WO2013057788A1 - Work unit and work unit manufacturing method - Google Patents

Work unit and work unit manufacturing method Download PDF

Info

Publication number
WO2013057788A1
WO2013057788A1 PCT/JP2011/073914 JP2011073914W WO2013057788A1 WO 2013057788 A1 WO2013057788 A1 WO 2013057788A1 JP 2011073914 W JP2011073914 W JP 2011073914W WO 2013057788 A1 WO2013057788 A1 WO 2013057788A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioner
robot
work unit
work
workpiece
Prior art date
Application number
PCT/JP2011/073914
Other languages
French (fr)
Japanese (ja)
Inventor
大介 入間
邦行 清水
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2011/073914 priority Critical patent/WO2013057788A1/en
Priority to CN201180074212.9A priority patent/CN103889665A/en
Publication of WO2013057788A1 publication Critical patent/WO2013057788A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/321Protecting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/006Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J21/00Chambers provided with manipulation devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0096Programme-controlled manipulators co-operating with a working support, e.g. work-table

Definitions

  • the present invention relates to a work unit and a work unit manufacturing method.
  • Industrial robots have been introduced to production sites for various purposes, such as to stably produce high-quality products, or to free humans from work involving fatigue.
  • a typical industrial robot repeatedly operates according to preset teaching contents (see, for example, Patent Document 1).
  • Patent Document 1 discloses an arc welding robot system including an arc welding robot and a positioner.
  • appropriate welding is performed by controlling the positioner and the arc welding robot so that the arc welding robot is in a predetermined position and posture with respect to the workpiece positioned by the positioner. .
  • Patent Document 1 the arc welding robot system (work unit) of Patent Document 1 may be relatively large. In this case, the installation volume for performing work becomes relatively large, and the work place cannot be effectively used. Also, if the work unit is relatively large, the cost for transporting the work unit may increase.
  • One aspect of the present embodiment has been made in view of the above-described problems, and an object thereof is to provide a work unit that can be reduced in size and a method for manufacturing the work unit.
  • a work unit includes a positioner that positions a work, an end effector that performs work on the work, a robot to which the end effector is attached, and an enclosure having a side surface and a floor surface.
  • the floor surface has a support area to which the positioner is attached and an open area located in at least one of the movable areas of the positioner and the workpiece.
  • a work unit manufacturing method includes a step of attaching a robot to a positioner, and a step of installing the positioner and the robot in an enclosure having a side surface and a floor surface.
  • the floor surface has a support area to which the positioner is attached and an open area located in a movable range of at least one of the positioner and the workpiece.
  • the work unit manufacturing method includes a step of attaching a robot to a positioner and a step of transporting the positioner and the robot after attaching the robot to the positioner.
  • FIG. 1 shows a schematic diagram of a work unit 100 of the present embodiment.
  • the work unit 100 performs work on the workpiece W.
  • the work unit 100 includes a positioner 10, a robot 20, and an enclosure 30.
  • the workpiece W is attached to the positioner 10, and the positioner 10 positions the workpiece W.
  • the positioner 10 changes at least one of the position and posture of the workpiece W.
  • the positioner 10 is preferably configured to rotate the workpiece W with respect to each of a plurality of axes.
  • the positioner 10 may be a biaxial positioner.
  • the positioner 10 may be a 3-axis or 4-axis positioner.
  • the end effector 22 that performs work on the workpiece W is attached to the robot 20.
  • the robot 20 includes an end effector 22 and a robot arm 24 to which the end effector 22 is attached.
  • the positioner 10 controls the position and orientation of the workpiece W and the robot arm 24 controls the position and orientation of the end effector 22 so that the end effector 22 can perform work at an appropriate angle (direction) with respect to the workpiece W. Control.
  • the robot arm 24 is preferably an articulated type including a plurality of actuators.
  • the robot arm 24 is composed of a plurality of arms, and each actuator has a servo motor.
  • the position and posture of the end effector 22 are controlled by driving each actuator of the robot arm 24.
  • the end effector 22 is typically attached to the tip of the robot arm 24.
  • the end effector 22 is a welding torch.
  • the welding torch is used for arc welding or spot welding.
  • the welding torch may be used for laser welding, plasma welding, or the like.
  • the welding torch 22 performs welding along the weld line of the workpiece W.
  • the end effector 22 may apply a sealing material to the workpiece W.
  • the end effector 22 may perform other processing such as deburring and drilling of the workpiece W.
  • the enclosure 30 has a side surface 32 and a floor surface 34.
  • a part of the side surface 32 is open, and the operator can enter the enclosure 30 from that part.
  • the side surface 32 of the enclosure 30 may be removable from the floor surface 34.
  • the floor surface 34 has a support region 34a to which the positioner 10 is attached and an open region 34b located in at least one movable region of the positioner 10 and the workpiece W.
  • the open area 34b of the floor surface 34 is rectangular, and the boundary between the support area 34a and the open area 34b is defined by three sides.
  • the floor surface 34 of the enclosure 30 is provided with not only a support region 34a that supports the positioner 10 but also an open region 34b that is positioned in at least one movable region of the positioner 10 and the workpiece W. ing.
  • the open area 34b can be used as a movable range of at least one of the positioner 10 and the workpiece W. Therefore, the lowermost position of at least one of the movable portions of the positioner 10 and the workpiece W can be made lower than the upper surface of the support region 34a, thereby reducing the length of the positioner 10 and the work unit 100 in the height direction (vertical direction). can do.
  • the turning radius of the positioner 10 around the horizontal plane is determined by the positioner 10 itself, but the turning radius of the workpiece W to which the positioner 10 is attached varies depending on the workpiece attached to the positioner 10.
  • the open area 34b is provided, it is possible to work on a relatively large work W.
  • the turning radius of the workpiece W attached to the positioner 10 can be increased by about 200 mm corresponding to the thickness of the support area 34a.
  • the end effector 22 works on the work W above the open area 34b of the floor surface 34. Further, when the end effector 22 performs work on the work W, work waste may occur.
  • the open area 34b is provided, it is possible to easily clean the work waste generated during the work. In particular, when the end effector 22 is a welding torch, work debris is easily generated, and the effect of facilitating cleaning by the open region 34b is high.
  • the robot 20 is attached to the positioner 10, and the positioner 10 is used as a base for the robot 20.
  • the positioner 10 and the robot 20 are integrally formed, the floor area of the work unit 100 can be reduced and space saving can be realized. Further, since the positioner 10 and the robot 20 are integrally formed, the positioner 10 and the robot 20 do not have to be re-aligned when the location of the work unit 100 is changed and reproduced. The work place can be easily changed and reproduced.
  • a 7-axis robot arm is preferably used as the robot arm 24.
  • the robot 20 is mounted above the positioner 10 and the distance between the positioner 10 and the robot 20 is relatively short, but the robot arm 24 is a 7-axis robot arm.
  • various working postures can be realized, and the length of the working unit 100 in the front-rear direction and the left-right direction can be reduced to save space.
  • a shutter 42 is installed in the enclosure 30.
