WO2013050644A1 - Enantiomers of 2-hydroxy derivatives of fatty acids - Google Patents

Enantiomers of 2-hydroxy derivatives of fatty acids Download PDF

Info

Publication number
WO2013050644A1
WO2013050644A1 PCT/ES2012/070697 ES2012070697W WO2013050644A1 WO 2013050644 A1 WO2013050644 A1 WO 2013050644A1 ES 2012070697 W ES2012070697 W ES 2012070697W WO 2013050644 A1 WO2013050644 A1 WO 2013050644A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
level
cancer
activity
pathologies
Prior art date
Application number
PCT/ES2012/070697
Other languages
Spanish (es)
French (fr)
Inventor
Pablo Vicente ESCRIBÁ RUIZ
Gwndolyn BARCELÓ COBLIJN
María Laura MARTÍN
Silvia TERÉS JIMÉNEZ
María Antònia NOGUERA SALVÀ
Xavier Busquets Xaubet
David LÓPEZ JIMÉNEZ
Maitane IBARGUREN AIZPITARTE
José Javier SOTO SALVADOR
Miguel YUS ASTIZ
Original Assignee
Universitat De Les Illes Balears
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Les Illes Balears filed Critical Universitat De Les Illes Balears
Priority to DK12838506.9T priority Critical patent/DK2774910T3/en
Priority to RU2014118123A priority patent/RU2637937C2/en
Priority to CN201280060748.XA priority patent/CN104321300A/en
Priority to EP17191078.9A priority patent/EP3287437B1/en
Priority to IN3111CHN2014 priority patent/IN2014CN03111A/en
Priority to PL12838506T priority patent/PL2774910T3/en
Priority to US14/349,962 priority patent/US9359281B2/en
Priority to ES12838506.9T priority patent/ES2653675T3/en
Priority to EP12838506.9A priority patent/EP2774910B1/en
Publication of WO2013050644A1 publication Critical patent/WO2013050644A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • C07C51/493Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification whereby carboxylic acid esters are formed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention refers to a method of synthesis of racemic products and the separation of their optical isomers [-] (which corresponds to the S enantiomer) and [+] (which corresponds to the R enantiomer) of 2-hydroxy derivative compounds from fatty acids, to the isolated enantiomers themselves, to pharmaceutical compositions that comprise them, and to their use as medicines in the treatment of diseases whose common etiology is based on alterations (of any origin) of cell membrane lipids such as, for example : alterations in the level, in the composition or in the structure of said lipids, as well as in the treatment of diseases in which the regulation of the composition and membrane lipid structure induces the reversal of the pathological state.
  • the therapeutic effect is preferably achieved through the regulation (activation or inhibition) of the activity of the enzyme ceramide: phosphocholine choline phosphotransferase (also known as sphingomyelin synthase or EC 2.7.8.27, IUBMB Enzyme Nomenclature), or the level of its product, sphingomyelin (SM).
  • ceramide phosphocholine choline phosphotransferase
  • SM sphingomyelin
  • Both PFAG and DFIFR can therefore be used for the detection of the therapeutic efficacy of drugs for the treatment of diseases mediated by the activity of sphingomyelin synthase or SM itself.
  • the present invention also refers to the development of a kit that is based on the detection of said diseases.
  • both the enzyme EC 2.7.8.27, and sphingomyelin (SM) can be used as molecular markers of the effect of the compounds of the present invention on the diseases described above. Therefore, the present invention also encompasses an in vitro method for the diagnosis / prognosis of said diseases based on the evaluation of the regulation of the activity or level of said EC enzyme 2.7.8.27, and / or the level of MS, PFAG or DFIFR; as well as kits that include means specially designed to carry out said diagnoses / forecasts. These methods and kits would be based on the determination of the changes induced by treatments with the molecules mentioned in the present invention or in the possibility of changing the molecular entities indicated above with said treatments.
  • the enzyme EC 2.7.8.27 and / or SM can be used as therapeutic targets to which to direct molecules capable of reversing their altered state and, consequently, treating those pathological processes that had developed, or were to be developed in a future, as a result of the abnormal activity of the enzyme EC 2.7.8.27 or the inappropriate level of SM.
  • both the enzyme EC 2.7.8.27, as well as the SM itself, can be the basis for the design of screening procedures for candidate compounds in order to achieve molecules that, such as enantiomers [-] (also called S) and [+] (corresponding to the R form) of 2-hydroxy derivative fatty acid compounds of the invention, have the ability to regulate the activity of the enzyme EC 2.7.8.27 and / or the level of SM, exerting a therapeutic effect.
  • the present invention due to its application spectrum, is likely to be encompassed in the field of medicine and pharmacy in general. It should be noted that since regulatory agencies in pharmaceutical matters require the existence of methods or kits to monitor the efficacy of a compound with a certain therapeutic activity, both the description of the compounds, their synthesis, their therapeutic scope and their detection should be considered parts of this invention.
  • Cell membranes are structures that define the entity of the cells and the organelles contained therein. In the membranes or in their vicinity most of the biological processes occur. Lipids not only have a structural role, but regulate the activity of important processes. Moreover, the regulation of the lipid composition of the membrane also influences the location or function of important proteins involved in the control of cellular physiology, such as G proteins or PKC (Escribá et al, 1995; Escribá et al, 1997; Yang et al, 2005; Mart ⁇ nez et al, 2005). These and other studies demonstrate the importance of lipids in the control of important cellular functions.
  • the lipid composition of cell membranes is influenced by the type and abundance of ingested lipids (Perona et al, 2007). From this it follows that lipid intake can regulate the lipid composition of membranes, which in turn can control the interaction (and therefore the activity) of important cellular signaling proteins (Yang et al, 2005).
  • membrane lipids can control cell signaling means that they can also regulate the physiological state of the cells.
  • both negative and positive effects of lipids on health have been described (Escribá et al, 2006; Escribá et al, 2008).
  • Preliminary studies have shown that 2-hydroxyoleic acid, which is a monounsaturated fatty acid, is capable of reversing certain pathological processes, such as overweight, hypertension or cancer (Alemany et al, 2004; Mart ⁇ nez et al, 2005; Vógler et al, 2008).
  • Cardiovascular diseases are frequently associated with hyperproliferation of the cells that constitute the cardiac and vascular tissues. This hyperproliferation of cardiovascular cells results in deposits in the internal lumen of the vessels and cavities of the cardiovascular system that result in a wide range of diseases, such as hypertension, atherosclerosis, ischemia, heart attacks, etc. (Schwartz et al, 1985). In fact, the development of drugs that prevent cell proliferation for the prevention and treatment of cardiovascular diseases has been suggested (Jackson et al, 1992).
  • Obesity or overweight is caused by an alteration between the balance of intake and energy expenditure that is due, in part, to alterations in the mechanisms that regulate these processes.
  • this pathology is characterized by hyperplasia (increase in the number of cells) or hypertrophy (increase in size) of adipose tissue cells, adipocytes.
  • fatty acids either free or as part of other molecules, can influence a series of parameters related to energy homeostasis, such as body fat mass, lipid metabolism, thermogenesis or intake, among others ( Vógler et al, 2008). In this sense, the modification of fatty acids could be a strategy to regulate energy homeostasis and, therefore, body weight.
  • lipid intake also determines the appearance of other pathological processes, such as hypercholesterolemia, hypertriglyceridemia, diabetes or metabolic syndrome (Sloan et al, 2008)
  • Neurodegenerative processes give rise to a series of diseases with different manifestations, but with the common characteristic of being caused by degeneration of the cells of the central and / or peripheral nervous system. Some of these neurodegenerative processes involve a significant reduction in the cognitive capacity of patients, such as Alzheimer's disease or senile dementia. Others lead to motor-type alterations, such as Parkinson's disease or different types of sclerosis. Finally, certain neurodegenerative diseases can lead to processes in which blindness, hearing problems, disorientation, mood alterations, etc. develop.
  • Alzheimer's disease in which the formation of senile plaques has been observed, composed of remains of membrane proteins (such as the ⁇ -amyloid peptide) erroneously processed, which accumulate outside of the cells, and clews of neurofilaments of Tau protein, which appear inside the cell.
  • membrane proteins such as the ⁇ -amyloid peptide
  • clews of neurofilaments of Tau protein which appear inside the cell.
  • This process has been associated with alterations in cholesterol metabolism and the consequent alteration of cholesterol levels in membranes (Sagin et al, 2008).
  • the development of this disease is related to other diseases in which alterations of lipid metabolism have been described, and more specifically of cholesterol, such as cardiovascular diseases.
  • sclerosis and other neurodegenerative processes are related to "demyelination", whose net result is the loss of lipids in the neuronal axon sheath, with the consequent alterations in the process of propagation of electrical signals that this implies.
  • Myelin is a lipid layer that surrounds the axons of many neurons and is formed by a succession of spiral folds of the glia cell plasma membrane (Schwann cells). Therefore, it is clear that lipids play an important role in the development of neurodegenerative diseases.
  • unmodified natural polyunsaturated fatty acids have a moderate preventive effect on the development of neurodegenerative processes (La ⁇ e et al, 2005).
  • Metabolic diseases form a set of pathologies characterized by the accumulation or deficit of certain molecules.
  • a typical example is the accumulation of cholesterol and / or triglycerides above normal levels.
  • the increase in cholesterol and / or triglyceride levels, both at the systemic level (for example the increase in plasma levels) and at the cellular level (for example in cell membranes) is associated with alterations in cell signaling that lead to dysfunctions at various levels, and that are normally due to errors in the activity of certain enzymes or the control of said proteins.
  • hypercholesterolemia high cholesterol levels
  • hypertriglyceridemia high triglyceride levels.
  • the molecules described in the present invention have the structural characteristics that determine a positive effect on the health of certain natural fatty acids, together with molecular modifications that enhance the effect of the original molecules and also prevent their rapid metabolization, both essential characteristics to determine its pharmacological activity.
  • sphingolipids Deepening the importance of cell membrane lipids, sphingolipids or sphingophospholipids are an important class of cell membrane lipids and are the most abundant in the tissues of more complex organisms. Sphingolipid molecules have unfriendly properties, that is, both hydrophobic and hydrophilic, which allows them to play an important role in the formation of biological membranes. Some of the glycosphingolipids are found on the surface of red blood cells and the rest of cells acting as antigens and constituting blood groups.
  • SM sphingolipids are of great biological importance because of the role of cell signaling they play.
  • SM is a very abundant type of sphingolipid in the cell membranes of all organisms (Huitema et al, 2004). It is mainly located in the outer monolayer of the plasma membrane where it has an essential function in the formation of microdomains called lipid rafts, which are specialized areas of the cell membrane with important functions in cell signaling, since these domains concentrate proteins that interact with each other thanks to the approximation that derives from their binding to lipids (Simons and Toomre, 2000) .
  • the enzyme EC 2.7.8.27 is responsible for the synthesis of MS by transferring a phosphocholine (from phosphatidylethanolamine or phosphatidylcholine) to the primary hydroxyl group of ceramide to form MS and 1,2-diacylglycerol (DAG). This enzyme occupies a central position in the metabolism of sphingolipids and glycerophospholipids.
  • EC 2.7.8.27 is located in the plasma membrane, in the Golgi apparatus and its activity in the nuclear membrane and in chromatin has also been detected (Albi et al, 1999).
  • EC 2.7.8.27 also acts as a regulator of ceramide and diacylglycerol (DAG) levels, both of which are molecules that regulate cell death programmed by apoptosis and autophagy (Jiang et al, 2011; Van Helvoort et al, 1994 ; Tafesse et al, 2006).
  • the polar head of the SM is very bulky and prevents the anchoring of proteins, such as Ras, which have branched lipids (such as isoprenyl, farnesyl or geranylgeranyl moieties), while favoring the anchoring of other proteins that have saturated fatty acid residues ( as myristic or palmitic acids).
  • the present invention refers to the synthesis of a series of 2-hydroxy derivative compounds of fatty acids, the separation of their racemic forms and their therapeutic applications.
  • the present invention also includes the description of the cell targets of their activity and, in addition, of biomarkers that allow determining the efficacy of said compounds, as well as the processes used for this.
  • Ceramide produced by the activity of EC 2.3.1.50 is a lipid molecule of great biological interest.
  • An important role related to ceramide is its participation in the induction of apoptosis, also called programmed cell death (Lladó et al, 2010).
  • Apoptosis is a very regulated biological process that serves to eliminate cells that are not useful or that compromise the health of the body. In this sense, it is common for tumor cells to develop molecular mechanisms to escape apoptosis (Lladó et al, 2010).
  • the present invention focuses on resolving alterations in the cellular levels of SM, resulting in compounds capable of reversing the altered expression level of the enzyme EC 2.7.8.27 by activation (in case the enzyme is under-expressed or that has a reduced activity) or through its inhibition (in case the enzyme is overexpressed or has an increased activity), managing to control the levels of SM synthesized by said enzyme and, consequently, reverse the processes pathological due to enzyme deregulation or abnormal levels of MS.
  • a method of synthesis of molecules in their racemic form and subsequent isolation of the [-] and [+] enantiomers of 2-hydroxy derivative fatty acid compounds was carried out.
  • the present invention refers to pharmaceutical compositions comprising said enantiomers, and their use as medicaments in the treatment of diseases whose common etiology is based on alterations (of any origin) of cell membrane lipids such as: alterations in the level, in the composition or in the structure of said lipids, as well as in the treatment of diseases in which the regulation of the composition and membrane lipid structure induces the reversal of the pathological state.
  • the therapeutic effect is preferably achieved through the regulation (activation or inhibition) of the activity of the enzyme EC 2.7.8.27, and / or the level of its product, the SM, or even the level of PFAG and / or of DHFR.
  • the present invention demonstrates that, for example in U118 cells, compound 20HOA regulates the activity of other enzymes involved in lipid metabolism.
  • the enzyme EC 2.3.1.50 was investigated.
  • 20HOA stimulates the activity of CD 2.3.1.50 (Example 8 and Figure 9), causing programmed cell death in human leukemia cells.
  • an important reduction in oleic acid levels was also found in the membranes of U118 cells treated with 20HOA, demonstrating that 20HOA is a potent inhibitor of EC 1.14.19.1, an enzyme responsible for the synthesis of oleic acid from of stearic acid (Example 9 and Figure 10).
  • both EC 2.7.8.27 and EC 2.3.1.50 are enzymes corresponding to the metabolism of sphingolipids, which are related to belonging to the metabolic pathway of the same type of molecules.
  • the enzyme EC 1.14.19.1 is a fatty acid modifier.
  • the relationship with the other two enzymes is that sphingolipids always carry fatty acid chains in their structure. Since each fatty acid has different properties than sphingolipids, the fact that they can be modified affects their biological activity. Thus, it can be affirmed that the three enzymes mentioned in the present invention are closely related and therefore it is normal that the same molecule can regulate the activity of the 3 enzymes.
  • the enantiomers [-] (also S isomer) and [+] (also R isomer) of the invention differ in the direction of deflection of polarized light. If the optical isomer deflects the polarized light to the right (in orientation with the hands of the clock) it is represented by the sign [+] (it is the dextrogiro isomer or dextrous form). On the other hand, if the optical isomer deflects the polarized light to the left (in a counter-clockwise direction), it is represented by the sign [-] (it is the levographic isomer or levo form).
  • the present invention evidences that the [-] enantiomer of 2-hydroxy derivative compounds of fatty acids acts as activator of the enzyme EC 2.7.8.27 by positively regulating the synthesis of SM, a sphingolipid that, as explained above, is mostly in the membranes of human and animal cells, and indispensable for the correct structuring of the lipid bilayer and functioning of the cell.
  • said enantiomer [-] can be used for the preparation of a pharmaceutical composition for the treatment of those pathologies whose common etiology is structural and / or functional alterations of lipids located in the cell membrane, such as: cancer, obesity , hypertension, hypertriglyceridemia, hypercholesterolemia or diabetes, etc., due to an abnormally low activity of said enzyme EC 2.7.8.27.
  • the racemic form is activating this enzyme, since the activity of the [-] isomer predominates, which is the active one, over the [+] isomer, which does not induce the activity of the enzyme.
  • the positive activity of the racemic form is considered to be due to the fact that for the activity of this enzyme an activation that induces the synthesis of new molecules of SM is more important, than the inhibition that can silence enzyme molecules than previously They were not active.
  • the activating power of the racemic form is inferior to that of the enantiomer [-], which explains its lower therapeutic activity.
  • the [-] enantiomer of 2-hydroxy derivative fatty acid compounds exhibits an improved therapeutic effect with respect to the racemic (which contains equal amounts of the two enantiomers).
  • the [-] enantiomer of 2-hydroxy derivative fatty acid compounds has less toxicity and side effects than the racemic one and that the [+] enantiomer (see Table 3, Example 7).
  • the present invention also demonstrates that the [+] enantiomer of 2-hydroxy derivative fatty acid compounds acts as an inhibitor of said EC enzyme 2.7.8.27 by negatively regulating the synthesis of SM, and can be used in basic research for the study of regulation of the EC enzyme 2.7.8.27 itself, or for the treatment of diseases characterized by an abnormally high activity of the enzyme EC 2.7.8.27, and / or an abnormally high level of SM, such as cystic fibrosis (Slomiany et al, 1982). On the other hand, high cholesterol and triglyceride levels have been associated with significant cardiovascular disorders.
  • lipid rafts liquid ordered, that is, ordered liquid
  • the increase in cholesterol favors the increase of these lipid regions, which implies changes in cell signaling that can lead to different diseases or cardiovascular and metabolic alterations. Therefore, reducing the levels of MS in cases of hypercholesterolemia and hypertriglyceridemia can help lower cholesterol and triglyceride levels in plasma and membranes.
  • the enantiomer [+] would have a protective role in certain types of disorders, such as hypercholesterolemia and hypertriglyceridemia, since it induces reductions in serum levels of these lipids and reductions in MS levels that would concur in a reduction of The density of lipid rafts in the cells.
  • both the enzyme and the SM itself could be considered as molecular markers, usable to lead to carry out a method of diagnosis and / or prognosis in vitro of diseases based on alterations in the cell membrane. Such changes do not occur naturally, but are caused by the activity of the compounds described in the present invention.
  • the compounds of the present invention also regulate the levels of DHFR and PFAG proteins. Consequently, the present invention also refers to a method / kit for Carry out the diagnosis or prognosis of pathologies associated with altered levels with respect to the normal DHFR and PFAG proteins.
  • Said kit comprises reagents or means capable of evaluating the activity of the enzyme EC2.7.8.27, and / or the level of SM, DFIFR or PFAG and, consequently, implementing said diagnosis / prognosis as a method to follow the efficacy of the treatment of patients
  • said enzyme EC2.7.8.27 and / or its product, SM can be considered as therapeutic targets to which to direct molecules capable of regulating the activity of the enzyme, and / or the level of MS, and , consequently, to reverse those pathological processes that would have developed, or were going to develop in the future, as a result of the alteration in the activity of the enzyme or in the level of SM, DFIFR or PFAG.
  • the [-] enantiomer of the invention serves to illustrate the possible use of the enzyme EC 2.7.8.27 as a therapeutic target, by activating its enzymatic function in pathological processes in which said function is deficient, being able to restore the level of SM at normal levels.
  • the measurement of the activity of the enzyme EC 2.7.8.27, and / or the levels of SM, and / or the levels of PFAG, and / or the levels of DHFR would also be useful for performing selection procedures ( screening, in English) of candidate compounds with the aim of achieving other molecules that, such as the [-] and [+] enantiomers of the invention, had the ability to regulate the activity of the enzyme EC 2.7.8.27, and / or the level of SM, and / or the level of PFAG, and / or the level of DHFR, being able to reverse pathological processes.
  • the present invention demonstrates the particular importance of selecting compounds with exclusive structural characteristics such as: fatty acids with at least one double bond, with a total of carbon atoms (C) equal to or less than 20, and a substituted carbon, particularly with a hydroxyl radical (OH), on carbon 2 (or carbon a).
  • the compounds referred to in the present invention are the [-] and [+] enantiomers of Formula I:
  • the preferred therapeutic form of the present invention is the [-] enantiomer (corresponding to the steric configuration S) of Formula I, which is presented as the most effective way in the activation of the enzyme EC 2.7. 8.27, ahead of the racemic form, and the [+] enantiomer (corresponding to the steric configuration R) of Formula I which is presented as an inhibitor of the enzyme EC 2.7.8.27.
  • the present invention makes special reference to the [+] and [-] enantiomers of Formula I with the following values of a, b and c:
  • diseases characterized by a deficit in the activity of the enzyme EC 2.7.8.27, and, consequently, by an abnormally low level of SM in cell membranes, and that could be treated or prevented with the enantiomer [- ] of the invention are:
  • Cancer prostate cancer, breast cancer, pancreatic cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer (see Table 2).
  • vascular pathologies hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia, etc.
  • Metabolic pathologies diabetes, metabolic syndrome or obesity.
  • the first aspect of the present invention refers to an [-] or [+] enantiomer of a compound of Formula I and / or at least one of its pharmaceutically acceptable salts
  • a, b and c can take independent values between O and or, provided that the total number of carbons is ⁇ 20.
  • diseases characterized by an excess in the activity of the enzyme EC 2.7.8.27, and, consequently, by an abnormally high level of SM in cell membranes, and which could be treated or prevented with the enantiomer [+] of the invention are fibrosis cystic, hypercholesterolemia and hypertriglyceridemia.
  • a second aspect of the present invention refers to the use of at least one compound of the aforementioned for the preparation of a pharmaceutical composition for the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane , due to deregulation of the activity of the enzyme EC 2.7.8.27, of the level or concentration of SM, of the level of PFAG or of the level of DHFR, in cells in general and in membranes, in particular.
  • the present invention covers at least one compound of the aforementioned for use in the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane, due to the deregulation of the activity of the EC enzyme 2.7.8.27, of the level or concentration of SM, of the level of PFAG or of the level of DHFR, in cells in general and in membranes, in particular.
  • the present invention refers to the pharmaceutical composition itself comprising at least one of said compounds and, optionally, pharmaceutically acceptable carriers.
  • the compounds of the present invention can be administered independently or formulated in pharmaceutical compositions where they are combined with excipients such as: binders, fillers, disintegrators, lubricants, coaters, sweeteners, flavorings, colorants, transporters, etc., and combinations thereof.
  • the compounds of the invention can be part of pharmaceutical compositions in combination with other active ingredients.
  • the compounds of the invention can be carried out by any route such as, for example, enterally (through the digestive system), orally (by pills, tablets or syrups), rectally (by suppositories or enemas), topically (through creams or patches), inhalation, parenterally injected, intravenous injection, intramuscular injection or subcutaneous injection, as indicated above or in any type of pharmaceutically acceptable form, such as : methyl, ethyl, phosphates, other radicals of the ester, ether, alkyl type, etc.
  • any route such as, for example, enterally (through the digestive system), orally (by pills, tablets or syrups), rectally (by suppositories or enemas), topically (through creams or patches), inhalation, parenterally injected, intravenous injection, intramuscular injection or subcutaneous injection, as indicated above or in any type of pharmaceutically acceptable form, such as : methyl, ethyl, phosphates, other radicals of the ester,
  • a third aspect of the present invention refers to a method of treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane, due to deregulation of the activity of the enzyme EC 2.7.8.27, the SM level, the PFAG level or the DHFR level; which comprises the administration to the patient of a therapeutically effective amount of at least one compound of the aforementioned or compositions comprising them.
  • the pathologies are preferably selected from: preferably prostate cancer, breast cancer, pancreas cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer; vascular pathologies preferably hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia or metabolic pathologies; Metabolic pathologies preferably: diabetes, metabolic syndrome or obesity.
  • the pathology is, for example, cystic fibrosis, hypercholesterolemia and hypertriglyceridemia.
  • therapeutically effective amount is understood as that which reverts the disease or prevents it without showing adverse side effects.
  • pharmaceutically effective amount would also be understood as that which, producing a significant therapeutic effect, had an acceptable level of toxicity when the treated disease was very serious or fatal.
  • a fourth aspect of the present invention refers to an in vitro method for the selection of candidate compounds useful in the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane, which includes the evaluation of changes produced on the activity of the enzyme EC 2.7.8.27, the level of SM, the level of PFAG or the level of DHFR in the presence of said candidate compound. That is, the present invention comprises the use of the enzyme EC 2.7.8.27, of SM, PFAG or DHFR as therapeutic targets, with the purpose of designing therapeutic tools capable of altering their activity (eg, Figure 5) or levels and to which to direct compounds with the aim of preventing and / or treating the pathologies described above.
  • the fifth aspect of the present invention refers to in vitro methods for the prognostic / diagnosis of pathologies whose common etiology is structural and / or functional alterations of the lipids located in the cell membrane comprising the determination of the deregulation of the activity of the enzyme EC 2.7.8.27 and / or the presence of an abnormal level of SM, PFAG or DFIFR in the cell membrane or other cell compartments. That is, the present invention comprises the use of the enzyme EC 2.7.8.27, or of SM, PFAG or DFIFR, as molecular markers through which to make the diagnosis and / or prognosis of the previously described pathologies.
  • both SM and the enzyme EC 2.7.8.27, DHFR and PFAG constitute biomarkers for the detection of human diseases, and, as mentioned above, are therapeutic targets for the design of new therapies for humans.
  • the present invention refers to an in vitro method for the prone diagnosis / diagnosis of pathologies whose common etiology is structural and / or functional alterations of the lipids located in the cell membrane comprising the determination of a deficit in the EC enzyme activity 2.7.8.27, the presence of an abnormally low level of SM in the cell membrane, an abnormally low cellular level of PFAG or an abnormally high cellular level of DFIFR, where, preferably, the pathologies They are selected from: preferably prostate cancer, breast cancer, pancreas cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer; vascular pathologies preferably hypertension, arteriosclerosis, cardiomyopathies, stroke, angiogenesis, cardiac hyperplasia or metabolic pathologies; Metabolic pathologies preferably: diabetes, metabolic syndrome or obesity.
  • the present invention refers to an in vitro method for the prone diagnosis / diagnosis of pathologies whose common etiology is structural and / or functional alterations of the lipids located in the cell membrane comprising the determination of an excess in the EC enzyme activity 2.7.8.27, the presence of an abnormally high level of SM in the cell membrane, an abnormally high level of PFAG or an abnormally low level of DHFR, where, preferably, the pathology is fibrosis cystic hypercholesterolemia and hypertriglyceridemia.
  • kits to be used in the prognostic / diagnostic method defined above which comprises useful means for determining the activity of the enzyme EC 2.7.8.27, of the level of SM in the membrane cellular, DHFR levels / activity and / or GAPF levels.
  • useful means comprise the TLC and HPTLC technique, gas chromatography, image analysis, absorption or fluorescence spectroscopy, optical microscopy, fluorescence, confocal microscopy, immunoblotting, immunocytochemistry, ELISA or similar techniques (RIA, dot / slot blot, EIA, etc.).
  • the kit is characterized in that the prognosis / diagnosis is carried out through direct quantification of sphingomyelin levels, and / or indirect quantification thereof through its precursors (for example phosphatidylethanolamine, phosphatidylcholine , ceramide, etc.) or its derivatives (for example sphingolipids).
  • the precursor for example phosphatidylethanolamine, phosphatidylcholine , ceramide, etc.
  • the derivatives for example sphingolipids.
  • the precursor is ceramide
  • the derivative is BD-Cer or BD-SM and indirect measurement is made through lisenin.
  • Another aspect of the present invention refers to a method of synthesis of racemic compounds and the isolation and purification of the enantiomers of the molecules of the invention comprising the following steps:
  • step 1) in the case of acid and step 2) in the case of the ester to start reprocessing each of the isolated fractions (acid and ester) until the desired enantiomeric purity is obtained (95% enantiomeric excess, which is equivalent to 97.5% of the desired enantiomer and 2.5% of the unwanted one).
  • the separation and isolation of the two enantiomers of 20HOA is not known to date. Especially the isolation of the enantiomer [-] had not been possible to date due to its technical difficulty.
