WO2013058431A1 - Method for manufacturing a culture medium of dunaliella using natural seawater and pretreated seawater - Google Patents
Method for manufacturing a culture medium of dunaliella using natural seawater and pretreated seawater Download PDFInfo
- Publication number
- WO2013058431A1 WO2013058431A1 PCT/KR2011/009366 KR2011009366W WO2013058431A1 WO 2013058431 A1 WO2013058431 A1 WO 2013058431A1 KR 2011009366 W KR2011009366 W KR 2011009366W WO 2013058431 A1 WO2013058431 A1 WO 2013058431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seawater
- dunaliella
- natural
- concentration
- salt concentration
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/38—Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
Definitions
- the present invention relates to a method for producing dunaliella sp., And more particularly, to effectively produce dunaliella using natural seawater and pre-treated seawater, including growth enhancement, total carokinoid material production, and fat production. It relates to a Dunaliella culture medium production method that can be.
- Microalgae research is becoming increasingly popular for human food, biofuel, pharmaceutical and cosmetic applications.
- Dunaliella sp. Is known as a marine microalgae that can be used for various purposes such as health food market and medicine.
- Dunaliella is manufactured in a modified Johnson culture (1968, F / 2 Guilard, Hejazi et al. 2003), and natural seawater is not well used as a culture for Dunaliella culture.
- natural seawater is used as the Dunalella culture, there are various problems such as milky turbidity generation, detection of nutrients, clumping of microalgae, HPO 4 2 -decrease in solubility, formation of white precipitate in the culture, and the like.
- milky turbidity is mainly produced by magnesium ions (Mg 2+ ) or calcium ions (Ca 2+ ).
- Mg 2+ magnesium ions
- Ca 2+ calcium ions
- the production of white precipitate in the culture medium also causes a decrease in photosynthesis, growth, cleavage and fat content.
- An object of the present invention can reduce the production cost of Dunaliella culture by using pre-treated seawater and natural seawater, and the production method of Dunaliella culture that can increase photosynthesis, growth, cleavage and fat content in the culture of Dunaliella To provide.
- Dunaliella sp. Culture method using the pre-treatment seawater according to an embodiment of the present invention for achieving the above object is the pre-treatment by adding coal and NaOH to the natural seawater, milky turbidity generating material is removed Preparing sea water; Oxidizing natural sea water; And mixing the oxidized natural seawater with the pretreated seawater to adjust pH 7.4 to 7.6 and a salt concentration of 55 to 65 psu.
- NaCl may be added to adjust the salt concentration of the mixed solution of the natural seawater and pretreated seawater.
- KNO 3 1.2 ⁇ 0.1 g / L, MgCl 2 .6H 2 O 1.0 ⁇ 0.1 g / L, MgSO 4 ⁇ 7H 2 O 0.35 ⁇ 0.05 g / LK 2 SO 4 in the mixed solution of natural seawater and pretreated seawater.
- hydrochloric acid may be used for the oxidation treatment of the natural seawater.
- coal is characterized in that the bituminous coal.
- the coal may be added at a concentration determined by Equation 1 according to the salt concentration (psu) of the natural seawater.
- Equation 1 ⁇ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 60.0 psu, the concentration of coal without white precipitate is divided by the corresponding salinity concentration
- the NaOH may be added at a concentration determined by the following formula 2 according to the salt concentration (psu) of the natural sea water.
- Figure 2 shows the chlorophyll a concentration of Dunaliella according to the culture period when Dunaliella was cultured for 16 days using the culture medium according to the Examples and Comparative Examples.
- Figure 3 shows the total carotenoid concentration according to the culture period when Dunaliella was incubated for 16 days using the culture medium according to the Examples and Comparative Examples.
- Dunaliella sp. Culture method according to the present invention includes a natural seawater pretreatment step, natural seawater oxidation step and mixing step.
- pretreatment of the seawater is performed to prepare pretreated seawater from which milky turbidity generating material is removed.
- pretreatment of natural seawater coal and NaOH are added to the natural seawater in the present invention.
- milky turbidity generating substances such as magnesium ions and calcium ions precipitated out.
- Coal may be charcoal or bituminous coal, but in the case of charcoal, it may be a factor of depleting forest resources, so it is more preferable to use bituminous coal.
- pretreated seawater approximately 92% was a supernatant and the rest was sediment.
- the pH increased from 8.20 to 13.14, and the salt concentration increased from 31.00 psu to 45.00 psu.
- Table 1 shows the contents of organic carbon and various components contained in the supernatant of natural seawater and pretreated seawater.
- organic carbon was seven times higher in pretreated seawater than organic carbon in conventional natural seawater.
- Na, K and Sr were augmented with natural seawater pretreated.
- heavy metals such as Hg, As, Cd, Cr and Pb were not detected in the pretreated seawater.
- Mg and Ca in natural seawater were reduced to 0.80 and 337.90 mg / L in pretreated seawater, whereas 874.40 and 500.70 mg / L.
- Mg and Ca in natural seawater were detected 99.45% and 32.52% in the sediments, respectively (see Table 1).
- the Mg content in the detection was 22.28 g / L.
- CO 2 or CO contained in coal may react with NaOH to form Na 2 CO 3 or NaHCO 3 , and Na 2 CO 3 detects Ca and Mg from seawater at high pH.
- High pH is also characterized by the ability to kill organisms present in the pretreated seawater, thus preventing contamination by other species.
- the usage-amount of coal is added in the density
- Equation 1 ⁇ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 60.00 psu, the concentration of coal without white precipitate is divided by the salinity concentration
- ⁇ c is 27.6 / 31, which is approximately 0.89.
- approximately 17.8 g / L of coal is required for pretreatment in natural seawater with a salt concentration of 20 psu.
- NaOH is preferably added at a concentration determined by the following formula (2).
- the natural seawater is oxidized in order to maintain a pH of 7.4 to 7.6, which is well-cultured by Dunaliella after mixing with the pretreated seawater.
- Oxidation can utilize most acidic chemicals, typically nitric acid or hydrochloric acid.
- the salinity concentration is well known in Dunaliella culture is known to 55 ⁇ 65psu.
- NaCl may be added to adjust the salt concentration.
- Dunaliella culture contains KNO 3 1.2 ⁇ 0.1 g / L, MgCl 2 .6H 2 O 1.0 ⁇ 0.1 g / L, MgSO 4 ⁇ 7H 2 O 0.35 ⁇ 0.05 g / LK to increase organic carbon content and provide nutrients.
- J / M culture solution having a composition shown in Table 2 and having a salt concentration of 60.00 psu, and a composition shown in Table 3, according to the present invention, natural seawater and pretreated seawater were mixed at a volume ratio of 4: 1, Dunaliella was incubated in a culture medium (Example) having a pH of 7.5 and 25 g / L of sodium added to a salt concentration of 60.00.