  • the shutter 42 operates so that an open portion of the side surface 32 can be opened and closed. Thereby, it is possible to prevent an operator from inadvertently entering the enclosure 30 during the operation of the robot 20.
  • the shutter 42 is a roll-up shutter.
  • the sensor 44 it is preferable to install the sensor 44 on the side surface of the support region 34 a on the floor surface 34 of the enclosure 30. By installing the sensor 44 in this way, it is possible to appropriately monitor the operator's entry.
  • a line sensor may be used as the sensor 44.
  • an area sensor may be used as the sensor 44.
  • the activation box 50 is disposed outside the side surface 32 of the enclosure 30.
  • the work unit 100 is activated by the activation box 50.
  • the shutter 42 is lowered and the operation of the robot 20 is started.
  • the sensor 44 detects any object, the shutter 42 does not go down and the operation of the robot 20 does not start.
  • FIG. 2 shows a schematic diagram of the positioner 10 in the work unit 100 of the present embodiment.
  • a biaxial positioner 10 is shown as an example of the positioner 10.
  • the positioner 10 has a holding surface 12 to which the workpiece W is attached.
  • the workpiece W shown in FIG. 1 is held on the holding surface 12 by a holding member (jig) (not shown).
  • the holding surface 12 may be replaceable depending on the workpiece W.
  • the positioner 10 has a rotating shaft 14a for tilting the holding surface 12 to which the work W is attached by a motor (not shown), and a rotating shaft 14b for rotating the holding surface 12 to which the work W is attached by a motor (not shown). ing.
  • FIG. 3 shows a schematic diagram of the work unit 100 of the present embodiment.
  • the rotating shaft 14a shown in FIG. 2 rotates, the workpiece W attached to the positioner 10 tilts, and the position and orientation of the workpiece W can be changed.
  • the welding is performed along a weld line that is a line to be welded (line to be welded).
  • the work unit 100 of this embodiment is preferably used for performing automatic arc welding or semi-automatic arc welding.
  • a different work may be performed on the work W by exchanging at least one of the work W, the positioner 10, and the end effector 22.
  • the enclosure 30 is configured to be movable.
  • the work unit 100 is moved (for example, change of the arrangement of the work unit 100 in the factory) by providing a wheel 36 on the back surface of the support region 34 a on the floor surface 34 of the enclosure 30. It can be done easily.
  • the height of the floor surface 34 of the enclosure 30 relative to the floor supporting the work unit 100 becomes larger, and thus the turning radius of the work W attached to the positioner 10 can be further increased.
  • nothing is provided on the upper surface of the enclosure 30, but a duct may be provided on the upper surface of the enclosure 30 to collect dust.
  • the upper surface itself of the enclosure 30 may be omitted.
  • the robot controller 40 is arranged in the enclosure 30.
  • a welding power source may be arranged in the enclosure 30.
  • the robot controller 40 has, for example, a storage device that stores teaching data and a processor that sends commands to the robot 20. Teaching can be performed using the robot controller 40 by storing the positions of the end effector 22 and the robot arm 24 during each operation. Note that the robot controller 40 may control not only the robot 20 but also the positioner 10.
  • a certain position in the space of the positioner 10 and the robot 20 and another position are stored, and a locus between these points is corrected by calibration.
  • calibration of the positioner 10 and the robot 20 is performed using an encoder.
  • the robot 20 is attached to the positioner 10, but the present embodiment is not limited to this.
  • the robot 20 may be disposed at a location different from the positioner 10 in the support area 34 a of the floor surface 34.
  • the robot 20 is preferably attached to the positioner 10.
  • Such a work unit 100 can be manufactured as follows. Here, the working unit manufacturing method of the present embodiment will be described with reference to FIG.
  • the robot 20 is attached to the positioner 10 in S502.
  • the robot 20 is attached above the positioner 10.
  • step S504 the positioner 10 and the robot 20 are installed in the enclosure 30.
  • the work unit 100 is manufactured as described above.
  • the robot 20 is attached to the positioner 10, and thus the space for the work unit 100 can be saved.
  • the positioner 10 and the robot 20 may be installed in the enclosure 30 before the positioner 10 and the robot 20 are transported to a predetermined place, or after the positioner 10 and the robot 20 are transported. Good.
  • step S ⁇ b> 604 the positioner 10 and the robot 20 are installed in the enclosure 30.
  • the work unit 100 is manufactured as described above. As described above, since the relatively small positioner 10 can be used by the open region 34b of the floor surface 34, the conveyance can be easily performed.
  • the work system 100 may be transported in S604a after the positioner 10 and the robot 20 are installed in the enclosure 30 in S604.
  • the positioner 10 and the robot 20 are transported without changing their relative positions.
  • the positioner 10 and the robot 20 may be mounted on a container or the like and transported by a large vehicle such as a truck in order to ship from a factory to a customer.
  • the positioner 10 and the robot 20 may be transported from one place to another in the factory.
  • the positioner 10 and the robot 20 can be reliably aligned.
  • the positioning of the positioner 10 and the robot 20 can be omitted when the positioner 10 and the robot 20 are installed. It can be done in a short time.
  • the positioner 10 and the robot 20 can be attached before carrying, so that the cost for attachment can be reduced. .
  • the positioner 10 and the robot 20 are taught before actual work is performed. In this case, teaching of the positioner 10 and the robot 20 may be performed before conveyance.
  • step S ⁇ b> 702 ′ the positioner 10 and the robot 20 are taught after the robot 20 is attached to the positioner 10 and before the positioner 10 and the robot 20 are transported. Teaching is performed using, for example, the robot controller 40. Note that it is preferable to perform calibration of the positioner 10 and the robot 20 after teaching.
  • the positioner 10 and the robot 20 are transported in S702a, and the positioner 10 and the robot 20 are installed in S704.
  • the work unit 100 is manufactured as described above.
  • teaching of the positioner 10 and the robot 20 is performed before the conveyance, at least a part of teaching to the positioner 10 and the robot 20 can be omitted during the installation after the conveyance.
  • the installation time can be shortened.
  • the positioner 10 and the robot 20 may be installed in the enclosure 30 in S704, and then the work system 100 may be transported in S704a.
  • an enclosure 30 is provided around the positioner 10 and the robot 20 that are integrally attached.
  • the enclosure 30 around the positioner 10 and the robot 20 may be omitted. Also in this case, after the robot 20 is attached to the positioner 10, the positioner 10 and the robot 20 can be transported with the robot 20 attached to the positioner 10 in the same manner as S602a in FIG. 6 or S702a in FIG. preferable.
  • the open area 34b is rectangular, and the boundary between the support area 34a and the open area 34b is defined by three sides.
  • the embodiment is not limited to this.
  • the boundary between the support region 34a and the open region 34b may be defined by three or more sides or an arbitrary curve.
  • the open region 34b may be formed surrounded by the support region 34a so that the boundary between the support region 34a and the open region 34b is closed.
  • the open region 34b may be formed so as to be defined by an opening shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Manipulator (AREA)

Abstract

This work unit (100) is provided with: a positioner (10) that positions a workpiece (W); an end effector (22) that performs work on the workpiece (W); a robot (20) on which the end effector (22) is installed; and an enclosure (30) having side surfaces (32) and a floor surface (34). The floor surface (34) has a support area (34a) on which the positioner (10) is installed and an open area (34b) that is located in the range of motion of at least either the positioner (10) or the workpiece (W).