  • the present invention also refers to an in vitro method of monitoring the cellular alterations produced on the diseased cells by the effect of the compounds of the present invention, or other compounds that act on the same process or on related cellular processes, producing the healing or improvement of the affected cells in the patient. That is, the present invention comprises the use of the enzyme EC 2.7.8.27, or of SM, DHFR or GAPF as molecular markers whose changes induced by the treatment with the molecules of the present invention allow to know if the patient responds to the treatment and, therefore, determine its effectiveness and the time that must be maintained.
  • a preferred aspect of the present invention refers to a method that allows to follow the changes induced by the molecules of the present invention or other molecules that perform a similar effect on pathological cells. Therefore, the use of MS, the enzyme EC 2.7.8.27, DHFR and / or PFAG offers the possibility that the applied therapy can change its levels or activity.
  • the purpose of this determination is (1) the prediction of the efficacy of the treatment to avoid potentially non-responding patients following an ineffective therapy and (2) knowing the evolution of the patient to confirm that he responds to the therapy and know the doses to be delivered depending on the phase of the treatment, as well as the duration of these phases and the treatment itself as a whole.
  • these aspects are critical to avoid unnecessary pharmaceutical expenditure and to be able to apply the therapy in the most rational way possible, the large regulatory agencies in pharmaceutical matters request the existence of biomarkers and diagnostic systems as described here.
  • the present invention refers to a method for the treatment of patients suffering from the pathologies described above, which comprises the determination of the presence of said deregulation in the enzyme EC 2.7.8.27, of the level of MS, of the level of PFAG or DHFR level, and the treatment of the patient presenting said deregulation with the compounds of the invention.
  • the present invention refers to a method for selecting therapy for a patient with a pathology described in the present invention which comprises determining the presence of said deregulation in the enzyme EC 2.7.8.27, of the level of MS, of the level of PFAG or DFIFR level and the selection, based on said determination, of a therapy based on the compounds of the present invention.
  • High / low level of PFAG A high level of PFAG is considered to be double or more (> 200%) of the normal levels present in glia cells, in reference to mg of total protein.
  • a low level of PFAG is considered to imply the presence of levels of half or less ( ⁇ 50%) with respect to the normal levels present in glia cells, in reference to mg of total protein.
  • ⁇ High / low level of DHFR A high level of DHFR is considered to be double or more (> 200%) of the normal levels present in quiescent cells of any type, in reference to mg of total protein.
  • a low level of DHFR is considered to imply the presence of levels of half or less ( ⁇ 50%) with respect to the normal levels present in quiescent cells of any type, in reference to mg of total protein.
  • the compound 20HOA induces a significant increase in the synthesis of MS in different human brain cancer cell lines (U118, SF767 and 1321N1), human lung cancer cells (A549) and human leukemia cells (Jurkat), but not in non-tumor cells (human lung fibroblast cells MRC5). This increase is, therefore, induced and specific for tumor cells. Likewise, the antitumor effect on these and other tumor lines has also been studied (see Table 2). The cells were treated vehicle (water with 5% ethanol, Control) or with the compound 20HOA, for 24 hours at a concentration of 200 ⁇ .
  • the levels of MS measured in tumor cells are significantly lower than those of normal cells and the 20HOA compound only induced significant changes in cancer cells.
  • the enzyme EC 2.7.8.27 is a therapeutic target for the treatment of cancer and a biomarker for the monitoring of the pathology and its evolution during the applied therapies, and that, on the other hand, the compound 20HOA is an activator of this enzyme and reverses the low levels of SM presented by tumor cells.
  • other techniques have been tested that have yielded very similar results, such as gas chromatography, confocal microscopy, fluorescence spectroscopy, etc.
  • the ordinate axis represents the quantification of the fluorescence intensity (arbitrary units) by confocal microscopy in sections of the tumors shown in the upper panel (mean ⁇ standard error of the mean), from vehicle treated animals (Control ), or 20HOA at 600 mg / kg -day (T600) or 900 mg / kg ⁇ day (T900) for 50 days (po). *** P ⁇ 0.001.
  • A Ul 18 human glioma cancer cells treated at a concentration of 200 ⁇ of 20HOA at different times (2, 6, 12, 24, 48 and 72 hours). The white bars correspond to cells treated with vehicle (control).
  • B U118 cells treated for 24 hours at different concentrations of 20HOA (25-400 ⁇ ).
  • FIG. 3 The 20HOA compound induces an increase in nuclear SM.
  • U118 cancer cells were treated for 24 hours with vehicle (control) or with 20HOA at a concentration of 200 ⁇ .
  • the compound 20HOA acts directly on the enzyme EC 2.7.8.27.
  • the cells or cell extracts or incubation medium were incubated with the fluorescent substrate of this BD-Cer enzyme (nitrobenzoxadiazol-yl) ceramide], in the presence or absence (control, white bars) of 20HOA (black bars).
  • Figure 5 Structure-function relationship in the activation of the enzyme EC 2.7.8.27. Increase of SM in U118 cells induced by different fatty acids (200 ⁇ , 24 h).
  • Control vehicle; 18: ln-9 (octadecenoic acid); 2Me-18: ln-9 (2-methyloctadecenoic acid); 20H16: 1 (2-hydroxyhexadecenoic acid); 2OH-18: 0 (2-hydroxyoctadecanoic acid); 20HOA (20H-18: ln-9, 2-hydroxyoctadecenoic acid); 20H- 18: 2n-6 (2-hydroxylinoleic acid); 20H-18: 3n-6 (2-hydroxy-y-linolenic acid); 20H- 18: 3n-3 (2-hydroxy-a-linolenic acid); 2OH-20: 4n-6 (2-hydroxyarachidonic acid); 2OH-20: 5n-3 (2-hydroxyeicosapentaenoic acid); 20H-22: 6n-3
  • A Changes in cell membrane composition are shown to induce the translocation of Ras protein from the membrane to the cytoplasm. Elevated membrane levels of compound 20HOA and SM prevent anchoring of the Ras protein in the membrane.
  • the figure shows phase contrast (Ph.C) optical microscopy images of human glioma cells (SF767), and confocal microscopy, using a specific antibody against fluorescently labeled Ras, after 10 minutes (confocal 1) and 24 hours (confocal 2) treatment with vehicle (control) or compound 20HOA.
  • Ras protein prevents the inactivation of the Raf protein, as well as the next activation in the signaling cascade of the MEK protein, as observed by the reduction in state of the phosphorylated (active) form of both proteins, determined by immunoblot in U118 cells grown in absence (Control) no presence of 150, 200 or 250 ⁇ of 20HOA.
  • C The previous molecular / cellular events lead to a dramatic reduction in the activity status of the MAP kinase protein (ERK1 and ERK2), also determined by immunoblotting with specific antibodies, at the concentrations of 20HOA indicated in B.
  • D Activity states (phosphorylated form levels) of Akt and EGFR also decrease after incubation with 250 ⁇ of 20HOA.
  • the ordinate axis indicates the percentage of phosphoprotein with respect to the untreated (control) SF767 cells.
  • the abscissa axis indicates the concentration (micromolar) of compound 20HOA.
  • Lower panel Expression of DHFR in human lung cancer cells (A549).
  • DHFR levels vary in response to treatment with the molecules of the invention, so that the activity or levels of this protein can be used as biomarkers to track the therapeutic efficacy of the compounds described herein or compounds acting as similar form. It also follows that tumors in which DHFR levels are high may respond well to treatment with the compounds of the present invention, so this protein is a good biomarker to predict the possible efficacy of enantiomers of fatty acid derivatives. and subsequently demonstrate the efficacy of treatment with these compounds.
  • F Left panel: PAFG levels in serum of animals with human tumors (glioma) determined by immunoblotting.
  • mice were infected with SF767 cells and treated with vehicle (Glioma) or with 20HOA (T, 600 mg / kg ⁇ day, po, 28 days). Immunoreactivity against the fragmented peptide of the PFAG (see photo) in the serum of these animals, expressed as a percentage, was compared with that found in tumor-free and untreated animals (Control). Right panel: Idem, but determined by serum ELISA of animals treated for 7 days (7d600) or 28 days (28d600) with 600 mg / kg of 20HOA (po). A specific antibody against PFAG was used for all experiments.
  • PFAG levels vary in response to treatment with the molecules of the invention, whereby the levels of this protein can be used as biomarkers to follow the therapeutic efficacy of the compounds described herein or compounds that act similarly.
  • tumors in which PFAG levels are low may respond well to treatment with the compounds of the present invention, so this protein is a good biomarker to predict the possible efficacy of enantiomers of fatty acid derivatives. and subsequently demonstrate the efficacy of treatment with these compounds.
  • Various techniques have been used to measure DHFR and PFAG, including electrophoresis, immunoblot, ELISA and the like, RT-PCR, etc. All these and similar techniques can be used to determine the levels or activity of DHFR and PFAG.
  • Figure 7 A) Specificity of the action of the [-] and [+] enantiomers, and of the +/- racemic mixture of 20HOA, in the activity of the enzyme EC 2.7.8.27.
  • the figure shows the levels of SM (percentage of SM over total lipids) in U118 glioma cells after treatment with the racemic mixture of 2-hydroxyoleic acid (+/-), with compound [-] 20HOA and with compound [+] 20HOA.
  • the cells were treated 24 hours at a concentration of 50 ⁇ (50) and 100 ⁇ (100).
  • the enantiomer [-] produces increases in SM, which indicates that it is an activator of the enzyme EC 2.7.8.27, and the enantiomer produces a reduction in the levels of SM (especially obvious at a concentration of 100 ⁇ [+ J20HOA), which indicates that it is an inhibitor of This enzyme
  • Figure 8 This figure shows the effect of racemic 20HOA (+/-) and optical isomers [-] 20HOA and [+ J20HOA on different pathological processes in animal models.
  • A. Effect on the volume of tumors derived from human lung cancer cells (A549): immunosuppressed mice were infected with human lung cancer cells and 7 days later (when the tumors were observable) vehicle treatments were started (control ), Racemic 20HOA (20HOA), and the optical isomers [-] 20HOA and [+] 20HOA (600 mg / kg ⁇ day, 15 days, oral). The bars correspond to mean values ⁇ SEM of the increase in volume (percentage with respect to the volume in control animals at the beginning of the treatment, considered as 100%) of the tumors (n 6).
  • racemic 20HOA Treatment with racemic 20HOA induced significant reductions (P ⁇ 0.01) with respect to control.
  • the optical isomer [-] 20HOA induced significant reductions compared to all other treatments (P ⁇ 0.01).
  • Figure 9 Regulation of enzyme activity 2.3.1.50.
  • the ordinate axis (y) shows the levels of incorporation of [ 3 H] palmitate (dpm / mg protein) in different lipid fractions of U118 cells incubated in the absence (Control, white bars) or presence of 20HOA (black bars). Only a significant increase in radioactivity was found in the sphingomyelin (SM) and ceramide (Cer) fractions, which clearly indicates the selective activation of EC 2.7.8.27 and the enzyme 2.3.1.50.
  • SM sphingomyelin
  • Cer ceramide
  • Figure 10 Regulation of enzyme activity 1.14.19.1.
  • the ordinate (Y) axis shows the levels of incorporation of [ 3 H] oleate (dpm / mg protein) into membranes of Ul 18 cells incubated in the absence (Control, white bar) or presence of 20HOA (black bar).
  • the reduction in incorporation of tritiated oleic into the lipids of cell membranes incubated in the presence of 20HOA demonstrates the inhibition of the enzyme 1.14.19.1.
  • Example 1 Methodology for obtaining racemic compounds and separating the enantiomers [+] and [-] of the 2-hydroxy derivatives of fatty acids.
  • the methodology described below details the synthesis of sodium salts of 2-hydroxy fatty acids with a purity of 99%, by generating the oleic acid dianion by reaction with LDA and subsequent hydroxylation with molecular oxygen; The crude obtained is treated with NaOH to form the sodium salt and purified by two recrystallizations in MeOH / water (avoiding the use of chromatographic columns).
  • the crude product is dissolved in 7.2 L of methanol at 40 ° C in a 10 L reactor and treated with an aqueous solution of sodium hydroxide (134 g in 1.4 L of water), increasing the T to 50 ° C for obtain a homogeneous solution. Cool to 5 ° C for at least 6 h to precipitate the sodium salt, which is filtered and washed with acetone. The solid is recrystallized twice in (10%) H 2 0 / MeOH (0.5 LH 2 O / 5.0 L MeOH) at 50 ° C until complete dissolution and cooling for a minimum of 6 h at 0-5 ° C. The final product is filtered, washed with acetone and dried in vacuo.
  • sodium hydroxide 134 g in 1.4 L of water
  • the method has been carried out at scales of 1-150 g, obtaining similar and reproducible results.
  • the enantiomers can be separated by crystallization, which facilitates the kilos scale process.
  • the loss of performance is due to the manipulation and workup processes, however, new impurities are not generated and the washing and crystallization waters could be combined and reprocessed again.
  • Example 2 Tumor cells have lower levels of SM in their membranes, which increase after treatment with the molecules of the invention.
  • a diagnostic method has been generated for the detection of the described pathological processes and pathologies in which the levels of MS are altered which allows to predict whether the treatment with the molecules of the present invention can be effective, thus as for monitoring the efficacy of the therapy applied using the molecules of the present invention and others of similar activity.
  • the present invention also It includes diagnostic kits to assess a priori the potential utility of this therapy and to track the efficacy of treatment with the molecules of the present invention of these diseases a posteriori.
  • Antiproliferative effect + cell growth inhibition, - absence of effect.
  • Technique used for the analysis 1) TLC or HTPLC, 2) gas chromatography, 3) image analysis, 4) fluorescence spectroscopy, 5) confocal or fluorescence microscope.
  • Example 3 raises the levels of MS by activating the enzyme EC 2.7.8.27.
  • SM is a membrane lipid that prevents the binding of certain molecules involved in cell proliferation, such as the Ras protein.
  • Ras levels were measured by confocal microscopy, using a fluorescently labeled antibody, and it could be detected that the tide passed from the membrane ( Figure 6: 95-99% of the total fluorescence detected in membranes before treatment ) to the cytoplasm (94-97% of the fluorescence detected inside the cell after treatment with 20HOA) in human glioma, lung cancer and leukemia cells.
  • the translocation of Ras from the membrane to the cytoplasm implies the absence of productive interactions between Ras and the Receptor-Tyrosine-Kinase (RTK) or between Ras and Raf, so that the proteins of the MAP kinase pathway do not receive activation and Tumor cells stop proliferating and cell death programs begin.
  • the changes induced by the molecules of the present invention in cell physiology have as intermediate effects (prior to the death of cancer cells or the regulation of activity in other cells) the induction of dramatic reductions in DHFR levels and dramatic increase of PFAG levels (Figure 6).
  • Another effect associated with the reduction of cell proliferation is the increase in nuclear MS levels.
  • the 20HOA treatments resulted in increases in nuclear MS levels ( Figure 3), demonstrating that cell proliferation inhibition is induced.
  • Example 4. Regulation of the enzyme EC 2.7.8.27 depends on the molecular structure of the fatty acid.
  • the present invention refers to the use of the aforementioned compounds as activators (enantiomer [-]), or inhibitors (enantiomer [+]) specific to the enzyme EC 2.7.8.27.
  • the activation of the enzyme EC 2.7.8.27 depends on the number of carbon atoms that the fatty acid has, so that fatty acids with more than 20 C atoms do not produce significant changes in the activity of this enzyme ( Figure 5).
  • other requirements for activation of the enzyme EC 2.7.8.27 are the presence of an OH group on carbon 2 and one or more double bonds, since the presence of other radicals (such as H or CH 3 ) and the lack of Double bonds in the fatty acid structure gave rise to inactive molecules (Figure 5).
  • MS has a molecular structure that determines the effects produced on cell physiology and justifies the reversal of different pathological processes.
  • Figure 7A shows the activation of said enzyme, measured through the levels of SM in U118 human glioma cell membranes, after 24 hours of incubation in the presence of 50 and 100 mM of each of the isomers, as well as the racemic mixture (which contains approximately the same amount of each of them).
  • Figure 7A shows how racemic 20HOA produces significant increases in levels of SM in U118 cell membranes.
  • the optical [-] 20HOA isomer (corresponding to the S enantiomer) is capable of producing even greater increases in the levels of SM.
  • the present invention protects the use for therapeutic applications of the optical isomer [-] 20HOA (S) as activator of the enzyme EC 2.7.8.27 and of the optical isomer [+ J20HOA (R) as a specific inhibitor of this enzyme.
  • S optical isomer
  • R optical isomer
  • These results can be extended to all unsaturated fatty acids between 14 carbon atoms or more and 20 carbon atoms or less, which have one or more double bonds and a hydroxyl radical on the C2 carbon (alpha carbon: Figure 7B).
  • Example 6 The [-] and [+] isomers of C18 fatty acids, such as [-] 20HOA and [+ J20HOA, used as therapeutic agents for the treatment of human diseases.
  • the enantiomer [-] 20HOA and derivatives shown in this invention have therapeutic applications in different areas, such as cancer treatment, obesity, cardiovascular pathologies, diabetes, metabolic syndrome, spinal cord injury, Alzheimer's disease and other processes. Figures 6 and 8; Tables 2-5).
  • the enantiomer [+ J20HOA had a positive effect on cholesterol and triglyceride levels, since it induced significant reductions in the plasma levels of these lipids, whose elevated levels are considered negative for human health ( Figure 8 ). Therefore, the therapeutic effects of each of the isomers, as well as the racemic mixture, in different pathological models were studied.
  • the effect of the optical isomer [-] 20HOA is superior to that of the racemic.
  • after 15-day treatments with the optical isomer [+ J20HOA there were no significant changes in the volume of the tumors. This result demonstrates that the [-] 20HOA isomer is what activates the enzyme EC 2.7.8.27 and has the antitumor therapeutic activity.
  • the animals treated with the [- J20HOA isomer showed reductions in blood pressure greater than 60 mm Hg their systolic pressure, while those treated with the [+ J20HOA isomer and with the racemic product had a remarkable therapeutic effect but of less amplitude .
  • rats treated with the racemic lost 11 grams of weight (approximately 3% of body weight), while animals in the group treated with the enantiomer [-] 20HOA lost 21 grams and the animals of the group treated with the enantiomer [+ J20HOA only lost 7 grams of weight.
  • this invention shows that the optical isomers [-] [+] of unsaturated fatty hydroxy acids of 18 C atoms are effective molecules with therapeutic activity for the treatment of the pathologies indicated above.
  • one and only one of the enantiomers showed to have an activity superior to that of the other molecular forms (statistical significance always P ⁇ 0.05).
  • the [-] enantiomer was shown to be more effective in curing cancer, obesity, diabetes, hypertension, etc., while the enantiomer [+] showed to be more effective in controlling hypercholesterolemia or hypertriglyceridemia.
  • racemic compound was shown as an intermediate situation, capable of emulating the positive effects of any of the optical isomers, but with a lower potency, due to the lower concentration of the active enantiomer in each case.
  • use of the unsuitable enantiomer induced unwanted side effects that were avoided at therapeutic doses with the most active enantiomer (Table 3).
  • Example 7 Efficacy, toxicity and side effects of the enantiomers of the invention.
  • This example reflects the study conducted in immunosuppressed mice infected with human glioma cells (SF767) and treated for 15 days (oral) with the indicated doses (Table 3).
  • This table shows the volume of the tumors at the end of the treatment and the symptoms observed during the days that it lasted. Note, once again, that the efficacy of the [-] 20HOA enantiomer is superior to that of the 20HOA racemic compound, and that the [+ J20HOA enantiomer showed no activity after 15 days of treatment at the indicated doses.
  • the dose that induced reductions of approximately one third of the tumor volume did not induce any side effects in animals treated with [- J20HOA (50 mg / kg), while animals treated with the racemic compound 20HOA at Doses that induced similar reductions in tumor volume (600 mg / kg) showed significant side effects (Table 3).
  • the [-] 20HOA enantiomer induced tumor volume reductions of 89% without observable adverse effects, while at the same dose, the racemic compound only induced or 23% reductions in the volume of the tumors and some of the animals presented adverse effects in response to treatment.
  • the [-] 20HOA enantiomer has a greater potency and that at the maximum therapeutic doses it does not produce adverse effects, while the racemic compound has a more modest effect and induces certain unwanted effects at therapeutic doses.
  • the differences in efficacy between the [-] 20HOA and the racemic enantiomer can mean differences of months or years in the life expectancy of patients.
  • differences in efficacy can result in the cure or not of a certain cancer in a patient.
  • differences in toxicity at therapeutic doses can result in a higher quality of life in patients receiving the enantiomeric form [-] 20HOA.
  • U118 human glioma cells were incubated in the presence or absence (control) of 20HOA (200 ⁇ , 24 h) and then incubated with [ 3 H] palmitate for 5 minutes. After said incubation periods, cell lipids were extracted and separated by TLC. The bands corresponding to each lipid species were extracted and the amount of radioactive palmitate incorporated was measured by liquid scintillation. As can be seen, there was not only an important incorporation in the SM fraction (indicator of activation of EC 2.7.8.27), but also in the ceramide fraction, which demonstrates the activation of the enzyme EC 2.3.1.50 ( serine palmitoyl transferase).
  • Oleic acid is synthesized from stearic acid through the activity of the enzyme stearoyl-CoA desaturase (EC 1.14.19.1). This enzyme is crucial in lipid metabolism, since it is limiting in the synthesis of fatty acids.
  • Ul 18 cells were incubated in the presence or absence of 20HOA (200 ⁇ , 24 h) and, subsequently, in the presence of [ 3 H] oleate (5 minutes ). It was found that the incorporation of radioactive oleic acid into U118 cell membranes incubated in the presence of 20HOA was significantly lower than in control cells ( Figure 10). This result indicates that 20HOA is a potent inhibitor of CD 1.14.19.1, whose regulation has been suggested to be important in the treatment of different human pathologies.
  • Type PV Sastre M, Garc ⁇ a-Sevilla JA. (1995) Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures. Proc Nati Acad Sci U S A. 92: 7595-7599.
  • Arachidonic and docosahexanoic acids reduce the growth of A549 human lung tumor cells increasing lipid peroxidation and PPARs. Chem Biol Interact. 165: 239-50.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Obesity (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Vascular Medicine (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Oncology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to enantiomers of 2-hydroxy derivatives of fatty acids. The invention refers to the synthesis and purification of 2-hydroxy derivatives of fatty acids, and to the method for separating the enantiomers (or optical isomers) [-](S) and [+](R) of 2-hydroxy derivative compounds of fatty acids, to the actual enantiomers, to pharmaceutical compositions that include same and to the use thereof as drugs, as well as to in vitro diagnosis/prognosis methods and to methods for assessing the potential use of the molecules of the invention, in various diseases, as well as to the use thereof for regulating certain enzymes and to the study of the activity and effects thereof.

Description

ENANTIÓMERO S DE 2-HIDROXIDERI VADOS DE ÁCIDOS GRASOS CAMPO DE LA INVENCIÓN  ENANTIÓMERO S DE 2-HIDROXIDERI FATTY ACID VADOS FIELD OF THE INVENTION
La presente invención hace referencia a un método de síntesis de productos racémicos y la separación de sus isómeros ópticos [-] (que se corresponde con el enantiómero S) y [+] (que se corresponde con el enantiómero R) de compuestos 2-hidroxiderivados de ácidos grasos, a los propios enantiómeros aislados, a composiciones farmacéuticas que los comprendan, y a su uso como medicamentos en el tratamiento de enfermedades cuya etiología común está basada en alteraciones (de cualquier origen) de los lípidos de la membrana celular como, por ejemplo: alteraciones en el nivel, en la composición o en la estructura de dichos lípidos, así como en el tratamiento de enfermedades en las que la regulación de la composición y estructura lipídica de membrana induzca la reversión del estado patológico. El efecto terapéutico se consigue, preferentemente, a través de la regulación (activación o inhibición) de la actividad de la enzima ceramida:fosfocolina colinfosfotransferasa (también conocida como esfingomielina sintasa ó EC 2.7.8.27, IUBMB Enzyme Nomenclature), o del nivel de su producto, la esfingomielina (SM). Como resultado de la actividad de esta enzima y de la producción de SM y su acumulación en la membrana, en la célula tumoral, se produce un aumento (hasta un 600% de incremento) de la proteína fibrilar ácida de la glía (PFAG) y una reducción (de hasta más del 90%) en los niveles de la enzima dihidrofolato reductasa (DHFR). Tanto PFAG como DFIFR pueden, por lo tanto, ser utilizados para la detección de la eficacia terapéutica de fármacos para el tratamiento de enfermedades mediadas por la actividad de la esfingomielina sintasa o de la propia SM. La presente invención también hace referencia a la elaboración de un kit que se base en la detección de dichas enfermedades. The present invention refers to a method of synthesis of racemic products and the separation of their optical isomers [-] (which corresponds to the S enantiomer) and [+] (which corresponds to the R enantiomer) of 2-hydroxy derivative compounds from fatty acids, to the isolated enantiomers themselves, to pharmaceutical compositions that comprise them, and to their use as medicines in the treatment of diseases whose common etiology is based on alterations (of any origin) of cell membrane lipids such as, for example : alterations in the level, in the composition or in the structure of said lipids, as well as in the treatment of diseases in which the regulation of the composition and membrane lipid structure induces the reversal of the pathological state. The therapeutic effect is preferably achieved through the regulation (activation or inhibition) of the activity of the enzyme ceramide: phosphocholine choline phosphotransferase (also known as sphingomyelin synthase or EC 2.7.8.27, IUBMB Enzyme Nomenclature), or the level of its product, sphingomyelin (SM). As a result of the activity of this enzyme and the production of MS and its accumulation in the membrane, in the tumor cell, there is an increase (up to 600% increase) of the glia acid fibrillary protein (PFAG) and a reduction (up to more than 90%) in the levels of the enzyme dihydrofolate reductase (DHFR). Both PFAG and DFIFR can therefore be used for the detection of the therapeutic efficacy of drugs for the treatment of diseases mediated by the activity of sphingomyelin synthase or SM itself. The present invention also refers to the development of a kit that is based on the detection of said diseases.
Adicionalmente, tanto la enzima EC 2.7.8.27, como la esfingomielina (SM), pueden ser usadas como marcadores moleculares del efecto de los compuestos de la presente invención sobre las enfermedades anteriormente descritas. Por lo tanto, la presente invención también abarca un método in vitro para el diagnóstico/pronóstico de dichas enfermedades basado en la evaluación de la regulación de la actividad o el nivel de dicha enzima EC 2.7.8.27, y/o del nivel de SM, PFAG o DFIFR; así como kits que comprendan medios especialmente diseñados para llevar a cabo dichos diagnósticos/pronósticos. Estos métodos y kits estarían basados en la determinación de los cambios inducidos por tratamientos con las moléculas citadas en la presente invención o en la posibilidad de cambiar las entidades moleculares arriba indicadas con dichos tratamientos. Additionally, both the enzyme EC 2.7.8.27, and sphingomyelin (SM), can be used as molecular markers of the effect of the compounds of the present invention on the diseases described above. Therefore, the present invention also encompasses an in vitro method for the diagnosis / prognosis of said diseases based on the evaluation of the regulation of the activity or level of said EC enzyme 2.7.8.27, and / or the level of MS, PFAG or DFIFR; as well as kits that include means specially designed to carry out said diagnoses / forecasts. These methods and kits would be based on the determination of the changes induced by treatments with the molecules mentioned in the present invention or in the possibility of changing the molecular entities indicated above with said treatments.
