WO2013053333A1 - 一种智能天线及其波束调整方法 - Google Patents

一种智能天线及其波束调整方法 Download PDF

Info

Publication number
WO2013053333A1
WO2013053333A1 PCT/CN2012/082877 CN2012082877W WO2013053333A1 WO 2013053333 A1 WO2013053333 A1 WO 2013053333A1 CN 2012082877 W CN2012082877 W CN 2012082877W WO 2013053333 A1 WO2013053333 A1 WO 2013053333A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart antenna
vibrator
array element
array
degrees
Prior art date
Application number
PCT/CN2012/082877
Other languages
English (en)
French (fr)
Inventor
李晓明
董健
刘旸
王超
徐长胜
张辉
郝益刚
李卓
Original Assignee
中国移动通信集团设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团设计院有限公司 filed Critical 中国移动通信集团设计院有限公司
Publication of WO2013053333A1 publication Critical patent/WO2013053333A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a smart antenna and a beam adjustment method thereof. Background technique
  • the smart antenna used in the mobile communication wireless network belongs to a multi-array antenna.
  • the arrangement of the array element and the vibrator in the existing smart antenna is as shown in FIG. 1.
  • the smart antenna includes a plurality of horizontally arranged vertical array elements, each array element. It consists of a plurality of oscillators arranged in parallel and powered in parallel. Each array element is connected to an output channel of an AP (signal amplifier).
  • the eight-channel smart antenna is illustrated in Figure 1. Refer to Figure 2 for the beam field diagram of the traditional smart antenna in the horizontal and vertical directions. The curve on the right in Figure 2 indicates the horizontal coverage, and the curve on the upper indicates the vertical coverage. As can be seen from Figure 2, the smart antenna is a narrow beam in the vertical direction, and the beam width is usually only 7 to 8 degrees.
  • Smart antennas can operate in two modes of operation: broadcast beam mode and traffic beam mode.
  • the broadcast beam covers the entire cell, so that all mobile terminals in the cell always keep in contact with the base station;
  • the service beam is a narrow beam (referring to the horizontal direction), which can be scanned within the coverage of the broadcast beam, and the energy is concentrated and directed to the communication mobile terminal, which can effectively reduce Thousands of disturbances, increase capacity.
  • Figure 3 and Figure 4 show the broadcast beam field diagram and the service beam field diagram of the traditional smart antenna in the horizontal direction.
  • Embodiments of the present invention provide a smart antenna and a beam adjustment method thereof, which are used to solve a wireless network coverage problem in a high-rise building dense area.
  • a smart antenna provided by an embodiment of the present invention includes a plurality of longitudinally arranged horizontal array elements, each array element being arranged by a plurality of array elements Composed of a vibrator that is powered in parallel on a horizontal line, each array element is connected to an output channel of a signal amplifier; the beam width of the smart antenna in the horizontal direction is 10 to 170 degrees, and the broadcast beam width in the vertical direction is From 10 to 170 degrees, the service beamwidth in the vertical direction does not exceed 90 degrees.
  • the beam width in the vertical direction is adjusted by changing the amplitude and phase of the excitation signal of each element, and the beam width in the horizontal direction is adjusted by changing the phase of the excitation signal of each of the elements in the element.
  • a plurality of vibrators are arranged on a horizontal line to form a horizontal array element, and a plurality of horizontal array elements are vertically arranged to form a smart antenna, which can realize vertical scanning of the service beam and in a horizontal direction.
  • the upper beam is wide beam, which achieves good coverage of high-rise buildings and ensures wireless communication in high-rise buildings.
  • the beam adjustment method of the smart antenna provided by the embodiment of the present invention has a large coverage in the vertical direction and can be adjusted by changing the magnitude and phase of the excitation signals of each array element, and the coverage in the horizontal direction is large and can be Fine-tuning is performed by changing the phase of the excitation signal of the vibrator in the array element, so that high-rise buildings of different sizes and shapes can be well covered.
  • FIG. 1 is a schematic diagram showing the arrangement of array elements and vibrators in a conventional smart antenna
  • FIG. 2 is a beam field diagram of a conventional smart antenna in a horizontal direction and a vertical direction;
  • FIG. 3 is a broadcast beam field diagram of a conventional smart antenna in a horizontal direction
  • FIG. 4 is a service beam field diagram of a conventional smart antenna in a horizontal direction
  • FIG. 5 is a schematic diagram of setting up a vibrator and an array element of a smart antenna according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing a spatial position of a smart antenna covering a target high-rise building according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a wave path difference of receiving electromagnetic waves by each array element of the smart antenna according to an embodiment of the present invention
  • FIG. 8 is a structural diagram of a smart antenna model having four rows and four columns of vibrators according to an embodiment of the present invention.
  • FIG. 9 is a simulation result of a broadcast beam of the smart antenna shown in FIG. 8 in a vertical direction according to an embodiment of the present invention
  • FIG. 10 is a simulation result of a service beam of the smart antenna shown in FIG. 8 in a vertical direction according to an embodiment of the present invention
  • 11 is a schematic diagram of a wave path difference of electromagnetic waves emitted by each vibrator in an array element of a smart antenna according to an embodiment of the present invention
  • FIG. 12 is a simulation result of a broadcast beam of the smart antenna shown in FIG. 8 in a horizontal direction according to an embodiment of the present invention
  • 13 is a simulation result of a service beam of the smart antenna shown in FIG. 8 in a horizontal direction according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of adjusting a horizontal beam field pattern to a width direction according to an embodiment of the present invention
  • 15 is a schematic diagram of adjusting a horizontal beam field pattern to a narrow direction according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a smart antenna model used for studying the horizontal width adjustment of a broadcast beam according to an embodiment of the present invention
  • FIG. 17 is a simulation result of initial weight of a horizontal beam of the smart antenna shown in FIG. 13 (before adjustment) according to an embodiment of the present invention
  • the embodiments of the present invention provide a smart antenna used in a mobile communication wireless network, which is used to solve the problem of wireless network coverage in a high-rise building dense area, and accelerates the implementation of deep wireless network coverage of the TD-SCDMA system and the TD-LTE system. Provide the basis.
