WO2013059718A1 - Organic electronic device for lighting - Google Patents
Organic electronic device for lighting Download PDFInfo
- Publication number
- WO2013059718A1 WO2013059718A1 PCT/US2012/061186 US2012061186W WO2013059718A1 WO 2013059718 A1 WO2013059718 A1 WO 2013059718A1 US 2012061186 W US2012061186 W US 2012061186W WO 2013059718 A1 WO2013059718 A1 WO 2013059718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electron transport
- transport layer
- electroluminescent material
- emissive
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 125
- 230000005525 hole transport Effects 0.000 claims abstract description 21
- 238000002347 injection Methods 0.000 claims description 40
- 239000007924 injection Substances 0.000 claims description 40
- 239000000243 solution Substances 0.000 claims description 14
- 229910052741 iridium Inorganic materials 0.000 claims description 13
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 13
- 238000005424 photoluminescence Methods 0.000 claims description 6
- 238000006862 quantum yield reaction Methods 0.000 claims description 6
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000013110 organic ligand Substances 0.000 claims description 4
- 150000002503 iridium Chemical class 0.000 claims 1
- 239000010410 layer Substances 0.000 description 198
- 239000002019 doping agent Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- -1 rubrenes Chemical class 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- 238000000151 deposition Methods 0.000 description 9
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000003446 ligand Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical compound C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 125000002524 organometallic group Chemical group 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000002207 thermal evaporation Methods 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 150000001454 anthracenes Chemical class 0.000 description 3
- 150000001846 chrysenes Chemical class 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 229920000547 conjugated polymer Polymers 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229960005544 indolocarbazole Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000005041 phenanthrolines Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000003918 triazines Chemical class 0.000 description 3
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 2
- LPCWDYWZIWDTCV-UHFFFAOYSA-N 1-phenylisoquinoline Chemical compound C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 LPCWDYWZIWDTCV-UHFFFAOYSA-N 0.000 description 2
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 2
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 description 2
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 125000001769 aryl amino group Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002322 conducting polymer Substances 0.000 description 2
- 239000011370 conductive nanoparticle Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- JGOAZQAXRONCCI-SDNWHVSQSA-N n-[(e)-benzylideneamino]aniline Chemical compound C=1C=CC=CC=1N\N=C\C1=CC=CC=C1 JGOAZQAXRONCCI-SDNWHVSQSA-N 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 150000002979 perylenes Chemical class 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000003252 quinoxalines Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- LRQPEHJWTXCLQY-UHFFFAOYSA-N 1,2,3-trifluoro-4-methylbenzene Chemical compound CC1=CC=C(F)C(F)=C1F LRQPEHJWTXCLQY-UHFFFAOYSA-N 0.000 description 1
- SEULWJSKCVACTH-UHFFFAOYSA-N 1-phenylimidazole Chemical compound C1=NC=CN1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-N 0.000 description 1
- VMAUSAPAESMXAB-UHFFFAOYSA-N 2,3-bis(4-fluorophenyl)quinoxaline Chemical compound C1=CC(F)=CC=C1C1=NC2=CC=CC=C2N=C1C1=CC=C(F)C=C1 VMAUSAPAESMXAB-UHFFFAOYSA-N 0.000 description 1
- KTSGGWMVDAECFK-UHFFFAOYSA-N 2,4,7,9-tetraphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC(C=2C=CC=CC=2)=C(C=CC=2C3=NC(=CC=2C=2C=CC=CC=2)C=2C=CC=CC=2)C3=N1 KTSGGWMVDAECFK-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical compound C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- MNFZZNNFORDXSV-UHFFFAOYSA-N 4-(diethylamino)benzaldehyde Chemical compound CCN(CC)C1=CC=C(C=O)C=C1 MNFZZNNFORDXSV-UHFFFAOYSA-N 0.000 description 1
- PGDARWFJWJKPLY-UHFFFAOYSA-N 4-[2-[3-[4-(diethylamino)phenyl]-2-phenyl-1,3-dihydropyrazol-5-yl]ethenyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1C=CC1=CC(C=2C=CC(=CC=2)N(CC)CC)N(C=2C=CC=CC=2)N1 PGDARWFJWJKPLY-UHFFFAOYSA-N 0.000 description 1
- KBXXZTIBAVBLPP-UHFFFAOYSA-N 4-[[4-(diethylamino)-2-methylphenyl]-(4-methylphenyl)methyl]-n,n-diethyl-3-methylaniline Chemical compound CC1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)N(CC)CC)C)C1=CC=C(C)C=C1 KBXXZTIBAVBLPP-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- 230000005457 Black-body radiation Effects 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical class CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- YXLXNENXOJSQEI-UHFFFAOYSA-L Oxine-copper Chemical class [Cu+2].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 YXLXNENXOJSQEI-UHFFFAOYSA-L 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- ILSGDBURWYKYHE-UHFFFAOYSA-N chrysene-1,2-diamine Chemical class C1=CC=CC2=CC=C3C4=CC=C(N)C(N)=C4C=CC3=C21 ILSGDBURWYKYHE-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 150000002537 isoquinolines Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Inorganic materials [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- HTJNDQNBKKHPAQ-UHFFFAOYSA-N oxotin zirconium Chemical compound [Sn]=O.[Zr] HTJNDQNBKKHPAQ-UHFFFAOYSA-N 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000005359 phenylpyridines Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- SIOXPEMLGUPBBT-UHFFFAOYSA-M picolinate Chemical compound [O-]C(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-M 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001798 poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid] polymer Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- JSTHREDTMPIBEX-UHFFFAOYSA-N pyrene-2,7-diamine Chemical class C1=C(N)C=C2C=CC3=CC(N)=CC4=CC=C1C2=C43 JSTHREDTMPIBEX-UHFFFAOYSA-N 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- LOAUVZALPPNFOQ-UHFFFAOYSA-N quinaldic acid Chemical class C1=CC=CC2=NC(C(=O)O)=CC=C21 LOAUVZALPPNFOQ-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000003643 triphenylenes Chemical class 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/166—Electron transporting layers comprising a multilayered structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/80—Composition varying spatially, e.g. having a spatial gradient
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/621—Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Definitions
- This disclosure relates in general to organic electronic devices and particularly to devices used for lighting.