Además, la enzima EC 2.7.8.27 y/o la SM pueden ser utilizadas como dianas terapéuticas a la cuales dirigir moléculas capaces de revertir su estado alterado y, consecuentemente, tratar aquellos procesos patológicos que se hubieran desarrollado, o se fueran a desarrollar en un futuro, como consecuencia de la actividad anormal de la enzima EC 2.7.8.27 o del nivel inadecuado de SM. Así, tanto la enzima EC 2.7.8.27, como la propia SM, pueden ser la base para el diseño procedimientos de selección (screening, en inglés) de compuestos candidatos con el objetivo de conseguir moléculas que, como por ejemplo los enantiómeros [-] (también denominado S) y [+] (correspondiente a la forma R) de compuestos 2-hidroxiderivados de ácidos grasos de la invención, tengan la capacidad de regular la actividad de la enzima EC 2.7.8.27 y/o el nivel de SM, ejerciendo un efecto terapéutico. Así, la presente invención, debido a su espectro de aplicación, es susceptible de ser englobada en el campo de la medicina y la farmacia de forma general. Cabe destacar que dado que las agencias reguladoras en materia farmacéutica exigen la existencia de métodos o kits de seguimiento de la eficacia de un compuesto con una determinada actividad terapéutica, tanto la descripción de los compuestos, como su síntesis, su ámbito terapéutico y su detección deben considerarse partes de esta invención. In addition, the enzyme EC 2.7.8.27 and / or SM can be used as therapeutic targets to which to direct molecules capable of reversing their altered state and, consequently, treating those pathological processes that had developed, or were to be developed in a future, as a result of the abnormal activity of the enzyme EC 2.7.8.27 or the inappropriate level of SM. Thus, both the enzyme EC 2.7.8.27, as well as the SM itself, can be the basis for the design of screening procedures for candidate compounds in order to achieve molecules that, such as enantiomers [-] (also called S) and [+] (corresponding to the R form) of 2-hydroxy derivative fatty acid compounds of the invention, have the ability to regulate the activity of the enzyme EC 2.7.8.27 and / or the level of SM, exerting a therapeutic effect. Thus, the present invention, due to its application spectrum, is likely to be encompassed in the field of medicine and pharmacy in general. It should be noted that since regulatory agencies in pharmaceutical matters require the existence of methods or kits to monitor the efficacy of a compound with a certain therapeutic activity, both the description of the compounds, their synthesis, their therapeutic scope and their detection should be considered parts of this invention.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Las membranas celulares son estructuras que definen la entidad de las células y de los orgánulos en ellas contenidas. En las membranas o en sus proximidades ocurren la mayoría de los procesos biológicos. Los lípidos no sólo tienen un papel estructural, sino que regulan la actividad de importantes procesos. Es más, la regulación de la composición lipídica de la membrana también influye en la localización o la función de importantes proteínas implicadas en el control de la fisiología celular, como las proteínas G o la PKC (Escribá et al, 1995; Escribá et al, 1997; Yang et al, 2005; Martínez et al, 2005). Estos y otros estudios demuestran la importancia que tienen los lípidos en el control de importantes funciones celulares. De hecho, numerosas enfermedades en humanos tales como (entre otras): el cáncer, enfermedades cardiovasculares, procesos neurodegenerativos, obesidad, desórdenes metabólicos, inflamación, enfermedades infecciosas y enfermedades autoinmunes, se han relacionado con alteraciones en los niveles o en la composición de los lípidos presentes en las membranas biológicas, evidenciándose, además, los efectos beneficiosos que presentan los tratamientos con otros ácidos grasos distintos a los de la presente invención y que regulan la composición y estructura de los lípidos de membrana, pudiendo ser empleados para revertir dichas enfermedades (Escribá et al, 2006). Cell membranes are structures that define the entity of the cells and the organelles contained therein. In the membranes or in their vicinity most of the biological processes occur. Lipids not only have a structural role, but regulate the activity of important processes. Moreover, the regulation of the lipid composition of the membrane also influences the location or function of important proteins involved in the control of cellular physiology, such as G proteins or PKC (Escribá et al, 1995; Escribá et al, 1997; Yang et al, 2005; Martínez et al, 2005). These and other studies demonstrate the importance of lipids in the control of important cellular functions. In fact, numerous human diseases such as (among others): cancer, cardiovascular diseases, neurodegenerative processes, obesity, metabolic disorders, inflammation, infectious diseases and autoimmune diseases, have been linked to alterations in the levels or composition of lipids present in the Biological membranes, evidencing, in addition, the beneficial effects of treatments with other fatty acids than those of the present invention and regulating the composition and structure of membrane lipids, and can be used to reverse these diseases (Escribá et al, 2006).
Los lípidos que se ingieren en la dieta regulan la composición lipídica de las membranas celulares (Alemany et al, 2007). Asimismo, diferentes situaciones fisiológicas y patológicas pueden cambiar los lípidos presentes en las membranas celulares (Buda et al, 1994; Escribá et al, 2006). Los cambios en la composición lipídica de las membranas influyen sobre la señalización celular, pudiendo dar lugar al desarrollo de enfermedades o bien a revertirías (Escribá et al, 2006). Diferentes estudios realizados durante los últimos años indican que los lípidos de membrana desempeñan un papel mucho más importante del que se les había asignado hasta ahora (Escribá et al, 2008). Un ejemplo de dicha importancia lo constituyen los peces que viven en ríos con temperatura variable, cuyos lípidos experimentan importantes cambios (cambios en abundancia y tipos de lípidos de membrana) cuando la temperatura baja desde 20°C (verano) hasta 4°C (invierno) (Buda et al, 1994). Estos cambios permiten el mantenimiento de sus funciones en tipos celulares de muy diversa naturaleza. Por ello, se podría decir, que los lípidos de membrana pueden determinar el buen o mal funcionamiento de múltiples mecanismos de señalización celular. Dado que un organismo enfermo lo es porque sus células están enfermas, las alteraciones en los lípidos de membrana pueden dar lugar a la aparición de enfermedades. De forma análoga, formulaciones terapéuticas, nutracéuticas o cosméticas, enfocadas a regular los niveles de lípidos de membrana, pueden prevenir y revertir (curar) procesos patológicos. Además, numerosos trabajos indican que el consumo de grasas saturadas y trans- monoinsaturadas está relacionado con el deterioro de la salud. Enfermedades vasculares y tumorales, entre otras, se han relacionado directamente con este tipo de lípidos (Stendery y Dyerberg, 2004). El deterioro de un organismo se manifiesta en la aparición de éstos y otros tipos de enfermedades. Las membranas celulares constituyen la barrera selectiva a través de la cual una célula intercambia metabolitos e información con otras células y con el medio extracelular que la rodea. Sin embargo, las membranas desempeñan otras funciones muy importantes a nivel celular. Por una parte, sirven de soporte a proteínas implicadas en la recepción o emisión de mensajes que controlan importantes parámetros orgánicos. Dichos mensajes, mediados por numerosas hormonas, neurotransmisores, citoquinas, factores de crecimiento, etc., activan proteínas de membrana, que propagan la señal recibida al interior celular a través de otras proteínas, algunas de las cuales también se ubican en la membrana. Dado que (1) estos sistemas funcionan como cascadas de amplificación y (2) que los lípidos de membrana pueden regular la localización y función de dichas proteínas, la composición lipídica de las membranas puede tener un impacto importante en la funcionalidad celular. En concreto, la interacción de ciertas proteínas (denominadas periféricas, como las proteínas G, la proteína kinasa C, la proteína Ras, etc.) con la membrana celular depende de la composición lipídica de la misma (Vógler et al, 2004; Vógler et al, 2008). Por otro lado, la composición lipídica de las membranas celulares está influenciada por el tipo y la abundancia de los lípidos ingeridos (Perona et al, 2007). De esto se deduce que la ingesta de lípidos puede regular la composición lipídica de las membranas, que a su vez puede controlar la interacción (y por ello la actividad) de importantes proteínas de señalización celular (Yang et al, 2005). The lipids that are ingested in the diet regulate the lipid composition of cell membranes (Alemany et al, 2007). Likewise, different physiological and pathological situations can change the lipids present in cell membranes (Buda et al, 1994; Escribá et al, 2006). Changes in the lipid composition of the membranes influence cell signaling, and may lead to the development of diseases or to reverting (Escribá et al, 2006). Different studies conducted in recent years indicate that membrane lipids play a much more important role than they had been assigned so far (Escribá et al, 2008). An example of this importance is the fish that live in rivers with variable temperature, whose lipids undergo significant changes (changes in abundance and types of membrane lipids) when the temperature drops from 20 ° C (summer) to 4 ° C (winter ) (Buda et al, 1994). These changes allow the maintenance of their functions in cell types of very diverse nature. Therefore, it could be said that membrane lipids can determine the good or malfunction of multiple cell signaling mechanisms. Since a diseased organism is so because its cells are diseased, alterations in membrane lipids can lead to diseases. Similarly, therapeutic, nutraceutical or cosmetic formulations, focused on regulating membrane lipid levels, can prevent and reverse (cure) pathological processes. In addition, numerous studies indicate that the consumption of saturated and trans-monounsaturated fats is related to the deterioration of health. Vascular and tumor diseases, among others, have been directly related to this type of lipid (Stendery and Dyerberg, 2004). The deterioration of an organism is manifested in the appearance of these and other types of diseases. Cell membranes constitute the selective barrier through which a cell exchanges metabolites and information with other cells and with the surrounding extracellular environment. However, membranes perform other very important functions at the cellular level. On the one hand, they support proteins involved in receiving or issuing messages that control important organic parameters. These messages, mediated by numerous hormones, neurotransmitters, cytokines, growth factors, etc., activate membrane proteins, which propagate the signal received into the cell through other proteins, some of which are also located in the membrane. Since (1) these systems function as amplification cascades and (2) that membrane lipids can regulate the location and function of said proteins, the lipid composition of the membranes can have an important impact on cellular functionality. Specifically, the interaction of certain proteins (called peripherals, such as G proteins, protein kinase C, Ras protein, etc.) with the cell membrane depends on its lipid composition (Vógler et al, 2004; Vógler et al, 2008). On the other hand, the lipid composition of cell membranes is influenced by the type and abundance of ingested lipids (Perona et al, 2007). From this it follows that lipid intake can regulate the lipid composition of membranes, which in turn can control the interaction (and therefore the activity) of important cellular signaling proteins (Yang et al, 2005).
El hecho de que los lípidos de membrana puedan controlar la señalización celular, supone que también puedan regular el estado fisiológico de las células. De hecho, se han descrito efectos tanto negativos, como positivos de los lípidos sobre la salud (Escribá et al, 2006; Escribá et al, 2008). Estudios preliminares han demostrado que el ácido 2-hidroxioleico, que es un ácido graso monoinsaturado, es capaz de revertir ciertos procesos patológicos, como el sobrepeso, la hipertensión o el cáncer (Alemany et al, 2004; Martínez et al, 2005; Vógler et al, 2008). The fact that membrane lipids can control cell signaling means that they can also regulate the physiological state of the cells. In fact, both negative and positive effects of lipids on health have been described (Escribá et al, 2006; Escribá et al, 2008). Preliminary studies have shown that 2-hydroxyoleic acid, which is a monounsaturated fatty acid, is capable of reversing certain pathological processes, such as overweight, hypertension or cancer (Alemany et al, 2004; Martínez et al, 2005; Vógler et al, 2008).
Las enfermedades cardiovasculares están frecuentemente asociadas a la hiperproliferación de las células que constituyen los tejidos cardíaco y vascular. Esta hiperproliferación de células cardiovasculares da lugar a depósitos en el lumen interno de los vasos y cavidades del sistema cardiovascular que se traducen en una amplia gama de enfermedades, como la hipertensión, la aterosclerosis, la isquemia, infartos, etc. (Schwartz et al, 1985). De hecho, se ha sugerido el desarrollo de medicamentos que eviten la proliferación celular para la prevención y tratamiento de enfermedades cardiovasculares (Jackson et al, 1992). Cardiovascular diseases are frequently associated with hyperproliferation of the cells that constitute the cardiac and vascular tissues. This hyperproliferation of cardiovascular cells results in deposits in the internal lumen of the vessels and cavities of the cardiovascular system that result in a wide range of diseases, such as hypertension, atherosclerosis, ischemia, heart attacks, etc. (Schwartz et al, 1985). In fact, the development of drugs that prevent cell proliferation for the prevention and treatment of cardiovascular diseases has been suggested (Jackson et al, 1992).
La obesidad o sobrepeso se produce por una alteración entre el balance de ingesta y gasto energético que se debe, en parte, a alteraciones en los mecanismos que regulan estos procesos. Por otro lado, esta patología se caracteriza por la hiperplasia (aumento en el número de células) o hipertrofia (aumento en el tamaño) de las células del tejido adiposo, los adipocitos. Numerosos estudios demuestran que los ácidos grasos, bien libres o como parte de otras moléculas, pueden influir sobre una serie de parámetros relacionados con la homeostasis energética, como la masa de grasa corporal, el metabolismo lipídico, la termogénesis o la ingesta, entre otros (Vógler et al, 2008). En este sentido, la modificación de ácidos grasos podría ser una estrategia para regular la homeostasis energética y, por ello, el peso corporal. De hecho, en la presente invención, se muestra cómo los niveles bajos de SM en células se asocian a proliferación celular incrementada y que dicha alteración se relaciona con el estado patológico de células humanas. Es más, la regulación de la enzima EC 2.7.8.27 mediante las moléculas descritas en la presente invención son capaces de normalizar los niveles de SM en células patológicas y, por ello, revertir las alteraciones patofisiológicas aquí descritas. En el contexto de las patologías metabólicas, además de la obesidad, la ingesta lipídica tambi én determina l a apari ci ón de otros procesos patol ógi cos, como l a hipercolesterolemia, la hipertrigliceridemia, la diabetes o el síndrome metabólico (Sloan et al, 2008) Obesity or overweight is caused by an alteration between the balance of intake and energy expenditure that is due, in part, to alterations in the mechanisms that regulate these processes. On the other hand, this pathology is characterized by hyperplasia (increase in the number of cells) or hypertrophy (increase in size) of adipose tissue cells, adipocytes. Numerous studies show that fatty acids, either free or as part of other molecules, can influence a series of parameters related to energy homeostasis, such as body fat mass, lipid metabolism, thermogenesis or intake, among others ( Vógler et al, 2008). In this sense, the modification of fatty acids could be a strategy to regulate energy homeostasis and, therefore, body weight. In fact, in the present invention, it is shown how low levels of SM in cells are associated with increased cell proliferation and that said alteration is related to the pathological state of human cells. Moreover, the regulation of the enzyme EC 2.7.8.27 by means of the molecules described in the present invention are capable of normalizing the levels of MS in pathological cells and, therefore, reversing the pathophysiological alterations described herein. In the context of metabolic pathologies, in addition to obesity, lipid intake also determines the appearance of other pathological processes, such as hypercholesterolemia, hypertriglyceridemia, diabetes or metabolic syndrome (Sloan et al, 2008)
Los procesos neurodegenerativos dan lugar a una serie de enfermedades con diferentes manifestaciones, pero con la característica común de estar ocasionadas por degeneración de las células del sistema nervioso central y/o periférico. Algunos de estos procesos neurodegenerativos suponen una merma importante de la capacidad cognitiva de los pacientes, como la enfermedad de Alzheimer o la demencia senil. Otras, dan lugar a alteraciones de tipo motor, como la enfermedad de Parkinson o diferentes tipos de esclerosis. Finalmente, ciertas enfermedades neurodegenerativas pueden derivar en procesos en los que se desarrolla ceguera, problemas de audición, desorientación, alteraciones en el estado de ánimo, etc. Un ejemplo de desorden neurodegenerativo bien caracterizado lo constituye la enfermedad de Alzheimer, en la que se ha observado la formación de placas seniles, compuestas por restos de proteínas de membrana (como el péptido β-amiloide) procesadas erróneamente, que se acumulan en el exterior de las células, y de ovillos de neurofilamentos de proteína Tau, que aparecen en el interior celular. Este proceso se ha asociado a alteraciones en el metabolismo del colesterol y la consecuente alteración de los niveles de colesterol en las membranas (Sagin et al, 2008). De hecho, el desarrollo de esta enfermedad está relacionado con otras enfermedades en las que se han descrito alteraciones del metabolismo lipídico, y más concretamente del colesterol, como las de tipo cardiovascular. Neurodegenerative processes give rise to a series of diseases with different manifestations, but with the common characteristic of being caused by degeneration of the cells of the central and / or peripheral nervous system. Some of these neurodegenerative processes involve a significant reduction in the cognitive capacity of patients, such as Alzheimer's disease or senile dementia. Others lead to motor-type alterations, such as Parkinson's disease or different types of sclerosis. Finally, certain neurodegenerative diseases can lead to processes in which blindness, hearing problems, disorientation, mood alterations, etc. develop. An example of a well-characterized neurodegenerative disorder is Alzheimer's disease, in which the formation of senile plaques has been observed, composed of remains of membrane proteins (such as the β-amyloid peptide) erroneously processed, which accumulate outside of the cells, and clews of neurofilaments of Tau protein, which appear inside the cell. This process has been associated with alterations in cholesterol metabolism and the consequent alteration of cholesterol levels in membranes (Sagin et al, 2008). In fact, the development of this disease is related to other diseases in which alterations of lipid metabolism have been described, and more specifically of cholesterol, such as cardiovascular diseases.
Por otro lado, la esclerosis y otros procesos neurodegenerativos se relacionan con la "desmielinización", cuyo resultado neto es la pérdida de lípidos en la cubierta de los axones neuronales, con las consiguientes alteraciones en el proceso de propagación de señales eléctricas que ello supone. La mielina es una capa lipídica que rodea los axones de muchas neuronas y que está formada por una sucesión de repliegues en espiral de la membrana plasmática de células de la glia (células de Schwann). Por todo ello, está claro que los lípidos juegan un papel importantísimo en el desarrollo de enfermedades neurodegenerativas. Es más, se ha comprobado que los ácidos grasos poliinsaturados naturales no modificados tienen un moderado efecto preventivo sobre el desarrollo de procesos neurodegenerativos (Lañe et al, 2005). On the other hand, sclerosis and other neurodegenerative processes are related to "demyelination", whose net result is the loss of lipids in the neuronal axon sheath, with the consequent alterations in the process of propagation of electrical signals that this implies. Myelin is a lipid layer that surrounds the axons of many neurons and is formed by a succession of spiral folds of the glia cell plasma membrane (Schwann cells). Therefore, it is clear that lipids play an important role in the development of neurodegenerative diseases. Moreover, it has been proven that unmodified natural polyunsaturated fatty acids have a moderate preventive effect on the development of neurodegenerative processes (Lañe et al, 2005).
Las enfermedades metabólicas forman un conjunto de patologías caracterizadas por la acumulación o el déficit de ciertas moléculas. Un ejemplo típico lo constituye la acumulación de colesterol y/o de triglicéridos por encima de los niveles normales. El aumento en los niveles de colesterol y/o triglicéridos, tanto a nivel sistémico (por ejemplo el aumento en los niveles plasmáticos) como a nivel celular (por ejemplo en las membranas celulares) se asocia a alteraciones en la señalización celular que desembocan en disfunciones a varios niveles, y que se deben normalmente a errores en la actividad de ciertos enzimas o el control de dichas proteínas. Entre las metabolopatías más importantes se encuentran la hipercolesterolemia (elevados niveles de colesterol) y la hipertrigliceridemia (elevados niveles de triglicéridos). Estas enfermedades tienen tasas de incidencia, de morbilidad y mortalidad elevadas, por lo que su tratamiento es una necesidad de primer orden. Asimismo, los lípidos ingeridos pueden determinar la aparición de diabetes (Sloan et al, 2008). Metabolic diseases form a set of pathologies characterized by the accumulation or deficit of certain molecules. A typical example is the accumulation of cholesterol and / or triglycerides above normal levels. The increase in cholesterol and / or triglyceride levels, both at the systemic level (for example the increase in plasma levels) and at the cellular level (for example in cell membranes) is associated with alterations in cell signaling that lead to dysfunctions at various levels, and that are normally due to errors in the activity of certain enzymes or the control of said proteins. Among the most important metabolites are hypercholesterolemia (high cholesterol levels) and hypertriglyceridemia (high triglyceride levels). These diseases have high incidence, morbidity and mortality rates, so their treatment is A necessity of the first order. Also, ingested lipids can determine the onset of diabetes (Sloan et al, 2008).
El papel protector de ciertos ácidos grasos insaturados sobre ciertas enfermedades ya ha sido descrito por diferentes investigadores. De esta forma, los ácidos grasos insaturados ralentizan el desarrollo de cáncer y tienen efectos positivos contra el desarrollo de enfermedades cardiovasculares, patologías neurodegenerativas, metabólicas, obesidad, inflamación, etc. (Trombetta et al, 2007; Jung et al, 2008; (Florent et al, 2006). Sin embargo, la actividad farmacológica de estos compuestos es muy limitada debido a su rápida metabolización y escaso tiempo de vida media en la sangre. Por lo tanto se antoja necesario el desarrollo de ácidos grasos insaturados con una metabolización más lenta, consecuencia de la cual su presencia en la membrana celular se vea aumentada, en comparación a los ácidos grasos insaturados hasta ahora utilizados, y que faciliten la interacción de proteínas periféricas de señalización celular. Las moléculas descritas en la presente invención reúnen las características estructurales que determinan un efecto positivo sobre la salud de ciertos ácidos grasos naturales, junto a modificaciones moleculares que potencian el efecto de las moléculas originales y además impiden su rápida metabolización, ambas características imprescindibles para determinar su actividad farmacológica. The protective role of certain unsaturated fatty acids on certain diseases has already been described by different researchers. In this way, unsaturated fatty acids slow the development of cancer and have positive effects against the development of cardiovascular diseases, neurodegenerative, metabolic diseases, obesity, inflammation, etc. (Trombetta et al, 2007; Jung et al, 2008; (Florent et al, 2006). However, the pharmacological activity of these compounds is very limited due to their rapid metabolization and short half-life in the blood. both the development of unsaturated fatty acids with a slower metabolization seems necessary, a consequence of which their presence in the cell membrane is increased, in comparison to the unsaturated fatty acids so far used, and that facilitate the interaction of peripheral proteins of cell signaling The molecules described in the present invention have the structural characteristics that determine a positive effect on the health of certain natural fatty acids, together with molecular modifications that enhance the effect of the original molecules and also prevent their rapid metabolization, both essential characteristics to determine its pharmacological activity.
Ahondando en la importancia de los lípidos de la membrana celular, los esfingolípidos o esfingofosfolípidos son una clase importante de lípidos de las membranas celulares y son los más abundantes en los tejidos de los organismos más complejos. Las moléculas de los esfingolípidos presentan propiedades antipáticas, es decir, tanto hidrófobas como hidrófilas, lo que les permite desempeñar un papel importante en la formación de membranas biológicas. Algunos de los glucoesfingolípidos se encuentran en la superficie de los glóbulos roj os de la sangre y el resto de células actuando como antígenos y constituyendo los grupos sanguíneos. Deepening the importance of cell membrane lipids, sphingolipids or sphingophospholipids are an important class of cell membrane lipids and are the most abundant in the tissues of more complex organisms. Sphingolipid molecules have unfriendly properties, that is, both hydrophobic and hydrophilic, which allows them to play an important role in the formation of biological membranes. Some of the glycosphingolipids are found on the surface of red blood cells and the rest of cells acting as antigens and constituting blood groups.
Por lo tanto, los esfingolípidos tienen una gran importancia biológica por el papel de señalización celular que desempeñan. Concretamente, la SM es un tipo de esfingolípido muy abundante en las membranas celulares de todos los organismos (Huitema et al, 2004). Se localiza principalmente en la monocapa externa de la membrana plasmática donde tiene una función esencial en la formación de microdominios denominados lipid rafts, que son áreas especializadas de la membrana celular con importantes funciones en la señalización celular, ya que en estos dominios se concentran proteínas que interaccionan entre sí gracias a la aproximación que se deriva de su unión a los lípidos (Simons y Toomre, 2000). La enzima EC 2.7.8.27 es responsable de la síntesis de SM mediante la transferencia de una fosfocolina (procedente de la fosfatidiletanolamina o la fosfatidilcolina) al grupo hidroxilo primario de la ceramida para formar la SM y el 1,2- diacilglicerol (DAG). Esta enzima ocupa una posición central en el metabolismo de esfingolípidos y glicerofosfolípidos. La EC 2.7.8.27 se localiza en la membrana plasmática, en el aparato de Golgi y también se ha detectado su actividad en la membrana nuclear y en la cromatina (Albi et al, 1999). La EC 2.7.8.27 también actúa como regulador de los niveles de ceramida y del diacilglicerol (DAG) siendo ambas moléculas a su vez reguladoras de la muerte celular programada por apoptosis y por autofagia (Jiang et al, 2011; Van Helvoort et al, 1994; Tafesse et al, 2006). La cabeza polar de la SM es muy voluminosa e impide el anclaje de proteínas, como Ras, que tienen lípidos ramificados (como los restos isoprenilo, farnesilo o geranilgeranilo), mientras que favorece el anclaje de otras proteínas que tienen restos de ácidos grasos saturados (como los ácidos mirístico o palmítico). Esto da lugar a la inactivación de la vía de señalización de las MAP quinasas, lo que viene seguido de una serie de eventos moleculares que incluyen la alteración de los niveles de las proteínas PFAG y DHFR. Por lo tanto, dada la importancia de la enzima EC 2.7.8.27 y de la SM en el correcto funcionamiento y estructura de la membrana celular, y la sabida relación existente entre las alteraciones tanto estructurales como funcionales de los lípidos localizados en la membrana celular con el desencadenamiento de varias enfermedades como, por ejemplo: cáncer, enfermedades cardiovasculares, obesidad, enfermedades neurodegenerativas y metabólicas; sería muy importante encontrar compuestos capaces de regular la actividad de dicha enzima y, consecuentemente, el nivel de SM, y con ello poder revertir patologías cuyo origen se deba a una actividad de la enzima anormal y/o a un nivel alterado de SM. Dado que actualmente las agencias reguladoras de comercialización de medicamentos, como la Agencia Española del Medicamento, la Agencia Europea de Medicinas (EMA), la Administración de Alimentos y Fármacos (Food and Drug Administration), solicitan la existencia de metodologías de seguimiento de la eficacia de los medicamentos, es aconsejable la identificación de moléculas cuyos cambios en expresión o actividad (entre otros) predigan la eficacia de un compuesto para garantizar que un paciente recibe la medicación adecuada. Por ello, se pueden considerar como invenciones relacionadas aquellas que permiten la correcta aplicación de los tratamientos. La presente invención hace referencia a la síntesis de una serie de compuestos 2-hidroxiderivados de ácidos grasos, a la separación de sus formas racémicas y sus aplicaciones terapéuticas. Además la presente invención también comprende la descripción de las dianas celulares de su actividad y, además, de biomarcadores que permiten determinar la eficacia de los referidos compuestos, así como los procesos que se emplean para ello. Adicionalmente, es importante también encontrar compuestos capaces de regular la actividad de otras enzimas implicadas en el metabolismo lipídico, por ejemplo la enzima serin-palmitoil transferasa (EC 2.3.1.50); o la enzima estearoil-CoA desaturasa (ECD, EC 1.14.19.1) responsable de la síntesis de ácido oleico. La ceramida producida por la actividad de la EC 2.3.1.50 es una molécula lipídica de gran interés biológico. Un papel relevante relativo a la ceramida es su participación en la inducción de apoptosis, también denominada muerte celular programada (Lladó et al, 2010). La apoptosis es un proceso biológico muy regulado que sirve para eliminar células no útiles o que comprometen la salud del organismo. En este sentido, es frecuente que las células tumorales desarrollen mecanismos moleculares para escapar a la apoptosis (Lladó et al, 2010). Therefore, sphingolipids are of great biological importance because of the role of cell signaling they play. Specifically, SM is a very abundant type of sphingolipid in the cell membranes of all organisms (Huitema et al, 2004). It is mainly located in the outer monolayer of the plasma membrane where it has an essential function in the formation of microdomains called lipid rafts, which are specialized areas of the cell membrane with important functions in cell signaling, since these domains concentrate proteins that interact with each other thanks to the approximation that derives from their binding to lipids (Simons and Toomre, 2000) . The enzyme EC 2.7.8.27 is responsible for the synthesis of MS by transferring a phosphocholine (from phosphatidylethanolamine or phosphatidylcholine) to the primary hydroxyl group of ceramide to form MS and 1,2-diacylglycerol (DAG). This enzyme occupies a central position in the metabolism of sphingolipids and glycerophospholipids. EC 2.7.8.27 is located in the plasma membrane, in the Golgi apparatus and its activity in the nuclear membrane and in chromatin has also been detected (Albi et al, 1999). EC 2.7.8.27 also acts as a regulator of ceramide and diacylglycerol (DAG) levels, both of which are molecules that regulate cell death programmed by apoptosis and autophagy (Jiang et al, 2011; Van Helvoort et al, 1994 ; Tafesse et al, 2006). The polar head of the SM is very bulky and prevents the anchoring of proteins, such as Ras, which have branched lipids (such as isoprenyl, farnesyl or geranylgeranyl moieties), while favoring the anchoring of other proteins that have saturated fatty acid residues ( as myristic or palmitic acids). This results in the inactivation of the MAP kinase signaling pathway, which is followed by a series of molecular events that include altering levels of PFAG and DHFR proteins. Therefore, given the importance of the enzyme EC 2.7.8.27 and the SM in the correct functioning and structure of the cell membrane, and the known relationship between both structural and functional alterations of the lipids located in the cell membrane with the triggering of several diseases such as cancer, cardiovascular disease, obesity, neurodegenerative and metabolic diseases; it would be very important to find compounds capable of regulating the activity of said enzyme and, consequently, the level of MS, and thereby being able to reverse pathologies whose origin is due to an abnormal enzyme activity and / or an altered level of MS. Since currently the drug marketing regulatory agencies, such as the Spanish Medicines Agency, the European Medicines Agency (EMA), the Food and Drug Administration, request the existence of effectiveness monitoring methodologies of medications, it is advisable to identify molecules whose Changes in expression or activity (among others) predict the efficacy of a compound to ensure that a patient receives appropriate medication. Therefore, those that allow the correct application of the treatments can be considered as related inventions. The present invention refers to the synthesis of a series of 2-hydroxy derivative compounds of fatty acids, the separation of their racemic forms and their therapeutic applications. In addition, the present invention also includes the description of the cell targets of their activity and, in addition, of biomarkers that allow determining the efficacy of said compounds, as well as the processes used for this. Additionally, it is also important to find compounds capable of regulating the activity of other enzymes involved in lipid metabolism, for example the enzyme serine palmitoyl transferase (EC 2.3.1.50); or the enzyme stearoyl-CoA desaturase (ECD, EC 1.14.19.1) responsible for the synthesis of oleic acid. Ceramide produced by the activity of EC 2.3.1.50 is a lipid molecule of great biological interest. An important role related to ceramide is its participation in the induction of apoptosis, also called programmed cell death (Lladó et al, 2010). Apoptosis is a very regulated biological process that serves to eliminate cells that are not useful or that compromise the health of the body. In this sense, it is common for tumor cells to develop molecular mechanisms to escape apoptosis (Lladó et al, 2010).
