WO2013053305A1 - 一种标识网端到端安全建立的方法、网络侧设备及系统 - Google Patents

一种标识网端到端安全建立的方法、网络侧设备及系统 Download PDF

Info

Publication number
WO2013053305A1
WO2013053305A1 PCT/CN2012/082550 CN2012082550W WO2013053305A1 WO 2013053305 A1 WO2013053305 A1 WO 2013053305A1 CN 2012082550 W CN2012082550 W CN 2012082550W WO 2013053305 A1 WO2013053305 A1 WO 2013053305A1
Authority
WO
WIPO (PCT)
Prior art keywords
naf
network
network terminal
gba
terminal
Prior art date
Application number
PCT/CN2012/082550
Other languages
English (en)
French (fr)
Inventor
张孟旺
夏正雪
韦银星
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013053305A1 publication Critical patent/WO2013053305A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement

Definitions

  • End-to-end security establishment method for identifying network, network side device and system
  • the present invention relates to the field of network communications, and in particular, to a security method and system for an end-to-end identification network based on an enhanced GBA mechanism.
  • the core of the network layer is the IP protocol at the network layer, which enables mutual access between users through IP addresses.
  • IP protocols such as web browsing, mail sending and receiving, instant messaging, etc., are carried on top of the application layer protocol.
  • users Before using these services, users must access the Internet through the basic network provided by the telecom operators. Different users may have different access methods, such as xDSL, optical fiber, mobile access, and so on.
  • the user terminal will obtain an IP address, and the user then accesses various applications on the Internet through the IP address, which is equivalent to the temporary identity of the user.
  • IP address Since the prefix part of the IP address indicates the subnet where the user is currently located, when the user's location changes, different IP addresses must be assigned. Otherwise, the router cannot correctly forward the data packet to the user. Because the IP address has the dual attributes of identity and location, and the IP address obtained by the user is not necessarily the same every time, and thus cannot be used as the long-term identity of the user, the application system on the Internet must establish a user identity identification system. This is the so-called user account system.
  • the IP address has the defect of dual attributes, which brings about mobility and security issues, and has become a bottleneck restricting the further development of the Internet industry.
  • HIP Home Identity Protocol
  • LISP LISP
  • identity encoding on behalf of the user's identity
  • location encoding on behalf of the user's location.
  • Each user has both an identity code and a location code, and the user communicates based on the identity code and the peer.
  • the identification network is a new type of Internet technology. It introduces the idea of identity location separation and supports the mobility and continuity of mobile access terminals.
  • each user in the identification network has a unique permanent identity.
  • the network needs to verify the identity, so the network can guarantee the authenticity and reliability of this identity.
  • an identity management system can be established to carry out user identity management based services and improve network security.
  • the basic principle of the identification network is to assign a fixed identity to the user equipment.
  • the user equipment uses the identity identifier instead of the Internet IP protocol address in the prior art to communicate, and the access service located at the edge of the Internet allocates the location identifier of the user.
  • Use location IDs for routing and complete mapping and transformation between user and location IDs.
  • User equipment User Equipment, UE for short
  • user equipment supporting Internet IP access including mobile packet domain access terminal, wireless local area function terminal, fixed access terminal, nomadic terminal, etc., further including an application server And other services provide equipment.
  • the UE uses the Access Identity (AID) instead of the IP address to communicate with other user equipments and service providers on the network.
  • AID Access Identity
  • An Access Service Router is an interface device between the access network and the Internet where the UE 101 is located, and is responsible for UE 101 authentication, Routing Identity (RID) management, AID, and RID mapping. And conversion, as well as the encapsulation/decapsulation, forwarding, and other functions of user data.
  • the authentication center 103 is used to record the attribute information of the user of the network, such as the user category, the authentication information, and the user service level, complete the access authentication and authorization to the UE 101, or complete the access authentication, authorization, and charging to the terminal. Supports mutual authentication between the terminal and the network.
  • the Internet Service Router is used to query and maintain the AID-RID mapping information of the network terminal, and encapsulates, routes, and forwards the data exchange between the network and the traditional IP network.
  • the GBA Communication Authentication Framework
  • 3GPP Third Generation Mobile Communication System
  • the universal authentication framework is typically composed of IMS (IP Multimedia Services Subsystem) users (UEs), Guided Service Function Entities (BSFs), User Home Network Servers (HSS), User Location Function Entities (SLFs), and networks.
  • IMS IP Multimedia Services Subsystem
  • BSFs Guided Service Function Entities
  • HSS User Home Network Servers
  • SLFs User Location Function Entities
  • NAF Business Application Entity
  • the UE and the BSF are connected through the Ub interface
  • the BSF and the NAF are connected through the Zn interface
  • the UE and the NAF are connected through the Ua interface
  • the SLF and the BSF are connected through the Dz interface
  • the BSF and the HSS are connected through the Zh interface.
  • the BSF is used for mutual authentication with the UE, and generates a shared key (ie, a root key) Ks of the BSF and the user; the HSS is stored for description.
  • the contract information of the user information, and the HSS also has the function of generating authentication information.
  • the SLF is used to assist the BSF in finding the responding HSS when there are multiple HSSs.
  • NAF is used to provide network services for the UE.
  • the user UE When the user UE sends an application request to the NAF for the first time, it does not know whether the NAF requires the GBA process and does not carry the GBA parameter. If the NAF requires an initial GBA procedure, the UE will be informed of the GBA procedure in the response message sent to the UE.
  • the authentication request is directly sent to the BSF for mutual authentication. Otherwise, the user first contacts the NAF corresponding to the service. If the NAF uses the GBA universal authentication framework and finds that the user has not yet reached the BSF for mutual authentication, the NAF notifies the user to the BSF for mutual authentication to verify the identity. .
  • the UE in the GBA includes an IP Multimedia Services Subscriber Identity Module (ISIM) and a universal integrated circuit card (UICC), and the UE includes both a GBA client and a NAF application client.
  • ISIM IP Multimedia Services Subscriber Identity Module
  • UICC universal integrated circuit card
  • IMS Residential Gate way A functional entity called the IMS Residential Gate way (IRG) is defined in TISPAN (the NGN network standard of ETSI) for providing non-IMS terminals with secure access to IMS services.
  • the IMS Resident Gateway is functionally equivalent to a B2BUA (Back-to-Back User Agent) entity with an " ISIM ON UICC (IP Multimedia Service Identity Module)" module for providing access to these non-IMS terminals.
  • B2BUA Back-to-Back User Agent
  • ISIM ON UICC IP Multimedia Service Identity Module
  • a secure channel for the IMS service, and the module stores a private user identity (IMPI) and multiple public user identifiers (IMPUs).
  • IMPI private user identity
  • IMPUs public user identifiers
  • an IMS user may have multiple non-IMS terminal devices, and all of these non-IMS terminals use the same ISIM/UICC (located on the IMS terminal agent) to access network services.
  • the NAF application client is located on one or more non-IMS terminals other than the IMS terminal agent, and therefore is not on the same device as the client executing the GBA (located in the IMS terminal agent), which we call an enhanced GBA framework.
  • IMS terminal agent B2BUA generates derivatives for these non-IMS terminals
  • the biometric key Ks-NAF, these non-IMS terminals communicate with the NAF using the generated twin key Ks-NAF.
  • peripheral terminal devices When multiple peripheral terminal devices share a GBA client on one UE, if two or more of these peripheral terminal devices access the same NAF, multiple peripheral terminal devices may also use the same derived key.
  • Figure 2 and Figure 3 show two typical methods.
  • Figure 2 is a diagram showing that the identification network terminal has the IMS terminal capability, and the GBA architecture is deployed in the identification network, and the ASR and the ISR are respectively connected to the BSF and the NAF network element in the GBA architecture to connect the two architectures; With IMS terminal capability, the B2BUA proxy is required, and the GBA architecture is deployed in the identification network.
  • the ASR and ISR are respectively connected with the BSF and NAF network elements in the GBA architecture to link the two architectures and pass one or more ISRs.
  • the Zn-Proxy is connected to the NAF network element in the GBA architecture to link the two architectures.
  • the authentication center in the identification network can be used as the HSS under the GBA architecture, or an HSS network element can be used separately.
  • the Zn-Proxy function can be in the ISR or a single network. Yuan to achieve the entire function. Summary of the invention
  • the embodiments of the present invention provide a method for establishing an end-to-end security of an identification network based on an enhanced GBA mechanism, a network side device, and a system, thereby solving the problem of securely accessing the identification network user and acquiring the Internet application service content.
  • End-to-end security to the service server at the same time, according to the locally defined policy, the Ks of the same agent can be used by different identity network users, and the single sign-on capability of the same identity network user is realized, that is, the same identity network terminal has the same root. Key Ks.
  • the embodiment of the invention provides a method for establishing an end-to-end security of an identification network, including:
  • the identification network terminal initiates an application request message to the network service application entity, and the network service application entity determines whether the identification network terminal completes the guiding process of the universal authentication framework GBA with the guidance service function entity, and if not, the network service application entity Instructing the identification network terminal and the guiding service function entity to perform the GBA guiding process.
  • the identification network terminal or the IMS terminal agent After the guiding process of the GBA is completed, the identification network terminal or the IMS terminal agent generates a derivative key Ks_NAF for the identification network terminal, and then identifies the network terminal and the network.
  • the business application entity establishes a security alliance; If yes, the network service application entity directly establishes a security association with the identity network terminal, and the identity network terminal or the IMS terminal agent generates a derivative key Ks-NAF for the identity network terminal;
  • the guiding service function entity During the establishment of the security association, the guiding service function entity generates a smear key Ks-NAF for the network service application entity, and is the same as the Ks-NAF of the identification network terminal;
  • the method for the network service application entity to determine whether the identity network terminal completes the GBA boot process with the boot service function entity is:
  • the network service application entity determines whether the application request message carries the GBA parameter, and if not, determines that the identity network terminal does not complete the GBA boot process with the boot service function entity, and if it is carried, determines that the identity network terminal has completed the GBA with the boot service function entity. The guiding process.
  • the GBA request message is sent to the guiding service function entity to carry the private identity identifier IMPI and the terminal user identifier AID when the guiding service function is used.
  • a boot transaction identifier B-TID and a root key are generated, and the boot service function entity sends the B-TID and the validity period of the root key to the identifier network terminal, where the identifier
  • the network terminal saves the validity period of the B-TID and the root key, and generates a key, and the identifier network terminal further generates a generated derivative key according to a preset method for generating a derivative key.
  • the identification network terminal sends a GBA request message to the IMS terminal agent, where the terminal user identifier AID and The network service application entity identifier
  • the IMS terminal agent sends a GBA request message to the boot service function entity, where the IMS terminal agent carries the private identity identifier IMPI and the AID in the ISIM module of the IMS terminal agent;
  • the boot service function entity transmitting the B-TID and the validity period of the root key to the IMS a terminal agent, the IMS terminal agent saves the validity period of the B-TID and the root key, and generates a key, and the IMS terminal agent further generates a generated derivative key according to a preset method for generating a derivative key. Then, the derived key, the B-TID, the AID, and the key validity period are sent to the identification network terminal.
  • the boot service function entity further stores the following association table locally: (a) B-TID, IMPI, Ks, AID, key validity period and boot start time relationship; or (b) B-TID and AID association relationship, and the relationship between B-TID and Ks, RAND, IMPI;
  • the identification network terminal When the identification network terminal establishes a security association with the network service application entity, sending an application request message to the network service application entity, where the B-TID and the AID are carried; and the network service application entity receives the application request message and then provides the guidance service function.