- organic electronic devices such as organic light emitting diodes (“OLED”), that make up OLED displays or OLED lighting devices
- OLED organic light emitting diodes
- the organic active layer is sandwiched between two electrical contact layers.
- at least one of the electrical contact layers is light- transmitting, and the organic active layer emits light through the light- transmitting electrical contact layer upon application of a voltage across the electrical contact layers.
- organic electroluminescent compounds As the active component in light-emitting diodes. Simple organic molecules, conjugated polymers, and organometallic complexes have been used. Devices frequently include one or more charge transport layers, which are positioned between a photoactive (e.g., light-emitting) layer and an electrical contact layer. A device can contain two or more contact layers. A hole transport layer can be positioned between the photoactive layer and the hole-injecting contact layer. The hole-injecting contact layer may also be called the anode. An electron transport layer can be positioned between the photoactive layer and the electron-injecting contact layer. The electron-injecting contact layer may also be called the cathode. Charge transport materials can also be used as hosts in combination with the photoactive materials.
- an organic electronic device comprising in order: an anode, a hole transport layer, an emissive layer, an electron transport layer, and a cathode, wherein the emissive layer comprises at least one first electroluminescent material, the electron transport layer is a vapor- deposited layer comprising at least one electron transport material and at least one second electroluminescent material such that the second electroluminescent material has a concentration that is greater adjacent the emissive layer, and wherein the device has white light emission.
- the emissive layer further comprises a third electroluminescent material.
- one or more of the electroluminescent materials is an iridium complex having organic ligands.
- FIG. 1 includes an illustration of one example of a prior art organic electronic device.
- FIG. 2 includes another illustration of a prior art organic electronic device.
- FIG. 3 includes another illustration of a prior art organic electronic device.
- FIG. 4 includes another illustration of a prior art organic electronic device.
- FIG. 5 includes an illustration of an organic electronic device according to one embodiment of the present invention.
- FIG. 6 includes another illustration of an organic electronic device according to one embodiment of the present invention.
- Skilled artisans appreciate that objects in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the objects in the figures may be exaggerated relative to other objects to help to improve understanding of embodiments.
- blue is intended to mean radiation that has an emission maximum at a wavelength in a range of approximately 380-495 nm.
- charge transport when referring to a layer, material, member, or structure is intended to mean such layer, material, member, or structure facilitates migration of such charge through the thickness of such layer, material, member, or structure with relative efficiency and small loss of charge.
- Hole transport materials facilitate positive charge migration; electron transport materials facilitate negative charge migration.
- CTR refers to the color rendering index devised by the Commission Internationale de L'Eclairage (International Commission on Illumination, or CIE). It is a measure of the quality of color light. It generally ranges from zero for a source like a low-pressure sodium vapor lamp, which is monochromatic, to one hundred, for a source like an incandescent light bulb, which emits essentially blackbody radiation.
- dopant is intended to mean a material, within a layer including a host material, that changes the electronic characteristic(s) or the targeted wavelength(s) of radiation emission, reception, or filtering of the layer compared to the electronic characteristic(s) or the wavelength(s) of radiation emission, reception, or filtering of the layer in the absence of such material.
- a dopant of a given color refers to a dopant which emits light of that color.
- electrostatic material refers to a material that emits light in response to the passage of an electric current or to a strong electric field.
- emissive refers to a layer which is light-emitting.
- green is intended to mean radiation that has an emission maximum at a wavelength in a range of approximately 495-570 nm.
- hole injection when referring to a layer, material, member, or structure, is intended to mean such layer, material, member, or structure facilitates injection and migration of positive charges through the thickness of such layer, material, member, or structure with relative efficiency and small loss of charge.
- host material is intended to mean a material, usually in the form of a layer, to which a dopant may or may not be added.
- the host material may or may not have electronic characteristic(s) or the ability to emit, receive, or filter radiation. When a dopant is present in a host material, the host material does not significantly change the emission wavelength of the dopant material.
- photoluminescence quantum yield is intended to mean the ratio of photons absorbed to photons emitted through luminescence.
- red is intended to mean radiation that has an emission maximum at a wavelength in a range of approximately 590-780 nm.
- small molecule when referring to a compound, is intended to mean a compound which does not have repeating monomeric units. In one embodiment, a small molecule has a molecular weight no greater than approximately 2000 g/mol.
- substrate is intended to mean a base material that can be either rigid or flexible and may be include one or more layers of one or more materials, which can include, but are not limited to, glass, polymer, metal or ceramic materials or combinations thereof.
- the substrate may or may not include electronic components, circuits, or conductive members.
- white light refers to the effect of combining the visible colors of light in suitable proportions so that the light appears white or colorless to the human eye. Since the impression of white is obtained by three summations of light intensity across the visible spectrum, the number of combinations of light wavelengths that produce the sensation of white is practically infinite. The impression of white light can also be created by mixing appropriate intensities of the primary colors of light, red, green and blue (RGB), a process called additive mixing, as seen in many display technologies.