DESCRIPCIÓN DE LA INVENCIÓN Breve descripción de la invención DESCRIPTION OF THE INVENTION Brief description of the invention
De forma preferida, la presente invención se focaliza en resolver las alteraciones en los niveles celulares de SM, dando lugar a compuestos capaces de revertir el nivel de expresión alterado de la enzima EC 2.7.8.27 mediante su activación (en caso de que la enzima esté infra-expresada o que presente una actividad reducida) o mediante su inhibición (en caso de que la enzima esté sobre-expresada o que presente una actividad aumentada), consiguiendo controlar los niveles de SM sintetizados por dicha enzima y, consecuentemente, revertir los procesos patológicos debidos a la desregulación de la enzima o a niveles anormales de SM. Así, para la consecución de dicho objetivo, en la presente invención se llevó a cabo un procedimiento de síntesis de moléculas en su forma racémica y aislamiento posterior de los enantiómeros [-] y [+] de compuestos 2-hidroxiderivados de ácidos grasos, los cuales, como se demuestra más abajo en los ejemplos, son capaces de regular la actividad de la enzima EC 2.7.8.27, y, consecuentemente, el nivel de SM sintetizada. Estos ácidos grasos presentan mayor vida media en sangre que los ácidos grasos naturales. De hecho, la presente invención hace referencia a composiciones farmacéuticas que comprendan dichos enantiómeros, y a su uso como medicamentos en el tratamiento de enfermedades cuya etiología común está basada en alteraciones (de cualquier origen) de los lípidos de la membrana celular como, por ejemplo: alteraciones en el nivel, en la composición o en la estructura de dichos lípidos, así como en el tratamiento de enfermedades en las que la regulación de la composición y estructura lipídica de membrana induzca la reversión del estado patológico. El efecto terapéutico se consigue, preferentemente, a través de la regulación (activación o inhibición) de la actividad de la enzima EC 2.7.8.27, y/o del nivel de su producto, la SM, o incluso del nivel de PFAG y/o de DHFR. Preferably, the present invention focuses on resolving alterations in the cellular levels of SM, resulting in compounds capable of reversing the altered expression level of the enzyme EC 2.7.8.27 by activation (in case the enzyme is under-expressed or that has a reduced activity) or through its inhibition (in case the enzyme is overexpressed or has an increased activity), managing to control the levels of SM synthesized by said enzyme and, consequently, reverse the processes pathological due to enzyme deregulation or abnormal levels of MS. Thus, for the attainment of said objective, in the present invention a method of synthesis of molecules in their racemic form and subsequent isolation of the [-] and [+] enantiomers of 2-hydroxy derivative fatty acid compounds, was carried out. which, as demonstrated in the examples below, are capable of regulating the activity of the enzyme EC 2.7.8.27, and, consequently, the level of SM synthesized. These fatty acids have a longer half-life in the blood than natural fatty acids. In fact, the present invention refers to pharmaceutical compositions comprising said enantiomers, and their use as medicaments in the treatment of diseases whose common etiology is based on alterations (of any origin) of cell membrane lipids such as: alterations in the level, in the composition or in the structure of said lipids, as well as in the treatment of diseases in which the regulation of the composition and membrane lipid structure induces the reversal of the pathological state. The therapeutic effect is preferably achieved through the regulation (activation or inhibition) of the activity of the enzyme EC 2.7.8.27, and / or the level of its product, the SM, or even the level of PFAG and / or of DHFR.
Además de la regulación efectuada sobre la enzima EC 2.7.8.27, la presente invención demuestra que, por ejemplo en células U118, el compuesto 20HOA regula la actividad de otros enzimas implicados en el metabolismo lipídico. Así, se investigó la enzima EC 2.3.1.50. En la presente invención, se muestra que el 20HOA estimula la actividad de la EC 2.3.1.50 (Ejemplo 8 y Figura 9), provocando la muerte celular programada en células de leucemia humana. Por otro lado, también se encontró una reducción importante en los niveles de ácido oleico en las membranas de células U118 tratadas con 20HOA demostrándose que el 20HOA es un potente inhibidor de la EC 1.14.19.1, enzima responsable de la síntesis del ácido oleico a partir del ácido esteárico (Ejemplo 9 y Figura 10). En este sentido, cabe indicar que tanto EC 2.7.8.27 como EC 2.3.1.50 son enzimas correspondientes al metabolismo de los esfingolípidos, que están relacionados por pertenecer a la vía metabólica de un mismo tipo de moléculas. Por otro lado, el enzima EC 1.14.19.1 es un modificador de ácidos grasos. La relación con los otros dos enzimas es que los esfingolípidos siempre llevan cadenas de ácidos grasos en su estructura. Como cada ácido graso dota de propiedades distintas a los esfingolípidos, el hecho de que éstos puedan modificarse repercute en su actividad biológica. Por ello, se puede afirmar que los tres enzimas citados en la presente invención están íntimamente relacionados y por ello es normal que una misma molécula pueda regular la actividad de los 3 enzimas. In addition to the regulation made on the enzyme EC 2.7.8.27, the present invention demonstrates that, for example in U118 cells, compound 20HOA regulates the activity of other enzymes involved in lipid metabolism. Thus, the enzyme EC 2.3.1.50 was investigated. In the present invention, it is shown that 20HOA stimulates the activity of CD 2.3.1.50 (Example 8 and Figure 9), causing programmed cell death in human leukemia cells. On the other hand, an important reduction in oleic acid levels was also found in the membranes of U118 cells treated with 20HOA, demonstrating that 20HOA is a potent inhibitor of EC 1.14.19.1, an enzyme responsible for the synthesis of oleic acid from of stearic acid (Example 9 and Figure 10). In this sense, it should be noted that both EC 2.7.8.27 and EC 2.3.1.50 are enzymes corresponding to the metabolism of sphingolipids, which are related to belonging to the metabolic pathway of the same type of molecules. On the other hand, the enzyme EC 1.14.19.1 is a fatty acid modifier. The relationship with the other two enzymes is that sphingolipids always carry fatty acid chains in their structure. Since each fatty acid has different properties than sphingolipids, the fact that they can be modified affects their biological activity. Thus, it can be affirmed that the three enzymes mentioned in the present invention are closely related and therefore it is normal that the same molecule can regulate the activity of the 3 enzymes.
Los enantiómeros [-] (también isómero S) y [+] (también isómero R) de la invención se diferencian en la dirección de desvío de la luz polarizada. Si el isómero óptico desvía la luz polarizada hacia la derecha (en orientación con las manecillas del reloj) se representa con el signo [+] (es el isómero dextrógiro o forma dextro). En cambio, si el isómero óptico desvía la luz polarizada hacia la izquierda (en orientación contraria con las manecillas del reloj) se representa con el signo [-] (es el isómero levógiro o forma levo). The enantiomers [-] (also S isomer) and [+] (also R isomer) of the invention differ in the direction of deflection of polarized light. If the optical isomer deflects the polarized light to the right (in orientation with the hands of the clock) it is represented by the sign [+] (it is the dextrogiro isomer or dextrous form). On the other hand, if the optical isomer deflects the polarized light to the left (in a counter-clockwise direction), it is represented by the sign [-] (it is the levographic isomer or levo form).
Concretamente la presente invención evidencia que el enantiómero [-] de compuestos 2- hidroxiderivados de ácidos grasos actúa como activador de la enzima EC 2.7.8.27 regulando positivamente la síntesis de SM, un esfingolípido que, como se explica más arriba, es mayoritario en las membranas de células humanas y animales, e indispensable para la correcta estructuración de la bicapa lipídica y funcionamiento de la célula. Por lo tanto, dicho enantiómero [-] puede ser usado para la elaboración de una composición farmacéutica destinada al tratamiento de aquellas patologías cuya etiología común sea alteraciones estructurales y/o funcionales de los lípidos localizados en la membrana celular, tales como: cáncer, obesidad, hipertensión, hipertrigliceridemia, hipercolesterolemia o diabetes, etc., debidos a una actividad anormalmente baja de referido enzima EC 2.7.8.27. Asimismo, la forma racémica es activadora de este enzima, puesto que predomina la actividad del isómero [-], que es el activo, sobre el isómero [+], que no induce la actividad del enzima. En este sentido, la actividad positiva de la forma racémica se considera que se debe a que para la actividad de este enzima es más importante una activación que induce la síntesis de nuevas moléculas de SM, que la inhibición que puede silenciar moléculas de enzima que anteriormente no estaban activas. En todo caso, el poder activador de la forma racémica es inferior a la del enantiómero [-], lo que explica su menor actividad terapéutica. Specifically, the present invention evidences that the [-] enantiomer of 2-hydroxy derivative compounds of fatty acids acts as activator of the enzyme EC 2.7.8.27 by positively regulating the synthesis of SM, a sphingolipid that, as explained above, is mostly in the membranes of human and animal cells, and indispensable for the correct structuring of the lipid bilayer and functioning of the cell. Therefore, said enantiomer [-] can be used for the preparation of a pharmaceutical composition for the treatment of those pathologies whose common etiology is structural and / or functional alterations of lipids located in the cell membrane, such as: cancer, obesity , hypertension, hypertriglyceridemia, hypercholesterolemia or diabetes, etc., due to an abnormally low activity of said enzyme EC 2.7.8.27. Likewise, the racemic form is activating this enzyme, since the activity of the [-] isomer predominates, which is the active one, over the [+] isomer, which does not induce the activity of the enzyme. In this sense, the positive activity of the racemic form is considered to be due to the fact that for the activity of this enzyme an activation that induces the synthesis of new molecules of SM is more important, than the inhibition that can silence enzyme molecules than previously They were not active. In any case, the activating power of the racemic form is inferior to that of the enantiomer [-], which explains its lower therapeutic activity.
Tal y como se muestra en los ejemplos de la invención, es importante hacer notar que el enantiómero [-] de compuestos 2-hidroxiderivados de ácidos grasos exhibe un efecto terapéutico mejorado respecto al racémico (que contiene cantidades iguales de los dos enantiómeros). Además, también es destacable el hecho de que el enantiómero [-] de compuestos 2-hidroxiderivados de ácidos grasos presenta menor toxicidad y efectos secundarios que el racémico y que el enantiómero [+] (ver Tabla 3, Ejemplo 7). As shown in the examples of the invention, it is important to note that the [-] enantiomer of 2-hydroxy derivative fatty acid compounds exhibits an improved therapeutic effect with respect to the racemic (which contains equal amounts of the two enantiomers). In addition, it is also noteworthy that the [-] enantiomer of 2-hydroxy derivative fatty acid compounds has less toxicity and side effects than the racemic one and that the [+] enantiomer (see Table 3, Example 7).
Además, la presente invención también demuestra que el enantiómero [+] de compuestos 2-hidroxiderivados de ácidos grasos actúa como inhibidor de dicha enzima EC 2.7.8.27 regulando negativamente la síntesis de SM, pudiendo ser utilizado en investigación básica para el estudio de la regulación de la propia enzima EC 2.7.8.27, o para el tratamiento de enfermedades caracterizadas por una actividad anormalmente alta de la enzima EC 2.7.8.27, y/o un nivel anómalamente alto de SM, como, por ejemplo, la fibrosis quística (Slomiany et al, 1982). Por otro lado, los niveles altos de colesterol y triglicéridos se han asociado a alteraciones cardiovasculares importantes. En este sentido, el colesterol se suele asociar con la SM para formar unos dominios de membrana muy ordenados, denominados en la literatura científica lipid rafts o Lo (liquid ordered es decir, líquido ordenado). El aumento de colesterol favorece el aumento de estas regiones lipídicas, lo que supone cambios en la señalización celular que pueden dar lugar a diferentes enfermedades o alteraciones cardiovasculares y metabólicas. Por ello, la reducción de los niveles de SM en casos de hipercolesterolemia e hipertrigliceridemia puede ayudar a disminuir los niveles de colesterol y triglicéridos en plasma y membranas. De esta forma, el enantiómero [+] tendría un papel protector en ciertos tipos de desórdenes, como la hipercolesterolemia y la hipertrigliceridemia, ya que induce reducciones en los niveles séricos de estos lípidos y reducciones en los niveles de SM que concurrirían en una reducción de la densidad de lipid rafts en las células. In addition, the present invention also demonstrates that the [+] enantiomer of 2-hydroxy derivative fatty acid compounds acts as an inhibitor of said EC enzyme 2.7.8.27 by negatively regulating the synthesis of SM, and can be used in basic research for the study of regulation of the EC enzyme 2.7.8.27 itself, or for the treatment of diseases characterized by an abnormally high activity of the enzyme EC 2.7.8.27, and / or an abnormally high level of SM, such as cystic fibrosis (Slomiany et al, 1982). On the other hand, high cholesterol and triglyceride levels have been associated with significant cardiovascular disorders. In this sense, cholesterol is usually associated with MS to form very ordered membrane domains, referred to in the scientific literature lipid rafts or Lo (liquid ordered, that is, ordered liquid). The increase in cholesterol favors the increase of these lipid regions, which implies changes in cell signaling that can lead to different diseases or cardiovascular and metabolic alterations. Therefore, reducing the levels of MS in cases of hypercholesterolemia and hypertriglyceridemia can help lower cholesterol and triglyceride levels in plasma and membranes. In this way, the enantiomer [+] would have a protective role in certain types of disorders, such as hypercholesterolemia and hypertriglyceridemia, since it induces reductions in serum levels of these lipids and reductions in MS levels that would concur in a reduction of The density of lipid rafts in the cells.
Adicionalmente, dado que la enzima EC 2.7.8.27 es responsable de la síntesis de SM y, por ende, de la correcta estructura y función de la membrana celular, tanto la enzima como la propia SM podrían considerarse como marcadores moleculares, utilizables para llevar a cabo un método de diagnóstico y/o pronóstico in vitro de enfermedades basadas en alteraciones en la membrana celular. Dichos cambios no ocurren de forma natural, sino que vienen originados por la actividad de los compuestos reseñados en la presente invención. Además, se ha podido comprobar que los compuestos de la presente invención también regulan los niveles de las proteínas DHFR y PFAG. Consecuentemente, la presente invención también hace referencia a un método / kit para llevar a cabo el diagnóstico o pronóstico de patologías asociadas a niveles alterados con respecto a los normales de las proteínas DHFR y PFAG. Dicho kit comprende reactivos o medios capaces de evaluar la actividad de la enzima EC2.7.8.27, y/o el nivel de SM, DFIFR o PFAG y, consecuentemente, implementar dicho diagnóstico/pronóstico como método para seguir la eficacia del tratamiento de los pacientes. Additionally, since the enzyme EC 2.7.8.27 is responsible for the synthesis of SM and, therefore, for the correct structure and function of the cell membrane, both the enzyme and the SM itself could be considered as molecular markers, usable to lead to carry out a method of diagnosis and / or prognosis in vitro of diseases based on alterations in the cell membrane. Such changes do not occur naturally, but are caused by the activity of the compounds described in the present invention. In addition, it has been found that the compounds of the present invention also regulate the levels of DHFR and PFAG proteins. Consequently, the present invention also refers to a method / kit for Carry out the diagnosis or prognosis of pathologies associated with altered levels with respect to the normal DHFR and PFAG proteins. Said kit comprises reagents or means capable of evaluating the activity of the enzyme EC2.7.8.27, and / or the level of SM, DFIFR or PFAG and, consequently, implementing said diagnosis / prognosis as a method to follow the efficacy of the treatment of patients
Por el mismo motivo, dicha enzima EC2.7.8.27 y/o su producto, la SM, pueden ser consideradas como dianas terapéuticas a las cuales dirigir moléculas capaces de regular la actividad de la enzima, y/o el nivel de SM, y, consecuentemente, revertir aquellos procesos patológicos que se hubieran desarrollado, o se fueran a desarrollar en un futuro, como consecuencia de la alteración en la actividad de la enzima o en el nivel de SM, DFIFR o PFAG. Así, a modo de ejemplo, el enantiómero [-] de la invención sirve para ilustrar el posible uso de la enzima EC 2.7.8.27 como diana terapéutica, al activar su función enzimática en procesos patológicos en los que dicha función es deficitaria, consiguiendo restablecer el nivel de SM a niveles normales. Por otro lado, la medición de la actividad de la enzima EC 2.7.8.27, y/o los niveles de SM, y/o los niveles de PFAG, y/o los niveles de DHFR, también serían útiles para realizar procedimientos de selección (screening, en inglés) de compuestos candidatos con el objetivo de conseguir otras moléculas que, como los enantiómeros [-] y [+] de la invención, tuvieran la capacidad de regular la actividad de la enzima EC 2.7.8.27, y/o el nivel de SM, y/o el nivel de PFAG, y/o el nivel de DHFR, siendo capaces de revertir procesos patológicos. For the same reason, said enzyme EC2.7.8.27 and / or its product, SM, can be considered as therapeutic targets to which to direct molecules capable of regulating the activity of the enzyme, and / or the level of MS, and , consequently, to reverse those pathological processes that would have developed, or were going to develop in the future, as a result of the alteration in the activity of the enzyme or in the level of SM, DFIFR or PFAG. Thus, by way of example, the [-] enantiomer of the invention serves to illustrate the possible use of the enzyme EC 2.7.8.27 as a therapeutic target, by activating its enzymatic function in pathological processes in which said function is deficient, being able to restore the level of SM at normal levels. On the other hand, the measurement of the activity of the enzyme EC 2.7.8.27, and / or the levels of SM, and / or the levels of PFAG, and / or the levels of DHFR, would also be useful for performing selection procedures ( screening, in English) of candidate compounds with the aim of achieving other molecules that, such as the [-] and [+] enantiomers of the invention, had the ability to regulate the activity of the enzyme EC 2.7.8.27, and / or the level of SM, and / or the level of PFAG, and / or the level of DHFR, being able to reverse pathological processes.
Consecuentemente, la presente invención evidencia la particular importancia de seleccionar compuestos con características estructurales exclusivas como son: ácidos grasos con al menos un doble enlace, con un total de átomos de carbono (C) igual o menor a 20, y un carbono sustituido, particularmente con un radical hidroxilo (OH), en el carbono 2 (o carbono a). Consequently, the present invention demonstrates the particular importance of selecting compounds with exclusive structural characteristics such as: fatty acids with at least one double bond, with a total of carbon atoms (C) equal to or less than 20, and a substituted carbon, particularly with a hydroxyl radical (OH), on carbon 2 (or carbon a).
Concretamente, los compuestos a los que hace referencia la presente invención son los enantiómeros [-] y [+] de Fórmula I: Specifically, the compounds referred to in the present invention are the [-] and [+] enantiomers of Formula I:
HOOC-HOCH-(CH2)„-(CH=CH-CH2)é-(CH2)c-CH3 HOOC-HOCH- (CH 2 ) „- (CH = CH-CH2) é - (CH 2 ) c -CH3
(I) donde a, b y c pueden tomar valores independientes entre O y ó, teniendo en cuenta que la suma total de carbonos de la molécula sea < 20. (I) where a, b and c can take independent values between O and or, taking into account that the total carbon sum of the molecule is <20.
Además, se establece que la forma terapéutica preferida de la presente invención es el enantiómero [-] (que corresponde a la configuración estérica S) de Fórmula I, el cual se presenta como la forma más efectiva en la activación de la enzima EC 2.7.8.27, por delante de la forma racémica, y del enantiómero [+] (que corresponde a la configuración estérica R) de Fórmula I que se presenta como un inhibidor de la enzima EC 2.7.8.27. Furthermore, it is established that the preferred therapeutic form of the present invention is the [-] enantiomer (corresponding to the steric configuration S) of Formula I, which is presented as the most effective way in the activation of the enzyme EC 2.7. 8.27, ahead of the racemic form, and the [+] enantiomer (corresponding to the steric configuration R) of Formula I which is presented as an inhibitor of the enzyme EC 2.7.8.27.
En un aspecto preferido, la presente invención hace referencia especial a los enantiómeros [+] y [-] de Fórmula I con los siguientes valores de a, b y c: In a preferred aspect, the present invention makes special reference to the [+] and [-] enantiomers of Formula I with the following values of a, b and c:
Tabla 1 Table 1
Figure imgf000015_0001
Figure imgf000015_0001
En un aspecto particularmente preferido la presente invención hace referencia al enantiómero [-] de fórmula [-]HOOC-HOCH-(CH2)é-(CH=CH-CH2)i-(CH2)-CH3; nombrado, a efectos de la presente invención, [-J20HOA. In a particularly preferred aspect the present invention refers to the [-] enantiomer of the formula [-] HOOC-HOCH- (CH 2 ) é - (CH = CH-CH 2 ) i- (CH 2 ) -CH 3; named, for the purposes of the present invention, [-J20HOA.
En otro aspecto particularmente preferido la presente invención hace referencia al enantiómero [+] de fórmula [+]HOOC-HOCH-(CH2)é-(CH=CH-CH2)i-(CH2)-CH3; nombrado, a efectos de la presente invención, [+J20HOA. In another particularly preferred aspect the present invention refers to the [+] enantiomer of the formula [+] HOOC-HOCH- (CH 2 ) é - (CH = CH-CH 2 ) i- (CH 2 ) -CH 3; named, for the purposes of the present invention, [+ J20HOA.
A modo de ejemplo, las enfermedades caracterizadas por un déficit en la actividad de la enzima EC 2.7.8.27, y, consecuentemente, por un nivel de SM anormalmente bajo en las membranas celulares, y que podrían ser tratadas o prevenidas con el enantiómero [-] de la invención son: As an example, diseases characterized by a deficit in the activity of the enzyme EC 2.7.8.27, and, consequently, by an abnormally low level of SM in cell membranes, and that could be treated or prevented with the enantiomer [- ] of the invention are:
• El cáncer: cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro, cáncer de pulmón, melanoma maligno y cáncer hepático (ver Tabla 2). Patologías vasculares: hipertensión, arterieesclerosis, cardiomiopatías, angiogénesis, hiperplasia cardiaca, etc. • Cancer: prostate cancer, breast cancer, pancreatic cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer (see Table 2). Vascular pathologies: hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia, etc.
Patologías metabólicas: diabetes, síndrome metabólico u obesidad.  Metabolic pathologies: diabetes, metabolic syndrome or obesity.
Otras patologías: lesión medular, enfermedad de Alzheimer, ictus, esclerosis, celulitis, etc.  Other pathologies: spinal cord injury, Alzheimer's disease, stroke, sclerosis, cellulite, etc.
Por lo tanto, más específicamente, el primer aspecto de la presente invención hace referencia a un enantiómero [-] o [+] de un compuesto de Fórmula I y/o al menos una de sus sales farmacéuticamente aceptables Therefore, more specifically, the first aspect of the present invention refers to an [-] or [+] enantiomer of a compound of Formula I and / or at least one of its pharmaceutically acceptable salts
HOOC-HOCH-(CH2)„-(CH=CH-CH2)é-(CH2)c-CH3 HOOC-HOCH- (CH 2 ) „- (CH = CH-CH2) é - (CH 2 ) c -CH3
(i) caracterizado porque a, b y c pueden tomar valores independientes entre O y ó, con la condición de que el número total de carbonos sea < 20. En un aspecto preferido de la invención el compuesto resulta de la selección de al menos una de las siguientes combinaciones de valores a, b y c: a=6, b=\ y c=6; a=6, b=\ y c=4; a=6, b=2 y c=3; a=6, b=3 y c=0; y a=3, b=3 y c=3.  (i) characterized in that a, b and c can take independent values between O and or, provided that the total number of carbons is <20. In a preferred aspect of the invention the compound results from the selection of at least one of the following combinations of values a, b and c: a = 6, b = \ and c = 6; a = 6, b = \ and c = 4; a = 6, b = 2 and c = 3; a = 6, b = 3 and c = 0; and a = 3, b = 3 and c = 3.
Además, un aspecto preferido de la presente invención hace referencia a los compuestos de fórmula: [+]HOOC-HOCH-(CH2 CH=CH H2)/-(CH2)6-CH3 A modo de ejemplo, las enfermedades caracterizadas por un exceso en la actividad de la enzima EC 2.7.8.27, y, consecuentemente, por un nivel de SM anormalmente alto en las membranas celulares, y que podrían ser tratadas o prevenidas con el enantiómero [+] de la invención son la fibrosis quística, la hipercolesterolemia y la hipertrigliceridemia. In addition, a preferred aspect of the present invention refers to the compounds of the formula: [+] HOOC-HOCH- (CH 2 CH = CH H 2 ) / - (CH 2 ) 6-CH 3 By way of example, diseases characterized by an excess in the activity of the enzyme EC 2.7.8.27, and, consequently, by an abnormally high level of SM in cell membranes, and which could be treated or prevented with the enantiomer [+] of the invention are fibrosis cystic, hypercholesterolemia and hypertriglyceridemia.
Otro aspecto particularmente preferido de la presente invención hace referencia a los compuestos de fórmula: [-]HOOC-HOCH-(CH2)6-(CH=CH-CH2)7-(CH2)í;-CH3. Another particularly preferred aspect of the present invention refers to the compounds of the formula: [-] HOOC-HOCH- (CH2) 6 - (CH = CH-CH2) 7- (CH 2 ) í; -CH3.