  • the smart antenna provided by the embodiment of the present invention includes a plurality of longitudinally arranged horizontal array elements, each of which is composed of a plurality of vibrators arranged in a horizontal straight line and powered in parallel, and each array element is connected.
  • An output channel of a ⁇ (signal amplifier); the smart antenna has a beamwidth of 30 to 150 degrees in the horizontal direction, a broadcast beamwidth of 15 to 165 degrees in the vertical direction, and a service beamwidth in the vertical direction does not exceed 20 degrees.
  • the range of the beam width of the smart antenna in the horizontal direction, the broadcast beam width in the vertical direction, and the service beam width in the vertical direction are only preferred embodiments of the present invention.
  • the range of the beam width of the smart antenna in the horizontal direction, the broadcast beam width in the vertical direction, and the service beam width in the vertical direction are not limited to the above range.
  • the beamwidth of the smart antenna in the horizontal direction may also include 10 to 30 degrees and 150 to 170 degrees; the broadcast beamwidth in the vertical direction may also include 10 to 15 degrees and 165 to 170 degrees in the vertical direction.
  • the service beamwidth can also include 20 to 90 degrees.
  • the vibrator constituting the array element uses a vertically polarized vibrator, and the vibrator of the smart antenna maintains a vertical excitation mode, which not only facilitates the propagation of electromagnetic waves on the surface of the earth, but also the direction of the mobile terminal antenna and the base station antenna of the mobile communication system. Matching, and meeting the requirements of time division multiplexing such as TD-SCDMA system and TD-LTE system.
  • the vibrators that make up the array can also use dual-polarized oscillators.
  • the number of array elements of the smart antenna is greater than 0 and less than 10, and the number of vibrators included in each array element is equal. More than 0 is less than 10; the spacing of adjacent vibrators in the same array element is greater than 0 and less than or equal to ⁇ . Preferably, the spacing of adjacent vibrators in the same array element is ⁇ /2; the spacing of corresponding vibrators in adjacent array elements is greater than 0 is less than or equal to 2 ⁇ ; in the present application, ⁇ represents the wavelength of the wireless signal received and transmitted by the smart antenna.
  • the number of array elements of the smart antenna is greater than 0 and less than 10, and the corresponding row number in FIG. 5 is greater than 0 and less than 10; each array element includes equal number of vibrators and greater than 0 and less than 10, and the corresponding number of columns in FIG. The value is greater than 0 and less than 10.
  • the smart antenna includes a back baffle, and the back baffle is disposed at the rear of the vibrator array, and the distance between the back baffle and the plane of the vibrator array is greater than 0 and less than ⁇ , preferably, the rear back
  • the distance between the board and the plane of the vibrator array is ⁇ /4; the size of the back baffle exceeds the size of the vibrator array, and the margin is left around, and the margin is between 0 and ⁇ , that is, after The length of the edge of the back baffle beyond the edge of the array of vibrators is greater than zero and less than ⁇ .
  • a side plate is usually arranged around the back baffle.
  • the width of the side plate is greater than 0 and less than ⁇ , and the angle between the side plate and the back baffle is greater than 0 degrees and less than or equal to 90 degrees.
  • the beam adjustment method of the smart antenna includes:
  • the excitation signal, ie the input electrical signal, of each array element (transverse direction) is set with different weights, including amplitude and phase, physically implemented as currents with different phases.
  • the adjustment of the weight can meet the coverage requirement of wide coverage.
  • the adjustment of the weight can be changed into a narrow beam, thereby reducing the interference between users.
  • the smart antenna provided by the embodiment of the present invention retains two working modes of a broadcast beam and a service beam, and both the broadcast beam and the service beam refer to a beam field map in a vertical direction.
  • the smart antenna can provide a wider broadcast beam in the vertical direction, thereby improving the coverage of high-rise buildings from the lower layer to the upper layer, and providing a narrower service beam in the vertical direction, and the service beam is used to track the mobile terminal.
  • the smart antenna can provide a wide beam in the horizontal direction, thereby ensuring the full coverage of the horizontal direction of the high-rise building.
  • the smart antenna provided by the embodiment of the present invention can be installed on the building B opposite to the target high-rise building to cover the target high-rise building A. It is recommended to install the smart antenna in a lower position to reduce electromagnetic pollution to the environment.
  • the smart antenna provided by the embodiment of the present invention covers the target high-rise building
  • the smart antenna with the appropriate horizontal beam width can be selected according to the actual building width of the target high-rise building, and the smart with manual phase adjustment function can also be used.
  • Antenna adjust the direction angle and beamwidth of the smart antenna to a suitable range, to avoid the beam being too narrow, causing under-coverage or beam over-width to cause interference to other cells.
  • a phase shifter is provided between each array element and the output channel of the signal amplifier that drives the array element.
  • the shape and deflection direction of the upward broadcast beam field map ensure the coverage effect, and the adjustment method is to modify the excitation signals of each array element.
  • the smart antenna After receiving the signal transmitted by the mobile terminal, the smart antenna adjusts the excitation signals of each array element according to the floor where the mobile terminal is located, so that the service beam is directed to the mobile terminal to implement vertical scanning.
  • the relative position between the vibrators is fixed, that is, the phase and amplitude relationship of the vibrators in each array element is determined. of.
  • Each array element is connected to an AP's output channel to form a multi-channel smart antenna.
  • the amplitude and phase of the electrical signals of each channel are independent, and the electromagnetic waves of the smart antenna as a whole are the result of superposition of the electrical signals of the individual array elements.
  • each array element in the vertical direction, each array element can be considered similar to the behavior of the vibrator.
  • the black dots in Fig. 7 represent array elements, and the array elements are arranged from bottom to top.