- the culture temperature was 30.00 °C
- the light intensity of the light was 7000 lx fluorescence
- the light / dark cycle was a time (h) ratio of 12:12.
- Incubation was carried out for 16 days in a 5 L flask containing 4.5 L of the culture medium, and three cultures were performed for each condition. 1.02 g / L Dunaliella seeds were inoculated and stirred with an air injection device. Samples were analyzed every 4 days to assess growth and pigment content, and samples were analyzed on the last 16 days for biochemical analysis. Pigment content was analyzed by a spectrophotometer (PerkinElmer, Lamda 35 uv / vis spectrometer, USA).
- the specific growth rate ( ⁇ ) of Dunaliella was defined as the increase in concentration of Dunaliella (X0 ⁇ X1) per unit time (t0 ⁇ t1), and was calculated using Equation 3 below.
- ⁇ max ⁇ d ⁇ 1 and Dunaliella concentrations according to Comparative Examples and Examples were 0.039 and 0.051 d ⁇ 1 , 1.89 and 1.95 g / L. Although ⁇ max ⁇ d ⁇ 1 was significantly higher in the examples than the comparative media, biomass production did not differ significantly.
- Figure 2 shows the chlorophyll a concentration of Dunaliella according to the culture period when Dunaliella incubated for 16 days using the culture medium according to the Examples and Comparative Examples
- Figure 3 is according to the Examples and Comparative Examples When Dunaliella was incubated for 16 days using the culture medium, total carotenoid concentrations were shown according to the culture period.
- the chlorophyll a content was 1.40 and 2.73 mg / L, respectively, when the culture solution according to the comparative example and the example was used, which means that the chlorophyll a content was higher in the example.
- the total carotenoid content was 2.93 and 1.31 mg / L in Examples and Comparative Examples, respectively.
- the carotenoid content of Dunaliella grown in the Examples was significantly higher than that of Dunaliella grown in the Comparative Examples.
- Table 4 shows the biochemical composition of Dunaliellae prepared in the culture medium according to the Examples and Comparative Examples.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Provided is a method for manufacturing a culture medium of Dunaliella using natural seawater and pretreated seawater. The method for manufacturing a culture medium of Dunaliella includes: a step of adding coal and NaOH into natural seawater to manufacture pretreated seawater from which the materials for the generation of white turbidity are removed; and a step of mixing oxidized natural seawater with the pretreated seawater to adjust the mixture to have a pH of 7.4 to 7.6 and a salt concentration of 55 psu to 65 psu.
Description
본 발명은 두날리엘라(dunaliella sp.) 배양액 제조 방법에 관한 것으로, 보다 상세하게는 천연 해수와 전처리 해수를 이용하여 성장 증진, 총카로키노이드 물질 생산 및 지방생성량 증진 등 두날리엘라를 효과적으로 제조할 수 있는 두날리엘라 배양액 제조 방법에 관한 것이다.The present invention relates to a method for producing dunaliella sp., And more particularly, to effectively produce dunaliella using natural seawater and pre-treated seawater, including growth enhancement, total carokinoid material production, and fat production. It relates to a Dunaliella culture medium production method that can be.
인간의 음식물, 바이오 연료, 의약품 및 화장품 용도와 관련하여 미세조류 연구가 점점 더 각광을 받고 있다. Microalgae research is becoming increasingly popular for human food, biofuel, pharmaceutical and cosmetic applications.
미세조류 중 두날리엘라(Dunaliella sp.)는 건강 식품 시장 용도, 의약품 등 다양한 용도로 활용될 수 있는 해양 미세조류로 알려져 있다. Among the microalgae, Dunaliella sp. Is known as a marine microalgae that can be used for various purposes such as health food market and medicine.
현재, 두날리엘라는 modified Johnson 배양액(1968, F/2 Guilard, Hejazi et al. 2003 )에서 제조되고 있으며, 두날리엘라 배양을 위한 배양액으로 천연 해수는 잘 이용되지 않는다. 두날리엘라 배양액으로 천연 해수를 이용하는 경우, 우유빛 탁도 생성, 영양분의 검출, 미세조류의 클럼핑(clumping), HPO4
2- 용해도의 감소, 배양액 내 백색 침전물 형성 등 다양한 문제점이 있다. Currently, Dunaliella is manufactured in a modified Johnson culture (1968, F / 2 Guilard, Hejazi et al. 2003), and natural seawater is not well used as a culture for Dunaliella culture. When natural seawater is used as the Dunalella culture, there are various problems such as milky turbidity generation, detection of nutrients, clumping of microalgae, HPO 4 2 -decrease in solubility, formation of white precipitate in the culture, and the like.
이중에서 우유빛 탁도 생성은 주로 마그네슘 이온(Mg2+)이나 칼슘 이온(Ca2+)에 의하여 생성되는데, 미세조류의 배양을 위하여 인산염 및 탄산염을 천연 해수에 첨가하면, 배양액이 탁해지는 현상이 발생한다. 이러한 우유빛 탁도 생성은 두날리엘라나 배양 시 광합성, 성장, 분열 및 지방 함량이 저하되는 원인이 된다. Among them, milky turbidity is mainly produced by magnesium ions (Mg 2+ ) or calcium ions (Ca 2+ ). When phosphate and carbonate are added to natural seawater for the cultivation of microalgae, the culture becomes turbid. Occurs. This milky turbidity is the cause of photosynthesis, growth, cleavage and fat content in Dunaliella culture.
또한, 배양액 내 백색 침전물 생성 역시 광합성, 성장, 분열 및 지방 함량이 저하되는 원인이 된다. In addition, the production of white precipitate in the culture medium also causes a decrease in photosynthesis, growth, cleavage and fat content.
한편, 다른 화학물질과 함께 탄소의 이용성은 두날리엘라 성장에 있어서 가장 중요한 인자가 된다. 일반적으로, 탄소는 모든 보고된 두날리엘라 배양 매체 내에서 탄소산염(NaHCO3 및 Na2CO3)으로서 공급되나, 전술한 문제점들은 탄산염을 천연 해수로 첨가한 후에 발생된다. Meanwhile, the availability of carbon along with other chemicals is the most important factor in Dunaliella growth. In general, carbon is supplied as carbonates (NaHCO 3 and Na 2 CO 3 ) in all reported Dunalella culture media, but the above-mentioned problems arise after the addition of carbonate to natural seawater.
따라서, 두날리엘라 배양액에 있어, 천연 해수를 이용할 수 있는 방법이 요구된다. Therefore, in Dunaliella culture, there is a need for a method that can utilize natural seawater.
본 발명의 목적은 전처리 해수 및 천연 해수를 이용하여 두날리엘라 배양액의 제조 비용을 감소시킬 수 있으며, 두날리엘라 배양 시 광합성, 성장, 분열 및 지방 함량을 높일 수 있는 두날리엘라 배양액 제조 방법을 제공하는 것이다.An object of the present invention can reduce the production cost of Dunaliella culture by using pre-treated seawater and natural seawater, and the production method of Dunaliella culture that can increase photosynthesis, growth, cleavage and fat content in the culture of Dunaliella To provide.
