WO2013053967A2 - Method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices - Google Patents

Method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices Download PDF

Info

Publication number
WO2013053967A2
WO2013053967A2 PCT/ES2012/070701 ES2012070701W WO2013053967A2 WO 2013053967 A2 WO2013053967 A2 WO 2013053967A2 ES 2012070701 W ES2012070701 W ES 2012070701W WO 2013053967 A2 WO2013053967 A2 WO 2013053967A2
Authority
WO
WIPO (PCT)
Prior art keywords
solid material
light
fluid
solid
photovoltaic
Prior art date
Application number
PCT/ES2012/070701
Other languages
Spanish (es)
French (fr)
Other versions
WO2013053967A3 (en
Inventor
José Carlos CONESA CEGARRA
Raquel LUCENA GARCÍA
Fernando FRESNO GARCÍA
Perla Wahnon Benarroch
Pablo Palacios Clemente
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Politécnica de Madrid filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2013053967A2 publication Critical patent/WO2013053967A2/en
Publication of WO2013053967A3 publication Critical patent/WO2013053967A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited

Definitions

  • the present invention relates to a method for analyzing the operation of materials that have or may have use in photovoltaic devices. It is therefore within the new materials sector, while its application is mainly located in the energy sector, and more specifically in the renewable energy sector.
  • the photovoltaic devices for solar energy use used in the state of the art are generally based on light absorbing materials with semiconductor character, that is, they have an electronic structure with a valence band and a conduction band (which, in absence of defects or impurities, are respectively full and empty of electrons) separated by a range of prohibited energies to electrons (the "bandgap" in the usual English terminology).
  • the absorption of a photon of electromagnetic radiation with energy equal to or greater than the width of the bandgap causes the excitation of an electron from the conduction band (in which there is then an empty electronic state, called hollow) to the band from Valencia, crossing the bandgap.
  • Said electron and said gap properly separated and routed, can produce electric current and voltage with the end result of the conversion of light energy into electrical energy.
  • photovoltaic cell variants have recently been proposed in which absorbent materials perform their electronic function in a somewhat different way from the one mentioned above, and in which this difficulty may appear in a particular way.
  • absorbent materials perform their electronic function in a somewhat different way from the one mentioned above, and in which this difficulty may appear in a particular way.
  • the principle called intermediate band is used in absorbent materials (see A. Luque, A. Mart ⁇ ; Phys. Rev. Lett. 78, 1997, 5014), also called the impurity or multiband band ( Figure 1) .
  • these materials in addition to the aforementioned valence and conduction bands, there is another one that does not superimpose on energy with them but that is energetically located between them and that may be partially occupied by electrons.
  • This intermediate band would then allow, by absorbing two photons with energies less than the width of the bandgap, to take an electron from the valence band to the intermediate band (producing a gap in the valence band) and then from the intermediate band to that of conduction, producing the same final result as that which can be achieved, as described in the first paragraph of this section, absorbing a single photon of energy greater than the width of the basic bandgap.
  • hot carriers As an example of another advanced photovoltaic system in which it is difficult to make contacts, it is worth mentioning the one that tries to use the so-called hot carriers, or "hot carriers” in English terminology (see P. Würfel, AS Brown, TE Humphrey, MA Green; Prog Photovolt. Res. Appl. 13, 2005, 277).
  • These carriers are the electrons and holes that after being excited with photons of energy greater than the width of the bandgap initially have an excess kinetic energy, which can be used if its transmission abroad is done through compounds (for example, certain molecules or quantum dots), located on its surface that allow to extract and carry only electrical contacts with certain energy value.
  • photocatalytic processes they have been known for some time (for a review of them, see for example B. Ohtani; Inorg. Photochem. 63, 2011, 395).
  • Figure 2 shows, the excited and hollow electrons that are produced in a semiconductor when it absorbs photons with energy greater than the width of its bandgap diffuse to the surface of the material, which is in contact with a fluid containing chemical species capable of yielding or capturing electrons. Electronic transfers then occur between the solid and these species, with chemical changes in them that can be detected and measured.
  • These photocatalytic processes are usually used or proposed for the elimination of polluting substances, the obtaining of fuels such as hydrogen (with which solar energy is used and chemically stored) or the synthesis of specific chemical compounds.
  • a main aspect of the invention is a method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices. Said method is characterized in that it is carried out by a photocatalytic reaction, and comprises at least the following steps:
  • c) determine by chemical and / or spectroscopic analysis of the fluid the variation in the concentration of the chemical species (s) capable of reacting by electronic transfer with the solid material, and / or the presence and concentration of at least one product resulting from the reaction electronic transfer between the solid material and the chemical species (s) mentioned.
  • the present invention is based on the consideration made by the inventors from their experience technique, that, based on the photovoltaic and photocatalytic phenomena on physical principles and similar initial processes, the second of these phenomena can be used to examine the properties that a solid material that may want to apply as a light absorber may have in the first phenomenon in a photovoltaic device, this use being advantageous on many occasions by not requiring the photocatalytic method that the solid to be examined is in a compact form or that an electrical contact is established on it, with which such evaluation can be abbreviated and facilitated.
  • the invention thus consists of a method of examining the properties of photovoltaic interest of a material (which may be constituted by a single phase or by more than one) by performing photocatalytic tests on it.
  • the method requires having a photocatalytic reaction device, with a chemical reactor in which the material to be studied is placed in contact with a fluid that contains at least one chemical species whose chemical transformation can be triggered by irradiation of the assembly, with the consequent formation in the solid of electrons and holes, followed by diffusion of these to the surface of the material and the realization of electronic transfers between it and said species or species.
  • the fluid is analyzed chemically to see to what extent the concentration of any substance in the fluid decreases or increases during irradiation (and not in the absence of the solid), so that the process can only be assigned, according to knowledge existing technicians, to direct or indirect transfers of electrons and holes between the solid and chemical species present in the fluid.
  • the beam of light with which it is irradiated must contain a discrete wavelength or a range of lengths of wave that are within the range of the solar spectrum that has an interest in the photovoltaic application, which is between 350 and 2000 nm, including both limits.
  • the measurement of the speed at which such a change in concentration takes place can be used as a measure of the ability of the solid to generate, by absorbing light, electrons and holes that are transferable outside it, and therefore will also give information about its greater or less ability to act effectively in a photovoltaic application as a light absorber and generator of electrons and usable holes; all this, without the need to establish an electrical contact with the solid.
  • the present method allows analyzing the effectiveness of solid materials capable of absorbing light, not by the usual measurement of the relationship between electric current and voltage produced by irradiating the material with light, which requires making electrical contacts on surfaces more or less smooth of said material, but by detecting and quantifying photocatalytic chemical reactions, that is, produced on the surface of the material when it is irradiated in contact with a fluid containing molecules capable of reacting by electronic transfer.
  • the method is advantageous because it allows the study to be carried out without the need to build electrical contacts on the material or to have it in a compact or smooth surface, being possible to apply it, in particular and preferably, to powdery or highly porous material.
  • the invention is preferable and especially useful for analyzing the behavior of materials or systems that perform the photovoltaic function according to advanced photonic utilization schemes and that can be difficult to prepare in appropriate ways for the formation of such contacts, such as intermediate band materials. or the systems that take advantage of the excess energy that the newly excited holes and electrons have in a material (the so-called hot carriers or "hot carriers").
  • a second aspect of the present invention is the use of a photocatalytic activity measuring device to determine the photovoltaic properties of a solid material capable of acting as a light absorber in photovoltaic devices according to the method described above, in any of the variants and alternatives that are presented here.
  • Said device for measuring photocatalytic activity is of the type known in the field of photocatalytic technique, and comprises at least the following elements in an essential way in order to carry out the method of protection:
  • irradiation means comprising at least one light source for irradiating the solid material while in contact with the fluid
  • c) means for chemically and / or spectroscopically determining the variation and concentration of the species or species capable of reacting with the solid material, and / or the presence and concentration of products resulting from the reaction of the material solid with the chemical species or species during irradiation.
  • the method consists in placing the solid to be studied inside the photocatalytic reactor, in contact with the chosen fluid, irradiating it with light and chemically analyzing the fluid by means of chemical or spectroscopic analysis means.
  • the solid material to which the present method is applied is any of the semiconductor type, or improved semiconductor to enhance its light absorption or its ability to transfer electrons and holes in its surface, which is to be applied as an absorbent element of Light in a photovoltaic device.
  • the method described above is used to determine the photovoltaic properties of intermediate band materials; and, in another preferred embodiment of the invention, the method described above is used to determine the operation of a material (combination of a light absorber and one or more surface transmitting compounds of carriers with determined energy) that is to be used in a photovoltaic device based on the use of hot carriers.
  • the solid material is in powder form;
  • the powder may have a grain size of less than 1 rom, although this aspect is not decisive for the present invention.
  • the solid material may be in powder form when it is, inter alia, an intermediate band material, but not when it is a material capable of being used in a photovoltaic device based on the use of hot carriers.
  • the light absorbing solid material is a porous material.