Description

作業ユニットおよび作業ユニット作製方法Work unit and work unit manufacturing method
 本発明は作業ユニットおよび作業ユニット作製方法に関する。 The present invention relates to a work unit and a work unit manufacturing method.
 産業用ロボットは、高品質の製品を安定して生産するため、あるいは、疲労を伴う作業等から人間を解放するため等の様々な目的で生産現場に導入されている。典型的な産業用ロボットは予め設定されたティーチング内容に従って繰り返し動作を行う(例えば、特許文献1参照)。 Industrial robots have been introduced to production sites for various purposes, such as to stably produce high-quality products, or to free humans from work involving fatigue. A typical industrial robot repeatedly operates according to preset teaching contents (see, for example, Patent Document 1).
 特許文献1には、アーク溶接ロボットおよびポジショナを備えたアーク溶接ロボットシステムが開示されている。特許文献1のアーク溶接ロボットシステムでは、アーク溶接ロボットがポジショナによって位置決めされたワークに対して所定の位置および姿勢となるようにポジショナおよびアーク溶接ロボットを制御することにより、適切な溶接を行っている。 Patent Document 1 discloses an arc welding robot system including an arc welding robot and a positioner. In the arc welding robot system of Patent Literature 1, appropriate welding is performed by controlling the positioner and the arc welding robot so that the arc welding robot is in a predetermined position and posture with respect to the workpiece positioned by the positioner. .
特開2006‐341283号公報JP 2006-341283 A
 しかしながら、特許文献1のアーク溶接ロボットシステム(作業ユニット)は、比較的大きくなってしまうことがある。この場合、作業を行うための設置容積が比較的大きくなり、作業場所の有効利用ができない。また、作業ユニットが比較的大きい場合、作業ユニットの搬送のためのコストが増大することがある。 However, the arc welding robot system (work unit) of Patent Document 1 may be relatively large. In this case, the installation volume for performing work becomes relatively large, and the work place cannot be effectively used. Also, if the work unit is relatively large, the cost for transporting the work unit may increase.
 本実施形態の一態様は上記課題を鑑みてなされたものであり、その目的は、小型化を実現可能な作業ユニットおよび作業ユニットの作製方法を提供することにある。 One aspect of the present embodiment has been made in view of the above-described problems, and an object thereof is to provide a work unit that can be reduced in size and a method for manufacturing the work unit.
 本実施形態の一態様に係る作業ユニットは、ワークの位置決めを行うポジショナと、前記ワークに対して作業を行うエンドエフェクタと、前記エンドエフェクタが取り付けられたロボットと、側面および床面を有する囲いとを備える、作業ユニットであって、前記床面は、前記ポジショナの取り付けられた支持領域と、前記ポジショナおよび前記ワークの少なくとも一方の可動域に位置する開放領域とを有している。 A work unit according to an aspect of the present embodiment includes a positioner that positions a work, an end effector that performs work on the work, a robot to which the end effector is attached, and an enclosure having a side surface and a floor surface. The floor surface has a support area to which the positioner is attached and an open area located in at least one of the movable areas of the positioner and the workpiece.
 本実施形態の一態様に係る作業ユニット作製方法は、ポジショナにロボットを取り付ける工程と、側面および床面を有する囲いの中に、前記ポジショナおよび前記ロボットを設置する工程とを包含し、前記ポジショナおよび前記ロボットを設置する工程において、前記床面は、前記ポジショナの取り付けられた支持領域と、前記ポジショナおよび前記ワークの少なくとも一方の可動域に位置する開放領域とを有している。 A work unit manufacturing method according to an aspect of the present embodiment includes a step of attaching a robot to a positioner, and a step of installing the positioner and the robot in an enclosure having a side surface and a floor surface. In the step of installing the robot, the floor surface has a support area to which the positioner is attached and an open area located in a movable range of at least one of the positioner and the workpiece.
 本実施形態の一態様に係る作業ユニット作製方法は、ポジショナにロボットを取り付ける工程と、前記ポジショナにロボットを取り付けた後、前記ポジショナおよび前記ロボットを搬送する工程とを包含する。 The work unit manufacturing method according to one aspect of the present embodiment includes a step of attaching a robot to a positioner and a step of transporting the positioner and the robot after attaching the robot to the positioner.
 本実施形態の一態様によれば、小型化を実現可能な作業ユニットおよびその作製方法を提供することができる。 According to one aspect of the present embodiment, it is possible to provide a work unit that can be reduced in size and a method for manufacturing the work unit.
本実施形態の作業ユニットの模式図である。It is a schematic diagram of the work unit of this embodiment. 本実施形態の作業ユニットにおけるポジショナの模式図である。It is a schematic diagram of the positioner in the work unit of this embodiment. 本実施形態の作業ユニットの模式図である。It is a schematic diagram of the work unit of this embodiment. 本実施形態の作業ユニットの模式図である。It is a schematic diagram of the work unit of this embodiment. 本実施形態の作業ユニット作製方法を説明するためのフローチャートである。It is a flowchart for demonstrating the working unit production method of this embodiment. 本実施形態の作業ユニット作製方法を説明するためのフローチャートである。It is a flowchart for demonstrating the working unit production method of this embodiment. 本実施形態の作業ユニット作製方法を説明するためのフローチャートである。It is a flowchart for demonstrating the working unit production method of this embodiment.
 以下、図面を参照して本願の開示する作業ユニットおよび作業ユニット作製方法の実施形態を説明する。ただし、本発明の実施形態は以下の実施形態に限定されない。 Hereinafter, embodiments of a work unit and a work unit manufacturing method disclosed in the present application will be described with reference to the drawings. However, embodiments of the present invention are not limited to the following embodiments.
 図1に、本実施形態の作業ユニット100の模式図を示す。作業ユニット100は、ワークWに対して作業を行う。作業ユニット100は、ポジショナ10と、ロボット20と、囲い30とを備える。 FIG. 1 shows a schematic diagram of a work unit 100 of the present embodiment. The work unit 100 performs work on the workpiece W. The work unit 100 includes a positioner 10, a robot 20, and an enclosure 30.
 ポジショナ10にはワークWが取り付けられ、ポジショナ10は、ワークWの位置決めを行う。例えば、ポジショナ10は、ワークWの位置および姿勢の少なくとも一方を変化させる。ポジショナ10は複数の軸のそれぞれに対してワークWを回転できるように構成されていることが好ましい。例えば、ポジショナ10は2軸ポジショナであってもよい。または、ポジショナ10は3軸または4軸ポジショナであってもよい。 The workpiece W is attached to the positioner 10, and the positioner 10 positions the workpiece W. For example, the positioner 10 changes at least one of the position and posture of the workpiece W. The positioner 10 is preferably configured to rotate the workpiece W with respect to each of a plurality of axes. For example, the positioner 10 may be a biaxial positioner. Alternatively, the positioner 10 may be a 3-axis or 4-axis positioner.
 ロボット20には、ワークWに対して作業を行うエンドエフェクタ22が取り付けられている。例えば、ロボット20は、エンドエフェクタ22と、エンドエフェクタ22の取り付けられたロボットアーム24とを有している。エンドエフェクタ22がワークWに対して適切な角度(方向)で作業を行うことができるように、ポジショナ10がワークWの位置および向きを制御するとともにロボットアーム24がエンドエフェクタ22の位置および向きを制御する。 The end effector 22 that performs work on the workpiece W is attached to the robot 20. For example, the robot 20 includes an end effector 22 and a robot arm 24 to which the end effector 22 is attached. The positioner 10 controls the position and orientation of the workpiece W and the robot arm 24 controls the position and orientation of the end effector 22 so that the end effector 22 can perform work at an appropriate angle (direction) with respect to the workpiece W. Control.
 例えば、ロボットアーム24は、複数のアクチュエータを備えた多関節型であることが好ましい。この場合、ロボットアーム24は複数のアームから構成されており、各アクチュエータはサーボモータを有している。エンドエフェクタ22の位置および姿勢は、ロボットアーム24の各アクチュエータの駆動によって制御される。エンドエフェクタ22は、典型的には、ロボットアーム24の先端に取り付けられている。 For example, the robot arm 24 is preferably an articulated type including a plurality of actuators. In this case, the robot arm 24 is composed of a plurality of arms, and each actuator has a servo motor. The position and posture of the end effector 22 are controlled by driving each actuator of the robot arm 24. The end effector 22 is typically attached to the tip of the robot arm 24.
