WO2013051107A1 - Ultrasonic flaw detection device for hollow axle - Google Patents

Ultrasonic flaw detection device for hollow axle Download PDF

Info

Publication number
WO2013051107A1
WO2013051107A1 PCT/JP2011/072847 JP2011072847W WO2013051107A1 WO 2013051107 A1 WO2013051107 A1 WO 2013051107A1 JP 2011072847 W JP2011072847 W JP 2011072847W WO 2013051107 A1 WO2013051107 A1 WO 2013051107A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
flaw detection
flaw
detection head
oil
Prior art date
Application number
PCT/JP2011/072847
Other languages
French (fr)
Japanese (ja)
Inventor
一光 川田
嗣喜 西岡
Original Assignee
日本クラウトクレーマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本クラウトクレーマー株式会社 filed Critical 日本クラウトクレーマー株式会社
Priority to PCT/JP2011/072847 priority Critical patent/WO2013051107A1/en
Publication of WO2013051107A1 publication Critical patent/WO2013051107A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Definitions

  • the present invention relates to an ultrasonic flaw detection apparatus that flaws a boring axle with ultrasonic waves.
  • Boring axles are widely used for Shinkansen axles.
  • the boring axle is subjected to a flaw detection inspection by inserting a flaw detection head into the boring portion.
  • flaw detection inspections are carried out in alternating inspections, bogie inspections, and general inspections.
  • the alternating inspection is an inspection performed in the presence state (that is, without dismantling) at the vehicle place. For this reason, it was necessary to move the ultrasonic flaw detector in accordance with the axle in a narrow space of the vehicle place. Moreover, it was necessary to inspect at high speed.
  • Patent Documents 1 and 2 describe conventional ultrasonic flaw detectors. All of these apparatuses relate to the flaw detection head inserted into the boring part, and rotate the ultrasonic probe of the flaw detection head around the axis in the boring part.
  • a wire is passed through a flexible tube, and the rotational force of a rotary motor provided outside is transmitted to the ultrasonic probe by the wire. Further, the ultrasonic wave is propagated by filling the gap between the ultrasonic probe and the boring part with oil.
  • the present invention has been made in view of such circumstances, and its main purpose is to reduce the size and speed of the apparatus.
  • an ultrasonic flaw detector of the present invention has a plurality of ultrasonic transducers arranged in the entire circumferential direction, and is a cylindrical shape that performs phased array flaw detection by being inserted into a boring axle.
  • the ultrasonic transducer receives an ultrasonic echo while the ultrasonic transducer receives an ultrasonic echo while outputting an operation signal for selectively exciting the ultrasonic transducer and the ultrasonic transducer.
  • a phased array ultrasonic flaw detector that obtains an output corresponding to the intensity of the ultrasonic echo and outputs it as an echo signal, and controls the output of the operation signal, and also relates to a flaw in the boring axle from the intensity of the echo signal.
  • an information generation unit that generates information.
  • the ultrasonic flaw detection apparatus of the present invention since a plurality of ultrasonic transducers arranged in the entire circumferential direction are provided in the flaw detection head and perform transmission and reception of ultrasonic waves, it is possible to rotate the flaw detection head. You can get information about flaws on boring axles. For this reason, a rotation mechanism such as a motor or a wire is not required, and the configuration can be simplified. As a result, the apparatus can be reduced in size. It is also possible to control the focus by performing transmission / reception phase control when the vibrator is selectively excited.
  • a frustum-shaped pedestal is provided on the flaw detection head, the ultrasonic transducer is formed into a vertically long rectangular shape or a vertically long trapezoid, and the entire circumferential direction on the inclined side surface of the pedestal portion.
  • the ultrasonic waves emitted from the ultrasonic transducer can be directly irradiated toward the boring axle. Thereby, detection accuracy can be improved.
  • the flaw detection head when the flaw detection head is provided with a resinous ultrasonic wave propagation portion that is in close contact with the inclined side surface of the pedestal and that defines a part of the peripheral surface of the flaw detection head. , The propagation efficiency of ultrasonic waves can be increased.
  • the ultrasonic wave can be efficiently propagated by the oil injected into the gap. . Further, since the flaw detection head does not rotate, the amount of oil used can be reduced.
  • the apparatus can be miniaturized and the detection capability can be improved. Also, the inspection time can be greatly shortened.
  • FIG. 1 It is a block diagram explaining the structure of an ultrasonic flaw detector.
  • A) is a front view of an ultrasonic flaw detector.
  • B) is a left side view of the ultrasonic flaw detector. It is an external view of a flaw detection head. It is a figure explaining the peripheral part of an ultrasonic transducer
  • the ultrasonic flaw detector 1 of this embodiment makes the inspection object the boring axle 2 used for railway vehicles, such as a Shinkansen.
  • the ultrasonic flaw detector 1 includes a head unit 10, a head unit lifting / lowering unit 20, a traveling mechanism 30, an oiling mechanism 40, a control unit 50, and a power supply unit 60. .
  • the head unit 10 is a central part of ultrasonic flaw detection, and has a flaw detection head 11.
  • the flaw detection head 11 is a part that outputs ultrasonic waves and receives ultrasonic echoes. As shown in FIG. 2, the flaw detection head 11 is housed inside the housing 12 during non-flaw detection, and is fed from the housing 12 to the hollow portion 2a of the boring axle 2 during flaw detection as shown in FIG. .
  • the flaw detection head 11 has a conical shape, and an ultrasonic transducer 13 is disposed therein.
  • the ultrasonic transducer 13 is excited by applying an excitation pulse (square pulse, spike pulse) as an operation signal, and outputs an ultrasonic wave. Moreover, the ultrasonic echo which returned by reflection by a wound is received.
  • the diameter ⁇ 11 of the flaw detection head 11 is set to be slightly smaller than the inner diameter of the boring axle 2 (the diameter of the hollow portion 2a).
  • the ultrasonic transducer 13 is attached to the inclined side surface of the truncated cone-shaped base 14.
  • the ultrasonic transducer 13 of the present embodiment has a vertically long rectangular shape, and is arranged radially from the center C14 of the truncated cone over the entire circumferential direction on the inclined side surface.
  • each ultrasonic transducer 13 has an element length EL13 of about 8 mm, an incident angle ⁇ 13 of 45 to 55 degrees, and a height H13 of about 4 to 5.5 mm.
  • the length L13 is about 6 to 7 mm.
  • 64 ultrasonic transducers 13 are arranged uniformly over the entire circumferential direction.
  • the ultrasonic transducer 13 is not limited to a vertically long rectangular shape but may be a vertically long trapezoidal shape.
  • a damper material 14 a is provided on the inclined side surface which is the back surface side of the ultrasonic transducer 13, and the output of the ultrasonic wave to the pedestal 14 side is suppressed.
  • an ultrasonic wave propagation unit 15 is provided on the surface side of the ultrasonic transducer 13.
  • the ultrasonic wave propagation portion 15 is made of a resin (for example, polystyrene) that propagates ultrasonic waves, and the angle ⁇ 15 forms a refraction angle of the ultrasonic wave incident on the boring axle 2.
  • the ultrasonic wave propagation part 15 is in close contact with the inclined side surface of the pedestal 14 and defines a part of the outer peripheral surface of the flaw detection head 11.
  • an oil discharge port 42a is provided on the cable-side lower surface of the flaw detection head 11, and an oil recovery port 42b is provided on the tip-side upper surface and the cable-side upper surface, and an oil supply tube 42c and an oil recovery tube 42d are provided respectively.
  • the fuel tank 41 Via the fuel tank 41. After the oil is supplied from the oil discharge port 42a at the lower end, the oil circulates upward and is recovered from the oil recovery port 42b on the upper surface, and pushes the bubbles backward in accordance with the flaw detection movement. With this configuration, bubbles that are harmful to flaw detection can be efficiently discharged.
  • the flaw detection head 11 is provided with an O-ring 44 so as to sandwich the ultrasonic transducer 13 from the front and back, and a gap between the inner diameter of the axle and the outer diameter of the head is sealed to prevent oil from flowing out.
  • the flaw detection head 11 and the axle front end side are sealed by these O-rings 44. For this reason, a pressure change occurs at the tip of the shaft as the flaw detection head 11 moves, and oil leaks from the seal portion as it is.
  • an air vent hole (not shown) is provided in the center of the flaw detection head 11.
  • One oil discharge port 42a is provided for the entire circumference of the flaw detection head 11, and two oil recovery ports 42b are similarly provided.
  • the ratio of the total cross-sectional area of the oil discharge port 42a and the total cross-sectional area of the oil recovery port 42b is 1: 2
  • the gap between the flaw detection head 11 and the boring axle 2 (inspection material) is balanced, and flaw detection is in progress. It is possible to eliminate the oil shortage and minimize the oil residue after the flaw detection.
  • the oil supply mechanism 40 includes an oil discharge port 42a, an oil discharge port 42b, and an air vent hole, and the flaw detection head 11 does not rotate, the amount of oil used can be extremely reduced. As a result, the residual amount of oil is suppressed to 20 cc or less per shaft, and the operation of removing the residual oil becomes unnecessary.
  • the head unit elevating unit 20 is a part for elevating the head unit 10 described above, a movable frame 21 with the head unit 10 attached to the upper end, and an elevating mechanism (not shown) for elevating the movable frame 21. have.
  • the movable frame 21 is attached with a chain drive mechanism 23 that sends and pulls the cable 22 back.
  • the cable 22 is connected to the base end of the flaw detection head 11, the signal line 24 for transmitting and receiving ultrasonic signals, the oil supply pipe 42 c for supplying oil, and the oil recovery An oil recovery pipe 42d and the like are accommodated.
  • the chain drive mechanism 23 includes a chain 23a, a motor 23b, and a reel 23c.
  • the tip of the chain 23a is connected to the flaw detection head 11, and is engaged with and driven by a gear (not shown) rotated by a motor 23b.
  • a gear not shown
  • the flaw detection head 11 moves inside the boring axle 2 to the back side.
  • the chain 23a is pulled back, the flaw detection head 11 moves inside the boring axle 2 toward the head unit 10 side.
  • the cable stock 25 is provided in the lower part of the movable frame 21, and the cable 22 is stored when the flaw detection head 11 is pulled back and collected. Due to such a structure, the cable 24, the oil supply pipe 42c, the oil recovery pipe 42d, and the like are directly connected from the flaw detection head 11 to the phased array ultrasonic flaw detector 52 and the oil supply without passing through the ultrasonic signal and the rotary joint portion of the oil pipe. Connected to mechanism 40.
  • the operation of the lifting mechanism is controlled under the control of the control unit 50.
  • the flaw detection head 11 can be positioned at the height position of the boring axle 2 by moving the movable frame 21 up and down. Thereby, the inspection can be facilitated.
  • the traveling mechanism 30 is a mechanism for traveling the entire ultrasonic flaw detector 1 and includes a traveling motor (not shown) and wheels 31 (see FIG. 2).
  • the traveling mechanism 30 of the present embodiment causes the ultrasonic flaw detector 1 to travel in a direction substantially orthogonal to the axle direction (that is, a direction along the side surface of the vehicle). Thereby, after completion
  • This travel motor is driven by a battery 62. If the battery 62 is fully charged, it is not necessary to connect the commercial power source 63 during all inspection processes of one or more trains.
  • the oil supply mechanism 40 is a mechanism for injecting oil into the gap between the boring axle 2 and the flaw detection head 11 during flaw detection.
  • an oil supply tank 41, an oil supply pipe 42c, and oil recovery It has a pipe 42d and an oil supply pump 43.
  • the oil supply tank 41 is a part for storing oil for injection.
  • the oil supply pipe 42 c is a pipe for guiding the oil in the oil supply tank 41 to the flaw detection head 11, and the oil recovery pipe 42 d is a pipe for guiding the oil collected by the flaw detection head 11 to the oil supply tank 41.
  • the oil supply pump 43 sends out oil, and is provided in the middle of the oil supply pipe 42c.
  • the controller 50 controls each part of the ultrasonic flaw detector 1 such as the flaw detection head 11, the head unit lifting / lowering part 20, and the traveling mechanism 30.
  • the control unit 50 in the present embodiment includes a CPU 51 and a phased array ultrasonic flaw detector 52.
  • the CPU 51 and the like correspond to an information generation unit and are composed of a set of CPU and memory.
  • the CPU operates according to an operation program stored in the memory and executes various controls.
  • the memory stores various programs in addition to the operation program. For example, data defining a selection pattern of the ultrasonic transducer 13 is also stored.
  • the mask position information of the external echo according to the axle shape is stored as the axle information. Is done.