  • the entity sends an authentication request message, where the B-TID and the network service application entity identifier are carried;
  • the guiding service function entity searches the association table according to the B-TID in the authentication request message to obtain information for generating a derivative key, and calculates a derivative key according to a preset calculation manner, and the derivative function generated by the guiding service function entity is generated.
  • the key, the application-related user attribute data, the GBA start time, and the key validity period are sent to the network service application entity, and the network service application entity stores the relationship between the derived key and the B-TID and the IMPI.
  • the embodiment of the invention further provides a method for establishing an end-to-end security of the identification network, comprising: after the marking network terminal and the guiding service function entity complete the guiding process of the GBA, generate a derivative key Ks_NAF, and then the identification network terminal and the network service The application entity establishes a security association, and different identification network terminals have different Ks-NAFs;
  • the identity network terminal is an identity network terminal with IMS capability.
  • the identification network terminal sends the GBA request message to the guiding service function entity to carry the private identity identifier IMPI and the terminal user identifier AID;
  • the identification network terminal generates Ks-NAF, which is generated according to a preset manner after receiving the validity period of the B-TID and the root key.
  • the identification network terminal calculates the derivative key according to the following formula:
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF_ID, AID).
  • the embodiment of the invention further provides a method for establishing an end-to-end security of the identification network, including:
  • the IMS terminal agent After receiving the application request message sent by the identity network terminal, the IMS terminal agent determines, according to the service request message, whether the identity network terminal has completed the interaction authentication with the guiding service function entity, and if it is completed, the identity network terminal is Generating a derivative key Ks_NAF, if not completed, generating a ⁇ K raw key Ks_NAF for the identification network terminal after receiving the success response message;
  • the identification network terminal is a non-IMS identification network terminal or an identification network terminal that does not have IMS capability.
  • the IMS terminal agent calculates the derived key according to the following formula:
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF_ID, AID).
  • the embodiment of the present invention further provides a method for establishing an end-to-end security of a network, including: in a process of establishing a security alliance between a network application entity and an identifier network terminal, the guiding service function entity generates a derivative key Ks for the network service application entity— NAF, and the generated Ks-NAF is sent to the network service application entity.
  • the guiding service function entity completes the authentication of the identification network terminal after receiving the GBA request message sent by the identification network terminal, and then generates a guiding transaction identifier B-TID and a root key, and the guiding service function The entity sends the validity period of the B-TID and the root key to the identification network terminal.
  • the guiding service function entity locally stores an association table, where the association table is an association relationship between the following information: B-TID, IMPI, Ks, AID, key validity period and boot start time.
  • the network application entity determines whether the GBA parameter is included, and if not, returns an application request response message, indicating that the identification network terminal and the guiding service function entity perform GBA.
  • the boot process if it is included, establishes a security association with the identity network terminal.
  • the boot service function entity calculates the derived key according to the following formula:
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF_ID, AID).
  • the embodiment of the present invention further provides an identification network terminal for establishing an end-to-end security establishment of the identification network, which is configured to generate a derivative key Ks-NAF after completing a guiding process of the universal authentication framework GBA with the guiding service function entity;
  • the terminal is further configured to establish a security alliance with the network service application entity;
  • the identity network terminal is an identity network terminal with an IMS capability.
  • the identification network terminal is configured to calculate a derivative key according to the following formula:
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF ID, AID).
  • the embodiment of the invention further provides a network side device for establishing an end-to-end security establishment of the network, including a guiding service function entity and a network application entity;
  • the guiding service function entity is configured to generate a derivative key Ks_NAF for the network service application entity in the process of establishing a security association between the network application entity and the identification network terminal, and send the generated Ks_NAF to the network service application. entity.
  • the guiding service function entity is further configured to complete the authentication of the identification network terminal after receiving the GBA request message sent by the identification network terminal, and then generate a guiding transaction identifier B-TID and a root key. The validity period of the B-TID and the root key is sent to the identification network terminal.
  • the boot service function entity is further configured to locally store the following association table: (a) B-TID, IMPI, Ks, AID, association between key validity period and boot start time; or (b) B- The relationship between TID and AID, and the relationship between B-TID and Ks, RAND, IMPI;
  • the boot service function entity After the boot service function entity receives the authentication request message, it searches for the association relationship according to the B-TID therein, obtains Ks, RAND, IMPI, and AID, and calculates the derived key according to the following formula:
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF ID, AID).
  • the network side device further includes an IMS terminal agent, configured to: after receiving the application request message sent by the identity network terminal, determine, according to the service request message, whether the identity network terminal has completed and the guiding service function entity The interactive authentication, if completed, generates a derivative key Ks_NAF for the identification network terminal, and if not, generates a derivative key Ks_NAF for the identification network terminal after receiving the success response message;
  • an IMS terminal agent configured to: after receiving the application request message sent by the identity network terminal, determine, according to the service request message, whether the identity network terminal has completed and the guiding service function entity The interactive authentication, if completed, generates a derivative key Ks_NAF for the identification network terminal, and if not, generates a derivative key Ks_NAF for the identification network terminal after receiving the success response message;
  • the identification network terminal is a non-IMS identification network terminal or an identification network terminal that does not have IMS capability.
  • the embodiment of the present invention further provides a system for securely establishing an end-to-end identity of a network, where the system includes the identification network terminal according to any one of the above, and the network side device as described above.
  • the identity network terminal since the generated terminal identity of the derived key Ks-NAF is transmitted by the network side entity, the identity network terminal does not need to actively send the identifier to the B2BUA, thereby preventing the illegal identification.
  • the network terminal performs the hidden danger of the terminal identity masquerading attack. Same When different identity network terminals access the same NAF, the derived shared key Ks-NAF is different, so that even if a Ks-NAF is compromised, it will not affect other Ks-NAFs, thus ensuring security.
  • the terminal identity is transmitted to the identification network terminal by the B2BUA together with the derived key Ks_NAF, so that even if the AID of the identification network terminal is known, the NAF cannot communicate with the NAF without knowing the Ks-NAF, thus ensuring It is not easy to perform a pseudo-identification attack on the identification network terminal.
  • Figure 1 is a frame diagram of the GBA architecture
  • Figure 2 is a schematic diagram of the first deployment of the identification network and the GBA architecture
  • Figure 3 is a schematic diagram of a second deployment of the identification network and the GBA architecture
  • FIG. 5 is a flowchart of an initial boot process between a UE and a NAF according to Embodiment 1 of the present invention
  • FIG. 6 is a flowchart of a boot interaction process between a UE and a B SF according to Embodiment 2 of the present invention
  • FIG. 8 is a flowchart of establishing a security association between a UE and multiple NAFs according to Embodiment 4 of the present invention.
  • Figure 9 is a flow chart showing the processing performed by the UE and the NAF when the key of the fifth embodiment of the method expires.
  • the embodiment of the invention provides a method for establishing an end-to-end security of an identification network based on the enhanced GBA mechanism, a network side device and a system, and the identification network terminal initiates an application request message to the network service application entity, and performs execution and execution of the service function entity.
  • the guiding service function entity performs a guiding process of the universal authentication framework GBA, and the identification network terminal or the IMS terminal agent generates a derivative key Ks_NAF for the identification network terminal, and then identifies the network terminal and the network service application entity.
  • the bootstrap service function entity generates the same Ks-NAF for the network service application entity as the Ks-NAF, and different identity network terminals have different Ks-NAFs.
  • the embodiment provides an identification network terminal for establishing an end-to-end security establishment of the identification network, and is configured to generate a derivative key Ks_NAF after completing the guiding process of the universal authentication framework GBA with the guiding service function entity; Establish a security alliance;
  • the identity network terminal is an identity network terminal with IMS capability.
  • the identification network terminal calculates the derived key according to the following formula:
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF_ID, AID).
  • KDF is a key generation algorithm
  • GBA GBA field
  • NAF ID NAF identification ID
  • RAND is a random number
  • the embodiment provides a network side device for establishing an end-to-end security of the network, including a guiding service function entity and a network application entity;
  • the guiding service function entity is configured to generate a derivative key Ks_NAF for the network service application entity during the establishment of the security alliance between the network application entity and the identification network terminal, and send the generated Ks-NAF to the network service application entity.
  • the guiding service function entity is further configured to complete the authentication of the identification network terminal after receiving the GBA request message sent by the identification network terminal, and then generate a guiding transaction identifier B-TID and a root key, and The validity period of the TID and the root key is sent to the identification network terminal.
  • the boot service function entity is further configured to store (a) B-TID, IMPI, Ks,
  • the network side device further includes an IMS terminal agent, configured to: after receiving the application request message sent by the identity network terminal, determine, according to the service request message, whether the identity network terminal has been completed and referenced Conducting interactive authentication of the service function entity, if it is completed, generating a derivative key for the identity network terminal
  • Ks_NAF if not completed, after generating the success response message, generate a ⁇ s raw key Ks NAF for the identification network terminal;
  • the identification network terminal is a non-IMS identification network terminal or an identification network terminal that does not have IMS capability.
  • the embodiment provides a system for establishing an end-to-end security of the network, including the identifier network terminal described in the terminal embodiment, and the network side device described in the device embodiment.
  • This embodiment provides a method for establishing an end-to-end security establishment of the identification network.
  • the method for applying the enhanced universal authentication architecture to the user terminal of the identification network is as follows:
  • Step a the user terminal of the identification network sends an application request message without the GBA parameter to the network service application entity, and the network service application entity responds to the application request message. Instructing the identification network user terminal and the guiding service function entity to perform an authentication process;
  • Step b for the IMS-capable identification network terminal, after receiving the instruction to perform the authentication process with the guiding service function entity, perform the GBA guiding process with the BSF;
  • the IMS terminal agent For the non-IMS identification network terminal or the IMS-capable identification network terminal, the IMS terminal agent performs the GBA guiding process with the BSF after receiving the GBA request message of the identification network user terminal; Step c, for the IMS-capable identification network The terminal, after the GBA boot process is completed, generates a derivative key Ks-NAF for the terminal;