Un segundo aspecto de la presente invención hace referencia al uso de al menos un compuesto de los anteriormente mencionados para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de la membrana celular, debidas a la desregulación de la actividad de la enzima EC 2.7.8.27, del nivel o concentración de SM, del nivel de PFAG o del nivel de DHFR, en células en general y en membranas, en particular. A second aspect of the present invention refers to the use of at least one compound of the aforementioned for the preparation of a pharmaceutical composition for the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane , due to deregulation of the activity of the enzyme EC 2.7.8.27, of the level or concentration of SM, of the level of PFAG or of the level of DHFR, in cells in general and in membranes, in particular.
Además de la presente invención cubre al menos un compuesto de los anteriormente mencionados para ser usados en el tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de la membrana celular, debidas a la desregulación de la actividad de la enzima EC 2.7.8.27, del nivel o concentración de SM, del nivel de PFAG o del nivel de DHFR, en células en general y en membranas, en particular. In addition to the present invention, it covers at least one compound of the aforementioned for use in the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane, due to the deregulation of the activity of the EC enzyme 2.7.8.27, of the level or concentration of SM, of the level of PFAG or of the level of DHFR, in cells in general and in membranes, in particular.
Incluso la presente invención hace referencia a la propia composición farmacéutica que comprenda al menos uno de dichos compuestos y, opcionalmente, vehículos farmacéuticamente aceptables. Así, los compuestos de la presente invención pueden administrarse de forma independiente o formulados en composiciones farmacéuticas donde se combinan con excipientes como por ejemplo: ligantes, rellenos, desintegradores, lubricantes, recubridores, edulcorantes, saborizantes, colorantes, transportadores, etc., y combinaciones de los mismos. Asimismo, los compuestos de la invención pueden formar parte de composiciones farmacéuticas en combinación con otros principios activos. Even the present invention refers to the pharmaceutical composition itself comprising at least one of said compounds and, optionally, pharmaceutically acceptable carriers. Thus, the compounds of the present invention can be administered independently or formulated in pharmaceutical compositions where they are combined with excipients such as: binders, fillers, disintegrators, lubricants, coaters, sweeteners, flavorings, colorants, transporters, etc., and combinations thereof. Also, the compounds of the invention can be part of pharmaceutical compositions in combination with other active ingredients.
Para el uso de los compuestos de la invención como medicamentos, su administración puede llevarse a cabo por cualquier vía como, por ejemplo, vía enteral (mediante el aparato digestivo), vía oral (mediante pildoras, comprimidos o jarabes), vía rectal (mediante supositorios o enemas), vía tópica (mediante cremas o parches), vía inhalatoria, vía parenteral inyectada, vía inyección intravenosa, vía inyección intramuscular o vía inyección subcutánea, en la forma arriba indicada o en cualquier tipo de forma farmacéuticamente aceptable, como por ejemplo: metilos, etilos, fosfatos, otros radicales de tipo ester, éter, alquilo, etc. For the use of the compounds of the invention as medicaments, their administration can be carried out by any route such as, for example, enterally (through the digestive system), orally (by pills, tablets or syrups), rectally (by suppositories or enemas), topically (through creams or patches), inhalation, parenterally injected, intravenous injection, intramuscular injection or subcutaneous injection, as indicated above or in any type of pharmaceutically acceptable form, such as : methyl, ethyl, phosphates, other radicals of the ester, ether, alkyl type, etc.
En un aspecto preferido, la invención hace referencia al uso del compuesto [-]HOOC- HOCH-(CH2)¿-(CH=CH-CH2)7-(CH2)¿-CH3 para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales en la membrana celular debidas a un déficit en la actividad de la enzima EC 2.7.8.27, un nivel anormalmente bajo de SM en la membrana celular, un nivel anormalmente bajo de PFAG o un nivel anormalmente alto de DHFR; seleccionándose las patologías preferiblemente entre: cáncer preferentemente cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro, cáncer de pulmón, melanoma maligno y cáncer hepático; patologías vasculares preferentemente hipertensión, arterieesclerosis, cardiomiopatías, angiogénesis, hiperplasia cardiaca o patologías metabólicas; patologías metabólicas preferentemente: diabetes, síndrome metabólico u obesidad. In a preferred aspect, the invention relates to the use of the compound [-] HOOC-HOCH- (CH2) - (CH = CH-CH2) 7 - (CH2) ¿-CH3 for the preparation of a pharmaceutical composition intended for treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations in the cell membrane due to a deficit in the activity of the enzyme EC 2.7.8.27, an abnormally low level of MS in the cell membrane, an abnormally low level of PFAG or an abnormally high level of DHFR; pathologies being preferably selected from: preferably prostate cancer, breast cancer, pancreatic cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer; vascular pathologies preferably hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia or metabolic pathologies; Metabolic pathologies preferably: diabetes, metabolic syndrome or obesity.
Igualmente la presente invención hace referencia al compuesto [-]HOOC-HOCH- (CH2)6-(CH=CH-CH2)/-(CH2)6-CH3 para ser usado en el tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales en la membrana celular debidas a un déficit en la actividad de la enzima EC 2.7.8.27, un nivel anormalmente bajo de SM en la membrana celular, un nivel anormalmente bajo de PFAG o un nivel anormalmente alto de DHFR; seleccionándose las patologías preferiblemente entre: cáncer preferentemente cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro, cáncer de pulmón, melanoma maligno y cáncer hepático; patologías vasculares preferentemente hipertensión, arterieesclerosis, cardiomiopatías, angiogénesis, hiperplasia cardiaca o patologías metabólicas; patologías metabólicas preferentemente: diabetes, síndrome metabólico u obesidad. The present invention also refers to the compound [-] HOOC-HOCH- (CH2) 6- (CH = CH-CH2) / - (CH2) 6-CH 3 to be used in the treatment and / or prevention of pathologies whose etiology common are structural and / or functional alterations in the cell membrane due to a deficit in the activity of the enzyme EC 2.7.8.27, an abnormally low level of SM in the cell membrane, an abnormally low level of PFAG or an abnormally high level of DHFR; pathologies being preferably selected from: preferably prostate cancer, breast cancer, pancreatic cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer; vascular pathologies preferably hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia or metabolic pathologies; Metabolic pathologies preferably: diabetes, metabolic syndrome or obesity.
En otro aspecto preferido, la invención hace referencia al uso del compuesto de fórmula [+]HOOC-HOCH-(CH2)6-(CH=CH-CH2)7-(CH2)6-CH3 para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales en la membrana celular debidas a un exceso en la actividad de la enzima EC 2.7.8.27, un nivel anormalmente elevado de SM en la membrana celular, un nivel anormalmente alto de PFAG o un nivel anormalmente bajo de DHFR; siendo la patología, por ejemplo, la fibrosis quística la hipercolesterolemia y la trigliceridemia. In another preferred aspect, the invention refers to the use of the compound of formula [+] HOOC-HOCH- (CH2) 6 - (CH = CH-CH2) 7 - (CH2) 6 -CH3 for the preparation of a pharmaceutical composition intended to the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations in the cell membrane due to an excess in the activity of the enzyme EC 2.7.8.27, an abnormally high level of SM in the cell membrane, a level abnormally high PFAG or an abnormally low level of DHFR; being the pathology, for example, cystic fibrosis hypercholesterolemia and triglyceridemia.
Igualmente la invención hace referencia al compuesto de fórmula [+]HOOC-HOCH- (CH2)Í;-(CH=CH-CH2)7-(CH2)Í;-CH3 para ser usado en el tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales en la membrana celular debidas a un exceso en la actividad de la enzima EC 2.7.8.27, un nivel anormalmente elevado de SM en la membrana celular, un nivel anormalmente alto de PFAG o un nivel anormalmente bajo de DHFR; siendo la patología, por ejemplo, la fibrosis quística la hipercolesterolemia y la trigliceridemia. Un tercer aspecto de la presente invención hace referencia a un método de tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de la membrana celular, debidas a la desregulación de la actividad de la enzima EC 2.7.8.27, del nivel de SM, del nivel de PFAG o del nivel de DHFR; que comprende la administración al paciente de una cantidad terapéuticamente eficaz de al menos un compuesto de los citados anteriormente o composiciones que los comprendan. The invention also refers to the compound of the formula [+] HOOC-HOCH- (CH2) Í ;-( CH = CH-CH2) 7- (CH2) Í ; -CH 3 to be used in the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations in the cell membrane due to an excess in the activity of the enzyme EC 2.7.8.27, an abnormally high level of SM in the cell membrane, an abnormally high level of PFAG or an abnormally low level of DHFR; being the pathology, for example, cystic fibrosis hypercholesterolemia and triglyceridemia. A third aspect of the present invention refers to a method of treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane, due to deregulation of the activity of the enzyme EC 2.7.8.27, the SM level, the PFAG level or the DHFR level; which comprises the administration to the patient of a therapeutically effective amount of at least one compound of the aforementioned or compositions comprising them.
En un aspecto preferido, la invención hace referencia a un método para el tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales en la membrana celular debidas a un déficit en la actividad de la enzima EC 2.7.8.27 y/o a un nivel anormalmente bajo de SM en la membrana celular, que comprende la administración al paciente de una cantidad terapéuticamente eficaz del compuesto [-]HOOC-HOCH-(CH2)6-(CH=CH-CH2)7-(CH2)í;-CH3 o de una composición que lo comprenda. En un aspecto preferido las patologías se seleccionan preferiblemente entre: cáncer preferentemente cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro, cáncer de pulmón, melanoma maligno y cáncer hepático; patologías vasculares preferentemente hipertensión, arterieesclerosis, cardiomiopatías, angiogénesis, hiperplasia cardiaca o patologías metabólicas; patologías metabólicas preferentemente: diabetes, síndrome metabólico u obesidad. En otro aspecto preferido, la invención hace referencia a un método de tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales en la membrana celular debidas a un exceso en la actividad de la enzima EC 2.7.8.27 y/o a un nivel anormalmente elevado de SM en la membrana celular, que comprende la administración de una cantidad terapéuticamente eficaz del compuesto [+]HOOC-HOCH-(CH2)6-(CH=CH-CH2)7-(CH2)6-CH3 o de una composición que lo comprenda. En una realización preferida la patología es, por ejemplo, la fibrosis quística, la hipercolesterolemia y la hipertrigliceridemia. In a preferred aspect, the invention refers to a method for the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations in the cell membrane due to a deficit in the activity of the enzyme EC 2.7.8.27 and / or at an abnormally low level of SM in the cell membrane, which comprises administering to the patient a therapeutically effective amount of the compound [-] HOOC-HOCH- (CH2) 6 - (CH = CH-CH2) 7 - (CH2) í; -CH3 or a composition that includes it. In a preferred aspect, the pathologies are preferably selected from: preferably prostate cancer, breast cancer, pancreas cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer; vascular pathologies preferably hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia or metabolic pathologies; Metabolic pathologies preferably: diabetes, metabolic syndrome or obesity. In another preferred aspect, the invention refers to a method of treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations in the cell membrane due to an excess in the activity of the enzyme EC 2.7.8.27 and / or at an abnormally high level of SM in the cell membrane, which comprises the administration of a therapeutically effective amount of the compound [+] HOOC-HOCH- (CH2) 6 - (CH = CH-CH2) 7 - (CH2) 6 -CH3 or of a composition that understand In a preferred embodiment the pathology is, for example, cystic fibrosis, hypercholesterolemia and hypertriglyceridemia.
A los efectos de la presente invención se entiende por "cantidad terapéuticamente eficaz" a aquella que revierte la enfermedad o la previene sin mostrar efectos secundarios adversos. También se entendería por "cantidad terapéuticamente eficaz", aquella que, produciendo un efecto terapéutico significativo, tuviera un nivel de toxicidad aceptable cuando la enfermedad tratada fuera muy grave o mortal. For the purposes of the present invention, "therapeutically effective amount" is understood as that which reverts the disease or prevents it without showing adverse side effects. "Therapeutically effective amount" would also be understood as that which, producing a significant therapeutic effect, had an acceptable level of toxicity when the treated disease was very serious or fatal.
Un cuarto aspecto de la presente invención hace referencia a un método in vitro para la selección de compuestos candidatos útiles en el tratamiento y/o prevención de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de la membrana celular, que comprende la evaluación de cambios producidos sobre la actividad de la enzima EC 2.7.8.27, del nivel de SM, del nivel de PFAG o del nivel de DHFR en presencia de dicho compuesto candidato. Es decir, la presente invención comprende el uso de la enzima EC 2.7.8.27, de SM, PFAG o DHFR como dianas terapéuticas, con la finalidad de diseñar herramientas terapéuticas capaces de alterar su actividad (p.ej., Figura 5) o niveles y a las que dirigir compuestos con el objetivo de prevenir y/o tratar las patologías anteriormente descritas. A fourth aspect of the present invention refers to an in vitro method for the selection of candidate compounds useful in the treatment and / or prevention of pathologies whose common etiology is structural and / or functional alterations of the cell membrane, which includes the evaluation of changes produced on the activity of the enzyme EC 2.7.8.27, the level of SM, the level of PFAG or the level of DHFR in the presence of said candidate compound. That is, the present invention comprises the use of the enzyme EC 2.7.8.27, of SM, PFAG or DHFR as therapeutic targets, with the purpose of designing therapeutic tools capable of altering their activity (eg, Figure 5) or levels and to which to direct compounds with the aim of preventing and / or treating the pathologies described above.
El quinto aspecto de la presente invención hace referencia a métodos in vitro para el prono stico/diagnóstico de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de los lípidos localizados en la membrana celular que comprende la determinación de la desregulación de la actividad de la enzima EC 2.7.8.27 y/o de la presencia de un nivel anormal de SM, del PFAG o de DFIFR en la membrana celular u otros compartimentos celulares. Es decir, la presente invención comprende el uso de la enzima EC 2.7.8.27, o de SM, PFAG o DFIFR, como marcadores moleculares a través de los cuales realizar el diagnóstico y/o pronóstico de las patologías anteriormente descritas. La importancia de la SM en la estructura y actividad de la membrana celular, y de la enzima EC 2.7.8.27 como responsable de producir este fosfolípido, hacen que la detección de la concentración/actividad celular de ambas en tejidos, plasma, líquido cefalorraquídeo, orina y/o otros fluidos corporales, pueda ser empleada en la preparación de kits de detección, diagnóstico y seguimiento de diferentes patologías comprendidas en la presente invención, como, por ejemplo: cáncer, hipertensión, obesidad y enfermedades metabólicas. Por esto, tanto la SM, como la enzima EC 2.7.8.27, la DHFR y la PFAG constituyen biomarcadores para la detección de enfermedades humanas, y, como se ha dicho más arriba, son dianas terapéuticas para el diseño de nuevas terapias para humanos. En un aspecto preferido, la presente invención hace referencia a un método in vitro para el prono stico/diagnóstico de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de los lípidos localizados en la membrana celular que comprende la determinación de un déficit en la actividad de la enzima EC 2.7.8.27, de la presencia de un nivel anormalmente bajo de SM en la membrana celular, de un nivel celular anormalmente bajo de PFAG o de un nivel celular anormalmente alto de DFIFR, donde, de forma preferida, las patologías se seleccionan entre: cáncer preferentemente cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro, cáncer de pulmón, melanoma maligno y cáncer hepático; patologías vasculares preferentemente hipertensión, arterieesclerosis, cardiomiopatías, ictus, angiogénesis, hiperplasia cardiaca o patologías metabólicas; patologías metabólicas preferentemente: diabetes, síndrome metabólico u obesidad. The fifth aspect of the present invention refers to in vitro methods for the prognostic / diagnosis of pathologies whose common etiology is structural and / or functional alterations of the lipids located in the cell membrane comprising the determination of the deregulation of the activity of the enzyme EC 2.7.8.27 and / or the presence of an abnormal level of SM, PFAG or DFIFR in the cell membrane or other cell compartments. That is, the present invention comprises the use of the enzyme EC 2.7.8.27, or of SM, PFAG or DFIFR, as molecular markers through which to make the diagnosis and / or prognosis of the previously described pathologies. The importance of MS in the structure and activity of the cell membrane, and of the enzyme EC 2.7.8.27 as responsible for producing this phospholipid, make the detection of the concentration / cellular activity of both in tissues, plasma, cerebrospinal fluid, urine and / or other body fluids, can be used in the preparation of kits for detection, diagnosis and monitoring of different pathologies included in the present invention, such as, for example, cancer, hypertension, Obesity and metabolic diseases. Therefore, both SM and the enzyme EC 2.7.8.27, DHFR and PFAG constitute biomarkers for the detection of human diseases, and, as mentioned above, are therapeutic targets for the design of new therapies for humans. In a preferred aspect, the present invention refers to an in vitro method for the prone diagnosis / diagnosis of pathologies whose common etiology is structural and / or functional alterations of the lipids located in the cell membrane comprising the determination of a deficit in the EC enzyme activity 2.7.8.27, the presence of an abnormally low level of SM in the cell membrane, an abnormally low cellular level of PFAG or an abnormally high cellular level of DFIFR, where, preferably, the pathologies They are selected from: preferably prostate cancer, breast cancer, pancreas cancer, leukemia, uterine cancer, colon cancer, brain cancer, lung cancer, malignant melanoma and liver cancer; vascular pathologies preferably hypertension, arteriosclerosis, cardiomyopathies, stroke, angiogenesis, cardiac hyperplasia or metabolic pathologies; Metabolic pathologies preferably: diabetes, metabolic syndrome or obesity.
En otro aspecto preferido, la presente invención hace referencia a un método in vitro para el prono stico/diagnóstico de patologías cuya etiología común sea alteraciones estructurales y/o funcionales de los lípidos localizados en la membrana celular que comprende la determinación de un exceso en la actividad de la enzima EC 2.7.8.27, de la presencia de un nivel anormalmente alto de SM en la membrana celular, de un nivel anormalmente alto de PFAG o de un nivel anormalmente bajo de DHFR, donde, de forma preferida, la patología es fibrosis quística la hipercolesterolemia y la hipertrigliceridemia. El sexto aspecto de la presente invención hace referencia a kits para ser usados en el método de pronóstico/diagnóstico definido más arriba, que comprende medios útiles para la determinación de la actividad de la enzima EC 2.7.8.27, del nivel de SM en la membrana celular, de los niveles/actividad de DHFR y/o los niveles de GAPF. Dichos medios útiles comprenden la técnica TLC y HPTLC, cromatografía de gases, análisis de imagen, espectroscopia de absorción o fluorescencia, microscopía óptica, de fluorescencia, microscopía confocal, inmunoblotting, inmunocitoquímica, ELISA o técnicas similares (RIA, dot/slot blot, EIA, etc.). In another preferred aspect, the present invention refers to an in vitro method for the prone diagnosis / diagnosis of pathologies whose common etiology is structural and / or functional alterations of the lipids located in the cell membrane comprising the determination of an excess in the EC enzyme activity 2.7.8.27, the presence of an abnormally high level of SM in the cell membrane, an abnormally high level of PFAG or an abnormally low level of DHFR, where, preferably, the pathology is fibrosis cystic hypercholesterolemia and hypertriglyceridemia. The sixth aspect of the present invention refers to kits to be used in the prognostic / diagnostic method defined above, which comprises useful means for determining the activity of the enzyme EC 2.7.8.27, of the level of SM in the membrane cellular, DHFR levels / activity and / or GAPF levels. Such useful means comprise the TLC and HPTLC technique, gas chromatography, image analysis, absorption or fluorescence spectroscopy, optical microscopy, fluorescence, confocal microscopy, immunoblotting, immunocytochemistry, ELISA or similar techniques (RIA, dot / slot blot, EIA, etc.).
En un aspecto preferido el kit se caracteriza porque el pronóstico/diagnóstico se lleva a cabo a través de la cuantificación directa de los niveles de esfingomielina, y/o de la cuantificación indirecta de la misma a través de sus precursores (por ejemplo fosfatidiletanolamina, fosfatidilcolina, ceramida, etc.) o de sus derivados (por ejemplo esfingolípidos). De forma preferida el precursor es la ceramida, el derivado es BD-Cer o BD-SM y la medición indirecta se hace a través de la lisenina. In a preferred aspect the kit is characterized in that the prognosis / diagnosis is carried out through direct quantification of sphingomyelin levels, and / or indirect quantification thereof through its precursors (for example phosphatidylethanolamine, phosphatidylcholine , ceramide, etc.) or its derivatives (for example sphingolipids). Preferably, the precursor is ceramide, the derivative is BD-Cer or BD-SM and indirect measurement is made through lisenin.
Otro aspecto de la presente invención hace referencia a un método de síntesis de compuestos racémicos y el aislamiento y purificación de los enantiómeros de las moléculas de la invención que comprende los siguientes pasos: Another aspect of the present invention refers to a method of synthesis of racemic compounds and the isolation and purification of the enantiomers of the molecules of the invention comprising the following steps:
1. Hidroxilación en medio ácido del ácido graso insaturado para producir el producto racémico. 1. Hydroxylation in acidic medium of unsaturated fatty acid to produce the racemic product.
2. Purificación por recristalización y precipitación del 2-hidroxiácido graso racémico en su forma de sal de sodio.  2. Purification by recrystallization and precipitation of racemic fatty 2-hydroxy acid in its sodium salt form.
3. Esterificación de la mezcla racémica de 2-hidroxiácido graso en su forma de sal de sodio con una disolución de ácido sulfúrico en etanol, preferentemente al 10%.  3. Esterification of the racemic mixture of 2-hydroxy fatty acid in its sodium salt form with a solution of sulfuric acid in ethanol, preferably 10%.
4. Hidrólisis enantioselectiva del éster, catalizada por la lipasa de pseudomonas fluorescens (Amane Lipase, cas #9001-62-1) a 25 °C.  4. Enantioselective hydrolysis of the ester, catalyzed by pseudomonas fluorescens lipase (Amane Lipase, cas # 9001-62-1) at 25 ° C.
5. Control del progreso de la reacción mediante cromatografía líquida.  5. Control of the progress of the reaction by liquid chromatography.
6. Hidrólisis de la mezcla con HC1 diluido hasta pH menor de 2.  6. Hydrolysis of the mixture with diluted HC1 to pH less than 2.
7. Extracción de los productos en metil-terbutil-éter (MTBE) y lavado de la fase orgánica.  7. Extraction of the products in methyl-terbutyl ether (MTBE) and washing of the organic phase.
8. Eliminación del disolvente a vacío para obtener un crudo con la mezcla de ácido y éster.  8. Removal of the solvent in vacuo to obtain a crude with the mixture of acid and ester.
9. Separación de ácido y éster mediante cristalización del primero.  9. Separation of acid and ester by crystallization of the first.
10. Volver al paso 1) en el caso del ácido y paso 2) en el caso del éster para iniciar el reprocesado de cada una de las fracciones aisladas (ácido y éster) hasta obtener la pureza enantiomérica deseada (95% de exceso enantiomérico, que equivale a un 97,5% del enantiómero deseado y 2.5% del no deseado). La separación y aislamiento de los dos enantiómeros del 20HOA no es conocida hasta la fecha. Especialmente el asilamiento del enantiómero [-] no había podido llevarse a cabo hasta la fecha debido a su dificultad técnica. La presente invención también hace referencia a un método in vitro de seguimiento de las alteraciones celulares producidas sobre las células enfermas por el efecto de los compuestos de la presente invención, u otros compuestos que actúen sobre el mismo proceso o sobre procesos celulares relacionados, produciendo la curación o la mejoría de las células afectadas en el paciente. Es decir, la presente invención comprende el uso de la enzima EC 2.7.8.27, o de SM, DHFR o GAPF como marcadores moleculares cuyos cambios inducidos por el tratamiento con las moléculas de la presente invención permitan saber si el paciente responde al tratamiento y, por lo tanto, determinar la eficacia del mismo y el tiempo que se debe de mantener. Estos métodos también pueden permitir predecir si un paciente tiene posibilidades de responder al tratamiento con las moléculas de la presente invención, por lo que se pueden utilizar para realizar el diagnóstico y/o pronóstico de las patologías anteriormente descritas. Dado que la alteración de la composición de la membrana, y en concreto de los niveles de SM, da lugar a cambios en los niveles de las proteínas DHFR y PFAG, un aspecto preferido de la presente invención hace referencia a un método que permita seguir los cambios inducidos por las moléculas de la presente invención u otras moléculas que realicen un efecto similar sobre las células patológicas. Por lo tanto, el uso de la SM, el enzima EC 2.7.8.27, la DHFR y/o la PFAG ofrece la posibilidad de que la terapia aplicada pueda cambiar sus niveles o actividad. La finalidad de esta determinación es (1) la predicción de la eficacia del tratamiento para evitar a los pacientes potencialmente no respondedores seguir una terapia ineficaz y (2) conocer la evolución del paciente para confirmar que responde a la terapia y saber las dosis a suministrar en función de la fase del tratamiento, así como la duración de dichas fases y del propio tratamiento en su totalidad. Como estos aspectos son críticos para evitar gasto farmacéutico innecesario y para poder aplicar la terapia de la forma más racional posible, las grandes agencias reguladoras en materia farmacéutica solicitan la existencia de biomarcadores y sistemas de diagnóstico como los aquí descritos. De igual forma la presente invención hace referencia a un método para el tratamiento de pacientes aquejados de las patologías arriba descritas, que comprende la propia determinación de la presencia de dicha desregulación en la enzima EC 2.7.8.27, del nivel de SM, del nivel de PFAG o del nivel de DHFR, y el tratamiento del paciente que presente dicha desregulación con los compuestos de la invención. 10. Return to step 1) in the case of acid and step 2) in the case of the ester to start reprocessing each of the isolated fractions (acid and ester) until the desired enantiomeric purity is obtained (95% enantiomeric excess, which is equivalent to 97.5% of the desired enantiomer and 2.5% of the unwanted one). The separation and isolation of the two enantiomers of 20HOA is not known to date. Especially the isolation of the enantiomer [-] had not been possible to date due to its technical difficulty. The present invention also refers to an in vitro method of monitoring the cellular alterations produced on the diseased cells by the effect of the compounds of the present invention, or other compounds that act on the same process or on related cellular processes, producing the healing or improvement of the affected cells in the patient. That is, the present invention comprises the use of the enzyme EC 2.7.8.27, or of SM, DHFR or GAPF as molecular markers whose changes induced by the treatment with the molecules of the present invention allow to know if the patient responds to the treatment and, therefore, determine its effectiveness and the time that must be maintained. These methods can also make it possible to predict whether a patient has the possibility of responding to the treatment with the molecules of the present invention, so they can be used to make the diagnosis and / or prognosis of the previously described pathologies. Since the alteration of the membrane composition, and in particular of the levels of SM, results in changes in the levels of DHFR and PFAG proteins, a preferred aspect of the present invention refers to a method that allows to follow the changes induced by the molecules of the present invention or other molecules that perform a similar effect on pathological cells. Therefore, the use of MS, the enzyme EC 2.7.8.27, DHFR and / or PFAG offers the possibility that the applied therapy can change its levels or activity. The purpose of this determination is (1) the prediction of the efficacy of the treatment to avoid potentially non-responding patients following an ineffective therapy and (2) knowing the evolution of the patient to confirm that he responds to the therapy and know the doses to be delivered depending on the phase of the treatment, as well as the duration of these phases and the treatment itself as a whole. As these aspects are critical to avoid unnecessary pharmaceutical expenditure and to be able to apply the therapy in the most rational way possible, the large regulatory agencies in pharmaceutical matters request the existence of biomarkers and diagnostic systems as described here. Likewise, the present invention refers to a method for the treatment of patients suffering from the pathologies described above, which comprises the determination of the presence of said deregulation in the enzyme EC 2.7.8.27, of the level of MS, of the level of PFAG or DHFR level, and the treatment of the patient presenting said deregulation with the compounds of the invention.
