WO2013050919A1 - Mixed conductive titanates for a high-temperature electrochemical system - Google Patents

Mixed conductive titanates for a high-temperature electrochemical system Download PDF

Info

Publication number
WO2013050919A1
WO2013050919A1 PCT/IB2012/055249 IB2012055249W WO2013050919A1 WO 2013050919 A1 WO2013050919 A1 WO 2013050919A1 IB 2012055249 W IB2012055249 W IB 2012055249W WO 2013050919 A1 WO2013050919 A1 WO 2013050919A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
formula
electrode
compound
titanates
Prior art date
Application number
PCT/IB2012/055249
Other languages
French (fr)
Inventor
Thibaud Delahaye
Charline ARRIVE
Maria-Teresa CALDES
Olivier Joubert
Gilles Gauthier
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Centre National De La Recherche Scientifique filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2013050919A1 publication Critical patent/WO2013050919A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to compounds of formula as well as their use for the manufacture of electrodes.
  • the current composite electrodes cermet type proton Ni-conductor have many disadvantages especially in terms of premature aging often related to the agglomeration of nickel in operation. Therefore, one of the solutions envisaged is to replace the classic cermet by oxide materials of mixed electron / proton conductors type. Indeed, these materials being single phase and having no metal phase are less subject to aging in operation.
  • their active surface is no longer limited as in the case of cermets triple points (porosity / metal / ceramic) place of the chemical reaction but the entire free surface of the material. This delocalization thus favors the electrochemical performances.
  • the invention proposes a family of compounds with mixed ionic / electronic conductivity (La, Sr) (Ti, Mn Ni) (O 3 ), also noted hereinafter LSTM.
  • LSTM mixed ionic / electronic conductivity
  • these compounds have the formula I in which:
  • a group of preferred compounds according to the invention are those having the formula I in which:
  • the compounds of the invention are preferably crystallized. In this case, they have a rhombohedral crystallographic structure of space group R3c.
  • the invention also provides an electrode comprising at least one compound of formula I according to the invention.
  • this electrode is made of a material consisting of at least one compound of formula I according to the invention.
  • the invention also proposes a proton conductor fuel cell comprising at least one electrode according to the invention.
  • the invention also proposes a high temperature steam electrolyser comprising at least one electrode according to the invention.
  • the invention also proposes an electrochemical cell comprising at least one electrode according to the invention.
  • the invention also proposes the use of a compound according to the invention for the manufacture of an electrode.
  • the invention finally proposes a method for manufacturing electrodes comprising a step of shaping a compound according to the invention.
  • FIG. 1 is a schematic representation of the lattice of the crystallographic structure of the compounds of the invention
  • FIG. 2 shows the X-ray diffraction pattern of a compound of the invention of formula Lao> 47 Sro, 53Tio, 4Mno, 55Ni 0 (o 5 C * 3, also denoted LSTM55N5,
  • FIG. 3 shows the evolution of the mass as a function of temperature for the compound LSTM55N5 subjected to four repeated cycles
  • FIG. 4 represents an enlargement of the last three heating cycles of FIG. 3,
  • FIG. 5 represents the variation of the electrical conductivity of the compound LSTM55N5 as a function of the temperature, under Ar / 3 ⁇ 4 sec (- ⁇ - ⁇ ⁇ -) and under a mixture Ar / H 2 load in water, that is, that is, wet in Figure 4 (- ⁇ - ⁇ -), and
  • the invention provides compounds of formula I below: X Sri, x Tii -yz Mn y Ni z 0 3-5 in which:
  • These compounds are especially derived from the SrTiO 3 compound by substitution of strontium by lanthanum and titanium by manganese and nickel. This triple substitution leads to a new family of lanthanates with mixed protonic and electronic conductivity.
  • the catalytic and ionic conduction properties of the SrTiO compound are very low. It is the same compounds in which the strontium is partially substituted by lanthanum (LST), as explained in Q.X. Fu et al, Journal of the Electrochemical Society, 153 (4) D74-D83 (2006) and Olga A. Marina et al, Solid State Ionics, 149 (2002), 21-28.
  • LST lanthanum
  • the catalytic properties and ionic conductivity of LSTs can be improved by making site B more sensitive to reduction.
  • the substitution of Sr 2 by La 3+ makes it possible to increase the number of electronic charges.
  • substitution by Mn makes site B more flexible with respect to reduction, which facilitates the formation of oxygen vacancies and the establishment of ionic conductivity in these materials.
  • the addition of Ni in the structure makes it possible to improve the properties electro-catalytic, in particular because it can be reduced to the metallic state in operation and forms nanoparticles of Ni.
  • perovskite refers to a family of minerals of the same structure whose general formula is ABO3.
  • ABO3 the coordination of the A atoms is 12: they are on a site with a cubic oxygen environment.
  • B atoms are on an octahedral oxygen site.
  • the perovskite structure is constituted by octahedra BO "linked by the vertices along the three crystallographic axes, the atoms A being placed in the sites left vacant by the octahedra ( Figure 1).
  • the compounds (La, Sr) (Ti, Mn, Ni) O 3 - s of the invention were synthesized by combustion of a nitrate-citrate gel which is a variant of the Pechini method [MP Pechini, US Patent 3330697, July 11, 1967].
  • La 2 0 3 (Rhodia, 99.9%), SrC0 3 (Alfa Aesar, 99.99%), (CH 3 C0 2) 2 Ni (Alfa Aesar,> 99%), MnC0 3 (Alfa Aesar,> 99.985 %) and Ti ⁇ OCH (CH 3 ) 2 ⁇ 4 (Alfa Aesar, 99.995%) were used as metal precursors.
  • Titanium isopropoxide Ti ⁇ OCH (CH 3 ) 2 ⁇ 4
  • Ti ⁇ OCH (CH 3 ) 2 ⁇ 4 is previously diluted in an ethylene glycol / citric acid mixture in order to limit the risks of precipitation during the syntheses.
  • the titanium ion concentration of this solution was determined by thermogravimetric analysis for 10 hours at 1000 ° C.
  • the low temperature powders (La, Sr) (Ti, Mn, Ni) 03-s were pressed uniaxially into pellets 1.5 mm thick and 10 mm in diameter and sintered between 1350 ° C and 1550 ° C. Fine pellets of compactness between 80 and 90% have thus been obtained. These pellets were cut, by means of a wire saw, into a bar 2 mm 2 in section and 8 to 10 mm long. A gold lacquer was painted and sintered at 750 ° C for 15 min to provide electrical contacts. Electrical conductivity measurements were made by the 4-point method described in [RM. Smits, Measurements of sheet resistivities with the four-point probe. The Bell Sys. Tech. J., 37 (1958). pp.
  • a first series of compounds of formula I comprising 10 atomic% of nickel in site B.
  • the compounds were then analyzed by X-ray diffraction analysis.
  • FIG. 2 shows the diffraction pattern X obtained on the compound of formula L o, 4 Sro, 53 10, 4 MnO, 55 NiO, o 503 (LSTM55N5).
  • Thermogravimetric analyzes (ATG) under an argon / hydrogen mixture containing 2% by volume of hydrogen were carried out on these compounds according to the following thermal cycle:
  • Figure 3 shows the evolution of the mass as a function of temperature for the compound LSTM55N5 subjected to 4 repeated cycles.
  • the irreversible mass loss observed during the rise in temperature corresponds to the reduction of Mn + in Mn 3+ and the partial reductions of Ni 2+ in Ni 0 and Mn 3+ in Mn 2+ , an increase in mass is observed while going down in temperature under 600 ° C.
  • FIG. 4 represents an enlargement of the relevant portion of FIG. 3
  • taps are systematically observed between 20 ° C. and 600 ° C. while rising in temperature and between 600 ° C. and 20 ° C. going down in temperature. These catches are attributed to the insertion of protons in the crystal structure of the compound.
  • the LSTMN compounds proposed here show no reactivity with the 8YSZ electrolyte after sintering in air at 1300 ° C. for 3 h and a 48 hour treatment at 800 ° C. under Ar / H 2 (2%). / H 2 O (3%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to compounds of formula LaxSr1-xTi1-y-zMnyNizO3-δ and to the uses thereof. In particular, the invention is suitable for use in the following fields: electrodes, fuel cells, electrolysers and electrochemical cells.

