WO2013059793A1 - Agents de soutènement poreux - Google Patents
Agents de soutènement poreux Download PDFInfo
- Publication number
- WO2013059793A1 WO2013059793A1 PCT/US2012/061329 US2012061329W WO2013059793A1 WO 2013059793 A1 WO2013059793 A1 WO 2013059793A1 US 2012061329 W US2012061329 W US 2012061329W WO 2013059793 A1 WO2013059793 A1 WO 2013059793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- proppant
- porous
- less
- psi
- specific gravity
- Prior art date
Links
- 239000002245 particle Substances 0.000 claims abstract description 47
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 29
- 239000011148 porous material Substances 0.000 claims abstract description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 230000005484 gravity Effects 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910021426 porous silicon Inorganic materials 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 19
- 239000012530 fluid Substances 0.000 abstract description 11
- 239000000919 ceramic Substances 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 239000004576 sand Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 5
- 229910052580 B4C Inorganic materials 0.000 description 4
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229910052863 mullite Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical group O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- -1 e.g. Chemical compound 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Chemical group 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/267—Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
Definitions
- This invention relates to porous proppants for use in hydraulic fracturing, and methods of making and using these.
- Hydraulic fracturing is a common stimulation technique used to enhance production of fluids from subterranean formations.
- fracturing treatment fluid containing a proppant material is injected into the formation at a pressure sufficiently high enough to cause the formation or enlargement of fractures in the reservoir.
- Proppant material remains in the fracture after the treatment is completed, where it serves to hold the fracture open, thereby enhancing the ability of fluids to migrate from the formation to the well bore through the fracture.
- proppants Many different materials have been used as proppants including sand, glass beads, walnut hulls, and metal shot.
- Sand-based proppants are commonly used due to the low cost of sand.
- these proppants cannot often be used at depths where pressures are greater than about 2500 psi.
- the relatively recent rise of use of hydraulic fracturing, often referred to as fracking, has presented a need for proppants having increased crush strengths.
- crush strength and density Two important properties of proppants are crush strength and density. High crush strength can be desirable for use in deeper fractures where pressures are greater, e.g., greater than about 2500 psi. As the relative strength of the various materials increases, so too have the respective particle densities. Proppants having higher densities can be more costly to use, for example due to transportation costs. Accordingly, there is a need for ultra-lightweight proppants having increased crush strength.
- Ceramic ultra-lightweight porous proppants can be cost-effective for use in hydraulic fracturing operations.
- Silicon carbide and silicon nitride can advantageously provide a high degree of strength while having sufficient porosity to remain lightweight and facilitate fluid transport.
- Oxycarbides and oxynitrides of silicon are also suitable lightweight proppant materials.
- a porous proppant has a generally spherical shape with a particle diameter between 100 and 2,000 microns, median pore sizes between 1 and 50 microns, and a porosity between 10 and 70% of the total spherical volume.
- each porous proppant individually can form a proppant pack that has a crush strength of at least 2,000 psi and an apparent specific gravity of 1.0 g/cc or less; a crush strength of at least 4,000 psi and an apparent specific gravity of 1.3 g/cc or less; a crush strength of at least 6,000 psi and an apparent specific gravity of 1.6 g/cc or less; a crush strength of at least 8,000 psi and an apparent specific gravity of 1.8 g/cc or less; a crush strength of at least 10,000 psi and an apparent specific gravity of 2.0 g/cc or less; or a crush strength of at least 12,000 psi and an apparent specific gravity of 2.2 g/cc or less.
- each porous proppant individually can form a proppant pack that produces 10% or less fines in a crush test.
- the porous particles can include silicon carbide, silicon nitride, or a combination thereof.
- the porous particles can include 90% or greater silicon carbide.
- the porous particles can have a sphericity of 0.91 or greater, or 0.95 or greater.
- the porous particles can have a roundness of 0.91 or greater, or 0.95 or greater.