- RGB red, green and blue
- yellow is intended to mean radiation that has an emission maximum at a wavelength in a range of approximately 570-590 nm.
- the device (1 ) consists of an anode (100), a hole injection layer (200), a hole transport layer (300), a light emitting layer (400), an electron transport layer (500), an electron injection layer (600), and a cathode (700).
- a support, not shown can be present adjacent either the anode or the cathode.
- the light emitting layer there are two emitters, such as blue and yellow, such that the combined emission results in a white color.
- three or four emitters are used. In the discussion which follows, three emitters will be used for illustrative purposes. However, more than three could be used.
- FIG. 2 a prior art device (2) is shown in which three emitters, having red, green and blue emission, are present in a single emissive layer (layer 401 ).
- layer 401 a single emissive layer
- the fabrication process is cheaper.
- This single emissive layer approach therefore has the drawback of reduced device performance.
- FIG. 3 a prior art device is shown in which there is a separate layer for each emitter, layers 402, 403, and 404. With three separate emitting layers, each color can be individually optimized with its own host to achieve maximal efficiency. However, the fabrication process is more complicated with three separate layers.
- a compromise may be made by using two emitting layers, in which one of the layers having green and red emitters and the other layer having a blue emitter. This is shown in FIG. 4, where layer 405 has red and green emitters, and layer 406 has a blue emitter. It is much easier to find a common host for green and red emitters and maintain their efficiency, while the blue layer can be optimized separately.
- the fabrication process is easier for this architecture with dual emissive layers due to the elimination of one layer, but it still has one extra layer than the single emissive layer approach.
- FIG. 5 One embodiment of the present invention is shown in FIG. 5.
- the second emitter layer is eliminated and its function is combined with the electron transport layer (501 ).
- blue emitter molecules are doped into the electron transport layer 501 .
- the concentration of blue dopant is greatest adjacent the emissive layer and decreases through the layer so that the concentration is least in the part of the layer that is adjacent the electron injection layer.
- FIG. 6 Another embodiment of the present invention is shown in FIG. 6.
- the second emitter layer is eliminated and its function is combined with the electron transport layer (502).
- blue emitter molecules are doped throughout the electron transport layer 502, except in a very thin region adjacent the electron injection layer.
- blue dopant is present in area 502A of the electron transport layer, but not in area 502B.
- the devices disclosed in this invention have the same number of layers as the single emissive layer devices (FIG. 2), but the architecture allows the separate optimization of blue efficiency to achieve maximal device performance. a. Emissive layer
- the emissive layer comprises at least one electroluminescent ("EL") material.
- EL electroluminescent
- Any EL material can be used in the devices, including, but not limited to, small molecule organic fluorescent compounds, luminescent metal complexes, conjugated polymers, and mixtures thereof.
- fluorescent compounds include, but are not limited to, chrysenes, pyrenes, perylenes, rubrenes, coumarins, anthracenes, thiadiazoles, derivatives thereof, arylamino derivatives thereof, and mixtures thereof.
- metal complexes include, but are not limited to, metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); cyclometalated iridium and platinum electroluminescent
- conjugated polymers include, but are not limited to poly(phenylenevinylenes), polyfluorenes, poly(spirobifluorenes), polythiophenes, poly(p-phenylenes), copolymers thereof, and mixtures thereof.
- red light-emitting materials include, but are not limited to, complexes of Ir having phenylquinoline or phenylisoquinoline ligands, periflanthenes, fluoranthenes, and perylenes. Red light-emitting materials have been disclosed in, for example, US patent 6,875,524, and published US application 2005-0158577.
- green light-emitting materials include, but are not limited to, complexes of Ir having phenylpyridine ligands,
- Green light-emitting materials have been disclosed in, for example, published PCT application WO 2007/021 1 17.
- blue light-emitting materials include, but are not limited to, complexes of Ir having phenylpyridine or phenylimidazole ligands, diarylanthracenes, diaminochrysenes, diaminopyrenes, and polyfluorene polymers. Blue light-emitting materials have been disclosed in, for example, US patent 6,875,524, and published US applications 2007- 0292713 and 2007-0063638.
- the electroluminescent material is an organometallic complex.
- the organometallic complex is cyclometallated.
- cyclometallated it is meant that the complex contains at least one ligand which bonds to the metal in at least two points, forming at least one 5- or 6-membered ring with at least one carbon-metal bond.
- the metal is iridium or platinum.
- the organometallic complex is electrically neutral and is a tris-cyclometallated complex of iridium having the formula lrl_ 3 or a bis-cyclometallated complex of iridium having the formula lrl_ 2 Y.
- L is a monoanionic bidentate cyclometalating ligand coordinated through a carbon atom and a nitrogen atom.
- L is an aryl N- heterocycle, where the aryl is phenyl or napthyl, and the N-heterocycle is pyridine, quinoline, isoquinoline, diazine, pyrrole, pyrazole or imidazole.
- Y is a monoanionic bidentate ligand.
- L is a phenylpyridine, a phenylquinoline, or a
- Y is a ⁇ -dienolate, a diketimine, a picolinate, or an N-alkoxypyrazole.
- the ligands may be unsubstituted or substituted with F, D, alkyl, perfluororalkyl, alkoxyl, alkylamino, arylamino, CN, silyl, fluoroalkoxyl or aryl groups.
- the light-emitting material is a
- organometallic iridium complexes having red emission color include, but are not limited to compounds R1 through R1 1 below.
- organometallic iridium complexes having green emission color include, but are not limited to compounds G1 through G1 1 below.