Description

TITANATES CONDUCTEURS MIXTES POUR SYSTEME ELECTROCHIMIQUE HAUTE TEMPERATURE  MIXED CONDUCTIVE TITANATES FOR HIGH TEMPERATURE ELECTROCHEMICAL SYSTEM
L'invention concerne des composés de formule
Figure imgf000002_0001
ainsi que leur utilisation pour la fabrication d'électrodes.
The invention relates to compounds of formula
Figure imgf000002_0001
as well as their use for the manufacture of electrodes.
Elle concerne également une électrode comprenant un tel composé ainsi que des dispositifs comprenant une telle électrode.  It also relates to an electrode comprising such a compound as well as devices comprising such an electrode.
Un verrou majeur au développement de cellules électrochimiques intégrant un électrolyte solide conducteur protonique réside dans le choix des matériaux d'électrode à hydrogène à lui associer. En effet, les électrodes composite actuelles de type cermet Ni-conducteur protonique présentent de nombreux inconvénients notamment en terme de vieillissement prématuré souvent lié à l'agglomération du nickel en fonctionnement. Dès lors, une des solutions envisagée est de remplacer le classique cermet par des matériaux oxydes de type conducteurs mixtes électronique/protonique. En effet, ces matériaux étant monophasés et ne comportant pas de phase métallique sont moins sujets au vieillissement en fonctionnement. De plus, leur surface active n'est plus limitée comme dans le cas des cermets aux points triples (porosité/métal/céramique) lieu de la réaction chimique mais à toute la surface libre du matériau. Cette délocalisation favorise donc les performances électrochimiques.  A major obstacle to the development of electrochemical cells incorporating a solid protonic conductive electrolyte lies in the choice of hydrogen electrode materials to be associated with it. Indeed, the current composite electrodes cermet type proton Ni-conductor have many disadvantages especially in terms of premature aging often related to the agglomeration of nickel in operation. Therefore, one of the solutions envisaged is to replace the classic cermet by oxide materials of mixed electron / proton conductors type. Indeed, these materials being single phase and having no metal phase are less subject to aging in operation. In addition, their active surface is no longer limited as in the case of cermets triple points (porosity / metal / ceramic) place of the chemical reaction but the entire free surface of the material. This delocalization thus favors the electrochemical performances.
Dans la littérature très peu de matériaux ont été identifiés comme conducteurs mixtes électronique/protonique. Matsumoto et al. [1] ont notamment mis en évidence une conductivité mixte dans le composé
Figure imgf000002_0002
avec x compris entre 0 et 0,1 qui est formé par substitution du cérium par du ruthénium dans le composé BaCeo,9Yo,i03-g. Jardiel et al. [2] ont également révélé la présence de ce type de conductivité mixte dans les composés (Lao 5Sro,25)(Cro,5Mno,5-x ix)03-5 et (Lao>75Sroj25)(CroJ5-xNixMno>5)03-.6 T. Norby [3] dans son état de l'art présente un paragraphe sur des matériaux susceptibles d'être des conducteurs mixtes. Ces matériaux sont principalement issus des composés (BaCe03), (BaTb03), (BaPr03), (Sr2Ti04).
In the literature very few materials have been identified as mixed electronic / protonic conductors. Matsumoto et al. [1] have in particular demonstrated a mixed conductivity in the compound
Figure imgf000002_0002
with x between 0 and 0.1 which is formed by substitution of cerium with ruthenium in BaCeo compound, 9Yo , i0 3- g. Jardiel et al. [2] also revealed the presence of this type of mixed conductivity in the compounds (5 Lao Sro, 25) (Cro, 5Mno, 5 x-xi) 0 3 -5 (Lao> 75Sro j2 5) (Cro J 5 - x Ni x Mno > 5) 0 3 -.6 T. Norby [3] in his state of the art presents a paragraph on materials likely to be mixed conductors. These materials are mainly derived from the compounds (BaCe0 3 ), (BaTb0 3 ), (BaPr0 3 ), (Sr 2 TiO 4 ).
Dans ce contexte, l'invention propose une famille de composés à conductivité mixte ionique/électronique, (La, Sr) (Ti, Mn Ni) (03), également notés ci-après LSTM. Ainsi, l'invention propose des composés de formule I suivante In this context, the invention proposes a family of compounds with mixed ionic / electronic conductivity (La, Sr) (Ti, Mn Ni) (O 3 ), also noted hereinafter LSTM. Thus, the invention provides compounds of formula I below
LaxSr1-xTi1-y-zMnyNiz03-s X Sr 1-x Ti 1-yz Mn y Ni z 0 3 -s
dans laquelle  in which
0,l<x<0,9;  0.l <x <0.9;
0,Ky<0,6,  0, Ky <0.6,
0,05 <z< 0,3, et  0.05 <z <0.3, and
0<δ<0,5.  0 <δ <0.5.
De préférence, ces composés ont la formule I dans laquelle :  Preferably, these compounds have the formula I in which:
0,37 < x < 0,57 ;  0.37 <x <0.57;
· 0,40 <y< 0,55,  · 0.40 <y <0.55,
0,05 <z< 0,1, et  0.05 <z <0.1, and
δ = 0.  δ = 0.
Un groupe de composés préférés selon l'invention, sont ceux ayant la formule I dans laquelle :  A group of preferred compounds according to the invention are those having the formula I in which:
· 0,47<x<0,57;  0.47 <x <0.57;
• 0,40 <y< 0,55,  0.40 <y <0.55,
• z- 0,1, et  • z- 0.1, and
• 6 = 0.  • 6 = 0.
Un autre groupe de composés préférés selon l'invention, sont ceux ayant formule I dans laquelle :  Another group of preferred compounds according to the invention are those having formula I in which:
• 0,37 <x< 0,47;  0.37 <x <0.47;
• 0,40 < y < 0,55,  0.40 <y <0.55,
• z = 0,05, et  Z = 0.05, and
· δ = 0.  · Δ = 0.
Les composés de l'invention sont de préférence cristallisés. Dans ce cas, ils ont une structure cristallographique rhomboédrique de groupe d'espace R3c.  The compounds of the invention are preferably crystallized. In this case, they have a rhombohedral crystallographic structure of space group R3c.
L'invention propose également une électrode comprenant au moins un composé de formule I selon l'invention.  The invention also provides an electrode comprising at least one compound of formula I according to the invention.
De préférence, cette électrode est en un matériau consistant en au moins un composé de formule I selon l'invention. L'invention propose encore une pile à combustible à conducteur protonique comprenant au moins une électrode selon l'invention. Preferably, this electrode is made of a material consisting of at least one compound of formula I according to the invention. The invention also proposes a proton conductor fuel cell comprising at least one electrode according to the invention.
L'invention propose aussi un électrolyseur de la vapeur d'eau à haute température comprenant au moins une électrode selon l'invention.  The invention also proposes a high temperature steam electrolyser comprising at least one electrode according to the invention.
L'invention propose également une cellule électrochimique comprenant au moins une électrode selon l'invention.  The invention also proposes an electrochemical cell comprising at least one electrode according to the invention.