  • the shape of the boring axle 2 varies depending on the knitting. For this reason, the axle information is stored for each type of boring axle 2. All inspection results are stored in units of vehicle organization.
  • the phased array ultrasonic flaw detector 52 outputs an excitation pulse for exciting the ultrasonic transducer 13 or obtains an output corresponding to the intensity of the ultrasonic echo received by the ultrasonic transducer 13 as an echo signal. Or output. For this reason, the phased array ultrasonic flaw detector 52 has a pulsar (not shown) that outputs an excitation pulse for each of the plurality of ultrasonic transducers 13. Similarly, the phased array ultrasonic flaw detector 52 amplifies an electrical signal output from the ultrasonic transducer 13 upon reception of the ultrasonic echo and outputs a receiver (not shown) that outputs the signal as an echo signal. Each of the ultrasonic transducers 13 is provided.
  • the phased array ultrasonic flaw detector 52 also has a waveform memory (not shown) that digitally converts the voltage value of the echo signal from each receiver and stores the digitally converted voltage value in association with time information. ing. Furthermore, the phased array ultrasonic flaw detector 52 also includes a switching unit (not shown) for electrically connecting the ultrasonic transducer 13 that transmits and receives ultrasonic waves, and the pulser and receiver. The switching unit connects the pulser to the ultrasonic transducer 13 when outputting ultrasonic waves, and connects the receiver to the ultrasonic transducer 13 after outputting ultrasonic waves.
  • the CPU 51 or the like that functions as an information generation unit selects the ultrasonic transducer 13 that supplies the excitation pulse or sets the intensity of the excitation pulse. Further, the CPU 51 and the like read the voltage value (echo signal intensity) of the waveform memory included in the phased array ultrasonic flaw detector 52 and obtain information on the flaws in the boring axle such as the presence / absence, position and size of the flaws in the boring axle. Generate.
  • the power supply unit 60 is a part that generates a power supply used in each part of the ultrasonic flaw detector 1, and includes a power supply circuit 61 and a battery 62.
  • the power supply circuit 61 is a part that converts the power of the commercial power supply 63 into DC power used in each part.
  • the battery 62 is a part that supplies DC power to each unit such as the head unit 10 and the control unit 50 during a period in which the power supply by the power supply circuit 61 is not performed (for example, a travel period by the travel mechanism 30). It is charged by DC power from 61.
  • the battery 62 is determined to have a capacity capable of supplying power for all inspections including movement between axles in a fully charged state. This eliminates the need for connection to a commercial power source in the inspection process, and enables efficient inspection work.
  • the flaw detection head 11 is inserted into the hollow portion 2a of the boring axle 2.
  • the head unit 10 in a state in which the flaw detection head 11 is housed is moved up and down by the head unit lifting / lowering unit 20 so that the flaw detection head 11 faces the boring axle 2.
  • the flaw detection cable 22 is sent out by the chain drive mechanism 23.
  • the control unit 50 operates the oil supply pump 43 to inject oil stored in the oil supply tank 41 between the flaw detection head 11 and the inner wall surface of the boring axle 2 through the oil supply pipe 42c. Further, excess oil is recovered through the oil recovery pipe 42d.
  • the flaw detection head 11 is pushed to move the hollow portion 2a of the boring axle 2 to the back side.
  • the oil injected by the oil supply mechanism 40 reduces the friction between the flaw detection head 11 and the boring axle 2, and the flaw detection head 11 moves smoothly.
  • the flaw detection head 11 is fully pushed in (for example, moved to the end opposite to the insertion side of the boring axle 2), the flaw detection inspection for the boring axle 2 is started.
  • a plurality of ultrasonic transducers 13 are grouped, and ultrasonic output and ultrasonic echo reception are performed for each group.
  • (N ⁇ M) ultrasonic transducers 13 are divided into M groups of (2 ⁇ N) ultrasonic transducers 13, and the ultrasonic transducers 13 belonging to each group are divided into N groups. Select by shifting individual pitches. In the example of FIG. 8, N is 8 and M is 8. For this reason, one group is formed by 16 ultrasonic transducers 13, and each group is shifted by eight ultrasonic transducers.
  • the first ultrasonic transducers 13 from the first ultrasonic transducer 13 (hereinafter also simply referred to as transducer # 1; the same applies to other ultrasonic transducers 13) to transducer # 16.
  • the first group GR1 is formed
  • the second group GR2 is formed of the vibrators # 25 to # 40.
  • the third group GR3 includes the transducer # 49 to the transducer # 64
  • the fourth group GR4 includes the transducer # 9 to the transducer # 24
  • the fifth group includes the transducer # 33 to the transducer # 48. Is formed.
  • the sixth group GR6 includes the vibrator # 57 to the vibrator # 8
  • the seventh group GR7 includes the vibrator # 17 to the vibrator # 32
  • the eighth group GR8 includes the vibrator # 41 to the vibrator # 56. Is formed.
  • the flaw detection head 11 having 64 ultrasonic transducers 13 is illustrated, but the same applies regardless of whether the number is 32 or 128.
  • the above N becomes 4 and the above M becomes 8.
  • One group is formed by the eight ultrasonic transducers 13, and each group is shifted by four ultrasonic transducers.
  • the above N is 16 and the above M is 8. Then, one group is formed by the 32 ultrasonic transducers 13, and each group is shifted by 16 ultrasonic transducers.
  • the control unit 50 outputs an ultrasonic wave and receives an ultrasonic echo in order from, for example, the group with the smallest number.
  • ultrasonic flaw detection is performed by the transducers # 1 to # 16 belonging to the first group GR1 in the cycle 1, and by the transducers # 25 to # 39 belonging to the second group GR2 in the cycle 2.
  • Ultrasonic flaw detection is performed.
  • cycle 8 when cycle 8 is selected, the cycle returns to cycle 1 and ultrasonic flaw detection is performed by the transducers # 1 to # 16.
  • a group that is more than a predetermined interval away from the group that is the control target immediately before can be set as the next control target.
  • a non-flaw detection period of at least two cycles is interposed until a flaw detection operation in the same range as the previous flaw detection operation is performed.
  • the transducers # 9 to # 15 that are flaw-detected by the first group GR1 and the fourth group GR4 are flaw-detected in the first cycle and then flaw-detected in the fourth cycle with two cycles between them.
  • the flaw detection inspection can be performed over the entire circumferential direction of the boring axle 2. That is, the flaw detection inspection can be performed over the entire circumferential direction of the boring axle 2 without rotating the flaw detection head 11.
  • this ultrasonic flaw detector 1 can perform flaw detection inspection at a speed equivalent to 1000 rpm or more, and completes inspection in 80 seconds or less per axle. be able to.
  • the ultrasonic focusing position can be changed by appropriately changing the delay setting for the ultrasonic transducers 13 belonging to the same group. For example, as indicated by a solid line in FIG. 9, if there is no delay setting, the ultrasonic beam propagates while spreading in the boring axle 2.
  • the ultrasonic beam propagates while converging, as indicated by a broken line in FIG.
  • the beam width of the ultrasonic wave at the outer surface position of the boring axle 2 can be controlled, and the processing capability determined by the detection capability and the beam width can be controlled.
  • an oil layer OL is formed in the gap between the outer peripheral surface of the flaw detection head 11 and the boring axle 2. For this reason, the ultrasonic waves that have been output from the ultrasonic transducers 13 and have traveled through the ultrasonic wave propagation unit 15 are propagated to the boring axle 2 through the oil layer OL. Since the loss of ultrasonic waves can be suppressed by the oil layer OL, a decrease in detection accuracy can be suppressed. Then, the ultrasonic echo reflected by the flaw X reaches the ultrasonic transducer 13 through the reverse route. Again, since ultrasonic echoes are propagated through the oil layer OL, it is possible to suppress a decrease in detection accuracy.
  • the flaw detection head 11 has a plurality of ultrasonic transducers 13 arranged radially in the entire circumferential direction, and transmits ultrasonic waves and ultrasonic echoes. Therefore, it is possible to obtain information on the flaw of the boring axle 2 without rotating the flaw detection head 11. For this reason, a rotation mechanism such as a motor or a wire is not required, and the apparatus configuration can be simplified. As a result, the ultrasonic flaw detector 1 can be reduced in size and weight, and can be easily handled even in a narrow space in a vehicle place.
  • the detection capability can be enhanced.
  • the resin-made ultrasonic wave propagation part 15 that is in close contact with the inclined side surface of the base 14 and defines a part of the peripheral surface of the flaw detection head 11 is provided, the propagation efficiency of ultrasonic waves is improved. Can be increased.
  • an oil injection mechanism 40 oil supply tank 41, oil supply pipe 42c, oil recovery pipe 42d, and oil supply pump
  • the ultrasonic waves can be efficiently propagated by the oil injected into the gap.
  • the flaw detection head 11 does not rotate, the amount of oil used can be extremely reduced.
  • the oil is important for efficiently putting the ultrasonic wave into the boring axle, and if the oil runs out partially, the ultrasonic wave does not propagate.
  • excessive oil supply leaves oil inside the axle after the inspection is completed, and an oil removal operation is required after the inspection is completed, which increases unnecessary work.
  • the traveling mechanism 30 can be operated using the battery 62 as a power source. Further, since inspection for one or more trains can be performed only by the power of the battery 62, troublesome work such as connection of a commercial power source during the inspection work is completely unnecessary. As a result, the inspection efficiency can be drastically increased along with the speeding up of inspection and the elimination of oil removal work. As a result, the inspection time can be greatly shortened.
  • FIG. 11 is a cross-sectional view for explaining a modification of the ultrasonic transducer 13.
  • the ultrasonic transducer 13 of the modified example has a vertically long rectangular shape or a vertically long trapezoidal shape like the ultrasonic transducer 13 described above, but is provided in a curved concave shape in which the central portion in the longitudinal direction is recessed from the end portion. Is different.
  • the degree of depression of the ultrasonic transducer 13 is determined as appropriate, it is preferable that the ultrasonic wave converge toward the flaw X. With this configuration, the ultrasonic wave output from the ultrasonic transducer 13 can be converged toward the flaw X as shown in FIG. Thereby, the excessive spread of an ultrasonic wave is suppressed and detection sensitivity can be raised.
  • FIGS. 13A and 13B are diagrams for explaining the main part of the second embodiment.
  • the configuration of the ultrasonic transducer is different from that of the first embodiment. That is, the flaw detection head 11 ′ has a daisy type ultrasonic transducer 71.
  • the ultrasonic transducer 71 has a hollow disk-like appearance.
  • the element 72 which outputs an ultrasonic wave is arrange
  • a frustoconical reflection member 73 is provided so as to face the disk surface of the ultrasonic transducer 71.
  • the reflecting member 73 is a member that reflects ultrasonic waves from the ultrasonic transducer 71 and ultrasonic echoes from the flaw X, and the inclined side surface functions as a reflecting surface. Accordingly, as shown in FIG. 14, the ultrasonic wave from the ultrasonic transducer 71 is reflected by the inclined side surface, and this ultrasonic wave can be irradiated to the boring axle 2. Further, by reflecting the ultrasonic echo from the scratch X on the inclined side surface, the ultrasonic echo 71 can be received by the ultrasonic transducer 71.
  • the boring axle is not required to rotate the flaw detection head 11 '.
  • Information about 2 scratches can be acquired.
  • a rotation mechanism such as a motor or a wire is not required, and the configuration can be simplified.
  • the ultrasonic flaw detector 1 can be reduced in size.
  • the boring axle 2 provided in the railway vehicle is exemplified as the boring axle to be flaw-detected.
  • the boring axle is not limited to that for the Shinkansen.
  • the selection pattern of the ultrasonic transducer 13 and the element 72 is not limited to the pattern illustrated in FIG.
  • the number of elements and the number of groups can be determined as appropriate.
  • SYMBOLS 1 Ultrasonic flaw detection apparatus, 2 ... Boring axle, 2a ... Hollow part, 10 ... Head unit, 11 ... Flaw detection head, 11 '... Flaw detection head, 13 ... Ultrasonic transducer, 14 ... Base, 14a ... Damper material, DESCRIPTION OF SYMBOLS 15 ... Ultrasonic propagation part, 20 ... Head unit raising / lowering part, 21 ... Movable frame, 22 ... Cable, 23 ... Chain drive mechanism, 23a ... Chain, 23b ... Motor, 23c ... Reel, 24 ... Communication line, 25 ... Cable stock , 30 ... travel mechanism, 31 ... wheel, 40 ... oil supply mechanism, 41 ...