 ここでは、エンドエフェクタ22は溶接トーチである。一例として、溶接トーチは、アーク溶接またはスポット溶接に用いられる。または、溶接トーチは、レーザ溶接、プラズマ溶接等に用いられてもよい。典型的には、溶接トーチ22は、ワークWの溶接線に沿って溶接を行う。 Here, the end effector 22 is a welding torch. As an example, the welding torch is used for arc welding or spot welding. Alternatively, the welding torch may be used for laser welding, plasma welding, or the like. Typically, the welding torch 22 performs welding along the weld line of the workpiece W.
 なお、エンドエフェクタ22は、ワークWに対してシーリング材を付与してもよい。あるいは、エンドエフェクタ22は、ワークWのバリ取り、ドリリング等の別の加工を行ってもよい。 Note that the end effector 22 may apply a sealing material to the workpiece W. Alternatively, the end effector 22 may perform other processing such as deburring and drilling of the workpiece W.
 囲い30は、側面32と、床面34とを有している。ここでは、側面32の一部が開いており、作業者はその部分から囲い30内に入ることができる。なお、囲い30の側面32は、床面34から取り外し可能であってもよい。 The enclosure 30 has a side surface 32 and a floor surface 34. Here, a part of the side surface 32 is open, and the operator can enter the enclosure 30 from that part. The side surface 32 of the enclosure 30 may be removable from the floor surface 34.
 床面34は、ポジショナ10の取り付けられた支持領域34aと、ポジショナ10およびワークWの少なくとも一方の可動域に位置する開放領域34bとを有している。なお、ここでは、床面34を法線方向から見た場合、床面34の開放領域34bは矩形状であり、支持領域34aと開放領域34bとの境界は3辺で規定されている。 The floor surface 34 has a support region 34a to which the positioner 10 is attached and an open region 34b located in at least one movable region of the positioner 10 and the workpiece W. Here, when the floor surface 34 is viewed from the normal direction, the open area 34b of the floor surface 34 is rectangular, and the boundary between the support area 34a and the open area 34b is defined by three sides.
 本実施形態の作業ユニット100では、囲い30の床面34には、ポジショナ10を支持する支持領域34aだけでなく、ポジショナ10およびワークWの少なくとも一方の可動域に位置する開放領域34bが設けられている。このため、ポジショナ10およびワークWの少なくとも一方の可動域として開放領域34bを利用可能である。したがって、ポジショナ10およびワークWの少なくとも一方の可動部分の最下位置を支持領域34aの上面よりも低くでき、これにより、ポジショナ10ひいては作業ユニット100の高さ方向(鉛直方向)の長さを小さくすることができる。 In the work unit 100 of the present embodiment, the floor surface 34 of the enclosure 30 is provided with not only a support region 34a that supports the positioner 10 but also an open region 34b that is positioned in at least one movable region of the positioner 10 and the workpiece W. ing. For this reason, the open area 34b can be used as a movable range of at least one of the positioner 10 and the workpiece W. Therefore, the lowermost position of at least one of the movable portions of the positioner 10 and the workpiece W can be made lower than the upper surface of the support region 34a, thereby reducing the length of the positioner 10 and the work unit 100 in the height direction (vertical direction). can do.
 なお、ポジショナ10単体の水平面まわりの旋回半径はポジショナ10自身から決定されるが、ポジショナ10の取り付けられたワークWの旋回半径は、ポジショナ10に取り付けられるワークに応じて変化する。本実施形態の作業ユニット100では、開放領域34bが設けられているため、比較的大きなワークWに対して作業を行うことができる。例えば、床面34に開放領域34bが設けられていることにより、ポジショナ10に取り付けられたワークWの旋回半径を支持領域34aの厚み分に相当する200mm程度増大させることができる。 Note that the turning radius of the positioner 10 around the horizontal plane is determined by the positioner 10 itself, but the turning radius of the workpiece W to which the positioner 10 is attached varies depending on the workpiece attached to the positioner 10. In the work unit 100 of the present embodiment, since the open area 34b is provided, it is possible to work on a relatively large work W. For example, by providing the open area 34b on the floor surface 34, the turning radius of the workpiece W attached to the positioner 10 can be increased by about 200 mm corresponding to the thickness of the support area 34a.
 また、典型的には、エンドエフェクタ22がワークWに対して作業を行う場合、エンドエフェクタ22は床面34の開放領域34bの上方にてワークWに作業を行う。また、エンドエフェクタ22がワークWに対して作業を行う場合、作業カスが発生することがある。本実施形態の作業ユニット100では、開放領域34bが設けられているため、作業時に発生した作業カスの清掃を容易に行うことができる。特に、エンドエフェクタ22が溶接トーチの場合、作業カスが発生しやすく、開放領域34bによって清掃を容易化できる効果が高い。 Also, typically, when the end effector 22 performs work on the work W, the end effector 22 works on the work W above the open area 34b of the floor surface 34. Further, when the end effector 22 performs work on the work W, work waste may occur. In the work unit 100 of the present embodiment, since the open area 34b is provided, it is possible to easily clean the work waste generated during the work. In particular, when the end effector 22 is a welding torch, work debris is easily generated, and the effect of facilitating cleaning by the open region 34b is high.
 なお、ここでは、ロボット20はポジショナ10に取り付けられており、ロボット20の架台としてポジショナ10が用いられている。このように、ポジショナ10およびロボット20が一体的に形成されていることにより、作業ユニット100の床面積を小さくして、省スペース化を実現できる。また、ポジショナ10とロボット20とが一体的に形成されていることにより、作業ユニット100の場所変更および再現を行う際に、ポジショナ10とロボット20の位置合わせを再度行わなくてもよく、これにより、作業場所の変更および再現を容易に行うことができる。 Here, the robot 20 is attached to the positioner 10, and the positioner 10 is used as a base for the robot 20. As described above, since the positioner 10 and the robot 20 are integrally formed, the floor area of the work unit 100 can be reduced and space saving can be realized. Further, since the positioner 10 and the robot 20 are integrally formed, the positioner 10 and the robot 20 do not have to be re-aligned when the location of the work unit 100 is changed and reproduced. The work place can be easily changed and reproduced.
 なお、ロボットアーム24として、7軸ロボットアームを用いることが好ましい。本実施形態の作業ユニット100では、ロボット20はポジショナ10の上方に取り付けられており、ポジショナ10とロボット20との間の距離は比較的短いが、ロボットアーム24が7軸ロボットアームであることにより、エンドエフェクタ22の位置および向きの自由度が増大して多様な作業姿勢を実現できるとともに、作業ユニット100の前後方向および左右方向の長さを小さくして省スペース化を実現できる。 Note that a 7-axis robot arm is preferably used as the robot arm 24. In the work unit 100 of the present embodiment, the robot 20 is mounted above the positioner 10 and the distance between the positioner 10 and the robot 20 is relatively short, but the robot arm 24 is a 7-axis robot arm. In addition to increasing the freedom of the position and orientation of the end effector 22, various working postures can be realized, and the length of the working unit 100 in the front-rear direction and the left-right direction can be reduced to save space.
 また、本実施形態の作業ユニット100では、囲い30に、シャッター42が設置されている。シャッター42は、側面32の開いている部分を開閉可能に動作する。これにより、ロボット20の動作中に、囲い30内に作業者が不用意に侵入することを防ぐことができる。例えば、シャッター42は巻き上げ式のシャッターである。 Further, in the work unit 100 of the present embodiment, a shutter 42 is installed in the enclosure 30. The shutter 42 operates so that an open portion of the side surface 32 can be opened and closed. Thereby, it is possible to prevent an operator from inadvertently entering the enclosure 30 during the operation of the robot 20. For example, the shutter 42 is a roll-up shutter.
 また、囲い30の床面34における支持領域34aの側面に、センサー44を設置することが好ましい。このようにセンサー44を設置することにより、作業者の侵入を適切に監視することができる。センサー44として、ラインセンサーを用いてもよい。あるいは、センサー44として、エリアセンサーを用いてもよい。 In addition, it is preferable to install the sensor 44 on the side surface of the support region 34 a on the floor surface 34 of the enclosure 30. By installing the sensor 44 in this way, it is possible to appropriately monitor the operator's entry. A line sensor may be used as the sensor 44. Alternatively, an area sensor may be used as the sensor 44.
 また、囲い30の側面32の外側に起動ボックス50が配置されていることが好ましい。起動ボックス50によって作業ユニット100が起動する。作業ユニット100が起動すると、シャッター42が降りて、ロボット20の動作が開始する。ただし、センサー44が、何らかの物体を検出すると、シャッター42は降りず、ロボット20の動作は開始しない。 In addition, it is preferable that the activation box 50 is disposed outside the side surface 32 of the enclosure 30. The work unit 100 is activated by the activation box 50. When the work unit 100 is activated, the shutter 42 is lowered and the operation of the robot 20 is started. However, when the sensor 44 detects any object, the shutter 42 does not go down and the operation of the robot 20 does not start.