- a composition in another aspect, includes a plurality of particles including silicon carbide, silicon nitride, or a combination thereof, forming a porous proppant having a generally spherical shape with a particle diameter between 100 and 2,000 microns, median pore sizes between 1 and 50 microns, and a porosity between 10 and 70% of the total spherical volume.
- each porous proppant individually can form a proppant pack that has a crush strength of at least 2,000 psi and an apparent specific gravity of 1.0 g/cc or less; a crush strength of at least 4,000 psi and an apparent specific gravity of 1.3 g/cc or less; a crush strength of at least 6,000 psi and an apparent specific gravity of 1.6 g/cc or less; a crush strength of at least 8,000 psi and an apparent specific gravity of 1.8 g/cc or less; a crush strength of at least 10,000 psi and a an apparent specific gravity of 2.0 g/cc or less; or a crush strength of at least 12,000 psi and an apparent specific gravity of 2.2 g/cc or less.
- each porous proppant individually can form a proppant pack that produces 10% or less fines in a crush test.
- particles can have a sphericity of 0.91 or greater, or 0.95 or greater.
- the particles can have a roundness of 0.91 or greater, or 0.95 or greater.
- a method of using a composition of claim 15, comprising injecting the composition into a hydrofracture.
- a method of making a porous proppant includes heating a composition including a carbon source and a silicon source between 10 and 70% porosity of the total proppant volume thereby forming a porous silicon carbide proppant.
- the porous silicon carbide proppant can have a particle diameter between 100 and 2,000 microns, median pore sizes between 1 and 50 microns, and a porosity between 10 and 70% of the total spherical volume.
- FIGS. 1-2 are SEM images of a porous proppant.
- FIGS. 3A-3B show results of short term conductivity and permeability testing of porous proppants.
- FIGS. 4A-4B show results of long term conductivity and permeability testing of a porous proppant.
- the first and most important level is conductivity. This determines the performance of the well. Permeability and other related flow terminology is associated with conductivity. It is well known that strength and porosity of the proppant pack are primary factors in determining conductivity. Accordingly, proppants providing enhanced well performance, e.g., proppants having increased strength and/or porosity, are desirable.
- a proppant pack must be strong in compression and not produce fines that will plug the pores of the proppant pack in the well. When proppants are crushed they produce small fractions called fines that can reduce well performance. Therefore strong, porous proppant packs are most desirable for conductivity.
- a third level of importance is proppant density. Although density does not affect conductivity once a proppant pack is in place, a less dense proppant can be delivered further into the well before settling. Lighter proppants flow with water, brine or other fluid mediums to allow deeper penetration into the well.
- Fourth-level attributes that contribute to higher level important attributes include, but are not limited to: primary material composition; secondary material composition; necking size of primary material composite grains with itself or secondary composition; sintered grain size of primary material composition; porosity volume - total volume in the proppant; pore size; pore shape; open vs. closed pores; sphericity/roundness; proppant particle size (e.g., sphere diameter); proppant particle size distribution; nature of size distribution (e.g., bi-modal, single mode size distribution, or other).
- a desirable proppant is one that has low density yet high compressive strength.
- the failure mode of proppant packs typically involves fracturing of individual proppants, under well formation pressure, thus producing smaller proppant particles (fines).
- the plugging failure mode results from fines produced from proppant crushing yielding in poorer conductivity when more fines are produced.
- Porous proppant 100 can be generally spherical, ovoid, elongate, columnar, or other shape, including an irregular shape.
- the porous proppant can be spherical and have a Krumbein sphericity of at least about 0.5, at least 0.6 or at least 0.7, at least 0.8, or at least 0.9, and/or a roundness of at least 0.4, at least 0.5, at least 0.6, at least 0.7, at least 0.8, or at least 0.9.
- spherical can refer to roundness and sphericity on the Krumbein and Sloss Chart by visually grading 10 to 20 randomly selected particles. Sphericity and roundness of at least .9 is most desired to achieve higher strength at lower densities.
- Porous proppant 100 can be formed of any suitable oxide, carbide, or nitride of silicon, boron, aluminum, zirconium, iron, titanium, zinc, tin, chromium, manganese, magnesium or calcium.