  • this may be a liquid, such as an aqueous solution or based on an organic solvent such as ethanol or acetone, or a gas such as air or an inert gas containing another gas or a vapor capable of being oxidized or decomposed by the photocatalytic reaction.
  • a liquid such as an aqueous solution or based on an organic solvent such as ethanol or acetone
  • a gas such as air or an inert gas containing another gas or a vapor capable of being oxidized or decomposed by the photocatalytic reaction.
  • the solid material to be studied is deposited, for example as a porous layer or compacted powder, on the surface of a solid substrate that serves as a base and does not react with the solid material to be studied or with the fluid, and is irradiated with the light beam while in contact with the liquid or gas containing the species or chemical species that can react by electronic transfer with the material.
  • the fluid is a liquid and the solid material is irradiated with the light beam while it is in suspension, agitated or not, within a liquid solution (liquid fluid) containing the chemical species or species liable to react by electronic transfer with the material;
  • the solid material is preferably prepared in powder form so that it can be kept in suspension. It is in this liquid or solution where it is determined, by chemical and / or spectroscopic analysis, how the concentration of the reactant species or the products of said reaction evolves over time between the solution and the solid material when irradiated with light.
  • the light source within the solar spectrum may be natural, but more frequent and preferably is an artificial source, which provides photons whose wavelength or wavelengths are in the range of interest of the photovoltaic application (typically between 350 nm and 2000 nm, both limits included).
  • an artificial light source Any known device in the field of photocatalysis can be used. Irradiation is carried out for sufficient time (generally not exceeding a few hours if appropriate devices from the field of photocatalysis, such as that described in the memory) are used to check if the photocatalytic reaction takes place.
  • the light beam is composed of a continuous and variable range of wavelengths (polychromatic light).
  • it can vary from the range corresponding to sunlight itself (which in terms of this invention, is comprised between 350 nm and 2000 nm, including both limits) to another which, provided by artificial devices, also covers several hundreds of nanometers such as that of sunlight; such as that of an Xenon arc lamp, which includes the aforementioned range between 350 nm and 2000 nm, including both limits, although it also includes other longer wavelengths that are not of interest for this invention.
  • the continuous range of wavelengths of the irradiation beam will comprise at least the range between 400 nm and 1500 nm, including both limits.
  • the beam of light with which the material is irradiated is composed of a narrower wavelength range, not more than 100 nm wide, more preferably no more than 50 nm wide (monochromatic light ), within the range of interest of the final photovoltaic application (between 350 nm and 2000 nm, including both limits).
  • the light beam with which the material is irradiated is composed of a single discrete wavelength.
  • This irradiation with a beam of light of a single wavelength, or monochromatic is advantageous because it allows determining how the use of photons in the solid material varies with said wavelength, thereby clarifying the nature and effectiveness of the electronic processes induced by said photons in such material.
  • wavelength selection elements are used, so that the solid material in contact with the fluid is irradiated more than once with a beam of light that is composed of a single discrete wavelength , or of a reduced range of wavelengths that does not exceed the width of 100 nm, more preferably 50 nm, said discrete wavelength being different at each irradiation or the average value of the reduced range of wavelengths that make up the beam .
  • the speed at which the concentration change of the chemical species susceptible to react and / or, alternatively, of the compounds that are formed in the reaction, and therefore the photovoltaic capacity can be measured, depending on each length of wave to which it radiates; the relationship between both magnitudes constitutes the spectral response of the photocatalytic phenomenon. This allows checking the photovoltaic effectiveness and potential of the material for different wavelengths of light.
  • the material is of intermediate band
  • obtaining the spectral response by irradiation with different monochromatic light beams will also allow to verify the effective action of such intermediate band, if it is found that photocatalytic action occurs with photons whose energy is less than the width of the base semiconductor bandgap.
  • the comparison between the reaction rate found for materials with and without intermediate band but with the same semiconductor of base, when using photons that have energy greater than the width of the bandgap it will allow to see if the intermediate band causes recombination between the electrons and the holes, with the consequent loss of photovoltaic capacity, thus obtaining additional information.
  • the chemical reactor that is part of said catalytic reaction device can be, for example, a pyrex glass reactor.
  • the irradiation media used are the usual ones in the field of photocatalysis.
  • the light source when not natural, can be any system known in this field, for example a 450 W Xe lamp.
  • Other elements may optionally be included in addition to the light source, such as a collimating lens, a filter. of water, and a mirror.
  • the device specifically the irradiation means, includes wavelength selecting means of said incident light on the solid to be studied, such as monochromators, filters or light emitting diodes, or any other element known in the field and commonly used.
  • the means of chemical and / or spectroscopic analysis of the material and the fluid can be any of those customary in the art, which serve to determine chemically and / or spectroscopically the variation of the concentration of the reactant species or of the products of the reaction in the fluid
  • FIG. 1 Explanatory scheme of the operation of an intermediate band material in a photovoltaic device using said band (state of the art).
  • the valence bands BV occupied by electrons
  • the conduction BC empty of them
  • the intermediate band BI partially occupied
  • the electrical contacts located on the material and communicating selectively with the BV and BC respectively
  • the three electronic transitions that can be induced by the absorption of photons of different energy.
  • FIG. 1 Explanatory scheme of the principle of photocatalysis.
  • a semiconductor particle is shown in which they are produced, by absorption of a photon, electrons and holes; after diffusion to the surface, electrons that do not recombine with holes are transferred to an acceptor chemical species A (which can be an oxygen molecule) and the holes receive electrons from a donor species D (which can be, in aqueous solutions , an OH group " ).
  • Figure 3 Scheme of the equipment used in the example of the invention.
  • the equipment is completed with a commercial spectrometer (not shown in the drawing) capable of measuring in the ultraviolet range the optical absorbance of the solution in aliquots of it extracted with the syringe.
  • Figure 5 Results of photocatalytic degradation tests of formic acid on In 2 S 3 with or without partial replacement of In by V (lower and upper graphs, respectively). Each curve shows how the relative concentration of formic acid (C) decreases, expressed as a fraction of the initial (Co), from the moment when the suspension begins to radiate with light selected by a nominal wavelength filter X F .
  • Figure 5 Graph of the velocity constant k (in continuous curves with symbols of points or squares included in them) of the photocatalytic degradation of formic acid on In 2 S 3 with or without partial replacement of In by V, obtained from the data represented in Figure 4, represented as a function of the nominal wavelength of the filter. The absorption spectrum measured for each of the two solids is also represented in the form of a dashed dashed line.
  • Example 1 Method based on an otocatalytic reaction according to the present invention, to determine the ability of an indium sulfide partially substituted with vanadium to act according to the intermediate band principle in photon absorption processes, and therefore in photovoltaic applications .
  • a laboratory photocatalytic reaction equipment has been developed, the configuration of which is shown in Figure 3.
  • the equipment uses a 450 W power Xenon lamp (Spectratech brand) as a light source (8), which emits light in the range between the near ultraviolet and the middle infrared.
  • the light After being collimated in the form of a horizontal parallel beam with a quartz lens (9), the light passes through a water bucket (10) with quartz windows, which acts as an infrared thermal radiation filter; then through a filter (11) wavelength selector (Andover brand) that only lets light with a wavelength in a range of about 70 nm in width around a nominal value A F of that wavelength pass through , the value of A F being chosen between 400 and 900 nm; and finally the light is turned down with a mirror (12). Under this is the reactor (2), a container of about 150 mL capacity made of pyrex glass provided with a tight lid and thermostated with water, so that light enters it through its upper face.
  • the system includes a syringe (6) with which a sample of the suspension (typically 1-1.5 mL each time) that is filtered to separate the powder can be taken, then measuring the concentration of HCOOH by spectrometry in the liquid UV at a wavelength of 205 nm, in which only HCOOH absorbs light.
  • a sample of the suspension typically 1-1.5 mL each time
  • the entire assembly is surrounded by an opaque envelope that ensures that the reactor does not receive ambient light from the laboratory during the experiment.
  • the concentration of HCOOH decreases over time at different rates according to be the value of A F of the filter used, and it is different for both solids. It can be assumed, as in the generality of the photocatalytic processes of degradation of organic substances in the presence of air, that the net chemical process that occurs is that of total oxidation:
  • the initial velocity constant of the reaction can be obtained by measuring its initial slope, assuming that it follows a kinetic law of pseudo-first order in the concentration of the oxidized molecule (HCOOH) as usual in Photocatalytic reactions
  • Said constant k which measures the photocatalytic activity observed in the experiment, is represented as a function of the A F value of the filter used; Such representation is shown in Figure 5, which also includes the light absorption spectra of the two solids studied, determined by diffuse reflectance techniques in the work of Lucena et al. cited above.
  • vanadium substituted indium sulfide is a suitable radiation absorber for the construction of an intermediate band photovoltaic device with improved efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention relates to a method for determining, by means of a photocatalytic reaction, the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices, which includes at least the following steps: placing the material in contact with a fluid that contains at least one chemical species capable of reacting by electron transfer with said material; irradiating the material while the latter is in contact with the fluid at least once with a beam of light made up of at least one wavelength within the solar spectrum; and determining by chemical and/or stereoscopic analysis of the fluid the variation in the concentration of the chemical species capable of reacting by electron transfer and/or the presence and concentration of at least one product resulting from the electron transfer reaction between the solid material and the aforementioned chemical species.