  • the IMS terminal agent For a non-IMS identification network terminal or an IMS-capable identification network terminal, after the GBA boot process is completed, the IMS terminal agent generates a derivative key Ks_NAF for the identification network terminal;
  • Step d The identity network terminal establishes a security association with the network service application entity NAF.
  • the bootstrap service function entity BSF generates a derivative key Ks-NAF for the network service application entity NAF, which is derived from the derivative generated in step c.
  • the key Ks - NAF is the same.
  • the NAF and the UE jointly acquire a public key Ks-NAF through the B2BUA.
  • the corresponding Ks-NAF is different, so that even if a Ks-NAF leaks, it will not affect other Ks-NAF. This ensures security.
  • the embodiment of the present invention proposes that the identification network terminal completes the secure communication function between the identification network terminal and the request server through the IMS terminal agent B2BUA entity application enhanced universal authentication framework (GBA).
  • the B2BUA entity includes an NGN IMS Resident Gateway entity or an entity with similar functionality. This type of terminal is an identification network terminal.
  • the identification information AID of the identification network terminal may also be stored in the HSS entity.
  • it is assumed that the interfaces between the identification network terminal UE and the B2BUA are secure.
  • the B2BUA cannot actively initiate the GBA process and must be triggered by the UE. According to the embodiment of the present invention, when different identification network terminals access the same NAF, even if the key of one terminal is leaked, the security of other identification network terminals is not affected.
  • this embodiment describes two modes of the initial boot process between the UE and the NAF.
  • the identification network terminal needs to perform user access authentication in the identification network to enable the identification network terminal to access the identification network.
  • Step 101 The identity network terminal and the authentication center perform user access authentication.
  • Step 102 The identifier network terminal sends an application request message to the ISR, and the ISR forwards the application request message to the NAF.
  • the application request message does not carry any GBA parameters.
  • Step 103 The NAF sends an application response message to the identifier network terminal, indicating that the identifier network terminal needs to perform the GBA boot process with the BSF first.
  • the ISR sends an application request message, and the ISR forwards the application request message to the NAF;
  • Step 101 The identity network terminal and the authentication center perform user access authentication.
  • Step 102a The identifier network terminal sends an application request message to the IMS terminal proxy.
  • Step 102b The IMS terminal agent forwards the application request message to the NAF through the ISR;
  • Step 103a The NAF returns an application response message, indicating that the identifier network terminal needs to perform a GBA boot process with the BSF, and the application response message is forwarded to the IMS terminal proxy by using the ISR;
  • Step 103b The IMS terminal agent forwards the received application response message to the identification network terminal.
  • the GBA boot interaction process between the UE and the BSF as shown in FIG. 6 is performed, and after the GBA boot interaction process is completed, a derivative is generated for the logo network terminal.
  • Key Ks - NAF The figure is described by taking a non-IMS terminal or a terminal without IMS capability as an example.
  • the guiding interaction process includes the following steps:
  • Step 201 The UE sends a GBA request to the B2BUA, where the GBA request carries the identity identifier AID of the UE and the identifier ID of the NAF.
  • the mutual authentication process between the B2BUA and the BSF is performed.
  • the BSF generates a transaction identifier B-TID, which is sent to the B2BUA along with the key validity period, and both the B2BUA and the BSF generate the root key Ks.
  • an association table ie, B-TID, IMPI, Ks, AID, key validity period, association relationship between boot start times
  • B-TID ie, IMPI, Ks, AID, key validity period, association relationship between boot start times
  • Step 202 The B2BUA sends a GBA request message to the BSF, where the GBA request message includes the private identity identifier IMPI and the terminal user identifier AID in the B2BUA's own ISIM module.
  • Step 203 The BSF obtains an authentication vector from the HSS, and the BSF interacts with the HSS. Get this
  • the authentication vector information of the B2BUA includes AUTN, RAND, IK, CK, and XRES;
  • Step 204 The BSF returns a 401 unauthorized challenge message to the B2BUA, where the message includes AUTN, RANDo
  • the BSF After receiving the authentication vector information of the B2BUA, the BSF carries the AUTN and the RAND in the authentication vector information together in the challenge message, and returns the message to the B2BUA.
  • the AUTN is used to verify the identity of the BSF
  • the RAND is used to enable the B2BUA to acquire the same IK and CK as the BSF side.
  • Step 205 After receiving the unauthorized challenge message, the B2BUA checks the validity of the AUTN to authenticate the network by running the AKA algorithm, that is, verifying the identity of the peer BSF by checking the validity of the AUTN, and obtaining IK and CK according to the RAND. And generate RES.
  • Step 206 The B2BUA sends a GBA request message to the BSF again, and carries the RES in the message, where the RES is used to verify the identity of the B2BUA.
  • Step 207 The BSF checks the validity of the RES to authenticate the B2BUA; and generates a transaction identifier B-TID;
  • the BSF also locally stores an association table (ie B-TID, IMPI, Ks, AID, key validity period, association between start times).
  • an association table ie B-TID, IMPI, Ks, AID, key validity period, association between start times.
  • the BSF authenticates the B2BUA by determining whether the RES in the GBA request message is related to the XRES obtained from the HSS. Moreover, the BSF generates Ks based on IK and CK obtained from the HSS.
  • Step 208 The BSF sends the validity period of the B-TID and the Ks to the B2BUA in the 200 OK success response message.
  • the BSF allocates a B-TID for the authentication interaction transaction between the identifier and the B2BUA, and associates the B-TID with the private user identifier IMPI of the Ks, AID, and B2BUA, so that the BSF can be based on the B.
  • -TID finds the corresponding Ks, and defines a validity period for Ks so that Ks can be updated regularly.
  • the BSF carries the validity period of the B-TID and Ks in the 200 OK success response message.
  • Step 209 After receiving the success response message, the B2BUA obtains the validity period of the B-TID and the Ks, and saves the validity period of the B-TID and the Ks on the B2BUA side, and generates Ks.
  • Step 211 The B2BUA sends the validity period of the Ks—NAF, the B-TID, and the AID to the identity network terminal UE.
  • the terminal is an IMS-capable identification network terminal
  • the B2BUA is not required to participate in the GBA's guiding interaction with the BSF. Therefore, in the step 201, the identification network terminal needs to carry the local ISIM module when sending the GBA request. Private identity identifier IMPI, and identify the end of the network The terminal generates Ks_NAF for the terminal after receiving the success response message.
  • the process described in FIG. 7 is performed to implement SA (Security Association) establishment between the UE and the NAF. As shown in FIG. 7, it includes the following steps.
  • SA Security Association
  • Step 301 The UE sends an application request message to the NAF, where the application request carries a B-TID,
  • the step 301 can also be replaced by the steps 301a-301b in the figure.
  • the UE sends an application request message to the NAF through the B2BUA, where the B2BUA functions as a forwarding, and the application request message also includes the B-TID and the AID.
  • the identification network identity AID is automatically converted to the corresponding IP address and passed to the NAF when passing the ISR.
  • the AID itself is not passed to the NAF.
  • Step 302 The NAF sends an authentication request message to the BSF, where the authentication request message carries the B-TID and the NAF host name (that is, the identifier of the NAF).
  • Step 303 The BSF calculates Ks_NAF according to the same formula as the terminal side;
  • the BSF searches the association table stored in the BSF according to the B-TID, obtains Ks, AID, and IMPI, and generates Ks-NAF according to the obtained parameters and the parameters sent in step 302.
  • Step 304 The BSF sends the Ks-NAF, the application-related user attribute data, the GBA start time, and the key validity period to the NAF.
  • Step 305 The NAF saves the parameters such as Ks_NAF and the relationship between B-TID and IMPI.
  • Step 306 The NAF sends an application response message to the UE.
  • this step can also be replaced by steps 306a-306b in the figure, that is, the NAF may also send an application response message to the UE through the B2BUA.
  • the B2BUA generates a dirty key Ks_NAF for the UE, and through the processing shown in FIG. 6, the BSF generates the same derived key Ks_NAF for the NAF.
  • a security association is established between the UE and the NAF.
  • the process described in FIG. 8 needs to be performed to implement SA (Security Association) establishment between UE and NAF2. As shown in FIG. 8, it includes the following steps.
  • Step 401a The UE has completed the interactive authentication process between the UE and the BSF when accessing the application server NAF1, and stores related information of the UE and the BSF mutual authentication, such as B-TID, AID, etc. in the UE;
  • the B2BUA sends an application request message to the NAF, where the message carries the B-TID, the AID, the NAF ID2, and the application request message content.
  • the B2BUA stores various GBA parameter information and terminal identifier AID for mutual authentication between the UE and the BSF, and finds that the terminal under the AID has passed the authentication, and can skip the validity of the root key Ks.
  • the interaction between the UE and the BSF is authenticated in steps 202-209.
  • Ks_NAF KDF(Ks, "gba-me”, RAND, IMPI, NAF ID2, AID), and the relationship between Ks-NAF and the private user identifiers IMPI and NAF_ID2 is saved.
  • Step 401b The B2BUA sends an application request message to the NAF2, where the application request carries the B-TID and the IP address of the corresponding AID.
  • the identification network identity AID is automatically converted to the corresponding IP address and passed to NAF2 when passing the ISR.
  • the AID itself is not passed to NAF2.
  • Step 402 The NAF2 sends an authentication request message to the BSF, where the authentication request message carries the B-TID and the NAF2 host name (that is, the identifier ID of the NAF2).
  • Step 403 The BSF calculates Ks_NAF according to the same formula as the user side;
  • the BSF searches the table stored in the BSF according to the B-TID to obtain Ks, AID, and
  • IMPI based on the obtained parameters and the parameters sent in step 402, generates Ks-NAF.
  • Step 404 The BSF sends the Ks-NAF, the application-related user attribute data, the GBA start time, and the key validity period to the NAF2.
  • Step 405 NAF2 saves parameters such as Ks_NAF and B-TID and IMPI.
  • Step 406 The NAF2 sends an application response message to the UE.
  • the UE and Secure communication is performed between the NAFs, but if the NAF believes that the dirty shared key Ks_NAF has expired, the mutual authentication process between the UE and the BSF may be indicated in step 502 as shown in FIG. .
  • the indication can also be forwarded by the B2BUA by following steps 502a and 502b.
  • the B2BUA proxy is not required, and the identification network terminal UE directly performs mutual authentication and guiding procedures with the BSF.
  • the authentication center in the ID network can provide the corresponding authentication vector parameters for the BSF.
  • the authentication center of the identification network can be equivalent to the HSS network element in the GBA architecture, or the HSS can be deployed separately.
  • Functional entity the BSF and the NAF on the traditional IP network outside the identification network can pass one or more ISR/Zn-Proxy; the Zn-proxy functional entity can be located in the ISR, or the function can be implemented separately for one functional network element.
  • the BSF shall record the relationship between the B-TID and the AID (the BSF has stored the B-TID and Ks, RAND, IMPI).
  • the UE sends an application request message to the NAF to carry the B-TID, and the NAF carries the B-TID in the authentication request message sent to the BSF.
  • the non-IMS terminal proxy entity may be the B2BUA (IRG) entity, or may be an entity having similar functions in 3GPP/3GPP2.
  • the derived key Ks-NAF is different, so that even if a Ks-NAF leaks, it does not affect other Ks-NAF, thereby ensuring Security.
  • the terminal identifier is transmitted to the identification network terminal by the B2BUA together with the derived shared key Ks_NAF, which ensures that the pseudo-identification attack is not easy on the identification network terminal.
  • the identification network terminal when the same identification network terminal accesses different NAFs, in the validity period of the root key Ks, the identification network terminal only needs to perform an interactive authentication with the BSF, and the mutual authentication is generated by using the mutual authentication.
  • the information provides parameters for subsequent access to the NAF and generates different Ks-NAF keys.
  • the method provided by the invention can realize the end-to-end security between the identification network terminal and the NAF as a whole.
  • the present invention is an extension on the existing GBA architecture to ensure backward compatibility.
  • the solution of the embodiment of the invention prevents the hidden danger of the terminal identity masquerading attack by the illegal identification network terminal, ensures the security, and ensures that the pseudo-identification attack is not easy on the identification network terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer And Data Communications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种标识网端到端安全建立的方法、网络侧设备及系统,该方法包括:在标识网终端与引导服务功能实体的 GBA引导过程完成后,标识网终端或IMS终端代理为标识网终端生成衍生密钥Ks_NAF,之后标识网终端与网络业务应用实体建立安全联盟;在安全联盟的建立过程中,引导服务功能实体为网络业务应用实体生成衍生密钥Ks_NAF,且与标识网终端的Ks_NAF相同;不同的标识网终端具有不同的Ks_NAF。采用本发明方案,不同的标识网终端访问同一个NAF时,衍生的共享密钥Ks_NAF是不一样的,这样即使一个Ks_NAF泄密,也不会影响其他的Ks_NAF,从而保证了安全性。