Además la presente invención hace referencia a un método para seleccionar la terapia para un paciente con una patología descrita en la presente invención que comprende la determinación de la presencia de dicha desregulación en la enzima EC 2.7.8.27, del nivel de SM, del nivel de PFAG o del nivel de DFIFR y la selección, en base a dicha determinación, de una terapia basada en los compuestos de la presente invención. Furthermore, the present invention refers to a method for selecting therapy for a patient with a pathology described in the present invention which comprises determining the presence of said deregulation in the enzyme EC 2.7.8.27, of the level of MS, of the level of PFAG or DFIFR level and the selection, based on said determination, of a therapy based on the compounds of the present invention.
Con el propósito de ilustrar la presente invención se incluyen las siguientes definiciones: For the purpose of illustrating the present invention, the following definitions are included:
• Alta/baja actividad de la enzima EC 2.7.8.27: Actividad enzimática que resulta en la aparición de niveles altos o bajos, respectivamente, de SM en membranas. · Nivel alto/bajo de esfingomielina: Se consideran niveles bajos de esfingomielina los que suponen menos de un 15% de los fosfolípidos totales de membrana. Se consideran niveles altos de esfingomielina los que suponen un 15% o más de este fosfolípido, con respecto a los fosfolípidos totales. • High / low activity of the enzyme EC 2.7.8.27: Enzymatic activity that results in the appearance of high or low levels, respectively, of SM in membranes. · High / low level of sphingomyelin: Low levels of sphingomyelin are considered to be less than 15% of total membrane phospholipids. High levels of sphingomyelin are considered to be 15% or more of this phospholipid, with respect to total phospholipids.
• Nivel alto/bajo de PFAG: Se considera un nivel alto de PFAG el que supone el doble o más (> 200%) de los niveles normales presentes en células de la glía, en referencia a mg de proteína total. Se considera un nivel bajo de PFAG el que implica la presencia de niveles de la mitad o menos (< 50%) respecto a los niveles normales presentes en células de la glía, en referencia a mg de proteína total. · Nivel alto/bajo de DHFR: Se considera un nivel alto de DHFR el que supone el doble o más (> 200%) de los niveles normales presentes en células quiescentes del tipo que sean, en referencia a mg de proteína total. Se considera un nivel bajo de DHFR el que implica la presencia de niveles de la mitad o menos (< 50%) respecto a los niveles normales presentes en células quiescentes del tipo que sean, en referencia a mg de proteína total. Breve descripción de las figuras Figura 1. • High / low level of PFAG: A high level of PFAG is considered to be double or more (> 200%) of the normal levels present in glia cells, in reference to mg of total protein. A low level of PFAG is considered to imply the presence of levels of half or less (<50%) with respect to the normal levels present in glia cells, in reference to mg of total protein. · High / low level of DHFR: A high level of DHFR is considered to be double or more (> 200%) of the normal levels present in quiescent cells of any type, in reference to mg of total protein. A low level of DHFR is considered to imply the presence of levels of half or less (<50%) with respect to the normal levels present in quiescent cells of any type, in reference to mg of total protein. Brief description of the figures Figure 1.
A. El compuesto 20HOA induce un aumento significativo en la síntesis de SM en distintas líneas celulares de cáncer de cerebro humano (U118, SF767 y 1321N1), células de cáncer de pulmón humano (A549) y células de leucemia humana (Jurkat), pero no en células no tumorales (células de fibroblastos de pulmón humano MRC5). Este incremento es, por lo tanto, inducido y específico para células tumorales. Asimismo, se ha estudiado también el efecto antitumoral sobre éstas y otras líneas tumorales (ver Tabla 2). Las células fueron tratadas vehículo (agua con 5% de etanol, Control) o con el compuesto 20HOA, durante 24 horas a una concentración de 200 μΜ. Los valores del eje de ordenadas representan la media ± ESM (error estándar de la media de un número de experimentos n = 3-5) de los niveles de SM (porcentaje sobre fosfolípidos totales), determinados mediante procesos cromatográficos (TLC o HP- TLC, seguido por determinación espectroscópica y cuantificación por análisis de imagen), como porcentaje respecto de los lípidos totales comparados con los niveles de células sin tratar (control). Los niveles de SM medidos en células tumorales son significativamente inferiores a los de células normales y el compuesto 20HOA sólo indujo cambios significativos en células de cáncer. Estos resultados indican que la enzima EC 2.7.8.27 es una diana terapéutica para el tratamiento del cáncer y un biomarcador para el seguimiento de la patología y su evolución durante las terapias aplicadas, y que, por otro lado, el compuesto 20HOA es un activador de esta enzima y revierte los bajos niveles de SM que presentan las células tumorales. Además de las técnicas descritas arriba para medir la actividad del enzima y los niveles de SM, se han probado otras técnicas que han dado resultados muy similares, como la cromatografía de gases, la microscopía confocal, la espectroscopia de fluorescencia, etc. A. The compound 20HOA induces a significant increase in the synthesis of MS in different human brain cancer cell lines (U118, SF767 and 1321N1), human lung cancer cells (A549) and human leukemia cells (Jurkat), but not in non-tumor cells (human lung fibroblast cells MRC5). This increase is, therefore, induced and specific for tumor cells. Likewise, the antitumor effect on these and other tumor lines has also been studied (see Table 2). The cells were treated vehicle (water with 5% ethanol, Control) or with the compound 20HOA, for 24 hours at a concentration of 200 μΜ. The ordinate axis values represent the mean ± ESM (standard error of the average of a number of experiments n = 3-5) of the levels of SM (percentage of total phospholipids), determined by chromatographic processes (TLC or HP-TLC , followed by spectroscopic determination and quantification by image analysis), as a percentage of total lipids compared to untreated (control) cell levels. The levels of MS measured in tumor cells are significantly lower than those of normal cells and the 20HOA compound only induced significant changes in cancer cells. These results indicate that the enzyme EC 2.7.8.27 is a therapeutic target for the treatment of cancer and a biomarker for the monitoring of the pathology and its evolution during the applied therapies, and that, on the other hand, the compound 20HOA is an activator of this enzyme and reverses the low levels of SM presented by tumor cells. In addition to the techniques described above to measure enzyme activity and MS levels, other techniques have been tested that have yielded very similar results, such as gas chromatography, confocal microscopy, fluorescence spectroscopy, etc.
B. Imágenes de microscopía confocal mostrando el mareaje de la SM celular mediante unión de lisenina, seguida por el mareaje con un anticuerpo marcado con fluorescencia, en células de glioma humano U118 tratadas con vehículo (Control) o con 20HOA (200 μΜ). Se puede apreciar en las células tumorales que la cantidad de SM en la membrana es escasa y que los tratamientos con 20HOA inducen un aumento dramático en la cantidad de de SM en la membrana, claro indicador de la activación de la enzima EC 2.7.8.27. Este experimento, además, muestra claramente que el aumento en el nivel de SM celular se debe principalmente a una acumulación en la membrana plasmática de las células tumorales. B. Images of confocal microscopy showing the mapping of the cellular SM by lysinein binding, followed by the marking with a fluorescently labeled antibody, in U118 human glioma cells treated with vehicle (Control) or with 20HOA (200 μΜ). It can be seen in the tumor cells that the amount of SM in the membrane is low and that 20HOA treatments induce a dramatic increase in the amount of SM in the membrane, a clear indicator of the activation of EC enzyme 2.7.8.27. This experiment also shows clearly that the increase in the level of cellular SM is mainly due to an accumulation in the plasma membrane of the tumor cells.
C. Paneles superiores: Mareaje específico, mediante técnicas inmunocitoquímicas, de la SM (izquierda: lisenina seguida de anticuerpo marcado con el fluoróforo Alexa 488), del ADN nuclear con Hoechst 33258 (centro: Hoechst), o ambos (derecha, merge). Las figuras corresponden a secciones de tumores de cáncer de pulmón humano (células A549) formados en ratones inmunodeprimidos tratados con vehículo (Control) o con [- J20HOA a 600 mg/kg -día o a 900 mg/kg -día (oral, 50 días). Estos resultados muestran claramente cómo los niveles de SM aumentan de forma significativa tras la inducción del tratamiento con [-J20HOA, pero no aumentan de forma natural en dichos tumores. C. Upper panels: Specific marking, by immunocytochemical techniques, of SM (left: lysenin followed by antibody labeled with fluorophore Alexa 488), of nuclear DNA with Hoechst 33258 (center: Hoechst), or both (right, merge). The figures correspond to sections of human lung cancer tumors (A549 cells) formed in immunosuppressed mice treated with vehicle (Control) or with [- J20HOA at 600 mg / kg -day or 900 mg / kg -day (oral, 50 days ). These results clearly show how MS levels increase significantly after induction of treatment with [-J20HOA, but they do not increase naturally in such tumors.
Paneles centrales: Detalle del mareaje de la SM (izquierda), ADN nuclear (centro), o ambos (derecha) en una célula presente en un corte de tumor desarrollado en un ratón infectado con cáncer de pulmón humano (A549) y tratado con [-J20HOA (600 mg/kg -día, p.o., 50 días). La imagen muestra la pérdida de ADN nuclear, claro indicador del inicio de la muerte celular, en paralelo al incremento de SM. Central panels: Detail of the SM mapping (left), nuclear DNA (center), or both (right) in a cell present in a tumor cut developed in a mouse infected with human lung cancer (A549) and treated with [ -J20HOA (600 mg / kg -day, po, 50 days). The image shows the loss of nuclear DNA, a clear indicator of the onset of cell death, in parallel to the increase in MS.
Panel inferior: El eje de ordenadas representa la cuantificación de la intensidad de fluorescencia (unidades arbitrarias) por microscopía confocal en secciones de los tumores mostrados en el panel superior (media ± error estándar de la media), procedentes de animales tratados con vehículo (Control), o 20HOA a 600 mg/kg -día (T600) o 900 mg/kg · día (T900) durante 50 días (p.o.). *** P < 0.001. Lower panel: The ordinate axis represents the quantification of the fluorescence intensity (arbitrary units) by confocal microscopy in sections of the tumors shown in the upper panel (mean ± standard error of the mean), from vehicle treated animals (Control ), or 20HOA at 600 mg / kg -day (T600) or 900 mg / kg · day (T900) for 50 days (po). *** P <0.001.
D. Determinación de los niveles de SM por espectroscopia de fluorescencia. Membranas modelo (liposomas) con diferente contenido de SM se incubaron en presencia de lisenina, primero, y de un anticuerpo anti-lisenina marcado con el fluoróforo Alexa 488, después. La fluorescencia unida a las membranas (niveles de SM) se separó de la no unida mediante centrifugación a 80,000 x g durante 30 minutos. El precipitado se resuspendió en un medio con detergente (1% de dodecil sulfato sódico) y se cuantificó la fluorescencia (unidades arbitrarias en el precipitado) en cada pellet (ordenadas) en función de la concentración de SM (abeisas). Cualquier fluoróforo que se una al anticuerpo o a la lisenina puede ser empleado para la detección de este lípido. Figura 2. El compuesto 20HOA induce un aumento en la síntesis de SM de manera dependiente de su concentración y del tiempo del tratamiento. Los valores del eje de ordenadas representan la media ± ESM de los niveles de SM (porcentaje sobre fosfolípidos totales) respecto al control sin tratamiento (n = 3-5). Los niveles se SM fueron determinados mediante cromatografía en capa fina (HP-TLC, high performance thin layer chromatography), seguido por análisis de imagen o cromatografía de gases: D. Determination of MS levels by fluorescence spectroscopy. Model membranes (liposomes) with different SM content were incubated in the presence of lisenin, first, and an anti-lysenin antibody labeled with fluorophore Alexa 488, then. The membrane bound fluorescence (SM levels) was separated from the unbound by centrifugation at 80,000 xg for 30 minutes. The precipitate was resuspended in a medium with detergent (1% sodium dodecyl sulfate) and the fluorescence (arbitrary units in the precipitate) in each pellet (ordered) was quantified according to the concentration of SM (bees). Any fluorophore that binds to the antibody or lysenin can be used for the detection of this lipid. Figure 2. Compound 20HOA induces an increase in the synthesis of MS in a manner dependent on its concentration and the time of treatment. The ordinate axis values represent the mean ± ESM of the levels of MS (percentage of total phospholipids) with respect to the control without treatment (n = 3-5). The levels were SM were determined by thin layer chromatography (HP-TLC, high performance thin layer chromatography), followed by image analysis or gas chromatography:
A: Células cancerosas Ul 18 de glioma humano tratadas a una concentración de 200 μΜ de 20HOA a distintos tiempos (2, 6, 12, 24, 48 y 72 horas). Las barras blancas corresponden a células tratadas con vehículo (control). B: Células U118 tratadas durante 24 horas a distintas concentraciones de 20HOA (25- 400 μΜ). A: Ul 18 human glioma cancer cells treated at a concentration of 200 μΜ of 20HOA at different times (2, 6, 12, 24, 48 and 72 hours). The white bars correspond to cells treated with vehicle (control). B: U118 cells treated for 24 hours at different concentrations of 20HOA (25-400 μΜ).
Figura 3. El compuesto 20HOA induce un aumento de SM nuclear. Células de cáncer U118 fueron tratadas durante 24 horas con vehículo (control) o con 20HOA a una concentración 200 μΜ. Los valores del eje de ordenadas representan la media ± ESM (n = 3-5) de los niveles de SM respecto al control (100%) sin tratamiento. Figure 3. The 20HOA compound induces an increase in nuclear SM. U118 cancer cells were treated for 24 hours with vehicle (control) or with 20HOA at a concentration of 200 μΜ. The ordinate axis values represent the mean ± ESM (n = 3-5) of the levels of SM with respect to the control (100%) without treatment.
Figura 4. El compuesto 20HOA actúa de forma directa sobre la enzima EC 2.7.8.27. En A, B y C, en todos los casos, se incubaron las células o extractos celulares o medio de incubación con el sustrato fluorescente de este enzima BD-Cer (nitro- benzoxadiazol-il) ceramida], en presencia o ausencia (control, barras blancas) de 20HOA (barras negras). A continuación, se extrajeron los lípidos y se determinaron los niveles de formación de BD-SM por HPTLC (High performance Liquid Chromatography). Los valores se presentan en el eje de ordenadas como la media ± ESM (n = 3-5): Figure 4. The compound 20HOA acts directly on the enzyme EC 2.7.8.27. In A, B and C, in all cases, the cells or cell extracts or incubation medium were incubated with the fluorescent substrate of this BD-Cer enzyme (nitrobenzoxadiazol-yl) ceramide], in the presence or absence (control, white bars) of 20HOA (black bars). The lipids were then extracted and the levels of BD-SM formation determined by HPTLC (High performance Liquid Chromatography). The values are presented in the ordinate axis as the mean ± ESM (n = 3-5):
A: Experimento in vivo de la actividad de la enzima EC 2.7.8.27: se incubaron células Ul 18 con NBD-Cer durante 4 horas y luego se trataron con el compuesto 20HOA (200 μΜ) a distintos tiempos (5, 15, 60 minutos y 24 horas). Luego las células se homogenizaron y se midió la metabolización del fluoróforo NBD-Cer para convertirse en NBD-SM. A: In vivo experiment of the activity of the enzyme EC 2.7.8.27: Ul 18 cells were incubated with NBD-Cer for 4 hours and then treated with compound 20HOA (200 μΜ) at different times (5, 15, 60 minutes and 24 hours). The cells were then homogenized and the metabolization of the NBD-Cer fluorophore was measured to become NBD-SM.
B: Experimento in vitro de la actividad de la enzima EC 2.7.8.27 en extractos celulares, en los que se midió la actividad del enzima tras matar las células. Este experimento demuestra que el compuesto 20HOA es capaz de activar la enzima EC 2.7.8.27 mediante interacción directa. Para estos experimentos, los homogenizados celulares se incubaron con el compuesto 20HOA (200 μΜ) y BD-Cer durante 2 horas. B: In vitro experiment of the activity of the enzyme EC 2.7.8.27 in cell extracts, in which the activity of the enzyme was measured after killing the cells. This experiment demonstrates that compound 20HOA is capable of activating the enzyme EC 2.7.8.27 by direct interaction. For these experiments, cell homogenates were incubated with compound 20HOA (200 μΜ) and BD-Cer for 2 hours.
C: Efecto del compuesto 20HOA sobre la actividad de las isoformas 1 (células) y 2 (medio) de la enzima EC 2.7.8.27. La activación de las isoformas EC 2.7.8.27 (1) y EC 2.7.8.27 (2) se determinó mediante el ensayo de su actividad en la toda la célula o en la superficie celular, respectivamente. C: Effect of compound 20HOA on the activity of isoforms 1 (cells) and 2 (medium) of the enzyme EC 2.7.8.27. The activation of the EC 2.7.8.27 (1) and EC 2.7.8.27 (2) isoforms was determined by testing their activity in the entire cell or on the cell surface, respectively.
Figura 5. Relación estructura-función en la activación de la enzima EC 2.7.8.27. Aumento de SM en células U118 inducido por distintos ácidos grasos (200 μΜ, 24 h). Control, vehículo; 18: ln-9 (ácido octadecenoico); 2Me-18: ln-9 (ácido 2- metiloctadecenoico); 20H16: 1 (ácido 2-hidroxihexadecenoico); 2OH-18:0 (ácido 2- hidroxioctadecanoico); 20HOA (20H-18: ln-9, ácido 2-hidroxioctadecenoico); 20H- 18:2n-6 (ácido 2-hidroxilinoleico); 20H-18:3n-6 (ácido 2-hidroxi-y-linolenico); 20H- 18:3n-3 (ácido 2-hidroxi-a-linolenico); 2OH-20:4n-6 (ácido 2-hidroxiaraquidonico); 2OH-20:5n-3 (ácido 2-hidroxieicosapentaenoico); 20H-22:6n-3 (ácido 2- hidroxidocosahexaenoico). Los valores del eje de ordenadas representan la media ± ESM (n = 3-5) de los niveles de SM, determinados mediante cromatografía en capa fina, respecto al control sin tratamiento (100%). Los ácidos grasos de 20 átomos de C o más no producen cambios significativos en la actividad de este enzima. La presencia de otros radicales en el carbono 2 (como H o CH3) y la falta de dobles enlaces en la estructura del ácido graso dieron lugar a moléculas inactivas Figure 5. Structure-function relationship in the activation of the enzyme EC 2.7.8.27. Increase of SM in U118 cells induced by different fatty acids (200 μΜ, 24 h). Control, vehicle; 18: ln-9 (octadecenoic acid); 2Me-18: ln-9 (2-methyloctadecenoic acid); 20H16: 1 (2-hydroxyhexadecenoic acid); 2OH-18: 0 (2-hydroxyoctadecanoic acid); 20HOA (20H-18: ln-9, 2-hydroxyoctadecenoic acid); 20H- 18: 2n-6 (2-hydroxylinoleic acid); 20H-18: 3n-6 (2-hydroxy-y-linolenic acid); 20H- 18: 3n-3 (2-hydroxy-a-linolenic acid); 2OH-20: 4n-6 (2-hydroxyarachidonic acid); 2OH-20: 5n-3 (2-hydroxyeicosapentaenoic acid); 20H-22: 6n-3 (2-hydroxyacosahexaenoic acid). The ordinate axis values represent the mean ± ESM (n = 3-5) of the SM levels, determined by thin layer chromatography, with respect to the control without treatment (100%). Fatty acids of 20 C atoms or more do not produce significant changes in the activity of this enzyme. The presence of other radicals in carbon 2 (such as H or CH 3 ) and the lack of double bonds in the fatty acid structure resulted in inactive molecules
Figura 6. Figure 6
A: Se muestran que los cambios en la composición de la membrana celular inducen la translocación de la proteína Ras desde la membrana al citoplasma. Los niveles elevados en membrana del compuesto 20HOA y SM impiden el anclaje de la proteína Ras en la membrana. La figura muestra imágenes de microscopía óptica de contraste de fases (Ph.C) de células de glioma humano (SF767), y microscopía confocal, usando un anticuerpo específico contra Ras marcado fluorescentemente, tras 10 minutos (confocal 1) y 24 horas (confocal 2) de tratamiento con vehículo (control) o compuesto 20HOA. B: La translocación de la proteína Ras impide la inactivación de la proteína Raf, así como la siguiente activación en la cascada de señalización de la proteína MEK, tal y como se observa por la reducción en estado de la forma fosforilada (activa) de ambas proteínas, determinado por inmunoblot en células U118 cultivadas en ausencia (Control) no presencia de 150, 200 o 250 μΜ de 20HOA. A: Changes in cell membrane composition are shown to induce the translocation of Ras protein from the membrane to the cytoplasm. Elevated membrane levels of compound 20HOA and SM prevent anchoring of the Ras protein in the membrane. The figure shows phase contrast (Ph.C) optical microscopy images of human glioma cells (SF767), and confocal microscopy, using a specific antibody against fluorescently labeled Ras, after 10 minutes (confocal 1) and 24 hours (confocal 2) treatment with vehicle (control) or compound 20HOA. B: The translocation of the Ras protein prevents the inactivation of the Raf protein, as well as the next activation in the signaling cascade of the MEK protein, as observed by the reduction in state of the phosphorylated (active) form of both proteins, determined by immunoblot in U118 cells grown in absence (Control) no presence of 150, 200 or 250 μΜ of 20HOA.
C: Los anteriores eventos moleculares/celulares dan lugar a una reducción dramática en el estado de actividad de la proteína MAP kinasa (ERK1 y ERK2), también determinado mediante inmunoblot con anticuerpos específicos, a las concentraciones de 20HOA indicadas en B. D: Los estados de actividad (niveles de forma fosforilada) de Akt y EGFR también decrecen tras incubación con 250 μΜ de 20HOA. C: The previous molecular / cellular events lead to a dramatic reduction in the activity status of the MAP kinase protein (ERK1 and ERK2), also determined by immunoblotting with specific antibodies, at the concentrations of 20HOA indicated in B. D: Activity states (phosphorylated form levels) of Akt and EGFR also decrease after incubation with 250 μΜ of 20HOA.
En los paneles B a D, el eje de ordenadas indica el porcentaje de fosfoproteína respecto a las células SF767 sin tratar (control). El eje de abscisas indica la concentración (micromolar) del compuesto 20HOA. E: Panel superior: Niveles de expresión de DHFR en tumores derivados de células de glioma humano (SF767) implantadas en ratones desnudos que fueron tratados con 20HOA durante 50 días (600 mg/kg · día, p.o.). La gráfica de la izquierda muestra los valores medios (n = 4) de fluorescencia determinada por inmunocitoquímica usando un anticuerpo específico marcado con fluorescencia y las fotografías de la derecha corresponden a una imagen representativa. Panel inferior: Expresión de DHFR en células de cáncer de pulmón humano (A549). Todas las condiciones experimentales y detalles de esta gráfica son similares al panel superior. Estos resultados demuestran que los niveles de DHFR varían en respuesta al tratamiento con las moléculas de la invención, por lo que la actividad o niveles de esta proteína pueden ser empleados como biomarcadores para seguir la eficacia terapéutica de los compuestos descritos aquí o compuestos que actúen de forma similar. Asimismo, se deduce que los tumores en los que los niveles de DHFR sean altos pueden responder bien al tratamiento con los compuestos de la presente invención, por lo que esta proteína es un buen biomarcador para pronosticar la posible eficacia de enantiómeros de derivados de ácidos grasos y posteriormente evidenciar la eficacia del tratamiento con estos compuestos. F: Panel izquierdo: Niveles se PAFG en suero de animales con tumores humanos (glioma) determinados por inmunoblotting. Los ratones desnudos se infectaron con células SF767 y se trataron con vehículo (Glioma) o con 20HOA (T, 600 mg/kg · día, p.o., 28 días). La inmunoreactividad contra el péptido fragmentado de la PFAG (ver fotografía) en el suero de estos animales, expresada en porcentaje, se comparó con la encontrada en animales sin tumor y no tratados (Control). Panel derecho: Idem, pero determinado por ELISA en suero de animales tratados durante 7 días (7d600) o 28 días (28d600) con 600 mg/kg de 20HOA (p.o.). Para todos los experimentos se empleó un anticuerpo específico contra la PFAG. Estos resultados demuestran que los niveles de PFAG varían en respuesta al tratamiento con las moléculas de la invención, por lo que los niveles de esta proteína pueden ser empleados como biomarcadores para seguir la eficacia terapéutica de los compuestos descritos aquí o compuestos que actúen de forma similar. Asimismo, se deduce que los tumores en los que los niveles de PFAG sean bajos pueden responder bien al tratamiento con los compuestos de la presente invención, por lo que esta proteína es un buen biomarcador para pronosticar la posible eficacia de enantiómeros de derivados de ácidos grasos y posteriormente evidenciar la eficacia del tratamiento con estos compuestos. Para la medición de DHFR y PFAG se han utilizado varias técnicas, que incluyen electroforesis, inmunoblot, ELISA y similares, RT-PCR, etc. Todas estas técnicas y otras similares pueden ser empleadas para la determinación de los niveles o actividad de DHFR y PFAG. In panels B to D, the ordinate axis indicates the percentage of phosphoprotein with respect to the untreated (control) SF767 cells. The abscissa axis indicates the concentration (micromolar) of compound 20HOA. E: Upper panel: DHFR expression levels in tumors derived from human glioma cells (SF767) implanted in nude mice that were treated with 20HOA for 50 days (600 mg / kg · day, po). The graph on the left shows the mean values (n = 4) of fluorescence determined by immunocytochemistry using a specific fluorescently labeled antibody and the photographs on the right correspond to a representative image. Lower panel: Expression of DHFR in human lung cancer cells (A549). All the experimental conditions and details of this graph are similar to the upper panel. These results demonstrate that DHFR levels vary in response to treatment with the molecules of the invention, so that the activity or levels of this protein can be used as biomarkers to track the therapeutic efficacy of the compounds described herein or compounds acting as similar form. It also follows that tumors in which DHFR levels are high may respond well to treatment with the compounds of the present invention, so this protein is a good biomarker to predict the possible efficacy of enantiomers of fatty acid derivatives. and subsequently demonstrate the efficacy of treatment with these compounds. F: Left panel: PAFG levels in serum of animals with human tumors (glioma) determined by immunoblotting. Naked mice were infected with SF767 cells and treated with vehicle (Glioma) or with 20HOA (T, 600 mg / kg · day, po, 28 days). Immunoreactivity against the fragmented peptide of the PFAG (see photo) in the serum of these animals, expressed as a percentage, was compared with that found in tumor-free and untreated animals (Control). Right panel: Idem, but determined by serum ELISA of animals treated for 7 days (7d600) or 28 days (28d600) with 600 mg / kg of 20HOA (po). A specific antibody against PFAG was used for all experiments. These results demonstrate that PFAG levels vary in response to treatment with the molecules of the invention, whereby the levels of this protein can be used as biomarkers to follow the therapeutic efficacy of the compounds described herein or compounds that act similarly. . It also follows that tumors in which PFAG levels are low may respond well to treatment with the compounds of the present invention, so this protein is a good biomarker to predict the possible efficacy of enantiomers of fatty acid derivatives. and subsequently demonstrate the efficacy of treatment with these compounds. Various techniques have been used to measure DHFR and PFAG, including electrophoresis, immunoblot, ELISA and the like, RT-PCR, etc. All these and similar techniques can be used to determine the levels or activity of DHFR and PFAG.