Description

METODO PARA DETERMINAR LAS PROPIEDADES FOTOVOLTAICAS DE MATERIALES SÓLIDOS SUSCEPTIBLES DE ACTUAR COMO ABSORBENTES DE LUZ EN DISPOSITIVOS FOTOVOLTAICOS SECTOR DE LA TÉCNICA  METHOD FOR DETERMINING PHOTOVOLTAIC PROPERTIES OF SOLID MATERIALS SUSCEPTIBLE TO ACT AS LIGHT ABSORBERS IN PHOTOVOLTAIC DEVICES TECHNICAL SECTOR
La presente invención se refiere a un método para analizar el funcionamiento de materiales que tienen o pueden tener uso en dispositivos fotovoltaicos . Se encuentra pues dentro del sector de nuevos materiales, mientras que su aplicación se ubica principalmente en el sector energético, y más concretamente en el de energías renovables .  The present invention relates to a method for analyzing the operation of materials that have or may have use in photovoltaic devices. It is therefore within the new materials sector, while its application is mainly located in the energy sector, and more specifically in the renewable energy sector.
ESTADO DE LA TÉCNICA  STATE OF THE TECHNIQUE
Los dispositivos fotovoltaicos para aprovechamiento de energía solar usados en el estado del arte actual se basan generalmente en materiales absorbentes de luz con carácter semiconductor, es decir, que tienen una estructura electrónica con una banda de valencia y una banda de conducción (las cuales, en ausencia de defectos o impurezas, están respectivamente llena y vacía de electrones) separadas por un intervalo de energías prohibidas a los electrones (el "bandgap" en la terminología inglesa habitual) . En estos materiales, la absorción de un fotón de radiación electromagnética con energía igual o superior a la anchura del bandgap produce la excitación de un electrón desde la banda de conducción (en la que queda entonces un estado electrónico vacío, llamado hueco) a la banda de valencia, cruzando el bandgap. Dicho electrón y dicho hueco, adecuadamente separados y encaminados, pueden producir corriente y voltaje eléctricos con el resultado final de la conversión de energía luminosa en energía eléctrica.  The photovoltaic devices for solar energy use used in the state of the art are generally based on light absorbing materials with semiconductor character, that is, they have an electronic structure with a valence band and a conduction band (which, in absence of defects or impurities, are respectively full and empty of electrons) separated by a range of prohibited energies to electrons (the "bandgap" in the usual English terminology). In these materials, the absorption of a photon of electromagnetic radiation with energy equal to or greater than the width of the bandgap causes the excitation of an electron from the conduction band (in which there is then an empty electronic state, called hollow) to the band from Valencia, crossing the bandgap. Said electron and said gap, properly separated and routed, can produce electric current and voltage with the end result of the conversion of light energy into electrical energy.
Tanto para el uso práctico de estos sistemas como para evaluar la eficiencia y otras características del material absorbente de luz, lo habitual es situar sobre éste, que se encuentra en estado más o menos compacto (monocristalino o no; frecuentemente, en forma de lámina delgada) y con superficie relativamente lisa, contactos eléctricos selectivos de forma que en uno de ellos sólo se transfieren electrones entre éste y la banda de valencia, mientras que en el otro contacto sólo se transfieren electrones entre él y la banda de conducción. Estos dos contactos tienden asi a equilibrar sus potenciales eléctricos con los potenciales electrónicos promedio de los electrones y huecos respectivos. Esto requiere diseñar y establecer dichos contactos selectivos, lo que puede ser difícil sobre todo si el material absorbente es de un tipo nuevo (con lo que no se sabe a priori qué materiales de contacto son los más adecuados) o/y se ha de preparar, al menos inicialmente, en forma pulverulenta o con superficie de nanoestructura comple a. Both for the practical use of these systems and for evaluating the efficiency and other characteristics of the light absorbing material, it is usual to place it, which is in a more or less compact state (monocrystalline or no; frequently, in the form of a thin sheet) and with a relatively smooth surface, selective electrical contacts so that in one of them only electrons are transferred between it and the valence band, while in the other contact only electrons are transferred between it and the driving band These two contacts thus tend to balance their electrical potentials with the average electronic potentials of the respective electrons and holes. This requires designing and establishing such selective contacts, which can be difficult especially if the absorbent material is of a new type (so it is not known a priori which contact materials are the most suitable) or / and must be prepared , at least initially, in powder form or with a complete nanostructure surface.
Cabe mencionar que se han propuesto recientemente variantes de célula fotovoltaica en las que los materiales absorbentes realizan su función electrónica de un modo algo distinto al arriba citado, y en las cuales puede aparecer esta dificultad de modo particular. Tal es el caso de la que usa en los materiales absorbentes el principio llamado de banda intermedia (ver A. Luque, A. Martí; Phys . Rev. Lett. 78, 1997, 5014), también llamado de banda de impurezas o multibandas (Figura 1) . En estos materiales, además de las bandas de valencia y conducción ya mencionadas existe otra que no se superpone en energía con ellas sino que se sitúa energéticamente entre ambas y que puede estar parcialmente ocupada por electrones. Esta banda intermedia permitiría entonces, mediante la absorción de dos fotones con energías inferiores a la anchura del bandgap, llevar un electrón de la banda de valencia a la banda intermedia (produciendo en la banda de valencia un hueco) y luego de la banda intermedia a la de conducción, produciendo el mismo resultado final que el que se puede conseguir, tal como se describe en el primer párrafo de esta sección, absorbiendo un solo fotón de energía superior a la anchura del bandgap básico. Con tal esquema se puede obtener, en principio, una eficiencia total en el aprovechamiento de la energía solar bastante mayor que la alcanzable con un semiconductor normal. Este tipo de material más complejo es relativamente nuevo, y puede suceder que los materiales que se propongan para ello no se sepan preparar en la forma compacta y lisa necesaria para poner sobre ellos contactos eléctricos selectivos, o/y que se desconozca qué material conductor es adecuado para hacer tales contactos, impidiéndose la evaluación de la propiedad fotovoltaica del modo habitual. It is worth mentioning that photovoltaic cell variants have recently been proposed in which absorbent materials perform their electronic function in a somewhat different way from the one mentioned above, and in which this difficulty may appear in a particular way. Such is the case in which the principle called intermediate band is used in absorbent materials (see A. Luque, A. Martí; Phys. Rev. Lett. 78, 1997, 5014), also called the impurity or multiband band ( Figure 1) . In these materials, in addition to the aforementioned valence and conduction bands, there is another one that does not superimpose on energy with them but that is energetically located between them and that may be partially occupied by electrons. This intermediate band would then allow, by absorbing two photons with energies less than the width of the bandgap, to take an electron from the valence band to the intermediate band (producing a gap in the valence band) and then from the intermediate band to that of conduction, producing the same final result as that which can be achieved, as described in the first paragraph of this section, absorbing a single photon of energy greater than the width of the basic bandgap. With such a scheme one can obtain, in principle, a total efficiency in the use of solar energy far greater than that achievable with a normal semiconductor. This type of more complex material is relatively new, and it may happen that the materials that are proposed for it are not known to prepare in the compact and smooth way necessary to put on them selective electrical contacts, or / and it is unknown what conductive material is suitable for making such contacts, preventing the evaluation of the photovoltaic property in the usual way.
Como ejemplo de otro sistema fotovoltaico avanzado en que se dificulta la realización de contactos cabe mencionar el que intenta usar los llamados portadores calientes, o "hot carriers" en terminología inglesa (ver P. Würfel, A.S. Brown, T.E. Humphrey, M.A. Green; Prog. Photovolt. Res. Appl . 13, 2005, 277) . Estos portadores son los electrones y huecos que tras ser excitados con fotones de energía superior a la anchura del bandgap tienen inicialmente una energía cinética en exceso, la cual puede aprovecharse si su transmisión al exterior se hace a través de compuestos (por ejemplo, ciertas moléculas o puntos cuánticos), situados en su superficie que permiten extraer y llevar a los contactos eléctricos sólo portadores con cierto valor de energía. Estos sistemas requieren un espesor del material absorbente muy pequeño, típicamente menor que 10 nm (1 nm= una millonésima de milímetro), por lo que para tener suficiente absorción de luz deben depositarse como recubrimiento ultradelgado sobre un sustrato poroso o filiforme, lo que dificulta colocar los contactos.  As an example of another advanced photovoltaic system in which it is difficult to make contacts, it is worth mentioning the one that tries to use the so-called hot carriers, or "hot carriers" in English terminology (see P. Würfel, AS Brown, TE Humphrey, MA Green; Prog Photovolt. Res. Appl. 13, 2005, 277). These carriers are the electrons and holes that after being excited with photons of energy greater than the width of the bandgap initially have an excess kinetic energy, which can be used if its transmission abroad is done through compounds (for example, certain molecules or quantum dots), located on its surface that allow to extract and carry only electrical contacts with certain energy value. These systems require a very small absorbent material thickness, typically less than 10 nm (1 nm = one millionth of a millimeter), so to have sufficient light absorption they must be deposited as an ultra-thin coating on a porous or filiform substrate, which makes it difficult Place the contacts.
Conviene pues disponer de métodos que permitan valorar la capacidad de un material de dar un buen rendimiento fotovoltaico, en particular en sistemas más avanzados como los mencionados, sin necesidad de formar sobre ellos contactos metálicos con los que medir voltaje y corriente. En algunos casos pueden usarse medidas de fotoluminiscencia, pero éstas suelen requerir muy bajas temperaturas, y de todos modos no son aplicables en sistemas como los que usan semiconductores de bandgap indirecto (es decir, aquellos en que los estados electrónicos de los bordes de las bandas de valencia y conducción tienen distinto momento cinético; la transición de luminiscencia entre dichos bordes está prohibida) o los que usan portadores calientes, pues la luminiscencia fácilmente detectable se da cuando la energía cinética en exceso ya se ha perdido. No existe, por lo que estos inventores saben, ningún otro método que pueda servir para ello . It is therefore appropriate to have methods to assess the ability of a material to give a good photovoltaic efficiency, in particular in more advanced systems such as those mentioned, without the need to train on them metal contacts with which to measure voltage and current. In some cases photoluminescence measurements can be used, but these usually require very low temperatures, and they are not applicable in systems such as those using semiconductors of indirect bandgap anyway (i.e. those in which the electronic states of the edges of the bands of valence and conduction have a different kinetic moment; the transition of luminescence between these edges is prohibited) or those that use warm carriers, since the easily detectable luminescence occurs when the excess kinetic energy has already been lost. There is, as far as these inventors know, no other method that can be used for it.
En cuanto a los procesos fotocatalíticos , son conocidos desde hace tiempo (para una revisión de los mismos, ver por ejemplo B. Ohtani; Inorg. Photochem. 63, 2011, 395) . En ellos, tal como muestra la Figura 2, los electrones excitados y huecos que se producen en un semiconductor cuando éste absorbe fotones con energía mayor que la anchura de su bandgap difunden a la superficie del material, que está en contacto con un fluido que contiene especies químicas capaces de ceder o capturar electrones. Se producen entonces transferencias electrónicas entre el sólido y dichas especies, con cambios químicos en éstas que pueden ser detectados y medidos. Estos procesos fotocatalíticos se usan o proponen habitualmente para la eliminación de sustancias contaminantes, la obtención de combustibles como el hidrógeno (con lo que se aprovecha y almacena químicamente energía solar) o la síntesis de compuestos químicos específicos. Por lo que saben los autores de esta invención, tales procesos no se han usado anteriormente como método para analizar las propiedades de los materiales sólidos en su uso como absorbentes de luz en una aplicación fotovoltaica, aunque sí se han ensayado en algunas ocasiones con materiales de uso fotovoltaico conocido, con la finalidad de comprobar si éstos tienen además propiedades fotocataliticas . En particular, nunca se han ensayado en materiales de uso fotovoltaico para los que se sepa o suponga que tienen características de banda intermedia del tipo aquí descrito, ni para comprobar el posible aprovechamiento de portadores calientes en aplicaciones fotovoltaicas . As for photocatalytic processes, they have been known for some time (for a review of them, see for example B. Ohtani; Inorg. Photochem. 63, 2011, 395). In them, as Figure 2 shows, the excited and hollow electrons that are produced in a semiconductor when it absorbs photons with energy greater than the width of its bandgap diffuse to the surface of the material, which is in contact with a fluid containing chemical species capable of yielding or capturing electrons. Electronic transfers then occur between the solid and these species, with chemical changes in them that can be detected and measured. These photocatalytic processes are usually used or proposed for the elimination of polluting substances, the obtaining of fuels such as hydrogen (with which solar energy is used and chemically stored) or the synthesis of specific chemical compounds. As far as the authors of this invention know, such processes have not previously been used as a method to analyze the properties of solid materials in their use as light absorbers in a photovoltaic application, although they have been tested in sometimes with materials of known photovoltaic use, in order to check if they also have photocatalytic properties. In particular, they have never been tested on photovoltaic materials for which it is known or assumed to have intermediate band characteristics of the type described herein, nor to verify the possible use of hot carriers in photovoltaic applications.
