natural stereoscopic viewing is possible.
 なお、FSC-LCDが抱える最大の難点は「色割れ(カラーブレイクアップ)」が生ずることにある。すなわち、ある表示物体がFSC-LCDの表示画面上で動いていると、その前端と後端が虹色に見える。この色割れに関しては、3原色の組の前および/または後に1または2以上のフィールド分の黒色を付加し、この付加した組内の色を順次表示することにより支障のないレベルまで改善可能である。 The biggest difficulty of FSC-LCD is that “color breakup” occurs. That is, when a certain display object is moving on the display screen of the FSC-LCD, the front end and the rear end appear to be rainbow colors. With regard to this color breakup, black can be added to one or more fields before and / or after the set of three primary colors, and the colors in the added set can be displayed sequentially to improve the level without any problem. is there.
 なお、上記説明では、各表示画面(4a、4b)の精細度をFull-HD精細度(1920×1080)としているが、これに限定されるものではなく、各表示画面(4a、4b)の精細度は、例えば1440×1080あるいは1280×720などのHD精細度であってもよい。このように構成した場合でも、単色の細線が途切れる、色面の境界で混色や疑似線が見えてしまう、という従来技術の問題は生じないため、画質向上を図ることは可能である。 In the above description, the definition of each display screen (4a, 4b) is Full-HD definition (1920 × 1080). However, the present invention is not limited to this, and the display screen (4a, 4b) The definition may be HD definition such as 1440 × 1080 or 1280 × 720, for example. Even in such a configuration, there is no problem with the prior art that the monochromatic thin line is interrupted and the color mixture and the pseudo-line are visible at the boundary of the color plane, so that it is possible to improve the image quality.
 なお、本実施の形態では、鏡角度φを光軸10に対して45°として構成例を説明したが、鏡角度φは45°に限定されるものではなく、上述した虚像位置eの条件内に各表示画面(4a、4b)が配設されている限り、鏡角度φを45°以外の角度とし、かつ、それに応じて各表示画面(4a、4b)を、ハの字或いは逆ハの字に配設するように構成してもよい。より具体的に説明すると、鏡角度φを変える場合の条件は、以下の通りである。(1)第1の条件は、それぞれの各鏡(5a、5b)の両端が上述した二等辺三角形の斜辺上にあること、すなわち底辺に交わってはいけないことである。(2)第2の条件は、各鏡(5a、5b)の回転中心がそれぞれの眼Pの中心線上にあること、すなわち、交点j1、j2がそれぞれの眼Pの中心と二等辺三角形の底辺の中心とを結ぶ線(光軸10)上にあることである。(3)眼Pに近い側の各鏡(5a、5b)の端部と眼Pに近い側の各表示画面(4a、4b)の端部とを結ぶ線(線7a、7b)が、各接眼レンズ(3a、3b)に被らないことである。 In the present embodiment, the configuration example has been described in which the mirror angle φ is 45 ° with respect to the optical axis 10, but the mirror angle φ is not limited to 45 ° and is within the above-described conditions of the virtual image position e. As long as each display screen (4a, 4b) is provided, the mirror angle φ is set to an angle other than 45 °, and each display screen (4a, 4b) is You may comprise so that it may arrange | position to a character. More specifically, conditions for changing the mirror angle φ are as follows. (1) The first condition is that both ends of each mirror (5a, 5b) are on the hypotenuse of the above-mentioned isosceles triangle, that is, should not intersect the base. (2) The second condition is that the center of rotation of each mirror (5a, 5b) is on the center line of each eye P, that is, the intersections j1, j2 are the center of each eye P and the base of the isosceles triangle. It is on the line (optical axis 10) connecting the centers of the two. (3) Lines ( lines 7a, 7b) connecting the ends of the mirrors (5a, 5b) near the eye P and the ends of the display screens (4a, 4b) near the eye P are respectively The eyepiece (3a, 3b) is not covered.
 以上に説明したように、本実施の形態にかかる立体映像表示装置100は、虚像面に直交する光軸10が平行になるように配置された左右一対の接眼レンズ3a、3bを用いて虚像面に投影される映像を立体視する立体映像表示装置であって、鏡像反転された二眼立体視用の左側映像をHDTV方式に対応する精細度で表示する第1の表示画面(左側表示画面4a)を有する色順次表示方式の第1の液晶表示装置(左側表示装置6a)と、左側表示画面4aと対向して配設され、鏡像反転された二眼立体視用の右側映像を前記精細度で表示する第2の表示画面(右側表示画面4b)を有する色順次表示方式の第2の液晶表示装置(右側表示装置6b)と、左側の接眼レンズ3aの画角θに対応する大きさに形成され、左側表示画面4aに表示される映像がこの画角θ内に収まるようにこの接眼レンズ3aの光軸10に対して所定の角度φで配置された第1の鏡(左側鏡5a)と、右側の接眼レンズ3bの画角θに対応する大きさに形成され、右側表示画面4bに表示される映像がこの画角θ内に収まるようにこの接眼レンズ3bの光軸10に対して所定の角度φで配置された第2の鏡(右側鏡5b)と、を備えるようにしたので、従来の立体映像表示装置に比べて装置全体の小型化を図ることができると共に、各表示画面(4a、4b)に表示された映像を本来の両眼視差で観察することができ、長時間観察しても眼Pが疲れたり頭痛がしたりすることがない。また、本実施の形態にかかる立体映像表示装置100は、CF-LCDに比べて高精細化および広開口率化が容易であり、また画素境界の認識を低減させることができる。その結果、従来技術に比して立体映像表示装置100の設置スペースを低減することができると共に広い色再現域を実現できる。 As described above, the stereoscopic image display apparatus 100 according to the present embodiment uses the pair of left and right eyepieces 3a and 3b arranged so that the optical axis 10 orthogonal to the virtual image plane is parallel to the virtual image plane. A first display screen (left display screen 4a) that displays a mirror-inverted left-side image for binocular stereoscopic viewing with a resolution corresponding to the HDTV system ) Having a color sequential display type first liquid crystal display device (left display device 6a) and a right-side image for binocular stereoscopic viewing that is disposed opposite to the left display screen 4a and is mirror-inverted. The size of the second liquid crystal display device (right display device 6b) of the color sequential display system having the second display screen (right display screen 4b) to be displayed and the size corresponding to the angle of view θ of the left eyepiece 3a. Formed on the left display screen 4a. Of the right eyepiece 3b and the first mirror (left side mirror 5a) arranged at a