- the porous proppant can be formed of a silicon carbide, a silicon nitride, a silicon oxide, an aluminum oxide, a boron carbide, or a combination thereof.
- porous proppant 100 can be composed of at least 90% silicon carbide, at least 95% silicon carbide, at least 98% silicon carbide, or at least 99% silicon carbide.
- porous proppant 100 can be composed of at least 90% silicon nitride, at least 95% silicon nitride, at least 98% silicon nitride, or at least 99% silicon nitride.
- Porous proppant 100 can have a diameter ranging from about 1 micron to about 3,000 microns, e.g., between about 100 and 2,000 microns. In some embodiments, porous proppant 100 has a diameter of about 500 microns.
- the median pore sizes of the porous proppant can be between, e.g., about 1 micron and about 50 microns, and the porosity can account for about 10% to about 70% of the total spherical volume.
- the pore sizes can be tailored in size and volume to achieve different crush strengths for different well formations.
- the porous proppant can have a crush strength greater than 10,000 psi with a specific gravity of less than 2.2 g/cc.
- the porous proppant can have a crush strength greater than 11,000 psi, greater than 12,000 psi, or higher.
- the porous proppant can have a specific gravity of less than 2.0 g/cc, less than 1.8 g/cc, less than 1.6 g/cc, less than 1.5 g/cc, or less than 1.4 g/cc, or lower.
- the porous proppant desirably combines properties of high crush strength and low density.
- the porous proppant can have a crush strength greater than 10,000 psi with a specific gravity of less than 2.2 g/cc; a crush strength greater than 11,000 psi with a specific gravity of less than 2.0 g/cc; a crush strength greater than 12,000 psi with a specific gravity of less than 1.8 g/cc; or even higher crush strengths combined with even lower specific gravities.
- FIG. 2 shows a proppant at greater magnification than FIG. 1.
- Porous proppant 100 has a scaffold 110 forming heterogeneous pores 120.
- the truss structure of scaffold 110 imparts increased strength to proppant 100 so that the proppant can withstand crush strengths greater than 12,000 psi.
- pores 120 provide permeability so that, once injected into a hydrofracture, released fluid can pass through the pores of the proppant as well as around the spaces formed by the packing of the particles.
- Non-porous proppants, or those proppants modified with external surface treatments, are limited in fluid extraction as fluid can only pass through the tortuous path created by the packing of the particles.
- porous proppants can greatly increase the amount of fluid extracted and also extracts the fluid more quickly than proppants used currently.
- Porous proppant 100 can be formed by reducing silica- and carbon-based materials, e.g., to provide a silicon carbide porous proppant.
- a carbon source is reacted with a silicon source to form a porous silicon carbide by controlling the reaction to prevent densification.
- the pores can be formed during a sintering process. Templating approaches can also be used to form pores.
- a suitable carbon source can be derived from coal.
- Other suitable carbon sources of include graphite or carbon black.
- a carbon source is combined with a silicon source (such as a silicon dioxide, e.g., silica, or sand) and reduced in the presence of reducing agents to produce silicon carbide. Porosity resulting from the off-gassing of the oxygen can impart porosity to the resulting silicon carbide. Silicon carbide powder can also be pressureless sintered to produce porous proppants. Reaction bonding is another process that can be utilized to produce porous proppants. Any suitable method to process a solid material into spherical particles can be used, such as e.g., milling, spray drying, spheronization, encapsulation, granulation or extruding. In most embodiments, spherical particles are desirable.
- the porous non-sintered source can have a Krumbien sphericity of 0.8 or higher, 0.9 or higher, 0.95 or higher, 0.98 or higher, or 0.99 or higher.
- Sintering can be carried out using any suitable method of heating a silicon carbide source, or a carbon source and a silicon source, including, for example, resistance, radiation, convection, induction, plasma, laser, microwave, or other methods. Additional sintering aids may optionally be included, such as a polymeric binder or organic binders. The extent of sintering can be controlled by adjusting the temperature and duration.