  • the lowest array element number is 0, which is sequentially numbered sequentially.
  • the electromagnetic waves transmitted from a distance (which can be regarded as plane waves) have different distances when they reach each array element in the airspace, and the incident direction perpendicular to the plane of the vibrator array is 0 degree, clockwise calculation Angle of incidence wave ⁇
  • Equation [1]
  • denotes a gain constant
  • s (t) denotes a complex envelope signal
  • B n represents the amplitude and phase of the input signal of the n-th element excitation signal, as shown in the formula [4]: N
  • the appropriate vertical direction can be selected by changing the excitation signal of each array element, that is, the weight of the input electrical signal (including amplitude and phase).
  • the beam shape and direction are used as the vertical direction broadcast beam field map. Since the broadcast beam is to cover every mobile terminal in all coverage areas, the weight selection must be such that the beam width is adapted to the coverage area.
  • the smart antenna can be applied according to the direction and shape of the mobile terminal, and the corresponding weight is applied to the de-wave as the variable vertical direction service beam field map. Since only one mobile terminal direction is used at this time, the corresponding weight is used. It must be the narrowest beam of the smart antenna in this direction.
  • the smart antenna includes four horizontally arranged horizontal array elements, and each array element is composed of four vertical elements.
  • a polarized vibrator consisting of a plane parallel to the ground and a plane perpendicular to the ground.
  • FIG. 9 and FIG. 10 wherein FIG. 9 is a broadcast beam field diagram of the smart antenna in the vertical direction, FIG. 10 is A business beam field diagram of a smart antenna in the vertical direction.
  • the first vibrator on the right side of the bottom row is numbered 0, which is sequentially numbered to the left.
  • the antenna transmits electromagnetic waves to the far side (which can be regarded as a plane wave in the far side), and reaches the far-field mobile terminal in the airspace (which can be regarded as a point).
  • the distances of the vibrators in the array elements are different, perpendicular to The direction of the plane of the vibrator array is 0 degree, and the angle of the transmitted wave is calculated clockwise.
  • A represents the gain constant
  • s(t) represents the complex envelope signal
  • phase of the m-vibrator excitation signal that is, the input electrical signal
  • FIG. 12 is a broadcast beam field diagram of the smart antenna in the horizontal direction
  • FIG. 13 is an intelligent diagram.
  • the business beam field diagram of the antenna in the horizontal direction It can be seen that maintaining a wide coverage in the horizontal direction facilitates coverage of the entire target high-rise building. Since the service beam scanning is involved, that is, the excitation signal varies with the mobile terminal, there is a slight change in the beam field pattern in the horizontal direction.
  • the radiation unit sequentially excites the phase difference ⁇ from the vibrator through the phase shifter, and can change the feeding phase of each radiating unit, and the composite signal of each radiating unit realizes that the beam width in the horizontal direction of the smart antenna is widened or narrowed.
  • the phase difference ⁇ is successively decreased from the intermediate vibrator (M/2-1, M/2+1) to the vibrators at both ends, so that the beam width of the smart antenna in the horizontal direction is widened; in Fig. 15, The phase difference ⁇ is sequentially increased from the intermediate vibrator (M/2-1, M/2+1) to the vibrators at both ends, so that the beam width of the smart antenna in the horizontal direction is narrowed.
  • the j-th vibrator of each sub-array simultaneously excites the same phase, and the simultaneous simulation requirements for the plurality of sub-arrays are high, and the horizontal beam beam-modulating effect and the single sub-multiple array smart antennas are simultaneously performed.
  • the array smart antenna tends to be consistent, so the simulation in this application uses a single sub-array smart antenna composed of 8 vibrators for simulation.
  • the simulation results are shown in Figures 17, 18 and 19. It can be seen from the simulation results that by adjusting the phase of the excitation signal of each vibrator in the sub-array, the effect of changing the beam width of the smart antenna in the horizontal direction can be achieved.
  • the phase difference ⁇ is generally greater than 0 degrees and less than or equal to 15 degrees.
  • a plurality of vibrators are arranged on a horizontal line to form a horizontal array element, and a plurality of horizontal array elements are vertically arranged to form a smart antenna, which can realize vertical scanning of the service beam and in a horizontal direction.
  • the upper beam is wide beam, which achieves good coverage of high-rise buildings and ensures wireless communication in high-rise buildings.
  • the beam adjustment method of the smart antenna provided by the embodiment of the present invention has a large coverage in the vertical direction and can be adjusted by changing the magnitude and phase of the excitation signals of each array element, and the coverage in the horizontal direction is large and can be Fine-tuning is performed by changing the phase of the excitation signal of the vibrator in the array element, so that high-rise buildings of different sizes and shapes can be well covered.
  • the smart antenna and the beam adjusting method thereof provided by the embodiments of the present invention can be arranged from the bottom to the top by using a change of the structure of the vibrator and the array element.
  • the amplitude of the excitation signal of each array element can be changed.
  • the value and the phase are adjusted to adjust the width of the vertical direction broadcast beam adapted to the height of the high-rise building; for the service, the amplitude and phase of each array element excitation signal can be set according to the direction of the service wave to obtain the direction of the service beam de-wave, thereby Achieve the effects of reducing interference, increasing capacity, and reducing energy consumption.
  • the smart antenna and the beam adjusting method thereof provided by the embodiments of the present invention provide a smart antenna to implement a method for covering a dense area of a high-rise building. Compared with the traditional indoor distribution, a plurality of adjusting technologies are provided, and the requirements for the installation location are reduced, thereby reducing Difficulties in construction, saving man-hours, reducing the need for installation and reinforcement, and saving materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种智能天线及其波束调整方法,用以解决高层建筑密集区域内的无线网络覆盖问题。所述智能天线包括多个纵向排列的横向阵元,每个阵元由多个排列在一条水平直线上且并联供电的振子组成,每个阵元连接一个信号放大器的输出通道;所述智能天线在水平方向上的波束宽度为10至170度,在垂直方向上的广播波束宽度为10至170 度,在垂直方向上的业务波束宽度不超过90度。所述智能天线进行波束调整时,通过改变各阵元的激励信号的幅度和相位调整垂直方向上的波束宽度,通过改变阵元中各振子的激励信号的相位调整水平方向上的波束宽度。