Description

一种标识网端到端安全建立的方法、 网络侧设备及系统
技术领域
本发明涉及网络通信领域,尤其涉及一种基于增强 GBA机制的标识网端 到端的安全方法和系统。
背景技术
在 TCP/IP体系中, 最为核心的是网络层的 IP协议, 通过 IP地址实现用 户之间的相互访问。 各种应用, 如网络浏览、 邮件收发、 即时通讯等, 都承 载在应用层协议之上。
用户在使用这些业务之前必须通过电信运营商提供的基础网络接入互联 网, 不同的用户可能有不同的接入方式, 如 xDSL、 光纤、 移动接入等等。 一 般情况下, 用户终端都会获取到一个 IP地址, 用户此后就通过这个 IP地址 访问互联网上的各种应用, 这个 IP地址就相当于用户的临时身份。
由于 IP地址的前缀部分表示用户当前所在的子网, 当用户位置发生变化 时, 必须分配不同的 IP地址, 否则路由器无法正确地把数据包转发给用户。 而因为 IP地址具有身份和位置的双重属性, 同时用户每次获取到的 IP地址 不一定相同, 从而无法作为用户的长期身份标识, 因此互联网上的应用系统 必须自建一套用户身份标识系统, 即通常所说的用户账号系统。
当前, IP地址具有双重属性的缺陷, 带来了移动性和安全性问题, 已经 成为了制约互联网产业进一步发展的瓶颈。 为了解决这个问题, 业界提出了 HIP( Host Identity Protocol,主机标识协议 )和 LISP( Locator/Identifier Separation Protocol,位置 /标识分离协议)技术等。这些技术的共同点是引入了两类编码: 代表用户身份的身份编码和代表用户位置的位置编码, 每个用户都既有一个 身份编码又有一个位置编码, 用户基于身份编码和对端发生通信, 当用户位 置发生变化时, 用户的身份编码保持不变, 而用户的位置编码将随之变化。 这样, 通过用户身份编码就可以始终对应到用户, 而不会存在 IP地址二义性 的问题。 标识网是一种新型的互联网技术, 引入身份位置分离的思想, 支持移动 接入终端移动性和连续性, 尤其是标识网中每个用户都拥有唯一的永久身份 标识, 用户每次接入时网络都需要对身份进行验证, 因此网络能够保证这个 身份标识的真实性和可靠性。 基于这个唯一可靠的身份标识, 可以建立身份 管理体系, 开展基于用户身份管理的业务, 提高网络安全。
标识网的基本原理是为用户设备分配固定的身份标识, 用户设备之间使 用身份标识代替现有技术中的互联网 IP协议地址进行通信, 并由位于互联网 边缘的接入服务分配用户的位置标识, 使用位置标识进行路由, 并完成用户 身份标识和位置标识之间的映射和转换。 其中用户设备 101(User Equipment, 简称 UE), 支持互联网 IP接入的用户设备, 包括移动分组域接入终端、 支持 无线局域功能终端、 固定接入终端、 游牧终端等, 还进一步包括应用服务器 等业务提供设备。 UE使用用户接入身份标识 (Access Identity, 简称 AID)代替 IP 地址, 同网络其他用户设备、 业务提供者进行通信。 接入服务路由器 102(Access Service Router, 简称 ASR),是 UE101所在的接入网络与互联网之 间的接口设备,负责 UE101的认证、用户位置标识 (Routing Identity,简称 RID) 管理、 AID和 RID映射和转换, 以及用户数据的封装 /解封、 转发等功能。 认 证中心 103 , 是用于记录本网络用户的属性信息如用户类别、 认证信息和用 户服务等级等, 完成对 UE101的接入认证和授权, 或者完成对终端的接入认 证、 授权和计费。 支持终端和网络之间的双向认证。 互联服务路由器 104(Internet Service Router, 简称 ISR) , 是用于查询、 维护本网络终端的 AID-RID映射信息, 封装、 路由和转发本网络与传统 IP网络之间交互的数据 才艮文, 实现本标识网络与传统 IP网络之间的互联互通功能。
GBA (通用鉴权框架)是 3GPP (第三代移动通信系统)中定义的一种通用鉴 权框架。 如图 1所示, 通用鉴权框架通常由 IMS(IP多媒体业务子系统)用户 (UE)、 引导服务功能实体 (BSF)、 用户归属网络服务器 (HSS)、 用户定位功能 实体 (SLF)和网络业务应用实体 (NAF)组成。 UE和 BSF通过 Ub接口连接, BSF 和 NAF通过 Zn接口连接, UE和 NAF通过 Ua接口连接, SLF和 BSF通过 Dz接口连接, BSF和 HSS通过 Zh接口连接。 BSF用于与 UE进行互验证身 份, 同时生成 BSF与用户的共享密钥(即根密钥) Ks; HSS中存储用于描述 用户信息的签约文件, 同时 HSS还兼有产生鉴权信息的功能。 SLF用于当存 在多个 HSS时, 协助 BSF查找响应的 HSS。 NAF用于为 UE提供网络业务。
当用户 UE第一次向 NAF发出应用请求时, 不知道 NAF是否需要 GBA 过程, 就不携带 GBA参数。 如果 NAF要求进行初始的 GBA过程, 则在发给 UE的响应消息中会告诉 UE进行 GBA过程。
当用户 UE需要使用某种业务时, 如果用户知道该业务需要到 BSF进行 互鉴权过程, 则直接发送鉴权请求到 BSF进行互鉴权。 否则, 用户会首先和 该业务对应的 NAF联系, 如果该 NAF使用 GBA通用鉴权框架, 并且发现该 用户还未到 BSF进行互认证过程, NAF则通知该用户到 BSF进行互鉴权以验 证身份。
GBA中的 UE上包含 IP多媒体业务身份标识模块 ISIM(IP Multimedia Services Subscriber Identity Module)/通用集成电路卡 UICC,而且 UE上既包含 GBA客户端, 也包含 NAF应用客户端。 但是随着通用鉴权框架应用范围越 来越广泛, 出现一些新的应用场景, 例如在传统的没有 ISIM/UICC模块因而 也就不具备 ISIM能力的用户终端上,或者 NAF应用客户端与 GBA客户端分 离的终端(多个外围终端釆用同一个 ISIM/UICC访问网络业务)上如何应用 GBA。
TISPAN(ETSI 的 NGN 网络标准)中定义了一种称为 IMS 驻留网关 IRG(IMS Residential Gate way)的功能实体, 用于为那些非 IMS终端提供访问 IMS业务的安全通道。 IMS驻留网关功能上相当于一个 B2BUA (背靠背用户 代理)实体, 其具有一个 "ISIM ON UICC (通用集成电路卡上的 IP多媒体业务 身份标识模块)" 模块, 用来为这些非 IMS终端提供访问 IMS业务的安全通 道, 并且该模块上存储了一个私有用户标识 (IMPI)和多个公共用户标识 (IMPU)。
这种应用场景下, 一个 IMS用户可能具备多个非 IMS终端设备, 并且所 有这些非 IMS终端釆用同一个 ISIM/UICC (位于 IMS终端代理上)访问网络业 务。 另外 NAF应用客户端位于 IMS终端代理以外的一个或多个非 IMS终端 上, 因此与执行 GBA的客户端 (位于 IMS终端代理商)不在同一个设备上, 我 们称之为增强的 GBA框架。 IMS终端代理 B2BUA为这些非 IMS终端生成衍 生密钥 Ks— NAF,这些非 IMS终端利用该生成的 †生密钥 Ks— NAF和 NAF通 信。 当多个外围终端设备共享一个 UE上的 GBA客户端时, 如果这些外围终 端设备中的某两个或几个访问同一个 NAF时,还会出现多个外围终端设备釆 用同一个衍生密钥 Ks— NAF与某一个 NAF通信的情况, 造成安全隐患; 如果 其中一个被攻破, 另外一个也会不攻自破。
标识网和 GBA架构有多种组网方式,图 2和图 3给出了两种典型的方式。 图 2是标识网终端具有 IMS终端能力, 且在标识网内部署 GBA架构, 分别 利用 ASR和 ISR与 GBA架构内的 BSF和 NAF网元相连使得两个架构联系起 来; 图 3是标识网终端不具有 IMS终端能力, 需借助 B2BUA代理, 且标识 网内部署了 GBA架构, 分别利用 ASR和 ISR与 GBA架构内的 BSF和 NAF 网元相连使得两个架构联系起来,并通过一个或多个 ISR和 Zn-Proxy与 GBA 架构内的 NAF网元相连使得两个架构联系起来。 在此两种组网方式中, 标识 网内的认证中心或可作为 GBA架构下的 HSS使用, 也可单独使用一个 HSS 网元; 同时 Zn-Proxy功能可以在 ISR内, 也可以单独为一个网元来实现整个 功能。 发明内容
有鉴于此,本发明实施例提供了一种基于增强 GBA机制的标识网端到端 安全建立的方法、 网络侧设备及系统, 从而解决标识网用户安全的访问和获 取互联网应用服务内容时的终端到业务服务器之间端到端的安全; 同时根据 本地定义策略也可实现不同标识网用户使用相同代理的 Ks , 并且实现同一标 识网用户一定的单点登录能力, 即同一标识网终端具有相同的根密钥 Ks。
本发明实施例提供一种标识网端到端安全建立的方法, 包括:
标识网终端向网络业务应用实体发起应用请求消息, 所述网络业务应用 实体判断所述标识网终端是否完成与引导服务功能实体的通用鉴权框架 GBA的引导过程, 若未完成则网络业务应用实体指示标识网终端与引导服务 功能实体执行 GBA的引导过程, 在所述 GBA的引导过程完成后, 标识网终 端或 IMS终端代理为标识网终端生成衍生密钥 Ks— NAF, 之后标识网终端与 网络业务应用实体建立安全联盟; 若已完成则网络业务应用实体与所述标识网终端直接建立安全联盟, 且 标识网终端或 IMS终端代理为标识网终端生成衍生密钥 Ks— NAF;
在所述安全联盟的建立过程中, 所述引导服务功能实体为网络业务应用 实体生成汙生密钥 Ks— NAF, 且与标识网终端的 Ks— NAF相同;
不同的标识网终端具有不同的 Ks— NAF。
较佳地, 所述网络业务应用实体判断所述标识网终端是否完成与引导服 务功能实体的 GBA的引导过程的方法为:
网络业务应用实体判断应用请求消息中是否携带 GBA参数,若未携带则 判定标识网终端未与引导服务功能实体完成 GBA的引导过程,若已携带则判 定标识网终端已与引导服务功能实体完成 GBA的引导过程。
较佳地, 具有 IMS能力的标识网终端与引导服务功能实体进行引导交互 时, 向引导服务功能实体发送 GBA请求消息时携带私有身份标识符 IMPI和 终端用户标识符 AID, 当所述引导服务功能实体完成对所述标识网终端的鉴 权后生成一引导事务标识 B-TID及根密钥, 所述引导服务功能实体将 B-TID 以及根密钥的有效期发送至标识网终端, 所述标识网终端保存所述 B-TID以 及根密钥的有效期, 并生成一根密钥, 所述标识网终端还根据预设的生成衍 生密钥的方式生成一生成衍生密钥。
较佳地,非 IMS标识网终端或不具有 IMS能力的标识网终端与引导服务 功能实体进行引导交互时, 所述标识网终端向 IMS终端代理发送 GBA请求 消息, 其中携带终端用户标识符 AID及网络业务应用实体标识, 所述 IMS终 端代理向引导服务功能实体发送 GBA请求消息, 其中携带 IMS终端代理自 身 ISIM模块内的私有身份标识符 IMPI和所述 AID;
当所述引导服务功能实体完成对所述标识网终端的鉴权后生成一引导事 务标识 B-TID及根密钥, 所述引导服务功能实体将 B-TID以及根密钥的有效 期发送至 IMS终端代理,所述 IMS终端代理保存所述 B-TID以及根密钥的有 效期, 并生成一根密钥, 所述 IMS终端代理还根据预设的生成衍生密钥的方 式生成一生成衍生密钥, 然后将衍生密钥、 B-TID、 AID及密钥有效期发给标 识网终端。 较佳地, 所述引导服务功能实体还在本地存储以下关联表: ( a ) B-TID, IMPI, Ks, AID, 密钥有效期及引导开始时间的关联关系; 或(b ) B-TID与 AID的关联关系, 以及 B-TID与 Ks、 RAND、 IMPI之间的关联关系;
当所述标识网终端与网络业务应用实体建立安全联盟时, 向网络业务应 用实体发送应用请求消息, 其中携带 B-TID以及 AID; 所述网络业务应用实 体收到应用请求消息后向引导服务功能实体发送认证请求消息, 其中携带 B-TID以及网络业务应用实体标识;
所述引导服务功能实体根据认证请求消息中的 B-TID查找所述关联表获 得生成衍生密钥的信息, 并根据预设的计算方式计算一衍生密钥, 引导服务 功能实体将生成的衍生密钥、 应用相关用户属性数据、 GBA开始时间及密钥 有效期发送至所述网络业务应用实体, 所述网络业务应用实体保存衍生密钥 与 B-TID及 IMPI的关系。
