WO2013053313A1 - 大口径反射镜及其制造方法 - Google Patents

大口径反射镜及其制造方法 Download PDF

Info

Publication number
WO2013053313A1
WO2013053313A1 PCT/CN2012/082666 CN2012082666W WO2013053313A1 WO 2013053313 A1 WO2013053313 A1 WO 2013053313A1 CN 2012082666 W CN2012082666 W CN 2012082666W WO 2013053313 A1 WO2013053313 A1 WO 2013053313A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
granite
optical glass
glass
optical
Prior art date
Application number
PCT/CN2012/082666
Other languages
English (en)
French (fr)
Inventor
李新南
廖廷俤
王新桥
Original Assignee
中国科学院国家天文台南京天文光学技术研究所
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院国家天文台南京天文光学技术研究所, 厦门市三安光电科技有限公司 filed Critical 中国科学院国家天文台南京天文光学技术研究所
Publication of WO2013053313A1 publication Critical patent/WO2013053313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Definitions

  • the invention belongs to the field of applied optics, in particular to a large-diameter mirror and a method of manufacturing the same.
  • the solar simulator is a light source device used to generate simulated sunlight, and is a key device used in testing the performance of high power concentrating power generation components on a production line.
  • the spectral matching, transient stability, uniformity, collimation and illuminance of the simulated sunlight produced by the simulated sunlight are close to the performance of natural sunlight and comply with relevant international standards.
  • Producing large-diameter parallel beams requires a large-caliber collimating optics, usually with large-diameter spherical or aspheric mirrors as collimating objectives. Due to the difficulty in obtaining large-sized optical glass and its high cost, it is difficult to be popularized.
  • metal aluminum castings as materials, to manufacture such mirror bodies by using large-scale numerical control precision lathes, and to attach high-reflection films on the reflective surface to improve the reflectivity of the mirror surface.
  • the surface processing property of aluminum is poor, the coefficient of thermal expansion is high, and the cost of aluminum castings is high.
  • An object of the present invention is to provide a method for manufacturing a large-diameter mirror with stable and reliable product production process and high product qualification rate, which adopts a mirror body made of granite material having the same expansion coefficient as that of the optical glass mirror. .
  • Another object of the present invention is to provide a large-diameter spherical and aspherical mirror having high optical performance and low cost.
  • a large-diameter mirror consisting of an optical glass mirror embryo and a granite mirror body; the optical glass mirror embryo and the granite mirror body are firmly bonded together as a whole.
  • the optical glass mirror embryo is in the shape of a spherical shell, and the granite mirror body is spherical, and the spherical shell-shaped optical glass mirror embryo is matched with the spherical granite mirror body.
  • the optical glass embryo is composed of a piece of optical glass.
  • the optical glass mirror embryo is composed of a plurality of optical glass splicing.
  • the optical glass embryo is composed of a flat optical glass or a plurality of optical flat glass.
  • a method for manufacturing a large aperture mirror comprising the steps of:
  • the surface of the glass mirror is processed into a mirror by a conventional optical glass processing technique.
  • the step (1) described the granite slab into a desired spherical granite mirror.
  • the step (2) described is to form a thin glass optical glass plate into a spherical glass embryo which is spherical and shaped to match the shape of the granite mirror.
  • the surface of the glass mirror is processed into an optical spherical surface or an aspheric surface by a conventional optical glass processing technique to form a mirror.
  • the formed optical glass mirror embryo and the granite mirror body are firmly glued together by the adhesive, and the concave spherical shape of the optical glass mirror embryo matches the concave shape of the granite mirror body, the avoidance is avoided.
  • the use of a single large-size optical glass while maintaining the high optical performance of the product provides a good solution for reducing the cost of large-diameter high-performance spherical and aspheric optical mirrors.