- organometallic iridium complexes having blue emission color include, but are not limited to compounds B1 through B1 1 below.
- the emissive layer further comprises a host material to improve processing and/or electronic properties.
- host materials include, but are not limited to, carbazoles, indolocarbazoles, chrysenes, phenanthrenes, triphenylenes, phenanthrolines, triazines, naphthalenes, anthracenes, quinolines, isoquinolines, quinoxalines, phenylpyridines, benzodifurans, metal quinolinate complexes, deuterated analogs thereof, and combinations thereof.
- the emissive layer further comprises a third EL material.
- the emissive layer comprises a host, a first EL material which is a red dopant, and a third EL material which is a green dopant.
- at least one dopant is an iridium complex having organic ligands.
- the iridium complex is a cyclometallated iridium complex.
- both the red dopant and the green dopant are cyclometallated complexes of iridium.
- the host is selected from the group consisting of indolocarbazoles, triazines, chrysenes, deuterated analogs thereof, and combinations thereof.
- the emissive layer consists essentially of a host and a first EL material. In some embodiments, the emissive layer consists essentially of a host, a red EL material, and a green EL material.
- the total amount of EL dopant in the emissive layer is 1 -30% by weight, based on the total weight of the layer; in some embodiments, 5-20% by weight.
- a red dopant is present in an amount of 0.1 -5% by weight, based on the total weight of the layer; in some embodiments, 0.2-2% by weight.
- a green dopant is present in an amount of 5-25% by weight, based on the total weight of the layer; in some embodiments, 10-20% by weight.
- the electron transport layer comprises at least one electron transport material and at least one EL material, where the concentration of the EL material decreases from the emissive layer side to the electron injection side.
- the electron transport layer consists essentially of an electron transport material and a second EL material.
- Examples of electron transport materials which can be used in the electron transport layer include: metal chelated oxinoid compounds, including metal quinolate derivatives such as tris(8- hydroxyquinolato)aluminum (AIQ), bis(2-methyl-8-quinolinolato)(p- phenylphenolato) aluminum (BAIq), tetrakis-(8-hydroxyquinolato)hafnium (HfQ) and tetrakis-(8-hydroxyquinolato)zirconium (ZrQ); and azole compounds such as 2- (4-biphenylyl)-5-(4-t-butylphenyl)-1 ,3,4-oxadiazole (PBD), 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1 ,2,4-triazole (TAZ), and 1 ,3,5-tri(phenyl-2-benzimidazole)benzene (TPBI); quinoxaline derivative
- the second EL material is a blue dopant. Examples of blue dopants are discussed above.
- the blue dopant is a cyclometallated complex of iridium.
- the electron transport layer is formed by simultaneous vapor deposition of all the materials in the layer. Any vapor deposition technique can be used so long as the materials are deposited without significant diminution of their physical properties. Such techniques are well known and include chemical vapor deposition and physical vapor deposition techniques.
- the electron transport layer is formed by evaporative deposition. The concentration change of the EL dopant in the layer can be controlled by changing the rate of deposition of the dopant.
- a thin region of undoped electron transport material is formed at the electron injection layer side.
- the undoped region contains only the electron transport material and no EL dopant.
- the formation of an undoped region can be accomplished by simply turning off the input from the EL dopant at the end of the deposition process. This results in no added steps to the process.
- the undoped area has a thickness in the range of 2-20 nm; in some embodiments 5-15 nm; in some embodiments, 7-12 nm.
- the total amount of EL dopant in the electron transport layer is 1 -49% by weight, based on the total weight of the layer; in some embodiments, 2-25% by weight; in some embodiments, 5-15% by weight.
- the photoluminescence quantum yield ("PLQY") of the electron transport layer is greater than 20%; in some embodiments, greater than 50%; in some embodiments, greater than 70%.
- the PLQY can be measured using equipment designed to determine the value of thin films such as an integrating sphere. However, frequently the PLQY is more conveniently measured in solution.
- the solution PLQY can be determined using a luminance spectrophotometer.
- the PLQY is determined for a solution of the second electroluminescent material in an organic solvent, which usually is a good estimate of the PLQY in films. In some embodiments, this solution PLQY is greater than 20%; in some embodiments, greater than 50%; in some embodiments, greater than 70%. c. Other device layers
- the other layers in the device can be made of any materials that are known to be useful in such layers.
- a substrate may be present adjacent the anode or the cathode.
- the substrate is adjacent the anode.
- the substrate is a base material that can be either rigid or flexible.
- the substrate may include one or more layers of one or more materials, which can include, but are not limited to, glass, polymer, metal or ceramic materials or combinations thereof.
- the substrate may or may not include electronic components, circuits, or conductive members.
- the anode is an electrode that is particularly efficient for injecting positive charge carriers. It can be made of, for example materials containing a metal, mixed metal, alloy, metal oxide or mixed-metal oxide, or it can be a conducting polymer, and mixtures thereof. Suitable metals include the Group 1 1 metals, the metals in Groups 4, 5, and 6, and the Group 8 10 transition metals. If the anode is to be light-transmitting, mixed-metal oxides of Groups 12, 13 and 14 metals are generally used. Examples of suitable materials include, but are not limited to, indium-tin- oxide ("ITO").
- ITO indium-tin- oxide
- the anode comprises a fluorinated acid polymer and conductive nanoparticles. Such materials have been described in, for example, US Patent 7,749,407.
- the hole injection layer comprises hole injection material.
- hole injection material is electrically conductive or semiconductive material.
- the hole injection material can be a polymeric material, such as polyaniline (PANI) or polyethylenedioxythiophene (PEDOT), which are often doped with protonic acids.