상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 전처리 해수를 이용한 두날리엘라(Dunaliella sp.) 배양액 제조 방법은 천연 해수에 석탄 및 NaOH를 첨가하여, 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조하는 단계; 천연 해수를 산화처리하는 단계; 및 상기 전처리 해수에 상기 산화처리된 천연해수를 혼합하여 pH 7.4~7.6, 염분 농도 55~65psu로 조절하는 단계;를 포함하는 것을 특징으로 하는 한다. Dunaliella sp. Culture method using the pre-treatment seawater according to an embodiment of the present invention for achieving the above object is the pre-treatment by adding coal and NaOH to the natural seawater, milky turbidity generating material is removed Preparing sea water; Oxidizing natural sea water; And mixing the oxidized natural seawater with the pretreated seawater to adjust pH 7.4 to 7.6 and a salt concentration of 55 to 65 psu.
이때, 상기 천연해수와 전처리 해수가 혼합된 용액의 염분 농도 조절을 위하여 NaCl이 첨가될 수 있다. At this time, NaCl may be added to adjust the salt concentration of the mixed solution of the natural seawater and pretreated seawater.
또한, 상기 천연해수와 전처리 해수가 혼합된 용액에 KNO3 1.2±0.1 g/L, MgCl2.6H2O 1.0±0.1 g/L, MgSO4·7H2O 0.35±0.05 g/L K2SO4 0.25±0.05 g/L, KH2PO4 0.15±0.05 g/L, ZnSO4·7H2O 0.55±0.1 g/L, MnCl2·4H2O 0.55±0.1 g/L, H3BO3 6.5±0.5 g/L, FeCl3·6H2O 7.5±0.5 g/L, Co (NO3) 2·6H2O 0.5±0.1 g/L, CuSO4·5H2O 0.01±0.1 g/L, Na2MoO7·2H2O 0.03±0.005 g/L, Cyanocobalamin(Vitamin B12) 0.1±0.05 g/L, D-Biotin(Vitamin H) 7.5±0.5 g/L, 및 Thiamine·HCl(Vitamin B1) 10.0±1.0 g/L를 더 첨가할 수 있다. In addition, KNO 3 1.2 ± 0.1 g / L, MgCl 2 .6H 2 O 1.0 ± 0.1 g / L, MgSO 4 · 7H 2 O 0.35 ± 0.05 g / LK 2 SO 4 in the mixed solution of natural seawater and pretreated seawater. 0.25 ± 0.05 g / L, KH 2 PO 4 0.15 ± 0.05 g / L, ZnSO 4 · 7H 2 O 0.55 ± 0.1 g / L, MnCl 2 · 4H 2 O 0.55 ± 0.1 g / L, H 3 BO 3 6.5 ± 0.5 g / L, FeCl 3 · 6H 2 O 7.5 ± 0.5 g / L, Co (NO 3) 2 · 6H 2 O 0.5 ± 0.1 g / L, CuSO 4 · 5H 2 O 0.01 ± 0.1 g / L, Na 2 MoO 7 2H 2 O 0.03 ± 0.005 g / L, Cyanocobalamin (Vitamin B 12 ) 0.1 ± 0.05 g / L, D-Biotin (Vitamin H) 7.5 ± 0.5 g / L, and ThiamineHCl (Vitamin B 1 ) 10.0 More ± 1.0 g / L may be added.
또한, 상기 천연 해수의 산화처리는 염산을 이용할 수 있다. In addition, hydrochloric acid may be used for the oxidation treatment of the natural seawater.
또한, 상기 석탄은 역청탄인 것을 특징으로 한다. In addition, the coal is characterized in that the bituminous coal.
또한, 상기 석탄은 상기 천연 해수의 염분 농도(psu)에 따라 하기 식 1에 의해 정해지는 농도로 첨가될 수 있다. In addition, the coal may be added at a concentration determined by Equation 1 according to the salt concentration (psu) of the natural seawater.
[식 1][Equation 1]
(식 1에서, μc는 특정한 염분 농도를 갖는 천연 해수 1L에 석탄을 첨가하였을 때 투명하고, 염분 농도 60.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 해당 염분 농도로 나눈 값)(Equation 1, μ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 60.0 psu, the concentration of coal without white precipitate is divided by the corresponding salinity concentration)
또한, 상기 NaOH는 상기 천연 해수의 염분 농도(psu)에 따라 하기 식 2에 의해 정해지는 농도로 첨가될 수 있다. In addition, the NaOH may be added at a concentration determined by the following formula 2 according to the salt concentration (psu) of the natural sea water.
[식 2][Equation 2]
(식 2에서, μNaOH는 특정한 염분 농도를 갖는 천연 해수 1L에 NaOH를 첨가하였을 때 투명하고, 염분 농도 60.00psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 해당 염분 농도로 나눈 값)(In formula 2, μ NaOH is transparent when NaOH is added to 1 L of natural seawater having a specific salt concentration, and when the salt concentration is 60.00 psu, the concentration of NaOH where no white precipitate is present is divided by the corresponding salt concentration)
본 발명에 따른 두날리엘라 배양액 제조 방법은 기존 J/M 배양액에 비하여 2배 이상 저가의 제조 비용이 소요됨에도 불구하고, 두날리엘라 배양시 클로로필 a 및 카로티노이드 함량이 더 높은 두날리엘라 배양액을 제조할 수 있는 효과가 있다. Although the method for producing a Dunaliella culture according to the present invention requires more than twice as low cost as the conventional J / M culture, a Dunaliella culture having a higher chlorophyll-a and carotenoid content in the culture of Dunaliella is produced. It can work.
도 1은 실시예 및 비교예에 따른 배양액을 이용하여 두날리엘라를 16일동안 배양하였을 때, 배양기간에 따른 두날리엘라 농도를 나타낸 것이다. 1 shows the concentration of Dunaliella according to the culture period when Dunaliella were cultured for 16 days using the culture medium according to the Examples and Comparative Examples.
도 2는 실시예 및 비교예에 따른 배양액을 이용하여 두날리엘라를 16일동안 배양하였을 때, 배양기간에 따른 두날리엘라의 클로로필 a 농도를 나타낸 것이다. Figure 2 shows the chlorophyll a concentration of Dunaliella according to the culture period when Dunaliella was cultured for 16 days using the culture medium according to the Examples and Comparative Examples.