L'invention propose encore l'utilisation d'un composé selon l'invention pour la fabrication d'une électrode.  The invention also proposes the use of a compound according to the invention for the manufacture of an electrode.
L'invention propose enfin un procédé de fabrication d'électrodes comprenant une étape de mise en forme d'un composé selon l'invention.  The invention finally proposes a method for manufacturing electrodes comprising a step of shaping a compound according to the invention.
L'invention sera mieux comprise et d'autres caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lecture de la description explicative qui suit et qui est faite en référence aux figures dans lesquelles :  The invention will be better understood and other characteristics and advantages thereof will appear more clearly on reading the explanatory description which follows and which is made with reference to the figures in which:
- la figure î est une représentation schématique de la maille de la structure cristallographique des composés de l'invention,  FIG. 1 is a schematic representation of the lattice of the crystallographic structure of the compounds of the invention,
- la figure 2 représente le diagramme de diffraction des rayons X d'un composé selon l'invention de formule Lao>47Sro,53Tio,4Mno,55Ni0(o5C*3, notée également LSTM55N5, - Figure 2 shows the X-ray diffraction pattern of a compound of the invention of formula Lao> 47 Sro, 53Tio, 4Mno, 55Ni 0 (o 5 C * 3, also denoted LSTM55N5,
- la figure 3 montre l'évolution de la masse en fonction de la température pour le composé LSTM55N5 soumis à quatre cycles répétés,  FIG. 3 shows the evolution of the mass as a function of temperature for the compound LSTM55N5 subjected to four repeated cycles,
- la figure 4 représente un agrandissement des trois derniers cycles de chauffage de la figure 3,  FIG. 4 represents an enlargement of the last three heating cycles of FIG. 3,
- la figure 5 représente la variation de la conductivité électrique du composé LSTM55N5 en fonction de la température, sous Ar/¾ sec (— · -— · ·— ) et sous un mélange Ar/H2 charge en eau, c'est-à-dire noté humide dans la figure 4 (—■—■— ), et FIG. 5 represents the variation of the electrical conductivity of the compound LSTM55N5 as a function of the temperature, under Ar / ¾ sec (- · - · · -) and under a mixture Ar / H 2 load in water, that is, that is, wet in Figure 4 (- ■ - ■ -), and
- la figure 6 représente le diagramme de diffraction des rayons X (DRX) réalisé sur les mélanges 8YSZ ([Zircone (Zr02) stabilisée à 8% molaire en Y203]) et respectivement les composés LSTM55N5, LSTM40N5, LSTM55N10 et LSTM40N10 (composés de formules Lao^/aaSro^-MaTio^-a naNio^Oa ou Laoj+s/aaSro^-iea io^s-aMnaNio^sOs dans lesquels a = 0,55 ou 0,4). FIG. 6 represents the X-ray diffraction pattern (XRD) made on the 8YSZ mixtures ([zirconia (ZrO 2 ) stabilized at 8 mol% in Y 2 O 3 ]) and the compounds LSTM55N5, LSTM40N5, LSTM55N10 and LSTM40N10 respectively; (compounds of formulas Lao ^ / a has Sro ^ -MaTio ^ - Nio has n ^ Oa or Laoj + s / a has Sro ^ io ^ s- -iea has Mn ^ Nio SOS wherein a = 0.55 or 0.4).
L'invention propose des composés de formule I suivante : LaxSri ,xTii -y-zMnyNiz03-5 dans laquelle : The invention provides compounds of formula I below: X Sri, x Tii -yz Mn y Ni z 0 3-5 in which:
• 0,l < x < 0,9 ;  • 0, l <x <0.9;
• 0,l < y < 0,6,  • 0, l <y <0.6,
• 0,05 < ζ < 0,3, et  • 0.05 <ζ <0.3, and
• 0 < δ < 0,5.  • 0 <δ <0.5.
Ces composés sont notamment issus du composé SrTi03 par substitution du strontium par le lanthane et du titane par le manganèse et le nickel. Cette triple substitution permet d'aboutir à une nouvelle famille de lanthanates présentant une conductivité mixte protonique et électronique. These compounds are especially derived from the SrTiO 3 compound by substitution of strontium by lanthanum and titanium by manganese and nickel. This triple substitution leads to a new family of lanthanates with mixed protonic and electronic conductivity.
En effet, les propriétés catalytiques et de conduction ionique du composé SrTi0 sont très faibles. Il en est de même des composés dans lesquels le strontium est partiellement substitué par du lanthane (LST), comme explicité dans Q.X. Fu et al, Journal of the Electrochemical Society, 153(4) D74-D83 (2006) et Olga A. Marina et al, Solid State Ionics, 149 (2002), 21-28.  Indeed, the catalytic and ionic conduction properties of the SrTiO compound are very low. It is the same compounds in which the strontium is partially substituted by lanthanum (LST), as explained in Q.X. Fu et al, Journal of the Electrochemical Society, 153 (4) D74-D83 (2006) and Olga A. Marina et al, Solid State Ionics, 149 (2002), 21-28.
Quant aux composés décrits dans T. Jardiel et al, ils réagissent avec l'électrolyte usuel 8YSZ après un traitement à relativement basse température (1150°C pendant 3h sous air) pour former une phase SrZr03, néfaste pour les performances électrochimiques car isolantes. [T. Delahaye, T. Jardiel, O. Joubert, R. Laucournet, G. Gauthier, M.T. Caldes, Solid State Ionics, Volume 184, Issue 1, 3 March 201 I, Pages 39-41]. As for the compounds described in T. Jardiel et al, they react with the usual electrolyte 8YSZ after a relatively low temperature treatment (1150 ° C. for 3 hours in air) to form a SrZrO 3 phase, which is detrimental for the electrochemical performances as insulators. [T. Delahaye, T. Jardiel, O. Joubert, R. Laucournet, G. Gauthier, MT Caldes, Solid State Ionics, Volume 184, Issue 1, 3 March 201 I, Pages 39-41].
De plus, le chrome pose des problèmes de toxicité.  In addition, chromium poses toxicity problems.
Les propriétés catalytiques et la conductivité ionique des LST peuvent être améliorées en rendant le site B plus sensible vis-à-vis de la réduction. La substitution par un ou des élément(s) présentant un degré d'oxydation plus faible que le Ti et acceptant plus facilement un nombre de coordination inférieur à 6, favorise en effet la formation de lacunes d'oxygène et la migration des ions O ". The catalytic properties and ionic conductivity of LSTs can be improved by making site B more sensitive to reduction. The substitution by one or more element (s) having a lower degree of oxidation than Ti and accepting more easily a coordination number less than 6, in fact promotes the formation of oxygen vacancies and the migration of ions O " .
Ainsi, dans les composés de l'invention, la substitution de Sr^par La3+ permet d'augmenter le nombre de charges électroniques. La substitution par le Mn permet de rendre le site B plus flexible vis-à-vis de la réduction, ce qui facilite la formation de lacunes d'oxygène et l'établissement d'une conductivité ionique dans ces matériaux. Enfin, l'ajout de Ni dans la structure permet d'améliorer les propriétés éiectro-catalytiques, notamment car il peut être réduit à l'état métallique en fonctionnement et forme des nanoparticules de Ni. Thus, in the compounds of the invention, the substitution of Sr 2 by La 3+ makes it possible to increase the number of electronic charges. Substitution by Mn makes site B more flexible with respect to reduction, which facilitates the formation of oxygen vacancies and the establishment of ionic conductivity in these materials. Finally, the addition of Ni in the structure makes it possible to improve the properties electro-catalytic, in particular because it can be reduced to the metallic state in operation and forms nanoparticles of Ni.