predetermined angle φ with respect to the optical axis 10 of the eyepiece 3a so that the image to be captured falls within this angle of view θ. A size that corresponds to the angle θ and is arranged at a predetermined angle φ with respect to the optical axis 10 of the eyepiece 3 b so that the image displayed on the right display screen 4 b is within the angle of view θ. 2 mirrors (right-side mirror 5b), the overall size of the device can be reduced as compared with the conventional stereoscopic image display device, and the display screens (4a, 4b) are displayed. The image can be observed with the original binocular parallax, and the eye P does not get tired or have a headache even when observed for a long time. In addition, the stereoscopic image display apparatus 100 according to the present embodiment can easily achieve higher definition and a wider aperture ratio than the CF-LCD, and can reduce pixel boundary recognition. As a result, it is possible to reduce the installation space of the stereoscopic image display apparatus 100 as compared with the prior art and realize a wide color reproduction range.
 また本実施の形態にかかる立体映像表示装置100は、左側の接眼レンズ3aから左側表示画面4aの中央部を観たときの虚像倍率βと左側の接眼レンズ3aから左側表示画面4aの端部を観たときの虚像倍率β’との比率が、2倍以下となるように構成され、右側の接眼レンズ3bから右側表示画面4bの中央部を観たときの虚像倍率βと右側の接眼レンズ3bから右側表示画面4bの端部を観たときの虚像倍率β’との比率が、2倍以下となるように構成されているため、画面中心と画面周辺での虚像位置変化が小さくなり画面中心と画面端部との何れかがぼやけて見えてしまうという問題を軽減可能である。 Also, the stereoscopic image display apparatus 100 according to the present embodiment displays the virtual image magnification β when viewing the central portion of the left display screen 4a from the left eyepiece lens 3a and the end portion of the left display screen 4a from the left eyepiece lens 3a. The ratio with the virtual image magnification β ′ when viewed is configured to be 2 times or less, and the virtual image magnification β when viewing the central portion of the right display screen 4b from the right eyepiece 3b and the right eyepiece 3b. Since the ratio of the virtual image magnification β ′ when viewing the edge of the right display screen 4b from the screen to 2 times or less, the virtual image position change between the screen center and the screen periphery is reduced, and the screen center And the problem that one of the edge portions of the screen appears blurred.
 また本実施の形態にかかる立体映像表示装置100は、左側表示画面4aおよび右側表示画面4bの水平画面寸法が眼幅の約2倍の大きさに形成されているので、水平画面寸法が従来の立体映像表示装置で用いられているCF-LCDの水平画面寸法(20インチの場合、約442mm)に比べて約3分の1に抑えられる。従って立体映像表示装置100の奥行き寸法を大幅に小さくすることができると共に、立体映像表示装置100全体の重量を軽減することも可能である。 Further, in the stereoscopic image display apparatus 100 according to the present embodiment, the horizontal screen dimensions of the left display screen 4a and the right display screen 4b are formed to be approximately twice the eye width, so the horizontal screen dimensions are the conventional ones. The horizontal screen size (about 442 mm in the case of 20 inches) of the CF-LCD used in the stereoscopic image display device can be reduced to about one third. Therefore, the depth dimension of the stereoscopic image display apparatus 100 can be greatly reduced, and the weight of the entire stereoscopic image display apparatus 100 can be reduced.
 なお、本実施の形態に示した立体映像表示装置100は、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。 Note that the stereoscopic video display apparatus 100 shown in the present embodiment shows an example of the content of the present invention, and can be combined with another known technique, and departs from the gist of the present invention. Of course, it is possible to change and configure such as omitting a part within the range.
 以上のように、本発明は、主に立体映像表示装置に適用可能であり、特に、立体映像表示装置の小型化および画質向上を図ることができる発明として有用である。 As described above, the present invention is mainly applicable to a stereoscopic video display device, and is particularly useful as an invention capable of reducing the size and improving the image quality of a stereoscopic video display device.
 1 ケース
 2 接眼部
 2a 左側接眼部
 2b 右側接眼部
 3a、3b 接眼レンズ
 4a 左側表示画面(第1の表示画面)
 4b 右側表示画面(第2の表示画面)
 5a 左側鏡(第1の鏡)
 5b 右側鏡(第2の鏡)
 6a 左側表示装置(第1の液晶表示装置)
 6b 右側表示装置(第2の液晶表示装置)
 7a、7b、8 線
 10 光軸
 100 立体映像表示装置
 a、c、d 距離
 b 眼幅
 e 虚像位置
 f レンズ焦点距離
 f1 焦点球面
 g1a、g1b、g2a、g2b 延長線
 h レンズ口径
 H 横幅
 H1 虚像サイズ
 j1、j2 交点
 r 実距離
 φ 鏡角度(所定の角度)
 θ 画角
1 Case 2 Eyepiece 2a Left eyepiece 2b Right eyepiece 3a, 3b Eyepiece 4a Left display screen (first display screen)
4b Right display screen (second display screen)
5a Left side mirror (first mirror)
5b Right side mirror (second mirror)
6a Left side display device (first liquid crystal display device)
6b Right side display device (second liquid crystal display device)
7a, 7b, 8 lines 10 Optical axis 100 Stereoscopic image display device a, c, d Distance b Eye width e Virtual image position f Lens focal length f1 Focal sphere g1a, g1b, g2a, g2b Extension line h Lens aperture H Horizontal width H1 Virtual image size j1, j2 intersection r actual distance φ mirror angle (predetermined angle)
θ angle of view