Description

一种智能天线及其波束调整方法
本申请要求在 2011年 10月 13日提交中国专利局、 申请号为 201110310283.6、 发明名 称为"一种智能天线及其波束调整方法"的中国专利申请的优先权,其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种智能天线及其波束调整方法。 背景技术
移动通信无线网络中使用的智能天线属于多阵元天线, 现有智能天线中阵元和振子的 摆放方式如图 1所示, 智能天线包括多个横向排列的纵向阵元, 每个阵元由多个轴向串列 摆放且并联供电的振子组成, 每个阵元连接一个 AP (信号放大器) 的输出通道, 图 1 中 以八通道智能天线为例进行说明。 传统智能天线在水平方向和垂直方向上的波束场图请参 见图 2, 图 2中右边的曲线表示水平覆盖范围, 上方的曲线表示垂直覆盖范围。 从图 2中 可以看出, 该智能天线在垂直方向上是窄波束, 波束宽度通常只有 7至 8度。
智能天线可工作在两种工作模式: 广播波束模式和业务波束模式。 广播波束覆盖整个 小区, 使小区内所有移动终端始终与基站保持联系; 业务波束为窄波束(指水平方向), 可在广播波束覆盖范围内扫描, 其能量集中并指向通信移动终端, 可有效降低千扰, 提高 容量。 图 3和图 4分别是传统智能天线在水平方向上的广播波束场图和业务波束场图。
近年来,随着移动用户普及率的提高,移动用户使用手机等移动终端的场合越来越广。 随着城市化的飞速进展, 许多城区内都出现了大量高层建筑密集的商业区和住宅小区, 现 有的移动通信无线网络不能对高层建筑密集区域进行良好覆盖, 导致移动用户在高层建筑 密集区域内使用移动终端时经常遇到无线信号不好、 无法接通或通话盾量差等情况。
目前, 为了解决高层建筑密集区域内的无线网络覆盖问题, 技术人员需要进行大量的 网络优化工作, 例如增加基站数量或者增加天线数量, 导致网络维护困难。 另一种解决方 案是在高层建筑物内安装分布天线 (即多点布放天线), 通过众多吸顶天线实现对高层建 筑物的覆盖。 该方案的缺点是在实施过程中需要业主配合, 工程建设和维护难度大, 常出 现因业主限制而无法施工的现象。 发明内容
本发明实施例提供一种智能天线及其波束调整方法, 用以解决高层建筑密集区域内的 无线网络覆盖问题。
本发明实施例提供的智能天线, 包括多个纵向排列的横向阵元, 每个阵元由多个排列 在一条水平直线上且并联供电的振子组成, 每个阵元连接一个信号放大器的输出通道; 所 述智能天线在水平方向上的波束宽度为 10至 170度, 在垂直方向上的广播波束宽度为 10 至 170度, 在垂直方向上的业务波束宽度不超过 90度。
本发明实施例提供的上述智能天线的波束调整方法, 包括:
通过改变各阵元的激励信号的幅度和相位调整垂直方向上的波束宽度, 通过改变阵元 中各振子的激励信号的相位调整水平方向上的波束宽度。
本发明实施例提供的智能天线, 将多个振子排列在一条水平直线上组成横向阵元, 并 将多个横向阵元纵向排列组成智能天线, 能够实现业务波束的垂直方向扫描, 并且在水平 方向上为宽波束, 从而实现了对高层建筑物的良好覆盖, 保证了高层建筑密集区域内的无 线通讯效果。
本发明实施例提供的智能天线的波束调整方法, 在垂直方向上的覆盖范围较大且可以 通过改变各阵元激励信号的大小和相位来进行调整, 在水平方向上的覆盖范围较大且可以 通过改变阵元中振子的激励信号的相位来进行微调 , 因而能够很好地覆盖不同大小和形状 的高层建筑物。
本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中变得显 而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实现和获得。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一部分, 本发明的 示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为传统智能天线中阵元和振子的摆放方式示意图;
图 2为传统智能天线在水平方向和垂直方向上的波束场图;
图 3为传统智能天线在水平方向上的广播波束场图;
图 4为传统智能天线在水平方向上的业务波束场图;
图 5为本发明实施例中智能天线的振子和阵元设置示意图;
图 6为本发明实施例中智能天线覆盖目标高层建筑物时的空间位置示意图; 图 7为本发明实施例中智能天线各阵元接收电磁波的波程差示意图;
图 8为本发明实施例中具有 4行 4列振子的智能天线模型结构图;
图 9为本发明实施例中图 8所示智能天线的广播波束在垂直方向上的仿真结果; 图 10为本发明实施例中图 8所示智能天线的业务波束在垂直方向上的仿真结果; 图 11为本发明实施例中智能天线的阵元中各振子发射电磁波的波程差示意图; 图 12为本发明实施例中图 8所示智能天线的广播波束在水平方向上的仿真结果; 图 13为本发明实施例中图 8所示智能天线的业务波束在水平方向上的仿真结果; 图 14为本发明实施例中将水平方向波束场图向宽方向调整原理图;
图 15为本发明实施例中将水平方向波束场图向窄方向调整原理图;
图 16为本发明实施例中研究广播波束水平方向宽度调整时所用智能天线模型示意图; 图 17为本发明实施例中图 13所示智能天线的水平方向波束的初始权值仿真结果(调 节前);
图 18为本发明实施例中图 13所示智能天线的水平方向波束场图向宽方向调整仿真结 果( Φ=15度);
图 19为本发明实施例中图 13所示智能天线的水平方向波束场图向窄方向调整仿真结 果( Φ=15度)。 具体实施方式
以下结合说明书附图对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选 实施例仅用于说明和解释本发明, 并不用于限定本发明, 并且在不冲突的情况下, 本发明 中的实施例及实施例中的特征可以相互组合。