DESCRIPCIÓN DE LA INVENCIÓN  DESCRIPTION OF THE INVENTION
Breve descripción de la invención Brief Description of the Invention
Un aspecto principal de la invención es un método para determinar las propiedades fotovoltaicas de materiales sólidos susceptibles de actuar como absorbentes de luz en dispositivos fotovoltaicos . Dicho método se caracteriza por que se realiza mediante una reacción fotocatalítica, y comprende al menos las siguientes etapas:  A main aspect of the invention is a method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices. Said method is characterized in that it is carried out by a photocatalytic reaction, and comprises at least the following steps:
a) poner en contacto el material sólido absorbente de luz con un fluido que contiene al menos una especie química susceptible de reaccionar por transferencia electrónica con dicho material sólido;  a) contacting the solid light absorbing material with a fluid containing at least one chemical species capable of reacting by electronic transfer with said solid material;
b) irradiar el material sólido al menos una vez, mientras está en contacto con el fluido, con un haz de luz que contiene al menos una longitud de onda seleccionada dentro del intervalo del espectro solar comprendido entre 350 nm y 2000 nm; y  b) irradiating the solid material at least once, while in contact with the fluid, with a beam of light containing at least one wavelength selected within the range of the solar spectrum between 350 nm and 2000 nm; Y
c) determinar mediante análisis químico y/o espectroscópico del fluido la variación de la concentración de la o las especies químicas susceptibles de reaccionar por transferencia electrónica con el material sólido, y/o la presencia y concentración de al menos un producto resultante de la reacción de transferencia electrónica entre el material sólido y la o las especies químicas citadas. c) determine by chemical and / or spectroscopic analysis of the fluid the variation in the concentration of the chemical species (s) capable of reacting by electronic transfer with the solid material, and / or the presence and concentration of at least one product resulting from the reaction electronic transfer between the solid material and the chemical species (s) mentioned.
La presente invención se basa en la consideración, hecha por los inventores a partir de su experiencia técnica, de que, al basarse los fenómenos fotovoltaico y fotocatalitico en principios físicos y procesos iniciales similares, el segundo de estos fenómenos puede ser usado para examinar las propiedades que puede tener en el primer fenómeno un material sólido que pueda querer aplicarse como absorbente de luz en un dispositivo fotovoltaico, siendo este uso ventajoso en muchas ocasiones al no requerir el método fotocatalitico que el sólido a examinar esté en forma compacta ni que se establezca sobre éste un contacto eléctrico, con lo que se puede abreviar y facilitar tal evaluación . The present invention is based on the consideration made by the inventors from their experience technique, that, based on the photovoltaic and photocatalytic phenomena on physical principles and similar initial processes, the second of these phenomena can be used to examine the properties that a solid material that may want to apply as a light absorber may have in the first phenomenon in a photovoltaic device, this use being advantageous on many occasions by not requiring the photocatalytic method that the solid to be examined is in a compact form or that an electrical contact is established on it, with which such evaluation can be abbreviated and facilitated.
La invención consiste pues en un método de examen de las propiedades de interés fotovoltaico de un material (que puede estar constituido por una sola fase o por más de una) mediante la realización de ensayos fotocatalíticos sobre el mismo. El método requiere disponer de un dispositivo de reacción fotocatalítica, con un reactor químico en el que se sitúa el material a estudiar en contacto con un fluido que contenga al menos una especie química cuya transformación química pueda ser desencadenada por la irradiación del conjunto, con la consiguiente formación en el sólido de electrones y huecos, seguida de difusión de éstos a la superficie del material y la realización de transferencias electrónicas entre éste y dicha especie o especies. Al provocar la reacción de transferencia electrónica entre el material sólido absorbente de luz y el fluido con el que está en contacto, mediante la irradiación de un haz de luz, se puede estudiar cómo evoluciona en el tiempo la concentración en dicho fluido de las moléculas reaccionantes o de los productos de dicha reacción. En definitiva, se analiza el fluido químicamente para comprobar en qué medida disminuye o aumenta durante la irradiación (y no en ausencia de ella o/y del sólido) la concentración de alguna sustancia en el fluido, de modo que el proceso sólo pueda asignarse, según los conocimientos técnicos existentes, a transferencias directas o indirectas de electrones y huecos entre el sólido y especies químicas presentes en el fluido. The invention thus consists of a method of examining the properties of photovoltaic interest of a material (which may be constituted by a single phase or by more than one) by performing photocatalytic tests on it. The method requires having a photocatalytic reaction device, with a chemical reactor in which the material to be studied is placed in contact with a fluid that contains at least one chemical species whose chemical transformation can be triggered by irradiation of the assembly, with the consequent formation in the solid of electrons and holes, followed by diffusion of these to the surface of the material and the realization of electronic transfers between it and said species or species. By provoking the electronic transfer reaction between the solid light absorbing material and the fluid with which it is in contact, by irradiating a beam of light, it is possible to study how the concentration in said fluid of the reactant molecules evolves over time or of the products of said reaction. Ultimately, the fluid is analyzed chemically to see to what extent the concentration of any substance in the fluid decreases or increases during irradiation (and not in the absence of the solid), so that the process can only be assigned, according to knowledge existing technicians, to direct or indirect transfers of electrons and holes between the solid and chemical species present in the fluid.
Al tener el método como objetivo estudiar el posible uso del material sólido en cuestión como absorbente de luz en un dispositivo fotovoltaico, se entiende que el haz de luz con el que se irradia ha de contener una longitud de onda discreta o un intervalo de longitudes de onda que estén dentro del intervalo del espectro solar que tiene interés en la aplicación fotovoltaica, el cual se sitúa entre unos 350 y 2000 nm, incluidos ambos límites.  Since the method is aimed at studying the possible use of the solid material in question as a light absorber in a photovoltaic device, it is understood that the beam of light with which it is irradiated must contain a discrete wavelength or a range of lengths of wave that are within the range of the solar spectrum that has an interest in the photovoltaic application, which is between 350 and 2000 nm, including both limits.
La medida de la velocidad a la que transcurre tal cambio de concentración puede usarse como medida de la capacidad del sólido para generar, por absorción de luz, electrones y huecos que sean transferibles al exterior del mismo, y por tanto dará información también sobre su mayor o menor capacidad para actuar eficazmente en una aplicación fotovoltaica como absorbente de luz y generador de electrones y huecos utilizables ; todo ello, sin necesidad de establecer un contacto eléctrico con el sólido.  The measurement of the speed at which such a change in concentration takes place can be used as a measure of the ability of the solid to generate, by absorbing light, electrons and holes that are transferable outside it, and therefore will also give information about its greater or less ability to act effectively in a photovoltaic application as a light absorber and generator of electrons and usable holes; all this, without the need to establish an electrical contact with the solid.
En este sentido, el presente método permite analizar la efectividad de materiales sólidos con capacidad de absorber la luz, no mediante la medida habitual de la relación entre corriente y voltaje eléctricos producidos al irradiar el material con luz, lo cual requiere realizar contactos eléctricos sobre superficies más o menos lisas de dicho material, sino detectando y cuantificando reacciones químicas fotocatalíticas, es decir, producidas sobre la superficie del material cuando éste es irradiado estando en contacto con un fluido que contiene moléculas capaces de reaccionar por transferencia electrónica.  In this sense, the present method allows analyzing the effectiveness of solid materials capable of absorbing light, not by the usual measurement of the relationship between electric current and voltage produced by irradiating the material with light, which requires making electrical contacts on surfaces more or less smooth of said material, but by detecting and quantifying photocatalytic chemical reactions, that is, produced on the surface of the material when it is irradiated in contact with a fluid containing molecules capable of reacting by electronic transfer.
El método es ventajoso porque permite hacer el estudio sin necesidad de construir contactos eléctricos sobre el material ni de tener éste en forma compacta o con superficie lisa, siendo posible aplicarlo, en particular y preferentemente, a material pulverulento o altamente poroso. La invención es preferible y especialmente útil para analizar el comportamiento de materiales o sistemas que realizan la función fotovoltaica según esquemas avanzados de aprovechamiento fotónico y que pueden ser difíciles de preparar en formas apropiadas para la formación de tales contactos, como son los materiales de banda intermedia o los sistemas que aprovechan la energía en exceso que tienen los huecos y electrones recién excitados en un material (los llamados portadores calientes o "hot carriers") . The method is advantageous because it allows the study to be carried out without the need to build electrical contacts on the material or to have it in a compact or smooth surface, being possible to apply it, in particular and preferably, to powdery or highly porous material. The invention is preferable and especially useful for analyzing the behavior of materials or systems that perform the photovoltaic function according to advanced photonic utilization schemes and that can be difficult to prepare in appropriate ways for the formation of such contacts, such as intermediate band materials. or the systems that take advantage of the excess energy that the newly excited holes and electrons have in a material (the so-called hot carriers or "hot carriers").
Un segundo aspecto de la presente invención lo constituye el uso de un dispositivo de medida de actividad fotocatalítica para determinar las propiedades fotovoltaicas de un material sólido susceptible de actuar como absorbente de luz en dispositivos fotovoltaicos de acuerdo con el método descrito anteriormente, en cualquiera de las variantes y alternativas que se plantean en la presente memoria. Dicho dispositivo de medida de actividad fotocatalítica es del tipo de los conocidos en el campo de la técnica fotocatalítica, y comprende al menos los siguientes elementos en una forma esencial para poder llevar a cabo el método objeto de protección:  A second aspect of the present invention is the use of a photocatalytic activity measuring device to determine the photovoltaic properties of a solid material capable of acting as a light absorber in photovoltaic devices according to the method described above, in any of the variants and alternatives that are presented here. Said device for measuring photocatalytic activity is of the type known in the field of photocatalytic technique, and comprises at least the following elements in an essential way in order to carry out the method of protection:
a) un reactor químico donde se alojan el material sólido y el fluido con el que está en contacto, y donde tiene lugar la reacción fotocatalítica;  a) a chemical reactor where the solid material and the fluid with which it is in contact are housed, and where the photocatalytic reaction takes place;
b) medios de irradiación, que comprenden al menos una fuente de luz para irradiar el material sólido mientras está en contacto con el fluido;  b) irradiation means, comprising at least one light source for irradiating the solid material while in contact with the fluid;
c) medios para determinar química y/o espectroscópicamente la variación y concentración de la o las especies susceptibles de reaccionar con el material sólido, y/o la presencia y concentración de productos resultantes de la reacción del material sólido con la o las especies químicas durante la irradiación . c) means for chemically and / or spectroscopically determining the variation and concentration of the species or species capable of reacting with the solid material, and / or the presence and concentration of products resulting from the reaction of the material solid with the chemical species or species during irradiation.