Abstract

[Problem] To miniaturize an ultrasonic flaw detection device that detects flaws in a hollow axle using ultrasonic waves. [Solution] This ultrasonic flaw detection device (1) is characterized by being provided with the following: a columnar flaw detection head (11) that has a plurality of ultrasonic oscillators (13) disposed along the entire circumferential direction thereof and that performs phased array flaw detection by insertion into a hollow axle (2); a phased array ultrasonic flaw detector (52) that outputs an operation signal for selectively exciting the ultrasonic oscillators (13) at the same time as, in accordance with the ultrasonic oscillators (13) receiving ultrasonic echoes, acquiring output according to the intensity of ultrasonic echo received by the ultrasonic oscillators (13), and that outputs the same as echo signals; and a CPU (51) and the like that controls the output of operation signals and generates information relating to hollow axle defects on the basis of echo signal intensity.

Description

中ぐり車軸用超音波探傷装置Ultrasonic flaw detector for boring axle
 本発明は、中ぐり車軸を超音波で探傷する超音波探傷装置に関する。 The present invention relates to an ultrasonic flaw detection apparatus that flaws a boring axle with ultrasonic waves.
 中ぐり車軸は新幹線の車軸などに広く用いられている。この中ぐり車軸に対しては、探傷ヘッドを中ぐり部に挿入することで探傷検査が行われている。新幹線等の鉄道車両において、探傷検査は、交番検査、台車検査、全般検査において実施されている。ここで交番検査は、車両所にて在姿状態で(つまり解体せずに)行われる検査である。このため、超音波探傷装置を、車両所の狭い空間において、車軸にあわせて移動させる必要があった。また高速で検査する必要があった。 中 Boring axles are widely used for Shinkansen axles. The boring axle is subjected to a flaw detection inspection by inserting a flaw detection head into the boring portion. In railway vehicles such as the Shinkansen, flaw detection inspections are carried out in alternating inspections, bogie inspections, and general inspections. Here, the alternating inspection is an inspection performed in the presence state (that is, without dismantling) at the vehicle place. For this reason, it was necessary to move the ultrasonic flaw detector in accordance with the axle in a narrow space of the vehicle place. Moreover, it was necessary to inspect at high speed.
 特許文献1,2には従来の超音波探傷装置が記載されている。これらの装置はいずれも、中ぐり部に挿入される探傷ヘッドに関し、中ぐり部において探傷ヘッドの有する超音波探触子を軸中心に回転させるものであった。この装置では、フレキシブルチューブにワイヤーを通し、外部に設けた回転モータの回転力をワイヤーによって超音波探触子に伝達している。また、超音波探触子と中ぐり部との隙間に油を充填することで超音波を伝播させている。 Patent Documents 1 and 2 describe conventional ultrasonic flaw detectors. All of these apparatuses relate to the flaw detection head inserted into the boring part, and rotate the ultrasonic probe of the flaw detection head around the axis in the boring part. In this apparatus, a wire is passed through a flexible tube, and the rotational force of a rotary motor provided outside is transmitted to the ultrasonic probe by the wire. Further, the ultrasonic wave is propagated by filling the gap between the ultrasonic probe and the boring part with oil.
特許第2649299号公報Japanese Patent No. 2649299 特許第2691822号公報Japanese Patent No. 2691822
 従来の装置では、フレキシブルチューブを通したワイヤーによって超音波探触子を回転させているため、装置が大型化してしまうという問題点がある。また、回転する超音波探触子と中ぐり車軸との隙間に注油するため、油の必要量が増えてしまうという問題がある。回転装置をヘッド内部に置く方法もあるが、装置が大型化してしまう点で同じである。 In the conventional apparatus, since the ultrasonic probe is rotated by the wire passing through the flexible tube, there is a problem that the apparatus becomes large. In addition, since the oil is injected into the gap between the rotating ultrasonic probe and the boring axle, there is a problem that the required amount of oil increases. Although there is a method of placing the rotating device inside the head, it is the same in that the device becomes larger.
 本発明は、このような事情に鑑みてなされたものであり、その主たる目的は、装置を小型化し、かつ高速化することである。 The present invention has been made in view of such circumstances, and its main purpose is to reduce the size and speed of the apparatus.
 前記目的を達成するため、本発明の超音波探傷装置は、周方向の全体に配置された複数の超音波振動子を有し、中ぐり車軸に挿入されることでフェイズドアレイ探傷を行う円柱状の探傷ヘッドと、前記超音波振動子を選択的に励振させるための動作信号を出力する一方、前記超音波振動子が超音波エコーを受信するのに応じて、前記超音波振動子が受信した前記超音波エコーの強度に応じた出力を取得し、エコー信号として出力するフェイズドアレイ超音波探傷器と、前記動作信号の出力を制御するとともに、前記エコー信号の強度から前記中ぐり車軸のきずに関する情報を生成する情報生成部とを有することを特徴とする。 In order to achieve the above object, an ultrasonic flaw detector of the present invention has a plurality of ultrasonic transducers arranged in the entire circumferential direction, and is a cylindrical shape that performs phased array flaw detection by being inserted into a boring axle. The ultrasonic transducer receives an ultrasonic echo while the ultrasonic transducer receives an ultrasonic echo while outputting an operation signal for selectively exciting the ultrasonic transducer and the ultrasonic transducer. A phased array ultrasonic flaw detector that obtains an output corresponding to the intensity of the ultrasonic echo and outputs it as an echo signal, and controls the output of the operation signal, and also relates to a flaw in the boring axle from the intensity of the echo signal. And an information generation unit that generates information.
 本発明の超音波探傷装置によれば、周方向の全体に配置された複数の超音波振動子が探傷ヘッドに設けられ、超音波の送受信を行っているので、探傷ヘッドを回転させなくても中ぐり車軸のきずに関する情報を取得できる。このため、モータやワイヤー等の回転機構が不要となって構成の簡素化が図れる。その結果、装置を小型化できる。また、振動子を選択的に励振する際に送受信の位相制御を行うことで、焦点を制御することも可能である。 According to the ultrasonic flaw detection apparatus of the present invention, since a plurality of ultrasonic transducers arranged in the entire circumferential direction are provided in the flaw detection head and perform transmission and reception of ultrasonic waves, it is possible to rotate the flaw detection head. You can get information about flaws on boring axles. For this reason, a rotation mechanism such as a motor or a wire is not required, and the configuration can be simplified. As a result, the apparatus can be reduced in size. It is also possible to control the focus by performing transmission / reception phase control when the vibrator is selectively excited.
 前述の超音波探傷装置において、前記探傷ヘッドに円錐台形状の台座部を設け、前記超音波振動子を縦長矩形状又は縦長台形状とするとともに、前記台座部の傾斜側面における周方向の全体に亘って円錐台の中心から放射状に配置した場合には、超音波振動子から発射された超音波を中ぐり車軸に向けてダイレクトに照射できる。これにより、検出精度を高めることができる。 In the ultrasonic flaw detector described above, a frustum-shaped pedestal is provided on the flaw detection head, the ultrasonic transducer is formed into a vertically long rectangular shape or a vertically long trapezoid, and the entire circumferential direction on the inclined side surface of the pedestal portion. When arranged radially from the center of the truncated cone, the ultrasonic waves emitted from the ultrasonic transducer can be directly irradiated toward the boring axle. Thereby, detection accuracy can be improved.
 前述の超音波探傷装置において、前記台座部の傾斜側面と密着し、かつ、前記探傷ヘッドにおける周面の一部を区画する樹脂製の超音波伝播部を、前記探傷ヘッドに設けた場合には、超音波の伝播効率を高めることができる。 In the ultrasonic flaw detector described above, when the flaw detection head is provided with a resinous ultrasonic wave propagation portion that is in close contact with the inclined side surface of the pedestal and that defines a part of the peripheral surface of the flaw detection head. , The propagation efficiency of ultrasonic waves can be increased.
 前述の超音波探傷装置において、前記超音波振動子を、長手方向の中央部分が端部よりも窪んだ湾曲凹状に設けた場合には、超音波の過度な拡がりを抑制することができ、検出感度を高めることができる。 In the ultrasonic flaw detector described above, when the ultrasonic transducer is provided in a curved concave shape in which the central portion in the longitudinal direction is recessed from the end, excessive spread of ultrasonic waves can be suppressed and detected. Sensitivity can be increased.
 前述の超音波探傷装置において、前記中ぐり車軸と前記探傷ヘッドとの隙間に油を注入する注油機構を設けた場合には、隙間に注入された油によって超音波を効率よく伝播させることができる。また、探傷ヘッドが回転しないため、油の使用量を低減できる。 In the ultrasonic flaw detection apparatus described above, when an oil injection mechanism for injecting oil into the gap between the boring axle and the flaw detection head is provided, the ultrasonic wave can be efficiently propagated by the oil injected into the gap. . Further, since the flaw detection head does not rotate, the amount of oil used can be reduced.
 前述の超音波探傷装置において、装置全体を走行させるための機構と、前記探傷ヘッド、前記フェイズドアレイ探傷器、前記情報生成部、および前記走行用の機構に対し1編成以上の車両検査に渡って給電する必要の無い容量のバッテリーを設け、探傷期間中の給電をコードレスで行っている。これにより、検査作業途中での商用電源の接続などのわずらわしい作業がまったく不要となり、作業効率を飛躍的に高めることができる。 In the ultrasonic flaw detector described above, a mechanism for traveling the entire apparatus, and inspection of one or more trains for the flaw detection head, the phased array flaw detector, the information generator, and the traveling mechanism are performed. A battery with a capacity that does not need to be supplied is provided, and power is supplied cordlessly during the flaw detection period. As a result, troublesome work such as connection of a commercial power supply during the inspection work becomes unnecessary, and work efficiency can be dramatically improved.
 本発明の超音波探傷装置によれば、装置を小型化でき検出能力を向上することができる。また検査時間を大幅に短縮することができる。 According to the ultrasonic flaw detector of the present invention, the apparatus can be miniaturized and the detection capability can be improved. Also, the inspection time can be greatly shortened.
超音波探傷装置の構成を説明するブロック図である。It is a block diagram explaining the structure of an ultrasonic flaw detector. (a)は超音波探傷装置の正面図である。(b)は超音波探傷装置の左側面図である。(A) is a front view of an ultrasonic flaw detector. (B) is a left side view of the ultrasonic flaw detector. 探傷ヘッドの外観図である。It is an external view of a flaw detection head. 超音波振動子の周辺部分を説明する図である。It is a figure explaining the peripheral part of an ultrasonic transducer | vibrator. 超音波振動子の配置を説明する図である。It is a figure explaining arrangement | positioning of an ultrasonic transducer | vibrator. 超音波振動子の構成を説明する断面図である。It is sectional drawing explaining the structure of an ultrasonic transducer | vibrator. 探傷検査の様子を説明する図である。It is a figure explaining the mode of flaw detection inspection. 超音波振動子の選択を説明する図である。It is a figure explaining selection of an ultrasonic transducer. 集束の効果の例を模式的に説明する図である。It is a figure which illustrates the example of the effect of focusing typically. きずによる超音波の反射を模式的に説明する図である。It is a figure which illustrates typically reflection of the ultrasonic wave by a crack. 超音波振動子の変形例を説明する断面図である。It is sectional drawing explaining the modification of an ultrasonic transducer | vibrator. 変形例の超音波振動子による探傷を模式的に説明する図である。It is a figure which illustrates typically the flaw detection by the ultrasonic transducer | vibrator of a modification. (a)は第2実施形態の探傷ヘッドの要部外観図である。(b)はデイジー型の超音波振動子を説明する図である。(A) is a principal part external view of the flaw detection head of 2nd Embodiment. (B) is a figure explaining a daisy type ultrasonic transducer. 第2実施形態の探傷ヘッドによる探傷を模式的に説明する図である。It is a figure which illustrates typically the flaw detection by the flaw detection head of 2nd Embodiment.
<装置構成について>
 以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施形態の超音波探傷装置1は、新幹線等の鉄道車両に使用されている中ぐり車軸2を検査対象にしている。図1に示すように、超音波探傷装置1は、ヘッドユニット10と、ヘッドユニット昇降部20と、走行機構30と、注油機構40と、制御部50と、電源部60とを有している。
<About device configuration>
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the ultrasonic flaw detector 1 of this embodiment makes the inspection object the boring axle 2 used for railway vehicles, such as a Shinkansen. As shown in FIG. 1, the ultrasonic flaw detector 1 includes a head unit 10, a head unit lifting / lowering unit 20, a traveling mechanism 30, an oiling mechanism 40, a control unit 50, and a power supply unit 60. .
 ヘッドユニット10は、超音波探傷の中心となる部分であり、探傷ヘッド11を有している。探傷ヘッド11は、超音波を出力したり、超音波エコーを受信したりする部分である。この探傷ヘッド11は、図2に示すように、非探傷時においてハウジング12の内部に収納され、図7に示すように、探傷時においてハウジング12から中ぐり車軸2の中空部2aへと繰り出される。 The head unit 10 is a central part of ultrasonic flaw detection, and has a flaw detection head 11. The flaw detection head 11 is a part that outputs ultrasonic waves and receives ultrasonic echoes. As shown in FIG. 2, the flaw detection head 11 is housed inside the housing 12 during non-flaw detection, and is fed from the housing 12 to the hollow portion 2a of the boring axle 2 during flaw detection as shown in FIG. .