Figura 7. A) Especificidad de la acción de los enantiómeros [-] y [+], y de la mezcla racémica +/- de 20HOA, en la actividad de la enzima EC 2.7.8.27. La figura muestra los niveles de SM (porcentaje de SM sobre los lípidos totales) en células de glioma U118 tras el tratamiento con la mezcla racémica del ácido 2-hidroxioleico (+/-), con el compuesto [-]20HOA y con el compuesto [+]20HOA. Las células se trataron 24 horas a una concentración de 50 μΜ (50) y 100 μΜ (100). Los valores del eje de ordenadas representan la media ± ESM (n= 3-5) de los niveles de SM determinados mediante cromatografía en capa fina como porcentaje respecto a los lípidos totales, comparados con los niveles de células sin tratar (control). Como se puede apreciar, el enantiómero [- ] produce incrementos de SM, lo que indica que es un activador de la enzima EC 2.7.8.27, y el enantiómero produce una reducción de los niveles de SM (obvios sobre todo a una concentración de 100 μΜ [+J20HOA), lo que indica que es un inhibidor de esta enzima. En este contexto, y sin que afecte a otros niveles, hemos podido comprobar que las mezclas que contengan este enantiómero inducen la activación del enzima EC 2.7.8.27, siendo un caso especial de mezcla molecular el racémico, aunque también se ha comprobado un efecto positivo en mezclas entre el enantiómero [-] y diferentes vehículos o diferentes compuestos terapéuticos. B) Efecto de las formas [+] (también enantiómero R: columnas negras), [-] (también enantiómero S: columnas blancas) y racémico (columnas gris) sobre los niveles de SM en membranas de células U118 (valores medios tras 24 h de incubación con 100 μΜ). Los tratamientos empleados fueron: vehículo (Control), ácido 2-hidroxipalmitoleico (20H16: 1), ácido 2- hidroxioleico (20H18: 1); ácido 2-hidroxilinoleico (20H18:2); ácido 2-hidroxi-ot- linolénico (20H18:3a); ácido 2-hidroxi-y-linolénico (20H18:3g). Figure 7. A) Specificity of the action of the [-] and [+] enantiomers, and of the +/- racemic mixture of 20HOA, in the activity of the enzyme EC 2.7.8.27. The figure shows the levels of SM (percentage of SM over total lipids) in U118 glioma cells after treatment with the racemic mixture of 2-hydroxyoleic acid (+/-), with compound [-] 20HOA and with compound [+] 20HOA. The cells were treated 24 hours at a concentration of 50 μΜ (50) and 100 μΜ (100). The ordinate axis values represent the mean ± ESM (n = 3-5) of the levels of SM determined by thin layer chromatography as a percentage of total lipids, compared to the levels of untreated cells (control). As can be seen, the enantiomer [-] produces increases in SM, which indicates that it is an activator of the enzyme EC 2.7.8.27, and the enantiomer produces a reduction in the levels of SM (especially obvious at a concentration of 100 μΜ [+ J20HOA), which indicates that it is an inhibitor of This enzyme In this context, and without affecting other levels, we have been able to verify that mixtures containing this enantiomer induce activation of the enzyme EC 2.7.8.27, the racemic mixture being a special case of molecular mixing, although a positive effect has also been proven in mixtures between the enantiomer [-] and different vehicles or different therapeutic compounds. B) Effect of forms [+] (also R enantiomer: black columns), [-] (also S enantiomer: white columns) and racemic (gray columns) on the levels of SM in U118 cell membranes (mean values after 24 h incubation with 100 μΜ). The treatments used were: vehicle (Control), 2-hydroxipalmitoleic acid (20H16: 1), 2-hydroxyoleic acid (20H18: 1); 2-hydroxylinoleic acid (20H18: 2); 2-hydroxy-ot-linolenic acid (20H18: 3a); 2-hydroxy-y-linolenic acid (20H18: 3g).
Figura 8. Esta figura muestra el efecto del ácido 20HOA racémico (+/-) y los isómeros ópticos [-]20HOA y [+J20HOA sobre diferentes procesos patológicos en modelos animales. A. Efecto sobre el volumen de tumores derivados de células de cáncer de pulmón humano (A549): se infectaron ratones inmunodeprimidos con células de cáncer de pulmón humano y 7 días después (cuando los tumores eran observables) se comenzaron los tratamientos con vehículo (control), 20HOA racémico (20HOA), y los isómeros ópticos [-]20HOA y [+]20HOA (600 mg/kg · día, 15 días, oral). Las barras corresponden a valores de media ± EEM del incremento en volumen (porcentaje respecto al volumen en animales control al inicio del tratamiento, considerado como 100%) de los tumores (n = 6). El tratamiento con 20HOA racémico indujo reducciones significativas (P<0.01) con respecto al control. El isómero óptico [-]20HOA indujo reducciones significativas respecto a todos los demás tratamientos (P<0.01). B. Efecto sobre la presión arterial: se trataron ratas hipertensas (cepa SHR) con vehículo (Control), 20HOA racémico (20HOA) y sus isómeros ópticos [-]20HOA y [+]20HOA (600 mg/kg, cada 12 h, 15 días, oral). Todas las moléculas indujeron reducciones significativas (P<0.01) en la presión arterial sistólica (mmHg, eje de ordenadas, y) de ratas SHR, siendo el isómero [-]20HOA el más potente en la inducción de efectos hipotensores. Se muestran valores de media ± EEM de presión sistólica (n = 6). C. Efecto sobre el peso corporal: se trataron ratas SHR con vehículo (Control), 20HOA racémico (20HOA) y sus isómeros ópticos [-]20HOA y [+]20HOA (600 mg/kg · día, 5 días, oral). Todas las moléculas indujeron reducciones significativas (P<0.01) en el peso de los animales a partir del tercer día de tratamiento, siendo el isómero [-]20HOA el más potente en la inducción de reducción de peso corporal. Se muestran valores de media ± EEM del peso corporal (eje de ordenadas) frente al tiempo de tratamiento en días (eje de abcisas, n = 6). Figure 8. This figure shows the effect of racemic 20HOA (+/-) and optical isomers [-] 20HOA and [+ J20HOA on different pathological processes in animal models. A. Effect on the volume of tumors derived from human lung cancer cells (A549): immunosuppressed mice were infected with human lung cancer cells and 7 days later (when the tumors were observable) vehicle treatments were started (control ), Racemic 20HOA (20HOA), and the optical isomers [-] 20HOA and [+] 20HOA (600 mg / kg · day, 15 days, oral). The bars correspond to mean values ± SEM of the increase in volume (percentage with respect to the volume in control animals at the beginning of the treatment, considered as 100%) of the tumors (n = 6). Treatment with racemic 20HOA induced significant reductions (P <0.01) with respect to control. The optical isomer [-] 20HOA induced significant reductions compared to all other treatments (P <0.01). B. Effect on blood pressure: hypertensive rats (SHR strain) were treated with vehicle (Control), racemic 20HOA (20HOA) and their optical isomers [-] 20HOA and [+] 20HOA (600 mg / kg, every 12 h, 15 days, oral). All molecules induced significant reductions (P <0.01) in systolic blood pressure (mmHg, ordinate axis, and) of SHR rats, the [-] 20HOA isomer being the most potent in inducing hypotensive effects. Mean values ± SEM of systolic pressure are shown (n = 6). C. Effect on body weight: SHR rats were treated with vehicle (Control), racemic 20HOA (20HOA) and their optical isomers [-] 20HOA and [+] 20HOA (600 mg / kg · day, 5 days, oral). All molecules induced significant reductions (P <0.01) in the weight of the animals from the third day of treatment, with the [-] 20HOA isomer being the most potent in inducing body weight reduction. Mean values ± SEM of body weight (ordinate axis) versus treatment time in days (abcissa axis, n = 6) are shown.
D. Efecto sobre los niveles de colesterol y triglicéridos: se trataron ratas SHR con vehículo (Control), 20HOA racémico (20HOA) y sus isómeros ópticos [-]20HOA y [+J20HOA (600 mg/kg, 12h, 15 días, oral). Todas las moléculas indujeron reducciones significativas (P<0.01) en los niveles de triglicéridos (TG) y colesterol total (CHOt), siendo el isómero óptico [+J20HOA el más potente en la inducción de reducciones en los niveles de estos lípidos. Se muestran valores de media ± EEM de los niveles séricos de lípidos expresados en mg/dl (eje de ordenadas; n = 6). E. Efecto sobre la glicemia (niveles plasmáticos de glucosa): se trataron ratas SHR con vehículo (Control), 20HOA racémico (20HOA) y sus isómeros ópticos [-]20HOA y [+J20HOA (600 mg/kg, 12h, 15 días, oral). El compuesto racémico y el isómero [- J20HOA produjeron reducciones significativas (*P<0.05; **P<0.01) en los niveles de glucosa en plasma (mg/dL, eje de ordenadas) El enantiómero [+] produjo una reducción no significativa en estas condiciones. Se muestran valores de media ± EEM de los niveles séricos de lípidos expresados en mg/dl (eje de ordenadas; n = 6). D. Effect on cholesterol and triglyceride levels: SHR rats were treated with vehicle (Control), racemic 20HOA (20HOA) and their optical isomers [-] 20HOA and [+ J20HOA (600 mg / kg, 12h, 15 days, oral ). All molecules induced significant reductions (P <0.01) in the levels of triglycerides (TG) and total cholesterol (CHOt), the optical isomer [+ J20HOA being the most potent in inducing reductions in the levels of these lipids. Mean values ± SEM of serum lipid levels expressed in mg / dl (ordinate axis; n = 6) are shown. E. Effect on glycemia (plasma glucose levels): SHR rats were treated with vehicle (Control), racemic 20HOA (20HOA) and their optical isomers [-] 20HOA and [+ J20HOA (600 mg / kg, 12h, 15 days) , oral). The racemic compound and the [- J20HOA isomer produced significant reductions (* P <0.05; ** P <0.01) in plasma glucose levels (mg / dL, ordinate axis) The enantiomer [+] produced a non-significant reduction in these conditions. Mean values ± SEM of serum lipid levels expressed in mg / dl (ordinate axis; n = 6) are shown.
Figura 9. Regulación de la actividad de la enzima 2.3.1.50. El eje de ordenadas (y) muestra los niveles de incorporación de [3H]palmitato (dpm/mg proteína) en diferentes fracciones lipídicas de células U118 incubadas en ausencia (Control, barras blancas) o presencia de 20HOA (barras negras). Sólo se encontró un incremento significativo de radiactividad en las fracciones de esfingomielina (SM) y ceramida (Cer), lo que claramente indica la activación selectiva de la EC 2.7.8.27 y de la enzima 2.3.1.50. Figure 9. Regulation of enzyme activity 2.3.1.50. The ordinate axis (y) shows the levels of incorporation of [ 3 H] palmitate (dpm / mg protein) in different lipid fractions of U118 cells incubated in the absence (Control, white bars) or presence of 20HOA (black bars). Only a significant increase in radioactivity was found in the sphingomyelin (SM) and ceramide (Cer) fractions, which clearly indicates the selective activation of EC 2.7.8.27 and the enzyme 2.3.1.50.
Figura 10. Regulación de la actividad de la enzima 1.14.19.1. El eje de ordenadas (Y) muestra los niveles de incorporación de [3H]oleato (dpm/mg proteína) en membranas de células Ul 18 incubadas en ausencia (Control, barra blanca) o presencia de 20HOA (barra negra). La reducción en incorporación de oleico tritiado en los lípidos de membranas de células incubadas en presencia de 20HOA demuestra la inhibición de la enzima 1.14.19.1. Figure 10. Regulation of enzyme activity 1.14.19.1. The ordinate (Y) axis shows the levels of incorporation of [ 3 H] oleate (dpm / mg protein) into membranes of Ul 18 cells incubated in the absence (Control, white bar) or presence of 20HOA (black bar). The reduction in incorporation of tritiated oleic into the lipids of cell membranes incubated in the presence of 20HOA demonstrates the inhibition of the enzyme 1.14.19.1.
Descripción detallada de la invención A continuación se exponen los ejemplos que ilustran las realizaciones detalladas y preferidas de la invención, sin limitar el alcance de protección de la misma. DETAILED DESCRIPTION OF THE INVENTION The following are examples that illustrate the detailed and preferred embodiments of the invention, without limiting the scope of protection thereof.
Ejemplo 1. Metodología para la obtención de los compuestos racémicos y de la separación de los enantiómeros [+] y [-] de los 2-hidroxiderivados de ácidos grasos. Example 1. Methodology for obtaining racemic compounds and separating the enantiomers [+] and [-] of the 2-hydroxy derivatives of fatty acids.
PROCEDIMIENTO Síntesis del compuesto racémico. PROCEDURE Synthesis of the racemic compound.
La metodología descrita a continuación detalla la síntesis de sales de sodio de 2-hidroxi- ácidos grasos con una pureza del 99%, mediante generación del dianión del ácido oleico por reacción con LDA y posterior hidroxilación con oxigeno molecular; el crudo obtenido se trata con NaOH para formar la sal de sodio y se purifica mediante dos recristalizaciones en MeOH/agua (evitándose el uso de columnas cromatográficas).  The methodology described below details the synthesis of sodium salts of 2-hydroxy fatty acids with a purity of 99%, by generating the oleic acid dianion by reaction with LDA and subsequent hydroxylation with molecular oxygen; The crude obtained is treated with NaOH to form the sodium salt and purified by two recrystallizations in MeOH / water (avoiding the use of chromatographic columns).
Con esta metodología se pueden obtener desde gramos del producto final hasta toneladas del mismo. La pureza del producto puede tener calidad farmacéutica y realizarse en condiciones "GMP" (Good Manufacturing Practice), que es la indicada para consumo humano. With this methodology can be obtained from grams of the final product to tons of it. The purity of the product can have pharmaceutical quality and be carried out under "GMP" (Good Manufacturing Practice) conditions, which is indicated for human consumption.
Esquema Scheme
A continuación se muestra el esquema de la reacción en dos pasos, hidroxilación y purificación.  The reaction scheme in two steps, hydroxylation and purification, is shown below.
Figure imgf000033_0001
Figure imgf000033_0001
iv) HCI Donde R es: -(CH2)fl-(CH=CH-CH2)é-(CH2)c-CH3, siempre que la suma de carbonos totales de R sea igual o superior a 12 o igual o inferior a 18 (para longitudes totales de las moléculas de entre 14 y 20 C). iv) HCI Where R is: - (CH 2 ) fl - (CH = CH-CH 2 ) é- (CH 2 ) c -CH 3 , provided that the sum of total carbons of R is equal to or greater than 12 or equal to or less than 18 (for total lengths of molecules between 14 and 20 C).
Descripción del proceso Process description
· Paso 1 : Hidroxilación Step 1: Hydroxylation
En un reactor esmaltado de 100 L inertizado se enfría por debajo de 5°C una disolución de diisopropilamina (1.7 Kg) en THF (11 L). Sobre la disolución se añade «-BuLi (23% en hexanos) (4.6 Kg) en porciones sin que la temperatura exceda de 17°C. Al finalizar la adición se añade un equivalente de DMPU (1.0 Kg) y una disolución de ácido oleico (2.0 Kg) en THF (2.6 L), sin que la temperatura sobrepase los 20-25°C. La mezcla de reacción se calienta a 50°C durante 30 min y luego se vuelve a enfriar a 20°C. En este punto se conecta una bala de 02 y se burbujea durante unos 45 min con un caudal de 25 L/min. Finalizado el burbujeo, se enfría la disolución a 10°C y se hidroliza con HC1 3 M (20 L) hasta pH 1, controlando que la temperatura no suba de 40°C. El producto crudo se extrae en acetato de etilo (6 L), se lava con una mezcla de HC1 3 M/salmuera (1 : 1) y bisulfito de sodio (9 L) y salmuera (hasta dejar el pH a un valor igual o inferior a 3) y la disolución se concentra hasta sequedad en rotavapor. Se obtiene 2 Kg aproximadamente de crudo con una pureza >70%. · Paso 2: Purificación In a 100 L inertized enameled reactor, a solution of diisopropylamine (1.7 Kg) in THF (11 L) is cooled below 5 ° C. «-BuLi (23% in hexanes) (4.6 Kg) is added to the solution in portions without the temperature exceeding 17 ° C. At the end of the addition, an equivalent of DMPU (1.0 Kg) and a solution of oleic acid (2.0 Kg) in THF (2.6 L) are added, without the temperature exceeding 20-25 ° C. The reaction mixture is heated at 50 ° C for 30 min and then cooled again to 20 ° C. At this point a bullet of 0 2 is connected and bubbled for about 45 min with a flow rate of 25 L / min. After the bubbling, the solution is cooled to 10 ° C and hydrolyzed with 3 M HC1 (20 L) to pH 1, ensuring that the temperature does not rise above 40 ° C. The crude product is extracted in ethyl acetate (6 L), washed with a mixture of 3 M HC1 / brine (1: 1) and sodium bisulfite (9 L) and brine (until leaving the pH at an equal value or less than 3) and the solution is concentrated to dryness in rotary evaporator. Approximately 2 kg of crude oil is obtained with a purity> 70%. · Step 2: Purification
El crudo de producto se disuelve en 7.2 L de metanol a 40 °C en un reactor de 10 L y se trata con una disolución acuosa de hidróxido de sodio (134 g en 1.4 L de agua), aumentando la T hasta 50 °C para obtener una disolución homogénea. Se enfría a 5 °C durante al menos 6 h para precipitar la sal de sodio, que se filtra y lava con acetona. El sólido se recristaliza dos veces en (10%) H20/MeOH (0.5 L H2O/5.0 L MeOH) a 50 °C hasta disolución total y enfriando durante un mínimo de 6 h a 0-5 °C. El producto final se filtra, lava con acetona y se seca a vacío. Se suspende en metanol y se completa la formación de la sal adicionando metóxido de sodio. El producto se precipita completamente con acetona (5 L) enfriando a 0-5 °C durante al menos 10 h. El sólido se filtra, lava con acetona y se seca a vacío. Producción de enantiómeros [+] (R) y [-] (S). The crude product is dissolved in 7.2 L of methanol at 40 ° C in a 10 L reactor and treated with an aqueous solution of sodium hydroxide (134 g in 1.4 L of water), increasing the T to 50 ° C for obtain a homogeneous solution. Cool to 5 ° C for at least 6 h to precipitate the sodium salt, which is filtered and washed with acetone. The solid is recrystallized twice in (10%) H 2 0 / MeOH (0.5 LH 2 O / 5.0 L MeOH) at 50 ° C until complete dissolution and cooling for a minimum of 6 h at 0-5 ° C. The final product is filtered, washed with acetone and dried in vacuo. It is suspended in methanol and salt formation is completed by adding sodium methoxide. The product is completely precipitated with acetone (5 L) cooling at 0-5 ° C for at least 10 h. The solid is filtered, washed with acetone and dried in vacuo. Production of enantiomers [+] (R) and [-] (S).
En un reactor de 1 L se introducen 100 g de la sal de sodio de hidroxiderivado de ácido graso y se adicionan 500 mL de ácido sulfúrico en etanol (10% peso). La mezcla se refluye durante 16 h y se comprueba por TLC que la conversión es completa. Al finalizar la reacción, se neutraliza con bicarbonato de sodio saturado y se concentra a vacío para eliminar el etanol. Sobre la emulsión acuosa se añaden 250 mL de AcOEt (acetato de etilo) para extraer el 2-hidroxioleato de etilo (en caso de que el compuesto empleado sea el ácido 2-hidroxioleico), se seca sobre sulfato y se concentra a sequedad.  In a 1 L reactor, 100 g of the sodium salt of hydroxy derivative of fatty acid are introduced and 500 mL of sulfuric acid in ethanol (10% by weight) are added. The mixture is refluxed for 16 h and it is verified by TLC that the conversion is complete. At the end of the reaction, it is neutralized with saturated sodium bicarbonate and concentrated in vacuo to remove ethanol. 250 mL of AcOEt (ethyl acetate) are added to the aqueous emulsion to extract ethyl 2-hydroxyoleate (in case the compound used is 2-hydroxyoleic acid), dried over sulfate and concentrated to dryness.
En un reactor de 1 L con agitación mecánica se disuelven 100 g de 2-hidroxioleato de etilo (mezcla racémica) en 50 mL de MTBE. Sobre la disolución se añaden 267 mL de tampón fosfato (1 M, pH 7) y 1.3 g de lipasa AK derivada de pseudomonas. La emulsión se agita a temperatura ambiente (25°C) hasta alcanzar el 50% de conversión (HPLC, Luna C8, 5μιη, MeOH/agua/HCOOH). La reacción se detiene mediante hidrólisis con HC1 3N hasta alcanzar pH ácido (menor de 2), se extrae con MTBE y se lava con salmuera hasta que el pH de las aguas es mayor o igual a 5. El crudo se purifica por cristalización para separar la fracción de ácido hidrolizada (60% de exceso enantiomérico) y la de éster sin hidrolizar (75% de exceso enantiomérico). In a 1 L reactor with mechanical agitation, 100 g of ethyl 2-hydroxyoleate (racemic mixture) are dissolved in 50 mL of MTBE. 267 mL of phosphate buffer (1 M, pH 7) and 1.3 g of pseudomonas-derived AK lipase are added to the solution. The emulsion is stirred at room temperature (25 ° C) until 50% conversion (HPLC, Luna C8, 5μιη, MeOH / water / HCOOH) is reached. The reaction is stopped by hydrolysis with 3N HC1 until acidic pH (less than 2) is reached, extracted with MTBE and washed with brine until the water pH is greater than or equal to 5. The crude is purified by crystallization to separate the fraction of hydrolyzed acid (60% enantiomeric excess) and that of the unhydrolyzed ester (75% enantiomeric excess).
Cada fracción requiere de dos reprocesados, repitiendo el procedimiento de esterificación/hidrólisis por separado, hasta alcanzar un ee >95% para cada enantiómero, que se hidroliza y transforma en la sal de sodio final. El rendimiento final del proceso es del 40-50% (20-25% de cada enantiómero). Each fraction requires two reprocesses, repeating the esterification / hydrolysis procedure separately, until reaching an ee> 95% for each enantiomer, which is hydrolyzed and transformed into the final sodium salt. The final yield of the process is 40-50% (20-25% of each enantiomer).
Metodología empleada Methodology used
Las condiciones descritas para la resolución cinética son las mejores obtenidas en el proceso de optimización, después de estudiar dos lipasas (una derivada de Pseudomonas y otra de Candida Antárctica), disolventes (acuosos, orgánicos o bifásicos), temperaturas, fuerza iónica, agitación, pH y dilución. También se ha determinado la forma más adecuada de seguir la reacción de hidrólisis y la purificación de los productos. Por ello, el método para obtener enantiómeros de derivados hidroxilados de ácidos grasos es distinto de cualquiera de los que se puede encontrar en la bibliografía, la mayoría de los cuales requieren altas diluciones y purificaciones por cromatografía. Escalado del proceso The conditions described for kinetic resolution are the best obtained in the optimization process, after studying two lipases (one derived from Pseudomonas and another from Candida Antarctica), solvents (aqueous, organic or biphasic), temperatures, ionic strength, agitation, pH and dilution. The most appropriate way to follow the hydrolysis reaction and the purification of the products has also been determined. Therefore, the method for obtaining enantiomers of hydroxylated fatty acid derivatives is different from any of those that can be found in the literature, most of which require high dilutions and purifications by chromatography. Process scaling
El método se ha llevado a cabo a escalas de 1-150 g obteniendo resultados similares y reproducibles. Los enantiómeros pueden separarse por cristalización, lo que facilita el proceso a escala de kilos. La pérdida de rendimiento se debe a la manipulación y procesos de workup, sin embargo, no se generan impurezas nuevas y las aguas de lavado y cristalización podrían juntarse y reprocesarse nuevamente.  The method has been carried out at scales of 1-150 g, obtaining similar and reproducible results. The enantiomers can be separated by crystallization, which facilitates the kilos scale process. The loss of performance is due to the manipulation and workup processes, however, new impurities are not generated and the washing and crystallization waters could be combined and reprocessed again.
Ejemplo 2. Las células tumorales tienen niveles más bajos de SM en sus membranas, que aumentan tras el tratamiento con las moléculas de la invención. Example 2. Tumor cells have lower levels of SM in their membranes, which increase after treatment with the molecules of the invention.
Se midieron los niveles de SM, cultivadas en ausencia (control) o presencia de 200 μΜ de [-]20HOA, en las membranas de células normales (MRC-5 e IMR90) y de células tumorales de varias clases (ver Tabla 2). En todos los casos, se detectó que las membranas de células tumorales contienen niveles de SM en torno a la mitad o un tercio de los niveles que presentan las células normales (Figura 1). Por ello, se puede asegurar que la concentración de SM es un biomarcador que indica la tumorigenicidad de células humanas. Por otro lado, los tratamientos con las moléculas de la presente invención inducen un incremento de SM en las células tumorales que no se produce de forma natural. De esta manera, la detección de SM mediante lisenina y posterior acoplamiento de un anticuerpo fluorescente y detección por microscopía de fluorescencia confocal, muestra un mayor mareaje (es decir, una mayor cantidad de SM) en los tumores de animales tratados con las moléculas de la presente invención (Figura le). De forma análoga, otros métodos de detección basados en la unión de lisenina a la SM de membrana y detección mediante ensayos espectroscópicos en solución o mediante ELISA muestran cómo las membranas de células tumorales presentan un mayor nivel de SM sólo cuando son incubadas en presencia de las moléculas de la presente invención (Figura 1). Por ejemplo, la determinación por espectrofotometría de fluorescencia en solución de los niveles de SM resulta un tipo de análisis muy sencillo, rápido y eficaz (Figura ID). Así, en la presente invención se ha generado un método de diagnóstico para la detección de los procesos patológicos descritos y patologías en las que se alteren los niveles de SM que permite predecir si el tratamiento con las moléculas de la presente invención puede ser eficaz, así como para el seguimiento de la eficacia de la terapia aplicada empleando las moléculas de la presente invención y otras de similar actividad. A partir de este conocimiento, la presente invención también incluye kits de diagnóstico para evaluar a priori la potencial utilidad de esta terapia y para seguir a posteriori la eficacia del tratamiento con las moléculas de la presente invención de estas enfermedades. The levels of MS, cultured in the absence (control) or presence of 200 μΜ of [-] 20HOA, were measured in normal cell membranes (MRC-5 and IMR90) and tumor cells of various kinds (see Table 2). In all cases, it was detected that the tumor cell membranes contain levels of MS around half or a third of the levels presented by normal cells (Figure 1). Therefore, it can be ensured that the concentration of SM is a biomarker that indicates the tumorigenicity of human cells. On the other hand, treatments with the molecules of the present invention induce an increase in SM in tumor cells that does not occur naturally. In this way, the detection of SM by lysenin and subsequent coupling of a fluorescent antibody and detection by confocal fluorescence microscopy, shows a greater marking (i.e., a greater amount of SM) in the tumors of animals treated with the molecules of the present invention (Figure le). Similarly, other detection methods based on lysenin binding to membrane MS and detection by spectroscopic tests in solution or by ELISA show how tumor cell membranes exhibit a higher level of SM only when incubated in the presence of molecules of the present invention (Figure 1). For example, determination by fluorescence spectrophotometry in solution of the levels of SM is a very simple, fast and efficient type of analysis (Figure ID). Thus, in the present invention a diagnostic method has been generated for the detection of the described pathological processes and pathologies in which the levels of MS are altered which allows to predict whether the treatment with the molecules of the present invention can be effective, thus as for monitoring the efficacy of the therapy applied using the molecules of the present invention and others of similar activity. From this knowledge, the present invention also It includes diagnostic kits to assess a priori the potential utility of this therapy and to track the efficacy of treatment with the molecules of the present invention of these diseases a posteriori.
Tabla 2. Efecto del [-]20HOA en los niveles de esfingomielina. Table 2. Effect of [-] 20HOA on sphingomyelin levels.
Figure imgf000037_0001
Figure imgf000037_0001
(1) Efecto antiproliferativo: + inhibición crecimiento celular,- ausencia de efecto. (2) Técnica utilizada para el análisis: 1) TLC ó HTPLC, 2) cromatografía de gases, 3) análisis de imagen, 4) espectroscopia de fluorescencia, 5) microscopio confocal o de fluorescencia. (1) Antiproliferative effect: + cell growth inhibition, - absence of effect. (2) Technique used for the analysis: 1) TLC or HTPLC, 2) gas chromatography, 3) image analysis, 4) fluorescence spectroscopy, 5) confocal or fluorescence microscope.
Ejemplo 3. El 20HOA eleva los niveles de SM mediante la activación de la enzima EC 2.7.8.27. Example 3. 20HOA raises the levels of MS by activating the enzyme EC 2.7.8.27.