El método consiste en situar el sólido a estudiar dentro del reactor fotocatalítico, en contacto con el fluido escogido, irradiarlo con luz y analizar químicamente el fluido mediante los medios de análisis químico o espectroscópico .  The method consists in placing the solid to be studied inside the photocatalytic reactor, in contact with the chosen fluid, irradiating it with light and chemically analyzing the fluid by means of chemical or spectroscopic analysis means.
Descripción detallada de la invención  Detailed description of the invention
En general, el material sólido al que se aplica el presente método es cualquiera de los de tipo semiconductor, o semiconductor mejorado para potenciar su absorción de luz o su capacidad de transferir electrones y huecos en su superficie, que se quiera aplicar como elemento absorbente de luz en un dispositivo fotovoltaico . Aunque, como se ha dicho, en una realización preferida el método antes descrito se emplea para determinar las propiedades fotovoltaicas de materiales de banda intermedia; y, en otra realización preferente de la invención, el método antes descrito se emplea para determinar el funcionamiento de un material (combinación de un absorbente de luz y de uno o más compuestos superficiales transmisores de portadores con energía determinada) que se quiera usar en un dispositivo fotovoltaico basado en el aprovechamiento de portadores calientes .  In general, the solid material to which the present method is applied is any of the semiconductor type, or improved semiconductor to enhance its light absorption or its ability to transfer electrons and holes in its surface, which is to be applied as an absorbent element of Light in a photovoltaic device. Although, as said, in a preferred embodiment the method described above is used to determine the photovoltaic properties of intermediate band materials; and, in another preferred embodiment of the invention, the method described above is used to determine the operation of a material (combination of a light absorber and one or more surface transmitting compounds of carriers with determined energy) that is to be used in a photovoltaic device based on the use of hot carriers.
En una realización preferida, el material sólido está en forma de polvo; de forma general, el polvo puede presentar un tamaño de grano inferior a 1 rom, aunque este aspecto no es determinante para la presente invención. Debe tenerse en cuenta que el material sólido puede estar en forma de polvo cuando es, entre otros, un material de banda intermedia, pero no cuando es un material susceptible de emplearse en un dispositivo fotovoltaico basado en el aprovechamiento de portadores calientes. En otra de las realizaciones preferidas, el material sólido absorbente de luz es un material poroso. En cuanto al fluido, éste puede ser un liquido, como por ejemplo una solución acuosa o basada en un disolvente orgánico como el etanol o la acetona, o un gas tal como aire o un gas inerte que contenga otro gas o un vapor capaz de ser oxidado o descompuesto por la reacción fotocatalitica. In a preferred embodiment, the solid material is in powder form; In general, the powder may have a grain size of less than 1 rom, although this aspect is not decisive for the present invention. It should be taken into account that the solid material may be in powder form when it is, inter alia, an intermediate band material, but not when it is a material capable of being used in a photovoltaic device based on the use of hot carriers. In another preferred embodiment, the light absorbing solid material is a porous material. As for the fluid, this may be a liquid, such as an aqueous solution or based on an organic solvent such as ethanol or acetone, or a gas such as air or an inert gas containing another gas or a vapor capable of being oxidized or decomposed by the photocatalytic reaction.
En una de las realizaciones preferidas el material sólido a estudiar se encuentra depositado, por ejemplo como capa porosa o polvo compactado, sobre la superficie de un sustrato sólido que sirve de base y que no reacciona con el material sólido a estudiar o con el fluido, y es irradiado con el haz de luz mientras se encuentra en contacto con el liquido o el gas que contiene la especie o especies químicas susceptibles de reaccionar mediante transferencia electrónica con el material.  In one of the preferred embodiments the solid material to be studied is deposited, for example as a porous layer or compacted powder, on the surface of a solid substrate that serves as a base and does not react with the solid material to be studied or with the fluid, and is irradiated with the light beam while in contact with the liquid or gas containing the species or chemical species that can react by electronic transfer with the material.
En otra realización particular de la invención, el fluido es un líquido y el material sólido es irradiado con el haz de luz mientras se encuentra en suspensión, agitada o no, dentro de una disolución líquida (fluido líquido) que contiene la especie o especies químicas susceptibles de reaccionar mediante transferencia electrónica con el material; en este caso particular, el material sólido está preferiblemente preparado en forma de polvo de modo que pueda ser mantenido en suspensión. Es en este líquido o disolución donde se determina, mediante análisis químico y/o espectroscópico, cómo evoluciona en el tiempo la concentración de las especies reaccionantes o de los productos de dicha reacción entre la disolución y el material sólido al irradiarse con luz.  In another particular embodiment of the invention, the fluid is a liquid and the solid material is irradiated with the light beam while it is in suspension, agitated or not, within a liquid solution (liquid fluid) containing the chemical species or species liable to react by electronic transfer with the material; In this particular case, the solid material is preferably prepared in powder form so that it can be kept in suspension. It is in this liquid or solution where it is determined, by chemical and / or spectroscopic analysis, how the concentration of the reactant species or the products of said reaction evolves over time between the solution and the solid material when irradiated with light.
La fuente de luz dentro del espectro solar puede ser natural, pero más frecuente y preferiblemente es una fuente artificial, que proporcione fotones cuya longitud o longitudes de onda estén en el rango de interés de la aplicación fotovoltaica (típicamente entre 350 nm y 2000 nm, incluidos ambos límites) . Como fuente de luz artificial puede emplearse cualquier dispositivo conocido en el campo de fotocatálisis . La irradiación se lleva a cabo durante el tiempo suficiente (generalmente no superior a pocas horas si se usan dispositivos apropiados del campo de la fotocatálisis , como el descrito en la memoria) para comprobar si tiene lugar la reacción fotocatalitica . The light source within the solar spectrum may be natural, but more frequent and preferably is an artificial source, which provides photons whose wavelength or wavelengths are in the range of interest of the photovoltaic application (typically between 350 nm and 2000 nm, both limits included). As an artificial light source Any known device in the field of photocatalysis can be used. Irradiation is carried out for sufficient time (generally not exceeding a few hours if appropriate devices from the field of photocatalysis, such as that described in the memory) are used to check if the photocatalytic reaction takes place.
En una realización preferida, el haz de luz se compone de un intervalo continuo y variable de longitudes de onda (luz policromática) . Asi, puede variar desde el intervalo correspondiente a la luz solar misma (que en términos de esta invención, está comprendido entre 350 nm y 2000 nm, incluidos ambos limites) a otro que, proporcionado por dispositivos artificiales, abarque también varios centenares de nanómetros como el de la luz solar; como puede ser el de una lámpara de arco de Xenón, que incluye el citado intervalo entre 350 nm y 2000 nm, incluidos ambos limites, si bien comprende además otras longitudes de onda más largas que no son de interés para esta invención. Preferiblemente, el intervalo continuo de longitudes de onda del haz de irradiación comprenderá al menos el intervalo entre 400 nm y 1500 nm, incluidos ambos limites.  In a preferred embodiment, the light beam is composed of a continuous and variable range of wavelengths (polychromatic light). Thus, it can vary from the range corresponding to sunlight itself (which in terms of this invention, is comprised between 350 nm and 2000 nm, including both limits) to another which, provided by artificial devices, also covers several hundreds of nanometers such as that of sunlight; such as that of an Xenon arc lamp, which includes the aforementioned range between 350 nm and 2000 nm, including both limits, although it also includes other longer wavelengths that are not of interest for this invention. Preferably, the continuous range of wavelengths of the irradiation beam will comprise at least the range between 400 nm and 1500 nm, including both limits.
En otra realización preferida, el haz de luz con el que se irradia el material se compone de un intervalo de longitudes de onda más reducido, de no más de 100 nm de anchura, más preferiblemente de no más de 50 nm de anchura (luz monocromática), dentro del rango de interés de la aplicación fotovoltaica final (entre 350 nm y 2000 nm, incluidos ambos limites) . En otra realización preferida, el haz de luz con el que se irradia el material se compone de una única longitud de onda discreta. Estas dos realizaciones preferidas se pueden conseguir mediante el empleo de unos medios de selección de longitud de onda, como pueden ser filtros, monocromadores , diodos emisores de luz u otros dispositivos que permiten seleccionar a voluntad la longitud de onda de la radiación utilizada. Esta irradiación con un haz de luz de una única longitud de onda, o monocromático, es ventajosa porque permite determinar cómo varia el aprovechamiento de fotones en el material sólido con dicha longitud de onda, con lo que se consigue clarificar la naturaleza y eficacia de los procesos electrónicos inducidos por dichos fotones en tal material . In another preferred embodiment, the beam of light with which the material is irradiated is composed of a narrower wavelength range, not more than 100 nm wide, more preferably no more than 50 nm wide (monochromatic light ), within the range of interest of the final photovoltaic application (between 350 nm and 2000 nm, including both limits). In another preferred embodiment, the light beam with which the material is irradiated is composed of a single discrete wavelength. These two preferred embodiments can be achieved through the use of wavelength selection means, such as filters, monochromators, light emitting diodes or other devices that allow the wavelength of the radiation used to be selected at will. This irradiation with a beam of light of a single wavelength, or monochromatic, is advantageous because it allows determining how the use of photons in the solid material varies with said wavelength, thereby clarifying the nature and effectiveness of the electronic processes induced by said photons in such material.
Por eso, preferiblemente, se usan elementos seleccionadores de la longitud de onda de la luz, de modo que el material sólido en contacto con el fluido sea irradiado más de una vez con un haz de luz que se compone de una única longitud de onda discreta, o de un intervalo reducido de longitudes de onda que no excede la anchura de 100 nm, más preferiblemente de 50 nm, siendo diferente en cada irradiación dicha longitud de onda discreta o el valor medio del intervalo reducido de longitudes de onda que componen el haz. Entonces se podrá medir la velocidad a la que transcurre el cambio de concentración de las especies químicas susceptibles de reaccionar y/o, alternativamente, de los compuestos que se forman en la reacción, y por tanto la capacidad fotovoltaica, en función de cada longitud de onda a la que se irradia; la relación entre ambas magnitudes constituye la respuesta espectral del fenómeno fotocatalítico . Ello permite comprobar la efectividad y potencial fotovoltaicos del material para diferentes longitudes de onda de la luz.  Therefore, preferably, wavelength selection elements are used, so that the solid material in contact with the fluid is irradiated more than once with a beam of light that is composed of a single discrete wavelength , or of a reduced range of wavelengths that does not exceed the width of 100 nm, more preferably 50 nm, said discrete wavelength being different at each irradiation or the average value of the reduced range of wavelengths that make up the beam . Then the speed at which the concentration change of the chemical species susceptible to react and / or, alternatively, of the compounds that are formed in the reaction, and therefore the photovoltaic capacity, can be measured, depending on each length of wave to which it radiates; the relationship between both magnitudes constitutes the spectral response of the photocatalytic phenomenon. This allows checking the photovoltaic effectiveness and potential of the material for different wavelengths of light.
En el caso en que el material es de banda intermedia, la obtención de la respuesta espectral mediante irradiación con diferentes haces de luz monocromáticos permitirá además comprobar la acción efectiva de tal banda intermedia, si se encuentra que se produce acción fotocatalítica con fotones cuya energía es inferior a la anchura del bandgap del semiconductor de base. Por otra parte, la comparación entre la velocidad de reacción encontrada para materiales con y sin banda intermedia pero con el mismo semiconductor de base, cuando se usan fotones que tienen energía superior a la anchura del bandgap de éste, permitirá apreciar si la banda intermedia provoca recombinación entre los electrones y los huecos, con la pérdida consiguiente de capacidad fotovoltaica, obteniéndose así información adicional. In the case where the material is of intermediate band, obtaining the spectral response by irradiation with different monochromatic light beams will also allow to verify the effective action of such intermediate band, if it is found that photocatalytic action occurs with photons whose energy is less than the width of the base semiconductor bandgap. On the other hand, the comparison between the reaction rate found for materials with and without intermediate band but with the same semiconductor of base, when using photons that have energy greater than the width of the bandgap, it will allow to see if the intermediate band causes recombination between the electrons and the holes, with the consequent loss of photovoltaic capacity, thus obtaining additional information.