 図3に示すように、探傷ヘッド11は、円錐状をしており、その内部に超音波振動子13が配置されている。この超音波振動子13は、動作信号としての励振パルス(スクエアパルス,スパイクパルス)の印加によって励振され、超音波を出力する。また、傷での反射で戻ってきた超音波エコーを受信する。そして、探傷ヘッド11の直径φ11は、中ぐり車軸2の内径(中空部2aの直径)よりも僅かに小さく定められている。 As shown in FIG. 3, the flaw detection head 11 has a conical shape, and an ultrasonic transducer 13 is disposed therein. The ultrasonic transducer 13 is excited by applying an excitation pulse (square pulse, spike pulse) as an operation signal, and outputs an ultrasonic wave. Moreover, the ultrasonic echo which returned by reflection by a wound is received. The diameter φ11 of the flaw detection head 11 is set to be slightly smaller than the inner diameter of the boring axle 2 (the diameter of the hollow portion 2a).
 図4に示すように、超音波振動子13は、円錐台状の台座14における傾斜側面に取りつけられている。図5に示すように、本実施形態の超音波振動子13は縦長矩形状とされており、傾斜側面における周方向の全体に亘って、円錐台の中心C14から放射状に配置されている。そして、図6に示すように、各超音波振動子13は、素子長さEL13が8mm程度、入射角θ13は屈折角が45~55度になる角度、高さH13が4~5.5mm程度、長さL13が6~7mm程度とされる。また、図5に示すように、64個の超音波振動子13(#1~#64)が周方向の全体に亘って均等に配置されている。なお、超音波振動子13は、縦長矩形状に限らず縦長台形状であってもよい。 As shown in FIG. 4, the ultrasonic transducer 13 is attached to the inclined side surface of the truncated cone-shaped base 14. As shown in FIG. 5, the ultrasonic transducer 13 of the present embodiment has a vertically long rectangular shape, and is arranged radially from the center C14 of the truncated cone over the entire circumferential direction on the inclined side surface. As shown in FIG. 6, each ultrasonic transducer 13 has an element length EL13 of about 8 mm, an incident angle θ13 of 45 to 55 degrees, and a height H13 of about 4 to 5.5 mm. The length L13 is about 6 to 7 mm. Further, as shown in FIG. 5, 64 ultrasonic transducers 13 (# 1 to # 64) are arranged uniformly over the entire circumferential direction. The ultrasonic transducer 13 is not limited to a vertically long rectangular shape but may be a vertically long trapezoidal shape.
 また、図4,5に示すように、超音波振動子13の裏面側となる傾斜側面にはダンパー材14aが設けられており、超音波の台座14側への出力を抑制している。一方、超音波振動子13の表面側には、超音波伝播部15が設けられている。この超音波伝播部15は、超音波を伝播する樹脂(例えばポリスチレン)で作製されており、その角度θ15は中ぐり車軸2へ入射する超音波の屈折角を形成する。また超音波伝播部15は、台座14の傾斜側面と密着し、かつ、探傷ヘッド11における外周面の一部を区画している。 As shown in FIGS. 4 and 5, a damper material 14 a is provided on the inclined side surface which is the back surface side of the ultrasonic transducer 13, and the output of the ultrasonic wave to the pedestal 14 side is suppressed. On the other hand, an ultrasonic wave propagation unit 15 is provided on the surface side of the ultrasonic transducer 13. The ultrasonic wave propagation portion 15 is made of a resin (for example, polystyrene) that propagates ultrasonic waves, and the angle θ15 forms a refraction angle of the ultrasonic wave incident on the boring axle 2. The ultrasonic wave propagation part 15 is in close contact with the inclined side surface of the pedestal 14 and defines a part of the outer peripheral surface of the flaw detection head 11.
 図3に示すように、探傷ヘッド11のケーブル側下面には油吐出口42aが、先端側上面及びケーブル側上面には油回収口42bが設けられ、それぞれ油供給管42c及び油回収管42dを介して、給油タンク41と接続されている。油は下端の油吐出口42aから供給された後に上方に回り込んで上面の油回収口42bより回収され、さらに探傷の動きに合わせ気泡を後方へ押し出す形となる。この構成により、探傷上有害な気泡を効率よく排出することができる。 As shown in FIG. 3, an oil discharge port 42a is provided on the cable-side lower surface of the flaw detection head 11, and an oil recovery port 42b is provided on the tip-side upper surface and the cable-side upper surface, and an oil supply tube 42c and an oil recovery tube 42d are provided respectively. Via the fuel tank 41. After the oil is supplied from the oil discharge port 42a at the lower end, the oil circulates upward and is recovered from the oil recovery port 42b on the upper surface, and pushes the bubbles backward in accordance with the flaw detection movement. With this configuration, bubbles that are harmful to flaw detection can be efficiently discharged.
 また探傷ヘッド11には、超音波振動子13を前後から挟むようにOリング44が設けられており、車軸内径とヘッド外径のギャップをシールし、油の流出を防いでいる。探傷ヘッド11と車軸先端側とは、これらのOリング44によって密封状態となる。このため、探傷ヘッド11の移動に伴い軸先端部に圧力変化が起こり、そのままではシール部分から油が漏洩することになる。このような圧力変化による油の漏洩を防止するため、探傷ヘッド11の中央部には空気抜き穴(図示せず)が施されている。 Further, the flaw detection head 11 is provided with an O-ring 44 so as to sandwich the ultrasonic transducer 13 from the front and back, and a gap between the inner diameter of the axle and the outer diameter of the head is sealed to prevent oil from flowing out. The flaw detection head 11 and the axle front end side are sealed by these O-rings 44. For this reason, a pressure change occurs at the tip of the shaft as the flaw detection head 11 moves, and oil leaks from the seal portion as it is. In order to prevent oil leakage due to such pressure change, an air vent hole (not shown) is provided in the center of the flaw detection head 11.
 油吐出口42aは探傷ヘッド11の全周に対して1個設けられ、油回収口42bは同様に2個設けられている。油吐出口42aの総断面積と油回収口42bの総断面積の比を1:2にすることにより、探傷ヘッド11と中ぐり車軸2(検査材)内部の隙間のバランスがとれ、探傷中の油切れをなくし、また探傷終了後の油残留を最小限にとどめることができる。また、油供給機構40に油吐出口42a、油排出口42b及び空気抜き穴が含まれており、かつ、探傷ヘッド11が回転しないため、油の使用量を極めて少なくすることができる。その結果、油の残留量が一軸当たり20cc以下に抑えられ、残油の除去作業は不要になる。 One oil discharge port 42a is provided for the entire circumference of the flaw detection head 11, and two oil recovery ports 42b are similarly provided. By setting the ratio of the total cross-sectional area of the oil discharge port 42a and the total cross-sectional area of the oil recovery port 42b to 1: 2, the gap between the flaw detection head 11 and the boring axle 2 (inspection material) is balanced, and flaw detection is in progress. It is possible to eliminate the oil shortage and minimize the oil residue after the flaw detection. Further, since the oil supply mechanism 40 includes an oil discharge port 42a, an oil discharge port 42b, and an air vent hole, and the flaw detection head 11 does not rotate, the amount of oil used can be extremely reduced. As a result, the residual amount of oil is suppressed to 20 cc or less per shaft, and the operation of removing the residual oil becomes unnecessary.
 ヘッドユニット昇降部20は、前述のヘッドユニット10を昇降させるための部分であり、ヘッドユニット10が上端に取りつけられた可動フレーム21と、この可動フレーム21を昇降させる昇降機構(図示せず)とを有している。 The head unit elevating unit 20 is a part for elevating the head unit 10 described above, a movable frame 21 with the head unit 10 attached to the upper end, and an elevating mechanism (not shown) for elevating the movable frame 21. have.
 可動フレーム21にはケーブル22を送ったり引き戻したりするチェーン駆動機構23が取り付けられている。図3に示すように、ケーブル22は探傷ヘッド11の基端部に接続されており、超音波信号の送受信をするための信号線24や油を供給するための油供給管42c、油を回収するための油回収管42d等が収容されている。 The movable frame 21 is attached with a chain drive mechanism 23 that sends and pulls the cable 22 back. As shown in FIG. 3, the cable 22 is connected to the base end of the flaw detection head 11, the signal line 24 for transmitting and receiving ultrasonic signals, the oil supply pipe 42 c for supplying oil, and the oil recovery An oil recovery pipe 42d and the like are accommodated.
 チェーン駆動機構23は、チェーン23aとモータ23bとリール23cとを有している。チェーン23aの先端は探傷ヘッド11に接続されており、モータ23bによって回転されるギア(図示せず)と噛み合って駆動される。チェーン23aが繰り出されると、探傷ヘッド11は中ぐり車軸2の内部を奥側に移動する。反対に、チェーン23aが引き戻されると、探傷ヘッド11は中ぐり車軸2の内部をヘッドユニット10側に移動する。 The chain drive mechanism 23 includes a chain 23a, a motor 23b, and a reel 23c. The tip of the chain 23a is connected to the flaw detection head 11, and is engaged with and driven by a gear (not shown) rotated by a motor 23b. When the chain 23a is unwound, the flaw detection head 11 moves inside the boring axle 2 to the back side. On the contrary, when the chain 23a is pulled back, the flaw detection head 11 moves inside the boring axle 2 toward the head unit 10 side.
 可動フレーム21の下部にはケーブルストック25が設けられ、探傷ヘッド11が引き戻されて回収されたときにケーブル22を収納する。このような構造のため、ケーブル24、油供給管42c及び油回収管42d等は、超音波信号と油配管のロータリジョイント部を経由せず直接探傷ヘッド11からフェイズドアレイ超音波探傷器52や注油機構40に接続される。 The cable stock 25 is provided in the lower part of the movable frame 21, and the cable 22 is stored when the flaw detection head 11 is pulled back and collected. Due to such a structure, the cable 24, the oil supply pipe 42c, the oil recovery pipe 42d, and the like are directly connected from the flaw detection head 11 to the phased array ultrasonic flaw detector 52 and the oil supply without passing through the ultrasonic signal and the rotary joint portion of the oil pipe. Connected to mechanism 40.
 昇降機構は、制御部50による制御の下で動作が制御される。そして、可動フレーム21を昇降させることで、中ぐり車軸2の高さ位置に探傷ヘッド11を位置付けることができる。これにより、検査の容易化が図れる。 The operation of the lifting mechanism is controlled under the control of the control unit 50. The flaw detection head 11 can be positioned at the height position of the boring axle 2 by moving the movable frame 21 up and down. Thereby, the inspection can be facilitated.
 走行機構30は、超音波探傷装置1の全体を走行させるための機構であり、走行モータ(図示せず)と車輪31(図2を参照)とを有している。本実施形態の走行機構30は、超音波探傷装置1を、車軸方向と略直交する方向(すなわち車両の側面に沿った方向)に走行させる。これにより、或る中ぐり車軸2に対する検査の終了後、超音波探傷装置1を次の中ぐり車軸2の位置まで容易に移動できる。その結果、多くの中ぐり車軸2に対する検査を効率よく行うことができる。この走行モータはバッテリー62により駆動される。そして、バッテリー62がフル充電された状態であれば、1編成以上の全検査工程の間、商用電源63を接続する必要は無い。 The traveling mechanism 30 is a mechanism for traveling the entire ultrasonic flaw detector 1 and includes a traveling motor (not shown) and wheels 31 (see FIG. 2). The traveling mechanism 30 of the present embodiment causes the ultrasonic flaw detector 1 to travel in a direction substantially orthogonal to the axle direction (that is, a direction along the side surface of the vehicle). Thereby, after completion | finish of the test | inspection with respect to a certain boring axle 2, the ultrasonic flaw detector 1 can be easily moved to the position of the next boring axle 2. As a result, the inspection with respect to many boring axles 2 can be performed efficiently. This travel motor is driven by a battery 62. If the battery 62 is fully charged, it is not necessary to connect the commercial power source 63 during all inspection processes of one or more trains.
 注油機構40は、探傷時において中ぐり車軸2と探傷ヘッド11との隙間に油を注入するための機構であり、図2に示すように、給油タンク41と、油供給管42cと、油回収管42dと、給油ポンプ43とを有している。給油タンク41は注入用の油を貯留する部分である。油供給管42cは、給油タンク41の油を探傷ヘッド11まで導くためのパイプであり、油回収管42dは、探傷ヘッド11で回収された油を給油タンク41まで導くためのパイプである。また、給油ポンプ43は油を送出するものであり、油供給管42cの途中に設けられている。 The oil supply mechanism 40 is a mechanism for injecting oil into the gap between the boring axle 2 and the flaw detection head 11 during flaw detection. As shown in FIG. 2, an oil supply tank 41, an oil supply pipe 42c, and oil recovery It has a pipe 42d and an oil supply pump 43. The oil supply tank 41 is a part for storing oil for injection. The oil supply pipe 42 c is a pipe for guiding the oil in the oil supply tank 41 to the flaw detection head 11, and the oil recovery pipe 42 d is a pipe for guiding the oil collected by the flaw detection head 11 to the oil supply tank 41. Moreover, the oil supply pump 43 sends out oil, and is provided in the middle of the oil supply pipe 42c.
 制御部50は、探傷ヘッド11、ヘッドユニット昇降部20、及び走行機構30など、超音波探傷装置1が有する各部の制御を行うものである。本実施形態における制御部50は、図1に示すように、CPU51等とフェイズドアレイ超音波探傷器52とを有する。 The controller 50 controls each part of the ultrasonic flaw detector 1 such as the flaw detection head 11, the head unit lifting / lowering part 20, and the traveling mechanism 30. As shown in FIG. 1, the control unit 50 in the present embodiment includes a CPU 51 and a phased array ultrasonic flaw detector 52.
 CPU51等は、情報生成部に相当するものであり、CPUとメモリーの組からなる。CPUは、メモリーに記憶された動作プログラムに従って動作し、各種の制御を実行する。メモリーは、動作プログラムを記憶する他、各種の情報が記憶される。例えば、超音波振動子13の選択パターンを定めるデータも記憶される。また中ぐり車軸2は、モータ軸、トレーラ軸などで形状が異なり、車軸形状から来る妨害エコーの発生位置が異なるため、車軸形状に応じた部外エコーのマスク位置情報などが、車軸情報として記憶される。また中ぐり車軸2は編成によっても形状が異なる。このため、車軸情報は、中ぐり車軸2の種類毎に保存される。そして、検査結果は車両編成単位ですべて保存される。 The CPU 51 and the like correspond to an information generation unit and are composed of a set of CPU and memory. The CPU operates according to an operation program stored in the memory and executes various controls. The memory stores various programs in addition to the operation program. For example, data defining a selection pattern of the ultrasonic transducer 13 is also stored. Further, since the boring axle 2 has different shapes depending on the motor shaft, trailer shaft, etc., and the occurrence position of the interference echo coming from the axle shape is different, the mask position information of the external echo according to the axle shape is stored as the axle information. Is done. The shape of the boring axle 2 varies depending on the knitting. For this reason, the axle information is stored for each type of boring axle 2. All inspection results are stored in units of vehicle organization.