- a reduction step of a carbon source and a silicon dioxide produces a porous silicon carbide.
- a carbon source of particulate carbon can produce particulate porous silicon carbide.
- sintering particles of the particulate porous silicon carbide can produce a controllable degree of fusion.
- necking can occur between particles of porous silicon carbide, i.e., the formation of bridges joining particles of porous silicon carbide.
- the bridges thus formed are desirably composed of silicon carbide, rather than a silicon oxide, which would result in a weaker proppant than similar material with bridges composed of silicon carbide.
- Amounts of less than 10% of oxides are preferable in the necking regions (e.g., oxides such as silicon oxide, alumina, zirconia, glass, mullite, and other clay bonding) can be acceptable, whereas 90% or more of the porous proppant is composed of silicon carbide or silicon nitride. Boron carbide and boron nitride also are acceptable in the necking region at levels of less than 10%.
- silicon carbide is bonded to silicon carbide as the necking region.
- the necking process can form a structure having an additional level of porosity, i.e., the porosity formed between particles that are joined by bridges.
- the resulting material can have a larger-scale porosity (e.g., on the order of one micron to fifty microns) between particles; and smaller-scale porosity (e.g., on the order of less than one micron to ten microns).
- Control over this larger-scale porosity can be achieved by controlling the degree of fusion between particles. Higher temperatures and increased time promotes a higher degree of fusion. When fused to a higher degree, the bridges between particles become larger and more numerous; individual particles become less distinct and more agglomerated.
- Fines of less than 10% can be generally acceptable in crush tests. 90% or greater original particle sizes must be retained in the sieve during a crush test procedure. Crush tests are not a substitute for conductivity or actual well performance but are a suitable gauge of proppant performance, and for comparisons of different proppant materials.
- the strength of the proppant pack is not only determined by the compressive strength of the proppants but also how well they stay in the pack.
- Lower density proppants can have negative flow back issues, so traditional coatings (resins) can be used on the porous proppants mentioned herein to reduce or prevent flow back issues.
- Proppants randomly packed yield in greater than 30% volume to less than 70% volume of the proppant porous packs.
- porous volume of a proppant pack such as packing method, particle size, particle shape and particle distribution. However, these properties combine to form a total pack porosity that determines ultimate conductivity in conjunction with pack strength.
- Specific gravity is the density of the material and is also defined as the skeletal density of the porous proppant.
- the apparent specific gravity is the adjusted density of the proppant when considering the addition of the pore density with the proppant material density.
- silicon carbide may have a specific gravity of 3.2 g/cc yet the proppant may have an apparent specific gravity of 1.6 g/cc when considering 50% porosity volume.
- the term 'density' of the proppant herein refers to the apparent specific gravity, not bulk density or any other density term that may be used elsewhere.
- Sphericity and roundness of at least .9 is most desired to achieve higher strength at lower densities.
- Suitable proppant particle sizes in many cases are 20/40 mesh. However other mesh sizes can realize similar results of strength and density attributes.
- a mesh size range is determined by retaining all proppant particles in the smaller mesh screen (such as 40 mesh) and allowing all other proppant particles to pass through the larger mesh screen (such as 20 mesh).
- Solid silicon carbide having a proppant strength of 540,000 psi can yield 180,000 psi for a single solid sphere, then yielding 60,000 psi for a porous proppant pack of non- porous (dense) spheres.
- the result can less than 10% fines after crush testing.
- Solid spheres made from silicon carbide can be 'overkill' for most rock formations so porous silicon carbide yields a strong, light weight solution compared to sand and sintered ceramics. Starting with higher levels of compressive strength allow porous silicon carbide provide similar strength levels as sand and ceramics, yet at more desirable lower densities.
- Table 1 below shows that silicon carbide has desirable for a lightweight proppant.
- Boron carbide can also be a good choice for proppants, but may be cost prohibitive. Only widely available raw materials such as sand, certain clays, carbon, and forms of aluminosilicates are acceptable in terms of cost. Conversion of sand and carbon into porous silicon carbide is a preferred embodiment for low cost, high strength, low density proppants.