Ces composés ont une structure cristalline perovskite AB03 ou dérivée A2B0 et sont composés de cinq cations. Le terme de perovskite désigne une famille de minéraux de même structure dont la formule générale est ABO3. Dans la structure perovskite cubique idéale, la coordinence des atomes A est 12 : ils sont sur un site à environnement cubique d'oxygène. La coordinence des atomes B est 6 : ils sont sur un site à environnement octaédrique d'oxygène. Ainsi, la structure perovskite est constituée par des octaèdres BO« liés par les sommets le long des trois axes cristallographiques, les atomes A étant placés dans les sites laissés vacants par les octaèdres (Figure 1). Néanmoins, il est rare que la structure reste aussi symétrique et de nombreuses distorsions sont en général observées (déplacements polaires, rationnels ou sous l'effet Jahn-Teller des ions) comme cela est décrit par K.S. Aleksandrov et al. (K.S.Aleksandrov and V.V. Berznosikov, Hiérarchies of perovskite-like crystals (review), Phys.25 Solid State, 39, (1997), 695-714). These compounds have a perovskite crystal structure AB0 3 or A 2 B0 derivative and are composed of five cations. The term perovskite refers to a family of minerals of the same structure whose general formula is ABO3. In the ideal cubic perovskite structure, the coordination of the A atoms is 12: they are on a site with a cubic oxygen environment. The coordination of B atoms is 6: they are on an octahedral oxygen site. Thus, the perovskite structure is constituted by octahedra BO "linked by the vertices along the three crystallographic axes, the atoms A being placed in the sites left vacant by the octahedra (Figure 1). Nevertheless, it is rare that the structure remains symmetrical and many distortions are generally observed (polar displacements, rational or under the Jahn-Teller effect of ions) as described by KS Aleksandrov et al. (KSAleksandrov and VV Berznosikov, Hierarchies of Perovskite-Like Crystals (review), Phys.25 Solid State, 39, (1997), 695-714).
Les composés (La, Sr)(Ti, Mn, Ni)03-s de l'invention ont été synthétisés par combustion d'un gel nitrate-citrate qui est une variante de la méthode Pechini [M.P. Pechini, US Patent 3330697, July 11, 1967 ]. La203 (Rhodia, 99,9%), SrC03 (Alfa Aesar, 99,99%), (CH3C02)2Ni (Alfa Aesar, >99%), MnC03 (Alfa Aesar, >99,985%) et Ti{OCH(CH3)2}4 (Alfa Aesar, 99,995%) ont été utilisés comme précurseurs métalliques. L'isopropoxyde de titane, Ti{OCH(CH3)2}4, est préalablement dilué dans un mélange éthylène glycol/acide citrique pour limiter les risques de précipitation lors des synthèses. La concentration en ions titane de cette solution a été déterminée par analyse thermogravimétrique pendant 10 heures à 1000°C. The compounds (La, Sr) (Ti, Mn, Ni) O 3 - s of the invention were synthesized by combustion of a nitrate-citrate gel which is a variant of the Pechini method [MP Pechini, US Patent 3330697, July 11, 1967]. La 2 0 3 (Rhodia, 99.9%), SrC0 3 (Alfa Aesar, 99.99%), (CH 3 C0 2) 2 Ni (Alfa Aesar,> 99%), MnC0 3 (Alfa Aesar,> 99.985 %) and Ti {OCH (CH 3 ) 2 } 4 (Alfa Aesar, 99.995%) were used as metal precursors. Titanium isopropoxide, Ti {OCH (CH 3 ) 2} 4 , is previously diluted in an ethylene glycol / citric acid mixture in order to limit the risks of precipitation during the syntheses. The titanium ion concentration of this solution was determined by thermogravimetric analysis for 10 hours at 1000 ° C.
Tout d'abord, l'acide citrique C6H80 est dissout dans un mélange eau distillée/acide nitrique HN03 (65% m), puis les précurseurs métalliques sont ajoutés un à un en proportions stoechiométriques sous agitation et léger chauffage (40-50°C). Le volume du mélange est alors réduit par chauffage à 150°C jusqu'à ce qu'il commence à gélifier. Une solution d'ammoniaque (NH4OH à 28% vol.) est alors ajoutée à chaud pour neutraliser jusqu'à pH = 8. Le volume du mélange est de nouveau réduit jusqu'à gélifïcation. Le gel est alors mis à sécher à l'étuve à 100°C, Lors du séchage, il gonfle et une « meringue » noire aérée appelée xérogel est obtenue. Une pyrolyse de ce xérogel sous épiradiateur IR permet de poursuivre la réaction de combustion. Celle-ci se produit avec un grand dégagement de gaz (C02 H2O, ...) et donne une poudre très fine qui est broyée et calcinée à 600°C afin d'éliminer une majeure partie des composés organiques. La poudre ainsi obtenue est broyée manuellement de façon à l'homogénéiser, puis calcinée à 1000°C ou 1200°C pour cristalliser la phase. Des traitements thermiques plus longs ont été réalisés (i.e. à 1300°C pendant 12h) pour obtenir une meilleure cristallisation pour la détermination structurale. Les diagrammes de diffractions des rayons X (DRX) sont obtenus au moyen d'un diffractomètre Biuker D8 Advance opérant en géométrie Bragg-Brentano. Il est équipé d'une anticathode de Cu générant les rayons X, et d'un filtre de Ni placé en amont du détecteur pour éliminer radiation Kp du Cu. Les données expérimentales ont été affinées par la méthode de Rietveld en utilisant le programme Fullprof2k et son interface graphique WinplotR. Les mesures dilatométriques ont été effectuées au moyen d'un système Setaram DHT 2050K, sur des pastilles des poudres basse température (calcinées à 1000°C ou 1200°C pendant 3h) pressées de façon uniaxiale à 180MPa. Le comportement en réduction a été étudié par analyses thermogravimétriques (Setaram TGA92) sous Ar/H2(2%) sur les poudres calcinées à 1300°C pendant 12h. First, the citric acid C 6 H 8 O is dissolved in a mixture of distilled water / nitric acid HN0 3 (65% m), then the metal precursors are added one by one in stoichiometric proportions with stirring and light heating ( 40-50 ° C). The volume of the mixture is then reduced by heating to 150 ° C until it starts to gel. An ammonia solution (NH 4 OH at 28% vol.) Is then added hot to neutralize to pH = 8. The volume of the mixture is reduced again until gelation. The gel is then dried in an oven at 100 ° C. When drying, it swells and an aerated black "meringue" called xerogel is obtained. Pyrolysis of this xerogel under IR epiradiator makes it possible to continue the combustion reaction. This occurs with a large release of gas (C0 2 H2O, ...) and gives a very fine powder which is ground and calcined at 600 ° C to remove a major part of the organic compounds. The powder thus obtained is ground manually so as to homogenize it, then calcined at 1000 ° C. or 1200 ° C. to crystallize the phase. Longer heat treatments were carried out (ie at 1300 ° C for 12h) to obtain a better crystallization for the structural determination. X-ray diffraction patterns (XRD) are obtained using a Biuker D8 Advance diffractometer operating in Bragg-Brentano geometry. It is equipped with an anticathode of Cu generating X-rays, and a Ni filter placed upstream of the detector to eliminate Kp radiation from Cu. The experimental data were refined by the Rietveld method using the Fullprof2k program and its WinplotR GUI. The dilatometric measurements were performed using a Setaram DHT 2050K system, on pellets of low temperature powders (calcined at 1000 ° C or 1200 ° C for 3h) pressed uniaxially at 180MPa. The reduction behavior was studied by thermogravimetric analysis (Setaram TGA92) under Ar / H2 (2%) on the powders calcined at 1300 ° C. for 12 hours.