도 3은 실시예 및 비교예에 따른 배양액을 이용하여 두날리엘라를 16일동안 배양하였을 때, 배양기간에 따른 총 카로티노이드 농도를 나타낸 것이다.Figure 3 shows the total carotenoid concentration according to the culture period when Dunaliella was incubated for 16 days using the culture medium according to the Examples and Comparative Examples.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들 및 도면을 참조하면 명확해질 것이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments and drawings described below in detail.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, it is common in the art It is provided to fully inform those skilled in the art of the scope of the invention, which is to be defined only by the scope of the claims.
이하, 본 발명에 따른 전처리 해수를 이용한 두날리엘라 배양액 제조 방법에 대하여 상세히 설명하기로 한다.Hereinafter, a method for producing Dunaliella culture medium using pre-treated seawater according to the present invention will be described in detail.
본 발명에 따른 두날리엘라(Dunaliella sp.) 배양액 제조 방법은 천연해수 전처리 단계, 천연해수 산화처리 단계 및 혼합 단계를 포함한다.Dunaliella sp. Culture method according to the present invention includes a natural seawater pretreatment step, natural seawater oxidation step and mixing step.
천연 해수 전처리Natural Seawater Pretreatment
천연 해수 전처리 단계에서는 천연 해수를 전처리하여 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조한다. 천연 해수의 전처리를 위하여, 본 발명에서는 석탄 및 NaOH를 천연 해수에 첨가한다. 그 결과 마그네슘 이온과 칼슘 이온과 같은 우유빛 탁도 생성 물질이 침전되었다. In the natural seawater pretreatment step, pretreatment of the seawater is performed to prepare pretreated seawater from which milky turbidity generating material is removed. For pretreatment of natural seawater, coal and NaOH are added to the natural seawater in the present invention. As a result, milky turbidity generating substances such as magnesium ions and calcium ions precipitated out.
석탄은 목탄, 역청탄 등을 이용할 수 있으나, 목탄의 경우 산림 자원을 고갈시키는 요인이 될 수 있으므로, 역청탄을 이용하는 것이 더 바람직하다. Coal may be charcoal or bituminous coal, but in the case of charcoal, it may be a factor of depleting forest resources, so it is more preferable to use bituminous coal.
전처리 해수의 성분 평가를 위하여, pH 8.20 및 염분 농도가 31.00 psu인 천연 해수에 27.60 g/L 역청탄 및 7.75g/L NaOH를 첨가한 후, 29℃의 온도에서 일주일간 유지하였다. For component evaluation of pretreated seawater, 27.60 g / L bituminous coal and 7.75 g / L NaOH were added to natural seawater having a pH of 8.20 and a salt concentration of 31.00 psu, and then maintained at a temperature of 29 ° C. for one week.
전처리 해수의 경우, 대략 92% 정도가 상등액(Supernatant)이었고, 나머지는 침전물이었다. 또한, 천연 해수로부터 전처리된 해수까지, pH가 8.20로부터 13.14으로 증가하였으며, 염분 농도가 31.00 psu 로부터 45.00 psu로 증대되었다.For pretreated seawater, approximately 92% was a supernatant and the rest was sediment. In addition, from natural seawater to pretreated seawater, the pH increased from 8.20 to 13.14, and the salt concentration increased from 31.00 psu to 45.00 psu.
표 1은 천연 해수와 전처리 해수의 상등액(Supernatant)에 포함된 유기 탄소(Organic Carbon) 및 각종 성분들의 함량을 나타낸 것이다. Table 1 shows the contents of organic carbon and various components contained in the supernatant of natural seawater and pretreated seawater.
표 1에서, 유기탄소 분석기(TOC-5000A, Shimadzu사 제조)를 이용하여, 천연 해수 및 전처리 해수 내의 총 유기 탄소(organic carbon; OC)를 평가하였다. 또한, 천연 해수 및 전처리 해수 내의 Ca, Mg, Na, As, Cd, Cr, Pb, Mg, K, Sr 및 Hg의 농도, 그리고 또한 침전물 내의 Ca 및 Mg의 농도를 한국고분자시험연구소에서 측정하였다.In Table 1, total organic carbon (OC) in natural seawater and pretreated seawater was evaluated using an organic carbon analyzer (TOC-5000A, manufactured by Shimadzu). In addition, the concentrations of Ca, Mg, Na, As, Cd, Cr, Pb, Mg, K, Sr and Hg in natural seawater and pretreated seawater, and also the concentrations of Ca and Mg in the sediment were measured at the Korea Testing Laboratory.
[표 1]TABLE 1
표 1을 참조하면, 유기 탄소는 통상적인 천연 해수의 유기 탄소 보다 전처리된 해수에서 7배 더 높아 졌다. Na, K 및 Sr이 천연 해수로부터 전처리된 해수로 각각 증대되었다. 한편, Hg, As, Cd, Cr 및 Pb와 같은 중금속은 전처리된 해수에서 검출되지 않았다. Referring to Table 1, organic carbon was seven times higher in pretreated seawater than organic carbon in conventional natural seawater. Na, K and Sr were augmented with natural seawater pretreated. On the other hand, heavy metals such as Hg, As, Cd, Cr and Pb were not detected in the pretreated seawater.
특히, 천연 해수 내의 Mg 및 Ca 는 874.40 및 500.70 mg/L인데 반하여, 전처리된 해수에서 0.80 및 337.90 mg/L으로 감소되었다. 천연 해수 내의 Mg 및 Ca 는 침전물 내에서 각각 99.45% 및 32.52% 검출되었다(표 1 참조). 검출물 내의 Mg 함량은 22.28 g/L이었다. In particular, Mg and Ca in natural seawater were reduced to 0.80 and 337.90 mg / L in pretreated seawater, whereas 874.40 and 500.70 mg / L. Mg and Ca in natural seawater were detected 99.45% and 32.52% in the sediments, respectively (see Table 1). The Mg content in the detection was 22.28 g / L.
석탄에 함유된 CO2 또는 CO가 NaOH와 반응하여 Na2CO3 또는 NaHCO3 를 형성할 수 있고, 그리고 Na2CO3는 높은 pH에서 해수로부터 Ca 및 Mg를 검출한다. 높은 pH 는 또한 전처리된 해수 내에 존재하는 유기체를 사멸시킬 수 있는 특징이 있어 다른 종에 의한 오염을 방지할 수 있다. CO 2 or CO contained in coal may react with NaOH to form Na 2 CO 3 or NaHCO 3 , and Na 2 CO 3 detects Ca and Mg from seawater at high pH. High pH is also characterized by the ability to kill organisms present in the pretreated seawater, thus preventing contamination by other species.
한편, 천연 해수의 염분 농도(psu)에 따라 석탄 및 NaOH 첨가량을 최적화할 필요성이 있다. On the other hand, there is a need to optimize the amount of coal and NaOH added according to the salt concentration (psu) of natural seawater.
우선, 석탄의 사용량은 하기 식 1에 의해 정해지는 농도로 첨가되는 것이 바람직하다. First, it is preferable that the usage-amount of coal is added in the density | concentration determined by following formula (1).