  • the present invention uses granite as a mirror body, which is substantially the same as the glass expansion coefficient, a relatively easy-to-obtain and mature molding processing technique of a large-sized granite material, and an excellent surface processing property of the optical glass, which makes the present invention
  • the production process is stable and reliable, and the product qualification rate is high. It provides a novel technical approach for obtaining high-performance large-diameter spherical and aspheric optical mirrors.
  • Figure 1 is a plan view of the present invention
  • Figure 2 is a side view of the present invention
  • Figure 3 is a perspective view of the granite mirror body of the present invention.
  • Figure 4 is a perspective view of an optical glass mirror embryo of the present invention.
  • Figure 5 is a light path diagram of the mirror of the present invention.
  • the present invention is a method for manufacturing a large-diameter spherical surface and an aspheric mirror It includes the following steps: (1) processing the central portion of the granite slab into the desired spherical granitic mirror body 2 (as shown in Figure 3); (2) using a glass plate deflection process to have a certain thickness of optics The glass plate is formed into a spherical shell-shaped optical glass mirror 1 (as shown in FIG.
  • the convex shape of the spherical glass mirror 1 spherical shell matches the shape of the spherical granite mirror body 2; (3) the spherical shell shape
  • the optical glass mirror blank 1 and the granite mirror body 2 are firmly glued together with a suitable adhesive (as shown in Fig. 2); (4)
  • the upper surface of the optical glass mirror blank 1 is processed into optical by conventional optical glass processing technology. Spherical or aspheric mirror.
  • the present invention is a large-diameter spherical and aspherical mirror using a combination of granite and glass, which is composed of an optical glass mirror 1 and a granite mirror 2.
  • the middle portion 11 of the optical glass mirror blank 1 has a spherical shell shape (as shown in FIG. 4), and the central portion 21 of the granite mirror body 2 has a spherical shape (as shown in FIG. 3).
  • the shape of the central 11 spherical shell of the optical glass mirror 1 matches the shape of the spherical shell of the central portion 21 of the granite mirror 2.
  • the optical glass lens blank 1 may be composed of a large piece of optical glass or a plurality of smaller spliced forms of optical glass.
  • the mirror of the present invention may also be planar, that is, the granite mirror body and the optical glass mirror embryo are all planar, and the planar optical glass mirror embryo is matched with the planar granite mirror body, and the plane is The optical glass embryo and the planar granite mirror are firmly bonded together as a whole.
  • the main point of the present invention is to use a mirror body made of a granite material having substantially the same expansion coefficient as that of the optical glass.
  • the spherical and aspherical mirrors of the optical glass mirror 1 and the granite mirror 2 of the present invention can be used to generate focusing or collimation of a large-diameter beam (the optical path diagram is as shown in FIG. 5).
  • it can be used as a key component of the solar simulator of the high-power concentrating power module component performance test equipment required for solar energy applications - high-performance optical collimating objective lens.
  • It is also expected to be used as an objective lens for large-caliber reflex telescopes, or for applications where optical and laser instruments require spherical and aspheric mirrors to produce beam focusing or collimation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Astronomy & Astrophysics (AREA)
  • Sustainable Development (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种复合式大口径反射镜,包括光学玻璃镜胚(1)与花岗岩镜体(2)两部分,一方面避免了使用单块大尺寸光学玻璃而又保持了反射镜的高光学性能,从而降低大口径平面、球面和非球面光学反射镜的成本,另一方面花岗岩镜体与玻璃膨胀系数大致相同,因此使得反射镜的生产工艺性好、产品稳定性与可靠性均与全玻璃接近。复合式大口径反射镜的制造方法,包括将成型的光学玻璃胚与花岗岩镜体用粘结胶牢固地胶合在一起,以及用传统光学玻璃加工技术将光学玻璃镜胚上表面加工制作成光学平面、球面或者非球面反射镜。