本发明实施例提供了一种移动通信无线网络中使用的智能天线, 用以解决高层建筑密 集区域内的无线网络覆盖问题, 对于加快实现 TD-SCDMA系统、 以及 TD-LTE系统的深 度无线网络覆盖提供基础。
如图 5所示, 本发明实施例提供的智能天线, 包括多个纵向排列的横向阵元, 每个阵 元由多个排列在一条水平直线上且并联供电的振子组成, 每个阵元连接一个 ΑΡ (信号放 大器) 的输出通道; 该智能天线在水平方向上的波束宽度为 30至 150度, 在垂直方向上 的广播波束宽度为 15至 165度, 在垂直方向上的业务波束宽度不超过 20度。
需要说明的是, 上述智能天线在水平方向上的波束宽度、 在垂直方向上的广播波束宽 度以及在垂直方向上的业务波束宽度的取值范围只是本发明的较佳实施方式, 具体实施 时, 智能天线在水平方向上的波束宽度、 在垂直方向上的广播波束宽度以及在垂直方向上 的业务波束宽度的取值范围并不局限于上述范围。 例如, 智能天线在水平方向上的波束宽 度还可以包括 10至 30度以及 150至 170度;在垂直方向上的广播波束宽度还可以包括 10 至 15度以及 165至 170度, 在垂直方向上的业务波束宽度还可以包括 20至 90度。
较佳的, 组成阵元的振子釆用垂直极化振子, 智能天线的振子保持垂直激励方式, 不 仅有利于电磁波在地球表面的传播, 而且还与移动通信系统的移动终端天线和基站天线的 方向相匹配, 同时满足 TD-SCDMA系统、 TD-LTE系统等时分复用的要求。 当然, 组成阵 元的振子也可以釆用双极化振子。
具体实施中, 所述智能天线的阵元个数大于 0小于 10, 各阵元包括的振子个数相等且 大于 0小于 10; 同一阵元中相邻振子的间距大于 0小于等于 λ, 较佳的, 同一阵元中相邻 振子的间距取值为 λ/2; 相邻阵元中对应振子的间距大于 0小于等于 2λ; 本申请文件中, λ 表示智能天线所接收和发射的无线信号的波长。 智能天线的阵元个数大于 0小于 10, 相应 的图 5中行数 Ν的取值为大于 0小于 10; 各阵元包括的振子个数相等且大于 0小于 10, 相应的图 5中列数的取值为大于 0小于 10。
通常情况下, 所述智能天线包括的后背挡板, 后背挡板设置在振子阵列的后部, 后背 挡板与振子阵列所在平面的间距大于 0 小于 λ, 较佳的, 后背挡板与振子阵列所在平面的 间距取值为 λ/4; 后背挡板的大小超过振子阵列的大小, 四周均留有富裕量, 富裕量取值在 0至 λ之间, 也就是说, 后背挡板的边缘超出振子阵列的边缘的长度大于 0小于 λ。
为了保证智能天线的前后比, 通常在后背挡板的四周设置有侧板, 侧板的宽度大于 0 小于 λ, 侧板与后背挡板的夹角大于 0度小于等于 90度。
本发明实施例中, 智能天线的波束调整方法包括:
1 )垂直方向釆用电调整
对每个阵元(横向) 的激励信号即输入电信号设置不同的权值, 所述权值包括幅度和 相位, 物理实现为带有不同相位的电流。 通过权值的调整可以满足宽覆盖的覆盖需求; 同 时在业务模型下, 通过权值的调整可以变为窄波束, 从而降低用户间千扰。
2 ) 水平方向釆用机械调整
机械调整属于微调范围, 保证提供较宽的覆盖范围即可。 在物理上, 也通过改变 "传 输材料" 的长短来实现波束调整。
本发明实施例提供的智能天线, 保留了广播波束和业务波束两种工作模式, 广播波束 和业务波束都是指垂直方向上的波束场图。 该智能天线可在垂直方向上提供较宽的广播波 束, 从而可以改善高层建筑物从低层到高层的覆盖效果, 并且可在垂直方向上提供较窄的 业务波束, 业务波束用于跟踪移动终端, 从而为高层建筑物内各层移动用户提供服务; 该 智能天线可在水平方向上提供宽波束, 从而可以保证高层建筑物的水平方向完全覆盖要 求。
请参见图 6, 本发明实施例提供的智能天线可以安装到目标高层建筑物 Α对面的建筑 物 B上, 从而对目标高层建筑物 A进行覆盖。 建议将智能天线安装在较低的位置, 可以减 少对环境的电磁污染。 釆用本发明实施例提供的智能天线覆盖目标高层建筑物时, 可以根 据该目标高层建筑物的实际楼体宽度选用水平方向波束宽度合适的智能天线, 也可釆用具 有手动相位调节功能的智能天线, 将智能天线的方向角和波束宽度调整到合适范围, 避免 波束太窄造成欠覆盖或波束过宽造成对其他小区的千扰。 具有手动相位调节功能的智能天 线中, 每个阵元与驱动该阵元的信号放大器的输出通道之间设置有移相器。
根据目标高层建筑物的实际楼体高度和智能天线的安装位置, 调整智能天线在垂直方 向上的广播波束场图的形状和偏转方向,保证覆盖效果,调整方式是修改各阵元激励信号。 智能天线接收到移动终端发射的信号后, 会根据该移动终端所在的楼层, 调整各阵元激励 信号, 使业务波束指向该移动终端, 实现垂直方向的扫描。
下面介绍本发明实施例提供的智能天线的垂直方向波束场图实现原理。
由本发明实施例提供的智能天线的结构可知, 一旦将振子固定在天线反射板上, 振子 之间的相对位置即固定不变, 也就是说, 每个阵元内振子的相位和幅度关系是确定的。
每个阵元连接一个 AP的输出通道, 构成多通道智能天线。 每个通道电信号的幅值和 相位是独立的, 智能天线整体的电磁波是由各个阵元电信号矢量叠加的结果。
请参见图 7 , 在垂直方向上, 每个阵元可用类似振子的行为考虑。 图 7中的黑点表示 阵元, 阵元从下向上排列设置, 最下面的阵元编号为 0 , 向上依次顺序编号。 从图 7可以 看出, 远方传来的电磁波(可视为平面波), 空域上到达各个阵元时所经过的距离不同, 以垂直于振子阵列所在平面的入射方向为 0度方向, 顺时针计算入射波夹角^ 各编号阵 元入射波相对于 0号阵元的波程差分别为 A dn, 其中, η表示阵元编号, η=0、 1、 2、 3 ...