 フェイズドアレイ超音波探傷器52は、超音波振動子13を励振させるための励振パルスを出力したり、超音波振動子13が受信した超音波エコーの強度に応じた出力を取得し、エコー信号として出力したりする。このため、フェイズドアレイ超音波探傷器52は、励振パルスを出力するパルサー(図示せず)を、複数の超音波振動子13のそれぞれについて有している。同様に、フェイズドアレイ超音波探傷器52は、超音波エコーの受信に伴って超音波振動子13から出力される電気信号を増幅し、エコー信号として出力するレシーバー(図示せず)を、複数の超音波振動子13のそれぞれについて有している。 The phased array ultrasonic flaw detector 52 outputs an excitation pulse for exciting the ultrasonic transducer 13 or obtains an output corresponding to the intensity of the ultrasonic echo received by the ultrasonic transducer 13 as an echo signal. Or output. For this reason, the phased array ultrasonic flaw detector 52 has a pulsar (not shown) that outputs an excitation pulse for each of the plurality of ultrasonic transducers 13. Similarly, the phased array ultrasonic flaw detector 52 amplifies an electrical signal output from the ultrasonic transducer 13 upon reception of the ultrasonic echo and outputs a receiver (not shown) that outputs the signal as an echo signal. Each of the ultrasonic transducers 13 is provided.
 また、フェイズドアレイ超音波探傷器52は、各レシーバーからのエコー信号の電圧値をデジタル変換し、デジタル変換された電圧値を、時間情報と関連付けて記憶する波形メモリー(図示せず)も有している。さらに、フェイズドアレイ超音波探傷器52は、超音波の送受信を行う超音波振動子13とパルサー及びレシーバーとを電気的に接続するための切り替え部(図示せず)も有している。この切り替え部は、超音波の出力時にパルサーを超音波振動子13に接続するとともに、超音波の出力後にレシーバーを超音波振動子13に接続する。 The phased array ultrasonic flaw detector 52 also has a waveform memory (not shown) that digitally converts the voltage value of the echo signal from each receiver and stores the digitally converted voltage value in association with time information. ing. Furthermore, the phased array ultrasonic flaw detector 52 also includes a switching unit (not shown) for electrically connecting the ultrasonic transducer 13 that transmits and receives ultrasonic waves, and the pulser and receiver. The switching unit connects the pulser to the ultrasonic transducer 13 when outputting ultrasonic waves, and connects the receiver to the ultrasonic transducer 13 after outputting ultrasonic waves.
 そして、情報生成部として機能するCPU51等は、励振パルスを供給する超音波振動子13を選択したり、励振パルスの強度を設定したりする。また、CPU51等は、フェイズドアレイ超音波探傷器52が有する波形メモリーの電圧値(エコー信号の強度)を読み出し、中ぐり車軸におけるきずの有無、位置、大きさといった中ぐり車軸のきずに関する情報を生成する。 Then, the CPU 51 or the like that functions as an information generation unit selects the ultrasonic transducer 13 that supplies the excitation pulse or sets the intensity of the excitation pulse. Further, the CPU 51 and the like read the voltage value (echo signal intensity) of the waveform memory included in the phased array ultrasonic flaw detector 52 and obtain information on the flaws in the boring axle such as the presence / absence, position and size of the flaws in the boring axle. Generate.
 電源部60は、超音波探傷装置1の各部で使用される電源を生成する部分であり、電源回路61とバッテリー62とを有する。電源回路61は、商用電源63の電力を各部で使用される直流電力に変換する部分である。バッテリー62は、電源回路61による給電を行わない期間(例えば走行機構30による走行期間)において、ヘッドユニット10や制御部50等の各部に直流電力を供給する部分であり、本実施形態では電源回路61からの直流電力によって充電される。このバッテリー62は、フル充電状態において1編成以上の検査を、車軸間の移動を含めてすべて給電可能な容量に定められている。これにより、検査工程内で商用電源への接続が不要になり、効率の良い検査作業が可能である。 The power supply unit 60 is a part that generates a power supply used in each part of the ultrasonic flaw detector 1, and includes a power supply circuit 61 and a battery 62. The power supply circuit 61 is a part that converts the power of the commercial power supply 63 into DC power used in each part. The battery 62 is a part that supplies DC power to each unit such as the head unit 10 and the control unit 50 during a period in which the power supply by the power supply circuit 61 is not performed (for example, a travel period by the travel mechanism 30). It is charged by DC power from 61. The battery 62 is determined to have a capacity capable of supplying power for all inspections including movement between axles in a fully charged state. This eliminates the need for connection to a commercial power source in the inspection process, and enables efficient inspection work.
<探傷動作について>
 次に、超音波探傷装置1による探傷動作について説明する。ここでは、鉄道車両が備える中ぐり車軸2に対する探傷検査を例に挙げて説明する。
<About flaw detection operation>
Next, the flaw detection operation by the ultrasonic flaw detection apparatus 1 will be described. Here, the flaw detection inspection for the boring axle 2 provided in the railway vehicle will be described as an example.
 図7に示すように、中ぐり車軸2の探傷検査では探傷ヘッド11を中ぐり車軸2の中空部2aに挿入する。このため、探傷ヘッド11が収納された状態のヘッドユニット10を、ヘッドユニット昇降部20によって昇降させ、探傷ヘッド11を中ぐり車軸2に臨ませる。そして、チェーン駆動機構23により探傷ケーブル22を送り出す。このとき、制御部50は、給油ポンプ43を作動させ、給油タンク41に貯留された油を、油供給管42cを介して探傷ヘッド11と中ぐり車軸2の内壁面との間に注入し、また油回収管42dを介して余剰の油を回収する。 As shown in FIG. 7, in the flaw detection inspection of the boring axle 2, the flaw detection head 11 is inserted into the hollow portion 2a of the boring axle 2. For this reason, the head unit 10 in a state in which the flaw detection head 11 is housed is moved up and down by the head unit lifting / lowering unit 20 so that the flaw detection head 11 faces the boring axle 2. Then, the flaw detection cable 22 is sent out by the chain drive mechanism 23. At this time, the control unit 50 operates the oil supply pump 43 to inject oil stored in the oil supply tank 41 between the flaw detection head 11 and the inner wall surface of the boring axle 2 through the oil supply pipe 42c. Further, excess oil is recovered through the oil recovery pipe 42d.
 これにより、探傷ヘッド11が押されて中ぐり車軸2の中空部2aを奥側へと移動する。このとき、注油機構40によって注入された油により、探傷ヘッド11と中ぐり車軸2との摩擦が低減され、探傷ヘッド11の移動が円滑になる。探傷ヘッド11を十分に押し込んだならば(例えば中ぐり車軸2における挿入側とは反対側の端部まで移動させたならば)、中ぐり車軸2に対する探傷検査を開始する。 Thereby, the flaw detection head 11 is pushed to move the hollow portion 2a of the boring axle 2 to the back side. At this time, the oil injected by the oil supply mechanism 40 reduces the friction between the flaw detection head 11 and the boring axle 2, and the flaw detection head 11 moves smoothly. When the flaw detection head 11 is fully pushed in (for example, moved to the end opposite to the insertion side of the boring axle 2), the flaw detection inspection for the boring axle 2 is started.
 探傷検査では、複数の超音波振動子13をグループ分けし、超音波の出力と超音波エコーの受信をグループ毎に行う。この実施形態では、(N×M)個の超音波振動子13を(2×N)個の超音波振動子13からなるM個のグループに分け、各グループに属する超音波振動子13をN個ピッチずつずらして選択する。図8の例では、Nが8個、Mが8個になっている。このため、16個の超音波振動子13で1つのグループが形成されており、各グループは超音波振動子8個分ずれている。 In the flaw detection inspection, a plurality of ultrasonic transducers 13 are grouped, and ultrasonic output and ultrasonic echo reception are performed for each group. In this embodiment, (N × M) ultrasonic transducers 13 are divided into M groups of (2 × N) ultrasonic transducers 13, and the ultrasonic transducers 13 belonging to each group are divided into N groups. Select by shifting individual pitches. In the example of FIG. 8, N is 8 and M is 8. For this reason, one group is formed by 16 ultrasonic transducers 13, and each group is shifted by eight ultrasonic transducers.
 具体的には、1番目の超音波振動子13(以下単に振動子#1ともいう。他の超音波振動子13についても同様。)から振動子#16までの16個の超音波振動子13で第1グループGR1が、振動子#25から振動子#40で第2グループGR2がそれぞれ形成されている。同様に、振動子#49から振動子#64で第3グループGR3が、振動子#9から振動子#24で第4グループGR4が、振動子#33から振動子#48で第5グループがそれぞれ形成されている。さらに、振動子#57から振動子#8で第6グループGR6が、振動子#17から振動子#32で第7グループGR7が、振動子#41から振動子#56で第8グループGR8がそれぞれ形成されている。 Specifically, 16 ultrasonic transducers 13 from the first ultrasonic transducer 13 (hereinafter also simply referred to as transducer # 1; the same applies to other ultrasonic transducers 13) to transducer # 16. Thus, the first group GR1 is formed, and the second group GR2 is formed of the vibrators # 25 to # 40. Similarly, the third group GR3 includes the transducer # 49 to the transducer # 64, the fourth group GR4 includes the transducer # 9 to the transducer # 24, and the fifth group includes the transducer # 33 to the transducer # 48. Is formed. Further, the sixth group GR6 includes the vibrator # 57 to the vibrator # 8, the seventh group GR7 includes the vibrator # 17 to the vibrator # 32, and the eighth group GR8 includes the vibrator # 41 to the vibrator # 56. Is formed.
 なお、図8の例では64個の超音波振動子13を有する探傷ヘッド11を例示したが、32個であっても128個であっても同様である。32個の場合、例えば上記のNが4個になり、上記のMが8個になる。そして、8個の超音波振動子13で1つのグループが形成され、各グループが超音波振動子4個分ずれることになる。また、128個の場合、例えば上記のNが16個になり、上記のMが8個になる。そして、32個の超音波振動子13で1つのグループが形成され、各グループが超音波振動子16個分ずれることになる。 In the example of FIG. 8, the flaw detection head 11 having 64 ultrasonic transducers 13 is illustrated, but the same applies regardless of whether the number is 32 or 128. In the case of 32, for example, the above N becomes 4 and the above M becomes 8. One group is formed by the eight ultrasonic transducers 13, and each group is shifted by four ultrasonic transducers. In the case of 128, for example, the above N is 16 and the above M is 8. Then, one group is formed by the 32 ultrasonic transducers 13, and each group is shifted by 16 ultrasonic transducers.
 探傷検査に際し、制御部50は、例えば番号の若いグループから順に超音波の出力と超音波エコーの受信とを行う。例えば、図8に示すように、サイクル1では第1グループGR1に属する振動子#1~#16による超音波探傷が行われ、サイクル2では第2グループGR2に属する振動子#25~#39による超音波探傷が行われる。以下同様にしてサイクル8まで選択されると、サイクル1に戻って振動子#1~#16による超音波探傷が行われる。 In the flaw detection inspection, the control unit 50 outputs an ultrasonic wave and receives an ultrasonic echo in order from, for example, the group with the smallest number. For example, as shown in FIG. 8, ultrasonic flaw detection is performed by the transducers # 1 to # 16 belonging to the first group GR1 in the cycle 1, and by the transducers # 25 to # 39 belonging to the second group GR2 in the cycle 2. Ultrasonic flaw detection is performed. Similarly, when cycle 8 is selected, the cycle returns to cycle 1 and ultrasonic flaw detection is performed by the transducers # 1 to # 16.
 この探傷動作では、直前に制御対象としたグループから所定の間隔以上に離れたグループを、次の制御対象とすることができる。そして、先の探傷動作と同じ範囲の探傷動作を行うまで、少なくとも2サイクル分の非探傷期間を挟んでいる。例えば、第1グループGR1と第4グループGR4とで探傷される振動子#9から#15については、第1サイクルで探傷された後、2サイクル挟んで、第4サイクルで探傷される。これにより、先の探傷動作で生成された超音波エコーが十分に減衰した後に、後の探傷処理を行うことができる。その結果、直前に制御対象としたグループで生成された超音波エコーの影響を確実に抑制できる。 In this flaw detection operation, a group that is more than a predetermined interval away from the group that is the control target immediately before can be set as the next control target. A non-flaw detection period of at least two cycles is interposed until a flaw detection operation in the same range as the previous flaw detection operation is performed. For example, the transducers # 9 to # 15 that are flaw-detected by the first group GR1 and the fourth group GR4 are flaw-detected in the first cycle and then flaw-detected in the fourth cycle with two cycles between them. Thereby, after the ultrasonic echo generated by the previous flaw detection operation is sufficiently attenuated, the subsequent flaw detection processing can be performed. As a result, it is possible to reliably suppress the influence of the ultrasonic echo generated in the group that is the control target immediately before.
 グループ毎の探傷検査を繰り返し行うことにより、中ぐり車軸2における周方向の全体に亘って探傷検査を行える。すなわち、探傷ヘッド11を回転させなくても中ぐり車軸2における周方向の全体に亘って探傷検査を行える。その結果、従来の探触子回転タイプでは200rpmが上限であったが、この超音波探傷装置1では、1000rpm以上相当の速度で探傷検査が行え、1本の車軸あたり80秒以下で検査を終えることができる。 By repeatedly performing the flaw detection inspection for each group, the flaw detection inspection can be performed over the entire circumferential direction of the boring axle 2. That is, the flaw detection inspection can be performed over the entire circumferential direction of the boring axle 2 without rotating the flaw detection head 11. As a result, although 200 rpm was the upper limit in the conventional probe rotation type, this ultrasonic flaw detector 1 can perform flaw detection inspection at a speed equivalent to 1000 rpm or more, and completes inspection in 80 seconds or less per axle. be able to.