 図2に、本実施形態の作業ユニット100におけるポジショナ10の模式図を示す。図2では、ポジショナ10の一例として2軸ポジショナ10を示している。 FIG. 2 shows a schematic diagram of the positioner 10 in the work unit 100 of the present embodiment. In FIG. 2, a biaxial positioner 10 is shown as an example of the positioner 10.
 ポジショナ10は、ワークWの取り付けられる保持面12を有している。図1に示したワークWは、図示しない保持部材(治具)によって保持面12に保持される。保持面12はワークWに応じて交換可能であってもよい。また、ポジショナ10は、図示しないモータによってワークWの取り付けられた保持面12を傾動させる回転軸14aと、図示しないモータによってワークWの取り付けられた保持面12を回転させる回転軸14bとを有している。 The positioner 10 has a holding surface 12 to which the workpiece W is attached. The workpiece W shown in FIG. 1 is held on the holding surface 12 by a holding member (jig) (not shown). The holding surface 12 may be replaceable depending on the workpiece W. Further, the positioner 10 has a rotating shaft 14a for tilting the holding surface 12 to which the work W is attached by a motor (not shown), and a rotating shaft 14b for rotating the holding surface 12 to which the work W is attached by a motor (not shown). ing.
 図3に、本実施形態の作業ユニット100の模式図を示す。図2に示した回転軸14aが回転することにより、ポジショナ10に取り付けられたワークWは傾動し、ワークWの位置および向きを変更することができる。 FIG. 3 shows a schematic diagram of the work unit 100 of the present embodiment. As the rotating shaft 14a shown in FIG. 2 rotates, the workpiece W attached to the positioner 10 tilts, and the position and orientation of the workpiece W can be changed.
 なお、上述したように、本実施形態の作業ユニット100を用いて溶接を行うことが好ましい。溶接は、例えば、溶接の行われるべき線(溶接予定の線)である溶接線に沿って行われる。 Note that, as described above, it is preferable to perform welding using the work unit 100 of the present embodiment. For example, the welding is performed along a weld line that is a line to be welded (line to be welded).
 本実施形態の作業ユニット100は、自動アーク溶接または半自動アーク溶接を行うために好適に用いられる。自動アーク溶接または半自動アーク溶接を行う場合、溶接線に対して実際に溶接の行われる線は、ワイヤー径の約半分のサイズを超えてずれないことが好ましい。 The work unit 100 of this embodiment is preferably used for performing automatic arc welding or semi-automatic arc welding. When performing automatic arc welding or semi-automatic arc welding, it is preferable that the line actually welded with respect to the weld line does not deviate by more than about half the wire diameter.
 なお、同一の作業ユニット100において、ワークW、ポジショナ10およびエンドエフェクタ22の少なくとも一方を交換することにより、ワークWに異なる作業を行ってもよい。 In the same work unit 100, a different work may be performed on the work W by exchanging at least one of the work W, the positioner 10, and the end effector 22.
 また、囲い30は移動可能に構成されていることが好ましい。例えば、床面34の支持領域34aの裏面の隅(典型的には、4つの隅)に車両を取り付けることが好ましい。これにより、作業ユニット100の移動を簡便に行うことができる。 Moreover, it is preferable that the enclosure 30 is configured to be movable. For example, it is preferable to attach the vehicle to corners (typically, four corners) on the back surface of the support region 34a of the floor surface 34. As a result, the work unit 100 can be moved easily.
 ここで、図4を参照して、本実施形態の作業ユニット100の一例を説明する。図4に示した作業ユニット100では、囲い30の床面34に支持領域34aの裏面に車輪36を設けることにより、作業ユニット100の移動(例えば、工場内における作業ユニット100の配置の変更)を容易に行うことができる。 Here, an example of the work unit 100 of the present embodiment will be described with reference to FIG. In the work unit 100 shown in FIG. 4, the work unit 100 is moved (for example, change of the arrangement of the work unit 100 in the factory) by providing a wheel 36 on the back surface of the support region 34 a on the floor surface 34 of the enclosure 30. It can be done easily.
 また、囲い30の床面34における支持領域34aの裏面に車輪36を取り付けることにより、作業ユニット100を支持する床に対する囲い30の床面34の高さ(この床と床面34との間の距離)がより大きくなり、これにより、ポジショナ10に取り付けられたワークWの旋回半径をさらに増大させることができる。なお、ここでは、囲い30の上面には何も設けられていないが、囲い30の上面にダクトを設け、集塵を行ってもよい。あるいは、囲い30の上面自体が省略されてもよい。 Further, by attaching a wheel 36 to the back surface of the support area 34a of the floor surface 34 of the enclosure 30, the height of the floor surface 34 of the enclosure 30 relative to the floor supporting the work unit 100 (between this floor and the floor surface 34). The distance) becomes larger, and thus the turning radius of the work W attached to the positioner 10 can be further increased. Here, nothing is provided on the upper surface of the enclosure 30, but a duct may be provided on the upper surface of the enclosure 30 to collect dust. Alternatively, the upper surface itself of the enclosure 30 may be omitted.
 また、図4に示した作業ユニット100では、囲い30の中に、ロボットコントローラ40が配置されている。また、ここでは図示していないが、囲い30の中に溶接電源が配置されてもよい。 In the work unit 100 shown in FIG. 4, the robot controller 40 is arranged in the enclosure 30. Although not shown here, a welding power source may be arranged in the enclosure 30.
 ロボットコントローラ40は、例えば、ティーチングデータを記憶する記憶装置と、ロボット20に指令を送るプロセッサとを有している。ロボットコントローラ40を用いて、各動作時のエンドエフェクタ22およびロボットアーム24の位置を記憶させて、ティーチングを行うことができる。なお、ロボットコントローラ40は、ロボット20だけでなくポジショナ10の制御を行ってもよい。 The robot controller 40 has, for example, a storage device that stores teaching data and a processor that sends commands to the robot 20. Teaching can be performed using the robot controller 40 by storing the positions of the end effector 22 and the robot arm 24 during each operation. Note that the robot controller 40 may control not only the robot 20 but also the positioner 10.
 例えば、ティーチングでは、ポジショナ10およびロボット20の空間上のある位置と別の位置とを記憶させ、これらの点の間の軌跡をキャリブレーションによって修正する。典型的には、ポジショナ10およびロボット20のキャリブレーションは、エンコーダを用いて行われる。 For example, in teaching, a certain position in the space of the positioner 10 and the robot 20 and another position are stored, and a locus between these points is corrected by calibration. Typically, calibration of the positioner 10 and the robot 20 is performed using an encoder.
 なお、上述した説明では、ロボット20はポジショナ10に取り付けられていたが、本実施形態はこれに限定されない。ロボット20は、床面34の支持領域34aにおいてポジショナ10とは別の場所に配置されてもよい。ただし、上述したように、ロボット20はポジショナ10に取り付けられていることが好ましい。 In the above description, the robot 20 is attached to the positioner 10, but the present embodiment is not limited to this. The robot 20 may be disposed at a location different from the positioner 10 in the support area 34 a of the floor surface 34. However, as described above, the robot 20 is preferably attached to the positioner 10.
 このような作業ユニット100は、以下のように作製することができる。ここで、図5を参照して本実施形態の作業ユニット作製方法を説明する。 Such a work unit 100 can be manufactured as follows. Here, the working unit manufacturing method of the present embodiment will be described with reference to FIG.
 まず、S502において、ポジショナ10にロボット20を取り付ける。例えば、ロボット20はポジショナ10の上方に取り付けられる。 First, the robot 20 is attached to the positioner 10 in S502. For example, the robot 20 is attached above the positioner 10.
 次に、S504において、囲い30の中に、ポジショナ10およびロボット20を設置する。以上のようにして作業ユニット100が作製される。 Next, in step S504, the positioner 10 and the robot 20 are installed in the enclosure 30. The work unit 100 is manufactured as described above.
 このように作製された作業ユニット100では、ロボット20がポジショナ10に取り付けられており、これにより、作業ユニット100の省スペース化を図ることができる。 In the work unit 100 manufactured as described above, the robot 20 is attached to the positioner 10, and thus the space for the work unit 100 can be saved.
 なお、囲い30の中へのポジショナ10およびロボット20の設置は、ポジショナ10およびロボット20を所定の場所に搬送する前に行われてもよく、ポジショナ10およびロボット20を搬送した後に行われてもよい。 In addition, the positioner 10 and the robot 20 may be installed in the enclosure 30 before the positioner 10 and the robot 20 are transported to a predetermined place, or after the positioner 10 and the robot 20 are transported. Good.