较佳地,所述预设的生成衍生密钥的方式为根据以下公式计算衍生密钥: Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID)。
本发明实施例还提供一种标识网端到端安全建立的方法, 包括: 标识网终端与引导服务功能实体完成 GBA的引导过程后,生成衍生密钥 Ks_NAF ,之后所述标识网终端与网络业务应用实体建立安全联盟,且不同的 标识网终端具有不同的 Ks— NAF;
所述标识网终端为具有 IMS能力的标识网终端。
较佳地, 所述标识网终端与引导服务功能实体进行 GBA的引导过程时, 标识网终端向引导服务功能实体发送 GBA请求消息时携带私有身份标识符 IMPI和终端用户标识符 AID;
当所述标识网终端收到引导事务标识 B-TID以及根密钥的有效期后, 保 存所述 B-TID以及^ =艮密钥的有效期, 并生成一^ =艮密钥;
所述标识网终端生成 Ks— NAF是在收到 B-TID以及根密钥的有效期后根 据预设方式生成。
较佳地, 所述标识网终端根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID)。 本发明实施例还提供一种标识网端到端安全建立的方法, 包括:
IMS终端代理收到标识网终端发来的应用请求消息后, 根据所述业务请 求消息判断所述标识网终端是否已完成与引导服务功能实体的交互认证, 若 已完成则为所述标识网终端生成一衍生密钥 Ks— NAF, 若未完成则于收到成 功响应消息后为所述标识网终端生成一^ ^生密钥 Ks— NAF;
所述标识网终端为非 IMS标识网终端或不具有 IMS能力的标识网终端。 较佳地, 所述 IMS终端代理根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID)。
本发明实施例还提供一种标识网端到端安全建立的方法, 包括: 在网络应用实体与标识网终端建立安全联盟过程中, 引导服务功能实体 为网络业务应用实体生成一衍生密钥 Ks— NAF, 并将生成的 Ks— NAF发送至 所述网络业务应用实体。
较佳地,引导服务功能实体收到标识网终端发来的 GBA请求消息后完成 对所述标识网终端的鉴权, 之后生成一引导事务标识 B-TID及根密钥, 所述 引导服务功能实体将 B-TID以及根密钥的有效期发送至标识网终端。
较佳地, 所述引导服务功能实体在本地存储一关联表, 所述关联表为以 下信息间的关联关系: B-TID, IMPI, Ks, AID, 密钥有效期及引导开始时间。
较佳地, 所述网络应用实体收到标识网终端发来的应用请求消息后, 判 断其中是否包含 GBA参数, 若未包含则返回应用请求响应消息,指示标识网 终端与引导服务功能实体进行 GBA的引导过程,若已包含则与标识网终端建 立安全联盟。
较佳地, 所述引导服务功能实体根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID)。
本发明实施例还提供一种标识网端到端安全建立的标识网终端, 设置为 完成与引导服务功能实体进行通用鉴权框架 GBA的引导过程后生成衍生密 钥 Ks— NAF; 所述标识网终端还设置为与网络业务应用实体建立安全联盟; 所述标识网终端为具有 IMS能力的标识网终端。 较佳地, 所述标识网终端是设置为根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID)。
本发明实施例还提供一种标识网端到端安全建立的网络侧设备, 包括引 导服务功能实体及网络应用实体;
所述引导服务功能实体, 设置为在网络应用实体与标识网终端建立安全 联盟过程中为所述网络业务应用实体生成一衍生密钥 Ks— NAF, 并将生成的 Ks_NAF发送至所述网络业务应用实体。
较佳地,所述引导服务功能实体还设置为收到标识网终端发来的 GBA请 求消息后完成对所述标识网终端的鉴权, 之后生成一引导事务标识 B-TID及 根密钥, 并将 B-TID以及根密钥的有效期发送至标识网终端。
较佳地, 所述引导服务功能实体还设置为在本地存储以下关联表: ( a ) B-TID, IMPI, Ks, AID, 密钥有效期及引导开始时间的关联关系; 或 (b ) B-TID与 AID的关联关系, 以及 B-TID与 Ks、 RAND, IMPI之间的关联关 系;
当引导服务功能实体收到认证请求消息后, 根据其中的 B-TID查找所述 关联关系, 获得 Ks、 RAND, IMPI及 AID, 并根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID)。
较佳地, 所述网络侧设备还包括 IMS终端代理, 设置为收到标识网终端 发来的应用请求消息后, 根据所述业务请求消息判断所述标识网终端是否已 完成与引导服务功能实体的交互认证, 若已完成则为所述标识网终端生成一 衍生密钥 Ks— NAF, 若未完成则于收到成功响应消息后为所述标识网终端生 成一衍生密钥 Ks— NAF;
所述标识网终端为非 IMS标识网终端或不具有 IMS能力的标识网终端。 本发明实施例还提供一种标识网端到端安全建立的系统, 所述系统包括 如上任一所述的标识网终端以及如上任一所述的网络侧设备。
依照本发明实施例的方案, 由于与衍生密钥 Ks— NAF的生成的终端身份 标识是由网络侧实体传递来的, 因此标识网终端不需要主动将该标识发送给 B2BUA, 从而防止了非法标识网终端进行终端身份标识伪装攻击的隐患。 同 时, 不同的标识网终端访问同一个 NAF时, 衍生的共享密钥 Ks— NAF是不一 样的, 这样即使一个 Ks— NAF泄密, 也不会影响其他的 Ks— NAF, 从而保证 了安全性。 此外, 终端身份标识是由 B2BUA连同衍生密钥 Ks— NAF—起传 给标识网终端, 这样即使知道标识网终端的 AID, 在不知道 Ks— NAF的情况 下也无法与 NAF 进行通信, 因此保证了标识网终端上不容易进行伪标识攻 击。 附图概述
图 1为 GBA架构的框架图;
图 2为标识网和 GBA架构的第一种部署示意图;
图 3为标识网和 GBA架构的第二种部署示意图;
图 4为本发明实施例方法实现流程图;
图 5为本发明方法实施例一的 UE和 NAF之间的初始引导过程的流程图; 图 6为本发明方法实施例二的 UE和 B SF之间的引导交互过程的流程图; 图 7为本发明方法实施例三的 UE和 NAF之间建立安全联盟的流程图; 图 8为本发明方法实施例四的 UE和多个 NAF之间建立安全联盟的流程 图;
图 9为本发明方法实施例五的密钥过期时 UE和 NAF执行的处理的流程 图。 本发明的较佳实施方式
本发明实施例提供一种基于增强 GBA机制的标识网端到端安全建立的 方法、 网络侧设备及系统, 标识网终端向网络业务应用实体发起应用请求消 息, 当收到与引导服务功能实体执行鉴权处理的指示后与引导服务功能实体 进行通用鉴权框架 GBA的引导过程, 标识网终端或 IMS终端代理为标识网 终端生成衍生密钥 Ks— NAF , 之后标识网终端与网络业务应用实体建立安全 联盟的过程中, 引导服务功能实体为网络业务应用实体生成与所述 Ks— NAF 相同的 Ks— NAF , 且不同的标识网终端具有不同的 Ks— NAF。 以下通过几个实施例详细描述本发明;
终端实施例
本实施例提供一种标识网端到端安全建立的标识网终端, 设置为完成与 引导服务功能实体进行通用鉴权框架 GBA 的引导过程后生成衍生密钥 Ks_NAF; 还设置为与网络业务应用实体建立安全联盟;
所述标识网终端为具有 IMS能力的标识网终端。
较佳地, 标识网终端根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID)。
其中, KDF为密钥产生算法, "gba-me" 为 GBA字段, 表示基于移动 设备( ME ) 的 GBA, NAF ID为 NAF的标识 ID, RAND为随机数。
设备实施例
本实施例提供一种标识网端到端安全建立的网络侧设备, 包括引导服务 功能实体及网络应用实体; 其中,
引导服务功能实体, 设置为在网络应用实体与标识网终端建立安全联盟 过程中为网络业务应用实体生成一衍生密钥 Ks— NAF, 并将生成的 Ks— NAF 发送至网络业务应用实体。
较佳地,引导服务功能实体还设置为收到标识网终端发来的 GBA请求消 息后完成对标识网终端的鉴权, 之后生成一引导事务标识 B-TID及根密钥, 并将 B-TID以及根密钥的有效期发送至标识网终端。
较佳地, 引导服务功能实体还设置为在本地存储(a ) B-TID, IMPI, Ks,
AID, 密钥有效期及引导开始时间的关联关系; 或( b ) B-TID与 AID的关联 关系, 以及 B-TID与 Ks、 RAND、 IMPI之间的关联关系;
当引导服务功能实体收到认证请求消息后, 根据其中的 B-TID查找所述 关联关系, 获得 Ks、 RAND, IMPI及 AID, 并根据以下公式计算衍生密钥: Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID)。
较佳地, 网络侧设备还包括 IMS终端代理, 设置为收到标识网终端发来 的应用请求消息后, 根据业务请求消息判断所述标识网终端是否已完成与引 导服务功能实体的交互认证, 若已完成则为标识网终端生成一衍生密钥
Ks_NAF, 若未完成则于收到成功响应消息后为标识网终端生成一^ ^生密钥 Ks NAF;
所述标识网终端为非 IMS标识网终端或不具有 IMS能力的标识网终端。
系统实施例
本实施例提供一种标识网端到端安全建立的系统, 包括终端实施例所述 的标识网终端, 以及设备实施例所述的网络侧设备。
方法实施例
本实施例提供一种标识网端到端安全建立的方法, 如图 4所示, 标识网 用户终端应用增强型通用鉴权架构的方法如下步骤:
对于非 IMS终端及不具有 IMS能力的终端均需要通过 B2BUA进行交互; 步骤 a, 标识网用户终端发送不带 GBA参数的应用请求消息给网络业务 应用实体, 网络业务应用实体响应该应用请求消息, 指示标识网用户终端与 引导服务功能实体执行鉴权处理;
步骤 b, 对于具有 IMS能力的标识网终端, 在收到与引导服务功能实体 执行鉴权处理的指示后, 与 BSF进行 GBA的引导过程;
对于非 IMS标识网终端或不具有 IMS能力的标识网终端, IMS终端代理 在接收到标识网用户终端的 GBA请求消息后,与 BSF进行 GBA的引导过程; 步骤 c, 对于具有 IMS能力的标识网终端, 在 GBA的引导过程完成后, 为本终端生成衍生密钥 Ks— NAF;
对于非 IMS标识网终端或不具有 IMS能力的标识网终端, 在 GBA的引 导过程完成后, IMS终端代理为标识网终端生成衍生密钥 Ks— NAF;
步骤 d, 标识网终端与网络业务应用实体 NAF建立安全联盟, 在安全联 盟建立过程中,引导服务功能实体 BSF为网络业务应用实体 NAF生成衍生密 钥 Ks— NAF, 其与步骤 c中生成的衍生密钥 Ks— NAF相同。 这样 , NAF和 UE就通过 B2BUA共同获取了一个公共密钥 Ks— NAF。 而 且, 对于不同的 UE, 只要使用的 AID不同, 相应的 Ks— NAF也就不一样, 这样即使一个 Ks— NAF泄密, 也不会影响到其他 Ks— NAF。 从而保证了安全 性。
本发明实施例提出了一种标识网终端通过 IMS终端代理 B2BUA实体应 用增强通用鉴权架构 (GBA)完成标识网终端和请求服务器之间的安全通信功 能。该 B2BUA实体包括 NGN的 IMS驻留网关实体,或具有类似功能的实体。 该类终端为标识网终端。 HSS实体内亦可储存了标识网终端的标识信息 AID。 此外, 在本发明实施例中,假设这些标识网终端 UE和 B2BUA之间的接口是 安全的。 而且, B2BUA不能主动发起 GBA过程, 必须由 UE来触发。 依据 本发明实施例, 不同的标识网终端访问同一个 NAF时, 即使其中一个终端的 密钥泄露, 也不会影响到其他的标识网终端的安全性。
实施例一
如图 5所示, 本实施例描述了 UE和 NAF之间的初始引导过程的两种方 式。 首先标识网终端要通过在标识网内部进行用户接入认证使得该标识网终 端接入到标识网内。
方法 1 :
步骤 101 : 标识网终端与认证中心进行用户接入认证;
步骤 102: 标识网终端向 ISR发送应用请求消息, ISR将应用请求消息转 发至 NAF;
该应用请求消息不携带任何 GBA参数。
步骤 103: NAF发送应用响应消息给标识网终端, 指示标识网终端需要 先和 BSF进行 GBA的引导过程。
方法 2:
ISR发送应用请求消息, ISR将应用请求消息转发至 NAF;
步骤 101 : 标识网终端与认证中心进行用户接入认证;
步骤 102a: 标识网终端向 IMS终端代理发送应用请求消息; 步骤 102b: IMS终端代理通过 ISR将应用请求消息转发至 NAF;
步骤 103a: NAF返回应用响应消息,指示标识网终端需要先和 BSF进行 GBA的引导过程, 该应用响应消息通过 ISR转发至 IMS终端代理;
步骤 103b: IMS终端代理将接收的应用响应消息转发至标识网终端。
实施例二
当按照图 5所描述的任一方式执行了初始引导过程之后, 执行如图 6所 示的 UE和 BSF之间的 GBA引导交互过程,并在 GBA引导交互过程完成后, 为标识网终端生成衍生密钥 Ks— NAF。 该图以非 IMS终端或不具有 IMS能力 的终端为例进行描述, 该引导交互过程包括如下步骤:
步骤 201 : UE发送 GBA请求到 B2BUA, 该 GBA请求中携带有该 UE 的身份标识符 AID和 NAF的标识 ID。
在下述步骤 202-209中, 执行 B2BUA和 BSF之间的互相鉴权过程。 通 过这些步骤, BSF生成了事务标识 B-TID,连同密钥有效期一同发给 B2BUA, 并且 B2BUA和 BSF都生成根密钥 Ks。 此外, 在 BSF中保存一张关联表 (即 B-TID, IMPI, Ks, AID, 密钥有效期, 引导开始时间之间的关联关系), 从 而当 BSF收到 NAF的请求后可以根据此 B-TID查到根密钥 Ks。
步骤 202: B2BUA向 BSF发送 GBA请求消息, 该 GBA请求消息包含 B2BUA自身 ISIM模块内的私有身份标识符 IMPI和终端用户标识符 AID; 步骤 203: BSF向 HSS获取认证向量, BSF通过与 HSS的交互获取该
B2BUA的鉴权向量信息, 鉴权向量信息包括 AUTN、 RAND, IK、 CK以及 XRES等;
步骤 204: BSF向 B2BUA返回 401未授权挑战消息,该消息中包含 AUTN、 RANDo
该步骤中, BSF在接收到 B2BUA的鉴权向量信息后, 将鉴权向量信息 中的 AUTN以及 RAND ,一并携带在挑战消息中 ,并将该消息返回给 B2BUA。 其中 , AUTN用于验证 BSF的身份, RAND用于使 B2BUA获取与 BSF侧相 同的 IK和 CK。 步骤 205: B2BUA收到未授权挑战消息后, 通过运行 AKA算法, 检查 AUTN 的有效性以鉴权网络, 即通过对其中 AUTN 的有效性检查验证对端 BSF的身份, 并根据 RAND得到 IK和 CK, 并生成 RES。
步骤 206: B2BUA再次向 BSF发送 GBA请求消息, 并在该消息中携带 RES, 其中, RES用于验证 B2BUA的身份。
步骤 207: BSF检查 RES的有效性以鉴权 B2BUA;并生成事务标识 B-TID;
BSF还在本地保存一张关联表 (即 B-TID, IMPI, Ks, AID, 密钥有效期, 引导开始时间间的关联关系)。
该步骤中, BSF通过判断 GBA请求消息中的 RES是否与从 HSS处获取 的 XRES—致, 从而对 B2BUA进行鉴权。 而且, BSF根据从 HSS处获取的 IK和 CK生成 Ks。
步骤 208: BSF将 B-TID以及 Ks的有效期携带在 200OK成功响应消息 中发送给 B2BUA。
该步骤中, BSF 为标识与 B2BUA之间本次鉴权交互事务而分配一个 B-TID, 使该 B-TID与 Ks、 AID, B2BUA的私有用户标识 IMPI相关联, 以 便以后 BSF可以根据该 B-TID查找出相应的 Ks, 并且, 为 Ks定义一个有效 期, 以便 Ks进行定期更新。 BSF将该 B-TID以及 Ks的有效期携带在 200OK 成功响应消息中。
步骤 209: B2BUA在接收到该成功响应消息后, 得到 B-TID和 Ks的有 效期, 并将该 B-TID和 Ks的有效期保存在 B2BUA侧, 并生成 Ks。
步骤 210: B2BUA根据公式 Ks_NAF=KDF(Ks , "gba-me" , RAND , IMPI , NAF ID, AID)计算出 Ks— NAF, 并保存 Ks— NAF与私有用户标识 IMPI和 NAF— ID之间的关系。
步骤 211 : B2BUA将 Ks— NAF、 B-TID, AID, 密钥有效期发给标识网终 端 UE。
在该实施例中, 若终端为具有 IMS能力的标识网终端, 则与 BSF进行 GBA的引导交互时不需要 B2BUA参与,因此步骤 201中标识网终端发送 GBA 请求时还需要携带本终端 ISIM模块内的私有身份标识符 IMPI, 且标识网终 端在收到成功响应消息后为本终端生成 Ks— NAF。
实施例三
当通过图 6所描述的流程完成了 UE与 BSF之间的引导交互过程之后, 接着执行如图 7所描述的过程, 实现 UE和 NAF之间的 SA (安全联盟)建立。 如图 7所示, 其包括如下步骤。
步骤 301 : UE发送应用请求消息给 NAF, 该应用请求中携带有 B-TID,
AID;
该步骤 301也可以由图中的步骤 301a-301b代替, 在这些步骤中, UE通 过 B2BUA将应用请求消息发给 NAF,这里 B2BUA起到转发的作用,该应用 请求消息也包括 B-TID和 AID。 标识网身份标识 AID, 在经过 ISR时会自动 转换为对应的 IP地址传递到 NAF, 不会把 AID自身传递到 NAF。
步骤 302: NAF发送认证请求消息给 BSF,该认证请求消息携带有 B-TID 和 NAF主机名(即 NAF的标识 ID)。
步骤 303: BSF根据和终端侧相同的公式计算出 Ks— NAF;
该步骤中, BSF根据 B-TID查找存储在 BSF中的关联表, 获得 Ks、 AID 和 IMPI, 根据获得的参数和在步骤 302中发送来的参数, 生成 Ks— NAF。
步骤 304: BSF将 Ks— NAF、 应用相关用户属性数据、 GBA开始时间、 密钥有效期发送给 NAF。
步骤 305: NAF保存 Ks— NAF等参数以及 B-TID, IMPI的关系。
步骤 306: NAF发送应用响应消息给 UE。
相应的, 该步骤也可以由图中的步骤 306a-306b代替, 即 NAF也可能通 过 B2BUA将应用响应消息发给 UE。
通过上面图 5的过程, B2BUA为 UE生成了 ^汙生密钥 Ks— NAF, 且通过 图 6所示的处理, BSF为 NAF生成了相同的衍生密钥 Ks— NAF。 从而, UE 和 NAF之间建立了安全联盟。 实施例四
当通过图 6所描述的流程完成了 UE与 BSF之间的引导交互过程之后, UE又要访问另外一个应用服务器 NAF2。 则需要执行如图 8所描述的过程, 实现 UE和 NAF2之间的 SA (安全联盟)建立。 如图 8所示, 其包括如下步骤。
步骤 401a: 该 UE已经在访问应用服务器 NAF1时完成了 UE和 BSF之 间的交互认证过程, 并且在 UE内存储了 UE和 BSF交互认证的相关信息, 如 B-TID、 AID等; 则 UE经 B2BUA向 NAF发送应用请求消息, 该消息中 携带 B-TID、 AID, NAF ID2 和应用请求消息内容。 B2BUA 内储存了关于 UE和 BSF之间的交互认证的各种 GBA参数信息和终端标识符 AID,发现该 AID下的终端已经认证通过, 并且在根密钥 Ks的有效期内, 则可以直接跳过 上述 UE 和 BSF 之间的交互认证步骤 202-209。 直接根据公式 Ks_NAF=KDF(Ks, "gba-me", RAND, IMPI, NAF ID2, AID)计算出 Ks NAF, 并保存 Ks— NAF与私有用户标识 IMPI和 NAF— ID2之间的关系。
步骤 401b: B2BUA发送应用请求消息给 NAF2, 该应用请求中携带有 B-TID和对应的 AID的 IP地址等。 标识网身份标识 AID , 在经过 ISR时会自 动转换为对应的 IP地址传递到 NAF2, 不会把 AID自身传递到 NAF2。
步骤 402: NAF2发送认证请求消息给 BSF,该认证请求消息携带有 B-TID 和 NAF2主机名(即 NAF2的标识 ID)。
步骤 403: BSF根据和用户侧相同的的公式计算出 Ks— NAF;
该步骤中, BSF根据 B-TID查找存储在 BSF中的表, 获得 Ks、 AID和
IMPI, 根据获得的参数和在步骤 402中发送来的参数, 生成 Ks— NAF。
步骤 404: BSF将 Ks— NAF、 应用相关用户属性数据、 GBA开始时间、 密钥有效期发送给 NAF2。
步骤 405: NAF2保存 Ks— NAF等参数以及 B-TID , IMPI的关系。
步骤 406: NAF2发送应用响应消息给 UE。
实施例五
当通过上面的描述过程建立了 UE和 NAF之间的安全联盟之后, UE和 NAF之间执行安全的通信, 但是如果 NAF认为汙生的共享密钥 Ks— NAF已 经过期, 则可以通过如图 9所示的步骤 502中指示 UE需要重新执行和 BSF 之间的相互鉴权过程。 当然, 该指示也可以通过按照步骤 502a和 502b 由 B2BUA进行转发。
根据上述的方法实现, 在标识网终端 UE自身具有 IMS终端的相应功能 时, 则将不需要 B2BUA代理, 标识网终端 UE直接与 BSF之间进行相互的 认证引导过程。 同时 BSF部署在标识网架构内时, 则标识网内的认证中心可 以为 BSF提供相应的认证向量参数,此时标识网的认证中心可以相当于 GBA 架构下的 HSS网元, 亦可以单独部署 HSS功能实体。 同时 BSF与标识网外 部传统 IP 网络上的 NAF 之间可以通过一个或多个 ISR/Zn-Proxy; 其中 Zn-proxy功能实体可以位于 ISR内, 也可以单独为一个功能网元实现整个功
•6匕
匕。
当标识网 UE和旧版本的 BSF之间需要进行 GBA过程时, 当 GBA过程 完成后, BSF应将 B-TID和 AID之间的关系记录下来( BSF已存储 B-TID与 Ks、 RAND, IMPI之间的关系) , 同时 UE会使用带终端标识符 AID的密钥 推导公式 Ks— NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID)生 成 Ks— NAF ; 在 UE向 NAF发送应用请求消息中携带 B-TID , NAF将向 BSF 发送的认证请求消息中携带此 B-TID。 BSF根据 B-TID查出对应的设备标识, 然后 BSF使用相同的密钥推导公式 Ks— NAF=KDF(Ks, "gba-me", RAND, IMPI, NAF— ID, AID)生成 Ks— NAF, 因此标识网终端 UE和旧版 BSF之间可 以实现互通。
本发明实施例适用于各种类型的标识网终端, 该非 IMS终端代理实体可 以是所述 B2BUA(IRG)实体, 也可以是 3GPP/3GPP2中具备类似功能的实体。
依照本发明实施例的方案, 不同的标识网终端访问同一个 NAF时, 衍生 密钥 Ks— NAF是不一样的, 这样即使一个 Ks— NAF泄密, 也不会影响其他的 Ks— NAF, 从而保证了安全性。 此外, 终端标识是由 B2BUA连同衍生共享密 钥 Ks— NAF—起传给标识网终端, 这样保证了标识网终端上不容易进行伪标 识攻击。 此外, 同一个标识网终端访问不同的 NAF时, 在根密钥 Ks的有效 期, 标识网终端只需和 BSF之间进行一次交互认证, 利用此次交互认证产生 的信息, 为后续访问的 NAF提供参数, 生成不同的 Ks— NAF密钥。 该发明提 供的方法能整体实现标识网终端和 NAF之间的端到端的安全。 同时, 本发明 是在现有的 GBA架构上进行的扩展, 从而保证了后向兼容性。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的方案防止了非法标识网终端进行终端身份标识伪装攻击 的隐患, 保证了安全性, 保证了标识网终端上不容易进行伪标识攻击。

Claims

权 利 要 求 书
1、 一种标识网端到端安全建立的方法, 包括:
标识网终端向网络业务应用实体发起应用请求消息, 所述网络业务应用 实体判断所述标识网终端是否完成与引导服务功能实体的通用鉴权框架 GBA的引导过程, 若未完成所述引导过程, 则网络业务应用实体指示所述标 识网终端与所述引导服务功能实体执行 GBA的引导过程, 在所述 GBA的引 导过程完成后 ,所述标识网终端或 IP多媒体子系统 IMS终端代理为所述标识 网终端生成衍生密钥 Ks— NAF , 之后所述标识网终端与所述网络业务应用实 体建立安全联盟;
若已完成所述引导过程, 则所述网络业务应用实体与所述标识网终端直 接建立安全联盟, 且所述标识网终端或所述 IMS终端代理为所述标识网终端 生成衍生密钥 Ks— NAF;
在所述安全联盟的建立过程中, 所述引导服务功能实体为网络业务应用 实体生成与所述标识网终端相同的衍生密钥 Ks— NAF;
其中, 不同的标识网终端具有不同的 Ks— NAF。
2、 如权利要求 1所述的方法, 其中:
所述网络业务应用实体判断所述标识网终端是否完成与引导服务功能实 体的 GBA的引导过程的步骤包括:
所述网络业务应用实体判断应用请求消息中是否携带 GBA参数,若未携 带则判定标识网终端未与引导服务功能实体完成 GBA的引导过程,若已携带 则判定标识网终端已与引导服务功能实体完成 GBA的引导过程。
3、 如权利要求 1所述的方法, 其还包括:
具有 IMS能力的标识网终端与引导服务功能实体进行引导交互时, 向引 导服务功能实体发送 GBA请求消息时携带私有身份标识符 IMPI和终端用户 标识符 AID, 当所述引导服务功能实体完成对所述标识网终端的鉴权后生成 一引导事务标识 B-TID及根密钥, 所述引导服务功能实体将 B-TID以及根密 钥的有效期发送至标识网终端;
所述标识网终端生成所述衍生密钥的步骤包括: 所述标识网终端保存所 述 B-TID以及根密钥的有效期 , 并生成一根密钥 , 所述标识网终端还根据预 设的生成衍生密钥的方式生成所述衍生密钥。
4、 如权利要求 1所述的方法, 其还包括:
- IMS标识网终端或不具有 IMS能力的标识网终端与引导服务功能实体 进行引导交互时, 所述标识网终端向 IMS终端代理发送 GBA请求消息, 其 中携带终端用户标识符 AID及网络业务应用实体标识,所述 IMS终端代理向 引导服务功能实体发送 GBA请求消息,其中携带 IMS终端代理自身 ISIM模 块内的私有身份标识符 IMPI和所述 AID;
当所述引导服务功能实体完成对所述标识网终端的鉴权后生成一引导事 务标识 B-TID及根密钥, 所述引导服务功能实体将 B-TID以及根密钥的有效 期发送至 IMS终端代理;
所述 IMS终端代理生成所述衍生密钥的步骤包括:所述 IMS终端代理保 存所述 B-TID以及根密钥的有效期, 并生成一根密钥, 所述 IMS终端代理还 根据预设的生成衍生密钥的方式生成所述衍生密钥, 然后将所述衍生密钥、 B-TID、 AID及密钥有效期发给所述标识网终端。
5、 如权利要求 3或 4所述的方法, 其还包括:
所述引导服务功能实体还在本地存储以下关联表: ( a ) B-TID, IMPI, 根密钥 Ks, AID, 密钥有效期及引导开始时间的关联关系; 或( b ) B-TID与 AID的关联关系 , 以及 B-TID与 Ks、 随机数 RAND、 IMPI之间的关联关系; 当所述标识网终端与网络业务应用实体建立安全联盟时, 向网络业务应 用实体发送应用请求消息, 其中携带 B-TID以及 AID; 所述网络业务应用实 体收到应用请求消息后向引导服务功能实体发送认证请求消息, 其中携带 B-TID以及网络业务应用实体标识;
所述引导服务功能实体根据认证请求消息中的 B-TID查找所述关联表获 得生成衍生密钥的信息, 并根据预设的计算方式计算一衍生密钥, 引导服务 功能实体将生成的衍生密钥、 应用相关用户属性数据、 GBA开始时间及密钥 有效期发送至所述网络业务应用实体, 所述网络业务应用实体保存衍生密钥 与 B-TID及 IMPI的关系。
6、 如权利要求 5所述的方法, 其中:
所述预设的生成衍生密钥的方式为根据以下公式计算衍生密钥: Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID);
其中, KDF为密钥产生算法, "gba-me" 为 GBA字段, 表示基于移动 设备( ME ) 的 GBA, NAF ID为 NAF的标识 ID, RAND为随机数。
7、 一种标识网端到端安全建立的方法, 包括:
标识网终端与引导服务功能实体完成通用鉴权框架 GBA的引导过程后, 生成衍生密钥 Ks— NAF, 之后所述标识网终端与网络业务应用实体建立安全 联盟, 且不同的标识网终端具有不同的 Ks— NAF;
所述标识网终端为具有 IP多媒体子系统 IMS能力的标识网终端。
8、 如权利要求 7所述的方法, 其还包括:
所述标识网终端与引导服务功能实体进行 GBA的引导过程时,标识网终 端向引导服务功能实体发送 GBA请求消息时携带私有身份标识符 IMPI和终 端用户标识符 AID;
当所述标识网终端收到引导事务标识 B-TID以及根密钥的有效期后, 保 存所述 B-TID以及^ =艮密钥的有效期, 并生成一^ =艮密钥;
所述标识网终端生成 Ks— NAF是在收到 B-TID以及根密钥的有效期后根 据预设方式生成。
9、 如权利要求 8所述的方法, 其中:
所述标识网终端才艮据以下公式计算 生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID);
其中, KDF为密钥产生算法, "gba-me"为 GBA字段, NAF— ID为 GBA 安全架构中 NAF的标识 ID, RAND为随机数。
10、 一种标识网端到端安全建立的方法, 包括:
IP多媒体子系统 IMS终端代理收到标识网终端发来的应用请求消息后, 根据所述业务请求消息判断所述标识网终端是否已完成与引导服务功能实体 的交互认证, 若已完成则为所述标识网终端生成一衍生密钥 Ks— NAF, 若未 完成则于收到成功响应消息后为所述标识网终端生成一衍生密钥 Ks— NAF; 所述标识网终端为非 IMS标识网终端或不具有 IMS能力的标识网终端。
11、 如权利要求 10所述的方法, 其中:
所述 IMS终端代理根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID);
其中, KDF为密钥产生算法, "gba-me" 为 GBA字段, 表示基于移动 设备( ME ) 的 GBA, NAF ID为 NAF的标识 ID, RAND为随机数。
12、 一种标识网端到端安全建立的方法, 包括:
在网络应用实体与标识网终端建立安全联盟过程中, 引导服务功能实体 为网络业务应用实体生成一衍生密钥 Ks— NAF, 并将生成的 Ks— NAF发送至 所述网络业务应用实体。
13、 如权利要求 12所述的方法, 所述方法还包括:
引导服务功能实体收到标识网终端发来的 GBA请求消息后完成对所述 标识网终端的鉴权, 之后生成一引导事务标识 B-TID及根密钥, 所述引导服 务功能实体将 B-TID以及根密钥的有效期发送至标识网终端。
14、 如权利要求 13所述的方法, 所述方法还包括:
所述引导服务功能实体在本地存储一关联表, 所述关联表为以下信息间 的关联关系: B-TID, IMPI, Ks, AID, 密钥有效期及引导开始时间。
15、 如权利要求 12所述的方法, 所述方法还包括:
所述网络应用实体收到标识网终端发来的应用请求消息后, 判断其中是 否包含 GBA参数, 若未包含则返回应用请求响应消息,指示标识网终端与引 导服务功能实体进行 GBA的引导过程,若已包含则与标识网终端建立安全联 盟。
16、 如权利要求 12所述的方法, 其中:
所述引导服务功能实体根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID)。
17、 一种标识网端到端安全建立的标识网终端, 所述标识网终端, 设置为完成与引导服务功能实体进行通用鉴权框架
GBA的引导过程后生成衍生密钥 Ks— NAF; 所述标识网终端还设置为与网络 业务应用实体建立安全联盟;
所述标识网终端为具有 IP多媒体子系统 IMS能力的标识网终端。
18、 如权利要求 17所述的标识网终端, 其中:
所述标识网终端是设置为根据以下公式计算衍生密钥:
Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF— ID, AID);
其中, KDF为密钥产生算法, "gba-me" 为 GBA字段, 表示基于移动 设备( ME ) 的 GBA, NAF ID为 NAF的标识 ID, RAND为随机数。
19、 一种标识网端到端安全建立的网络侧设备, 包括引导服务功能实体 及网络应用实体; 其中:
所述引导服务功能实体, 设置为在网络应用实体与标识网终端建立安全 联盟过程中为所述网络业务应用实体生成一衍生密钥 Ks— NAF, 并将生成的 Ks_NAF发送至所述网络业务应用实体。
20、 如权利要求 19所述的网络侧设备, 其中:
所述引导服务功能实体还设置为收到标识网终端发来的 GBA请求消息 后完成对所述标识网终端的鉴权,之后生成一引导事务标识 B-TID及根密钥 , 并将 B-TID以及根密钥的有效期发送至标识网终端。
21、 如权利要求 20所述的络侧设备, 其中:
所述引导服务功能实体还设置为在本地存储以下关联表: ( a ) B-TID,
IMPI, Ks, AID, 密钥有效期及引导开始时间的关联关系; 或(b ) B-TID与 AID的关联关系, 以及 B-TID与 Ks、 RAND、 IMPI之间的关联关系;
当引导服务功能实体收到认证请求消息后, 根据其中的 B-TID查找所述 关联关系, 获得 Ks、 RAND, IMPI及 AID, 并根据以下公式计算衍生密钥: Ks_NAF=KDF(Ks, "gba-me" , RAND, IMPI, NAF ID, AID);
其中, KDF为密钥产生算法, "gba-me" 为 GBA字段, 表示基于移动 设备( ME ) 的 GBA, NAF ID为 NAF的标识 ID, RAND为随机数。
22、 如权利要求 19所述的网络侧设备, 其中:
所述网络侧设备还包括 IMS终端代理, 其设置为收到标识网终端发来的 应用请求消息后, 根据所述业务请求消息判断所述标识网终端是否已完成与 引导服务功能实体的交互认证, 若已完成则为所述标识网终端生成一衍生密 钥 Ks— NAF, 若未完成则于收到成功响应消息后为所述标识网终端生成一衍 生密钥 Ks— NAF;
所述标识网终端为非 IMS标识网终端或不具有 IMS能力的标识网终端。
23、 一种标识网端到端安全建立的系统, 所述系统包括如权利要求 17 或 18所述的标识网终端以及如权利要求 19至 22任一所述的网络侧设备。
PCT/CN2012/082550 2011-10-13 2012-10-08 一种标识网端到端安全建立的方法、网络侧设备及系统 WO2013053305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110309839XA CN103051594A (zh) 2011-10-13 2011-10-13 一种标识网端到端安全建立的方法、网络侧设备及系统
CN201110309839.X 2011-10-13

Publications (1)

Publication Number Publication Date
WO2013053305A1 true WO2013053305A1 (zh) 2013-04-18

Family

ID=48064098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082550 WO2013053305A1 (zh) 2011-10-13 2012-10-08 一种标识网端到端安全建立的方法、网络侧设备及系统

Country Status (2)

Country Link
CN (1) CN103051594A (zh)
WO (1) WO2013053305A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487501B (zh) 2015-08-27 2020-12-08 华为技术有限公司 密钥分发和接收方法、密钥管理中心、第一和第二网元
CN108370369B (zh) * 2015-09-11 2021-02-09 瑞典爱立信有限公司 使用重定向促进客户端设备和应用服务器之间安全通信的网关、客户端设备和方法
CN109995701B (zh) 2017-12-29 2020-12-01 华为技术有限公司 一种设备引导的方法、终端以及服务器
CN113840280A (zh) * 2020-06-04 2021-12-24 中国电信股份有限公司 通话加密方法、系统、引导服务器、终端和电子设备
CN114338065A (zh) * 2020-09-30 2022-04-12 中兴通讯股份有限公司 安全通讯方法、装置、服务器及存储介质
CN117729539A (zh) * 2022-09-08 2024-03-19 中国移动通信有限公司研究院 业务处理方法、装置、网络设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697373A (zh) * 2005-06-17 2005-11-16 中兴通讯股份有限公司 一种用户与应用服务器协商共享密钥的方法
CN1801697A (zh) * 2005-01-07 2006-07-12 华为技术有限公司 一种在ip多媒体业务子系统网络中协商密钥的方法
CN1870500A (zh) * 2006-01-24 2006-11-29 华为技术有限公司 非ims终端应用增强型通用鉴权架构的方法
CN101030862A (zh) * 2007-03-29 2007-09-05 中兴通讯股份有限公司 非ip多媒体业务ue的鉴权方法、鉴权网络及ue

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039311B (zh) * 2006-03-16 2010-05-12 华为技术有限公司 一种身份标识网页业务网系统及其鉴权方法
WO2009093942A1 (en) * 2008-01-24 2009-07-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling a multimedia gateway comprising an imsi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801697A (zh) * 2005-01-07 2006-07-12 华为技术有限公司 一种在ip多媒体业务子系统网络中协商密钥的方法
CN1697373A (zh) * 2005-06-17 2005-11-16 中兴通讯股份有限公司 一种用户与应用服务器协商共享密钥的方法
CN1870500A (zh) * 2006-01-24 2006-11-29 华为技术有限公司 非ims终端应用增强型通用鉴权架构的方法
CN101030862A (zh) * 2007-03-29 2007-09-05 中兴通讯股份有限公司 非ip多媒体业务ue的鉴权方法、鉴权网络及ue

Also Published As

Publication number Publication date
CN103051594A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
US7545768B2 (en) Utilizing generic authentication architecture for mobile internet protocol key distribution
KR101495412B1 (ko) 패킷 네트워크들에서 애플리케이션 층 인증
US8346943B2 (en) Method and apparatus for controlling a multimedia gateway comprising an IMSI
EP3120591B1 (en) User identifier based device, identity and activity management system
WO2019137030A1 (zh) 安全认证方法、相关设备及系统
US11751051B2 (en) Authentication method based on GBA, and device thereof
BR112017002343B1 (pt) aparelho e método para provimento de servidores e credencial de travessia com o uso de retransmissores ao redor de tradução de endereço de rede (turn)
JP5351181B2 (ja) 異種ネットワークのためのワンパス認証機構およびシステム
BRPI0517521B1 (pt) Método e sistema para autenticar um assinante de uma primeira rede para acessar um serviço de aplicação através de uma segunda rede
WO2007104245A1 (fr) Système de cadre de référence pour développement des services web et son procédé d'authentification
US10499245B2 (en) Method for performing multiple authentications within service registration procedure
WO2006116921A1 (fr) Procede d'authentification d'un terminal utilisateur dans un sous-systeme multimedia ip
WO2013053305A1 (zh) 一种标识网端到端安全建立的方法、网络侧设备及系统
EP2981022B1 (en) Method and system for transmitting and receiving data, method and device for processing message
WO2007098660A1 (fr) Procédé et système d'authentification d'entités de réseau dans un sous-système multimédia
WO2006125359A1 (fr) Procede d'implementation de la securite de domaine d'acces d'un sous-systeme multimedia ip
KR20120098805A (ko) 인증 시스템, 방법 및 장치
WO2013040957A1 (zh) 单点登录的方法、系统和信息处理方法、系统
WO2013056619A1 (zh) 一种身份联合的方法、IdP、SP及系统
CN102694779B (zh) 组合认证系统及认证方法
WO2011131002A1 (zh) 身份管理方法及系统
US20220247712A1 (en) Communication system and method for performing third-party authentication between home service end and foreign service end
KR20140021632A (ko) 인터넷 키 교환 버전 2 프로토콜(internet key exchange version 2 protocol: ikev2) 절차를 사용하여 아이피 어드레스들을 구분하고 무선 펨토 셀들 홈 (진화된) 기지국(home (evolved) nodeb: h(e)nb) 및 논리 게이트웨이(local gateway: lgw)로 할당하는 방법 및 시스템
US9485654B2 (en) Method and apparatus for supporting single sign-on in a mobile communication system
WO2012072098A1 (en) Cross-authentication arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839315

Country of ref document: EP

Kind code of ref document: A1