 このとき、同じグループに属する超音波振動子13について、遅延設定を適宜変えることにより、超音波の集束位置を変えることができる。例えば図9に実線で示すように、遅延設定が無ければ、超音波ビームは中ぐり車軸2の中を広がりながら伝播する。ここで同じグループに属する超音波振動子13に焦点を結ぶような円弧状の遅延設定をすると、図9に破線で示すように、超音波ビームは集束しながら伝播する。これにより、中ぐり車軸2の外表面位置での超音波のビーム幅を制御することができ、検出能力とビーム幅で決まる処理能力を制御することができる。 At this time, the ultrasonic focusing position can be changed by appropriately changing the delay setting for the ultrasonic transducers 13 belonging to the same group. For example, as indicated by a solid line in FIG. 9, if there is no delay setting, the ultrasonic beam propagates while spreading in the boring axle 2. Here, when an arc-shaped delay is set so as to focus on the ultrasonic transducers 13 belonging to the same group, the ultrasonic beam propagates while converging, as indicated by a broken line in FIG. Thereby, the beam width of the ultrasonic wave at the outer surface position of the boring axle 2 can be controlled, and the processing capability determined by the detection capability and the beam width can be controlled.
 図10に示すように、探傷ヘッド11の外周面と中ぐり車軸2との隙間には、油の層OLが形成されている。このため、各超音波振動子13から出力されて超音波伝播部15の内部を進んできた超音波は、油の層OLを通じて中ぐり車軸2に伝播される。この油の層OLによって超音波の損失を抑制できるため、検出精度の低下を抑えることができる。そして、きずXによって反射された超音波エコーは逆のルートで超音波振動子13に到達する。ここでも、油の層OLを通じて超音波エコーが伝播されるので、検出精度の低下を抑えることができる。 As shown in FIG. 10, an oil layer OL is formed in the gap between the outer peripheral surface of the flaw detection head 11 and the boring axle 2. For this reason, the ultrasonic waves that have been output from the ultrasonic transducers 13 and have traveled through the ultrasonic wave propagation unit 15 are propagated to the boring axle 2 through the oil layer OL. Since the loss of ultrasonic waves can be suppressed by the oil layer OL, a decrease in detection accuracy can be suppressed. Then, the ultrasonic echo reflected by the flaw X reaches the ultrasonic transducer 13 through the reverse route. Again, since ultrasonic echoes are propagated through the oil layer OL, it is possible to suppress a decrease in detection accuracy.
<まとめ>
 このように、本実施形態の超音波探傷装置1では、周方向の全体に放射状に配置された複数の超音波振動子13を探傷ヘッド11が有しており、超音波の送信と超音波エコーの受信とを行っているので、探傷ヘッド11を回転させなくても中ぐり車軸2のきずに関する情報を取得できる。このため、モータやワイヤー等の回転機構が不要となって装置構成の簡素化が図れる。その結果、超音波探傷装置1を小型化及び軽量化でき、車両所の狭い空間であっても取り回しが容易になる。
<Summary>
Thus, in the ultrasonic flaw detector 1 of the present embodiment, the flaw detection head 11 has a plurality of ultrasonic transducers 13 arranged radially in the entire circumferential direction, and transmits ultrasonic waves and ultrasonic echoes. Therefore, it is possible to obtain information on the flaw of the boring axle 2 without rotating the flaw detection head 11. For this reason, a rotation mechanism such as a motor or a wire is not required, and the apparatus configuration can be simplified. As a result, the ultrasonic flaw detector 1 can be reduced in size and weight, and can be easily handled even in a narrow space in a vehicle place.
 また、本実施形態では、フェイズドアレイによる位相制御を行ってビームを集束させているので、検出能力を高めることができる。 Further, in the present embodiment, since the beam is focused by performing phase control using a phased array, the detection capability can be enhanced.
 また、本実施形態では、台座14の傾斜側面と密着し、かつ、探傷ヘッド11における周面の一部を区画する樹脂製の超音波伝播部15を設けているので、超音波の伝播効率を高めることができる。 Further, in this embodiment, since the resin-made ultrasonic wave propagation part 15 that is in close contact with the inclined side surface of the base 14 and defines a part of the peripheral surface of the flaw detection head 11 is provided, the propagation efficiency of ultrasonic waves is improved. Can be increased.
 また、本実施形態の超音波探傷装置1において、中ぐり車軸2と探傷ヘッド11との隙間に油を注入する注油機構40(給油タンク41、油供給管42c、油回収管42d、及び給油ポンプ43)を設けているので、隙間に注入された油によって超音波を効率よく伝播させることができる。また、探傷ヘッド11が回転しないため、油の使用量を極めて少なくすることができる。ここで、油は超音波を効率的に中ぐり車軸に入れるために重要であり、部分的にしろ油切れを起こすと超音波は伝播しない。また過度な油の供給は検査終了後に車軸内部に油を残し検査終了後に油除去作業が必要になり余計な作業を増やすことになる。この点、本実施形態では、少ない量の油であっても超音波を確実に伝播させることができる。 Further, in the ultrasonic flaw detector 1 of the present embodiment, an oil injection mechanism 40 (oil supply tank 41, oil supply pipe 42c, oil recovery pipe 42d, and oil supply pump) that injects oil into the gap between the boring axle 2 and the flaw detection head 11 is provided. 43), the ultrasonic waves can be efficiently propagated by the oil injected into the gap. Further, since the flaw detection head 11 does not rotate, the amount of oil used can be extremely reduced. Here, the oil is important for efficiently putting the ultrasonic wave into the boring axle, and if the oil runs out partially, the ultrasonic wave does not propagate. In addition, excessive oil supply leaves oil inside the axle after the inspection is completed, and an oil removal operation is required after the inspection is completed, which increases unnecessary work. In this regard, in the present embodiment, it is possible to reliably propagate ultrasonic waves even with a small amount of oil.
 さらに、装置が小型化及び軽量化され、探傷ヘッド11の回転機構も不要になったことから、超音波探傷装置1の消費電力も低減された。これに伴い、バッテリー62を電源として走行機構30を動作させることができる。そして、1編成以上分の検査がバッテリー62の電力だけでまかなえる為、検査作業途中での商用電源の接続などのわずらわしい作業がまったく不要である。そのため検査の高速化、油除去作業の不要化とあわせ作業効率を飛躍的に高め、その結果、検査時間を大幅に短縮することができる。 Furthermore, since the apparatus is reduced in size and weight and the rotation mechanism of the flaw detection head 11 is not required, the power consumption of the ultrasonic flaw detection apparatus 1 is also reduced. Accordingly, the traveling mechanism 30 can be operated using the battery 62 as a power source. Further, since inspection for one or more trains can be performed only by the power of the battery 62, troublesome work such as connection of a commercial power source during the inspection work is completely unnecessary. As a result, the inspection efficiency can be drastically increased along with the speeding up of inspection and the elimination of oil removal work. As a result, the inspection time can be greatly shortened.
<他の実施形態について>
 以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。
<About other embodiments>
The above description of the embodiment is for facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof. For example, you may comprise as follows.
 図11は、超音波振動子13の変形例を説明する断面図である。変形例の超音波振動子13は、先に説明した超音波振動子13と同様に縦長矩形状又は縦長台形状であるが、長手方向の中央部分が端部よりも窪んだ湾曲凹状に設けられている点が相違している。超音波振動子13の窪み度合いは適宜定められるが、超音波がきずXに向けて収束する程度が好ましい。このように構成することで、図12に示すように、超音波振動子13から出力された超音波をきずXに向けて収束させることができる。これにより、超音波の過度な拡がりが抑制され、検出感度を高めることができる。 FIG. 11 is a cross-sectional view for explaining a modification of the ultrasonic transducer 13. The ultrasonic transducer 13 of the modified example has a vertically long rectangular shape or a vertically long trapezoidal shape like the ultrasonic transducer 13 described above, but is provided in a curved concave shape in which the central portion in the longitudinal direction is recessed from the end portion. Is different. Although the degree of depression of the ultrasonic transducer 13 is determined as appropriate, it is preferable that the ultrasonic wave converge toward the flaw X. With this configuration, the ultrasonic wave output from the ultrasonic transducer 13 can be converged toward the flaw X as shown in FIG. Thereby, the excessive spread of an ultrasonic wave is suppressed and detection sensitivity can be raised.
 図13(a),(b)は、第2実施形態の要部を説明する図である。この第2実施形態では、超音波振動子の構成が第1実施形態と相違している。すなわち、探傷ヘッド11´は、デイジー型の超音波振動子71を有している。図13(b)に示すように、この超音波振動子71は中空円盤状の外観形状をしている。そして、超音波を出力する素子72が円盤中心から放射状に配置されている。従って、この超音波振動子13では、円盤表面における周方向の全体に配置された複数の素子72の中から必要な素子72を選択することで、円周上の一部から選択的に超音波を出力できる。 FIGS. 13A and 13B are diagrams for explaining the main part of the second embodiment. In the second embodiment, the configuration of the ultrasonic transducer is different from that of the first embodiment. That is, the flaw detection head 11 ′ has a daisy type ultrasonic transducer 71. As shown in FIG. 13B, the ultrasonic transducer 71 has a hollow disk-like appearance. And the element 72 which outputs an ultrasonic wave is arrange | positioned radially from the disk center. Therefore, in this ultrasonic transducer 13, by selecting a necessary element 72 from a plurality of elements 72 arranged in the whole circumferential direction on the disk surface, the ultrasonic wave is selectively selected from a part on the circumference. Can be output.
 また、この探傷ヘッド11´では、図13(a)に示すように、超音波振動子71の円盤表面に対向して円錐台状の反射部材73を設けている。この反射部材73は、超音波振動子71からの超音波やきずXからの超音波エコーを反射する部材であり、傾斜側面が反射面として機能する。従って、図14に示すように、超音波振動子71からの超音波を傾斜側面で反射させることで、この超音波を中ぐり車軸2に照射することができる。また、きずXからの超音波エコーを傾斜側面で反射させることで、超音波エコーを超音波振動子71に受信させることができる。 Further, in this flaw detection head 11 ′, as shown in FIG. 13A, a frustoconical reflection member 73 is provided so as to face the disk surface of the ultrasonic transducer 71. The reflecting member 73 is a member that reflects ultrasonic waves from the ultrasonic transducer 71 and ultrasonic echoes from the flaw X, and the inclined side surface functions as a reflecting surface. Accordingly, as shown in FIG. 14, the ultrasonic wave from the ultrasonic transducer 71 is reflected by the inclined side surface, and this ultrasonic wave can be irradiated to the boring axle 2. Further, by reflecting the ultrasonic echo from the scratch X on the inclined side surface, the ultrasonic echo 71 can be received by the ultrasonic transducer 71.
 この第2実施形態でも、超音波の出力と超音波エコーの受信をする素子72を切り換えることで周方向の全体に亘る探傷検査が行えるため、探傷ヘッド11´を回転させなくても中ぐり車軸2のきずに関する情報を取得できる。このため、モータやワイヤー等の回転機構が不要となって構成の簡素化が図れる。その結果、超音波探傷装置1を小型化できる。 Also in the second embodiment, since the flaw detection inspection can be performed over the entire circumferential direction by switching the element 72 that receives the ultrasonic wave output and the ultrasonic echo, the boring axle is not required to rotate the flaw detection head 11 '. Information about 2 scratches can be acquired. For this reason, a rotation mechanism such as a motor or a wire is not required, and the configuration can be simplified. As a result, the ultrasonic flaw detector 1 can be reduced in size.
 なお、前述の第1,2実施形態において、探傷の対象となる中ぐり車軸として鉄道車両が備える中ぐり車軸2を例示したが、中ぐり車軸であれば新幹線用のものに限られない。 In the first and second embodiments described above, the boring axle 2 provided in the railway vehicle is exemplified as the boring axle to be flaw-detected. However, the boring axle is not limited to that for the Shinkansen.
 また、超音波振動子13や素子72の選択パターンは、図8に例示したパターンに限られない。素子数やグループ数も適宜定めることができる。 Further, the selection pattern of the ultrasonic transducer 13 and the element 72 is not limited to the pattern illustrated in FIG. The number of elements and the number of groups can be determined as appropriate.
1…超音波探傷装置,2…中ぐり車軸,2a…中空部,10…ヘッドユニット,11…探傷ヘッド,11´…探傷ヘッド,13…超音波振動子,14…台座,14a…ダンパー材,15…超音波伝播部,20…ヘッドユニット昇降部,21…可動フレーム,22…ケーブル,23…チェーン駆動機構,23a…チェーン,23b…モータ,23c…リール,24…通信線,25…ケーブルストック,30…走行機構,31…車輪,40…注油機構,41…給油タンク,42a…油吐出口,42b…油回収口,42c…油供給管,42d…油回収管,43…給油ポンプ,44…Oリング,50…制御部,51…CPU,52…メモリー,60…電源部,61…電源回路,62…バッテリー,63…商用電源,71…超音波振動子,72…素子,73…反射部材,φ11…探傷ヘッドの直径,EL13…超音波振動子の素子長さ,θ13…超音波振動子の入射角,H13…超音波振動子の高さ,L13…超音波振動子の長さ,C14…円錐台の中心,OL…油の層,X…きず DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flaw detection apparatus, 2 ... Boring axle, 2a ... Hollow part, 10 ... Head unit, 11 ... Flaw detection head, 11 '... Flaw detection head, 13 ... Ultrasonic transducer, 14 ... Base, 14a ... Damper material, DESCRIPTION OF SYMBOLS 15 ... Ultrasonic propagation part, 20 ... Head unit raising / lowering part, 21 ... Movable frame, 22 ... Cable, 23 ... Chain drive mechanism, 23a ... Chain, 23b ... Motor, 23c ... Reel, 24 ... Communication line, 25 ... Cable stock , 30 ... travel mechanism, 31 ... wheel, 40 ... oil supply mechanism, 41 ... oil supply tank, 42a ... oil discharge port, 42b ... oil recovery port, 42c ... oil supply pipe, 42d ... oil recovery pipe, 43 ... oil supply pump, 44 DESCRIPTION OF SYMBOLS O-ring 50 ... Control part 51 ... CPU 52 ... Memory 60 ... Power supply part 61 ... Power supply circuit 62 ... Battery 63 ... Commercial power supply 71 ... Ultrasonic transducer 72 ... Element 3 ... Reflecting member, φ11 ... Diameter of flaw detection head, EL13 ... Element length of ultrasonic transducer, θ13 ... Incident angle of ultrasonic transducer, H13 ... Height of ultrasonic transducer, L13 ... Ultrasonic transducer Length, C14 ... Center of the truncated cone, OL ... Oil layer, X ... Scratches