[식 1][Equation 1]
(식 1에서, μc는 특정한 염분 농도를 갖는 천연 해수 1L에 석탄을 첨가하였을 때 투명하고, 염분 농도 60.00psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 해당 염분 농도로 나눈 값)(Equation 1, μ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 60.00 psu, the concentration of coal without white precipitate is divided by the salinity concentration)
예를 들어, 염분 농도 31 psu에서 27.60g/L의 석탄 첨가해야 투명하고, 60psu에서 백색 침전물이 존재하지 않는 것을 알고 있다면, μc는 27.6 / 31로서, 대략 0.89가 된다. 따라서, 이를 기초로, 염분 농도 20psu의 천연 해수에서는 전처리를 위하여 대략 17.8g/L의 석탄이 요구된다. For example, if it is known that 27.60 g / L of coal is added at a salt concentration of 31 psu and it is known that no white precipitate is present at 60 psu, μ c is 27.6 / 31, which is approximately 0.89. Thus, on the basis of this, approximately 17.8 g / L of coal is required for pretreatment in natural seawater with a salt concentration of 20 psu.
다음으로, NaOH는 하기 식 2에 의해 정해지는 농도로 첨가되는 것이 바람직하다. Next, NaOH is preferably added at a concentration determined by the following formula (2).
[식 2][Equation 2]
(식 2에서, μNaOH는 특정한 염분 농도를 갖는 천연 해수 1L에 NaOH를 첨가하였을 때 투명하고, 염분 농도 60.00psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 해당 염분 농도로 나눈 값)(In formula 2, μ NaOH is transparent when NaOH is added to 1 L of natural seawater having a specific salt concentration, and when the salt concentration is 60.00 psu, the concentration of NaOH where no white precipitate is present is divided by the corresponding salt concentration)
예를 들어, 염분 농도 31 psu에서 7.75g/L의 NaOH를 필요로 하는 것을 알고 있다면, μNaOH는 7.75 / 31로서, 대략 0.25가 된다. 따라서, 이를 기초로, 염분 농도 20psu의 천연 해수에서는 전처리를 위하여 대략 5g/L의 석탄이 요구된다. For example, if you know that you need 7.75 g / L of NaOH at a salt concentration of 31 psu, μ NaOH is 7.75 / 31, which is approximately 0.25. Thus, based on this, approximately 5 g / L of coal is required for pretreatment in natural seawater with a salt concentration of 20 psu.
실제, 상기 식 1 및 식 2에 따른 역청탄 및 NaOH 농도를 10.00~50.00 psu인 천연 해수에 적용한 결과, 모든 경우에서 전처리된 해수의 투명도, 두날리엘라 배양액의 투명도 그리고 백색 침전물 형성 문제가 발생하지 않았다. In fact, when the bituminous coal and NaOH concentrations according to Equations 1 and 2 were applied to natural seawater having 10.00 to 50.00 psu, transparency of pretreated seawater, transparency of Dunaliella culture, and white precipitate formation did not occur in all cases. .
천연 해수의 산화처리 및 혼합Oxidation and Mixing of Natural Seawater
천연 해수의 산화처리 단계에서는 전술한 전처리 해수와 혼합한 후, 두날리엘라 배양이 잘되는 pH 7.4~7.6정도로 유지하기 위하여 천연 해수를 산화처리 한다. In the oxidation treatment step of natural seawater, the natural seawater is oxidized in order to maintain a pH of 7.4 to 7.6, which is well-cultured by Dunaliella after mixing with the pretreated seawater.
산화처리는 대부분의 산성 화학물질을 이용할 수 있으며, 대표적으로 질산 또는 염산을 이용할 수 있다. Oxidation can utilize most acidic chemicals, typically nitric acid or hydrochloric acid.
이후, 전처리 해수와 산화처리된 천연 해수를 혼합한 후, 일정시간, 대략 1일 정도 유지한다. Then, after mixing the pre-treated seawater and oxidized natural seawater, it is maintained for about a day for a certain time.
한편, 두날리엘라 배양이 잘되는 염분 농도는 55~65psu로 알려져 있다. 이를 위하여, NaCl을 첨가하여 상기의 염분 농도로 조절할 수 있다. On the other hand, the salinity concentration is well known in Dunaliella culture is known to 55 ~ 65psu. To this end, NaCl may be added to adjust the salt concentration.
두날리엘라 배양액에는 유기 탄소 함량 증가, 영양분 제공 등을 위해서, KNO3 1.2±0.1 g/L, MgCl2.6H2O 1.0±0.1 g/L, MgSO4·7H2O 0.35±0.05 g/L K2SO4 0.25±0.05 g/L, KH2PO4 0.15±0.05 g/L, ZnSO4·7H2O 0.55±0.1 g/L, MnCl2·4H2O 0.55±0.1 g/L, H3BO3 6.5±0.5 g/L, FeCl3·6H2O 7.5±0.5 g/L, Co (NO3) 2·6H2O 0.5±0.1 g/L, CuSO4·5H2O 0.01±0.1 g/L, Na2MoO7·2H2O 0.03±0.005 g/L, Cyanocobalamin(Vitamin B12) 0.1±0.05 g/L, D-Biotin(Vitamin H) 7.5±0.5 g/L, 및 Thiamine·HCl(Vitamin B1) 10.0±1.0 g/L를 더 첨가될 수 있다. Dunaliella culture contains KNO 3 1.2 ± 0.1 g / L, MgCl 2 .6H 2 O 1.0 ± 0.1 g / L, MgSO 4 · 7H 2 O 0.35 ± 0.05 g / LK to increase organic carbon content and provide nutrients. 2 SO 4 0.25 ± 0.05 g / L, KH 2 PO 4 0.15 ± 0.05 g / L, ZnSO 4 7H 2 O 0.55 ± 0.1 g / L, MnCl 2 4H 2 O 0.55 ± 0.1 g / L, H 3 BO 3 6.5 ± 0.5 g / L, FeCl 3 · 6H 2 O 7.5 ± 0.5 g / L, Co (NO 3) 2 · 6H 2 O 0.5 ± 0.1 g / L, CuSO 4 · 5H 2 O 0.01 ± 0.1 g / L , Na 2 MoO 7 2H 2 O 0.03 ± 0.005 g / L, Cyanocobalamin (Vitamin B 12 ) 0.1 ± 0.05 g / L, D-Biotin (Vitamin H) 7.5 ± 0.5 g / L, and Thiamine-HCl (Vitamin B 1 ) 10.0 ± 1.0 g / L may be further added.
상기의 농도의 성분들을 첨가한 결과, 기존 J/M 배양액보다도 클로로필 a 및 카로티노이드 함량이 높은 두날리엘라를 배양할 수 있었다. As a result of the addition of the components of the above concentration, it was possible to incubate Dunalella with higher chlorophyll-a and carotenoid content than the existing J / M culture.