- FIG. 3A shows the results of a short term conductivity test using a silicon carbide proppant (diamonds), a commercial sintered bauxite proppant (squares), and a commercial mixed aluminum oxide/silicon oxide proppant (triangles).
- FIG. 3B shows the results of short term permeability tests for the same materials.
- FIG. 4A shows the results of a long term conductivity test using a silicon carbide proppant
- FIG. 4B shows the results of a long term permeability test using the same material.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2852973A CA2852973A1 (fr) | 2011-10-21 | 2012-10-22 | Agents de soutenement poreux |
RU2014120518/03A RU2014120518A (ru) | 2011-10-21 | 2012-10-22 | Пористый расклинивающий агент, его содержащая пачка, композиция пористого расклинивающего агента, способ ее использования и способ получения пористого расклинивающего агента |
AU2012325773A AU2012325773A1 (en) | 2011-10-21 | 2012-10-22 | Porous proppants |
MX2014004760A MX2014004760A (es) | 2011-10-21 | 2012-10-22 | Apuntalantes porosos. |
BR112014009463A BR112014009463A2 (pt) | 2011-10-21 | 2012-10-22 | propantes porosos |
ZA2014/02794A ZA201402794B (en) | 2011-10-21 | 2014-04-16 | Porous proppants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161549878P | 2011-10-21 | 2011-10-21 | |
US61/549,878 | 2011-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013059793A1 true WO2013059793A1 (fr) | 2013-04-25 |
Family
ID=48141463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/061329 WO2013059793A1 (fr) | 2011-10-21 | 2012-10-22 | Agents de soutènement poreux |
Country Status (7)
Country | Link |
---|---|
AU (1) | AU2012325773A1 (fr) |
BR (1) | BR112014009463A2 (fr) |
CA (1) | CA2852973A1 (fr) |
MX (1) | MX2014004760A (fr) |
RU (1) | RU2014120518A (fr) |
WO (1) | WO2013059793A1 (fr) |
ZA (1) | ZA201402794B (fr) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015003175A1 (fr) * | 2013-07-04 | 2015-01-08 | Melior Innovations, Inc. | Agents de soutènement synthétiques à faible densité et à haute résistance pour la fracturation hydraulique et la récupération d'hydrocarbures |
US20160122630A1 (en) * | 2014-10-31 | 2016-05-05 | Chevron U.S.A. Inc. | Proppants |
US9481781B2 (en) | 2013-05-02 | 2016-11-01 | Melior Innovations, Inc. | Black ceramic additives, pigments, and formulations |
US9499677B2 (en) | 2013-03-15 | 2016-11-22 | Melior Innovations, Inc. | Black ceramic additives, pigments, and formulations |
WO2017003813A1 (fr) | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Revêtement pour libération contrôlée |
WO2017003819A1 (fr) | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Revêtement pour capturer des sulfures |
WO2017003904A1 (fr) | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Revêtement d'agent de soutènement pour la récupération de métaux lourds |
WO2017021803A1 (fr) * | 2015-07-31 | 2017-02-09 | Statoil Gulf Services LLC | Fracturation hydraulique et gravillonnage en régime de fracturation à l'aide d'agents de soutènement ultra-légers et ultra-résistants (ulus) |
US9663708B2 (en) | 2012-08-01 | 2017-05-30 | Halliburton Energy Services, Inc. | Synthetic proppants and monodispersed proppants and methods of making the same |
US9815943B2 (en) | 2013-03-15 | 2017-11-14 | Melior Innovations, Inc. | Polysilocarb materials and methods |
US9815952B2 (en) | 2013-03-15 | 2017-11-14 | Melior Innovations, Inc. | Solvent free solid material |
US9828542B2 (en) | 2013-03-15 | 2017-11-28 | Melior Innovations, Inc. | Methods of hydraulically fracturing and recovering hydrocarbons |
WO2017213855A1 (fr) | 2016-06-08 | 2017-12-14 | Dow Global Technologies Llc | Revêtement à base d'amide |
WO2018175515A1 (fr) | 2017-03-21 | 2018-09-27 | Dow Global Technologies Llc | Revêtements d'agents de soutènement à base de polyuréthane |