Claims (6)

  1.  周方向の全体に配置された複数の超音波振動子を有し、中ぐり車軸に挿入されることでフェイズドアレイ探傷を行う円柱状の探傷ヘッドと、
     前記超音波振動子を選択的に励振させるための動作信号を出力する一方、前記超音波振動子が超音波エコーを受信するのに応じて、前記超音波振動子が受信した前記超音波エコーの強度に応じた出力を取得し、エコー信号として出力するフェイズドアレイ探傷器と、
     前記動作信号の出力を制御するとともに、前記エコー信号の強度から前記中ぐり車軸のきずに関する情報を生成する情報生成部とを有することを特徴とする超音波探傷装置。
    A cylindrical flaw detection head having a plurality of ultrasonic transducers arranged in the entire circumferential direction and performing phased array flaw detection by being inserted into a boring axle,
    While outputting the operation signal for selectively exciting the ultrasonic transducer, the ultrasonic transducer receives the ultrasonic echo, and in response to the ultrasonic echo received by the ultrasonic transducer. A phased array flaw detector that obtains output according to intensity and outputs it as an echo signal;
    An ultrasonic flaw detection apparatus comprising: an information generation unit that controls output of the operation signal and generates information on flaws of the boring axle from the intensity of the echo signal.
  2.  前記探傷ヘッドは、円錐台形状の台座部を有し、
     前記超音波振動子は、縦長矩形状又は縦長台形状とされ、前記台座部の傾斜側面における周方向の全体に亘り、円錐台の中心から放射状に配置されていることを特徴とする請求項1に記載の超音波探傷装置。
    The flaw detection head has a truncated cone-shaped pedestal,
    The ultrasonic transducer has a vertically long rectangular shape or a vertically long trapezoidal shape, and is arranged radially from the center of the truncated cone over the entire circumferential direction on the inclined side surface of the pedestal portion. The ultrasonic flaw detector described in 1.
  3.  前記探傷ヘッドは、前記台座部の傾斜側面と密着し、かつ、前記探傷ヘッドにおける周面の一部を区画する樹脂製の超音波伝播部を有することを特徴とする請求項2に記載の超音波探傷装置。 The ultrasonic testing head according to claim 2, wherein the flaw detection head has a resin-made ultrasonic wave propagation portion that is in close contact with the inclined side surface of the pedestal portion and defines a part of a peripheral surface of the flaw detection head. Sonic flaw detector.
  4.  前記超音波振動子は、長手方向の中央部分が端部よりも窪んだ湾曲凹状に設けられていることを特徴とする請求項2又は3に記載の超音波探傷装置。 The ultrasonic flaw detector according to claim 2 or 3, wherein the ultrasonic transducer is provided in a curved concave shape in which a central portion in a longitudinal direction is recessed from an end portion.
  5.  前記中ぐり車軸と前記探傷ヘッドとの隙間に油を注入する注油機構を設けたことを特徴とする請求項1から4の何れか1項に記載の超音波探傷装置。 The ultrasonic flaw detector according to any one of claims 1 to 4, further comprising an oil injection mechanism for injecting oil into a gap between the boring axle and the flaw detection head.
  6.  装置全体を走行させるための機構と、前記探傷ヘッド、前記フェイズドアレイ探傷器、前記情報生成部、および前記走行用の機構に対し1編成以上の車両検査に渡って給電する必要の無い容量のバッテリーを設けたことを特徴とする請求項1から5のいずれか1項に記載の超音波探傷装置。 A mechanism for traveling the entire apparatus, and a battery having a capacity that does not require power supply over one or more train inspections for the flaw detection head, the phased array flaw detector, the information generation unit, and the traveling mechanism. The ultrasonic flaw detector according to claim 1, wherein the ultrasonic flaw detector is provided.
PCT/JP2011/072847 2011-10-04 2011-10-04 Ultrasonic flaw detection device for hollow axle WO2013051107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072847 WO2013051107A1 (en) 2011-10-04 2011-10-04 Ultrasonic flaw detection device for hollow axle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072847 WO2013051107A1 (en) 2011-10-04 2011-10-04 Ultrasonic flaw detection device for hollow axle