 ここで、図6を参照して、本実施形態の別の作業ユニット作製方法を説明する。まず、S602において、ポジショナ10にロボット20を取り付ける。 Here, with reference to FIG. 6, another working unit manufacturing method of the present embodiment will be described. First, in S <b> 602, the robot 20 is attached to the positioner 10.
 次に、S602aにおいて、ポジショナ10およびロボット20を搬送する。ここでは、上述したように、ロボット20はポジショナ10に取り付けられているため、ポジショナ10およびロボット20は、互いの相対位置が変化することなく搬送される。 Next, in S602a, the positioner 10 and the robot 20 are transported. Here, since the robot 20 is attached to the positioner 10 as described above, the positioner 10 and the robot 20 are transported without changing the relative position of each other.
 次に、S604において、囲い30の中に、ポジショナ10およびロボット20を設置する。以上のようにして作業ユニット100が作製される。なお、上述したように、床面34の開放領域34bにより、比較的小型のポジショナ10を用いることができるため、搬送を容易に行うことができる。 Next, in step S <b> 604, the positioner 10 and the robot 20 are installed in the enclosure 30. The work unit 100 is manufactured as described above. As described above, since the relatively small positioner 10 can be used by the open region 34b of the floor surface 34, the conveyance can be easily performed.
 なお、S602aに加えて、または、S602aに代えて、S604においてポジショナ10およびロボット20を囲い30の中に設置した後、S604aにおいて作業システム100を搬送してもよい。ここでも、上述したように、ロボット20はポジショナ10に取り付けられているため、ポジショナ10およびロボット20は、互いの相対位置が変化することなく搬送される。 In addition to S602a or instead of S602a, the work system 100 may be transported in S604a after the positioner 10 and the robot 20 are installed in the enclosure 30 in S604. Here, as described above, since the robot 20 is attached to the positioner 10, the positioner 10 and the robot 20 are transported without changing their relative positions.
 このように、ポジショナ10およびロボット20を搬送する前に、ロボット20をポジショナ10に取り付けることが好ましい。例えば、ポジショナ10およびロボット20は、工場から顧客に出荷するために、コンテナ等に搭載されてトラック等の大型車両で搬送されてもよい。あるいは、ポジショナ10およびロボット20は、工場内において、ある場所から別の場所に搬送されてもよい。 Thus, it is preferable to attach the robot 20 to the positioner 10 before transporting the positioner 10 and the robot 20. For example, the positioner 10 and the robot 20 may be mounted on a container or the like and transported by a large vehicle such as a truck in order to ship from a factory to a customer. Alternatively, the positioner 10 and the robot 20 may be transported from one place to another in the factory.
 この場合、搬送前(例えば、工場から顧客に出荷する前)に、ロボット20はポジショナ10に取り付けられているため、ポジショナ10とロボット20との位置合わせを確実に行うことができる。また、搬送前にロボット20をポジショナ10に取り付けているため、ポジショナ10およびロボット20を設置する際に、ポジショナ10およびロボット20の位置合わせを省略することができ、ポジショナ10およびロボット20の設置を短時間で行うことができる。また、作業ユニット100を大量に作製して異なる場所で使用する場合、搬送を行う前に、ポジショナ10およびロボット20の取り付けを行うことができるため、取り付けのためのコストの低減を図ることができる。 In this case, since the robot 20 is attached to the positioner 10 before conveyance (for example, before shipping from the factory to the customer), the positioner 10 and the robot 20 can be reliably aligned. In addition, since the robot 20 is attached to the positioner 10 before the conveyance, the positioning of the positioner 10 and the robot 20 can be omitted when the positioner 10 and the robot 20 are installed. It can be done in a short time. In addition, when the work unit 100 is manufactured in large quantities and used in different places, the positioner 10 and the robot 20 can be attached before carrying, so that the cost for attachment can be reduced. .
 また、上述したように、ポジショナ10およびロボット20は実際の作業を行う前にティーチングされることが好ましい。この場合、ポジショナ10およびロボット20のティーチングを搬送前に行ってもよい。 Further, as described above, it is preferable that the positioner 10 and the robot 20 are taught before actual work is performed. In this case, teaching of the positioner 10 and the robot 20 may be performed before conveyance.
 ここで、図7を参照して本実施形態の別の作業ユニット作製方法を説明する。まず、S702において、ポジショナ10にロボット20を取り付ける。 Here, another working unit manufacturing method of the present embodiment will be described with reference to FIG. First, in S <b> 702, the robot 20 is attached to the positioner 10.
 次に、S702’において、ポジショナ10にロボット20を取り付けた後であって、ポジショナ10およびロボット20を搬送する前に、ポジショナ10およびロボット20にティーチングを行う。ティーチングは、例えば、ロボットコントローラ40を用いて行われる。なお、ティーチング後、ポジショナ10およびロボット20のキャリブレーションを行うことが好ましい。 Next, in step S <b> 702 ′, the positioner 10 and the robot 20 are taught after the robot 20 is attached to the positioner 10 and before the positioner 10 and the robot 20 are transported. Teaching is performed using, for example, the robot controller 40. Note that it is preferable to perform calibration of the positioner 10 and the robot 20 after teaching.
 その後、S702aにおいて、ポジショナ10およびロボット20を搬送し、S704において、ポジショナ10およびロボット20を設置する。以上のようにして作業ユニット100が作製される。本実施形態では、搬送前に、ポジショナ10およびロボット20のティーチングを行っているため、搬送後の設置の際に、ポジショナ10およびロボット20に対するティーチングの少なくとも一部を省略することができ、搬送後の設置時間を短縮することができる。 Thereafter, the positioner 10 and the robot 20 are transported in S702a, and the positioner 10 and the robot 20 are installed in S704. The work unit 100 is manufactured as described above. In this embodiment, since teaching of the positioner 10 and the robot 20 is performed before the conveyance, at least a part of teaching to the positioner 10 and the robot 20 can be omitted during the installation after the conveyance. The installation time can be shortened.
 また、ここでも、S702aに加えて、または、S702aの代わりに、S704においてポジショナ10およびロボット20を囲い30の中に設置した後、S704aにおいて作業システム100を搬送してもよい。 Also in this case, in addition to S702a or instead of S702a, the positioner 10 and the robot 20 may be installed in the enclosure 30 in S704, and then the work system 100 may be transported in S704a.
 なお、図5~図7を参照して上述した本実施形態の作業ユニットの作製方法において作製された作業ユニット100では、一体的に取り付けられたポジショナ10およびロボット20の周囲に囲い30が設けられていたが、本実施形態はこれに限定されない。ポジショナ10およびロボット20の周囲の囲い30を省略してもよい。また、この場合でも、ロボット20をポジショナ10に取り付けた後、図6のS602aまたは図7のS702aと同様に、ロボット20をポジショナ10に取り付けた状態で、ポジショナ10およびロボット20を搬送することが好ましい。 In the work unit 100 manufactured in the method for manufacturing the work unit of the present embodiment described above with reference to FIGS. 5 to 7, an enclosure 30 is provided around the positioner 10 and the robot 20 that are integrally attached. However, the present embodiment is not limited to this. The enclosure 30 around the positioner 10 and the robot 20 may be omitted. Also in this case, after the robot 20 is attached to the positioner 10, the positioner 10 and the robot 20 can be transported with the robot 20 attached to the positioner 10 in the same manner as S602a in FIG. 6 or S702a in FIG. preferable.
 なお、上述した作業ユニット100では、床面34を法線方向から見た場合、開放領域34bは矩形状であり、支持領域34aと開放領域34bとの境界は3辺で規定されたが、本実施形態はこれに限定されない。支持領域34aと開放領域34bとの境界は3以上の辺または任意の曲線によって規定されてもよい。あるいは、支持領域34aと開放領域34bとの境界が閉じるように、開放領域34bは支持領域34aに囲まれて形成されてもよい。例えば、開放領域34bは開口形状に規定されるように形成されてもよい。 In the work unit 100 described above, when the floor surface 34 is viewed from the normal direction, the open area 34b is rectangular, and the boundary between the support area 34a and the open area 34b is defined by three sides. The embodiment is not limited to this. The boundary between the support region 34a and the open region 34b may be defined by three or more sides or an arbitrary curve. Alternatively, the open region 34b may be formed surrounded by the support region 34a so that the boundary between the support region 34a and the open region 34b is closed. For example, the open region 34b may be formed so as to be defined by an opening shape.
  10  ポジショナ
  20  ロボット
  22  エンドエフェクタ
  24  ロボットアーム
  30  囲い
  32  側面
  34  床面
  34a 支持領域
  34b 開放領域
 100  作業ユニット
DESCRIPTION OF SYMBOLS 10 Positioner 20 Robot 22 End effector 24 Robot arm 30 Enclosure 32 Side surface 34 Floor surface 34a Support area 34b Open area 100 Work unit