US10161236B2 (en) | 2013-04-24 | 2018-12-25 | Halliburton Energy Services, Inc. | Methods for fracturing subterranean formations |
US10167366B2 (en) | 2013-03-15 | 2019-01-01 | Melior Innovations, Inc. | Polysilocarb materials, methods and uses |
US10190041B2 (en) * | 2016-08-02 | 2019-01-29 | University Of Utah Research Foundation | Encapsulated porous proppant |
US10266756B2 (en) | 2015-06-04 | 2019-04-23 | Halliburton Energy Services, Inc. | Porous proppants |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9670400B2 (en) | 2011-03-11 | 2017-06-06 | Carbo Ceramics Inc. | Proppant particles formed from slurry droplets and methods of use |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547468A (en) * | 1981-08-10 | 1985-10-15 | Terra Tek, Inc. | Hollow proppants and a process for their manufacture |
US20060177661A1 (en) * | 2005-02-04 | 2006-08-10 | Smith Russell J | Composition and method for making a proppant |
US20110160104A1 (en) * | 2009-12-31 | 2011-06-30 | Oxane Materials, Inc. | Ceramic Particles With Controlled Pore and/or Microsphere Placement and/or Size and Method Of Making Same |
US8006759B1 (en) * | 2006-10-05 | 2011-08-30 | Imaging Systems Technology | Manufacture of strong, lightweight, hollow proppants |
-
2012
- 2012-10-22 BR BR112014009463A patent/BR112014009463A2/pt not_active Application Discontinuation
- 2012-10-22 RU RU2014120518/03A patent/RU2014120518A/ru not_active Application Discontinuation
- 2012-10-22 WO PCT/US2012/061329 patent/WO2013059793A1/fr active Application Filing
- 2012-10-22 MX MX2014004760A patent/MX2014004760A/es unknown
- 2012-10-22 CA CA2852973A patent/CA2852973A1/fr not_active Abandoned
- 2012-10-22 AU AU2012325773A patent/AU2012325773A1/en not_active Abandoned
-
2014
- 2014-04-16 ZA ZA2014/02794A patent/ZA201402794B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4547468A (en) * | 1981-08-10 | 1985-10-15 | Terra Tek, Inc. | Hollow proppants and a process for their manufacture |
US20060177661A1 (en) * | 2005-02-04 | 2006-08-10 | Smith Russell J | Composition and method for making a proppant |
US8006759B1 (en) * | 2006-10-05 | 2011-08-30 | Imaging Systems Technology | Manufacture of strong, lightweight, hollow proppants |
US20110160104A1 (en) * | 2009-12-31 | 2011-06-30 | Oxane Materials, Inc. | Ceramic Particles With Controlled Pore and/or Microsphere Placement and/or Size and Method Of Making Same |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9663708B2 (en) | 2012-08-01 | 2017-05-30 | Halliburton Energy Services, Inc. | Synthetic proppants and monodispersed proppants and methods of making the same |
US9745507B2 (en) | 2012-08-01 | 2017-08-29 | Halliburton Energy Services, Inc. | Synthetic proppants and monodispersed proppants and methods of making the same |
US9499677B2 (en) | 2013-03-15 | 2016-11-22 | Melior Innovations, Inc. | Black ceramic additives, pigments, and formulations |
US10221660B2 (en) | 2013-03-15 | 2019-03-05 | Melior Innovations, Inc. | Offshore methods of hydraulically fracturing and recovering hydrocarbons |
US10167366B2 (en) | 2013-03-15 | 2019-01-01 | Melior Innovations, Inc. | Polysilocarb materials, methods and uses |
US9815943B2 (en) | 2013-03-15 | 2017-11-14 | Melior Innovations, Inc. | Polysilocarb materials and methods |
US9815952B2 (en) | 2013-03-15 | 2017-11-14 | Melior Innovations, Inc. | Solvent free solid material |
US9828542B2 (en) | 2013-03-15 | 2017-11-28 | Melior Innovations, Inc. | Methods of hydraulically fracturing and recovering hydrocarbons |
US10161236B2 (en) | 2013-04-24 | 2018-12-25 | Halliburton Energy Services, Inc. | Methods for fracturing subterranean formations |