- the protonic acids can be, for example, poly(styrenesulfonic acid), poly(2-acrylamido-2-methyl-1 -propanesulfonic acid), and the like.
- the hole injection material can comprise charge transfer compounds, and the like, such as copper phthalocyanine and the tetrathiafulvalene-tetracyanoquinodimethane system (TTF-TCNQ).
- TTF-TCNQ tetrathiafulvalene-tetracyanoquinodimethane system
- the hole injection layer is made from a dispersion of a conducting polymer and a colloid-forming polymeric acid. Such materials have been described in, for example, U.S. patent 7,250,461 , published U.S. patent applications 2004-0102577, 2004-0127637, and 2005
- the hole injection layer comprises a fluorinated acid polymer and conductive nanoparticles.
- a fluorinated acid polymer and conductive nanoparticles.
- hole transport materials for the hole transport layer have been summarized for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p. 837-860, 1996, by Y. Wang. Both hole transporting molecules and polymers can be used.
- hole transporting molecules are: N,N'-diphenyl-N,N'-bis(3- methylphenyl)-[1 ,1 '-biphenyl]-4,4'-diamine (TPD), 1 ,1 -bis[(di-4-tolylamino) phenyljcyclohexane (TAPC), N,N'-bis(4-methylphenyl)-N,N'-bis(4- ethylphenyl)-[1 ,1 '-(3,3'-dimethyl)biphenyl]-4,4'-diamine (ETPD), tetrakis-(3- methylphenyl)-N,N,N',N'-2,5-phenylenediamine (PDA), a-phenyl-4- ⁇ , ⁇ - diphenylaminostyrene (TPS), p-(diethylamino)benzaldehyde
- DEASP 1 ,2-trans-bis(9H-carbazol-9-yl)cyclobutane
- DCZB 1 ,2-trans-bis(9H-carbazol-9-yl)cyclobutane
- TTB N,N,N ⁇ N'-tetrakis(4-methylphenyl)-(1 '-biphenyl)-4,4'-diamine
- NPB N,N'-bis(naphthalen-1 -yl)-N,N'-bis-(phenyl)benzidine
- porphyrinic compounds such as copper phthalocyanine.
- Commonly used hole transporting polymers are polyvinylcarbazole, (phenylmethyl)- polysilane, and polyaniline.
- hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
- triarylamine polymers are used, especially triarylamine-fluorene copolymers.
- the polymers and copolymers are also possible to obtain hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
- triarylamine polymers are used, especially triarylamine-fluorene copolymers.
- the polymers and copolymers are examples of the polymers and copolymers.
- the hole transport layer further comprises a p-dopant.
- the hole transport layer is doped with a p-dopant.
- p-dopants include, but are not limited to, tetrafluorotetracyanoquinodimethane (F4-TCNQ) and perylene- 3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA).
- the photoactive layer 400 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector).
- the electroactive layer comprises an organic
- the electron injection layer can comprise a material selected from the group consisting of Li-containing organometallic compounds, LiF, Li 2 0, Cs-containing organometallic compounds, CsF, Cs 2 0, and Cs 2 C0 3 .
- the material deposited for the electron injection layer reacts with the underlying electron transport layer and/or the cathode and does not remain as a measurable layer.
- the cathode is an electrode that is particularly efficient for injecting electrons or negative charge carriers.
- the cathode can be any metal or nonmetal having a lower work function than the anode.
- Materials for the cathode can be selected from alkali metals of Group 1 (e.g., Li, Cs), the Group 2 (alkaline earth) metals, the Group 12 metals, including the rare earth elements and lanthanides, and the actinides. Materials such as aluminum, indium, calcium, barium, samarium and magnesium, as well as combinations, can be used.
- each of the component layers is preferably determined by balancing the positive and negative charges in the emitter layer to provide a device with high electroluminescence efficiency. It is understood that each functional layer can be made up of more than one layer.
- the device consists essentially of, in order, an anode, a hole injection layer, a hole transport layer, an emissive layer, an electron transport layer, an electron injection layer, and a cathode, where the emissive layer and the electron transport layer are as described above.
- the different layers have the following range of thicknesses: anode, 500-5000 A, in one embodiment 1000-2000 A; hole injection layer, 50-3000 A, in one embodiment 200-1 000 A; hole transport layer, 50-2000 A, in one embodiment 200-1000 A; emissive layer, 10-2000 A, in one embodiment 100-1000 A; electron transport layer, 100-2000 A, in one embodiment 200-1500 A; electron injection layer, 1 -25 A, in one embodiment 5-15 A; cathode, 200-10000 A, in one embodiment 300-5000 A.
- the desired ratio of layer thicknesses will depend on the exact nature of the materials used.
- the electron transport layer is formed by vapor deposition.
- the other device layers can be formed by any deposition technique, or combinations of techniques, including vapor deposition, liquid deposition, and thermal transfer. Conventional vapor deposition techniques can be used, as discussed above.
- the organic layers can be applied from solutions or dispersions in suitable solvents, using conventional coating or printing techniques, including but not limited to spin-coating, dip-coating, roll-to-roll techniques, ink-jet printing, continuous nozzle printing, screen- printing, gravure printing and the like.
- a suitable solvent for a particular compound or related class of compounds can be readily determined by one skilled in the art.
- non-aqueous solvents can be relatively polar, such as Ci to C 2 o alcohols, ethers, and acid esters, or can be relatively non-polar such as Ci to d 2 alkanes or aromatics such as toluene, xylenes, trifluorotoluene and the like.