Claims (9)

  1.  ワークの位置決めを行うポジショナと、
     前記ワークに対して作業を行うエンドエフェクタと、前記エンドエフェクタが取り付けられたロボットと、
     側面および床面を有する囲いと
    を備える、作業ユニットであって、
     前記床面は、前記ポジショナの取り付けられた支持領域と、前記ポジショナおよび前記ワークの少なくとも一方の可動域に位置する開放領域とを有している、作業ユニット。
    A positioner for positioning the workpiece;
    An end effector that performs work on the workpiece; and a robot to which the end effector is attached;
    A work unit comprising an enclosure having side and floor surfaces,
    The floor has a support area to which the positioner is attached and an open area located in a movable range of at least one of the positioner and the workpiece.
  2.  前記ロボットは、前記ポジショナに取り付けられている、請求項1に記載の作業ユニット。 The work unit according to claim 1, wherein the robot is attached to the positioner.
  3.  前記囲いは移動可能に構成されている、請求項1または2に記載の作業ユニット。 The work unit according to claim 1 or 2, wherein the enclosure is configured to be movable.
  4.  前記ロボットアームは7軸の多関節ロボットアームを含む、請求項1から3のいずれかに記載の作業ユニット。 The work unit according to any one of claims 1 to 3, wherein the robot arm includes a seven-axis articulated robot arm.
  5.  前記床面の前記支持領域の側部に配置されたセンサーをさらに備える、請求項1から4のいずれかに記載の作業ユニット。 The work unit according to any one of claims 1 to 4, further comprising a sensor disposed on a side portion of the support area of the floor surface.
  6.  前記エンドエフェクタは溶接トーチを含む、請求項1から5のいずれかに記載の作業ユニット。 The work unit according to any one of claims 1 to 5, wherein the end effector includes a welding torch.
  7.  ポジショナにロボットを取り付ける工程と、
     側面および床面を有する囲いの中に、前記ポジショナおよび前記ロボットを設置する工程と
    を包含し、
     前記ポジショナおよび前記ロボットを設置する工程において、前記床面は、前記ポジショナの取り付けられた支持領域と、前記ポジショナおよび前記ワークの少なくとも一方の可動域に位置する開放領域とを有している、作業ユニット作製方法。
    Attaching the robot to the positioner;
    Installing the positioner and the robot in an enclosure having side and floor surfaces;
    In the step of installing the positioner and the robot, the floor surface has a support region to which the positioner is attached and an open region located in a movable region of at least one of the positioner and the workpiece. Unit production method.
  8.  前記ポジショナに前記ロボットを取り付けた後であって、前記ポジショナおよび前記ロボットを搬送する前に、前記ポジショナおよび前記ロボットにティーチングを行う工程を
    さらに包含する、請求項7に記載の作業ユニット作製方法。
    The work unit manufacturing method according to claim 7, further comprising teaching the positioner and the robot after attaching the robot to the positioner and before transporting the positioner and the robot.
  9.  前記ポジショナおよび前記ロボットを設置する工程は、前記ポジショナおよび前記ロボットを搬送した後に、前記床面の前記支持領域の上に前記ポジショナおよび前記ロボットを設置する工程を含む、請求項7または8に記載の作業ユニット作製方法。 The step of installing the positioner and the robot includes a step of installing the positioner and the robot on the support area of the floor surface after transporting the positioner and the robot. The working unit production method.
PCT/JP2011/073914 2011-10-18 2011-10-18 Work unit and work unit manufacturing method WO2013057788A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/073914 WO2013057788A1 (en) 2011-10-18 2011-10-18 Work unit and work unit manufacturing method
CN201180074212.9A CN103889665A (en) 2011-10-18 2011-10-18 Work unit and work unit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073914 WO2013057788A1 (en) 2011-10-18 2011-10-18 Work unit and work unit manufacturing method