Si el método se aplica a materiales que constituyen un sistema designado para aprovechar portadores calientes, situándose en la superficie del material absorbente determinadas moléculas (no necesariamente las que finalmente se transformen) o puntos cuánticos que por la situación de sus niveles electrónicos discretos sólo podrían capturar electrones o huecos del material si éstos tienen energía cinética en exceso, y si ninguna otra especie capaz de capturar portadores puede interaccionar con el material, la observación de actividad fotocatalítica, incluso con radiación policromática, demostrará que se produce efectivamente captura de portadores calientes. Si la radiación es monocromática y sólo se encuentra actividad fotocatalítica con fotones que tengan energía significativamente mayor que la anchura del bandgap, ello dará demostración adicional de la utilización específica de portadores calientes, e informará además de la energía cinética adicional necesaria en éstos.  If the method is applied to materials that constitute a system designed to take advantage of hot carriers, certain molecules (not necessarily those that are finally transformed) or quantum dots that could only capture by the location of their discrete electronic levels could only capture electrons or holes in the material if they have excess kinetic energy, and if no other species capable of capturing carriers can interact with the material, observing photocatalytic activity, even with polychromatic radiation, will demonstrate that hot carrier capture is effectively produced. If the radiation is monochromatic and only photocatalytic activity is found with photons that have energy significantly greater than the width of the bandgap, this will give additional demonstration of the specific use of hot carriers, and will also report the additional kinetic energy needed in them.
En lo que se refiere al uso del dispositivo fotocatalítico empleado para llevar a cabo el método de la presente invención, el reactor químico que forma parte de dicho dispositivo de reacción catalítica puede ser, por ejemplo, un reactor de vidrio pyrex.  As regards the use of the photocatalytic device used to carry out the method of the present invention, the chemical reactor that is part of said catalytic reaction device can be, for example, a pyrex glass reactor.
Los medios de irradiación que se emplean son los habituales en el campo de la fotocatálisis . Así la fuente de luz, cuando no es natural, puede ser cualquier sistema conocido en este campo, por ejemplo una lámpara de Xe de 450 W. Se pueden incluir opcionalmente otros elementos además de la fuente de luz, como una lente colimadora, un filtro de agua, y un espejo. Como se ha comentado al describir el método, es preferible que, para obtener unos resultados más completos, el dispositivo, concretamente los medios de irradiación, incluyan medios seleccionadores de longitud de onda de dicha luz incidente sobre el sólido a estudiar, tales como monocromadores , filtros o diodos emisores de luz, o cualquier otro elemento conocido en el campo y utilizado habitualmente . The irradiation media used are the usual ones in the field of photocatalysis. Thus, the light source, when not natural, can be any system known in this field, for example a 450 W Xe lamp. Other elements may optionally be included in addition to the light source, such as a collimating lens, a filter. of water, and a mirror. As mentioned in describing the method, it is preferable that, in order to obtain more complete results, the device, specifically the irradiation means, includes wavelength selecting means of said incident light on the solid to be studied, such as monochromators, filters or light emitting diodes, or any other element known in the field and commonly used.
Los medios de análisis químico y/o espectroscópico del material y el fluido pueden ser cualesquiera de los habituales en la técnica, que sirvan para determinar química y/o espectroscópicamente la variación de la concentración de las especies reaccionantes o de los productos de la reacción en el fluido.  The means of chemical and / or spectroscopic analysis of the material and the fluid can be any of those customary in the art, which serve to determine chemically and / or spectroscopically the variation of the concentration of the reactant species or of the products of the reaction in the fluid
BREVE DESCRIPCIÓN DE LAS FIGURAS  BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Esquema explicativo de la operación de un material de banda intermedia en un dispositivo fotovoltaico que utilice dicha banda (estado de la técnica) . Se representan las bandas de valencia BV (ocupada por electrones), la de conducción BC (vacía de ellos) y la intermedia BI (parcialmente ocupada) ; los contactos eléctricos situados sobre el material y comunicándose selectivamente con la BV y la BC respectivamente; y las tres transiciones electrónicas que pueden inducirse por la absorción de fotones de distinta energía.  Figure 1. Explanatory scheme of the operation of an intermediate band material in a photovoltaic device using said band (state of the art). The valence bands BV (occupied by electrons), the conduction BC (empty of them) and the intermediate band BI (partially occupied) are represented; the electrical contacts located on the material and communicating selectively with the BV and BC respectively; and the three electronic transitions that can be induced by the absorption of photons of different energy.
Figura 2. Esquema explicativo del principio de la fotocatálisis . Se muestra una partícula de semiconductor en la que se producen, por absorción de un fotón, electrones y huecos; tras su difusión hasta la superficie, los electrones que no se recombinan con huecos son transferidos a una especie química aceptora A (que puede ser una molécula de oxígeno) y los huecos reciben electrones de una especie dadora D (que puede ser, en disoluciones acuosas, un grupo OH") . Figura 3. Esquema del equipo utilizado en el ejemplo de la invención . Figure 2. Explanatory scheme of the principle of photocatalysis. A semiconductor particle is shown in which they are produced, by absorption of a photon, electrons and holes; after diffusion to the surface, electrons that do not recombine with holes are transferred to an acceptor chemical species A (which can be an oxygen molecule) and the holes receive electrons from a donor species D (which can be, in aqueous solutions , an OH group " ). Figure 3. Scheme of the equipment used in the example of the invention.
(1) Dispositivo de medida de actividad o reacción fotocatalitica (los medios de análisis químico y/o espectroscópico no están representados) ;  (1) Device for measuring activity or photocatalytic reaction (the means of chemical and / or spectroscopic analysis are not represented);
(2) reactor (de vidrio pyrex) ;  (2) reactor (pyrex glass);
(3) suspensión del material sólido (en el ejemplo, V:In2S3) en una disolución de la sustancia reaccionante (que en el ejemplo es HCOOH) ; (3) suspension of the solid material (in the example, V: In 2 S 3 ) in a solution of the reactant (which in the example is HCOOH);
(4) agitador magnético;  (4) magnetic stirrer;
(5) dispositivo de burbujeo de aire en la suspensión; (5) air bubbling device in the suspension;
(6) jeringa de muestreo; (6) sampling syringe;
(7) medios de irradiación;  (7) irradiation means;
(8) fuente de luz: lámpara de Xe de 450 W;  (8) light source: 450 W Xe lamp;
(9) lente colimadora;  (9) collimating lens;
(10) filtro de agua;  (10) water filter;
(11) filtro selector de longitud de onda;  (11) wavelength selector filter;
(12) espejo.  (12) mirror.
El equipo se completa con un espectrómetro comercial (no representado en el dibujo) capaz de medir en el rango ultravioleta la absorbancia óptica de la disolución en alícuotas de ésta extraídas con la jeringa.  The equipment is completed with a commercial spectrometer (not shown in the drawing) capable of measuring in the ultraviolet range the optical absorbance of the solution in aliquots of it extracted with the syringe.
Figura . Resultados de los ensayos de degradación fotocatalitica de ácido fórmico sobre In2S3 con o sin sustitución parcial de In por V (gráficas inferior y superior, respectivamente) . Cada curva muestra cómo decrece la concentración relativa de ácido fórmico (C) , expresada como fracción de la inicial (Co) , a partir del momento en que se empieza a irradiar la suspensión con luz seleccionada por un filtro de longitud de onda nominal XF. Figura 5. Gráfica de la constante de velocidad k (en curvas continuas con símbolos de puntos o cuadrados incluidos en ellas) de la degradación fotocatalitica de ácido fórmico sobre In2S3 con o sin sustitución parcial de In por V, obtenida a partir de los datos representados en la Figura 4, representada en función de la longitud de onda nominal del filtro. Se representa también, en forma de linea discontinua de trazos, el espectro de absorción medido para cada uno de los dos sólidos. Figure . Results of photocatalytic degradation tests of formic acid on In 2 S 3 with or without partial replacement of In by V (lower and upper graphs, respectively). Each curve shows how the relative concentration of formic acid (C) decreases, expressed as a fraction of the initial (Co), from the moment when the suspension begins to radiate with light selected by a nominal wavelength filter X F . Figure 5. Graph of the velocity constant k (in continuous curves with symbols of points or squares included in them) of the photocatalytic degradation of formic acid on In 2 S 3 with or without partial replacement of In by V, obtained from the data represented in Figure 4, represented as a function of the nominal wavelength of the filter. The absorption spectrum measured for each of the two solids is also represented in the form of a dashed dashed line.
EJEMPLOS DE LA REALIZACIÓN DE LA INVENCIÓN  EXAMPLES OF THE EMBODIMENT OF THE INVENTION
A continuación se aportan detalles experimentales más concretos sobre el método y el dispositivo usados para determinar las propiedades fotovoltaicas de un material sólido absorbente de luz mediante reacción fotocatalitica, y establecer asi su capacidad para ser empleado en dispositivos fotovoltaicos , de acuerdo con la presente invención .  More specific experimental details on the method and the device used to determine the photovoltaic properties of a light-absorbing solid material by photocatalytic reaction are provided below, and thus establish its ability to be used in photovoltaic devices, in accordance with the present invention.
Ejemplo 1. Método basado en una reacción otocatalitica de acuerdo con la presente invención, para determinar la capacidad de un sulfuro de indio parcialmente sustituido con vanadio para actuar según el principio de banda intermedia en procesos de absorción de fotones, y por tanto en aplicaciones fotovoltaicas .  Example 1. Method based on an otocatalytic reaction according to the present invention, to determine the ability of an indium sulfide partially substituted with vanadium to act according to the intermediate band principle in photon absorption processes, and therefore in photovoltaic applications .
En trabajos anteriores (ver P. Palacios, I. Aguilera, K. Sánchez, J.C. Conesa, P. Wahnón; Phys . Rev. Lett. 101, 2008, 046403, y la solicitud de patente ES 200702008) se mostró usando cálculos teóricos mecanocuánticos que sustituyendo por iones vanadio parte de los iones de indio con coordinación octaédrica existentes en un sulfuro de indio con estructura tipo espinela debe resultar un material con características de banda intermedia adecuadas para realizar una célula fotovoltaica de alta eficiencia. En trabajos subsiguientes (ver R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, J. C. Conesa; Chem. Maters. 20, 2008, 5125, y la solicitud de patente antes citada) se sintetizó en el laboratorio un compuesto de este tipo, y se mostró que sus características de absorción óptica concordaban con la estructura de banda intermedia predicha por los cálculos anteriores. Tal material sólo ha podido sintetizarse hasta ahora en forma de polvo. En el presente ejemplo se muestra cómo el método de la presente invención permite verificar para dicho compuesto, sin necesidad de depositar sobe él un contacto metálico, la participación de la banda intermedia en la generación adicional de electrones y huecos que pueden ser aprovechados mediante su transferencia al exterior del material, lo que por tanto contribuye a mejorar el rendimiento fotovoltaico del material. In previous works (see P. Palacios, I. Aguilera, K. Sánchez, JC Conesa, P. Wahnón; Phys. Rev. Lett. 101, 2008, 046403, and patent application ES 200702008) was shown using mechano-theoretical theoretical calculations that by replacing vanadium ions part of the indium ions with octahedral coordination existing in an indium sulphide with spinel structure, a material with intermediate band characteristics suitable for making a high-efficiency photovoltaic cell should result. In subsequent works (see R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, JC Conesa; Chem. Maters. 20, 2008, 5125, and the aforementioned patent application) a compound was synthesized in the laboratory this type, and it was shown that its optical absorption characteristics agreed with the intermediate band structure predicted by the previous calculations. Such material has only been synthesized so far as a powder. This example shows how the method of the present invention makes it possible to verify for said compound, without the need to deposit a metallic contact thereon, the participation of the intermediate band in the additional generation of electrons and holes that can be exploited by transferring the material outside, which therefore contributes to improve the photovoltaic performance of the material.