Ν, 设相邻阵元的间距为 λ /2 , 因此, 请参见公式 [1] :
Adn = —— sin ^ 「11
2
其中, 具体数值计算如下:
1号阵元入射波相对于 0号阵元的波程差:
2号阵元入射波相对于 0号阵元的波程差:
Figure imgf000007_0001
Ai/2 =
3号阵元入射波相对于 0号阵元的波程差: = sin ^;
2
N号阵元入射波相对于 0号阵元的波程差: ΜΝ = Ν · ^ · ήη θ。
2
时域上入射波的相位差为: Μη · {2πΙλ、, 其中 η=0、 1、 2、 3 ...Ν。 可见, 空间上距离 的差别导致了各个阵元上接收信号相位的不同。 经过加权后整个智能天线接收到的无线信 号, 请参见公式 [2] :
Figure imgf000007_0002
其中, Α表示增益常数, s (t)表示复包络信号, ^表示 n号阵元的加权因子,其中 n=0、 1、 2、 3 ...N。 根据正弦波的叠加效果, 假设各个阵元的加权因子分别如公式 [3]所示:
Figure imgf000007_0003
其中, Bn、 表示 n号阵元激励信号即输入电信号的幅度、 相位, 则如公式 [4]所示: N
z(t) = A-s(t)∑ Bne—jm e [4]
n=
可见, 选择不同的 、 φη , 将改变垂直方向波束所对应的角度和形状, 所以可以通过 改变各阵元激励信号即输入电信号的权值(包括幅值、 相位) 来选择合适的垂直方向波束 形状和方向作为垂直方向广播波束场图, 由于广播波束要覆盖到所有覆盖区域内每一个移 动终端, 所以权值的选取一定要使波束宽度适应覆盖区域。 智能天线在应用中可以根据移 动终端来波方向和形状, 取对应的权值应用于去波, 作为变动的垂直方向业务波束场图, 由于此时只针对一个移动终端方向, 所以对应的权值一定是智能天线在此方向的最窄波 束。
本发明实施例提供的智能天线的仿真模型请参见图 8, 其中 Ν取值为 4、 Μ取值为 4, 即智能天线包括四个纵向排列的横向阵元, 每个阵元由四个垂直极化的振子组成, 其中, ΥΟΖ平面平行于地面, ΧΟΖ平面垂直于地面。 基于图 8中智能天线的仿真模型, 智能天 线的波束场图在垂直方向上的仿真结果请参见图 9和图 10,其中图 9为智能天线在垂直方 向上的广播波束场图, 图 10为智能天线在垂直方向上的业务波束场图。
下面介绍本发明实施例提供的智能天线的水平方向波束场图实现原理。
请参见图 11, 图 11 中的黑点表示振子, 设置在一条水平直线上。 一旦将振子固定在 天线反射板上, 振子之间的相对位置即固定不变, 每一行中振子并联供电组成一个智能天 线的阵元。
将最下面一行的右侧第一个振子编号为 0, 向左依次顺序编号。 从图 11可以看出, 天 线向远方传递电磁波(在远方可视为平面波), 空域上到达远场移动终端 (可以看作一个 点), 阵元中各振子所经过的距离不同, 以垂直于振子阵列所在平面的方向为 0度方向, 顺时针计算发射波夹角^各编号振子发射波相对于 0号振子的波程差分别为 Δ dm,其中, m表示振子编号, m=0、 1、 2、 3...M, 设相邻振子的间距为 λ /2, 因此, 请参见公式 [5]:
Adm = m—— sin^ [5]
其中, 具体数值计算如下:
1号振子发射波相对于 0号振子的波程差: ΔίΛ = .sin^;
2
2号振子发射波相对于 0号振子的波程差: Ai/2 =
Figure imgf000008_0001
3号振子发射波相对于 0号振子的波程差: =^· sin^;
M号振子发射波相对于 0号振子的波程差: Δί¾ =Μ·^·5ίη^。 时域上发射波的相位差为: Μτη·、1πΙλ、, 其中 m=0、 1、 2、 3...M。 可见, 空间上距 离的差别导致了各个振子上输出信号相位的不同。 经过加权后整个智能天线输出的无线信 号, 请参见公式 [6]:
Figure imgf000009_0001
其中, A表示增益常数, s(t)表示复包络信号, 表示 m号振子的加权因子, 其中 m=0、 1、 2、 3...M。根据正弦波的叠加效果,假设各个振子的加权因子分别如公式 [7]所示:
W = n-j^^m
rr m c ΥΙ\
其中, 表示 m号振子激励信号即输入电信号的相位, 则如公式 [8]所示:
Figure imgf000009_0002
可见, 设置每一行上的各个振子时选择不同的间距可得到振子间不同的波程差, 或改 变各个振子激励信号即输入电信号的相位 ^ , 将改变 z(t)对应的角度和波包络的形状。 利 用这个原理, 可以在智能天线出厂时制作在水平方向上有侧向角的智能天线, 或通过改变 振子激励信号即输入电信号的相位的物理方法改变水平方向上的波束宽度, 在实际应用 中, 可以手动调节以适应具体的覆盖需求。 其他各行阵元中振子的设置和调节请参照第一 行阵元中振子的设置和调节方式, 最后将所有振子的信号进行同项合并, 使整个智能天线 在水平方向上的波束场图得到设定和调节, 且一旦确定即不再频繁改动。
基于图 8中智能天线的仿真模型, 智能天线的波束场图在水平方向的仿真结果请参见 图 12和图 13, 其中图 12为智能天线在水平方向上的广播波束场图, 图 13为智能天线在 水平方向上的业务波束场图。 可以看出, 在水平方向也保持较宽的覆盖范围, 有利于对整 个目标高层建筑物的覆盖。 由于涉及到业务波束扫描, 即激励信号是随移动终端不同而变 化, 因此水平方向上的波束场图会有微小变化。
下面介绍本发明实施例提供的智能天线的水平方向波束宽度调整原理。