US9481781B2 (en) | 2013-05-02 | 2016-11-01 | Melior Innovations, Inc. | Black ceramic additives, pigments, and formulations |
WO2015003175A1 (fr) * | 2013-07-04 | 2015-01-08 | Melior Innovations, Inc. | Agents de soutènement synthétiques à faible densité et à haute résistance pour la fracturation hydraulique et la récupération d'hydrocarbures |
US9914872B2 (en) * | 2014-10-31 | 2018-03-13 | Chevron U.S.A. Inc. | Proppants |
US20160122630A1 (en) * | 2014-10-31 | 2016-05-05 | Chevron U.S.A. Inc. | Proppants |
US10266756B2 (en) | 2015-06-04 | 2019-04-23 | Halliburton Energy Services, Inc. | Porous proppants |
WO2017003819A1 (fr) | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Revêtement pour capturer des sulfures |
WO2017003904A1 (fr) | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Revêtement d'agent de soutènement pour la récupération de métaux lourds |
WO2017003813A1 (fr) | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Revêtement pour libération contrôlée |
US10752830B2 (en) | 2015-06-30 | 2020-08-25 | Dow Global Technologies Llc | Proppant coating for heavy metal recovery |
WO2017021803A1 (fr) * | 2015-07-31 | 2017-02-09 | Statoil Gulf Services LLC | Fracturation hydraulique et gravillonnage en régime de fracturation à l'aide d'agents de soutènement ultra-légers et ultra-résistants (ulus) |
WO2017213855A1 (fr) | 2016-06-08 | 2017-12-14 | Dow Global Technologies Llc | Revêtement à base d'amide |
US10190041B2 (en) * | 2016-08-02 | 2019-01-29 | University Of Utah Research Foundation | Encapsulated porous proppant |
WO2018175515A1 (fr) | 2017-03-21 | 2018-09-27 | Dow Global Technologies Llc | Revêtements d'agents de soutènement à base de polyuréthane |
Also Published As
Publication number | Publication date |
---|---|
AU2012325773A1 (en) | 2014-05-08 |
RU2014120518A (ru) | 2015-11-27 |
CA2852973A1 (fr) | 2013-04-25 |
MX2014004760A (es) | 2014-10-17 |
BR112014009463A2 (pt) | 2017-06-13 |
ZA201402794B (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140110110A1 (en) | Porous Proppants | |
WO2013059793A1 (fr) | Agents de soutènement poreux | |
US9796915B2 (en) | Light weight proppant with improved strength and methods of making same | |
AU2004208127B2 (en) | Extended particle size distribution ceramic fracturing proppant | |
AU2013296818B2 (en) | Synthetic proppants and monodispersed proppants and methods of making the same | |
CA2840235C (fr) | Agents de soutenement a faible frottement de surface | |
US10161236B2 (en) | Methods for fracturing subterranean formations | |
WO2011082102A1 (fr) | Particules de céramique ayant disposition et/ou taille de pores et/ou de microsphères réglées et procédé pour leur fabrication | |
US10093849B2 (en) | Proppants and anti-flowback additives comprising flash calcined clay, methods of manufacture, and methods of use | |
CA2905709A1 (fr) | Agent de soutenement leger a resistance amelioree et ses procedes de fabrication | |
RU2472837C2 (ru) | Легкий проппант |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840960 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/004760 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2852973 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201402326 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012325773 Country of ref document: AU Date of ref document: 20121022 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014120518 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014009463 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12840960 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112014009463 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140417 |
|
ENP | Entry into the national phase |
Ref document number: 112014009463 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140417 |