Para ello se ha puesto a punto un equipo de reacción fotocatalitica de laboratorio cuya configuración se muestra en la Figura 3. El equipo usa como fuente de luz (8) una lámpara de Xenón de 450 W de potencia (marca Spectratech) , que emite luz en el rango entre el ultravioleta próximo y el infrarrojo medio. Tras ser colimada en forma de haz paralelo horizontal con una lente de cuarzo (9), la luz pasa a través de una cubeta de agua (10) con ventanas de cuarzo, que actúa como filtro de radiación térmica infrarroja; luego a través de un filtro (11) seleccionador de longitud de onda (marca Andover) que sólo deja pasar luz con longitud de onda comprendida en un intervalo de unos 70 nm de anchura en torno a un valor nominal AF de esa longitud de onda, pudiendo escogerse el valor de AF entre 400 y 900 nm; y finalmente la luz es desviada hacia abajo con un espejo (12) . Bajo éste se sitúa el reactor (2) , un recipiente de unos 150 mL de capacidad hecho de vidrio pyrex provisto de tapa hermética y termostatizado con agua, de modo que la luz entra en él por su cara superior. For this purpose, a laboratory photocatalytic reaction equipment has been developed, the configuration of which is shown in Figure 3. The equipment uses a 450 W power Xenon lamp (Spectratech brand) as a light source (8), which emits light in the range between the near ultraviolet and the middle infrared. After being collimated in the form of a horizontal parallel beam with a quartz lens (9), the light passes through a water bucket (10) with quartz windows, which acts as an infrared thermal radiation filter; then through a filter (11) wavelength selector (Andover brand) that only lets light with a wavelength in a range of about 70 nm in width around a nominal value A F of that wavelength pass through , the value of A F being chosen between 400 and 900 nm; and finally the light is turned down with a mirror (12). Under this is the reactor (2), a container of about 150 mL capacity made of pyrex glass provided with a tight lid and thermostated with water, so that light enters it through its upper face.
En el reactor se introducen 80 mg de polvo de sulfuro de indio In2S3, o del mismo material parcialmente sustituido por vanadio en una relación catiónica V:In¾l:9 (materiales ambos preparados en el laboratorio por el método descrito en el ya citado trabajo de Lucena et al.), junto con 80 mL de una disolución (3) acuosa de ácido fórmico HCOOH en concentración 1.5 mM, con pH ajustado a 2.5 mediante un tampón de fosfato sódico. El polvo se mantiene en suspensión en la disolución acuosa mediante un agitador magnético (4) . La disolución puede ser saturada con aire o con gas inerte mediante burbujeo del mismo (5) . El sistema incluye una jeringa (6) con la que puede tomarse cuando se desee una muestra de la suspensión (típicamente 1-1.5 mL cada vez) que es filtrada para separar el polvo, midiéndose a continuación en el líquido la concentración de HCOOH por espectrometría UV a una longitud de onda de 205 nm, en la cual absorbe luz sólo el HCOOH. Todo el conjunto se rodea de una envoltura opaca que asegura que el reactor no recibe luz ambiente del laboratorio durante el experimento . 80 mg of In 2 S 3 indium sulphide powder, or of the same material partially substituted by vanadium in a cationic ratio V: In¾l: 9 (materials both prepared in the laboratory by the method described above) are introduced into the reactor work of Lucena et al.), together with 80 mL of a solution (3) aqueous formic acid HCOOH in 1.5 mM concentration, with pH adjusted to 2.5 by means of a sodium phosphate buffer. The powder is kept in suspension in the aqueous solution by a magnetic stirrer (4). The solution can be saturated with air or inert gas by bubbling it (5). The system includes a syringe (6) with which a sample of the suspension (typically 1-1.5 mL each time) that is filtered to separate the powder can be taken, then measuring the concentration of HCOOH by spectrometry in the liquid UV at a wavelength of 205 nm, in which only HCOOH absorbs light. The entire assembly is surrounded by an opaque envelope that ensures that the reactor does not receive ambient light from the laboratory during the experiment.
En un experimento típico del método, tras mantener la suspensión en la oscuridad, agitada y saturada con aire, durante el tiempo necesario para asegurar que la concentración de HCOOH se mantiene estable (en este caso media hora) , se inicia la irradiación de la suspensión con la luz de la lámpara pasada por los filtros. En el momento inicial, y en otros posteriores, se toma con la jeringa una muestra de la suspensión y se analiza en ésta por el método ya dicho la concentración de HCOOH. La irradiación se mantiene durante un intervalo de varias horas, suficiente en este caso para que se transforme la mayor parte del HCOOH presente cuando hay reacción fotocatalítica . Los resultados de este experimento, realizado tanto para In2S3 como para ese sulfuro en que se ha sustituido parcialmente indio por vanadio, se resumen en la Figura 4. Como puede verse, la concentración de HCOOH disminuye con el tiempo a distinto ritmo según sea el valor de AF del filtro utilizado, y es diferente para ambos sólidos. Puede asumirse, como en la generalidad de los procesos fotocatalíticos de degradación de sustancias orgánicas en presencia de aire, que el proceso químico neto que se produce es el de la oxidación total: In a typical experiment of the method, after keeping the suspension in the dark, stirred and saturated with air, for the time necessary to ensure that the concentration of HCOOH remains stable (in this case half an hour), the irradiation of the suspension is started with the lamp light passed through the filters. At the initial moment, and in later ones, a sample of the suspension is taken with the syringe and the concentration of HCOOH is analyzed in it. Irradiation is maintained for a period of several hours, sufficient in this case for the majority of the HCOOH present to be transformed when there is a photocatalytic reaction. The results of this experiment, carried out for both In 2 S 3 and for that sulfide in which partially indium has been replaced by vanadium, are summarized in Figure 4. As can be seen, the concentration of HCOOH decreases over time at different rates according to be the value of A F of the filter used, and it is different for both solids. It can be assumed, as in the generality of the photocatalytic processes of degradation of organic substances in the presence of air, that the net chemical process that occurs is that of total oxidation:
HCOOH + ½ 02 → C02 + H20 siendo el proceso desencadenado por la transferencia de electrones fotogenerados a moléculas de oxigeno adsorbidas, para dar radicales Q>2~ muy reactivos, y por la transferencia al sólido de electrones desde moléculas de HCOOH, o desde iones OH~ de la disolución, generando de nuevo radicales reactivos. Ulteriores reacciones de estos radicales acaban dando como productos finales las citadas moléculas de CO2 y ¾0. El mecanismo exacto del proceso, de todas formas, es poco relevante para la validez y uso del método. HCOOH + ½ 0 2 → C0 2 + H 2 0 the process being triggered by the transfer of electrons photogenerated molecules adsorbed oxygen to give radicals Q> 2 ~ very reactive, and transfer to solid electrons from molecules HCOOH, or from ions OH- from the solution generating new reactive radicals. Further reactions of these radicals end up giving as final products the aforementioned CO 2 and ¾0 molecules. The exact mechanism of the process, however, is of little relevance to the validity and use of the method.
A partir de cada una de esas curvas puede obtenerse, midiendo su pendiente inicial, la constante de velocidad de la reacción, supuesto que sigue una ley cinética de pseudo- primer orden en la concentración de la molécula oxidada (HCOOH) tal como es habitual en las reacciones fotocataliticas . Dicha constante k, que mide la actividad fotocatalitica observada en el experimento, se representa en función del valor de AF del filtro utilizado; tal representación se recoge en la Figura 5, que también incluye los espectros de absorción de luz de los dos sólidos estudiados, determinados por técnicas de reflectancia difusa en el trabajo de Lucena et al. citado más arriba. From each of these curves, the initial velocity constant of the reaction can be obtained by measuring its initial slope, assuming that it follows a kinetic law of pseudo-first order in the concentration of the oxidized molecule (HCOOH) as usual in Photocatalytic reactions Said constant k, which measures the photocatalytic activity observed in the experiment, is represented as a function of the A F value of the filter used; Such representation is shown in Figure 5, which also includes the light absorption spectra of the two solids studied, determined by diffuse reflectance techniques in the work of Lucena et al. cited above.
Puede verse cómo para la muestra de In2S3 se tiene actividad fotocatalitica, y por tanto formación de pares de electrón y hueco utilizables en su superficie, para todo el intervalo de longitudes de onda que pueden ser absorbidas por el material (cuya anchura de bandgap, según el trabajo de K. Kambas, A. Anagnostopoulos, S. Ves, B. Ploss, J. Spyridelis; Phys . Stat. Sol. (b) 127, 1985, 201, es de unos 2.0 eV, correspondiente a una longitud de onda de 620 nm) . Eso serviría para mostrar que este material es capaz de actuar como absorbente de luz en células fotovoltaicas que usen luz de ese rango de longitudes de onda, si bien en el caso del In2S3 el estado de la técnica ya permite conocer esa capacidad por otros medios. It can be seen how for the In 2 S 3 sample there is photocatalytic activity, and therefore formation of usable pairs of electron and hole in its surface, for the entire range of wavelengths that can be absorbed by the material (whose width of bandgap, according to the work of K. Kambas, A. Anagnostopoulos, S. Ves, B. Ploss, J. Spyridelis; Phys. Stat. Sol. (b) 127, 1985, 201, is about 2.0 eV, corresponding to a 620 nm wavelength). That would serve to show that this material is capable of acting as a light absorber in photovoltaic cells that use light of that wavelength range, although in the In the case of In 2 S 3 the state of the art already allows to know that capacity by other means.
En la misma figura puede verse que en el caso del In2S3 parcialmente sustituido con vanadio el intervalo de longitudes de onda en que se produce reacción fotocatalitica se extiende hasta los 750 nm, en consonancia con el mayor intervalo de absorción de luz que muestra el espectro de este material, y que es debido a la característica de banda intermedia introducida en él por la sustitución con vanadio. El método permite comprobar pues que con este material es posible obtener electrones y huecos utilizables en procesos de transferencia electrónica interfacial, y por tanto eficiencia fotovoltaica, incluso cuando los fotones incidentes no tienen energía suficiente para producir el salto electrónico completo desde la banda de valencia a la banda de conducción. Se consigue inferir así la eficacia de la banda intermedia en este material para absorber eficazmente fotones en un rango mayor de longitudes de onda, y obtener así una eficiencia mejorada si se le usa como absorbente en un dispositivo fotovoltaico . In the same figure it can be seen that in the case of In 2 S 3 partially substituted with vanadium the range of wavelengths in which photocatalytic reaction occurs extends to 750 nm, in line with the greater range of light absorption shown the spectrum of this material, and that is due to the intermediate band characteristic introduced into it by vanadium replacement. The method thus allows to verify that with this material it is possible to obtain electrons and holes usable in interfacial electronic transfer processes, and therefore photovoltaic efficiency, even when the incident photons do not have enough energy to produce the complete electronic jump from the valence band to The driving band. It is thus possible to infer the efficiency of the intermediate band in this material to effectively absorb photons in a greater range of wavelengths, and thus obtain an improved efficiency if used as an absorber in a photovoltaic device.
Los mismos resultados muestran además que la actividad fotocatalitica que se tiene cuando se usan fotones con longitud de onda menor que 600 nm, es decir con energía mayor que la anchura del bandgap, es muy semejante en los dos materiales. Esto indica que la introducción de vanadio no da lugar a una recombinación adicional importante de los electrones con los huecos, por lo que no se produce una disminución de la fotoactividad por esa vía. Se obtiene así una información interesante sobre un aspecto importante del comportamiento que puede tener este nuevo material en una aplicación fotovoltaica .  The same results also show that the photocatalytic activity that occurs when photons with a wavelength less than 600 nm are used, that is to say with energy greater than the width of the bandgap, is very similar in both materials. This indicates that the introduction of vanadium does not lead to a significant additional recombination of electrons with the holes, so there is no decrease in photoactivity by that route. This gives interesting information about an important aspect of the behavior that this new material may have in a photovoltaic application.
Por tanto, utilizando el método de esta invención se consigue demostrar, sin necesidad de obtener el material en forma compacta y con superficie lisa ni de depositar sobre él contacto eléctrico metálico alguno, que el sulfuro de indio sustituido con vanadio es un absorbente de radiación idóneo para la construcción de un dispositivo fotovoltaico de banda intermedia con eficiencia mejorada. Therefore, using the method of this invention, it is possible to demonstrate, without the need to obtain the material in a compact form and with a smooth surface or to deposit on he metallic metallic contact some, that vanadium substituted indium sulfide is a suitable radiation absorber for the construction of an intermediate band photovoltaic device with improved efficiency.