- suitable liquids for use in making the liquid composition either as a solution or dispersion as described herein, comprising the new
- chlorinated hydrocarbons such as methylene chloride, chloroform, chlorobenzene
- aromatic hydrocarbons such as methylene chloride, chloroform, chlorobenzene
- hydrocarbons such as substituted and non-substituted toluenes and xylenes
- polar solvents such as tetrahydrofuran (THP), N-methyl pyrrolidone) esters (such as ethylacetate) alcohols (isopropanol), keytones (cyclopentatone) and mixtures thereof.
- Suitable solvents for electroluminescent materials have been described in, for example, published PCT application WO 2007/145979.
- the device is fabricated by liquid deposition of the hole injection layer, the hole transport layer and the emissive layer, and by vapor deposition of the electron transport layer, an electron injection layer and the cathode.
- the efficiency of devices made with the new compositions described herein can be further improved by optimizing the other layers in the device.
- more efficient cathodes such as Ca, Ba or LiF can be used.
- Shaped substrates and novel hole transport materials that result in a reduction in operating voltage or increase quantum efficiency are also applicable.
- HIJ-1 is a hole injection material and is made from an aqueous dispersion of an electrically conductive polymer and a polymeric fluorinated sulfonic acid. Such materials have been described in, for example, published U.S. patent applications US 2004/0102577, US
- HTM-1 is a triarylamine polymer. Such materials have been described in, for example, published PCT application WO 2009/067419.
- Host 1 is a deuterated N-aryl-indolocarbazole. Such materials have been described in, for example, published US patent application US
- Host 2 is shown below. Such materials have been described in, for
- the dopants R1 1 , G1 1 , and B1 1 as shown above, have red, green, and blue emission, respectively. They are prepared using procedures analogous to those shown in, for example, US patent 6,670,645 and published US patent application 2010-0148663.
- ETM-1 is tris(8-hydroxyquinolinato)aluminum, known as "AIQ”.
- ETM-1 is 2,4,7,9-tetraphenyl-1 ,10-phenanthroline
- ETM-3 is the compound shown below.
- Comparative Example A had the following device layers, in the order listed, where all percentages are by weight, based on the total weight of the layer.
- ITO indium tin oxide
- hole injection layer HIJ-1 (50 nm)
- hole transport layer HTL-1 (20 nm)
- first emissive layer (32 nm):
- second emissive layer (32.4 nm)
- electron transport layer ETM-1 (10 nm)
- electron injection layer CsF (1 nm, as deposited)
- cathode Al (100 nm)
- Comparative Example B had the same structure, except that ETM-2 was used in the electron transport layer.
- the devices were prepared by depositing the layers on the glass substrate.
- the hole injection layer was deposited by spin coating from an aqueous dispersion.
- the hole transport layer and the green and red mixed emissive layer were deposited by spin coating from organic solvent solutions. All other layers were applied by evaporative deposition.
- the devices were characterized by measuring their (1 ) current- voltage (l-V) curves, (2) electroluminescence radiance versus voltage, and (3) electroluminescence spectra versus voltage. All three measurements were performed at the same time and controlled by a computer.
- the current efficiency (cd/A) of the device at a certain voltage is determined by dividing the electroluminescence radiance of the LED by the current density needed to run the device.
- the power efficacy (Lm/W) is the current efficiency divided by the operating voltage.
- the correlated color temperature (“CCT”) was calculated from the electroluminance spectra. The results are given in Table 1 .
- This example illustrates the performance of a white light device having a blue dopant uniformly distributed throughout the electron transport layer.
- Comparative Example C has the following device layers, in the order listed, where all percentages are by weight based on the total weight of the layer.
- ITO indium tin oxide
- hole injection layer HIJ-1 (50 nm)
- hole transport layer HTL-1 (20 nm)
- cathode Al (100 nm)
- the device was prepared by depositing the layers on the glass substrate.
- the hole injection layer was deposited by spin coating from an aqueous dispersion.
- the hole transport layer and the mixed red and green emissive layer were deposited by spin coating from organic solvent solutions.
- the electron transport layer, the electron injection layer and the cathode were applied by evaporative deposition.
- This example illustrates the performance of a white light device according to one embodiment of the present invention, as shown in FIG. 6.
- ITO indium tin oxide
- hole injection layer HIJ-1 (50 nm)
- hole transport layer HTL-1 (20 nm)
- ETM-3 electron injection layer CsF (1 nm, as deposited)
- cathode Al (100 nm)
- the device was prepared by depositing the layers on the glass substrate.
- the hole injection layer was deposited by spin coating from an aqueous dispersion.
- the hole transport layer and the mixed red and green emissive layer were deposited by spin coating from organic solvent solutions.
- the electron transport layer was applied by evaporative deposition of ETM-3 and B1 1 , turning off the input of B1 1 after 32 nm of the deposition to form a 10 nm region of undoped ETM-3.
- the electron injection layer and the cathode were applied by evaporative deposition.
- Comparative Examples A and B are comparative examples, using two of the most common electron transport materials: AIQ and
- phenanthroline respectively, as a separate electron transport layer in combination with two emissive layers.
- one layer was eliminated by combining the blue emissive layer and the electron transport layer into one luminescent electron transport layer.
- the blue dopant was uniformly distributed in the electron transport layer.
- Example 1 the blue emissive layer and the electron transport layer are combined, but the blue dopant has a concentration gradient in the electron transport layer, such that there is an undoped region adjacent the electron injection layer. This results in higher efficiency and longer lifetime relative to Comparative Examples A and B. The power efficacy is further improved relative to Comparative Example C.