Pour préparer les barreaux de mesures de conductivité, les poudres basse température (La, Sr)(Ti, Mn, Ni)03-s ont été pressées de façon uniaxiale en pastilles de 1,5 mm d'épaisseur et 10 mm de diamètre et fiittées entre 1350°C et 1550°C. Des pastilles fines de compacités comprises entre 80 et 90% ont ainsi été obtenues. Ces pastilles ont été coupées, au moyen d'une scie à fil, en barreau de 2 mm2 de section et 8 à 10 mm de long. Une laque d'or a été peinte et frittée à 750°C pendant 15 min pour assurer les contacts électriques. Les mesures de conductivité électrique ont été effectuées par la méthode des 4 points décrite dans [RM. Smits, Measurements of sheet resistivities with the four-point probe. The Bell Sys. Tech. J., 37 (1958). pp. 711-718.] sous Ar (95% en volume)/H2 (5% en volume) et sous Ar (95% en volume)/H2 (5% en volume) humidifié (pH20 ~ 0.025 atm) de 200°C à 800°C. To prepare the conductivity bars, the low temperature powders (La, Sr) (Ti, Mn, Ni) 03-s were pressed uniaxially into pellets 1.5 mm thick and 10 mm in diameter and sintered between 1350 ° C and 1550 ° C. Fine pellets of compactness between 80 and 90% have thus been obtained. These pellets were cut, by means of a wire saw, into a bar 2 mm 2 in section and 8 to 10 mm long. A gold lacquer was painted and sintered at 750 ° C for 15 min to provide electrical contacts. Electrical conductivity measurements were made by the 4-point method described in [RM. Smits, Measurements of sheet resistivities with the four-point probe. The Bell Sys. Tech. J., 37 (1958). pp. 711-718.] Under Ar (95% by volume) / H 2 (5% by volume) and under Ar (95% by volume) / H 2 (5 vol%) humidified (pH 2 0 ~ 0025 atm) of 200 ° C to 800 ° C.
Des composés de formule I dans laquelle : • 0,37 < x < 0,57 ; Compounds of formula I in which: • 0.37 <x <0.57;
« 0,40 < y < 0,55,  "0.40 <y <0.55,
• 0,05 < z < 0,l, et  • 0.05 <z <0, l, and
• δ = 0,  • δ = 0,
ont été synthétisés et obtenus purs.  were synthesized and obtained pure.
Plus particulièrement, une première série de composés de formule I comportant 10% atomique de nickel en site B.  More particularly, a first series of compounds of formula I comprising 10 atomic% of nickel in site B.
Ces composés ont la formule I dans laquelle :  These compounds have formula I in which:
• 0,47 < x < 0,57 ;  0.47 <x <0.57;
· 0,40 < y < 0,55,  · 0.40 <y <0.55,
• z = 0,l, et  Z = 0, l, and
• 5 = 0.  • 5 = 0.
Plus précisément, la formule de ces composés est la suivante : L¾2+2/3aSro,8-2/3a io,9-aMnaNio,103, dans laquelle a = 0,55 ; 0,5 ; 0,45 et 0,4, respectivement. Specifically, the formula for these compounds is: L¾2 + 2 / 3aSro 8-2 / 3a io, 9- has Mn Nio, 03 wherein a = 0.55; 0.5; 0.45 and 0.4, respectively.
Une deuxième série particulière de ces composés ont été synthétisés et obtenus purs, comportant 5% atomique de Ni en site B.  A second particular series of these compounds were synthesized and obtained pure, having 5 atomic% Ni in site B.
Plus précisément, ces composés ont la formule suivante : Lao,i+23aSro,9-2 3_ i0j95-aMnaNio;o503, dans laquelle a = 0,55 ; 0,5 ; 0,45 et 0,4, respectivement. More specifically, these compounds have the following formula: Lao, i + 23aSro 9-2 3_ i 0j 95 -a Mn Nio; o50 3 , wherein a = 0.55; 0.5; 0.45 and 0.4, respectively.
Les composés ont ensuite été analysés par analyse de diffraction des rayons X.  The compounds were then analyzed by X-ray diffraction analysis.
L'affinement de la structure cristallographique de ces composés a été effectuée par la méthode de Rietveld décrite dans "A Profile Refînement Method for Nuclear and Magnetic Structures." Rietveld, H.M.(1969). J. Appl. Crystallogr., 2, 65-71, en utilisant le programme Fullprof décrit dans Juan Rodriguez-Carvajal, Thierry Roisnel, New Windows 95/NT Applications for Diffraction Commission For Powder Diffraction, International Union for Crystallography, Newsletter N°20 (May- August) Summer 1998. Cet affinement a montré que les composés de l'invention présentent une symétrie rhomboédrique (groupe d'espace R3c). Modèle structural R-3c (n°167) The refinement of the crystallographic structure of these compounds was carried out by the method of Rietveld described in "A Profile Processing Method for Nuclear and Magnetic Structures." Rietveld, HM (1969). J. Appl. Crystallogr., 2, 65-71, using the Fullprof program described in Juan Rodriguez-Carvajal, Thierry Roisnel, New Windows 95 / NT Applications for Diffraction Commission For Powder Diffraction, International Union for Crystallography, Newsletter No. 20 (May-August Summer 1998. This refinement has shown that the compounds of the invention have a rhombohedral symmetry (space group R3c). Structural model R-3c (n ° 167)
Site Atome Position x y zSite Atom Position x y z
A La/Sr 6a 0 0 0,25To La / Sr 6a 0 0 0.25
B Ti/Mn/NÎ 6b 0 0 0B Ti / Mn / Nl 6b 0 0 0
O 0 18e -0,5 0 0,25O 0 18e -0.5 0 0.25
Où ap ~3,905 Â est le paramètre de maille d'une pérovskite cubique Where a p ~ 3,905 Å is the mesh parameter of a cubic perovskite
A cet égard, la figure 2 montre le diagramme de diffraction X obtenu sur le composé de formule L o,4 Sro,53 io,4Mno,55Nio,o503 (LSTM55N5).  In this regard, FIG. 2 shows the diffraction pattern X obtained on the compound of formula L o, 4 Sro, 53 10, 4 MnO, 55 NiO, o 503 (LSTM55N5).
Des analyses thermogravimétriques (ATG) sous un mélange d'argon/hydrogène contenant 2% en volume d'hydrogène ont été réalisées sur ces composés selon le cycle thermique suivant :  Thermogravimetric analyzes (ATG) under an argon / hydrogen mixture containing 2% by volume of hydrogen were carried out on these compounds according to the following thermal cycle:
20°C 2K,whl > 800°C/l/t 2K>min > 20°C 20 ° C 2K, whl > 800 ° C / l / t 2K> min > 20 ° C
Chaque fois, des prises de masses sont observées entre 20°C et In each case, mass catches are observed between 20 ° C and
600°C. 600 ° C.
La figure 3 montre l'évolution de la masse en fonction de la température pour le composé LSTM55N5 soumis à 4 cycles répétés. Pour le premier cycle, la perte de masse irréversible observée pendant la montée en température correpond à la réduction du Mn + en Mn3+ et aux réductions partielles de Ni2+ en Ni0 et Mn3+ en Mn2+, une prise de masse est observée en descendant en température sous 600°C. Figure 3 shows the evolution of the mass as a function of temperature for the compound LSTM55N5 subjected to 4 repeated cycles. For the first cycle, the irreversible mass loss observed during the rise in temperature corresponds to the reduction of Mn + in Mn 3+ and the partial reductions of Ni 2+ in Ni 0 and Mn 3+ in Mn 2+ , an increase in mass is observed while going down in temperature under 600 ° C.