Claims (2)

  1.  虚像面に直交する光軸が平行になるように配置された左右一対の接眼レンズを用いて前記虚像面に投影される映像を立体視する立体映像表示装置であって、
     鏡像反転された二眼立体視用の左側映像をHDTV(高精細度テレビジョン)方式に対応する精細度で表示する第1の表示画面を有する色順次表示方式の第1の液晶表示装置と、
     前記第1の表示画面と対向して配設され、鏡像反転された二眼立体視用の右側映像を前記精細度で表示する第2の表示画面を有する色順次表示方式の第2の液晶表示装置と、
     左側の前記接眼レンズの画角に対応する大きさに形成され、前記第1の表示画面に表示される映像がこの画角内に収まるようにこの接眼レンズの光軸に対して所定の角度で配置された第1の鏡と、
     右側の前記接眼レンズの画角に対応する大きさに形成され、前記第2の表示画面に表示される映像がこの画角内に収まるようにこの接眼レンズの光軸に対して所定の角度で配置された第2の鏡と、
     を備えたことを特徴とする立体映像表示装置。
    A stereoscopic image display device for stereoscopically viewing an image projected on the virtual image plane using a pair of left and right eyepieces arranged so that optical axes orthogonal to the virtual image plane are parallel,
    A color sequential display type first liquid crystal display device having a first display screen for displaying a mirror-inverted binocular stereoscopic left-side image with a definition corresponding to an HDTV (high definition television) system;
    A second liquid crystal display of a color sequential display system that has a second display screen that is disposed opposite to the first display screen and displays a right-side image for binocular stereoscopic viewing that is mirror-inverted at the definition. Equipment,
    The left eyepiece is formed in a size corresponding to the angle of view of the eyepiece, and is displayed at a predetermined angle with respect to the optical axis of the eyepiece so that an image displayed on the first display screen is within the angle of view. A first mirror arranged;
    A size corresponding to the angle of view of the right eyepiece is formed, and the image displayed on the second display screen is at a predetermined angle with respect to the optical axis of the eyepiece so that the image is within this angle of view. A second mirror arranged;
    A stereoscopic video display device comprising:
  2.  左側の前記接眼レンズから前記第1の表示画面の中央部を観たときの虚像倍率と左側の前記接眼レンズから前記第1の表示画面の端部を観たときの虚像倍率との比率が、2倍以下となるように構成され、
     右側の前記接眼レンズから前記第2の表示画面の中央部を観たときの虚像倍率と右側の前記接眼レンズから前記第2の表示画面の端部を観たときの虚像倍率との比率が、2倍以下となるように構成されていることを特徴とする請求項1に記載の立体映像表示装置。
    The ratio between the virtual image magnification when viewing the central portion of the first display screen from the left eyepiece and the virtual image magnification when viewing the end portion of the first display screen from the left eyepiece, Configured to be less than twice,
    The ratio between the virtual image magnification when viewing the center of the second display screen from the right eyepiece and the virtual image magnification when viewing the end of the second display screen from the right eyepiece, The stereoscopic image display apparatus according to claim 1, wherein the stereoscopic image display apparatus is configured to be twice or less.
PCT/JP2011/074791 2011-10-27 2011-10-27 Three-dimensional video display device WO2013061439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074791 WO2013061439A1 (en) 2011-10-27 2011-10-27 Three-dimensional video display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074791 WO2013061439A1 (en) 2011-10-27 2011-10-27 Three-dimensional video display device