- Example 1 also has a cooler white temperature relative to Comparative Example C. Cooler white temperature means more contribution from the blue component which has the shortest lifetime among the three emitters. Thus, even though both show the same T70 of 1800 hours, the lifetime of the device in Example 1 would be longer than the device of Comparative Example C at the same color temperature.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014537334A JP2014532984A (en) | 2011-10-19 | 2012-10-19 | Organic electronic devices for lighting |
EP12840932.3A EP2769425A1 (en) | 2011-10-19 | 2012-10-19 | Organic electronic device for lighting |
US14/349,354 US9236580B2 (en) | 2011-10-19 | 2012-10-19 | Organic electronic device for lighting |
CN201280050696.8A CN103875092A (en) | 2011-10-19 | 2012-10-19 | Organic electronic device for lighting |
KR1020147012952A KR20140075012A (en) | 2011-10-19 | 2012-10-19 | Organic electronic device for lighting |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161549054P | 2011-10-19 | 2011-10-19 | |
US61/549,054 | 2011-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013059718A1 true WO2013059718A1 (en) | 2013-04-25 |
Family
ID=48141429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/061186 WO2013059718A1 (en) | 2011-10-19 | 2012-10-19 | Organic electronic device for lighting |
Country Status (6)
Country | Link |
---|---|
US (1) | US9236580B2 (en) |
EP (1) | EP2769425A1 (en) |
JP (1) | JP2014532984A (en) |
KR (1) | KR20140075012A (en) |
CN (1) | CN103875092A (en) |
WO (1) | WO2013059718A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150048340A1 (en) * | 2012-03-23 | 2015-02-19 | E I Du Pont De Nemours And Company | Green luminescent materials |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2769424A1 (en) * | 2011-10-19 | 2014-08-27 | E. I. Du Pont de Nemours and Company | Organic electronic device for lighting |
US9666822B2 (en) * | 2013-12-17 | 2017-05-30 | The Regents Of The University Of Michigan | Extended OLED operational lifetime through phosphorescent dopant profile management |
US9397309B2 (en) * | 2014-03-13 | 2016-07-19 | Universal Display Corporation | Organic electroluminescent devices |
KR102244081B1 (en) * | 2014-08-13 | 2021-04-26 | 삼성디스플레이 주식회사 | Organic light emitting device |
KR102675576B1 (en) * | 2016-07-04 | 2024-06-18 | 삼성디스플레이 주식회사 | Organic light emitting display device |
CN106098958B (en) * | 2016-08-26 | 2018-04-03 | 昆山工研院新型平板显示技术中心有限公司 | White light organic electroluminescent device and preparation method thereof |
CN115249727A (en) * | 2021-04-27 | 2022-10-28 | Tcl科技集团股份有限公司 | Display panel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070067775A (en) * | 2005-12-23 | 2007-06-29 | 동우 화인켐 주식회사 | Iridium complex having luminescence property of ancillary ligand and organic electrophosphorescent substance using the same |
US20070166567A1 (en) * | 2006-01-13 | 2007-07-19 | Au Optronics Corp. | Organic electro-luminescence device |
KR20090021070A (en) * | 2007-08-24 | 2009-02-27 | 한국전자통신연구원 | The hybrid white organic emitting device and the method of manufacturing the same |
US20090179561A1 (en) * | 1999-12-28 | 2009-07-16 | Idemitsu Kosan Co., Ltd | Organic electroluminescence device emitting white light |
KR20110052688A (en) * | 2008-08-07 | 2011-05-18 | 제너럴 일렉트릭 캄파니 | Method of manufacture of a multi-layer phosphorescent organic light emitting device, and articles thereof |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6670645B2 (en) | 2000-06-30 | 2003-12-30 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US7476452B2 (en) | 2000-06-30 | 2009-01-13 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds |
US6696177B1 (en) * | 2000-08-30 | 2004-02-24 | Eastman Kodak Company | White organic electroluminescent devices with improved stability and efficiency |
TW545080B (en) * | 2000-12-28 | 2003-08-01 | Semiconductor Energy Lab | Light emitting device and method of manufacturing the same |
US6875523B2 (en) | 2001-07-05 | 2005-04-05 | E. I. Du Pont De Nemours And Company | Photoactive lanthanide complexes with phosphine oxides, phosphine oxide-sulfides, pyridine N-oxides, and phosphine oxide-pyridine N-oxides, and devices made with such complexes |
EP1406909A1 (en) | 2001-07-18 | 2004-04-14 | E.I. Du Pont De Nemours And Company | Luminescent lanthanide complexes with imine ligands and devices made with such complexes |
US7166368B2 (en) | 2001-11-07 | 2007-01-23 | E. I. Du Pont De Nemours And Company | Electroluminescent platinum compounds and devices made with such compounds |
JP4299144B2 (en) | 2001-12-26 | 2009-07-22 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Electroluminescent iridium compounds comprising fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines, and devices made using such compounds |
JP4161262B2 (en) | 2002-06-26 | 2008-10-08 | ソニー株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHT EMITTING OR DISPLAY DEVICE USING THE SAME |
US6963005B2 (en) | 2002-08-15 | 2005-11-08 | E. I. Du Pont De Nemours And Company | Compounds comprising phosphorus-containing metal complexes |
WO2004029133A1 (en) | 2002-09-24 | 2004-04-08 | E.I. Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
ATE404609T1 (en) | 2002-09-24 | 2008-08-15 | Du Pont | WATER DISPERSIBLE POLYTHIOPHENES PRODUCED USING COLLOIDS BASED ON POLYMERIC ACIDS |