Claims

RE IVINDICACIONES RE IVINDICATIONS
1. Un método para determinar las propiedades otovoltaicas de materiales sólidos susceptibles de actuar como absorbentes de luz en dispositivos fotovoltaicos, caracterizado por que se realiza mediante una reacción fotocatalitica y comprende al menos las siguientes etapas: a) poner en contacto el material sólido absorbente de luz con un fluido que contiene al menos una especie química susceptible de reaccionar por transferencia electrónica con dicho material sólido; 1. A method to determine the otovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices, characterized in that it is carried out through a photocatalytic reaction and includes at least the following steps: a) putting the solid light-absorbing material in contact with light with a fluid that contains at least one chemical species capable of reacting by electronic transfer with said solid material;
b) irradiar el material sólido al menos una vez, mientras está en contacto con el fluido, con un haz de luz que contiene al menos una longitud de onda seleccionada dentro del intervalo del espectro solar comprendido entre 350 y 2000 nm; y b) irradiating the solid material at least once, while it is in contact with the fluid, with a beam of light containing at least one wavelength selected within the range of the solar spectrum between 350 and 2000 nm; and
c) determinar mediante análisis químico y/o espectroscópico del fluido la variación de la concentración de la o las especies químicas susceptibles de reaccionar por transferencia electrónica con el material sólido, y/o la presencia y concentración de al menos un producto resultante de la reacción de transferencia electrónica entre el material sólido y la o las especies químicas citadas. c) determine by chemical and/or spectroscopic analysis of the fluid the variation in the concentration of the chemical species capable of reacting by electronic transfer with the solid material, and/or the presence and concentration of at least one product resulting from the reaction. of electronic transfer between the solid material and the aforementioned chemical species.
2. El método según la reivindicación 1, donde el material sólido es un material de banda intermedia. 2. The method according to claim 1, wherein the solid material is an intermediate band material.
3. El método según la reivindicación 1, donde el material sólido es a su vez una combinación de un material absorbente de luz y de uno o más compuestos superficiales transmisores de portadores con energía determinada, donde dicha combinación es susceptible de emplearse en un dispositivo fotovoltaico que aprovecha portadores calientes . 3. The method according to claim 1, wherein the solid material is in turn a combination of a light-absorbing material and one or more carrier-transmitting surface compounds with a given energy, where said combination can be used in a photovoltaic device. that takes advantage of hot carriers.
4. El método según una cualquiera de las reivindicaciones 1 ó 2, donde el material se encuentra en forma de polvo. 4. The method according to any one of claims 1 or 2, wherein the material is in powder form.
5. El método según una cualquiera de las reivindicaciones 1 a 4, donde el material sólido es un material poroso. 5. The method according to any one of claims 1 to 4, wherein the solid material is a porous material.
6. El método según una cualquiera de las reivindicaciones 1 a 5, donde el fluido es un gas que contiene la o las especies químicas a reaccionar con el material sólido. 6. The method according to any one of claims 1 to 5, wherein the fluid is a gas that contains the chemical species(s) to react with the solid material.
7. El método según una cualquiera de las reivindicaciones 1 a 5, donde el fluido es un líquido que contiene la o las especies químicas a reaccionar con el material sólido. 7. The method according to any one of claims 1 to 5, wherein the fluid is a liquid that contains the chemical species(s) to react with the solid material.
8. El método según una cualquiera de las reivindicaciones 1 a 7, donde el material sólido se encuentra depositado sobre la superficie de un sustrato sólido, y es irradiado con el haz de luz mientras se encuentra en contacto con el fluido que contiene la especie o especies químicas susceptibles de reaccionar mediante transferencia electrónica. 8. The method according to any one of claims 1 to 7, wherein the solid material is deposited on the surface of a solid substrate, and is irradiated with the light beam while in contact with the fluid containing the species or chemical species capable of reacting by electronic transfer.
9. El método según la reivindicación 7, donde el material sólido es irradiado con el haz de luz mientras se encuentra en suspensión dentro de una disolución líquida que contiene la especie o especies químicas susceptibles de reaccionar mediante transferencia electrónica con el material. 9. The method according to claim 7, wherein the solid material is irradiated with the light beam while it is in suspension within a liquid solution containing the chemical species or species capable of reacting by electronic transfer with the material.
10. El método según una cualquiera de las 1 a 9, donde el haz de luz se compone de un intervalo continuo de longitudes de onda comprendido entre 350 nm y 2000 nm, incluidos ambos límites. 10. The method according to any one of 1 to 9, where the light beam is composed of a continuous range of wavelengths between 350 nm and 2000 nm, including both limits.
11. El método según la reivindicación 10, donde el intervalo continuo de longitudes de onda está comprendido entre 400 nm y 1500 nm, incluidos ambos límites. 11. The method according to claim 10, wherein the continuous range of wavelengths is between 400 nm and 1500 nm, including both limits.
12. El método según una cualquiera de las reivindicaciones 1 a 9, donde el haz de luz se compone de un intervalo de longitudes de onda con una anchura igual o inferior a 50 nm. 12. The method according to any one of claims 1 to 9, wherein the light beam is composed of a range of wavelengths with a width equal to or less than 50 nm.
13. El método según una cualquiera de las reivindicaciones 1 a 9, donde el haz de luz se compone de una única longitud de onda discreta. 13. The method according to any one of claims 1 to 9, wherein the light beam is composed of a single discrete wavelength.
1 . El método según una cualquiera de las reivindicaciones 12 ó 13, donde el material sólido y el fluido son irradiados más de una vez, siendo diferente en cada irradiación la longitud de onda discreta o el valor medio del intervalo de longitudes de onda que componen el haz de luz . 1 . The method according to any one of claims 12 or 13, wherein the solid material and the fluid are irradiated more than once, the discrete wavelength or the average value of the range of wavelengths that make up the light beam being different in each irradiation.
15. Uso de un dispositivo de medida de actividad otocatalitica para la medición de propiedades otovoltaicas de un material sólido susceptible de actuar como absorbente de luz en dispositivos otovoltaicos de acuerdo con el método descrito en una cualquiera de las reivindicaciones 1 a 14. 15. Use of an otocatalytic activity measurement device for measuring otovoltaic properties of a solid material capable of acting as a light absorber in otovoltaic devices according to the method described in any one of claims 1 to 14.
16. Uso según la reivindicación anterior, donde el dispositivo de reacciones fotocataliticas comprende: 16. Use according to the previous claim, wherein the photocatalytic reaction device comprises:
a) un reactor químico donde se alojan el material sólido y el fluido con el que está en contacto, y donde tiene lugar la reacción fotocatalitica; a) a chemical reactor where the solid material and the fluid with which it is in contact are housed, and where the photocatalytic reaction takes place;
b) medios de irradiación, que comprenden al menos una fuente de luz para irradiar el material sólido mientras está en contacto con el fluido; b) irradiation means, comprising at least one light source for irradiating the solid material while it is in contact with the fluid;
c) medios para determinar química y/o espectroscópicamente la variación y concentración de la o las especies susceptibles de reaccionar con el material sólido, y/o la presencia y concentración de productos resultantes de la reacción del material sólido con la o las especies químicas durante la irradiación . c) means to determine chemically and/or spectroscopically the variation and concentration of the species or species capable of reacting with the solid material, and/or the presence and concentration of products resulting from the reaction of the solid material with the chemical species or species during irradiation.
17. Uso según la reivindicación anterior, donde los medios de irradiación comprenden medios seleccionadores de longitud de onda del haz de luz. 17. Use according to the preceding claim, wherein the irradiation means comprise means for selecting the wavelength of the light beam.
PCT/ES2012/070701 2011-10-11 2012-10-09 Method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices WO2013053967A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131635 2011-10-11
ES201131635A ES2407929B1 (en) 2011-10-11 2011-10-11 METHOD FOR DETERMINING THE PHOTOVOLTAIC PROPERTIES OF SOLID MATERIALS SUSCEPTIBLE TO ACT LIKE ABSORBENTS OF LIGHT IN PHOTOVOLTAIC DEVICES.

Publications (2)

Publication Number Publication Date
WO2013053967A2 true WO2013053967A2 (en) 2013-04-18
WO2013053967A3 WO2013053967A3 (en) 2013-06-06

Family

ID=48082607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070701 WO2013053967A2 (en) 2011-10-11 2012-10-09 Method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices

Country Status (2)

Country Link
ES (1) ES2407929B1 (en)
WO (1) WO2013053967A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261533A (en) * 2019-07-25 2019-09-20 吉林工程技术师范学院 A kind of test macro for photocatalytic pollutant degradation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884690B (en) * 2014-03-10 2016-03-23 湖南大学 One-dimensional nano structure three-dimensional microcell photovoltaic and luminous characterizing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285816B1 (en) * 1999-04-13 2001-09-04 Wisconsin Alumni Research Foundation Waveguide
US20030228727A1 (en) * 2002-05-07 2003-12-11 Guerra John Michael Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
WO2008102351A2 (en) * 2007-02-20 2008-08-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Hybrid metal-semiconductor nanoparticles and methods for photo-inducing charge separation and applications thereof
US20080236652A1 (en) * 2006-12-19 2008-10-02 Defries Anthony Method or means to use or combine plasmonic, thermal, photovoltaic or optical engineering
US20080271778A1 (en) * 2006-11-16 2008-11-06 Defries Anthony Use of electromagnetic excitation or light-matter interactions to generate or exchange thermal, kinetic, electronic or photonic energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285816B1 (en) * 1999-04-13 2001-09-04 Wisconsin Alumni Research Foundation Waveguide
US20030228727A1 (en) * 2002-05-07 2003-12-11 Guerra John Michael Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
US20080271778A1 (en) * 2006-11-16 2008-11-06 Defries Anthony Use of electromagnetic excitation or light-matter interactions to generate or exchange thermal, kinetic, electronic or photonic energy
US20080236652A1 (en) * 2006-12-19 2008-10-02 Defries Anthony Method or means to use or combine plasmonic, thermal, photovoltaic or optical engineering
WO2008102351A2 (en) * 2007-02-20 2008-08-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Hybrid metal-semiconductor nanoparticles and methods for photo-inducing charge separation and applications thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOSE MIGUEL DONA RODRIGUEZ: 'Dep6sito quimico in disolucion and caracterizacion of laminas delgadas of CdS, ZnS, ZnSe and Cdl-xZnxS para aplicaciones fotovoltaicas', [Online] 11 September 2010, Retrieved from the Internet: <URL:http:/lacceda.ulpgc.eslbitstream/1053/ 9lll114141.pdf , http://biblioteca.universia.net/html bura/ficha/params/title/ deposito-quimico-disolucion-caracterizacion -laminas-delgadas-cds-zns-znse- cdl/id/49612352.html> [retrieved on 2013-01-31] *
QIDONG ZHAO ET AL.: 'Size- and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods' J. PHYS. CHEM., [Online] vol. 111, 01 September 2007, CHINA, pages 17136 - 17145, XP055070834 Retrieved from the Internet: <URL:http://lib.semi.ac.cn:8080/tsh/dzzy/ws qk/selected%20papers/ Journal%20of%20physical%20chemistry%20C/111 -17136.pdf> [retrieved on 2013-01-31] *
SARA A. BILMES ET AL.: 'Efiminacion of contaminantes by fotocatalisis heterogenea' FOTOCATALISIS ASISTIDA POR POTENCIAL, [Online] 2005, ISBN: 8478344896 Retrieved from the Internet: <URL:http://www.cnea.gov.ar/xxi/ambiental/C YTED/14cap08.pdf and http://biblio.psa.es:8000/cgi-bin/koha/opac - detail.pl?biblionumber=158&shelfbrowse itemnumber=173#shelfbrowser> [retrieved on 2013-01-31] *
SORAPONG PAVASUPREE ET AL.: 'Structural, Photocatalytic Activity and Photovoltaic Properties of Mesoporous Anatase Titania Nanopowders Prepared by Hydrothermal Method', [Online] 23 November 2006, Retrieved from the Internet: <URL:http://www.jgsee.kumutt.ac.th/seelcd/f ile/A-010.pdf>cd/file/A-OiO. df> [retrieved on 2013-01-31] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261533A (en) * 2019-07-25 2019-09-20 吉林工程技术师范学院 A kind of test macro for photocatalytic pollutant degradation

Also Published As

Publication number Publication date
ES2407929R2 (en) 2013-06-25
WO2013053967A3 (en) 2013-06-06
ES2407929B1 (en) 2014-04-25
ES2407929A2 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
Yan et al. Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots/TiO2 nanotube arrays using femtosecond transient absorption spectroscopy
Zhou et al. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method
Sarkar et al. Photoselective excited state dynamics in ZnO–Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells
Li et al. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array
Wu et al. Efficient visible light formaldehyde oxidation with 2D pn heterostructure of BiOBr/BiPO4 nanosheets at room temperature
Dillon et al. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@ TiO 2 core–shell nanostructures
Li et al. Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting
Jacobsson et al. Antireflective coatings of ZnO quantum dots and their photocatalytic activity
Kokane et al. Photocatalytic performance of Pd decorated TiO2–CdO composite: Role of in situ formed CdS in the photocatalytic activity
Weng et al. Composition optimization of ZnO-based photocatalyst arrays by scanning electrochemical microscopy and the characterization of efficient photocatalysts
Sun et al. Ultrasensitive photoelectrochemical sensing of H2S based on in-situ formation of multiple heterojunctions
Tang et al. Electromagnetic mechanisms or chemical mechanisms? Role of interfacial charge transfer in the plasmonic metal/semiconductor heterojunction
Rajbhar et al. Broad beam-induced fragmentation and joining of tungsten oxide nanorods: implications for nanodevice fabrication and the development of fusion reactors
Zhang et al. Room-temperature light-activated chemical sensors for gas monitoring and applications: a review
Geng et al. Photoexcited NO2 enables accelerated response and recovery kinetics in light-activated NO2 gas sensing
Zhang et al. Construction of Zn0. 2Cd0. 8S/g-C3N4 nanosheet array heterojunctions toward enhanced photocatalytic reduction of CO2 in visible light
Yu et al. In situ reversible assembly of atomic interfacial structure in BiOI/Bi5O7I pn heterojunctions to promote visible-light photocatalysis
WO2013053967A2 (en) Method for determining the photovoltaic properties of solid materials capable of acting as light absorbers in photovoltaic devices
Wang et al. Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure
Ma et al. Surface photovoltage inversion and photocatalytic properties of PbI 2 microcrystals under sub-bandgap illumination
US20220339616A1 (en) Photocatalytic reactor with well-defined illumination area enabling accurate measurement of photocatalytic efficiency
Kondo et al. Kelvin probe imaging of photo-injected electrons in metal oxide nanosheets from metal sulfide quantum dots under remote photochromic coloration
Jo et al. Ultrathin silica layers as separation membranes for artificial photosynthesis
Sadeghfar et al. The kinetic models in electron transfer processes in colloidal semiconductor photocatalysis
Shao et al. Comparing defect-assisted interfacial charge transfer in CdS/PSA and CdS/TiO2NTAs nanoheterojunctions for enhanced photodegradation and biosensing

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 12839559

Country of ref document: EP

Kind code of ref document: A2