Description

大口径反射镜及其制造方法
本申请要求于2011 年10 月14 日提交中国专利局、申请号为CN201110311668.4、发明名称为'大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法'的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明属于应用光学领域,特别是涉及大口径反射镜及其制造方法。
太阳模拟器是用来产生模拟太阳光的光源设备,是在生产线上测试高倍聚光发电组件性能中使用的关键设备。其产生的模拟太阳光的光谱匹配性,瞬态稳定性,均匀性,准直性及光照度等与自然太阳光的性能接近的程度需要符合相关的国际标准。产生大口径的平行光束需要大口径的准直光学系统,通常是采用大口径球面或非球面反射镜做准直物镜。由于大尺寸光学玻璃的不易获得及其高成本,故难以得到推广使用。目前国外提出采用金属铝铸造品为材料,利用大型数控精密车床来加工制造这种反射镜体,并在反射表面上贴高反射膜来提高镜面的反射率。 但铝材的表面加工性能欠佳,热膨胀系数较高,且铝铸造品的成本较高。
本发明的一个目的在于提供一种产品生产工艺稳定可靠、产品合格率较高的大口径反射镜的制造方法,其采用与光学玻璃镜胚玻璃膨胀系数大致相同的花岗岩材料制成的镜体 。
本发明的另一个目的在于提供一种光学性能高、成本较低的大口径球面与非球面反射镜。
为实现上述目的,本发明的技术解决方案是:
一种大口径反射镜,它由光学玻璃镜胚和花岗岩镜体组成;所述的光学玻璃镜胚和花岗岩镜体牢固地粘合成为一个整体。
所述的光学玻璃镜胚呈球壳状,而所述的花岗岩镜体呈球面状,所述的球壳状光学玻璃镜胚与球面状花岗岩镜体相匹配。
所述的光学玻璃镜胚由一块光学玻璃构成。
所述的光学玻璃镜胚由多块光学玻璃拼接构成。
所述的光学玻璃镜胚由一块平面光学玻璃或多块光学平板玻璃构成。
一种大口径反射镜制造方法 ,它包括以下步骤:
(1)将花岗岩厚板加工成花岗岩镜体;
(2)将厚度较薄的光学玻璃板成型为与花岗岩镜体形状相匹配的玻璃镜胚;
(3)将成型的光学玻璃镜胚与花岗岩镜体用粘结胶牢固地胶合在一起;
(4)用传统光学玻璃加工技术将玻璃镜胚表面加工制造成反射镜。
所述的步骤(1)将花岗岩厚板加工成所需要的球面状的花岗岩镜体。
所述的步骤(2)将厚度较薄的光学玻璃板成型为球壳状且与花岗岩镜体形状相匹配的玻璃镜胚。
所述的步骤(4)用传统光学玻璃加工技术将玻璃镜胚表面加工制造成光学球面或非球面,形成反射镜。
采用上述方案后,由于本发明将成型的光学玻璃镜胚与花岗岩镜体用粘结胶牢固地胶合在一起,且光学玻璃镜胚的凹球面形状与花岗岩镜体的凹面形状相匹配,避免了使用单块大尺寸光学玻璃而又保持产品的高光学性能,从而为降低大口径高性能球面与非球面光学反射镜的成本提供了很好的解决办法。此外,本发明采用花岗岩为镜体,其与玻璃膨胀系数大致相同,大尺寸花岗岩材料的较易获取且有成熟的成型加工技术,加上光学玻璃极好的表面加工性能,这使得本发明的产品生产工艺稳定可靠、产品合格率较高,为获得高性能大口径球面与非球面光学反射镜提供了一种新颖的技术途径。
图1是本发明的俯视图;
图2是本发明的侧视图;
图3是本发明花岗岩镜体的轴测图;
图4是本发明光学玻璃镜胚的轴测图;
图5是本发明反射镜的光路图。
如图1所示,本发明是 一种大口径球面与非球面反射镜的制造方法 ,它包括以下步骤:(1)将花岗岩厚板中部加工成所需要的球面状的花岗岩镜体2(如图3所示);(2)采用玻璃平板弯沉的工艺将有一定厚度的光学玻璃板成型为球壳状的光学玻璃镜胚1(如图4所示),且光学玻璃镜胚1球壳凸面形状与球面状花岗岩镜体2的形状相匹配;(3)将球壳状光学玻璃镜胚1与花岗岩镜体2用合适的粘结胶牢固地胶合在一起(如图2所示);(4)用传统光学玻璃加工技术将光学玻璃镜胚1上表面加工制造成光学球面或非球面反射镜。
如图1、图2所示,本发明是一种采用花岗岩与玻璃组合的大口径球面与非球面反射镜,它由光学玻璃镜胚1和花岗岩镜体2组成。
其中,光学玻璃镜胚1的中部11呈球壳形状(如图4所示),花岗岩镜体2的中部21呈球面形状(如图3所示)。所述的光学玻璃镜胚1中部11球壳形状与花岗岩镜体2的中部21的球壳形状相匹配。
所述的光学玻璃镜胚1可以由一块较大的光学玻璃构成,也可以由多块较小的拼接形式的光学玻璃构成。
此外,本发明的反射镜也可以为平面状,即:所述的花岗岩镜体和光学玻璃镜胚皆呈平面状,所述的平面状光学玻璃镜胚与平面状花岗岩镜体相匹配,平面状的光学玻璃镜胚和平面状的花岗岩镜体牢固地粘合成为一个整体。
本发明的重点就在于:采用与光学玻璃镜胚玻璃膨胀系数大致相同的花岗岩材料制成的镜体。
以上所述,仅为本发明较佳实施例而已,故不能以此限定本发明实施的范围,凡 采用与光学玻璃镜胚玻璃膨胀系数大致相同的材料作为镜体,并采用胶结方法与玻璃胶合成一个整体的情况,皆应仍属本发明专利涵盖的范围内。
工业实用性
本发明这种光学玻璃镜胚1与花岗岩镜体2组合成的球面与非球面反射镜可用来产生大口径光束的聚焦或准直(光路图如图5所示)。尤其是它可作为太阳能应用领域所需要的高倍聚光发电模组组件性能测试设备太阳模拟器的关键部件-高性能的光学准直物镜。也可望用作大口径反射式望远镜的物镜,或其它光学与激光仪器中需要用球面与非球面反射镜来产生光束聚焦或准直的应用场合。