通过改变智能天线中各个振子激励信号即输入电信号的相位, 可以改变整个智能天线 合成的信号场强强度, 改变智能天线的水平方向广播波束宽度的实现原理如图 14、 图 15 所示, 对于间隔排列 (间距为 d) M个振子的子阵列 i (i=l, 2, ..·, N), 馈电网络将子 阵列 i (i=l, 2, .·., N) 的所有辐射单元通过移相器从振子中顺次激励出相位差 Φ, 可改 变各个辐射单元馈电相位, 各个辐射单元合成信号即实现智能天线的水平方向上的波束宽 度变宽或变窄。
在图 14中, 从中间振子 (M/2-1, M/2+1 )到两端振子依次递减相位差 Φ, 可使智能 天线在水平方向上的波束宽度变宽; 在图 15 中, 从中间振子 (M/2-1, M/2+1 )到两端振 子依次递增相位差 Φ , 可使智能天线在水平方向上的波束宽度变窄。 对于图 14、 图 15所示的智能天线, 每个子阵列的第 j个振子同时激励同样相位, 对 多个子阵列同时仿真要求较高, 且多个子阵列智能天线的水平方向波束调节效果与单个子 阵列智能天线的趋于一致, 因此本申请文件中仿真釆用 8个振子组成的单子阵列智能天线 进行仿真。 如图 16所示, M=8的单子阵列智能天线, 按照上述方式调整各振子的激励信 号。 仿真结果如图 17、 图 18和图 19所示。 通过仿真结果可以看出, 通过调整子阵列中各 振子的激励信号的相位, 可以起到改变智能天线在水平方向上的波束宽度的作用。 釆用方 式一(图 14 )激励信号的相位差 Φ=15度时, 可使智能天线的水平方向波束宽度变宽到 60 度, 釆用方式二(图 15 )激励信号的相位差 Φ=15度时, 可使智能天线的水平方向波束宽 度变窄到 25度。 具体实施中, 相位差 Φ的取值一般为大于 0度小于等于 15度。
本发明实施例提供的智能天线, 将多个振子排列在一条水平直线上组成横向阵元, 并 将多个横向阵元纵向排列组成智能天线, 能够实现业务波束的垂直方向扫描, 并且在水平 方向上为宽波束, 从而实现了对高层建筑物的良好覆盖, 保证了高层建筑密集区域内的无 线通讯效果。
本发明实施例提供的智能天线的波束调整方法, 在垂直方向上的覆盖范围较大且可以 通过改变各阵元激励信号的大小和相位来进行调整, 在水平方向上的覆盖范围较大且可以 通过改变阵元中振子的激励信号的相位来进行微调 , 因而能够很好地覆盖不同大小和形状 的高层建筑物。
本发明实施例提供的智能天线及其波束调整方法, 通过对振子和阵元结构的改变, 从 下到上多行阵元摆放, 对于覆盖来说, 可以通过改变各阵元激励信号的幅值和相位获得适 应高层建筑物楼体高度的垂直方向广播波束的宽度调节; 对于业务来说, 可以根据业务来 波方向设置各阵元激励信号的幅值和相位获得业务波束去波方向, 从而达到降低千扰、 提 高容量、 降低能耗的效果。
本发明实施例提供的智能天线及其波束调整方法, 提出了智能天线实现高层建筑密集 区域覆盖的方法, 与传统的室内分布相比, 提供多种调节技术, 对安装地点的要求降低, 从而降低工程施工难度, 节省工时, 同时减少安装加固的要求, 节省材料。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种智能天线, 其特征在于, 包括多个纵向排列的横向阵元, 每个阵元由多个排 列在一条水平直线上且并联供电的振子组成, 每个阵元连接一个信号放大器的输出通道; 所述智能天线在水平方向上的波束宽度为 10至 170度, 在垂直方向上的广播波束宽度为 10至 170度, 在垂直方向上的业务波束宽度不超过 90度。
2、 如权利要求 1所述的智能天线, 其特征在于, 所述振子为垂直极化振子。
3、 如权利要求 1或 2所述的智能天线, 其特征在于, 阵元个数大于 0小于 10, 各阵 元包括的振子个数相等且大于 0小于 10。
4、 如权利要求 1或 2所述的智能天线, 其特征在于, 同一阵元中相邻振子的间距大 于 0小于等于 λ, 相邻阵元中对应振子的间距大于 0小于等于 2λ, 其中, λ表示智能天线所 接收和发射的无线信号的波长。
5、 如权利要求 1或 2所述的智能天线, 其特征在于, 在振子阵列的后部设置有后背 挡板, 所述后背挡板与振子阵列所在平面的间距大于 0 小于 λ, 后背挡板的边缘超出振子 阵列的边缘的长度大于 0小于 λ, 其中, λ表示智能天线所接收和发射的无线信号的波长。
6、 如权利要求 5所述的智能天线, 其特征在于, 在所述后背挡板的四周设置有侧板, 侧板的宽度大于 0小于 λ, 侧板与后背挡板的夹角大于 0度小于等于 90度。
7、 如权利要求 1或 2所述的智能天线, 其特征在于, 每个阵元与驱动该阵元的信号 放大器的输出通道之间设置有移相器。
8、 一种权利要求 1所述智能天线的波束调整方法, 其特征在于, 包括:
通过改变各阵元的激励信号的幅度和相位调整垂直方向上的波束宽度, 通过改变阵元 中各振子的激励信号的相位调整水平方向上的波束宽度。
9、 如权利要求 8 所述的方法, 其特征在于, 所述通过改变阵元中各振子的激励信号 的相位调整水平方向上的波束宽度, 具体包括:
通过移相操作使中间振子到两端振子的激励信号依次递减相位差 Φ , 将水平方向上的 波束宽度变宽;
通过移相操作使中间振子到两端振子的激励信号依次递增相位差 Φ , 将水平方向上的 波束宽度变窄。
10、 如权利要求 9所述的方法, 其特征在于, 所述相位差 Φ的取值为大于 0度小于等 于 15度。
PCT/CN2012/082877 2011-10-13 2012-10-12 一种智能天线及其波束调整方法 WO2013053333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110310283.6A CN103052084B (zh) 2011-10-13 2011-10-13 一种智能天线及其波束调整方法
CN201110310283.6 2011-10-13