Pour les 3 autres cycles, dont la figure 4 représente un agrandissement de la portion concernée de la figure 3, des prises de masse sont systématiquement observées entre 20°C et 600°C en montant en température et entre 600°C et 20°C en descendant en température. Ces prises de masse sont attribuées à l'insertion de protons dans la structure cristalline du composé.  For the other 3 cycles, of which FIG. 4 represents an enlargement of the relevant portion of FIG. 3, taps are systematically observed between 20 ° C. and 600 ° C. while rising in temperature and between 600 ° C. and 20 ° C. going down in temperature. These catches are attributed to the insertion of protons in the crystal structure of the compound.
Cette protonation a été confirmée par la comparaison des mesures de conductivité électrique 4 points sous un mélange d'argon/hydrogène contenant 5% en volume d'hydrogène sec ou sous le même mélange chargé en eau (3% en volume d'eau). Les résultats de ces mesures sont représentés en figure 4 pour le composé LSTM55N5. Ces mesures mettent en évidence à la montée en température une contribution protonique entre 200 et 600°C plus marquée sous gaz humidifié. Ce niveau de conductivité plus élevé s'explique par la présence d'eau additionnelle qui, comme l'hydrogène, est source de protons qui peuvent s'incorporer dans la structure. Cette constatation témoigne bien du caractère protonique de cette contribution électrique basse température qui vient s'ajouter à la contribution électronique voire également à une contribution anionique beaucoup plus faible à de telles températures. Lors de la descente en température cette contribution est beaucoup moins marquée. Ceci s'explique par la déshydratation partielle du composée lors de l'incursion aux hautes températures et à la cinétique lente d'hydratation du composé lors de la redescente. This protonation was confirmed by comparing the 4-point electrical conductivity measurements under an argon / hydrogen mixture containing 5% by volume of dry hydrogen or under the same mixture loaded with water (3% by volume of water). The results of these measurements are shown in FIG. 4 for the compound LSTM55N5. These measurements show at the temperature rise a proton contribution between 200 and 600 ° C more marked under humidified gas. This higher level of conductivity is explained by the presence of additional water which, like hydrogen, is a source of protons that can be incorporated into the structure. This observation testifies well to the protonic nature of this low temperature electric contribution which is added to the electronic contribution or even to a much lower anionic contribution to such temperatures. During the descent in temperature this contribution is much less marked. This is explained by the partial dehydration of the compound during the incursion at high temperatures and the slow kinetics of hydration of the compound during the descent.
A titre de comparaison, on a mesuré la conductivité électrique de SrTi03 ou (La,Sr)Ti03. Ces deux composés présentent une activité électrocatalytique vis-à-vis de l'oxydation de l'hydrogène très faible et une conductivité ionique faible. Les avantages de LSTM par rapport à LST ou SrTi03 sont déjà décrits dans la littérature, notamment par [Q.X. Fu et al, Journal of the Electrochemical Society, 153(4) D74-D83 (2006) et Olga A. Marina et al, Solid State lonics, 149 (2002), 21- 28]. For comparison, the electrical conductivity was measured of SrTi0 3 or (La, Sr) Ti0 3. These two compounds exhibit electrocatalytic activity with respect to the oxidation of very low hydrogen and low ionic conductivity. The advantages of LSTM over LST or SrTiO 3 are already described in the literature, in particular by [QX Fu et al, Journal of the Electrochemical Society, 153 (4) D74-D83 (2006) and Olga A. Marina et al, Solid State Electronics, 149 (2002), 21-28].
Au contraire des composés LSCMNi, les composés LSTMN proposés ici, ne présentent aucune réactivité avec l'électrolyte 8YSZ après un frittage sous air à 1300°C pendant 3h et un traitement de 48h à 800°C sous Ar/H2(2%)/H20 (3%). In contrast to the LSCMNi compounds, the LSTMN compounds proposed here show no reactivity with the 8YSZ electrolyte after sintering in air at 1300 ° C. for 3 h and a 48 hour treatment at 800 ° C. under Ar / H 2 (2%). / H 2 O (3%).
La réactivité des composés LSTMN avec le matériau d'électrolyte 8YSZ a été testée en frittant des mélanges de poudres à 50% massique à 1300°C pendant 3h. Ces mélanges de poudres ont ensuite été traités à 800°C sous Ar/H2(2%)/H20(3%) pour vérifier la réactivité dans les conditions de fonctionnement standard d'une anode SOFC. La figure 6 présente les diffractogrammes (DRX) des mélanges YSZ/LSTMN pour les composés extrêmes des séries LSTMN5 et LSTMN10, après ces deux traitements. Aucun pic supplémentaire n'apparaît sur les diagrammes de DRX suite aux tests de réactivité effectués sur les composés LSTMN. Ils sont donc compatibles d'un point de vue chimique avec îe matériau d'électrolyte 8YSZ. Références ; The reactivity of the LSTMN compounds with the electrolyte material 8YSZ was tested by sintering powder mixtures at 50% by mass at 1300 ° C for 3h. These powder mixtures were then treated at 800 ° C under Ar / H 2 (2%) / H 2 O (3%) to verify the reactivity under standard operating conditions of an SOFC anode. Figure 6 shows the diffractograms (XRD) of the YSZ / LSTMN mixtures for the extreme compounds of the LSTMN5 and LSTMN10 series after these two treatments. No additional peaks appear on DRX diagrams following reactivity tests performed on LSTMN compounds. They are therefore chemically compatible with the 8YSZ electrolyte material. References ;
[1] H. Mats moto et al; Protonic-Electronic Mixed Conduction and Hydrogen Permeation in BaCe0.9-*Y0.1RuxO3-a; Journal of The Electrochemical Society, 152 (3) A488-A492 (2005).  [1] H. Mats moto et al; Protonic-Electronic Mixed Conduction and Hydrogen Permeation in BaCe0.9- * Y0.1RuxO3-a; Journal of the Electrochemical Society, 152 (3) A488-A492 (2005).
[2] T. Jardiel et al; New SOFC électrode materials: The Ni-substituted LSCM-based compounds La0.75Sr0.25)(Cr0.5Mn0.5-xNix)O3-Ô and La0.75Sr0.25)(Cr0.5-xNixMn0.5)O3-Ô; Solid State Ionics 181 (2010) 894-901. [2] T. Jardiel et al; New SOFC electrode materials: The Ni-substituted LSCM-based compounds La0.75Sr0.25) (Cr0.5Mn0.5-xNix) O3-O and La0.75Sr0.25) (Cr0.5-xNixMn0.5) O3-O ; Solid State Ionics 181 (2010) 894-901.
[3] T. Norby; Solid-state protonic conductors: principles, properties, progress and prospects; Solid State lonics 125 (1 99) 1-11. [3] T. Norby; Solid-state protonic conductors: principles, properties, progress and prospects; Solid State lonics 125 (1 99) 1-11.