Claims (9)

  1. 一种大口径反射镜,其特征在于:它由光学玻璃镜胚和花岗岩镜体组成;所述的光学玻璃镜胚和花岗岩镜体牢固地粘合成为一个整体。
  2. 根据权利要求1所述的反射镜,其特征在于:所述的光学玻璃镜胚呈球壳状,而所述的花岗岩镜体呈球面状,所述的球壳状光学玻璃镜胚与球面状花岗岩镜体相匹配。
  3. 根据权利要求2所述的反射镜,其特征在于:所述的光学玻璃镜胚由一块光学玻璃构成。
  4. 根据权利要求2所述的反射镜,其特征在于:所述的光学玻璃镜胚由多块光学玻璃拼接构成。
  5. 根据权利要求1所述的反射镜,其特征在于:所述的光学玻璃镜胚由一块平面光学玻璃或多块平面光学玻璃构成。
  6. 一种大口径反射镜的制造方法,包括以下步骤:
    (1)将花岗岩厚板加工成花岗岩镜体;
    (2)将厚度较薄的光学玻璃板成型为与花岗岩镜体形状相匹配的玻璃镜胚;
    (3)将成型的光学玻璃镜胚与花岗岩镜体用粘结胶牢固地胶合在一起;
    (4)用传统光学玻璃加工技术将玻璃镜胚表面加工制造成反射镜。
  7. 根据权利要求6所述的一种大口径反射镜的制造方法,其特征在于:所述的步骤(1)将花岗岩厚板加工成所需要的球面状的花岗岩镜体。
  8. 根据权利要求6所述的一种大口径反射镜的制造方法,其特征在于:所述的步骤(2)将厚度较薄的光学玻璃板成型为球壳状且与花岗岩镜体形状相匹配的玻璃镜胚。
  9. 根据权利要求6所述的一种大口径反射镜的制造方法,其特征在于:所述的步骤(4)用传统光学玻璃加工技术将玻璃镜胚表面加工制造成光学球面或非球面,形成反射镜。
PCT/CN2012/082666 2011-10-14 2012-10-10 大口径反射镜及其制造方法 WO2013053313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103116684A CN102360089B (zh) 2011-10-14 2011-10-14 大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法
CNCN201110311668.4 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013053313A1 true WO2013053313A1 (zh) 2013-04-18

Family

ID=45585448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082666 WO2013053313A1 (zh) 2011-10-14 2012-10-10 大口径反射镜及其制造方法

Country Status (2)

Country Link
CN (1) CN102360089B (zh)
WO (1) WO2013053313A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900003883A1 (it) * 2019-03-18 2020-09-18 Elbo Controlli S R L Apparecchiatura e metodo per la realizzazione di un dispositivo di misura di precisione.