표 2에 도시된 조성을 가지며 염분 농도가 60.00psu인 J/M 배양액(비교예)과, 표 3에 도시된 조성을 가지며, 본 발명에 따라 천연 해수와 전처리 해수가 부피비로 4:1로 혼합되었으며, pH가 7.5이고 나트륨 25g/L가 첨가되어 염분 농도가 60.00인 배양액(실시예)에서 두날리엘라를 배양하였다. 배양시 온도는 30.00℃, 빛의 조명 강도는 7000 lx인 형광으로 하였으며, 명암주기(light/dark cycle)는 시간(h)비로 12:12로 하였다. J / M culture solution (comparative example) having a composition shown in Table 2 and having a salt concentration of 60.00 psu, and a composition shown in Table 3, according to the present invention, natural seawater and pretreated seawater were mixed at a volume ratio of 4: 1, Dunaliella was incubated in a culture medium (Example) having a pH of 7.5 and 25 g / L of sodium added to a salt concentration of 60.00. The culture temperature was 30.00 ℃, the light intensity of the light was 7000 lx fluorescence, the light / dark cycle (light / dark cycle) was a time (h) ratio of 12:12.
4.5 L의 배양액을 포함하는 5L 용량 플라스크에서 16일 동안 배양을 하였고, 각각의 조건별로 배양을 3차례 실시하였다. 약 1.02 g/L 의 두날리엘라 시드가 접종되고 그리고 공기주입 장치로 교반되었다. 성장, 및 피그먼트 함량을 평가하기 위해서는 4일마다 샘플링하여 분석하였고, 생화학적 분석을 위해서는 마지막 16일째 샘플링하여 분석하였다. 피그먼트 함량은 흡광분광분석기(PerkinElmer, Lamda35 uv/vis spectrometer, USA)로 분석하였다. Incubation was carried out for 16 days in a 5 L flask containing 4.5 L of the culture medium, and three cultures were performed for each condition. 1.02 g / L Dunaliella seeds were inoculated and stirred with an air injection device. Samples were analyzed every 4 days to assess growth and pigment content, and samples were analyzed on the last 16 days for biochemical analysis. Pigment content was analyzed by a spectrophotometer (PerkinElmer, Lamda 35 uv / vis spectrometer, USA).
두날리엘라의 성장 측정을 위해서, 미리 중량이 측정된 필터 종이를 통해서 샘플을 여과하였다. 필터 종이를 증류수 내에서 적신 후, 블랭크로서 이용하기 위해서 동시에 건조하였다. 필터 종이를 오븐 내에서 55℃에서 유지하여 건조하고 이 후 중량을 측정하였으며, 건조 중량을 g/L 로 계산하여 성장 곡선으로 표시하였다. 두날리엘라의 성장율(specific growth rate)(μ)은 단위 시간당(t0 → t1) 두날리엘라의 농도 증가(X0 → X1)로 규정되며, 하기 식 3을 이용하여 계산하였다. For the measurement of Dunaliella's growth, the samples were filtered through pre-weighed filter paper. The filter paper was wetted in distilled water and then dried at the same time for use as a blank. The filter paper was kept at 55 ° C. in an oven and dried, after which the weight was measured and the dry weight was g / L It is calculated as and represented by the growth curve. The specific growth rate (μ) of Dunaliella was defined as the increase in concentration of Dunaliella (X0 → X1) per unit time (t0 → t1), and was calculated using Equation 3 below.
[식 3][Equation 3]
[표 2] (단위 : g/L)[Table 2] (Unit: g / L)
[표 3] (단위 : g/L)[Table 3] (Unit: g / L)
도 1은 실시예 및 비교예에 따른 배양액을 이용하여 두날리엘라를 16일동안 배양하였을 때, 배양기간에 따른 두날리엘라 농도를 나타낸 것이다. 1 shows the concentration of Dunaliella according to the culture period when Dunaliella were cultured for 16 days using the culture medium according to the Examples and Comparative Examples.
비교예 및 실시예에 따른 μmax·d-1 및 두날리엘라 농도는 0.039 및 0.051 d-1, 1.89 및 1.95 g/L 이었다. 비록 μmax·d-1이 비교예 매체 보다 실시예에서 상당히 높았지만, 바이오매스 생산은 큰 차이가 없었다. The μ max · d −1 and Dunaliella concentrations according to Comparative Examples and Examples were 0.039 and 0.051 d −1 , 1.89 and 1.95 g / L. Although μ max · d −1 was significantly higher in the examples than the comparative media, biomass production did not differ significantly.
도 2는 실시예 및 비교예에 따른 배양액을 이용하여 두날리엘라를 16일동안 배양하였을 때, 배양기간에 따른 두날리엘라의 클로로필 a 농도를 나타낸 것이고, 도 3은 실시예 및 비교예에 따른 배양액을 이용하여 두날리엘라를 16일동안 배양하였을 때, 배양기간에 따른 총 카로티노이드 농도를 나타낸 것이다.Figure 2 shows the chlorophyll a concentration of Dunaliella according to the culture period when Dunaliella incubated for 16 days using the culture medium according to the Examples and Comparative Examples, Figure 3 is according to the Examples and Comparative Examples When Dunaliella was incubated for 16 days using the culture medium, total carotenoid concentrations were shown according to the culture period.
도 2를 참조하면, 클로로필 a 함량은 비교예 및 실시예에 따른 배양액을 이용하였을 때, 각각 1.40 및 2.73 mg/L 이였으며, 이는 실시예의 경우가 클로로필 a 함량이 더 높은 것을 의미한다. Referring to FIG. 2, the chlorophyll a content was 1.40 and 2.73 mg / L, respectively, when the culture solution according to the comparative example and the example was used, which means that the chlorophyll a content was higher in the example.
또한, 도 3을 참조하면, 총 카로티노이드 함량은 실시예 및 비교예 에서 각각 2.93 및 1.31 mg/L 이었다. 실시예에서 성장된 두날리엘라의 카로티노이드 함량은 비교예에서 성장된 두날리엘라의 카로티노이드의 경우 보다 상당히 높았다. 3, the total carotenoid content was 2.93 and 1.31 mg / L in Examples and Comparative Examples, respectively. The carotenoid content of Dunaliella grown in the Examples was significantly higher than that of Dunaliella grown in the Comparative Examples.
표 4는 실시예 및 비교예에 따른 배양액에서 제조된 두날리엘라의 바이오화학적 조성을 나타낸 것이다. Table 4 shows the biochemical composition of Dunaliellae prepared in the culture medium according to the Examples and Comparative Examples.