Claims

REVENDICATIONS
1. Composés de formule I suivante : 1. Compounds of formula I below:
LaxSr! .χΤϊ] -y-zMnyNiz03-5 The x Sr! .χΤϊ] -yz Mn y Ni z 03-5
dans laquelle in which
• 0,l<x<0,9;  • 0, l <x <0.9;
• 0,Ky<0,6,  • 0, Ky <0.6,
• 0,05 < z < 0,3, et  • 0.05 <z <0.3, and
• 0 < δ < 0,5.  • 0 <δ <0.5.
2. Composés selon la revendication 1, caractérisés en ce qu'ils ont la formule I dans laquelle : 2. Compounds according to claim 1, characterized in that they have formula I in which:
• 0,37<x<0,57;  • 0.37 <x <0.57;
• 0,40 < y < 0,55,  0.40 <y <0.55,
· 0,05 <z<0,l,et  · 0.05 <z <0, l, and
• 0 = 0.  • 0 = 0.
3. Composés selon la revendication 1 ou 2, caractérisés en ce qu'ils ont la formule I dans laquelle :  3. Compounds according to claim 1 or 2, characterized in that they have the formula I in which:
• 0,47 <x< 0,57;  0.47 <x <0.57;
· 0,40 <y< 0,55,  · 0.40 <y <0.55,
• 0,1, et  • 0.1, and
• δ = ο.  • δ = ο.
4. Composés selon la revendication 1 ou 2, caractérisés en ce qu'ils ont la formule I dans laquelle :  4. Compounds according to claim 1 or 2, characterized in that they have formula I in which:
· 0,37 <x< 0,47;  · 0.37 <x <0.47;
• 0,40 <y< 0,55,  0.40 <y <0.55,
• z = 0,05, et  Z = 0.05, and
• δ = 0.  • δ = 0.
5. Composés selon l'une quelconque des revendications précédentes, caractérisés en ce qu'ils ont une structure cristallographique rhomboédrique de groupe d'espace R3c. 5. Compounds according to any one of the preceding claims, characterized in that they have a rhombohedral crystallographic structure of space group R3c.
6. Electrode caractérisée en ce qu'elle comprend au moins un composé selon l'une quelconque des revendications 1 à 5. 6. An electrode characterized in that it comprises at least one compound according to any one of claims 1 to 5.
7. Electrode caractérisée en ce qu'elle est en un matériau consistant en au moins un composé selon l'une quelconque des revendications 1 à 5.  7. An electrode characterized in that it is a material consisting of at least one compound according to any one of claims 1 to 5.
8. Pile à combustible à conducteur protonique caractérisée en ce qu'elle comprend au moins une électrode selon la revendication 6 ou 7.  8. A proton conductor fuel cell characterized in that it comprises at least one electrode according to claim 6 or 7.
9. Electrolyseur de la vapeur d'eau à haute température caractérisé en ce qu'il comprend au moins une électrode selon la revendication 6 ou 7.  9. Electrolyser of high temperature water vapor characterized in that it comprises at least one electrode according to claim 6 or 7.
10. Cellule électrochimique caractérisée en ce qu'elle comprend au moins une électrode selon la revendication 6 ou 7.  10. Electrochemical cell characterized in that it comprises at least one electrode according to claim 6 or 7.
11. Utilisation d'un composé selon l'une quelconque des revendications 1 à 5 pour la fabrication d'une électrode.  11. Use of a compound according to any one of claims 1 to 5 for the manufacture of an electrode.
12. Procédé de fabrication d'électrodes caractérisé en ce qu'il comprend une étape de mise en forme d'un composé selon l'une quelconque des revendications 1 à 5.  12. A method of manufacturing electrodes characterized in that it comprises a step of shaping a compound according to any one of claims 1 to 5.
PCT/IB2012/055249 2011-10-05 2012-10-01 Mixed conductive titanates for a high-temperature electrochemical system WO2013050919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158999 2011-10-05
FR1158999A FR2981063B1 (en) 2011-10-05 2011-10-05 NEW MIXED CONDUCTIVE TITANATES FOR HIGH TEMPERATURE ELECTROCHEMICAL SYSTEM

Publications (1)

Publication Number Publication Date
WO2013050919A1 true WO2013050919A1 (en) 2013-04-11

Family

ID=47080759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/055249 WO2013050919A1 (en) 2011-10-05 2012-10-01 Mixed conductive titanates for a high-temperature electrochemical system

Country Status (2)