Publications (1)

Publication Number Publication Date
WO2013051107A1 true WO2013051107A1 (en) 2013-04-11

Family

ID=48043299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072847 WO2013051107A1 (en) 2011-10-04 2011-10-04 Ultrasonic flaw detection device for hollow axle

Country Status (1)

Country Link
WO (1) WO2013051107A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865312A (en) * 2015-04-23 2015-08-26 南京航空航天大学 Multiple unit train hollow shaft ultrasonic detection system and detection method
CN106124628A (en) * 2016-08-31 2016-11-16 北京主导时代科技有限公司 A kind of hollow axle ultrasonic flaw-detecting machine
JP2017509873A (en) * 2014-02-19 2017-04-06 エジソン・ウェルディング・インスティチュート,インコーポレーテッド Portable matrix phased array spot weld inspection system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131962A (en) * 1984-07-25 1986-02-14 Nippon Kogyo Kensa Kk Inspecting instrument of piping
JPH0572188A (en) * 1991-09-11 1993-03-23 Nuclear Fuel Ind Ltd Detecting device for defect of heat exchanger thin tube and the like
JPH07333202A (en) * 1994-06-10 1995-12-22 Matsushita Giken Kk Flaw detector of piping
JP2649299B2 (en) * 1992-01-17 1997-09-03 財団法人鉄道総合技術研究所 Correction method of angle of refraction in angled flaw detection of boring axle
JP2691822B2 (en) * 1992-01-17 1997-12-17 財団法人鉄道総合技術研究所 Method for bevel flaw detection of boring axle
JPH1123540A (en) * 1997-06-30 1999-01-29 Hitachi Eng Co Ltd Ultrasonic flaw detection method and device for shaft member
JP2002082099A (en) * 2000-09-07 2002-03-22 Central Japan Railway Co Ultrasonic flaw detector for hollow axle
JP2002257798A (en) * 2001-02-28 2002-09-11 Sumitomo Metal Ind Ltd Flaw detection method and flaw detection device for solid shaft member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131962A (en) * 1984-07-25 1986-02-14 Nippon Kogyo Kensa Kk Inspecting instrument of piping
JPH0572188A (en) * 1991-09-11 1993-03-23 Nuclear Fuel Ind Ltd Detecting device for defect of heat exchanger thin tube and the like
JP2649299B2 (en) * 1992-01-17 1997-09-03 財団法人鉄道総合技術研究所 Correction method of angle of refraction in angled flaw detection of boring axle
JP2691822B2 (en) * 1992-01-17 1997-12-17 財団法人鉄道総合技術研究所 Method for bevel flaw detection of boring axle
JPH07333202A (en) * 1994-06-10 1995-12-22 Matsushita Giken Kk Flaw detector of piping
JPH1123540A (en) * 1997-06-30 1999-01-29 Hitachi Eng Co Ltd Ultrasonic flaw detection method and device for shaft member
JP2002082099A (en) * 2000-09-07 2002-03-22 Central Japan Railway Co Ultrasonic flaw detector for hollow axle
JP2002257798A (en) * 2001-02-28 2002-09-11 Sumitomo Metal Ind Ltd Flaw detection method and flaw detection device for solid shaft member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509873A (en) * 2014-02-19 2017-04-06 エジソン・ウェルディング・インスティチュート,インコーポレーテッド Portable matrix phased array spot weld inspection system
CN104865312A (en) * 2015-04-23 2015-08-26 南京航空航天大学 Multiple unit train hollow shaft ultrasonic detection system and detection method
CN106124628A (en) * 2016-08-31 2016-11-16 北京主导时代科技有限公司 A kind of hollow axle ultrasonic flaw-detecting machine

Similar Documents

Publication Publication Date Title
US7975549B2 (en) Method, apparatus and system for inspecting a workpiece having a curved surface
JP5590249B2 (en) Defect detection apparatus, defect detection method, program, and storage medium
US20120191377A1 (en) Method and device for ultrasonic testing
CN102472729B (en) Ultrasonic inspection probe and ultrasonic inspection apparatus
EP2976635B1 (en) Apparatus for the nondestructif control of tubular products with electroacoustic phased arrays, in particular on-site
KR102121821B1 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
WO2012033001A1 (en) Ultrasonic flaw detection device for pipe end and method for setting initial position of probe holder
CN107102065A (en) The ultrasonic wave detecting system of one kind of multiple coupled modes
US7900517B2 (en) System and method for inspecting a pipeline with ultrasound
CN102735615A (en) Laser ultrasonic detection device
CN104698088A (en) Method and device for TOFD (Time of Flight Diffraction) detection of pressure pipeline on basis of ultrasonic phased array
CN107688050A (en) A kind of Air Coupling ultrasonic phase array detection means
WO2013051107A1 (en) Ultrasonic flaw detection device for hollow axle
US10197535B2 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
JP2009075101A (en) Method and apparatus for detecting defect in tooth of generator rotor
US4131026A (en) Ultrasonic testing of seams
CN206489119U (en) Type multimode electromagnetic ultrasonic testing system and electromagnetic ultrasonic transducer
JP5292012B2 (en) Ultrasonic inspection equipment
JPWO2013051107A1 (en) Ultrasonic flaw detector for boring axle
EP3044581B1 (en) Rolling curved array ultrasonic scanner
CN113295772B (en) Thin-walled tube nondestructive testing device and method based on ultrasonic leaky lamb waves
CN104807885B (en) Train wheel laser-ultrasound not damaged method of detection
JP7180494B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
US9027405B2 (en) Ultrasonic inspection of an axle
JP2016090245A (en) Ultrasonic flaw detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537312

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873608

Country of ref document: EP

Kind code of ref document: A1