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323631A (zh) * 2011-10-14 2012-01-18 日芯光伏科技有限公司 贴膜式花岗岩基底大口径光学反射镜
CN102360089B (zh) * 2011-10-14 2012-12-26 中国科学院国家天文台南京天文光学技术研究所 大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法
CN108127484B (zh) * 2017-11-29 2019-09-06 北京空间机电研究所 一种使用拼接环粘接的反射镜光学加工方法及加工装置
CN113943114B (zh) * 2021-10-21 2023-05-16 河南平原光电有限公司 一种复合球面反射镜的烧结方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86211077U (zh) * 1986-12-31 1987-12-16 长春光学精密机械研究所 石基底反射镜
CN200986598Y (zh) * 2006-11-08 2007-12-05 中国建筑材料科学研究总院 一种大口径轻质表面玻璃化铍金属平面反射镜
CN102360089A (zh) * 2011-10-14 2012-02-22 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法
CN202305857U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9400319D0 (en) * 1994-01-10 1994-03-09 Pilkington Glass Ltd Coatings on glass
CN1300619C (zh) * 2003-04-25 2007-02-14 中国科学院长春光学精密机械与物理研究所 一种大口径折叠式望远镜的聚合物反射镜
CN1253732C (zh) * 2004-05-20 2006-04-26 中国科学院上海技术物理研究所 轻质大口径金属反射镜
CN1253731C (zh) * 2004-05-20 2006-04-26 中国科学院上海技术物理研究所 大口径轻质复合材料反射镜及制备方法
CN101930088B (zh) * 2010-08-04 2012-07-04 中国建筑材料科学研究总院 一种表面玻璃化铍金属平面反射镜及一种特种玻璃

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86211077U (zh) * 1986-12-31 1987-12-16 长春光学精密机械研究所 石基底反射镜
CN200986598Y (zh) * 2006-11-08 2007-12-05 中国建筑材料科学研究总院 一种大口径轻质表面玻璃化铍金属平面反射镜
CN102360089A (zh) * 2011-10-14 2012-02-22 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法
CN202305857U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900003883A1 (it) * 2019-03-18 2020-09-18 Elbo Controlli S R L Apparecchiatura e metodo per la realizzazione di un dispositivo di misura di precisione.
EP3712566A1 (en) * 2019-03-18 2020-09-23 Elbo Controlli S.r.l. Apparatus and method for realizing a precision measuring device
US11085757B2 (en) 2019-03-18 2021-08-10 Elbo Controlli S.R.L. Apparatus and method for realizing a precision measuring device

Also Published As

Publication number Publication date
CN102360089B (zh) 2012-12-26
CN102360089A (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2013053313A1 (zh) 大口径反射镜及其制造方法
US20070246156A1 (en) Composite Structure Made Of Zero-Expansion Material And A Method For Producing Same
TW569056B (en) Method and structure for aligning optical elements
EP1265081A3 (en) Multi-axis interferometer with integrated optical structure and method for manufacturing rhomboid assemblies
CN214011646U (zh) 一种光学透镜组件和光学系统
CN202305857U (zh) 大口径花岗岩玻璃复合式球面与非球面反射镜
US20050260343A1 (en) Methods for manufacturing large-scale plastic lenses
CN103513429A (zh) 准直分光镜系统
ATE413596T1 (de) Optisches system mit mehrfachreflexion
CN107263024A (zh) 一种光机集成镜件及制造方法
WO2016086377A1 (zh) 3d打印机、打印方法及镜头模组
CN110286435A (zh) 一种紫外偏振分光棱镜及其制备方法
CN102279473A (zh) 星模拟器光学系统
US8807767B2 (en) Corner cube retroreflector device, method, and apparatus
US6902326B1 (en) Off-axis reflective optical apparatus
CN103529557A (zh) 一种柱面镜组件胶合设备及方法
CN103235418B (zh) 楔形透镜大口径光学聚焦与频率转换系统的离线装校平台
CN203502681U (zh) 一种柱面镜组件胶合设备
CN202305854U (zh) 贴膜式花岗岩基底大口径光学反射镜
CN110445003B (zh) 一种基于高斯光束的平凹激光腔单光路对准装置及方法
CN2173414Y (zh) 半导体激光准直器
JP2524904Y2 (ja) レーザ加工装置用光学系
CN219997333U (zh) 一种大视场胶合反射镜
WO2013053312A1 (zh) 贴膜式花岗岩镜体大口径光学反射镜
US20220163727A1 (en) Monolithic fiber-lens array for communication and remote sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840312

Country of ref document: EP

Kind code of ref document: A1