Country Link
FR (1) FR2981063B1 (en)
WO (1) WO2013050919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962251A (en) * 2019-04-18 2019-07-02 北京理工大学 Anode of solid oxide fuel cell material with resistant to sulfur, carbon accumulation resisting ability
CN111393164A (en) * 2020-03-23 2020-07-10 景德镇陶瓷大学 Perovskite anode material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330697A (en) 1963-08-26 1967-07-11 Sprague Electric Co Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330697A (en) 1963-08-26 1967-07-11 Sprague Electric Co Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
DELAHAYE T ET AL: "Electrochemical properties of novel SOFC dual electrode LaSrCrMnNiO", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 184, no. 1, 15 October 2010 (2010-10-15), pages 39 - 41, XP028168825, ISSN: 0167-2738, [retrieved on 20101021], DOI: 10.1016/J.SSI.2010.10.015 *
H. MATSUMOTO ET AL.: "Protonic-Electronic Mixed Conduction and Hydrogen Permeation in BaCe0.9-xY0.1RuxO3-?", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 152, no. 3, 2005, pages A488 - A492
K.S.ALEKSANDROV; V.V. BERZNOSIKOV: "Hierarchies of perovskite-like crystals (review", PHYS.25 SOLID STATE, vol. 39, 1997, pages 695 - 714
OLGA A. MARINA ET AL., SOLID STATE IONICS, vol. 149, 2002, pages 21 - 28
OLGA A. MARINA ET AL., SOLID STATE LONICS, vol. 149, 2002, pages 21 - 28
Q. X. FU ET AL: "Ceramic-based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells", FUEL CELLS, vol. 8, no. 5, 1 October 2008 (2008-10-01), pages 283 - 293, XP055026218, ISSN: 1615-6846, DOI: 10.1002/fuce.200800018 *
Q. X. FU ET AL: "La[sub 0.4]Sr[sub 0.6]Ti[sub 1-x]Mn[sub x]O[sub 3-[delta]] Perovskites as Anode Materials for Solid Oxide Fuel Cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 153, no. 4, 1 January 2006 (2006-01-01), pages D74 - D83, XP055026319, ISSN: 0013-4651, DOI: 10.1149/1.2170585 *
Q.X. FU ET AL., JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 153, no. 4, 2006, pages D74 - D83
RIETVELD, H.M: "A Profile Refinement Method for Nuclear and Magnetic Structures.", J. APPL. CRYSTALLOGR., vol. 2, 1969, pages 65 - 71
T. DELAHAYE; T. JARDIEL; O. JOUBERT; R. LAUCOURNET; G. GAUTHIER; M.T. CALDES, SOLID STATE IONICS, vol. 184, no. 1, 3 March 2011 (2011-03-03), pages 39 - 41
T. JARDIEL ET AL.: "New SOFC electrode materials: The Ni-substituted LSCM-based compounds La0.75Sr0.25)(Cr0.5Mn0.5-xNix)03-? and La0.75Sr0.25)(Cr0.5-xNixMn0.5)O3-?", SOLID STATE IONICS, vol. 181, 2010, pages 894 - 901
T. NORBY: "Solid-state protonic conductors: principles, properties, progress and prospects", SOLID STATE IONICS, vol. 125, 1999, pages 1 - 11
THE BELL SYS. TECH. J., vol. 37, 1958, pages 711 - 718
Z. R. MUSAEVA ET AL: "Effect of oxygen content and nonstoichiometry defects on the phase transformations in manganites of the La0.65Sr0.35Mn1-x-y Ni x Ti y O3 + [gamma] system", BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS, vol. 74, no. 10, 1 October 2010 (2010-10-01), pages 1462 - 1465, XP055026260, ISSN: 1062-8738, DOI: 10.3103/S1062873810100424 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962251A (en) * 2019-04-18 2019-07-02 北京理工大学 Anode of solid oxide fuel cell material with resistant to sulfur, carbon accumulation resisting ability
CN111393164A (en) * 2020-03-23 2020-07-10 景德镇陶瓷大学 Perovskite anode material and preparation method and application thereof
CN111393164B (en) * 2020-03-23 2022-09-30 景德镇陶瓷大学 Perovskite anode material and preparation method and application thereof

Also Published As

Publication number Publication date
FR2981063B1 (en) 2013-12-06
FR2981063A1 (en) 2013-04-12

Similar Documents

Publication Publication Date Title
Hanif et al. Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications
Chung et al. In situ preparation of a La 1.2 Sr 0.8 Mn 0.4 Fe 0.6 O 4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs
Montenegro-Hernandez et al. Thermal stability of Ln2NiO4+ δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes
Medvedev et al. BaCeO3: Materials development, properties and application
Fabbri et al. Materials challenges toward proton-conducting oxide fuel cells: a critical review
Wang et al. Yttrium surface gradient doping for enhancing structure and thermal stability of high-Ni layered oxide as cathode for Li–ion batteries
Deka et al. Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La, Sr) FeO3 cathode and the resultant activity enhancement in CO2 reduction
US8247113B2 (en) Titanates of perovskite or derived structure and applications thereof
Garali et al. Synthesis, characterization and electrochemical properties of La2-xEuxNiO4+ δ Ruddlesden-Popper-type layered nickelates as cathode materials for SOFC applications
Zhou et al. Attempted preparation of La 0.5 Ba 0.5 MnO 3-δ leading to an in-situ formation of manganate nanocomposites as a cathode for proton-conducting solid oxide fuel cells.
Bhoga et al. Investigation on Pr2− xSrxNiO4+ δ (x= 0.3–1.0) cathode materials for intermediate temperature solid oxide fuel cell
Lay et al. Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials
KR102201082B1 (en) The method of generating oxygen vacancies in nickel-cobalt oxide for oxygen reduction reaction and nickel-cobalt oxide thereby
Arrive et al. Study of (La, Sr)(Ti, Ni) O3-δ materials for symmetrical Solid Oxide Cell electrode-Part A: Synthesis and structure analysis in air
Filonova et al. Influence of synthesis conditions on phase formation and functional properties of prospective anode material Sr2Ni0. 75Mg0. 25MoO6-δ
Samreen et al. Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review
CN113800571A (en) Solid oxide fuel cell cathode material, preparation method thereof and solid oxide fuel cell
Sun et al. Preparation and properties of yttrium-doped SrTiO3 anode materials
WO2013050919A1 (en) Mixed conductive titanates for a high-temperature electrochemical system
Sharma et al. In situ exsolution of ceria nanoparticles in perovskite cathode for elevating CO2 reduction performance of solid oxide electrolysis cells (SOECs)
Chauhan et al. Microstructural dependent oxygen reduction reaction in a Ruddlesden–Popper perovskite (SmSr) NiO 4− δ
Yin et al. Unveiling the importance of the interface in nanocomposite cathodes for proton‐conducting solid oxide fuel cells
Shan et al. A ternary MOF derived single crystalline LiNi1/3Mn1/3Co1/3O2 as high-voltage cathodes for lithium-ion batteries
Norman et al. Influence of transition or lanthanide metal doping on the properties of Sr0. 6Ba0. 4Ce0. 9M0. 1O3-δ (M= In, Pr or Ga) electrolytes for proton-conducting solid oxide fuel cells
Miruszewski et al. Fabrication, structural and electrical properties of Sr (V, Nb) O3-δ perovskite materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12778805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12778805

Country of ref document: EP

Kind code of ref document: A1