Publications (1)

Publication Number Publication Date
WO2013057788A1 true WO2013057788A1 (en) 2013-04-25

Family

ID=48140465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073914 WO2013057788A1 (en) 2011-10-18 2011-10-18 Work unit and work unit manufacturing method

Country Status (2)

Country Link
CN (1) CN103889665A (en)
WO (1) WO2013057788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290012A3 (en) * 2015-04-07 2024-03-27 VolkerWessels Intellectuele Eigendom B.V. Mobile robot station and repair method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120090A (en) * 1986-11-08 1988-05-24 本田技研工業株式会社 Running gear
JPH0265979A (en) * 1988-08-30 1990-03-06 Shin Meiwa Ind Co Ltd Industrial robot
JPH071297A (en) * 1993-06-11 1995-01-06 Yamaha Motor Co Ltd Unit type machine tool
JP2005103690A (en) * 2003-09-30 2005-04-21 Yaskawa Electric Corp Industrial control controller
WO2009113364A1 (en) * 2008-03-12 2009-09-17 株式会社安川電機 Robot system
JP2009262257A (en) * 2008-04-23 2009-11-12 Yaskawa Electric Corp Robot control system
JP2011005530A (en) * 2009-06-26 2011-01-13 Komatsu Engineering Corp Welding apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009303A1 (en) * 2002-07-18 2004-01-29 Kabushiki Kaisha Yaskawa Denki Robot controller and robot system
JP5086899B2 (en) * 2008-06-03 2012-11-28 株式会社キーエンス Area monitoring sensor
FR2938508B1 (en) * 2008-11-14 2010-12-17 Sidel Participations COMBINED PALLETIZATION INSTALLATION WITH SECURE ACCESS
DE102009038721A1 (en) * 2009-08-25 2011-03-03 Kuka Roboter Gmbh Arrangement and method for the secure control of a manipulator
CN201505790U (en) * 2009-10-22 2010-06-16 沈阳金杯江森自控汽车内饰件有限公司 Seat backrest frame spot welding robot multi-station automatic welding system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120090A (en) * 1986-11-08 1988-05-24 本田技研工業株式会社 Running gear
JPH0265979A (en) * 1988-08-30 1990-03-06 Shin Meiwa Ind Co Ltd Industrial robot
JPH071297A (en) * 1993-06-11 1995-01-06 Yamaha Motor Co Ltd Unit type machine tool
JP2005103690A (en) * 2003-09-30 2005-04-21 Yaskawa Electric Corp Industrial control controller
WO2009113364A1 (en) * 2008-03-12 2009-09-17 株式会社安川電機 Robot system
JP2009262257A (en) * 2008-04-23 2009-11-12 Yaskawa Electric Corp Robot control system
JP2011005530A (en) * 2009-06-26 2011-01-13 Komatsu Engineering Corp Welding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290012A3 (en) * 2015-04-07 2024-03-27 VolkerWessels Intellectuele Eigendom B.V. Mobile robot station and repair method

Also Published As

Publication number Publication date
CN103889665A (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6698187B2 (en) Vision unit
JP5522034B2 (en) Robot system
WO2013027283A1 (en) Nc machine tool system
JPWO2017033376A1 (en) Industrial robot and driving method thereof
US8231117B2 (en) Robot system
JP2006341283A (en) Positioner for arc welding, and arc welding robot system
JP2010231575A (en) Device and method for instruction of off-line of robot, and robot system
JP4917252B2 (en) Arc welding equipment
WO2014126221A1 (en) Robot pendant
WO2018199073A1 (en) Robot system and work line provided with same
JP2011005530A (en) Welding apparatus
JP2000176867A (en) Robot
WO2013057788A1 (en) Work unit and work unit manufacturing method
JP5145901B2 (en) Robot system
JP2009119525A (en) Teaching method of welding line coordinate in welding robot, and teaching method of offset value in multi-layer build up welding of welding robot
US11203117B2 (en) Teaching data generation system for vertical multi-joint robot
JP7189064B2 (en) Welding system, control device, control program and welding method
WO2021005968A1 (en) Suspended industrial robot
JP2014079827A (en) Industrial robot control device
JPWO2013057788A1 (en) Work unit and work unit manufacturing method
KR20110085865A (en) Robot system having positioner and positioner
JP4354608B2 (en) Teaching method and apparatus for welding robot
JP5498854B2 (en) Seam welding equipment
JP4725486B2 (en) Welding robot
JP2000117669A (en) Robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874418

Country of ref document: EP

Kind code of ref document: A1