Publications (1)

Publication Number Publication Date
WO2013053333A1 true WO2013053333A1 (zh) 2013-04-18

Family

ID=48064557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082877 WO2013053333A1 (zh) 2011-10-13 2012-10-12 一种智能天线及其波束调整方法

Country Status (2)

Country Link
CN (1) CN103052084B (zh)
WO (1) WO2013053333A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109858101A (zh) * 2018-12-31 2019-06-07 北京航天测控技术有限公司 一种遥码通信天线仿真方法
CN115529671A (zh) * 2022-11-24 2022-12-27 亚太卫星宽带通信(深圳)有限公司 一种高通量卫星非均匀尺寸点波束设计系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749447B (zh) * 2013-12-31 2018-02-02 中国移动通信集团广东有限公司 一种基站的环境电磁辐射的估算方法和装置
US10700444B2 (en) 2016-07-06 2020-06-30 Industrial Technology Research Institute Multi-beam phased antenna structure and controlling method thereof
CN111130615B (zh) * 2018-10-30 2021-06-22 华为技术有限公司 Apt子系统和太空飞行器的通信系统
CN112467346B (zh) * 2020-10-28 2022-07-19 武汉虹信科技发展有限责任公司 一体式双极化吸顶天线
CN114336091A (zh) * 2022-01-18 2022-04-12 新疆讯通网络工程有限公司 一种多系统天线装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104343A (en) * 1998-01-14 2000-08-15 Raytheon Company Array antenna having multiple independently steered beams
CN1519989A (zh) * 2003-01-26 2004-08-11 中兴通讯股份有限公司 移动通信用直线型智能天线阵
CN1710751A (zh) * 2005-06-13 2005-12-21 京信通信技术(广州)有限公司 高隔离度板状定向智能天线阵
CN101600213A (zh) * 2008-10-13 2009-12-09 中国移动通信集团设计院有限公司 一种网络优化中调整小区覆盖范围的方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047282B (zh) * 2007-04-24 2011-11-30 李晓明 一种紧凑型td-scdma线阵扇区智能天线
CN101604790A (zh) * 2008-06-13 2009-12-16 中国移动通信集团公司 天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104343A (en) * 1998-01-14 2000-08-15 Raytheon Company Array antenna having multiple independently steered beams
CN1519989A (zh) * 2003-01-26 2004-08-11 中兴通讯股份有限公司 移动通信用直线型智能天线阵
CN1710751A (zh) * 2005-06-13 2005-12-21 京信通信技术(广州)有限公司 高隔离度板状定向智能天线阵
CN101600213A (zh) * 2008-10-13 2009-12-09 中国移动通信集团设计院有限公司 一种网络优化中调整小区覆盖范围的方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109858101A (zh) * 2018-12-31 2019-06-07 北京航天测控技术有限公司 一种遥码通信天线仿真方法
CN115529671A (zh) * 2022-11-24 2022-12-27 亚太卫星宽带通信(深圳)有限公司 一种高通量卫星非均匀尺寸点波束设计系统
CN115529671B (zh) * 2022-11-24 2023-01-31 亚太卫星宽带通信(深圳)有限公司 一种高通量卫星非均匀尺寸点波束设计系统

Also Published As

Publication number Publication date
CN103052084B (zh) 2015-05-20
CN103052084A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2013053333A1 (zh) 一种智能天线及其波束调整方法
CN103733527B (zh) 在无线系统中实现高平均频谱效率的技术
CN110391506A (zh) 一种天线系统、馈电网络重构方法及装置
CN106252901B (zh) 宽频三波束阵列天线
CN202474225U (zh) 一种用于移动通信基站的单极化二十二波束天线
EP3394958A1 (en) Phased array antenna having sub-arrays
JP6858312B2 (ja) 高所での障害物を伴う配備のためのセルラアンテナ
WO2006133609A1 (fr) Réseau d’antennes horizontales intelligent à séparation élevée
CN103367932B (zh) 一种双波束天线
CN101359947A (zh) 多天线阵列系统的广播波束赋形方法及装置
CN106576254A (zh) 用于无线系统中自适应波束放置的方法
CN102017304A (zh) 超经济广播系统和方法
CN104320169B (zh) 多用户3d‑mimo系统中三维波束赋形设计方法
CN109509995A (zh) 一种混合多波束天线
CN102544762B (zh) 适合近中远通信距离使用的全向短波高增益天线阵
CN106159465A (zh) 宽频五波束阵列天线
CN103346411B (zh) 一种用于地空宽带通信系统的定向地面站天线及排列方法
CN206322856U (zh) 宽频三波束阵列天线
US20080200116A1 (en) Multi Beam Repeater Antenna for Increased Coverage
CN200969585Y (zh) 用定向天线实现多波束智能天线的装置
CN2727987Y (zh) 一种四极化阵列全向天线
CN112103625B (zh) 一种高隔离、低副瓣MassiveMIMO天线阵列及组阵方法
CN106229638B (zh) 天线阵列及天线
JPH04238424A (ja) 極小マイクロセル方式
CN202495575U (zh) 天线系统和通讯基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840600

Country of ref document: EP

Kind code of ref document: A1