US6875524B2 (en) | 2003-08-20 | 2005-04-05 | Eastman Kodak Company | White light-emitting device with improved doping |
US20050136289A1 (en) * | 2003-12-22 | 2005-06-23 | Chu Hye Y. | White organic light emitting device |
TWI428053B (en) * | 2004-02-09 | 2014-02-21 | Idemitsu Kosan Co | Organic electroluminescent element |
EP1718124A4 (en) | 2004-02-19 | 2009-06-24 | Idemitsu Kosan Co | White color organic electroluminescence device |
US7250461B2 (en) | 2004-03-17 | 2007-07-31 | E. I. Du Pont De Nemours And Company | Organic formulations of conductive polymers made with polymeric acid colloids for electronics applications, and methods for making such formulations |
US7351358B2 (en) | 2004-03-17 | 2008-04-01 | E.I. Du Pont De Nemours And Company | Water dispersible polypyrroles made with polymeric acid colloids for electronics applications |
CN101208369B (en) | 2005-06-28 | 2013-03-27 | E.I.内穆尔杜邦公司 | High work function transparent conductors |
KR100788254B1 (en) | 2005-08-16 | 2007-12-27 | (주)그라쎌 | Green electroluminescent compounds and organic electroluminescent device using the same |
JP2009540574A (en) | 2006-06-05 | 2009-11-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Liquid compositions for depositing organic active materials in the field of OLED printing |
CN101688052A (en) | 2007-07-27 | 2010-03-31 | E.I.内穆尔杜邦公司 | The aqueous dispersion that comprises the conductive polymers of inorganic nanoparticles |
US8063399B2 (en) | 2007-11-19 | 2011-11-22 | E. I. Du Pont De Nemours And Company | Electroactive materials |
US8815415B2 (en) | 2008-12-12 | 2014-08-26 | Universal Display Corporation | Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes |
CN102596950A (en) | 2009-10-29 | 2012-07-18 | E.I.内穆尔杜邦公司 | Deuterated compounds for electronic applications |
-
2012
- 2012-10-19 JP JP2014537334A patent/JP2014532984A/en active Pending
- 2012-10-19 CN CN201280050696.8A patent/CN103875092A/en active Pending
- 2012-10-19 WO PCT/US2012/061186 patent/WO2013059718A1/en active Application Filing
- 2012-10-19 EP EP12840932.3A patent/EP2769425A1/en not_active Withdrawn
- 2012-10-19 US US14/349,354 patent/US9236580B2/en active Active
- 2012-10-19 KR KR1020147012952A patent/KR20140075012A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090179561A1 (en) * | 1999-12-28 | 2009-07-16 | Idemitsu Kosan Co., Ltd | Organic electroluminescence device emitting white light |
KR20070067775A (en) * | 2005-12-23 | 2007-06-29 | 동우 화인켐 주식회사 | Iridium complex having luminescence property of ancillary ligand and organic electrophosphorescent substance using the same |
US20070166567A1 (en) * | 2006-01-13 | 2007-07-19 | Au Optronics Corp. | Organic electro-luminescence device |
KR20090021070A (en) * | 2007-08-24 | 2009-02-27 | 한국전자통신연구원 | The hybrid white organic emitting device and the method of manufacturing the same |
KR20110052688A (en) * | 2008-08-07 | 2011-05-18 | 제너럴 일렉트릭 캄파니 | Method of manufacture of a multi-layer phosphorescent organic light emitting device, and articles thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150048340A1 (en) * | 2012-03-23 | 2015-02-19 | E I Du Pont De Nemours And Company | Green luminescent materials |
US9735375B2 (en) * | 2012-03-23 | 2017-08-15 | E I Du Pont De Nemours And Company | Green luminescent materials |
EP2828273B1 (en) * | 2012-03-23 | 2019-02-20 | E. I. du Pont de Nemours and Company | Green luminescent materials |
Also Published As
Publication number | Publication date |
---|---|
KR20140075012A (en) | 2014-06-18 |
JP2014532984A (en) | 2014-12-08 |
EP2769425A1 (en) | 2014-08-27 |
US9236580B2 (en) | 2016-01-12 |
US20140239285A1 (en) | 2014-08-28 |
CN103875092A (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8772767B2 (en) | Organic light-emitting diode luminaires | |
US9236580B2 (en) | Organic electronic device for lighting | |
EP2376595B1 (en) | Photoactive composition and electronic device made with the composition | |
US20140252340A1 (en) | Organic electronic device for lighting | |
US20110266524A1 (en) | Organic light-emitting diode luminaires | |
US8546844B2 (en) | Process for forming an organic light-emitting diode luminaires having a single light-emitting layer with at least two light-emitting dopants | |
US11527721B2 (en) | Electroactive materials | |
US20110260141A1 (en) | Organic light-emitting diode luminaires | |
US20110204337A1 (en) | Organic light-emitting diode luminaires | |
WO2011059814A2 (en) | Organic light-emitting diode luminaries | |
US8716699B2 (en) | Organic light-emitting diodes having white light emission | |
US20120001164A1 (en) | Organic electronic device with electron tunneling layer | |
JP2013509722A (en) | Organic light-emitting diode luminaire | |
US20110260142A1 (en) | Organic light-emitting diode luminaires | |
US20110204338A1 (en) | Organic light-emitting diode luminaires | |
US20140231796A1 (en) | Organic electronic device for lighting | |
US20110260603A1 (en) | Organic light-emitting diode luminaires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840932 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012840932 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14349354 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014537334 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147012952 Country of ref document: KR Kind code of ref document: A |