[표 4]TABLE 4
표 4를 참조하면, 두날리엘라 광합성, 성장, 분열 및 지방 함량은 실시예에 따른 배양액에서 배양된 경우보다 비교예에 따른 배양액에서 배양된 경우가 더 높았던 한편, 지질 함량은 실시예의 경우가 2.5배 더 높았다. 양(both) 매체에서 생산된 바이오매스에서의 CHO 함량에는 큰 차이가 없었다. Referring to Table 4, Dunaliella photosynthesis, growth, cleavage, and fat content were higher in the culture medium according to the comparative example than in the culture medium according to the Example, while the lipid content was 2.5 in the case of the Example It was twice as high. There was no significant difference in CHO content in biomass produced in both medium.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art to which the art belongs can make various modifications and other equivalent embodiments therefrom. Will understand.
따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다. Therefore, the true technical protection scope of the present invention will be defined by the claims below.
본 발명에 따른 두날리엘라 배양액 제조 방법은 기존 J/M 배양액에 비하여 2배 이상 저가의 제조 비용이 소요됨에도 불구하고, 두날리엘라 배양시 클로로필 a 및 카로티노이드 함량이 더 높은 두날리엘라 배양액을 제조할 수 있는 효과가 있다. Although the method for producing a Dunaliella culture according to the present invention requires more than twice as low cost as the conventional J / M culture, a Dunaliella culture having a higher chlorophyll-a and carotenoid content in the culture of Dunaliella is produced. It can work.
Claims (7)
- 천연 해수에 석탄 및 NaOH를 첨가하여, 우유빛 탁도 생성 물질이 제거된 전처리 해수를 제조하는 단계; Adding coal and NaOH to natural seawater to prepare pretreated seawater from which milky turbidity generating material has been removed;천연 해수를 산화처리하는 단계; 및Oxidizing natural sea water; And상기 전처리 해수에 상기 산화처리된 천연해수를 혼합하여 pH 7.4~7.6, 염분 농도 55~65psu로 조절하는 단계;를 포함하는 것을 특징으로 하는 두날리엘라(Dunaliella sp.) 배양액 제조 방법. Dunaliella (Dunaliella sp.) Culture method comprising the step of mixing the oxidized natural seawater to the pre-treated seawater to adjust the pH 7.4 ~ 7.6, salt concentration 55 ~ 65psu.
- 제1항에 있어서, The method of claim 1,상기 상기 천연해수와 전처리 해수가 혼합된 용액의 염분 농도 조절을 위하여 NaCl이 첨가되는 것을 특징으로 하는 두날리엘라 배양액 제조 방법. Dunaliella culture method characterized in that the NaCl is added to control the salt concentration of the mixed solution of the natural seawater and pre-treated seawater.
- 제1항에 있어서, The method of claim 1,상기 천연해수와 전처리 해수가 혼합된 용액에 In the mixed solution of the natural sea water and pre-treated sea waterKNO3 1.2±0.1 g/L, MgCl2.6H2O 1.0±0.1 g/L, MgSO4·7H2O 0.35±0.05 g/L K2SO4 0.25±0.05 g/L, KH2PO4 0.15±0.05 g/L, ZnSO4·7H2O 0.55±0.1 g/L, MnCl2·4H2O 0.55±0.1 g/L, H3BO3 6.5±0.5 g/L, FeCl3·6H2O 7.5±0.5 g/L, Co (NO3) 2·6H2O 0.5±0.1 g/L, CuSO4·5H2O 0.01±0.1 g/L, Na2MoO7·2H2O 0.03±0.005 g/L, Cyanocobalamin(Vitamin B12) 0.1±0.05 g/L, D-Biotin(Vitamin H) 7.5±0.5 g/L, 및 Thiamine·HCl(Vitamin B1) 10.0±1.0 g/L를 더 첨가하는 것을 특징으로 하는 두날리엘라 배양액 제조 방법.KNO 3 1.2 ± 0.1 g / L, MgCl 2 .6H 2 O 1.0 ± 0.1 g / L, MgSO 4 · 7H 2 O 0.35 ± 0.05 g / LK 2 SO 4 0.25 ± 0.05 g / L, KH 2 PO 4 0.15 ± 0.05 g / L, ZnSO 4 · 7H 2 O 0.55 ± 0.1 g / L, MnCl 2 · 4H 2 O 0.55 ± 0.1 g / L, H 3 BO 3 6.5 ± 0.5 g / L, FeCl 3 · 6H 2 O 7.5 ± 0.5 g / L, Co (NO 3 ) 2 6H 2 O 0.5 ± 0.1 g / L, CuSO 4 5H 2 O 0.01 ± 0.1 g / L, Na 2 MoO 7 2H 2 O 0.03 ± 0.005 g / L, Cyanocobalamin (Vitamin B 12 ) 0.1 ± 0.05 g / L, D-Biotin (Vitamin H) 7.5 ± 0.5 g / L, and Thiamine.HCl (Vitamin B 1 ) 10.0 ± 1.0 g / L Dunaliella culture preparation method.
- 제1항에 있어서, The method of claim 1,상기 천연 해수의 산화처리는 Oxidation of the natural sea water산성화합물을 이용하는 것을 특징으로 하는 두날리엘라 배양액 제조 방법.Dunaliella culture method of producing an acidic compound.
- 제1항에 있어서,The method of claim 1,상기 석탄은 The coal is역청탄, 갈탄, 무연탄, 분탄 및 목탄 중에서 선택되는 것을 특징으로 하는 두날리엘라 배양액 제조 방법.A method for producing a Dunaliella culture, characterized in that it is selected from bituminous coal, lignite, anthracite, powdered coal and charcoal.