Publications (1)

Publication Number Publication Date
WO2013061439A1 true WO2013061439A1 (en) 2013-05-02

Family

ID=48167305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074791 WO2013061439A1 (en) 2011-10-27 2011-10-27 Three-dimensional video display device

Country Status (1)

Country Link
WO (1) WO2013061439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194707A (en) * 2014-03-27 2015-11-05 パナソニックIpマネジメント株式会社 display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305367A (en) * 2003-04-04 2004-11-04 Olympus Corp Stereoscopic observing apparatus
WO2008139828A1 (en) * 2007-05-14 2008-11-20 Mitaka Kohki Co., Ltd. Three-dimeeeeeensional image display device
JP2009288296A (en) * 2008-05-27 2009-12-10 Mitaka Koki Co Ltd Stereoscopic image display device
JP2010224065A (en) * 2009-03-19 2010-10-07 21 Aomori Sangyo Sogo Shien Center Field-sequential color type liquid crystal display apparatus and color display method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305367A (en) * 2003-04-04 2004-11-04 Olympus Corp Stereoscopic observing apparatus
WO2008139828A1 (en) * 2007-05-14 2008-11-20 Mitaka Kohki Co., Ltd. Three-dimeeeeeensional image display device
JP2009288296A (en) * 2008-05-27 2009-12-10 Mitaka Koki Co Ltd Stereoscopic image display device
JP2010224065A (en) * 2009-03-19 2010-10-07 21 Aomori Sangyo Sogo Shien Center Field-sequential color type liquid crystal display apparatus and color display method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194707A (en) * 2014-03-27 2015-11-05 パナソニックIpマネジメント株式会社 display device

Similar Documents

Publication Publication Date Title
US11551602B2 (en) Non-uniform resolution, large field-of-view headworn display
JP4866426B2 (en) Binocular display device with improved contrast consistency
JP5316909B2 (en) Stereoscopic image display device and display panel
US5757546A (en) Electronic stereoscopic viewer
US9019172B2 (en) Image display apparatus
JP2000258723A (en) Video display device
WO2019105323A1 (en) Display module, head-mounted display device, and stereoscopic image display method and apparatus
US20080174659A1 (en) Wide field of view display device and method
JP2009515213A (en) Optical system for 3D display
JPH09105885A (en) Head mount type stereoscopic image display device
JP2004264587A (en) Stereoscopic image display apparatus, portable terminal system and lenticular lens
US10701351B2 (en) Virtual image display device
CN106291945B (en) A kind of display panel and display device
JP4968655B2 (en) Stereoscopic image display device, portable terminal device
WO2013061439A1 (en) Three-dimensional video display device
WO2015146359A1 (en) Display device
TW202034026A (en) Three-dimensional stereoscopic image display device
JPH11249593A (en) Display device and method therefor
JPH07199143A (en) Liquid crystal display device
WO2013061450A1 (en) Three-dimensional video display device
CN109471259A (en) Nearly eye display device
JP2004163645A (en) Three-dimensional display method and device
JPH0584930U (en) Display element and display device using the same
JPH05260527A (en) Stereoscopic video display device
JP3167459B2 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP