WO2013051112A1 - Wireless system, base station, mobile terminal, and wireless communication method - Google Patents

Wireless system, base station, mobile terminal, and wireless communication method Download PDF

Info

Publication number
WO2013051112A1
WO2013051112A1 PCT/JP2011/072879 JP2011072879W WO2013051112A1 WO 2013051112 A1 WO2013051112 A1 WO 2013051112A1 JP 2011072879 W JP2011072879 W JP 2011072879W WO 2013051112 A1 WO2013051112 A1 WO 2013051112A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
combination
reference signals
radio
Prior art date
Application number
PCT/JP2011/072879
Other languages
French (fr)
Japanese (ja)
Inventor
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/072879 priority Critical patent/WO2013051112A1/en
Priority to JP2013537315A priority patent/JP5626479B2/en
Publication of WO2013051112A1 publication Critical patent/WO2013051112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]

Definitions

  • the present invention relates to a radio system, a base station, a mobile terminal, and a radio communication method.
  • FIG. 1 is a diagram showing a configuration of a conventional mixed cell.
  • a plurality of small cells 700 and 800 are provided in a large cell 600 (macro cell).
  • the large cell base station 602 corresponding to the large cell 600 is communicating with the UE (User Equipment) 604, and the small cell base station 702 corresponding to the small cell 700 is communicating with the UE 704.
  • a small cell base station 802 corresponding to the small cell 800 is communicating with the UE 804.
  • Different physical cell IDs are assigned to the large cell 600 and the small cells 700 and 800, respectively.
  • various parameters of the code sequence constituting the radio signal transmitted in the large cell 600 and the small cells 700 and 800, the parameter of the scrambled signal calculated (multiplication processing, etc.) on the radio signal, etc. are associated with the physical cell ID. It is done.
  • the large cell base station 602, the small cell base station 702, and the small cell base station 802 transmit identifiable Data # 1, Data # 2, and Data # 3 to the UE 604, UE 704, and UE 804, respectively.
  • the UE can not only distinguish between cells when the presence of a plurality of cells is confirmed, but also the influence of radio signal interference between cells. Can be relaxed.
  • the UE 704 existing in the small cell 700 receives a radio signal from the small cell base station 702
  • the radio signal transmitted from the large cell base station 602 is also received at the same time, thereby causing radio signal interference.
  • the scramble signal associated with the physical cell ID of each cell is processed, so that the radio signal can be identified, and the influence of interference is alleviated to some extent.
  • the radio data signal transmitted to the UE is demodulated using a common pilot signal (CRS: Common Reference Signal) transmitted from the base station that transmits the radio data signal.
  • CRS Common Reference Signal
  • the common pilot signal transmitted from the base station of each cell is not only different in code sequence parameters, but is offset in the transmission position on the frequency axis according to the value determined by the physical cell ID. The interference between them is small.
  • the large cell base station 602, the small cell base station 702, and the small cell base station 802 transmit identifiable CRS # 1, CRS # 2, and CRS # 3 to the entire area in each cell, respectively.
  • UE 604, UE 704, and UE 804 each receive their CRS.
  • the UE in each cell calculates and determines the transmission power when transmitting a radio signal on the radio uplink to the base station of each cell based on a predetermined formula.
  • downlink propagation loss path loss
  • the transmission power of the radio signal in the uplink is the downlink propagation loss value, the value determined in advance by the modulation method and the signal bandwidth, the value broadcast from the base station, and the base station every time transmission is performed in the uplink. It is determined by a power correction value transmitted from the station for each terminal. In determining this transmission power, the proportion of downlink propagation loss is large. Therefore, the UE in each cell performs radio measurement on a common pilot signal transmitted from each base station to obtain a downlink propagation loss with the base station, and uses the obtained propagation loss to transmit power. Ask for.
  • the prior art does not consider appropriately obtaining transmission power in a mixed cell in which a large cell and a small cell have the same physical cell ID.
  • the common pilot signals transmitted from the large cell and the small cell not only have the same code sequence parameters, but also have the same time timing and position on the frequency axis to be transmitted.
  • the UE since the common pilot with the same content is transmitted at the same frequency at the same time, the UE receives the synthesized common pilot signal. On the other hand, since it is difficult for the UE to separate the received common pilot signal, it is difficult to obtain a downlink propagation loss with a specific base station.
  • the disclosed technology has been made in view of the above, and a radio system, a base station, a mobile terminal, and a mobile station capable of appropriately obtaining transmission power in a mixed cell in which a large cell and a small cell have the same physical cell ID, and An object is to realize a wireless communication method.
  • a wireless system disclosed in the present application includes a first base station corresponding to a first wireless cell, and a plurality of second base stations provided in the first wireless cell and smaller than the first wireless cell.
  • a plurality of second base stations respectively corresponding to the two radio cells, and a mobile terminal.
  • the first base station has N reference signals (N is smaller than M) among M reference signals (M is an integer of 2 or more) provided for evaluating downlink radio quality to the mobile terminal.
  • An allocation unit that allocates a plurality of different combinations determined by selecting (integer) reference signals to the plurality of second base stations.
  • the first base station includes a notification unit that transmits a combination signal indicating one combination in which the N reference signals are selected from the M reference signals based on the position of the mobile terminal.
  • Each of the second base stations has a signal transmission unit that transmits N reference signals allocated to the own base station among the M reference signals.
  • the mobile terminal includes a reception unit that receives the combination signal transmitted by the notification unit and a reference signal of a combination corresponding to the combination signal. Further, the mobile terminal transmits an uplink with a second base station to which a combination of reference signals corresponding to the combination signal is assigned based on a reception result of the reference signal received by the reception unit.
  • a transmission power calculation unit for obtaining power is included.
  • transmission power can be appropriately obtained in a mixed cell in which a large cell and a small cell have the same physical cell ID.
  • FIG. 1 is a diagram showing a configuration of a conventional mixed cell.
  • FIG. 2 is a diagram showing the configuration of the mixed cell of this embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the wireless system.
  • FIG. 4 is a functional block diagram of the large cell base station.
  • FIG. 5 is a diagram illustrating an example of assignment of CSI RS to each cell.
  • FIG. 6 is a diagram showing an example of a combination table of CSI RS ports.
  • FIG. 7 is a functional block diagram of the small cell base station.
  • FIG. 8 is a diagram illustrating an example of a subframe for transmitting a CSI RS.
  • FIG. 9 is a hardware configuration and functional block diagram of the mobile terminal.
  • FIG. 10 is a flowchart showing processing of the wireless system.
  • FIG. 2 is a diagram showing the configuration of the mixed cell of this embodiment.
  • the mixed cell of this embodiment is provided with a plurality of small cells 200 and 300 (pico cells) in a large cell 100 (macro cell).
  • the same physical cell ID is assigned to the large cell 100 and the small cells 200 and 300.
  • the large cell base station 102 corresponding to the large cell 100 and the small cell base station 202 corresponding to the small cell 200 are communicating with the UE 204
  • the small cell base station 302 corresponding to the small cell 300 is communicating with the UE 304.
  • the large cell base station 102 and the small cell base station 202 transmit Data # 1 and CRS # 1 to the UE 204.
  • the small cell base station 302 transmits Data # 3, DM RS (DeModulation Reference Signal), and CSI RS (Channel State Information Reference Signal) to the UE 304.
  • the UE 204 is assumed to be a terminal developed and manufactured so as to conform to existing specifications in which different physical cell IDs are assigned to large cells and small cells.
  • the UE 304 is assumed to be a terminal developed and manufactured so as to conform to a new specification in which the same physical cell ID is assigned to a large cell and a small cell.
  • the same physical cell ID is assigned to the large cell 100 and the small cells 200 and 300.
  • the common pilot signals transmitted from the large cell base station 102 and the small cell base stations 202 and 302 have not only the same code sequence parameters but also the time timing to be transmitted and the position on the frequency axis to be transmitted. Be the same.
  • the UE 204 transmits wireless data signals having the same content from the large cell base station 102 and the small cell base station 202.
  • Radio data signals transmitted from the large cell base station 102 and the small cell base station 202 are received by the radio reception antenna of the UE 204 as a radio signal that is simply spatially synthesized.
  • the common pilot signal transmitted from the large cell base station 102 and the small cell base station 202 is received as a common pilot signal that is simply spatially combined by the radio reception antenna of the UE 204.
  • the UE 204 uses a common pilot signal that is simply spatially synthesized and received in order to demodulate the received wireless data signal that is simply spatially synthesized.
  • the UE 204 receives signals simultaneously transmitted from the large cell base station 102 and the small cell base station 202, so that the received signal power increases and the probability of successful reception increases.
  • the coding rate applied to the wireless data signal is reduced, and the wireless data signal is transmitted from the base station to the UE 204 at a higher data rate. Can be sent to.
  • the large cell 100 and the small cell 200 have the same physical cell ID, the same wireless data signal is simultaneously transmitted at the same frequency, and the same scrambled signal is processed.
  • the UE204 is transmitted from the large cell base station 102 and the small cell base station 202, it should just process as if the signal from a single base station is received. Therefore, the UE 204 can transmit and receive data not only in the mixed cell shown in FIG. 1 but also in the mixed cell shown in FIG.
  • the radio data signal transmitted to the UE 304 is transmitted only from the small cell 300, and the pilot signal used for demodulating this radio data signal is not a common pilot signal but an individual pilot signal.
  • the dedicated pilot signals can be transmitted not only from the large cell 100 and the small cell 200 at the same time, but also from only one cell.
  • the dedicated pilot signal for the UE 304 is transmitted only from the small cell 300.
  • the radio data signal is transmitted to other terminals simultaneously from other small cells within the same large cell 100 and located at some distance from the small cell 300. It is possible to send. In this way, the number of terminals that can simultaneously transmit and receive data can be increased.
  • the UE 204 receives the radio data signal only from the small cell 300 and the common control signal from the large cell 100 at the same time from the large cell 100 and the small cell 200. Since the physical cell IDs of the large cell 100 and the small cells 200 and 300 are the same, the UE 204 and the UE 304 operate as if receiving a radio data signal from the large cell 100.
  • the radio signal transmitted from the UE 304 may be transmitted with a transmission power that can reach the small cell base station 302 sufficiently.
  • the transmission power value is set so that the radio signal reaches the large cell base station 102 with sufficiently low power. It is preferable to set.
  • the transmission power of the radio signal in the uplink is determined based on the downlink propagation loss between the small cell base station 302 and the UE 304 where the radio data signal is transmitted. It is possible to do.
  • the UE 304 receives the synthesized common pilot signal and cannot separate the signal. It is difficult to obtain a propagation loss between. While the common pilot signal is always transmitted, the dedicated pilot signal transmitted to a certain UE is transmitted only when the radio data signal is transmitted to the UE on the downlink. Therefore, when data is not transmitted on the UE in the downlink, there is no transmission of a dedicated pilot signal for the UE. Therefore, it is not preferable to obtain the propagation loss based on the radio measurement for the dedicated pilot signal transmitted on the downlink.
  • LTE Advanced whose specifications have been established by 3GPP, introduced a new reference signal (CSI RS: Channel State Information Reference Signal) for measuring radio channel quality information for the purpose of measuring downlink radio quality. ing. Therefore, it is conceivable to calculate the downlink propagation loss used when calculating the uplink transmission power from the result of radio measurement for the CSI RS.
  • CSI RS Channel State Information Reference Signal
  • the large cell and the small cell have the same physical cell ID, it is difficult for the UE to identify the CSI RS transmitted from a specific cell.
  • a maximum of 8 CSI RSs can be used per cell, but if 8 CSI RSs having the same contents are transmitted from the large cell 100 and the small cells 200 and 300, the large cell 100 and the small cells 200 and 300 or the small cell are transmitted.
  • CSI RS interference may occur between 200 and 300.
  • FIG. 3 is a diagram illustrating a configuration of the wireless system.
  • the radio system 50 according to the present embodiment includes a large cell base station 102 corresponding to the large cell 100 and a small cell corresponding to the small cell 300 provided in the large cell 100 and smaller than the large cell 100.
  • the large cell base station 102 includes a radio unit 106, a baseband processing unit 108, an electrical / optical conversion unit 110, and an antenna 112.
  • the radio unit 106 receives a radio signal transmitted from, for example, the UE 204 via the antenna 112 and outputs the radio signal to the baseband processing unit 108.
  • the wireless unit 106 is realized by an analog circuit, for example.
  • the baseband processing unit 108 converts an RF (Radio Frequency) signal received by the radio unit 106 into a baseband signal, and converts the converted signal into a digital signal by an A (Analog) / D (Digital) converter. To do.
  • the baseband processing unit 108 performs various processes such as a demodulation process and an error correction process on the converted digital signal.
  • the baseband processing unit 108 is realized by, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the electrical / optical conversion unit 110 converts the electrical signal processed by the baseband processing unit 108 into an optical signal, and transmits the converted optical signal to the small cell base station 302 via the optical cable 320.
  • the small cell base station 302 includes a radio unit 306, a baseband processing unit 308, an electrical / optical conversion unit 310, and an antenna 312.
  • the radio unit 306 receives a radio signal transmitted from, for example, the UE 304 via the antenna 312 and outputs the radio signal to the baseband processing unit 308.
  • the wireless unit 306 is realized by an analog circuit, for example.
  • the baseband processing unit 308 converts the RF signal received by the wireless unit 306 into a baseband signal, and converts the converted signal into a digital signal by an A / D converter.
  • the baseband processing unit 308 performs various processes such as a demodulation process and an error correction process on the converted digital signal.
  • the baseband processing unit 308 is realized by a CPU or a DSP, for example.
  • the electrical / optical conversion unit 310 converts the electrical signal processed by the baseband processing unit 308 into an optical signal, and transmits the converted optical signal to the large cell base station 102 via the optical cable 320. That is, an optical signal is transmitted and received between the electrical / optical conversion unit 110 and the electrical / optical conversion unit 310.
  • FIG. 4 is a functional block diagram of the large cell base station. As illustrated in FIG. 4, the large cell base station 102 includes a signal transmission / reception unit 122, an allocation unit 124, a combination table 126, and a notification unit 128.
  • the signal transmission / reception unit 122 transmits / receives a signal to / from the UE 204, for example.
  • the signal transmission / reception unit 122 transmits a common pilot signal (CRS) or a reference signal (for example, 8 CSI RSs) provided for evaluating downlink radio quality to the UE to the UE.
  • CRS common pilot signal
  • 8 CSI RSs reference signal
  • a logical antenna that transmits pilot signals and reference signals used in the radio section The port number is fixed. For example, there are four common pilot signals (for a maximum of four transmission antennas), and the four common pilot signals are transmitted from antenna ports 0, 1, 2, 3 respectively. There are a maximum of 8 CSI RSs, which are transmitted from antenna ports 15, 16, 17, 18, 19, 20, 21, and 22, respectively. The number of CSI RSs transmitted from one radio base station does not exceed the number of actual physical transmission antennas of that base station.
  • FIG. 5 is a diagram illustrating an example of assignment of CSI RS to each cell.
  • Four CSI RSs are allocated to each small cell.
  • four CSI RSs assigned to the small cell 200 are transmitted from the logical antenna ports # 15, # 16, # 19, and # 20 of the base station of the small cell 200, respectively.
  • These four logical antenna ports are usually mapped to four physical transmission antennas and transmitted from the actual physical antennas. If the small cell 200 has 8 physical antennas, the 4 logical antenna ports are mapped to 8 physical transmit antennas.
  • the CSI RS is transmitted to the small cells 300, 400, and 500 that are some distance away from the small cell 200 from a combination of antenna ports including a part of the antenna ports used for CSI RS transmission in the small cell 200.
  • CSI RS is transmitted from small cell 400 using antenna ports # 15, # 16, # 17, and # 18.
  • a combination of four CSI RSs out of a maximum of eight CSI RSs is tabulated in a combination table 126, for example.
  • FIG. 6 is a diagram illustrating an example of a combination table of CSI RS ports.
  • the combination table 126 includes Configuration No. 150 and CSI RS Ports 160.
  • Configuration No. 150 and CSI RS Ports 160 are associated one-to-one.
  • the combination table 126 is four combinations of eight CSI RSs, there are 70 combinations in total by 8 C 4 .
  • Configuration No. 150 are assigned 70 numbers from # 0 to # 69.
  • Configuration No. is included in CSI RS Ports 160. Different combinations of CSI RSs are set according to 150 numbers.
  • eight CSI RSs are assigned to the large cell 100.
  • the number of transmission antennas of the large cell base station 102 is 4, for example, from four CSI RSs transmitted from # 15, # 16, # 17, and # 18, and from # 19, # 20, # 21, and # 22 It is transmitted in a time different from the four CSI RSs to be transmitted, that is, time multiplexed in different radio subframes.
  • two logical antenna ports used for CSI RS transmission are mapped to one physical transmission antenna by time multiplexing.
  • the assigning unit 124 has N (N is an integer of 2 or more, for example, 4) smaller than M among M (M is an integer of 3 or more, for example, 8) CSI RSs.
  • N is an integer of 2 or more, for example, 4) smaller than M among M (M is an integer of 3 or more, for example, 8) CSI RSs.
  • a plurality of different combinations determined by selecting the CSI RS are allocated to the small cell base stations of the small cells 200, 300, 400, and 500, respectively.
  • the assigning unit 124 assigns Configuration No. to the small cell 300.
  • CSI RS Ports 160 of “# 17, # 18, # 19, # 20” in which 150 is “# 4” is assigned.
  • the assigning unit 124 includes a configuration number “No. CSI RS Ports 160 of “# 19, # 20, # 21, # 22” in which 150 is “# 1” is assigned.
  • the notification unit 128 may select N (N is an integer of 2 or more, for example, 4) smaller than M out of M (M is an integer of 3 or more, for example, 8) CSI RSs.
  • a combination signal indicating one combination for which the RS is selected is transmitted.
  • the notification unit 128 determines that a certain UE belongs to the area of the small cell 300
  • the notification unit 128 receives the Configuration No. assigned to the small cell 300 to the UE.
  • 150 “# 4” is notified. More specifically, the UE reports the results of receiving and measuring 8 CSI RSs to the large cell base station 102.
  • the notification unit 128 Based on the reported reception results of the eight CSI RSs, the notification unit 128 indicates which small cell of the small cells 200, 300, 400, 500 the UE belongs to, that is, in the vicinity of which small cell. Or whether it is not near any small cell. Then, the notification unit 128 sends a combined signal to the UE based on the determination result, that is, the corresponding Configuration No. 150 is transmitted.
  • the notification unit 128 includes a configuration number, a control signal including information for performing modulation / demodulation of data when the UE receives data. 150 can be notified to the UE.
  • the notification unit 128 includes a configuration No. along with a control signal including information used for data transmission when the UE transmits data. 150 can be notified to the UE.
  • FIG. 7 is a functional block diagram of the small cell base station.
  • the small cell base station 302 is described as an example, but other small cell base stations can have the same configuration.
  • the small cell base station 302 includes a signal transmission / reception unit 322, an assignment determination unit 324, and a combination table 326.
  • the combination table 326 is the same as that shown in FIG.
  • the signal transmission / reception unit 322 transmits / receives a signal to / from the UE 304, for example.
  • the signal transmission / reception unit 322 transmits N (for example, four) CSI RSs allocated to the base station among M (for example, eight) CSI RSs.
  • the radio subframe in which the large cell base station 102 transmits the CSI RS and the radio subframe in which the small cell base station 302 transmits the CSI RS can be time-multiplexed and transmitted.
  • the signal transmission / reception unit 322 may transmit N CSI RSs assigned to the base station by code multiplexing, frequency multiplexing, or time multiplexing.
  • FIG. 8 is a diagram illustrating an example of a subframe for transmitting a CSI RS.
  • FIG. 8 shows a group of radio subframes including a CSI RS radio subframe transmitted from the large cell base station 102 and a CSI RS radio subframe transmitted from the small cell base station 302.
  • FIG. 8 shows a radio subframe group transmitted along a time series from the left side to the right side of the page.
  • the CSI RS radio subframe 170 transmitted from the large cell base station 102 and the CSI RS radio subframe 180 transmitted from the small cell base station 302 are transmitted at different times. Is multiplexed.
  • the UE 304 can identify the CSI RS radio subframe 170 transmitted from the large cell base station 102 and the CSI RS radio subframe 180 transmitted from the small cell base station 302.
  • the assignment determination unit 324 receives the configuration number transmitted from the large cell base station 102. Based on 150, it is determined which CSI RS is allocated to the base station. For example, the assignment determination unit 324 receives a configuration number from the large cell base station 102. When “4” is transmitted as 150, the combination table 326 is referred to. Then, assignment determination section 324 determines that the CSI RS port “# 17, # 18, # 19, # 20” is assigned to the own base station. The signal transmission / reception unit 322 transmits the CSI RS from the CSI RS port of “# 17, # 18, # 19, # 20” according to the determination result of the allocation determination unit 324.
  • FIG. 9 is a hardware configuration and functional block diagram of the mobile terminal.
  • the UE 304 is described as an example as an example, but other UEs can have the same configuration.
  • the UE 304 includes a reception antenna 341, a radio demodulation unit 342, a decoding processing unit 344, a reference signal measurement unit 346, user data 348, a control signal generation unit 350, a transmission power calculation unit 352, a channel coding unit 354, a radio modulation unit 356, and A transmission antenna 358 is included.
  • the radio demodulation unit 342 performs demodulation processing on the modulated radio signal received via the reception antenna 341.
  • Radio demodulation section 342 outputs the demodulated signal to decoding processing section 344 and reference signal measurement section 346.
  • the decoding processing unit 344 performs a decoding process on the signal received from the radio demodulation unit 342. For example, the decoding processing unit 344 performs decoding of an encoded signal received from the radio demodulation unit 342, decoding of compressed data, and the like.
  • Decoding processor 344 outputs the decoded data to user data 348 and control signal generator 350.
  • User data 348 is a memory that stores various data registered in the UE 304, and a signal output from the decoding processing unit 344 is stored in the user data 348.
  • the control signal generator 350 selects the number of CSI RSs from the information output from the decoding processor 344 and the number of CSI RSs (M: 8 for example) and the number of CSI RSs from the M CSI RSs.
  • the number (N: for example, 4 pieces) of information indicating whether to do is output to the reference signal measurement unit 346.
  • control signal generation unit 350 obtains CSI RS Ports information, that is, information corresponding to CSI RS Ports 160 indicating one combination of CSI RSs from the signal output from the decoding processing unit 344, as a reference signal measurement unit. To 346.
  • the reference signal measurement unit 346 measures a reference signal (CSI RS or CRS) included in the signal received from the radio demodulation unit 342. That is, UE304 has the mode which measures CSI RS, and the mode which measures CRS, and measures a reference signal based on the signal which instruct
  • CSI RS reference signal
  • CRS reference signal
  • the reference signal measurement unit 346 measures the CSI RS based on the combination information of one of M, N, and CSI RS output from the control signal generation unit 350 in the mode of measuring the CSI RS. .
  • the reference signal measurement unit 346 when the reference signal measurement unit 346 is instructed to perform characteristic evaluation on M (e.g., 8) CSI RSs, the reference signal measurement unit 346 performs characteristic evaluation for each CSI RS and wirelessly modulates the evaluation result.
  • the data is transmitted to the large cell base station 102 via the unit 356.
  • the large cell base station 102 determines, based on the evaluation result, whether the UE 304 is close to which small cell or is not close to any small cell. For example, if there is little difference in quality between CSI RSs, it can be determined that the UE 304 is not close to any small cell, and wireless data transmission can be performed only from the large cell base station 102 to the UE 304.
  • the large cell base station 102 transmits the radio data signal to the UE 304 only from the small cell 300, the large cell base station 102 sends a configuration No. to the UE 304.
  • 150 # 4 is notified. In other words, the large cell base station 102 is configured with the configuration no.
  • an instruction is given to determine the downlink propagation loss used when determining the uplink transmission power.
  • the reference signal measurement unit 346 When receiving this instruction, the reference signal measurement unit 346 measures the received power of the CSI RS at the CSI RS port of the combination assigned to the small cell base station 302. Then, the reference signal measurement unit 346 obtains a downlink propagation loss value based on the difference between the measured received power and the transmission power when the small cell base station 302 transmits the CSI RS.
  • Configuration No. The measurement for four CSI RSs belonging to 150 # 4 is for determining the downlink propagation loss when determining the uplink transmission power.
  • the UE 304 periodically performs measurement for eight CSI RSs and reports to the base station. As a result, even when the UE 304 moves and approaches another small cell, the base station that transmits and receives the radio data signal can be switched.
  • the transmission power calculation unit 352 calculates the transmission power of the radio signal transmitted from the UE 304. For example, the transmission power calculation unit 352 receives a downlink propagation loss value, a value determined in advance by a modulation scheme or a signal bandwidth, a value broadcast from the base station, and every time transmission is performed from the base station to the UE. Based on a correction value or the like of the transmitted power, the transmission power of the radio signal is calculated. Here, the transmission power calculation unit 352 calculates the transmission power of the radio signal using the downlink propagation loss value obtained by the reference signal measurement unit 346.
  • the channel coding unit 354 performs transmission path coding (channel coding) processing on various data stored in the user data 348 and the signal output from the control signal generation unit 350. For example, the channel coding unit 354 performs error correction processing by adding a code that can be corrected on the receiving side even if an error occurs on the transmitting side. Further, the channel coding unit 354 performs an interleaving process for rearranging data so that it can be reproduced even if data is lost for a long time such as burst noise.
  • Radio modulation section 356 performs modulation processing on the signal output from channel coding section 354. Radio modulation section 356 transmits the modulated signal from transmission antenna 358 using the transmission power calculated by transmission power calculation section 352.
  • FIG. 10 is a flowchart showing processing of the wireless system.
  • the large cell base station 102 instructs whether to use CRS or CSI RS for the calculation of the downlink propagation loss (DL Path Loss) (step S101).
  • the large cell base station 102 transmits an instruction signal indicating use of CRS or an instruction signal indicating use of CSI RS.
  • the large cell base station 102 determines whether or not to use CSI RS (step S102).
  • the UE 304 obtains the downlink propagation loss based on the measurement result for the CRS. (Step S103).
  • the large cell base station 102 determines that the CSI RS is used (step S102, Yes)
  • the large cell base station 102 notifies the value of M (for example, 8), that is, the total number of CSI RSs (step S104).
  • the UE 304 performs measurement on M CSI RSs and reports the measurement result to the large cell base station 102 (step S105). This is a report for the large cell base station 102 to determine the location information of the UE 304.
  • the large cell base station 102 notifies N (for example, 4) values, that is, a number indicating how many CSI RSs are selected from among the M CSI RSs (step S106). Subsequently, the large cell base station 102 notifies the combination of CSI RS antenna ports (Antenna Port Combination) (step S107). The combination of CSI RS antenna port is shown in Configuration No. of the combination table. Information corresponding to 150. Based on the received power of M CSI RSs reported from the UE 304, the large cell base station 102 determines whether the UE 304 is located near which small cell base station, or near any small cell base station. Determine if it does not exist. If the large cell base station 102 determines that the UE 304 exists near any small cell base station, the CSI RS antenna port assigned to the small cell base station where the UE 304 exists nearby. Is notified to the UE 304.
  • N for example, 4 values, that is, a number indicating how many CSI
  • the UE 304 performs measurement for the designated N CSI RSs, and obtains a downlink propagation loss (DL Path Loss) (step S108). For example, the UE 304 obtains a downlink propagation loss value based on the difference between the received power measured for N CSI RSs and the transmission power when the small cell base station 302 transmits the CSI RS. The UE 304 obtains uplink transmission power using the downlink propagation loss obtained in this way.
  • DL Path Loss downlink propagation loss
  • the UE 304 performs measurement on M CSI RSs and reports the measurement result to the large cell base station 102 (step S109).
  • the large cell base station 102 determines whether or not to notify a new CSI RS antenna port combination (Antenna Port Combination) (step S110).
  • the large cell base station 102 determines to notify the new CSI RS antenna port combination (Yes in step S110)
  • the large cell base station 102 returns to step S107 and continues the processing. This is to notify a new CSI RS antenna port combination when, for example, a small cell in the vicinity of the UE 304 changes as the UE 304 moves.
  • the large cell base station 102 determines whether or not to notify a new value of N (step S111). .
  • step S111, Yes When the large cell base station 102 determines to notify the new value of N (step S111, Yes), the large cell base station 102 returns to step S106 and notifies the value of N. On the other hand, when the large cell base station 102 determines not to notify the new value of N (step S111, No), the process returns to step S108 and continues processing. In other words, in this case, the new CSI RS antenna port combination is not notified, and the new N value is not notified, and the downlink propagation loss is obtained with the same CSI RS antenna port combination as the current situation. is there.
  • the large cell base station 102 is determined by selecting N (N is an integer of 2 or more smaller than M) CSI RSs from among M (M is an integer of 3 or more) CSI RSs.
  • N is an integer of 2 or more smaller than M
  • M is an integer of 3 or more
  • CSI RSs are assigned to a plurality of small cell base stations.
  • the small cell base station 302 transmits N reference signals allocated to the own base station among the M reference signals.
  • the large cell base station 102 transmits the combination signal which shows 1 combination which selected N CSI RS out of M CSI RS based on the position of UE304.
  • the UE 304 receives a combination reference signal corresponding to the combination signal transmitted from the large cell base station 102, and obtains uplink transmission power with the small cell base station 302 based on the reception result. According to this, even if a large cell and a small cell are mixed cells having the same physical cell ID, each small cell transmits a different combination of CSI RSs, and the UE is transmitted from a small cell near its own device. The downlink propagation loss can be obtained based on the reception result of the combined CSI RS. As a result, it is possible to appropriately obtain the transmission power of the uplink with the small cell near the own device.

Abstract

The present invention addresses the problem of finding a transmission power for a wireless signal which is to be properly transmitted by a terminal to a small cell in a mixed cell where a large cell and the small cell have the same physical cell ID. To resolve the problem, a large cell base station (102) allocates to a small cell base station (302) a combination of CSI RSs that is determined by selecting four CSI RSs from among eight CSI RSs provided in order to assess the wireless quality of a downlink to a UE (304). The large cell base station transmits a combination signal indicative of one combination in which four CSI RSs have been selected from among eight CSI RSs on the basis of the location of the UE. The small cell base station transmits the four CSI RSs allocated to itself. The UE finds a propagation loss for the downlink between itself and the small cell base station on the basis of a reception result from the receipt of the combination of the CSI RSs according to the combination signal, and finds a transmission power for an uplink wireless signal to be transmitted to the small cell base station (302).

Description

無線システム、基地局、移動端末、及び無線通信方法Wireless system, base station, mobile terminal, and wireless communication method
 本発明は、無線システム、基地局、移動端末、及び無線通信方法に関する。 The present invention relates to a radio system, a base station, a mobile terminal, and a radio communication method.
 近年、大きな無線セルの中に単数又は複数の小さな無線セルが存在するような無線セル展開があり、既に商用システムにおいて実現されている。標準化団体の一つである3GPP(Third Generation Partnership Project)により策定されたLTE(Long Term Evolution)仕様に基づく無線システムにおいては、現在、図1で示すような無線セルの構成が実施されている。図1は、従来の混在セルの構成を示す図である。 In recent years, there are wireless cell deployments in which one or more small wireless cells exist in a large wireless cell, which has already been realized in commercial systems. In a radio system based on LTE (Long Term Evolution) specifications formulated by 3GPP (Third Generation Partnership Project), one of the standardization organizations, a radio cell configuration as shown in FIG. 1 is currently being implemented. FIG. 1 is a diagram showing a configuration of a conventional mixed cell.
 図1に示すように、大セル600(macro cell)の中には、複数の小セル700,800(pico cell)が設けられる。この例では、大セル600に対応する大セル基地局602がUE(User Equipment)604と通信を行っており、小セル700に対応する小セル基地局702がUE704と通信を行っているとする。また、小セル800に対応する小セル基地局802がUE804と通信を行っているものとする。 As shown in FIG. 1, a plurality of small cells 700 and 800 (pico cells) are provided in a large cell 600 (macro cell). In this example, it is assumed that the large cell base station 602 corresponding to the large cell 600 is communicating with the UE (User Equipment) 604, and the small cell base station 702 corresponding to the small cell 700 is communicating with the UE 704. . Further, it is assumed that a small cell base station 802 corresponding to the small cell 800 is communicating with the UE 804.
 大セル600及び小セル700,800にはそれぞれ異なるphysical cell IDが割り当てられる。また、大セル600及び小セル700,800で送信される無線信号を構成する符号系列の各種パラメータ、無線信号に対し演算(乗算処理等)されるスクランブル信号のパラメータ等は、physical cell IDに関連付けられる。例えば、大セル基地局602、小セル基地局702、及び小セル基地局802は、識別可能なData♯1、Data♯2、及びData♯3を、それぞれUE604、UE704、及びUE804へ送信する。 Different physical cell IDs are assigned to the large cell 600 and the small cells 700 and 800, respectively. In addition, various parameters of the code sequence constituting the radio signal transmitted in the large cell 600 and the small cells 700 and 800, the parameter of the scrambled signal calculated (multiplication processing, etc.) on the radio signal, etc. are associated with the physical cell ID. It is done. For example, the large cell base station 602, the small cell base station 702, and the small cell base station 802 transmit identifiable Data # 1, Data # 2, and Data # 3 to the UE 604, UE 704, and UE 804, respectively.
 このようにphysical cell IDを無線信号のパラメータに関連付けることにより、UEは複数のセルの存在が確認された時に、セルを区別できるようになるだけでなく、セル間の無線信号の干渉による影響を緩和できるようになる。例えば、小セル700の中に存在するUE704が小セル基地局702から無線信号を受信する時、大セル基地局602が送信する無線信号も同時に受信することにより、無線信号の干渉が発生する。しかしながら、それぞれの信号に対しては、それぞれのセルのphysical cell IDに関連付けられたスクランブル信号が演算処理されているので、無線信号を識別することができ、ある程度干渉の影響が緩和される。 By associating the physical cell ID with the parameters of the radio signal in this way, the UE can not only distinguish between cells when the presence of a plurality of cells is confirmed, but also the influence of radio signal interference between cells. Can be relaxed. For example, when the UE 704 existing in the small cell 700 receives a radio signal from the small cell base station 702, the radio signal transmitted from the large cell base station 602 is also received at the same time, thereby causing radio signal interference. However, for each signal, the scramble signal associated with the physical cell ID of each cell is processed, so that the radio signal can be identified, and the influence of interference is alleviated to some extent.
 ところで、UEに対して送信される無線データ信号の復調には、その無線データ信号を送信する基地局から送信される共通パイロット信号(CRS:Common Reference Signal)を用いて行う。各セルの基地局から送信される共通パイロット信号は、符号系列のパラメータが異なるだけでなく、physical cell IDで決まる値に従って周波数軸上で送信位置のオフセットが行われるため、セル間における共通パイロット信号どうしの干渉は小さい。例えば、大セル基地局602、小セル基地局702、及び小セル基地局802は、それぞれ、識別可能なCRS♯1、CRS♯2、及びCRS♯3をそれぞれのセル内の全域に向けて送信し、UE604、UE704、及びUE804はそれぞれ、それらのCRSを受信する。 By the way, the radio data signal transmitted to the UE is demodulated using a common pilot signal (CRS: Common Reference Signal) transmitted from the base station that transmits the radio data signal. The common pilot signal transmitted from the base station of each cell is not only different in code sequence parameters, but is offset in the transmission position on the frequency axis according to the value determined by the physical cell ID. The interference between them is small. For example, the large cell base station 602, the small cell base station 702, and the small cell base station 802 transmit identifiable CRS # 1, CRS # 2, and CRS # 3 to the entire area in each cell, respectively. UE 604, UE 704, and UE 804 each receive their CRS.
 また、各セルの中のUEは、それぞれのセルの基地局に対し無線アップリンクで無線信号を送信する際の送信パワーを事前に決められた式に基づいて算出し決定するが、送信パワーの演算には、それぞれの基地局から送信される共通パイロット信号に対する受信パワーの測定結果から計算されるダウンリンク伝搬損失(path loss)が用いられる。すなわち、アップリンクでの無線信号の送信パワーは、ダウンリンク伝搬損失値、変調方式や信号の帯域幅等で事前に決まる値、基地局から報知される値、アップリンクで送信を行うたびに基地局から端末ごとに送信されるパワーの補正値等で決定される。この送信パワーを求めるにあたって、ダウンリンク伝搬損失が占める割合は大きい。そこで、各セルの中のUEは、それぞれの基地局から送信される共通パイロット信号に対する無線測定を行って基地局との間のダウンリンク伝搬損失を求め、求められた伝搬損失を用いて送信パワーを求める。 Also, the UE in each cell calculates and determines the transmission power when transmitting a radio signal on the radio uplink to the base station of each cell based on a predetermined formula. For the calculation, downlink propagation loss (path loss) calculated from the measurement result of the received power for the common pilot signal transmitted from each base station is used. That is, the transmission power of the radio signal in the uplink is the downlink propagation loss value, the value determined in advance by the modulation method and the signal bandwidth, the value broadcast from the base station, and the base station every time transmission is performed in the uplink. It is determined by a power correction value transmitted from the station for each terminal. In determining this transmission power, the proportion of downlink propagation loss is large. Therefore, the UE in each cell performs radio measurement on a common pilot signal transmitted from each base station to obtain a downlink propagation loss with the base station, and uses the obtained propagation loss to transmit power. Ask for.
特表2011-521562号公報Special table 2011-521562 gazette
 しかしながら、従来技術は、大セルと小セルが同じphysical cell IDを有する混在セルにおいて適切に送信パワーを求めることは考慮されていない。 However, the prior art does not consider appropriately obtaining transmission power in a mixed cell in which a large cell and a small cell have the same physical cell ID.
 すなわち、3GPPにおいて、大セルと小セルが同じphysical cell IDを有する新たな混在セルの導入が検討されている。新たな混在セルにおいては、大セルと小セルそれぞれから送信される共通パイロット信号は符号系列のパラメータが同じだけでなく、送信される時間タイミングと送信される周波数軸上の位置が同じになる。 That is, in 3GPP, introduction of a new mixed cell in which a large cell and a small cell have the same physical cell ID is being studied. In the new mixed cell, the common pilot signals transmitted from the large cell and the small cell not only have the same code sequence parameters, but also have the same time timing and position on the frequency axis to be transmitted.
 このように、新たな混在セルにおいては、同一内容の共通パイロットが同時に同じ周波数で送信されるため、UEは合成された共通パイロット信号を受信することになる。これに対してUEは、受信した共通パイロット信号を分離するのが難しいため、特定の基地局との間のダウンリンク伝搬損失を得るのは難しい。 Thus, in the new mixed cell, since the common pilot with the same content is transmitted at the same frequency at the same time, the UE receives the synthesized common pilot signal. On the other hand, since it is difficult for the UE to separate the received common pilot signal, it is difficult to obtain a downlink propagation loss with a specific base station.
 開示の技術は、上記に鑑みてなされたものであって、大セルと小セルが同じphysical cell IDを有する混在セルにおいて適切に送信パワーを求めることができる無線システム、基地局、移動端末、及び無線通信方法を実現することを目的とする。 The disclosed technology has been made in view of the above, and a radio system, a base station, a mobile terminal, and a mobile station capable of appropriately obtaining transmission power in a mixed cell in which a large cell and a small cell have the same physical cell ID, and An object is to realize a wireless communication method.
 本願の開示する無線システムは、一つの態様において、第1の無線セルに対応する第1の基地局と、前記第1の無線セルの中に設けられ前記第1の無線セルより小さい複数の第2の無線セルにそれぞれ対応する複数の第2の基地局と、移動端末と、を備える。前記第1の基地局は、前記移動端末へのダウンリンクの無線品質を評価するために設けられたM個(Mは2以上の整数)の参照信号の中からN個(NはMより小さい整数)の参照信号を選択することにより決定される複数の異なる組み合わせを、前記複数の第2の基地局にそれぞれ割り当てる割り当て部を有する。また、前記第1の基地局は、前記移動端末の位置に基づいて前記M個の参照信号の中から前記N個の参照信号を選択した1の組み合わせを示す組み合わせ信号を送信する通知部を有する。前記第2の基地局はそれぞれ、前記M個の参照信号のうち自基地局に割り当てられたN個の参照信号を送信する信号送信部を有する。前記移動端末は、前記通知部によって送信された組み合わせ信号、及び該組み合わせ信号に応じた組み合わせの参照信号を受信する受信部を有する。また、前記移動端末は、前記受信部によって受信された参照信号の受信結果に基づいて、前記組み合わせ信号に対応する参照信号の組み合わせが割り当てられた第2の基地局との間のアップリンクの送信電力を求める送信電力演算部を有する。 In one aspect, a wireless system disclosed in the present application includes a first base station corresponding to a first wireless cell, and a plurality of second base stations provided in the first wireless cell and smaller than the first wireless cell. A plurality of second base stations respectively corresponding to the two radio cells, and a mobile terminal. The first base station has N reference signals (N is smaller than M) among M reference signals (M is an integer of 2 or more) provided for evaluating downlink radio quality to the mobile terminal. An allocation unit that allocates a plurality of different combinations determined by selecting (integer) reference signals to the plurality of second base stations. In addition, the first base station includes a notification unit that transmits a combination signal indicating one combination in which the N reference signals are selected from the M reference signals based on the position of the mobile terminal. . Each of the second base stations has a signal transmission unit that transmits N reference signals allocated to the own base station among the M reference signals. The mobile terminal includes a reception unit that receives the combination signal transmitted by the notification unit and a reference signal of a combination corresponding to the combination signal. Further, the mobile terminal transmits an uplink with a second base station to which a combination of reference signals corresponding to the combination signal is assigned based on a reception result of the reference signal received by the reception unit. A transmission power calculation unit for obtaining power is included.
 本願の開示する無線システムの一つの態様によれば、大セルと小セルが同じphysical cell IDを有する混在セルにおいて適切に送信パワーを求めることができる。 According to one aspect of the wireless system disclosed in the present application, transmission power can be appropriately obtained in a mixed cell in which a large cell and a small cell have the same physical cell ID.
図1は、従来の混在セルの構成を示す図である。FIG. 1 is a diagram showing a configuration of a conventional mixed cell. 図2は、本実施形態の混在セルの構成を示す図である。FIG. 2 is a diagram showing the configuration of the mixed cell of this embodiment. 図3は、無線システムの構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the wireless system. 図4は、大セル基地局の機能ブロック図である。FIG. 4 is a functional block diagram of the large cell base station. 図5は、各セルへのCSI RSの割り当ての一例を示す図である。FIG. 5 is a diagram illustrating an example of assignment of CSI RS to each cell. 図6は、CSI RSポートの組み合わせテーブルの一例を示す図である。FIG. 6 is a diagram showing an example of a combination table of CSI RS ports. 図7は、小セル基地局の機能ブロック図である。FIG. 7 is a functional block diagram of the small cell base station. 図8は、CSI RSを送信するサブフレームの一例を示す図である。FIG. 8 is a diagram illustrating an example of a subframe for transmitting a CSI RS. 図9は、移動端末のハードウェア構成及び機能ブロック図である。FIG. 9 is a hardware configuration and functional block diagram of the mobile terminal. 図10は、無線システムの処理を示すフローチャートである。FIG. 10 is a flowchart showing processing of the wireless system.
 以下に、本願の開示する無線システム、基地局、移動端末、及び無線通信方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態により開示技術が限定されるものではない。 Hereinafter, embodiments of a wireless system, a base station, a mobile terminal, and a wireless communication method disclosed in the present application will be described in detail based on the drawings. The disclosed technology is not limited by this embodiment.
 図2は、本実施形態の混在セルの構成を示す図である。図2に示すように、本実施形態の混在セルは、大セル100(macro cell)の中に複数の小セル200,300(pico cell)が設けられる。大セル100及び小セル200,300には同じphysical cell IDが割り当てられる。この例では、大セル100に対応する大セル基地局102と小セル200に対応する小セル基地局202がUE204と通信を行っており、小セル300に対応する小セル基地局302がUE304と通信を行っているものとする。例えば、大セル基地局102と小セル基地局202は、Data♯1及びCRS♯1をUE204へ送信する。小セル基地局302は、Data♯3、DM RS(DeModulation Reference Signal)、及びCSI RS(Channel State Information Reference Signal)をUE304へ送信する。なお、UE204は、大セルと小セルに異なるphysical cell IDが割り当てられる既存の仕様に適合するように開発・製造された端末であるとする。また、UE304は、大セルと小セルに同じphysical cell IDが割り当てられる新規の仕様に適合するように開発・製造された端末であるとする。 FIG. 2 is a diagram showing the configuration of the mixed cell of this embodiment. As shown in FIG. 2, the mixed cell of this embodiment is provided with a plurality of small cells 200 and 300 (pico cells) in a large cell 100 (macro cell). The same physical cell ID is assigned to the large cell 100 and the small cells 200 and 300. In this example, the large cell base station 102 corresponding to the large cell 100 and the small cell base station 202 corresponding to the small cell 200 are communicating with the UE 204, and the small cell base station 302 corresponding to the small cell 300 is communicating with the UE 304. Assume communication. For example, the large cell base station 102 and the small cell base station 202 transmit Data # 1 and CRS # 1 to the UE 204. The small cell base station 302 transmits Data # 3, DM RS (DeModulation Reference Signal), and CSI RS (Channel State Information Reference Signal) to the UE 304. The UE 204 is assumed to be a terminal developed and manufactured so as to conform to existing specifications in which different physical cell IDs are assigned to large cells and small cells. The UE 304 is assumed to be a terminal developed and manufactured so as to conform to a new specification in which the same physical cell ID is assigned to a large cell and a small cell.
 本実施形態の混在セルは、大セル100及び小セル200,300には同じphysical cell IDが割り当てられる。このため、大セル基地局102と小セル基地局202,302から送信される共通パイロット信号は、符号系列のパラメータが同じだけでなく、送信される時間タイミングと送信される周波数軸上の位置が同じになる。 In the mixed cell of this embodiment, the same physical cell ID is assigned to the large cell 100 and the small cells 200 and 300. For this reason, the common pilot signals transmitted from the large cell base station 102 and the small cell base stations 202 and 302 have not only the same code sequence parameters but also the time timing to be transmitted and the position on the frequency axis to be transmitted. Be the same.
 UE204は、同一内容の無線データ信号を大セル基地局102と小セル基地局202から送信される。大セル基地局102と小セル基地局202から送信された無線データ信号は、UE204の無線受信アンテナにおいて、単純に空間合成された無線信号として受信される。同様に、大セル基地局102と小セル基地局202から送信された共通パイロット信号は、UE204の無線受信アンテナにおいて、単純に空間合成された共通パイロット信号として受信される。 The UE 204 transmits wireless data signals having the same content from the large cell base station 102 and the small cell base station 202. Radio data signals transmitted from the large cell base station 102 and the small cell base station 202 are received by the radio reception antenna of the UE 204 as a radio signal that is simply spatially synthesized. Similarly, the common pilot signal transmitted from the large cell base station 102 and the small cell base station 202 is received as a common pilot signal that is simply spatially combined by the radio reception antenna of the UE 204.
 UE204は、単純に空間合成された受信した無線データ信号を復調するために、単純に空間合成されて受信した共通パイロット信号を用いる。UE204は無線データ信号を受信するにあたり、大セル基地局102と小セル基地局202から同時送信される信号を受信することになるので、受信信号パワーが大きくなり、受信成功確率が高まる。或いは、単数の基地局(例えば大セル基地局102)からだけ送信される場合に比べ、無線データ信号に適用される符号化率を小さくし、より大きなデータレートで無線データ信号を基地局からUE204に送信することが可能になる。 UE 204 uses a common pilot signal that is simply spatially synthesized and received in order to demodulate the received wireless data signal that is simply spatially synthesized. When receiving the radio data signal, the UE 204 receives signals simultaneously transmitted from the large cell base station 102 and the small cell base station 202, so that the received signal power increases and the probability of successful reception increases. Alternatively, compared to the case where transmission is performed only from a single base station (for example, the large cell base station 102), the coding rate applied to the wireless data signal is reduced, and the wireless data signal is transmitted from the base station to the UE 204 at a higher data rate. Can be sent to.
 大セル100及び小セル200は同じphysical cell IDを有し、同一の無線データ信号が同一の周波数で同時に送信され、同じスクランブル信号が演算処理される。これにより、UE204は大セル基地局102と小セル基地局202から送信されているにもかかわらず、あたかも単数の基地局からの信号を受信するかのごとく処理すればよい。したがって、UE204は、図1に示した混在セルの場合だけでなく、図2に示す混在セルの場合でもデータの送受信が可能となる。 The large cell 100 and the small cell 200 have the same physical cell ID, the same wireless data signal is simultaneously transmitted at the same frequency, and the same scrambled signal is processed. Thereby, although UE204 is transmitted from the large cell base station 102 and the small cell base station 202, it should just process as if the signal from a single base station is received. Therefore, the UE 204 can transmit and receive data not only in the mixed cell shown in FIG. 1 but also in the mixed cell shown in FIG.
 図2に示す混在セルにおいて、大セル基地局102、小セル基地局202,302が全ての無線リソースにおいて同一内容の無線データ信号を送信する場合、UE204が享受できるメリットは大きくなる。一方、小セルの数に関係なく、同時に無線データの送受信が可能なUEの数が一定になるというデメリットがある。このデメリットを解決するため、UE304のように、単数の小セル(例えば小セル300)との間だけでデータの送受信が可能となるようにすることが3GPPにおいて検討されている。 In the mixed cell shown in FIG. 2, when the large cell base station 102 and the small cell base stations 202 and 302 transmit radio data signals having the same content in all radio resources, the merit that the UE 204 can enjoy increases. On the other hand, there is a demerit that the number of UEs that can simultaneously transmit and receive wireless data is constant regardless of the number of small cells. In order to solve this disadvantage, 3GPP is studying to enable data transmission / reception only with a single small cell (for example, the small cell 300) like the UE 304.
 UE304に対して送信される無線データ信号は小セル300からのみ送信し、この無線データ信号を復調するために使用されるパイロット信号は共通パイロット信号ではなく、個別パイロット信号である。個別パイロット信号は、同一内容のものを同時に、大セル100及び小セル200の両方から送信することが可能なだけでなく、ある一つのセルからのみ送信することも可能である。UE304に対して無線データ信号が小セル300からだけ送信された場合、UE304のための個別パイロット信号を小セル300からのみ送信する。小セル300からUE304に無線データ信号の送信が行われている時、同じ大セル100内にあり小セル300からある程度離れた位置にある他の小セルから同時に他の端末に対し無線データ信号の送信を行うことが可能である。このようにして、同時データ送受信可能な端末の数を増やすことができる。 The radio data signal transmitted to the UE 304 is transmitted only from the small cell 300, and the pilot signal used for demodulating this radio data signal is not a common pilot signal but an individual pilot signal. The dedicated pilot signals can be transmitted not only from the large cell 100 and the small cell 200 at the same time, but also from only one cell. When the radio data signal is transmitted only from the small cell 300 to the UE 304, the dedicated pilot signal for the UE 304 is transmitted only from the small cell 300. When a radio data signal is transmitted from the small cell 300 to the UE 304, the radio data signal is transmitted to other terminals simultaneously from other small cells within the same large cell 100 and located at some distance from the small cell 300. It is possible to send. In this way, the number of terminals that can simultaneously transmit and receive data can be increased.
 図2に示すUE204は大セル100と小セル200から同時に、UE304は小セル300からのみ無線データ信号を受信し共通制御信号は大セル100から受信する。大セル100と小セル200,300のphysical cell IDが同じあるため、UE204とUE304はあたかも大セル100から無線データ信号を受信しているかのように動作する。 2, the UE 204 receives the radio data signal only from the small cell 300 and the common control signal from the large cell 100 at the same time from the large cell 100 and the small cell 200. Since the physical cell IDs of the large cell 100 and the small cells 200 and 300 are the same, the UE 204 and the UE 304 operate as if receiving a radio data signal from the large cell 100.
 ところで、小セル300とのみ無線通信を行うUE304がアップリンクで無線信号の送信を行う時、UE304から送信される無線信号は、小セル基地局302に十分届くような送信パワーで送信することが好ましい。一方、UE304から送信される無線信号は、大セル基地局102に十分な受信パワーが届かなくても、むしろ、大セル基地局102には十分低いパワーで到達するように、送信パワーの値を設定することが好ましい。 By the way, when the UE 304 that performs radio communication only with the small cell 300 transmits a radio signal in the uplink, the radio signal transmitted from the UE 304 may be transmitted with a transmission power that can reach the small cell base station 302 sufficiently. preferable. On the other hand, even if the radio signal transmitted from the UE 304 does not reach the large cell base station 102 with sufficient reception power, the transmission power value is set so that the radio signal reaches the large cell base station 102 with sufficiently low power. It is preferable to set.
 その理由は、大セル基地局102との間で通信を行っている他のUEが送信した信号に干渉を与えること、及び身近な基地局と通信を行うことで送信パワー値を抑え消費電力を低減できるようにすることである。このような送信を実現できるようにするためには、無線データ信号の送信が行われる小セル基地局302とUE304の間のダウンリンク伝搬損失を元に、アップリンクにおける無線信号の送信パワーを決定することが考えられる。 The reason for this is that it interferes with signals transmitted by other UEs communicating with the large cell base station 102 and communicates with familiar base stations to reduce the transmission power value and reduce power consumption. It is to be able to reduce. In order to realize such transmission, the transmission power of the radio signal in the uplink is determined based on the downlink propagation loss between the small cell base station 302 and the UE 304 where the radio data signal is transmitted. It is possible to do.
 図2に示す混在セルでは、共通パイロットは同一内容のものが同時に同じ周波数で送信されるため、UE304は合成された共通パイロット信号を受信し、その信号を分離できないので、特定の基地局との間の伝搬損失を得ることが難しい。共通パイロット信号が常に送信されているのに対し、あるUEに対し送信される個別パイロット信号は、そのUEに対し無線データ信号がダウンリンクで送信される時のみ送信される。そのため、そのUEに対しダウンリンクでデータが送信されない時は、そのUEに対する個別パイロット信号の送信はない。したがって、ダウンリンクで送信される個別パイロット信号に対する無線測定を元に伝搬損失を求めることは好ましくない。 In the mixed cell shown in FIG. 2, since the same content of the common pilot is transmitted at the same frequency at the same time, the UE 304 receives the synthesized common pilot signal and cannot separate the signal. It is difficult to obtain a propagation loss between. While the common pilot signal is always transmitted, the dedicated pilot signal transmitted to a certain UE is transmitted only when the radio data signal is transmitted to the UE on the downlink. Therefore, when data is not transmitted on the UE in the downlink, there is no transmission of a dedicated pilot signal for the UE. Therefore, it is not preferable to obtain the propagation loss based on the radio measurement for the dedicated pilot signal transmitted on the downlink.
 これに対して3GPPで仕様が策定されているLTE Advancedでは、ダウンリンクの無線品質を測定する目的で、無線チャネル品質情報測定用参照信号(CSI RS:Channel State Information Reference Signal)が新たに導入されている。そこで、CSI RSに対する無線測定の結果から、アップリンクの送信パワーを計算する際に使用するダウンリンク伝搬損失の計算を行うことが考えられる。 On the other hand, LTE Advanced, whose specifications have been established by 3GPP, introduced a new reference signal (CSI RS: Channel State Information Reference Signal) for measuring radio channel quality information for the purpose of measuring downlink radio quality. ing. Therefore, it is conceivable to calculate the downlink propagation loss used when calculating the uplink transmission power from the result of radio measurement for the CSI RS.
 しかしながら、図2に示す混合セルにおいては、大セルと小セルが同じphysical cell IDを有するため、UEは特定のセルから送信されるCSI RSを識別することが難しい。CSI RSは1セルあたり最大8個使用できるが、大セル100と小セル200,300のそれぞれから同じ内容の8個のCSI RSを送信すると、大セル100と小セル200,300、或いは小セル200,300間でCSI RSの干渉が生じる場合がある。 However, in the mixed cell shown in FIG. 2, since the large cell and the small cell have the same physical cell ID, it is difficult for the UE to identify the CSI RS transmitted from a specific cell. A maximum of 8 CSI RSs can be used per cell, but if 8 CSI RSs having the same contents are transmitted from the large cell 100 and the small cells 200 and 300, the large cell 100 and the small cells 200 and 300 or the small cell are transmitted. CSI RS interference may occur between 200 and 300.
 このような課題を解決するための本実施形態の無線システムについて以下詳細を説明する。図3は、無線システムの構成を示す図である。図3に示すように、本実施形態の無線システム50は、大セル100に対応する大セル基地局102と、大セル100の中に設けられ大セル100より小さい小セル300に対応する小セル基地局302と、UE304等と、を備える。 Details of the wireless system of the present embodiment for solving such problems will be described below. FIG. 3 is a diagram illustrating a configuration of the wireless system. As shown in FIG. 3, the radio system 50 according to the present embodiment includes a large cell base station 102 corresponding to the large cell 100 and a small cell corresponding to the small cell 300 provided in the large cell 100 and smaller than the large cell 100. A base station 302, a UE 304, and the like.
 図3を用いて、まずは、大セル基地局の構成を説明する。図3に示すように、大セル基地局102は、無線部106、ベースバンド処理部108、電気/光変換部110、及びアンテナ112を有する。 First, the configuration of a large cell base station will be described with reference to FIG. As illustrated in FIG. 3, the large cell base station 102 includes a radio unit 106, a baseband processing unit 108, an electrical / optical conversion unit 110, and an antenna 112.
 無線部106は、アンテナ112を介して例えばUE204から送信された無線信号を受信し、ベースバンド処理部108へ出力する。無線部106は、例えばアナログ回路などにより実現される。ベースバンド処理部108は、無線部106で受信されたRF(Radio Frequency)信号をベースバンド信号に変換するとともに、変換された信号をA(Analog)/D(Digital)変換器によりデジタル信号へ変換する。また、ベースバンド処理部108は、変換されたデジタル信号に対して、復調処理及び誤り訂正処理などの各種処理を行う。ベースバンド処理部108は、例えばCPU(Central Processing Unit)またはDSP(Digital Signal Processor)などで実現される。 The radio unit 106 receives a radio signal transmitted from, for example, the UE 204 via the antenna 112 and outputs the radio signal to the baseband processing unit 108. The wireless unit 106 is realized by an analog circuit, for example. The baseband processing unit 108 converts an RF (Radio Frequency) signal received by the radio unit 106 into a baseband signal, and converts the converted signal into a digital signal by an A (Analog) / D (Digital) converter. To do. The baseband processing unit 108 performs various processes such as a demodulation process and an error correction process on the converted digital signal. The baseband processing unit 108 is realized by, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
 電気/光変換部110は、ベースバンド処理部108によって処理された電気信号を光信号に変換して、変換された光信号を、光ケーブル320を介して小セル基地局302へ送信する。 The electrical / optical conversion unit 110 converts the electrical signal processed by the baseband processing unit 108 into an optical signal, and transmits the converted optical signal to the small cell base station 302 via the optical cable 320.
 小セル基地局302は、無線部306、ベースバンド処理部308、電気/光変換部310、及びアンテナ312を有する。無線部306は、アンテナ312を介して例えばUE304から送信された無線信号を受信し、ベースバンド処理部308へ出力する。無線部306は、例えばアナログ回路などにより実現される。 The small cell base station 302 includes a radio unit 306, a baseband processing unit 308, an electrical / optical conversion unit 310, and an antenna 312. The radio unit 306 receives a radio signal transmitted from, for example, the UE 304 via the antenna 312 and outputs the radio signal to the baseband processing unit 308. The wireless unit 306 is realized by an analog circuit, for example.
 ベースバンド処理部308は、無線部306で受信されたRF信号をベースバンド信号に変換するとともに、変換された信号をA/D変換器によりデジタル信号へ変換する。また、ベースバンド処理部308は、変換されたデジタル信号に対して、復調処理及び誤り訂正処理などの各種処理を行う。ベースバンド処理部308は、例えばCPUまたはDSPなどで実現される。電気/光変換部310は、ベースバンド処理部308によって処理された電気信号を光信号に変換して、変換された光信号を、光ケーブル320を介して大セル基地局102へ送信する。つまり、電気/光変換部110と電気/光変換部310との間で光信号が送受信される。 The baseband processing unit 308 converts the RF signal received by the wireless unit 306 into a baseband signal, and converts the converted signal into a digital signal by an A / D converter. The baseband processing unit 308 performs various processes such as a demodulation process and an error correction process on the converted digital signal. The baseband processing unit 308 is realized by a CPU or a DSP, for example. The electrical / optical conversion unit 310 converts the electrical signal processed by the baseband processing unit 308 into an optical signal, and transmits the converted optical signal to the large cell base station 102 via the optical cable 320. That is, an optical signal is transmitted and received between the electrical / optical conversion unit 110 and the electrical / optical conversion unit 310.
 図4は、大セル基地局の機能ブロック図である。図4に示すように、大セル基地局102は、信号送受信部122、割り当て部124、組み合わせテーブル126、及び通知部128を有する。 FIG. 4 is a functional block diagram of the large cell base station. As illustrated in FIG. 4, the large cell base station 102 includes a signal transmission / reception unit 122, an allocation unit 124, a combination table 126, and a notification unit 128.
 信号送受信部122は、例えばUE204との間で信号を送受信する。例えば、信号送受信部122は、共通パイロット信号(CRS)や、UEへのダウンリンクの無線品質を評価するために設けられた参照信号(例えば8個のCSI RS)をUEへ送信する。 The signal transmission / reception unit 122 transmits / receives a signal to / from the UE 204, for example. For example, the signal transmission / reception unit 122 transmits a common pilot signal (CRS) or a reference signal (for example, 8 CSI RSs) provided for evaluating downlink radio quality to the UE to the UE.
 ここで、3GPP LTE Advancedの物理層(Layer 1)仕様(TS36.201,TS36.211,TS36.212,TS36.213)では、無線区間で使用されるパイロット信号・参照信号が送信される論理アンテナポートの番号が決まっている。例えば、共通パイロット信号は4個(最大4送信アンテナ分)あり、4個の共通パイロット信号はそれぞれアンテナポート0番、1番、2番、3番から送信される。CSI RSは最大8個あり、それぞれアンテナポート15番、16番、17番、18番、19番、20番、21番、22番から送信される。一つの無線基地局から送信されるCSI RSの数は、その基地局の実際の物理送信アンテナの数を超えることはない。 Here, in 3GPP LTE Advanced physical layer (Layer 1) specifications (TS36.201, TS36.211, TS36.212, TS36.213), a logical antenna that transmits pilot signals and reference signals used in the radio section The port number is fixed. For example, there are four common pilot signals (for a maximum of four transmission antennas), and the four common pilot signals are transmitted from antenna ports 0, 1, 2, 3 respectively. There are a maximum of 8 CSI RSs, which are transmitted from antenna ports 15, 16, 17, 18, 19, 20, 21, and 22, respectively. The number of CSI RSs transmitted from one radio base station does not exceed the number of actual physical transmission antennas of that base station.
 ここで、本実施形態において、最大8個あるCSI RSが各小セルにどのように割り当てられるかの例を説明する。図5は、各セルへのCSI RSの割り当ての一例を示す図である。この例では、図5に示すように、1つの大セル100の中に4つの小セル200、300、400、500が存在するものとする。それぞれの小セルには4個のCSI RSを割り当てる。例えば、小セル200に割り当てられた4個のCSI RSは、それぞれ小セル200の基地局の論理アンテナポート♯15,♯16,♯19,♯20から送信される。これら4個の論理アンテナポートは通常4個の物理送信アンテナにマッピングされ、実際の物理アンテナから送信される。小セル200が8個の物理アンテナを有する場合は、4個の論理アンテナポートは8個の物理送信アンテナにマッピングされる。 Here, an example of how a maximum of 8 CSI RSs are allocated to each small cell in this embodiment will be described. FIG. 5 is a diagram illustrating an example of assignment of CSI RS to each cell. In this example, it is assumed that there are four small cells 200, 300, 400, and 500 in one large cell 100 as shown in FIG. Four CSI RSs are allocated to each small cell. For example, four CSI RSs assigned to the small cell 200 are transmitted from the logical antenna ports # 15, # 16, # 19, and # 20 of the base station of the small cell 200, respectively. These four logical antenna ports are usually mapped to four physical transmission antennas and transmitted from the actual physical antennas. If the small cell 200 has 8 physical antennas, the 4 logical antenna ports are mapped to 8 physical transmit antennas.
 小セル200からある程度離れた小セル300、400、500には、小セル200においてCSI RS送信に使用されているアンテナポートの一部が含まれている組み合わせのアンテナポートからCSI RSを送信する。例えば、小セル400からはアンテナポート♯15,♯16,♯17,♯18を用いてCSI RSを送信する。最大8個あるCSI RSの中の4個のCSI RSの組み合わせは、例えば、組み合わせテーブル126でテーブル化される。 The CSI RS is transmitted to the small cells 300, 400, and 500 that are some distance away from the small cell 200 from a combination of antenna ports including a part of the antenna ports used for CSI RS transmission in the small cell 200. For example, CSI RS is transmitted from small cell 400 using antenna ports # 15, # 16, # 17, and # 18. A combination of four CSI RSs out of a maximum of eight CSI RSs is tabulated in a combination table 126, for example.
 図6は、CSI RSポートの組み合わせテーブルの一例を示す図である。図6に示すように、組み合わせテーブル126は、Configuration No.150と、CSI RS Ports160とを有する。Configuration No.150とCSI RS Ports160は1対1に対応付けられる。この例では、組み合わせテーブル126は、8個のCSI RSのうちの4個の組み合わせなので、組み合わせは全部でにより70通りになる。Configuration No.150には、♯0~♯69の70通りの番号が割り当てられる。また、CSI RS Ports160には、Configuration No.150の番号に応じて異なるCSI RSの組み合わせが設定される。 FIG. 6 is a diagram illustrating an example of a combination table of CSI RS ports. As shown in FIG. 6, the combination table 126 includes Configuration No. 150 and CSI RS Ports 160. Configuration No. 150 and CSI RS Ports 160 are associated one-to-one. In this example, since the combination table 126 is four combinations of eight CSI RSs, there are 70 combinations in total by 8 C 4 . Configuration No. 150 are assigned 70 numbers from # 0 to # 69. Also, Configuration No. is included in CSI RS Ports 160. Different combinations of CSI RSs are set according to 150 numbers.
 例えば、Configuration No.150が「♯0」の場合には、CSI RS Ports160には「♯15,♯16,♯17,♯18」が対応付けられる。また、例えば、Configuration No.150が「♯1」の場合には、CSI RS Ports160には「♯19,♯20,♯21,♯22」が対応付けられる。 For example, Configuration No. When 150 is “# 0”, “# 15, # 16, # 17, # 18” is associated with CSI RS Ports 160. For example, Configuration No. When 150 is “# 1”, “# 19, # 20, # 21, # 22” is associated with CSI RS Ports 160.
 なお、大セル100には、8個のCSI RSが割り当てられる。大セル基地局102の送信アンテナ数が4の場合は、例えば♯15,♯16,♯17,♯18から送信される4個のCSI RSと、♯19,♯20,♯21,♯22から送信される4個のCSI RSとは異なる時間、つまり異なる無線サブフレームで時間多重して送信される。この場合、1個の物理送信アンテナには、CSI RS送信に使用される2個の論理アンテナポートが時間多重でマッピングされる。 Note that eight CSI RSs are assigned to the large cell 100. When the number of transmission antennas of the large cell base station 102 is 4, for example, from four CSI RSs transmitted from # 15, # 16, # 17, and # 18, and from # 19, # 20, # 21, and # 22 It is transmitted in a time different from the four CSI RSs to be transmitted, that is, time multiplexed in different radio subframes. In this case, two logical antenna ports used for CSI RS transmission are mapped to one physical transmission antenna by time multiplexing.
 図4の説明に戻って、割り当て部124は、M個(Mは3以上の整数、例えば8個)のCSI RSの中からN個(NはMより小さい2以上の整数、例えば4個)のCSI RSを選択することにより決定される複数の異なる組み合わせを、小セル200,300,400,500の各小セル基地局にそれぞれ割り当てる。例えば、割り当て部124は、小セル300には、Configuration No.150が「♯4」である「♯17,♯18,♯19,♯20」のCSI RS Ports160を割り当てる。また、例えば、割り当て部124は、小セル500には、Configuration No.150が「♯1」である「♯19,♯20,♯21,♯22」のCSI RS Ports160を割り当てる。 Returning to the description of FIG. 4, the assigning unit 124 has N (N is an integer of 2 or more, for example, 4) smaller than M among M (M is an integer of 3 or more, for example, 8) CSI RSs. A plurality of different combinations determined by selecting the CSI RS are allocated to the small cell base stations of the small cells 200, 300, 400, and 500, respectively. For example, the assigning unit 124 assigns Configuration No. to the small cell 300. CSI RS Ports 160 of “# 17, # 18, # 19, # 20” in which 150 is “# 4” is assigned. In addition, for example, the assigning unit 124 includes a configuration number “No. CSI RS Ports 160 of “# 19, # 20, # 21, # 22” in which 150 is “# 1” is assigned.
 通知部128は、UEの位置に基づいてM個(Mは3以上の整数、例えば8個)のCSI RSの中からN個(NはMより小さい2以上の整数、例えば4個)のCSI RSを選択した1の組み合わせを示す組み合わせ信号を送信する。例えば、通知部128は、あるUEが小セル300のエリアに属していると判定したら、そのUEに対して、小セル300に割り当てられたConfiguration No.150の「♯4」を通知する。より具体的には、UEは、8個のCSI RSを受信して測定した結果を大セル基地局102へ報告する。通知部128は、報告された8個のCSI RSの受信結果に基づいて、UEが小セル200,300,400,500のうちいずれの小セルに属しているか、つまりどの小セルの近くに存在するか、或いはどの小セルの近くにも存在していないかを判定する。そして、通知部128は、判定結果に基づいてUEへ組み合わせ信号、つまり対応するConfiguration No.150を送信する。なお、通知部128は、UEがデータを受信する際にデータの変復調を行うための情報が含まれる制御信号とともにConfiguration No.150をUEに通知することができる。また、通知部128は、UEがデータを送信する際にデータの送信に用いられる情報が含まれる制御信号とともにConfiguration No.150をUEに通知することができる。 Based on the UE location, the notification unit 128 may select N (N is an integer of 2 or more, for example, 4) smaller than M out of M (M is an integer of 3 or more, for example, 8) CSI RSs. A combination signal indicating one combination for which the RS is selected is transmitted. For example, when the notification unit 128 determines that a certain UE belongs to the area of the small cell 300, the notification unit 128 receives the Configuration No. assigned to the small cell 300 to the UE. 150 “# 4” is notified. More specifically, the UE reports the results of receiving and measuring 8 CSI RSs to the large cell base station 102. Based on the reported reception results of the eight CSI RSs, the notification unit 128 indicates which small cell of the small cells 200, 300, 400, 500 the UE belongs to, that is, in the vicinity of which small cell. Or whether it is not near any small cell. Then, the notification unit 128 sends a combined signal to the UE based on the determination result, that is, the corresponding Configuration No. 150 is transmitted. In addition, the notification unit 128 includes a configuration number, a control signal including information for performing modulation / demodulation of data when the UE receives data. 150 can be notified to the UE. In addition, the notification unit 128 includes a configuration No. along with a control signal including information used for data transmission when the UE transmits data. 150 can be notified to the UE.
 次に、小セル基地局について説明する。図7は、小セル基地局の機能ブロック図である。図7では、一例として、小セル基地局302を例に説明するが、他の小セル基地局も同様の構成にすることができる。図7に示すように、小セル基地局302は、信号送受信部322、割り当て判定部324、及び組み合わせテーブル326を有する。組み合わせテーブル326は、図6で示したものと同様であるので説明を省略する。 Next, the small cell base station will be described. FIG. 7 is a functional block diagram of the small cell base station. In FIG. 7, as an example, the small cell base station 302 is described as an example, but other small cell base stations can have the same configuration. As illustrated in FIG. 7, the small cell base station 302 includes a signal transmission / reception unit 322, an assignment determination unit 324, and a combination table 326. The combination table 326 is the same as that shown in FIG.
 信号送受信部322は、例えばUE304との間で信号を送受信する。例えば、信号送受信部322は、M個(例えば8個)のCSI RSのうち自基地局に割り当てられたN個(例えば4個)のCSI RSを送信する。ここで、大セル基地局102がCSI RSを送信する無線サブフレームと、小セル基地局302がCSI RSを送信する無線サブフレームは、時間多重して送信することができる。また、信号送受信部322は、自基地局に割り当てられたN個のCSI RSを、互いにコード多重、互いに周波数多重、又は互いに時間多重して送信することもできる。 The signal transmission / reception unit 322 transmits / receives a signal to / from the UE 304, for example. For example, the signal transmission / reception unit 322 transmits N (for example, four) CSI RSs allocated to the base station among M (for example, eight) CSI RSs. Here, the radio subframe in which the large cell base station 102 transmits the CSI RS and the radio subframe in which the small cell base station 302 transmits the CSI RS can be time-multiplexed and transmitted. In addition, the signal transmission / reception unit 322 may transmit N CSI RSs assigned to the base station by code multiplexing, frequency multiplexing, or time multiplexing.
 図8は、CSI RSを送信するサブフレームの一例を示す図である。図8は、大セル基地局102から送信されたCSI RSの無線サブフレームと、小セル基地局302から送信されたCSI RSの無線サブフレームを含む無線サブフレーム群を示すものである。図8は、紙面の左側から右側へ向かう時系列に沿って送信される無線サブフレーム群を示している。図8に示すように、大セル基地局102から送信されたCSI RSの無線サブフレーム170と、小セル基地局302から送信されたCSI RSの無線サブフレーム180は、異なる時間に送信され、時間多重される。これにより、UE304は、大セル基地局102から送信されたCSI RSの無線サブフレーム170と、小セル基地局302から送信されたCSI RSの無線サブフレーム180とを識別することができる。 FIG. 8 is a diagram illustrating an example of a subframe for transmitting a CSI RS. FIG. 8 shows a group of radio subframes including a CSI RS radio subframe transmitted from the large cell base station 102 and a CSI RS radio subframe transmitted from the small cell base station 302. FIG. 8 shows a radio subframe group transmitted along a time series from the left side to the right side of the page. As shown in FIG. 8, the CSI RS radio subframe 170 transmitted from the large cell base station 102 and the CSI RS radio subframe 180 transmitted from the small cell base station 302 are transmitted at different times. Is multiplexed. As a result, the UE 304 can identify the CSI RS radio subframe 170 transmitted from the large cell base station 102 and the CSI RS radio subframe 180 transmitted from the small cell base station 302.
 図7の説明に戻って、割り当て判定部324は、大セル基地局102から送信されたConfiguration No.150に基づいて、自基地局にどのCSI RSが割り当てられたかを判定する。例えば、割り当て判定部324は、大セル基地局102からConfiguration No.150として「4」が送信されたら、組み合わせテーブル326を参照する。そして、割り当て判定部324は、自基地局には、「♯17,♯18,♯19,♯20」のCSI RSポートが割り当てられたと判定する。信号送受信部322は、割り当て判定部324の判定結果に応じて、「♯17,♯18,♯19,♯20」のCSI RSポートからCSI RSを送信する。 Returning to the description of FIG. 7, the assignment determination unit 324 receives the configuration number transmitted from the large cell base station 102. Based on 150, it is determined which CSI RS is allocated to the base station. For example, the assignment determination unit 324 receives a configuration number from the large cell base station 102. When “4” is transmitted as 150, the combination table 326 is referred to. Then, assignment determination section 324 determines that the CSI RS port “# 17, # 18, # 19, # 20” is assigned to the own base station. The signal transmission / reception unit 322 transmits the CSI RS from the CSI RS port of “# 17, # 18, # 19, # 20” according to the determination result of the allocation determination unit 324.
 次に、UE(移動端末)の詳細について説明する。図9は、移動端末のハードウェア構成及び機能ブロック図である。図9では、一例として、UE304を例に説明するが、他のUEも同様の構成とすることができる。 Next, details of the UE (mobile terminal) will be described. FIG. 9 is a hardware configuration and functional block diagram of the mobile terminal. In FIG. 9, the UE 304 is described as an example as an example, but other UEs can have the same configuration.
 UE304は、受信アンテナ341、無線復調部342、復号処理部344、参照信号測定部346、ユーザデータ348、制御信号生成部350、送信電力演算部352、チャネルコーディング部354、無線変調部356、及び送信アンテナ358を有する。 The UE 304 includes a reception antenna 341, a radio demodulation unit 342, a decoding processing unit 344, a reference signal measurement unit 346, user data 348, a control signal generation unit 350, a transmission power calculation unit 352, a channel coding unit 354, a radio modulation unit 356, and A transmission antenna 358 is included.
 無線復調部342は、受信アンテナ341を介して受信された変調無線信号の復調処理を行う。無線復調部342は、復調処理を行った信号を復号処理部344、及び参照信号測定部346へ出力する。復号処理部344は、無線復調部342から受信した信号に対する復号処理を行う。例えば、復号処理部344は、無線復調部342から受信した符号化された信号の復号、及び圧縮されたデータの復号などを行う。復号処理部344は、復号されたデータをユーザデータ348及び制御信号生成部350へ出力する。 The radio demodulation unit 342 performs demodulation processing on the modulated radio signal received via the reception antenna 341. Radio demodulation section 342 outputs the demodulated signal to decoding processing section 344 and reference signal measurement section 346. The decoding processing unit 344 performs a decoding process on the signal received from the radio demodulation unit 342. For example, the decoding processing unit 344 performs decoding of an encoded signal received from the radio demodulation unit 342, decoding of compressed data, and the like. Decoding processor 344 outputs the decoded data to user data 348 and control signal generator 350.
 ユーザデータ348は、UE304に登録された各種データを格納するメモリであり、復号処理部344から出力された信号はユーザデータ348に格納される。制御信号生成部350は、復号処理部344から出力された信号の中から、CSI RSの総数(M:例えば8個)の情報、及びM個のCSI RSの中から何個のCSI RSを選択するかを表す数(N:例えば4個)の情報を参照信号測定部346へ出力する。また、制御信号生成部350は、復号処理部344から出力された信号の中から、CSI RS Portsの情報、つまり、CSI RSの1の組み合わせを示すCSI RS Ports160に相当する情報を参照信号測定部346へ出力する。 User data 348 is a memory that stores various data registered in the UE 304, and a signal output from the decoding processing unit 344 is stored in the user data 348. The control signal generator 350 selects the number of CSI RSs from the information output from the decoding processor 344 and the number of CSI RSs (M: 8 for example) and the number of CSI RSs from the M CSI RSs. The number (N: for example, 4 pieces) of information indicating whether to do is output to the reference signal measurement unit 346. In addition, the control signal generation unit 350 obtains CSI RS Ports information, that is, information corresponding to CSI RS Ports 160 indicating one combination of CSI RSs from the signal output from the decoding processing unit 344, as a reference signal measurement unit. To 346.
 参照信号測定部346は、無線復調部342から受信した信号に含まれる参照信号(CSI RS、又はCRS)の測定を行う。つまり、UE304は、CSI RSの測定を行うモードと、CRSの測定を行うモードとを有しており、いずれのモードで測定を行うかを指示する信号に基づいて参照信号の測定を行う。 The reference signal measurement unit 346 measures a reference signal (CSI RS or CRS) included in the signal received from the radio demodulation unit 342. That is, UE304 has the mode which measures CSI RS, and the mode which measures CRS, and measures a reference signal based on the signal which instruct | indicates in which mode it measures.
 参照信号測定部346は、CSI RSの測定を行うモードの場合は、制御信号生成部350から出力されたM、N、及びCSI RSの1の組み合わせの情報に基づいて、CSI RSの測定を行う。 The reference signal measurement unit 346 measures the CSI RS based on the combination information of one of M, N, and CSI RS output from the control signal generation unit 350 in the mode of measuring the CSI RS. .
 例えば、参照信号測定部346は、M個(例えば8個)のCSI RSに対する特性評価を行うように指示された場合には、各CSI RSごとの特性の評価を行い、評価結果を、無線変調部356を介して大セル基地局102に送信する。大セル基地局102は、この評価結果を元に、UE304がどの小セルの近くにいるか、或いは、どの小セルにも近くないかを判定する。例えば、CSI RS間で品質の差が少なければ、UE304はどの小セルにも近くないと判断でき、UE304に対しては大セル基地局102からだけ無線データ送信を行うようにすることができる。 For example, when the reference signal measurement unit 346 is instructed to perform characteristic evaluation on M (e.g., 8) CSI RSs, the reference signal measurement unit 346 performs characteristic evaluation for each CSI RS and wirelessly modulates the evaluation result. The data is transmitted to the large cell base station 102 via the unit 356. The large cell base station 102 determines, based on the evaluation result, whether the UE 304 is close to which small cell or is not close to any small cell. For example, if there is little difference in quality between CSI RSs, it can be determined that the UE 304 is not close to any small cell, and wireless data transmission can be performed only from the large cell base station 102 to the UE 304.
 一方、例えばCSI RSの♯17、♯18、♯19、♯20の品質がよい場合、UE304は小セル300の中又は近くにいると判断でき、UE304に対する無線データ信号の送信は、小セル基地局302からだけ行うようにすることができる。大セル基地局102は、UE304に対する無線データ信号の送信を小セル300からだけ行うようにする場合、UE304に対し、Configuration No.150の♯4を通知する。つまり、大セル基地局102は、Configuration No.150の♯4で示されるCSI RSの組み合わせに対する無線測定結果(受信パワー)を元に、アップリンクの送信パワーを決める際に用いるダウンリンク伝搬損失を求めるよう指示する。 On the other hand, for example, when the quality of CSI RSs # 17, # 18, # 19, and # 20 is good, it can be determined that UE 304 is in or near small cell 300, and transmission of a radio data signal to UE 304 It can be done only from the station 302. When the large cell base station 102 transmits the radio data signal to the UE 304 only from the small cell 300, the large cell base station 102 sends a configuration No. to the UE 304. 150 # 4 is notified. In other words, the large cell base station 102 is configured with the configuration no. Based on the wireless measurement result (reception power) for the combination of CSI RSs indicated by # 4 of 150, an instruction is given to determine the downlink propagation loss used when determining the uplink transmission power.
 参照信号測定部346は、この指示を受けた場合、小セル基地局302に割り当てられた組み合わせのCSI RSポートにおけるCSI RSの受信電力を測定する。そして、参照信号測定部346は、測定した受信電力と、小セル基地局302がCSI RSを送信した際の送信電力との差分に基づいてダウンリンク伝搬損失値を求める。 When receiving this instruction, the reference signal measurement unit 346 measures the received power of the CSI RS at the CSI RS port of the combination assigned to the small cell base station 302. Then, the reference signal measurement unit 346 obtains a downlink propagation loss value based on the difference between the measured received power and the transmission power when the small cell base station 302 transmits the CSI RS.
 なお、Configuration No.150の♯4に属する4個のCSI RSに対する測定は、アップリンク送信電力を決める際のダウンリンク伝搬損失を求めるためのものである。UE304は、8個のCSI RSに対する測定と基地局への報告は定期的に行う。これにより、UE304が移動して別の小セルに接近した場合でも、無線データ信号の送受信を行う基地局の切り替えを行えるようになる。 In addition, Configuration No. The measurement for four CSI RSs belonging to 150 # 4 is for determining the downlink propagation loss when determining the uplink transmission power. The UE 304 periodically performs measurement for eight CSI RSs and reports to the base station. As a result, even when the UE 304 moves and approaches another small cell, the base station that transmits and receives the radio data signal can be switched.
 送信電力演算部352は、UE304から送信する無線信号の送信パワーを演算する。例えば、送信電力演算部352は、ダウンリンク伝搬損失値、変調方式や信号の帯域幅等で事前に決まる値、基地局から報知される値、アップリンクで送信を行うたびに基地局からUEに送信されるパワーの補正値等に基づいて、無線信号の送信パワーを演算する。ここで、送信電力演算部352は、参照信号測定部346によって求められたダウンリンク伝搬損失値を用いて無線信号の送信パワーを演算する。 The transmission power calculation unit 352 calculates the transmission power of the radio signal transmitted from the UE 304. For example, the transmission power calculation unit 352 receives a downlink propagation loss value, a value determined in advance by a modulation scheme or a signal bandwidth, a value broadcast from the base station, and every time transmission is performed from the base station to the UE. Based on a correction value or the like of the transmitted power, the transmission power of the radio signal is calculated. Here, the transmission power calculation unit 352 calculates the transmission power of the radio signal using the downlink propagation loss value obtained by the reference signal measurement unit 346.
 チャネルコーディング部354は、ユーザデータ348に格納された各種データおよび制御信号生成部350から出力される信号に対して、伝送路符号化(チャネルコーディング)処理を行う。例えば、チャネルコーディング部354は、送信側で誤りが生じても受信側で訂正できる符号を付加することにより、誤り訂正処理を行う。また、チャネルコーディング部354は、バースト雑音のように長時間データが欠落しても再生できるようにデータを並び替えるインタリーブ処理を行う。 The channel coding unit 354 performs transmission path coding (channel coding) processing on various data stored in the user data 348 and the signal output from the control signal generation unit 350. For example, the channel coding unit 354 performs error correction processing by adding a code that can be corrected on the receiving side even if an error occurs on the transmitting side. Further, the channel coding unit 354 performs an interleaving process for rearranging data so that it can be reproduced even if data is lost for a long time such as burst noise.
 無線変調部356は、チャネルコーディング部354から出力された信号に対して変調処理を行う。また、無線変調部356は、変調処理を行った信号を、送信電力演算部352で演算された送信パワーによって送信アンテナ358から送信する。 Radio modulation section 356 performs modulation processing on the signal output from channel coding section 354. Radio modulation section 356 transmits the modulated signal from transmission antenna 358 using the transmission power calculated by transmission power calculation section 352.
 次に、無線システム50の処理のフローについて説明する。図10は、無線システムの処理を示すフローチャートである。図10に示すように、まず、大セル基地局102は、ダウンリンク伝搬損失(DL Path Loss)の計算のために、CRSを使うか、或いはCSI RSを使うかを指示する(ステップS101)。例えば、大セル基地局102は、CRSを使うことを示す指示信号又はCSI RSを使うことを示す指示信号を送信する。 Next, the processing flow of the wireless system 50 will be described. FIG. 10 is a flowchart showing processing of the wireless system. As shown in FIG. 10, first, the large cell base station 102 instructs whether to use CRS or CSI RS for the calculation of the downlink propagation loss (DL Path Loss) (step S101). For example, the large cell base station 102 transmits an instruction signal indicating use of CRS or an instruction signal indicating use of CSI RS.
 続いて、大セル基地局102は、CSI RSを使うか否かを判定する(ステップS102)。CSI RSを使わないと判定された場合(ステップS102、No)、つまりCRSを使ってダウンリンク伝搬損失を求めるよう指示された場合、UE304は、CRSに対する測定結果を元にダウンリンク伝搬損失を求める(ステップS103)。 Subsequently, the large cell base station 102 determines whether or not to use CSI RS (step S102). When it is determined not to use the CSI RS (No in step S102), that is, when it is instructed to obtain the downlink propagation loss using the CRS, the UE 304 obtains the downlink propagation loss based on the measurement result for the CRS. (Step S103).
 一方、大セル基地局102は、CSI RSを使うと判定した場合は(ステップS102、Yes)、M(例えば8個)の値、つまりCSI RSの総数を通知する(ステップS104)。続いて、UE304は、M個のCSI RSに対する測定を行い、測定結果を大セル基地局102へ報告する(ステップS105)。これは、大セル基地局102がUE304の位置情報を判定するための報告である。 On the other hand, if the large cell base station 102 determines that the CSI RS is used (step S102, Yes), the large cell base station 102 notifies the value of M (for example, 8), that is, the total number of CSI RSs (step S104). Subsequently, the UE 304 performs measurement on M CSI RSs and reports the measurement result to the large cell base station 102 (step S105). This is a report for the large cell base station 102 to determine the location information of the UE 304.
 続いて、大セル基地局102は、N(例えば4個)の値、つまりM個のCSI RSの中から何個のCSI RSを選択するかを表す数を通知する(ステップS106)。続いて、大セル基地局102は、CSI RSアンテナポートの組み合わせ(Antenna Port Combination)を通知する(ステップS107)。なお、CSI RSアンテナポートの組み合わせは、組み合わせテーブルのConfiguration No.150に相当する情報である。大セル基地局102は、UE304から報告されたM個のCSI RSの受信電力に基づいて、UE304がどの小セル基地局の近くに存在しているか、又はいずれの小セル基地局の近くにも存在していないかを判定する。そして、大セル基地局102は、UE304がいずれかの小セル基地局の近くに存在していると判定した場合には、UE304が近くに存在する小セル基地局に割り当てられたCSI RSアンテナポートの組み合わせをUE304に通知する。 Subsequently, the large cell base station 102 notifies N (for example, 4) values, that is, a number indicating how many CSI RSs are selected from among the M CSI RSs (step S106). Subsequently, the large cell base station 102 notifies the combination of CSI RS antenna ports (Antenna Port Combination) (step S107). The combination of CSI RS antenna port is shown in Configuration No. of the combination table. Information corresponding to 150. Based on the received power of M CSI RSs reported from the UE 304, the large cell base station 102 determines whether the UE 304 is located near which small cell base station, or near any small cell base station. Determine if it does not exist. If the large cell base station 102 determines that the UE 304 exists near any small cell base station, the CSI RS antenna port assigned to the small cell base station where the UE 304 exists nearby. Is notified to the UE 304.
 続いて、UE304は、指定されたN個のCSI RSに対する測定を行い、ダウンリンク伝搬損失(DL Path Loss)を求める(ステップS108)。例えば、UE304は、N個のCSI RSについて測定した受信電力と、小セル基地局302がCSI RSを送信した際の送信電力との差分に基づいてダウンリンク伝搬損失値を求める。UE304は、このようにして求めたダウンリンク伝搬損失を用いてアップリンクの送信パワーを求める。 Subsequently, the UE 304 performs measurement for the designated N CSI RSs, and obtains a downlink propagation loss (DL Path Loss) (step S108). For example, the UE 304 obtains a downlink propagation loss value based on the difference between the received power measured for N CSI RSs and the transmission power when the small cell base station 302 transmits the CSI RS. The UE 304 obtains uplink transmission power using the downlink propagation loss obtained in this way.
 続いて、UE304は、M個のCSI RSに対する測定を行い、測定結果を大セル基地局102へ報告する(ステップS109)。これは、大セル基地局102がUE304の位置情報を判定するための報告であり、かつ、UE304の移動にともないUE304が近くに存在する小セルが変わっているか否かを判定するために定期的に行う報告である。 Subsequently, the UE 304 performs measurement on M CSI RSs and reports the measurement result to the large cell base station 102 (step S109). This is a report for the large cell base station 102 to determine the location information of the UE 304, and periodically to determine whether the small cell in which the UE 304 is nearby has changed as the UE 304 moves. It is a report to be performed.
 続いて、大セル基地局102は、新たなCSI RSアンテナポートの組み合わせ(Antenna Port Combination)を通知するか否かを判定する(ステップS110)。大セル基地局102は、新たなCSI RSアンテナポートの組み合わせを通知すると判定した場合は(ステップS110、Yes)、ステップS107へ戻って処理を継続する。これは、例えば、UE304の移動にともないUE304が近くに存在する小セルが変わった場合などに、新たなCSI RSアンテナポートの組み合わせを通知するものである。 Subsequently, the large cell base station 102 determines whether or not to notify a new CSI RS antenna port combination (Antenna Port Combination) (step S110). When the large cell base station 102 determines to notify the new CSI RS antenna port combination (Yes in step S110), the large cell base station 102 returns to step S107 and continues the processing. This is to notify a new CSI RS antenna port combination when, for example, a small cell in the vicinity of the UE 304 changes as the UE 304 moves.
 一方、大セル基地局102は、新たなCSI RSアンテナポートの組み合わせを通知しないと判定した場合は(ステップS110、No)、新たなNの値を通知するか否かを判定する(ステップS111)。 On the other hand, when it is determined that the new CSI RS antenna port combination is not notified (step S110, No), the large cell base station 102 determines whether or not to notify a new value of N (step S111). .
 大セル基地局102は、新たなNの値を通知すると判定した場合(ステップS111、Yes)、ステップS106へ戻ってNの値を通知する。一方、大セル基地局102は、新たなNの値を通知しないと判定した場合(ステップS111、No)、ステップS108へ戻って処理を継続する。つまり、この場合は、新たなCSI RSアンテナポートの組み合わせも通知せず、かつ、新たなNの値も通知せず、現状と同じCSI RSアンテナポートの組み合わせでダウンリンク伝搬損失を求めるということである。 When the large cell base station 102 determines to notify the new value of N (step S111, Yes), the large cell base station 102 returns to step S106 and notifies the value of N. On the other hand, when the large cell base station 102 determines not to notify the new value of N (step S111, No), the process returns to step S108 and continues processing. In other words, in this case, the new CSI RS antenna port combination is not notified, and the new N value is not notified, and the downlink propagation loss is obtained with the same CSI RS antenna port combination as the current situation. is there.
 以上、本実施形態の無線システム50によれば、大セルと小セルが同じphysical cell IDを有する混在セルにおいて適切に送信パワーを求めることができる。すなわち、大セル基地局102は、M個(Mは3以上の整数)のCSI RSの中からN個(NはMより小さい2以上の整数)のCSI RSを選択することにより決定される複数の異なる組み合わせを、複数の小セル基地局にそれぞれ割り当てる。小セル基地局302は、M個の参照信号のうち自基地局に割り当てられたN個の参照信号を送信する。そして、大セル基地局102は、UE304の位置に基づいてM個のCSI RSの中からN個のCSI RSを選択した1の組み合わせを示す組み合わせ信号を送信する。UE304は、大セル基地局102から送信された組み合わせ信号に応じた組み合わせの参照信号を受信して、受信結果に基づいて、小セル基地局302との間のアップリンクの送信電力を求める。これによれば、大セルと小セルが同じphysical cell IDを有する混在セルであっても、各小セルは異なる組み合わせのCSI RSを送信し、UEは自装置の近くの小セルから送信された組み合わせCSI RSの受信結果に基づいてダウンリンク伝搬損失を求めることができる。その結果、自装置の近くの小セルとの間のアップリンクの送信パワーを適切に求めることができる。 As described above, according to the wireless system 50 of the present embodiment, transmission power can be appropriately obtained in a mixed cell in which a large cell and a small cell have the same physical cell ID. That is, the large cell base station 102 is determined by selecting N (N is an integer of 2 or more smaller than M) CSI RSs from among M (M is an integer of 3 or more) CSI RSs. Are assigned to a plurality of small cell base stations. The small cell base station 302 transmits N reference signals allocated to the own base station among the M reference signals. And the large cell base station 102 transmits the combination signal which shows 1 combination which selected N CSI RS out of M CSI RS based on the position of UE304. The UE 304 receives a combination reference signal corresponding to the combination signal transmitted from the large cell base station 102, and obtains uplink transmission power with the small cell base station 302 based on the reception result. According to this, even if a large cell and a small cell are mixed cells having the same physical cell ID, each small cell transmits a different combination of CSI RSs, and the UE is transmitted from a small cell near its own device. The downlink propagation loss can be obtained based on the reception result of the combined CSI RS. As a result, it is possible to appropriately obtain the transmission power of the uplink with the small cell near the own device.
50 無線システム
100 大セル
102 大セル基地局
122 信号送受信部
124 割り当て部
126,326 組み合わせテーブル
128 通知部
200,300,400,500 小セル
202,302 小セル基地局
304 UE
322 信号送受信部
324 割り当て判定部
342 無線復調部
346 参照信号測定部
352 送信電力演算部
356 無線変調部
50 wireless system 100 large cell 102 large cell base station 122 signal transmission / reception unit 124 allocation unit 126, 326 combination table 128 notification unit 200, 300, 400, 500 small cell 202, 302 small cell base station 304 UE
322 Signal transmission / reception unit 324 Allocation determination unit 342 Radio demodulation unit 346 Reference signal measurement unit 352 Transmission power calculation unit 356 Radio modulation unit

Claims (7)

  1.  第1の無線セルに対応する第1の基地局と、前記第1の無線セルの中に設けられ前記第1の無線セルより小さい複数の第2の無線セルにそれぞれ対応する複数の第2の基地局と、移動端末と、を備えた無線システムであって、
     前記第1の基地局は、
     前記移動端末へのダウンリンクの無線品質を評価するために設けられたM個(Mは2以上の整数)の参照信号の中からN個(NはMより小さい整数)の参照信号を選択することにより決定される複数の異なる組み合わせを、前記複数の第2の基地局にそれぞれ割り当てる割り当て部と、
     前記移動端末の位置に基づいて前記M個の参照信号の中から前記N個の参照信号を選択した1の組み合わせを示す組み合わせ信号を送信する通知部と、
     を有し、 前記第2の基地局はそれぞれ、
     前記M個の参照信号のうち自基地局に割り当てられたN個の参照信号を送信する信号送信部
     を有し、
     前記移動端末は、
     前記通知部によって送信された組み合わせ信号、及び該組み合わせ信号に応じた組み合わせの参照信号を受信する受信部と、
     前記受信部によって受信された参照信号の受信結果に基づいて、前記組み合わせ信号に対応する参照信号の組み合わせが割り当てられた第2の基地局との間のアップリンクの送信電力を求める送信電力演算部と、
     を有する
     ことを特徴とする無線システム。
    A first base station corresponding to the first radio cell, and a plurality of second radio cells provided in the first radio cell and respectively corresponding to a plurality of second radio cells smaller than the first radio cell A wireless system comprising a base station and a mobile terminal,
    The first base station is
    N (N is an integer smaller than M) reference signals are selected from M (M is an integer equal to or greater than 2) reference signals provided for evaluating downlink radio quality to the mobile terminal. An allocating unit that allocates a plurality of different combinations determined by each to the plurality of second base stations;
    A notification unit for transmitting a combination signal indicating one combination of the N reference signals selected from the M reference signals based on the position of the mobile terminal;
    Each of the second base stations has
    A signal transmission unit for transmitting N reference signals allocated to the base station among the M reference signals;
    The mobile terminal
    A receiving unit that receives the combination signal transmitted by the notification unit, and a reference signal of a combination corresponding to the combination signal;
    A transmission power calculation unit that obtains uplink transmission power with the second base station to which a combination of reference signals corresponding to the combination signal is assigned based on a reception result of the reference signal received by the reception unit When,
    A wireless system characterized by comprising:
  2.  前記移動端末は、
     前記M個の参照信号の受信結果を前記第1の基地局へ報告する報告部をさらに備え、
     前記第1の基地局の通知部は、前記報告部によって報告されたM個の参照信号の受信結果に基づいて、前記移動端末が前記複数の第2の無線セルのいずれのセルに属しているかを判定し、判定結果に基づいて前記組み合わせ信号を送信する
     ことを特徴とする請求項1に記載の無線システム。
    The mobile terminal
    A report unit for reporting a reception result of the M reference signals to the first base station;
    The notification unit of the first base station determines which cell of the plurality of second radio cells the mobile terminal belongs to based on the reception result of the M reference signals reported by the report unit The wireless system according to claim 1, wherein the combination signal is transmitted based on a determination result.
  3.  前記通知部は、前記移動端末がデータの変復調を行うための情報が含まれる制御信号とともに前記組み合わせ信号を前記移動端末に通知する
     ことを特徴とする請求項1に記載の無線システム。
    The radio system according to claim 1, wherein the notification unit notifies the mobile terminal of the combination signal together with a control signal including information for the mobile terminal to perform data modulation / demodulation.
  4.  前記第2の基地局の信号送信部は、
     前記M個の参照信号のうち自基地局に割り当てられたN個の参照信号を、互いにコード多重、互いに周波数多重、又は互いに時間多重して送信する
     ことを特徴とする請求項1に記載の無線システム。
    The signal transmission unit of the second base station is
    2. The radio according to claim 1, wherein N reference signals allocated to a base station among the M reference signals are transmitted by code multiplexing, frequency multiplexing, or time multiplexing with each other. system.
  5.  移動端末へのダウンリンクの無線品質を評価するために設けられたM個(Mは2以上の整数)の参照信号の中からN個(NはMより小さい整数)の参照信号を選択することにより決定される複数の異なる組み合わせを、自無線セルの中に設けられ自無線セルより小さい複数の小無線セルにそれぞれ対応する複数の小基地局に割り当てる割り当て部と、
     前記移動端末の位置に基づいて前記M個の参照信号の中から前記N個の参照信号を選択した1の組み合わせを示し、前記移動端末において参照信号を受信した結果に基づいて前記参照信号の1の組み合わせが割り当てられた小基地局との間のアップリンクの送信電力を求める際に用いられる組み合わせ信号を送信する通知部と、
     を備えたことを特徴とする基地局。
    Selecting N (N is an integer smaller than M) reference signals from M (M is an integer of 2 or more) reference signals provided for evaluating downlink radio quality to the mobile terminal A plurality of different combinations determined by the allocation unit assigned to a plurality of small base stations respectively provided in the own radio cell and corresponding to a plurality of small radio cells smaller than the own radio cell;
    1 indicates a combination in which the N reference signals are selected from the M reference signals based on the position of the mobile terminal, and 1 of the reference signals is based on a result of receiving the reference signal at the mobile terminal. A notification unit that transmits a combination signal used when obtaining uplink transmission power with a small base station to which a combination of
    A base station characterized by comprising:
  6.  第1の無線セルに対応する第1の基地局から送信され、移動端末へのダウンリンクの無線品質を評価するために設けられたM個(Mは2以上の整数)の参照信号の中からN個(NはMより小さい整数)の参照信号を選択した1の組み合わせを示す組み合わせ信号、及び前記第1の無線セルの中に設けられ前記第1の無線セルより小さい複数の第2の無線セルにそれぞれ対応する複数の第2の基地局のうち、前記組み合わせ信号に応じた組み合わせの参照信号を送信するよう割り当てられた第2の基地局から前記組み合わせ信号に応じた組み合わせの参照信号を受信する受信部と、
     前記受信部によって受信された参照信号の受信結果に基づいて前記組み合わせ信号に対応する参照信号の組み合わせが割り当てられた第2の基地局との間のアップリンクの送信電力を求める送信電力演算部と、
     を備えることを特徴とする移動端末。
    Among M reference signals (M is an integer equal to or greater than 2) transmitted from the first base station corresponding to the first radio cell and provided for evaluating the downlink radio quality to the mobile terminal A combination signal indicating one combination of N (N is an integer smaller than M) reference signals selected, and a plurality of second radios provided in the first radio cell and smaller than the first radio cell A reference signal of a combination corresponding to the combination signal is received from a second base station assigned to transmit a combination reference signal corresponding to the combination signal among a plurality of second base stations corresponding to each cell. A receiving unit to
    A transmission power calculation unit for obtaining uplink transmission power with a second base station to which a combination of reference signals corresponding to the combination signal is assigned based on a reception result of the reference signal received by the reception unit; ,
    A mobile terminal comprising:
  7.  第1の無線セルに対応する第1の基地局と、前記第1の無線セルの中に設けられ前記第1の無線セルより小さい複数の第2の無線セルにそれぞれ対応する複数の第2の基地局と、移動端末と、を備えた無線システムの前記第1の基地局が、
     前記移動端末へのダウンリンクの無線品質を評価するために設けられたM個(Mは2以上の整数)の参照信号の中からN個(NはMより小さい整数)の参照信号を選択することにより決定される複数の異なる組み合わせを、前記複数の第2の基地局にそれぞれ割り当て、
     前記移動端末の位置に基づいて前記M個の参照信号の中から前記N個の参照信号を選択した1の組み合わせを示す組み合わせ信号を送信し、
     前記第2の基地局それぞれが、
     前記M個の参照信号のうち自基地局に割り当てられたN個の参照信号を送信し、
     前記移動端末が、
     前記第1の基地局によって送信された組み合わせ信号、及び該組み合わせ信号に応じた組み合わせの参照信号を受信し、
     前記受信された参照信号の受信結果に基づいて、前記組み合わせ信号に対応する参照信号の組み合わせが割り当てられた第2の基地局との間のアップリンクの送信電力を求める
     ことを特徴とする無線通信方法。
    A first base station corresponding to the first radio cell, and a plurality of second radio cells provided in the first radio cell and respectively corresponding to a plurality of second radio cells smaller than the first radio cell The first base station of a wireless system comprising a base station and a mobile terminal,
    N (N is an integer smaller than M) reference signals are selected from M (M is an integer equal to or greater than 2) reference signals provided for evaluating downlink radio quality to the mobile terminal. A plurality of different combinations determined by each of the plurality of second base stations,
    Transmitting a combination signal indicating one combination in which the N reference signals are selected from the M reference signals based on the position of the mobile terminal;
    Each of the second base stations
    Transmitting N reference signals allocated to the base station among the M reference signals,
    The mobile terminal is
    Receiving a combination signal transmitted by the first base station, and a reference signal of a combination corresponding to the combination signal;
    Radio communication characterized in that, based on a reception result of the received reference signal, uplink transmission power is obtained with a second base station to which a combination of reference signals corresponding to the combination signal is assigned. Method.
PCT/JP2011/072879 2011-10-04 2011-10-04 Wireless system, base station, mobile terminal, and wireless communication method WO2013051112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/072879 WO2013051112A1 (en) 2011-10-04 2011-10-04 Wireless system, base station, mobile terminal, and wireless communication method
JP2013537315A JP5626479B2 (en) 2011-10-04 2011-10-04 Wireless system, base station, mobile terminal, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072879 WO2013051112A1 (en) 2011-10-04 2011-10-04 Wireless system, base station, mobile terminal, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2013051112A1 true WO2013051112A1 (en) 2013-04-11

Family

ID=48043304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072879 WO2013051112A1 (en) 2011-10-04 2011-10-04 Wireless system, base station, mobile terminal, and wireless communication method

Country Status (2)

Country Link
JP (1) JP5626479B2 (en)
WO (1) WO2013051112A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529205A (en) * 2011-06-21 2014-10-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) User apparatus for performing transmission power control of uplink transmission and method in the apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, ST-ERICSSON: "Aspects on Distributed RRUs with Shared Cell-ID for Heterogeneous Deployments", 3GPP TSG-RAN WG1 #64, R1-110649, vol. RAN WG1, 21 February 2011 (2011-02-21), XP050490740 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529205A (en) * 2011-06-21 2014-10-30 テレフオンアクチーボラゲット エル エム エリクソン(パブル) User apparatus for performing transmission power control of uplink transmission and method in the apparatus

Also Published As

Publication number Publication date
JP5626479B2 (en) 2014-11-19
JPWO2013051112A1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
CN110603852B (en) Method for transmitting and receiving downlink channel and apparatus therefor
CN110463059B (en) Sounding scheduling for distributed MIMO communication in an access point cluster
KR102313906B1 (en) Method and apparatus for transmitting configuration information of resource for control channel, method and apparatus for transmitting configuration information of resource for uplink discovery reference signal, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting the number of downlink symbols
CN110392985B (en) Triggering distributed MIMO communication in a wireless node cluster
TWI644587B (en) Power control for uplink transmissions
ES2698501T3 (en) Procedure and apparatus for reporting interference in an N-MIMO communication system
CN106717100B (en) Method and system for sounding and channel selection
CN106464466B (en) Cell ID management of discovery reference signals for small cells in LTE
US10944596B2 (en) RRM measurement and channel estimation based on reference signals of coexisting communication systems
US20220182200A1 (en) Methods and apparatus for configuring 5g new radio uplink positioning reference signals
JP2018101983A (en) Method and apparatus for measuring downlink interference in orthogonal frequency division multiple access mobile communication system
US20150092582A1 (en) Methods of Discovery and Measurements for Small Cells in OFDM/OFDMA Systems
US20170164248A1 (en) Methods for operating a first base station and a second base station in a radio communication system, first base station and second base station thereof
CN105934995B (en) Network node, wireless device, methods therein, computer program and computer readable medium comprising computer program for adapting and employing, respectively, radio resource allocation
JP2019534644A (en) Cell identification information
CN107079407A (en) Use the transmitting power control and the apparatus and method of scheduling operated for LTE unlicensed bands
CN111436147A (en) Method and device for transmitting signals
US20140313948A1 (en) Frame structure and signaling arrangement for interference aware scheduling
JP2016048934A (en) Method and apparatus in wireless communication system
EP3100570A1 (en) Radio node, communication devices and methods therein
CN112753236A (en) Channel state information reference signal resource mapping
EP3641150B1 (en) Beam training method, initiator device, and responder device
CN113170455A (en) Method and equipment for transmitting downlink signals
KR20160127029A (en) Signaling for fractional frequency reuse (ffr) for d2d communications
WO2011052663A1 (en) Macrocell base station and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873697

Country of ref document: EP

Kind code of ref document: A1