- 제1항에 있어서, The method of claim 1,상기 석탄은The coal is상기 천연 해수의 염분 농도(psu)에 따라 하기 식 1에 의해 정해지는 농도로 첨가되는 것을 특징으로 하는 두날리엘라 배양액 제조 방법.Dunaliella culture solution production method characterized in that it is added at a concentration determined by the following formula 1 according to the salt concentration (psu) of the natural sea water.[식 1][Equation 1]RAC (g/L)= 천연 해수염분 농도 X μc RA C (g / L) = natural sea salt concentration X μ c(식 1에서, μc는 특정한 염분 농도를 갖는 천연 해수 1L에 석탄을 첨가하였을 때 투명하고, 염분 농도 60.0psu로 하였을 때 백색 침전물이 존재하지 않는 석탄의 농도를 해당 염분 농도로 나눈 값)(Equation 1, μ c is transparent when coal is added to 1 L of natural sea water having a specific salinity concentration, and when the salt concentration is 60.0 psu, the concentration of coal without white precipitate is divided by the corresponding salinity concentration)
- 제1항에 있어서, The method of claim 1,상기 NaOH는NaOH is상기 천연 해수의 염분 농도(psu)에 따라 하기 식 2에 의해 정해지는 농도로 첨가되는 것을 특징으로 하는 두날리엘라 배양액 제조 방법. Dunaliella culture method according to the salinity (psu) of the natural sea water is added at a concentration determined by the following formula 2.[식 2][Equation 2]RANaOH (g/L)= 천연 해수염분 농도 X μNaOH RA NaOH (g / L) = natural sea salt concentration X μ NaOH(식 2에서, μNaOH는 특정한 염분 농도를 갖는 천연 해수 1L에 NaOH를 첨가하였을 때 투명하고, 염분 농도 60.00psu로 하였을 때 백색 침전물이 존재하지 않는 NaOH의 농도를 해당 염분 농도로 나눈 값)(In formula 2, μ NaOH is transparent when NaOH is added to 1 L of natural seawater having a specific salt concentration, and when the salt concentration is 60.00 psu, the concentration of NaOH where no white precipitate is present is divided by the corresponding salt concentration)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0106659 | 2011-10-18 | ||
KR1020110106659A KR101124466B1 (en) | 2011-10-18 | 2011-10-18 | Method for manufacturing culture medium dunaliella using natural seawater and pretreated seawater |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013058431A1 true WO2013058431A1 (en) | 2013-04-25 |
Family
ID=46141982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/009366 WO2013058431A1 (en) | 2011-10-18 | 2011-12-06 | Method for manufacturing a culture medium of dunaliella using natural seawater and pretreated seawater |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101124466B1 (en) |
WO (1) | WO2013058431A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108949576A (en) * | 2018-09-05 | 2018-12-07 | 大连理工大学 | A method of microalgae being cultivated in floatation type bioreactor using concentrated seawater |
WO2019238914A1 (en) | 2018-06-15 | 2019-12-19 | Isp Investments Llc | Method for obtaining an aqueous extract of dunaliella salina and cosmetic uses of same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240003007A (en) | 2022-06-29 | 2024-01-08 | 119케이 주식회사 | Apparatus for decomposing carbon dioxde and methane and method of decomposing carbon dioxde and methane using the apparatus |
KR20240013973A (en) | 2022-07-22 | 2024-01-31 | 한승훈 | Method of decomposing carbon dioxde and methane using Dunaliella salina catalyst filter and apparatus therefor |
KR20240013972A (en) | 2022-07-22 | 2024-01-31 | 한승훈 | Method of decomposing carbon dioxde and methane using Dunaliella salina catalyst filter and apparatus therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11243943A (en) * | 1998-03-04 | 1999-09-14 | Toshiba Corp | Medium for culturing algae and manufacturing method for the same |
JP2003325165A (en) * | 2002-05-09 | 2003-11-18 | Microalgae Corporation | Method for culturing and producing dunaliella and agent which used for thalassotherapy containing dunaliella obtained by the culturing and producing method as main ingredient |
KR20040073693A (en) * | 2003-02-14 | 2004-08-21 | 주식회사 한국플랑크톤연구소 | Cultivating solution of spirurina and cultivating method thereof |
-
2011
- 2011-10-18 KR KR1020110106659A patent/KR101124466B1/en active IP Right Grant
- 2011-12-06 WO PCT/KR2011/009366 patent/WO2013058431A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11243943A (en) * | 1998-03-04 | 1999-09-14 | Toshiba Corp | Medium for culturing algae and manufacturing method for the same |
JP2003325165A (en) * | 2002-05-09 | 2003-11-18 | Microalgae Corporation | Method for culturing and producing dunaliella and agent which used for thalassotherapy containing dunaliella obtained by the culturing and producing method as main ingredient |
KR20040073693A (en) * | 2003-02-14 | 2004-08-21 | 주식회사 한국플랑크톤연구소 | Cultivating solution of spirurina and cultivating method thereof |
Non-Patent Citations (3)
Title |
---|
CID, A. ET AL., AQUATIC TOXICOLOGY, vol. 31, 1995, pages 165 - 174 * |
MATERALSSI, R. ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 19, 1984, pages 384 - 386 * |
RABBAY, R. ET AL., PLANT AND SOIL, vol. 89, 1985, pages 107 - 116 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019238914A1 (en) | 2018-06-15 | 2019-12-19 | Isp Investments Llc | Method for obtaining an aqueous extract of dunaliella salina and cosmetic uses of same |
CN108949576A (en) * | 2018-09-05 | 2018-12-07 | 大连理工大学 | A method of microalgae being cultivated in floatation type bioreactor using concentrated seawater |
Also Published As
Publication number | Publication date |
---|---|
KR101124466B1 (en) | 2012-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhai et al. | Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater | |
Zeikus | The biology of methanogenic bacteria | |
Yue et al. | Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae | |
WO2013058431A1 (en) | Method for manufacturing a culture medium of dunaliella using natural seawater and pretreated seawater | |
Austin | Marine microbiology | |
Jannasch | Review Lecture-The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents | |
Markou et al. | Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process | |
Waterbury et al. | [6] Isolation and growth of marine planktonic cyanobacteria | |
Lourenço et al. | Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media | |
Racharaks et al. | Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium | |
WO2013058432A1 (en) | Method for manufacturing a culture medium of algae using natural seawater | |
Affan et al. | Bituminous coal and sodium hydroxide-pretreated seawater stimulates Spirulina (Arthrospira) maxima growth with decreased production costs | |
Zhu et al. | The thermoacidophilic red alga Galdieria sulphuraria is a highly efficient cell factory for ammonium recovery from ultrahigh-NH4+ industrial effluent with co-production of high-protein biomass by photo-fermentation | |
Hansen et al. | Physiology of the mixotrophic dinoflagellate Fragilidium subglobosum. II. Effects of time scale and prey concentration on photosynthetic performance | |
Richardson et al. | The role of dissolved organic material in the nutrition and survival of marine dinoflagellates | |
CN105543145B (en) | One plant of removing magnesium ion, phosphate anion and bacterium of ammonium ion and application thereof | |
Leu et al. | UV effects on stoichiometry and PUFAs of Selenastrum capricornutum and their consequences for the grazer Daphnia magna | |
O'Kelley et al. | Effect of strontium replacement for calcium on production of motile cells in Protosiphon | |
Ponsano et al. | Isolation of Rhodocyclus gelatinosus from poultry slaughterhouse wastewater | |
WO2013058433A1 (en) | Method for manufacturing a culture medium of s pirulina using pretreated seawater | |
Takahashi et al. | Effects of phosphate on arsenate inhibition in a marine cyanobacterium, Phormidium sp. | |
CN101671033A (en) | Biological iron-removal and whitening method for kaolin by iron reduction bacillus taking molasses as carbon sources | |
Woolery et al. | Influence of iodine on growth and development of the brown alga Ectocarpus siliculosus in axenic cultures | |
Leadbetter | Environmental microbiology | |
KR101447387B1 (en) | The effect of various wavelengths of light from light-emitting diodes on the antioxidant system of marine cyanobacteria Synechococcus sp. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874216 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11874216 Country of ref document: EP Kind code of ref document: A1 |