El 20HOA eleva los niveles de SM en células tumorales tratadas como se indicó anteriormente. Los incrementos de SM en las células tumorales tratadas con 20HOA fueron dependientes del tiempo de tratamiento y la concentración empleada en los mismos (Figura 2), lo cual demuestra la especificidad de esta molécula. La SM es un lípido de membrana que impide la unión de ciertas moléculas implicadas en la proliferación celular, como la proteína Ras. En este sentido, se midieron los niveles de Ras mediante microscopía confocal, empleando un anticuerpo marcado con fluorescencia, y se pudo detectar que el mareaje pasaba de la membrana (Figura 6: 95- 99% de la fluorescencia total detectada en membranas antes del tratamiento) al citoplasma (94-97% de la fluorescencia detectada en el interior celular tras tratamiento con 20HOA) en células de glioma humano, de cáncer de pulmón y de leucemia. La translocación de Ras de la membrana al citoplasma supone la ausencia de interacciones productivas entre Ras y los Receptor-Tirosina-Kinasa (RTK) o entre Ras y Raf, por lo que las proteínas de la vía de las MAP kinasa no reciben activación y las células tumorales dejan de proliferar y comienzan los programas de muerte celular. Los cambios inducidos por las moléculas de la presente invención en la fisiología celular tienen como efectos intermedios (anteriores a la muerte de células cancerosas o la regulación de la actividad en otras células) la inducción de reducciones dramáticas en los niveles de DHFR y el aumento dramático de los niveles de PFAG (Figura 6). Otro efecto asociado a la reducción de proliferación celular es el aumento de los niveles de SM nuclear. Los tratamientos con 20HOA dieron lugar aumentos en los niveles de SM nuclear (Figura 3), lo que demuestra que se induce la inhibición de la proliferación celular. Ejemplo 4. La regulación de la enzima EC 2.7.8.27 depende de la estructura molecular del ácido graso. 20HOA raises the levels of SM in treated tumor cells as indicated above. The increases in SM in tumor cells treated with 20HOA were dependent on the treatment time and the concentration used in them (Figure 2), which demonstrates the specificity of this molecule. SM is a membrane lipid that prevents the binding of certain molecules involved in cell proliferation, such as the Ras protein. In this sense, Ras levels were measured by confocal microscopy, using a fluorescently labeled antibody, and it could be detected that the tide passed from the membrane (Figure 6: 95-99% of the total fluorescence detected in membranes before treatment ) to the cytoplasm (94-97% of the fluorescence detected inside the cell after treatment with 20HOA) in human glioma, lung cancer and leukemia cells. The translocation of Ras from the membrane to the cytoplasm implies the absence of productive interactions between Ras and the Receptor-Tyrosine-Kinase (RTK) or between Ras and Raf, so that the proteins of the MAP kinase pathway do not receive activation and Tumor cells stop proliferating and cell death programs begin. The changes induced by the molecules of the present invention in cell physiology have as intermediate effects (prior to the death of cancer cells or the regulation of activity in other cells) the induction of dramatic reductions in DHFR levels and dramatic increase of PFAG levels (Figure 6). Another effect associated with the reduction of cell proliferation is the increase in nuclear MS levels. The 20HOA treatments resulted in increases in nuclear MS levels (Figure 3), demonstrating that cell proliferation inhibition is induced. Example 4. Regulation of the enzyme EC 2.7.8.27 depends on the molecular structure of the fatty acid.
Los estudios in vitro, usando el sustrato específico fluorescente de la enzima EC 2.7.8.27, BD-Cer, indican que 20HOA interacciona directamente con éste, viéndose la activación enzimática desde los primeros minutos de incubación en los cultivos de células (Figura 4A). La rapidez de este fenómeno indica claramente la interacción directa y eficaz entre el enantiómero 20HOA y la enzima EC 2.7.8.27. Por ello, la presente invención hace referencia al uso de los compuestos anteriormente citados como activadores (enantiómero [-]), o inhibidores (enantiómero [+]) específicos de la enzima EC 2.7.8.27. In vitro studies, using the specific fluorescent substrate of the enzyme EC 2.7.8.27, BD-Cer, indicate that 20HOA interacts directly with it, the enzymatic activation being seen from the first minutes of incubation in cell cultures (Figure 4A). The rapidity of this phenomenon clearly indicates the direct and effective interaction between the 20HOA enantiomer and the enzyme EC 2.7.8.27. Therefore, the present invention refers to the use of the aforementioned compounds as activators (enantiomer [-]), or inhibitors (enantiomer [+]) specific to the enzyme EC 2.7.8.27.
Por otro lado, la activación de la enzima EC 2.7.8.27 depende del número de átomos de carbono que tiene el ácido graso, de forma que los ácidos grasos de más de 20 átomos de C no producen cambios significativos en la actividad de este enzima (Figura 5). Además, otros requisitos para la activación de la enzima EC 2.7.8.27 son la presencia de un grupo OH en el carbono 2 y uno o más dobles enlaces, ya que la presencia de otros radicales (como H o CH3) y la falta de dobles enlaces en la estructura del ácido graso dieron lugar a moléculas inactivas (Figura 5). La SM tiene una estructura molecular que determina los efectos producidos sobre la fisiología celular y que justifica la reversión de diferentes procesos patológicos. Su cabeza polar voluminosa impide el anclaje de Ras a la membrana mediante su resto isoprenilo (que prefiere regiones de membrana con fosfolípidos de cabeza polar pequeña, como la fosfatidiletanolamina), lo que a su vez impide la señalización posterior a través de las proteínas de la cadena de las MAP kinasas. La inactivación de esta vía induce, entre otros fenómenos, la inhibición del crecimiento de tumores (Figura 8A y Tabla 2). Los compuestos de la presente invención han demostrado poder regular de forma positiva (incrementos) o negativa (decrementos) los niveles de SM en las células. Dado que la composición de la membrana es crítica para el correcto funcionamiento de la misma, tanto los activadores (enantiómeros S ó -) de la enzima EC 2.7.8.27, como sus inhibidores (enantiómeros R ó +) tienen actividad terapéutica, tal y como aquí se ha demostrado. Esta activación está basada en principios estructurales y sigue los parámetros de estructura-función de cualquier otra molécula con actividad terapéutica. Ejemplo 5. Los isómeros [-] de ácidos grasos C18, como [-]20HOA, son activadores específicos de la enzima EC 2.7.8.27. On the other hand, the activation of the enzyme EC 2.7.8.27 depends on the number of carbon atoms that the fatty acid has, so that fatty acids with more than 20 C atoms do not produce significant changes in the activity of this enzyme ( Figure 5). In addition, other requirements for activation of the enzyme EC 2.7.8.27 are the presence of an OH group on carbon 2 and one or more double bonds, since the presence of other radicals (such as H or CH 3 ) and the lack of Double bonds in the fatty acid structure gave rise to inactive molecules (Figure 5). MS has a molecular structure that determines the effects produced on cell physiology and justifies the reversal of different pathological processes. Its bulky polar head prevents the anchoring of Ras to the membrane through its isoprenyl moiety (which prefers membrane regions with small polar head phospholipids, such as phosphatidylethanolamine), which in turn prevents subsequent signaling through the proteins of the MAP kinase chain. The inactivation of this pathway induces, among other phenomena, the inhibition of tumor growth (Figure 8A and Table 2). The compounds of the present invention have been shown to be able to regulate positively (increases) or negatively (decreases) the levels of SM in the cells. Since the membrane composition is critical for its proper functioning, both the activators (S or - enantiomers of the enzyme EC 2.7.8.27, and its inhibitors (R or + enantiomers) have therapeutic activity, as It has been shown here. This activation is based on structural principles and follows the structure-function parameters of any other molecule with therapeutic activity. Example 5. The [-] isomers of C18 fatty acids, such as [-] 20HOA, are specific activators of the enzyme EC 2.7.8.27.
La conformación estructural relativa de los grupos hidroxilo de los carbonos 1 y 2 (Cl y C2) da lugar a dos enantiómeros o isómeros ópticos que se denominan [-] (que corresponde a la conformación estructural S) y [+ (que corresponde a la conformación estructural R)]. Mediante el proceso descrito en la presente invención (Ejemplo 1), se han sintetizado y aislado el compuesto racémico, cuya actividad para regular tanto positiva como negativamente la enzima EC 2.7.8.27 ha quedado patente, y los enantiómeros o isómeros ópticos, y se ha medido la capacidad de los mismos para activar o inhibir la enzima EC 2.7.8.27. La Figura 7A muestra la activación de dicho enzima, medida a través de los niveles de SM en membranas de células de glioma humano U118, tras 24 horas de incubación en presencia de 50 y 100 mM de cada uno de los isómeros, así como de la mezcla racémica (que contiene aproximadamente la misma cantidad de cada uno de ellos). La Figura 7A muestra cómo el 20HOA racémico produce incrementos significativos en los niveles de SM en membranas de células U118. Asimismo, el isómero óptico [-]20HOA (correspondiente al enantiómero S) es capaz de producir incrementos aún mayores en los niveles de SM. Por eso, y en el caso concreto de este enzima, la presencia de mezclas con un cierto porcentaje de [- J20HOA (siendo el compuesto racémico un caso especial) se comporta como activador específico de EC 2.7.8.27. Por el contrario, el isómero óptico [+J20HOA no sólo no induce aumentos de SM, sino que produce una reducción en los niveles de SM en membranas. Estos datos indican que el isómero óptico [-]20HOA es un activador específico de la enzima EC 2.7.8.27 y que el isómero óptico [+J20HOA (es decir, el enantiómero R) es un inhibidor específico de este enzima. Por ello, la presente invención protege el uso para aplicaciones terapéuticas del isómero óptico [-]20HOA (S) como activador de la enzima EC 2.7.8.27 y del isómero óptico [+J20HOA (R) como inhibidor específico de este enzima. Estos resultados se pueden extender a todos los ácidos grasos insaturados comprendidos entre 14 átomos de carbono o más y 20 átomos de carbono o menos, que presenten uno o más dobles enlaces y un radical hidroxilo en el carbono C2 (carbono alfa: Figura 7B). Ejemplo 6. Los isómeros [-] y [+] de ácidos grasos C18, como [-]20HOA y [+J20HOA, usados como agentes terapéuticos para el tratamiento de enfermedades humanas. The relative structural conformation of the hydroxyl groups of carbons 1 and 2 (Cl and C2) gives rise to two enantiomers or optical isomers that are called [-] (corresponding to the structural conformation S) and [+ (corresponding to the structural conformation R)]. Through the process described in the present invention (Example 1), the racemic compound has been synthesized and isolated, whose activity to regulate both the EC 2.7.8.27 enzyme positively and negatively has become apparent, and the enantiomers or optical isomers, and has measured their ability to activate or inhibit the enzyme EC 2.7.8.27. Figure 7A shows the activation of said enzyme, measured through the levels of SM in U118 human glioma cell membranes, after 24 hours of incubation in the presence of 50 and 100 mM of each of the isomers, as well as the racemic mixture (which contains approximately the same amount of each of them). Figure 7A shows how racemic 20HOA produces significant increases in levels of SM in U118 cell membranes. Likewise, the optical [-] 20HOA isomer (corresponding to the S enantiomer) is capable of producing even greater increases in the levels of SM. Therefore, and in the specific case of this enzyme, the presence of mixtures with a certain percentage of [- J20HOA (the racemic compound being a special case) behaves as a specific activator of EC 2.7.8.27. On the contrary, the optical isomer [+ J20HOA not only does not induce increases in SM, but also produces a reduction in the levels of SM in membranes. These data indicate that the optical isomer [-] 20HOA is a specific activator of the enzyme EC 2.7.8.27 and that the optical isomer [+ J20HOA (ie, the R enantiomer) is a specific inhibitor of this enzyme. Therefore, the present invention protects the use for therapeutic applications of the optical isomer [-] 20HOA (S) as activator of the enzyme EC 2.7.8.27 and of the optical isomer [+ J20HOA (R) as a specific inhibitor of this enzyme. These results can be extended to all unsaturated fatty acids between 14 carbon atoms or more and 20 carbon atoms or less, which have one or more double bonds and a hydroxyl radical on the C2 carbon (alpha carbon: Figure 7B). Example 6. The [-] and [+] isomers of C18 fatty acids, such as [-] 20HOA and [+ J20HOA, used as therapeutic agents for the treatment of human diseases.
El enantiómero [-]20HOA y derivados mostrados en esta invención tienen aplicaciones terapéuticas en diferentes ámbitos, como el tratamiento del cáncer, la obesidad, las patologías cardiovasculares, la diabetes, el síndrome metabólico, la lesión medular, la enfermedad de Alzheimer y otros procesos Figuras 6 y 8; Tablas 2-5). Por otra parte, el enantiómero [+J20HOA tuvo un efecto positivo sobre los niveles de colesterol y de triglicéridos, ya que indujo reducciones significativas en los niveles plasmáticos de estos lípidos, cuyos niveles elevados se consideran negativos de cara a la salud humana (Figura 8). Por ello, se estudiaron los efectos terapéuticos de cada uno de los isómeros, así como de la mezcla racémica, en diferentes modelos patológicos. The enantiomer [-] 20HOA and derivatives shown in this invention have therapeutic applications in different areas, such as cancer treatment, obesity, cardiovascular pathologies, diabetes, metabolic syndrome, spinal cord injury, Alzheimer's disease and other processes. Figures 6 and 8; Tables 2-5). On the other hand, the enantiomer [+ J20HOA had a positive effect on cholesterol and triglyceride levels, since it induced significant reductions in the plasma levels of these lipids, whose elevated levels are considered negative for human health (Figure 8 ). Therefore, the therapeutic effects of each of the isomers, as well as the racemic mixture, in different pathological models were studied.
La Figura 8A muestra el efecto de tratamientos orales (15 días, 600 mg/kg diarios, n = 6) con el 20HOA racémico, y de los enantiómeros [-]20HOA y [+J20HOA, sobre el volumen de tumores derivados de cáncer de pulmón humano (células A549) en ratones desnudos. Como se puede apreciar, el efecto del isómero óptico [-]20HOA es superior al del racémico. Por otro lado, tras tratamientos de 15 días con el isómero óptico [+J20HOA no se produjeron cambios significativos en el volumen de los tumores. Este resultado demuestra que el isómero [-]20HOA es el que activa la enzima EC 2.7.8.27 y el que tiene actividad terapéutica antitumoral. Por otro lado, se investigó la actividad antitumoral de estos compuestos en diferentes líneas de cáncer humano (ver Tablas 2, 4 y 5). En este sentido, todos los enantiómeros [-] de la presente invención demostraron mayor potencia que el racémico y el enantiómero [+] para el tratamiento del cáncer, lo que se corresponde con valores significativamente menores en los IC50 para inhibir el crecimiento de cáncer de pulmón humano (línea A549). Es más, la actividad de estos enantiómeros se evidenció frente a una amplia variedad de cánceres humanos de diferente índole, por lo que se puede asegurar que los enantiómeros [-] de ácidos grasos 2-hidroxilados tienen una elevada potencia para el tratamiento de cualquier tipo de cáncer. Esta potencia resultó ser algo superior para las sales (principalmente la sal de sodio de estas moléculas) que para el ácido graso libre (resultados no mostrados). En cualquier caso, los enantiómeros [-] tanto en forma ácida como en sal, siempre presentaron una mayor potencia que cualquiera de las formas moleculares alternativas para inhibir el crecimiento de tumores. Figure 8A shows the effect of oral treatments (15 days, 600 mg / kg daily, n = 6) with racemic 20HOA, and enantiomers [-] 20HOA and [+ J20HOA, on the volume of cancer-derived tumors of human lung (A549 cells) in nude mice. As can be seen, the effect of the optical isomer [-] 20HOA is superior to that of the racemic. On the other hand, after 15-day treatments with the optical isomer [+ J20HOA there were no significant changes in the volume of the tumors. This result demonstrates that the [-] 20HOA isomer is what activates the enzyme EC 2.7.8.27 and has the antitumor therapeutic activity. On the other hand, the antitumor activity of these compounds in different human cancer lines was investigated (see Tables 2, 4 and 5). In this sense, all the [-] enantiomers of the present invention demonstrated greater potency than the racemic and the [+] enantiomer for the treatment of cancer, which corresponds to significantly lower values in the IC50 to inhibit the growth of cancer of human lung (line A549). Moreover, the activity of these enantiomers was evidenced against a wide variety of human cancers of different kinds, so it can be ensured that the enantiomers [-] of 2-hydroxylated fatty acids have a high potency for the treatment of any type Of cancer. This potency turned out to be somewhat higher for salts (mainly the sodium salt of these molecules) than for free fatty acid (results not shown). In any case, the enantiomers [-] both in acidic form and in salt, always they presented greater potency than any of the alternative molecular forms to inhibit tumor growth.
Además, se estudió el efecto de los isómeros arriba indicados sobre la presión arterial, el peso corporal, los niveles de triglicéridos y colesterol y la glicemia (glucosa en plasma) en ratas SHR (Figura 8B, 8C, 8D y 8E). De forma análoga a lo indicado anteriormente, se produjo un efecto terapéutico mayor cuando se utilizó el isómero [- J20HOA en el control de la presión arterial, el peso corporal y la glicemia, mientras que el enantiómero [+J20HOA tuvo un mayor efecto terapéutico para el tratamiento de la hipercolesterolemia e hipertrigliceridemia. Así, los animales tratados con el isómero [- J20HOA mostraron reducciones en la presión arterial superiores a 60 mm Hg su presión sistólica, mientras que los tratados con el isómero [+J20HOA y con el producto racémico tuvieron un notable efecto terapéutico pero de menor amplitud. De forma similar, entre los días 1 y 5 de tratamiento, las ratas tratadas con el racémico perdieron 11 gramos de peso (aproximadamente un 3% del peso corporal), en tanto que los animales del grupo tratado con el enantiómero [-]20HOA perdieron 21 gramos y los animales del grupo tratado con el enantiómero [+J20HOA sólo perdieron 7 gramos de peso. Por otro lado, se observó un efecto superior del enantiómero [+J20HOA en la reducción de los niveles de triglicéridos (TG) y colesterol total (CHOt) (Figura 8D). En este sentido, los niveles básales plasmáticos de TG en ratas SHR son de 108 mg/dl, y se redujeron hasta 56 mg/dl tras tratamientos de 2 semanas con enantiómero [+]20HOA. Por otro lado, el tratamiento con el enantiómero [+J20HOA indujo una reducción de los niveles de TG plasmáticos hasta 47 mg/dl, mientras que el enantiómero [-]20HOA sólo produjo una disminución modesta hasta 81 mg/dl. De forma paralela, los niveles de CHOt se redujeron desde 73 mg/dl hasta 43 mg/dl (racémico), 36 mg/dl (enantiómero [+J20HOA) y 59 mg/ml (enantiómero [-]20HOA), respectivamente. Finalmente, el tratamiento con los enantiómeros de la presente invención también produjo reducciones significativas en los niveles de glucosa en plasma (Figura 8E). En este caso, tanto el producto racémico (20HOA) como el enantiómero [-]20HOA indujeron bajadas significativas de la glicemia en ratas (P<0.05 y P<0.01, respectivamente: Figura 8E). Sin embargo, el enantiómero R ([+]20HOA) indujo una bajada modesta que no alcanzó significancia estadística. Por todo ello, esta invención evidencia que los isómeros ópticos [-] [+] de hidroxiácidos grasos insaturados de 18 átomos de C son moléculas eficaces y con actividad terapéutica para el tratamiento de las patologías arriba indicadas. En todos los casos estudiados, uno y sólo uno de los enantiómeros mostró tener una actividad superior a la de las otras formas moleculares (significancia estadística siempre P<0.05). De esta forma, el enantiómero [-] mostró ser más eficaz para curar el cáncer, la obesidad, la diabetes, la hipertensión, etc., mientras que el enantiómero [+] mostró ser más eficaz para controlar la hipercolesterolemia o la hipertrigliceridemia. En estos casos, el compuesto racémico se mostró como una situación intermedia, capaz de emular los efectos positivos de cualquiera de los isómeros ópticos, pero con una menor potencia, debida a la menor concentración del enantiómero activo en cada caso. Además, el uso del enantiómero no adecuado indujo unos efectos secundarios no deseados que se evitaron a dosis terapéuticas con el enantiómero más activo (Tabla 3). In addition, the effect of the above-mentioned isomers on blood pressure, body weight, triglyceride and cholesterol levels and blood glucose (plasma glucose) in SHR rats (Figure 8B, 8C, 8D and 8E) was studied. Similarly to what was indicated above, there was a greater therapeutic effect when the [- J20HOA isomer was used in the control of blood pressure, body weight and glycemia, while the [+ J20HOA enantiomer had a greater therapeutic effect for the treatment of hypercholesterolemia and hypertriglyceridemia. Thus, the animals treated with the [- J20HOA isomer showed reductions in blood pressure greater than 60 mm Hg their systolic pressure, while those treated with the [+ J20HOA isomer and with the racemic product had a remarkable therapeutic effect but of less amplitude . Similarly, between days 1 and 5 of treatment, rats treated with the racemic lost 11 grams of weight (approximately 3% of body weight), while animals in the group treated with the enantiomer [-] 20HOA lost 21 grams and the animals of the group treated with the enantiomer [+ J20HOA only lost 7 grams of weight. On the other hand, a superior effect of the [+ J20HOA enantiomer in reducing triglyceride (TG) and total cholesterol (CHOt) levels was observed (Figure 8D). In this sense, the baseline plasma levels of TG in SHR rats are 108 mg / dl, and were reduced to 56 mg / dl after 2-week treatments with enantiomer [+] 20HOA. On the other hand, treatment with the [+ J20HOA enantiomer induced a reduction in plasma TG levels up to 47 mg / dl, while the [-] 20HOA enantiomer only produced a modest decrease to 81 mg / dl. In parallel, CHOt levels were reduced from 73 mg / dl to 43 mg / dl (racemic), 36 mg / dl ([+ J20HOA enantiomer) and 59 mg / ml ([-] 20HOA enantiomer), respectively. Finally, treatment with the enantiomers of the present invention also produced significant reductions in plasma glucose levels (Figure 8E). In this case, both the racemic product (20HOA) and the enantiomer [-] 20HOA induced significant drops in glycemia in rats (P <0.05 and P <0.01, respectively: Figure 8E). However, the R ([+] 20HOA) enantiomer induced a modest decrease that did not reach statistical significance. Therefore, this invention shows that the optical isomers [-] [+] of unsaturated fatty hydroxy acids of 18 C atoms are effective molecules with therapeutic activity for the treatment of the pathologies indicated above. In all the cases studied, one and only one of the enantiomers showed to have an activity superior to that of the other molecular forms (statistical significance always P <0.05). In this way, the [-] enantiomer was shown to be more effective in curing cancer, obesity, diabetes, hypertension, etc., while the enantiomer [+] showed to be more effective in controlling hypercholesterolemia or hypertriglyceridemia. In these cases, the racemic compound was shown as an intermediate situation, capable of emulating the positive effects of any of the optical isomers, but with a lower potency, due to the lower concentration of the active enantiomer in each case. In addition, the use of the unsuitable enantiomer induced unwanted side effects that were avoided at therapeutic doses with the most active enantiomer (Table 3).
Ejemplo 7. Eficacia, toxicidad y efectos secundarios de los enantiómeros de la invención. Example 7. Efficacy, toxicity and side effects of the enantiomers of the invention.
Este ejemplo refleja el estudio realizado en ratones inmunodeprimidos infectados con células de glioma humano (SF767) y tratados durante 15 días (oral) con las dosis indicadas (Tabla 3). Dicha tabla muestra el volumen de los tumores al final del tratamiento y los síntomas observados durante los días que duró el mismo. Nótese, una vez más, que la eficacia del enantiómero [-]20HOA es superior a la del compuesto racémico 20HOA, y que el enantiómero [+J20HOA no mostró actividad tras 15 días de tratamiento a las dosis indicadas. This example reflects the study conducted in immunosuppressed mice infected with human glioma cells (SF767) and treated for 15 days (oral) with the indicated doses (Table 3). This table shows the volume of the tumors at the end of the treatment and the symptoms observed during the days that it lasted. Note, once again, that the efficacy of the [-] 20HOA enantiomer is superior to that of the 20HOA racemic compound, and that the [+ J20HOA enantiomer showed no activity after 15 days of treatment at the indicated doses.
Por otro lado, la dosis que indujo reducciones de aproximadamente un tercio del volumen de los tumores, no indujo ningún efecto secundario en animales tratados con [- J20HOA (50 mg/kg), mientras que los animales tratados con el compuesto racémico 20HOA a una dosis que indujo reducciones similares en el volumen de los tumores (600 mg/kg) mostraron importantes efectos secundarios (Tabla 3). Además, a 200 mg/kg, el enantiómero [-]20HOA indujo reducciones del volumen del tumor de un 89% sin efectos adversos observables, mientras que a la misma dosis, el compuesto racémico sólo induj o reducciones del 23% en el volumen de los tumores y algunos de los animales presentaron efectos adversos en respuesta al tratamiento. De estos resultados se deduce que el enantiómero [-]20HOA tiene una mayor potencia y que a las dosis terapéuticas máximas no produce efectos adversos, mientras que el compuesto racémico tiene un efecto más modesto e induce ciertos efectos no deseados a dosis terapéuticas. En el tratamiento de procesos tumorales, las diferencias en eficacia entre el enantiómero [-]20HOA y el racémico pueden suponer diferencias de meses o años en la esperanza de vida de los pacientes. Es más, las diferencias en eficacia se pueden traducir en la curación o no de un determinado cáncer en un paciente. Por otro lado, las diferencias en toxicidad a dosis terapéuticas se pueden traducir en una mayor calidad de vida en los pacientes que reciben la forma enantiomérica [-]20HOA. Dado que el mecanismo de acción del compuesto está relacionado con la actividad sobre el enzima EC 2.7.8.27 y que los enantiómeros [-] y [+] tienen un efecto contrapuesto sobre dicha enzima (Figura 7), la administración del enantiómero ([-]20HOA) es mucho más eficaz que la del compuesto racémico, revirtiendo parte del efecto terapéutico que tiene el último. Tabla 3 On the other hand, the dose that induced reductions of approximately one third of the tumor volume did not induce any side effects in animals treated with [- J20HOA (50 mg / kg), while animals treated with the racemic compound 20HOA at Doses that induced similar reductions in tumor volume (600 mg / kg) showed significant side effects (Table 3). In addition, at 200 mg / kg, the [-] 20HOA enantiomer induced tumor volume reductions of 89% without observable adverse effects, while at the same dose, the racemic compound only induced or 23% reductions in the volume of the tumors and some of the animals presented adverse effects in response to treatment. From these results it is deduced that the [-] 20HOA enantiomer has a greater potency and that at the maximum therapeutic doses it does not produce adverse effects, while the racemic compound has a more modest effect and induces certain unwanted effects at therapeutic doses. In the treatment of tumor processes, the differences in efficacy between the [-] 20HOA and the racemic enantiomer can mean differences of months or years in the life expectancy of patients. Moreover, differences in efficacy can result in the cure or not of a certain cancer in a patient. On the other hand, differences in toxicity at therapeutic doses can result in a higher quality of life in patients receiving the enantiomeric form [-] 20HOA. Since the mechanism of action of the compound is related to the activity on the enzyme EC 2.7.8.27 and that the enantiomers [-] and [+] have a contrasted effect on said enzyme (Figure 7), the administration of the enantiomer ([- ] 20HOA) is much more effective than that of the racemic compound, reversing part of the therapeutic effect of the latter. Table 3
Figure imgf000044_0001
Figure imgf000044_0001
1. Variación del tamaño del tumor tras 15 días de tratamiento (oral) a la dosis indicada respecto a los animales no tratados (n = 6 en todos los grupos). En este caso, se asignó el valor de 100% al volumen del tumor de los animales control (tratados con vehículo) al finalizar el tratamiento de 15 días.  1. Variation of tumor size after 15 days of treatment (oral) at the indicated dose with respect to untreated animals (n = 6 in all groups). In this case, the 100% value was assigned to the tumor volume of the control animals (treated with vehicle) at the end of the 15-day treatment.
2. Síntomas registrados y porcentaj e de animales en los que se ha observado. Los síntomas en comportamiento incluyen reducción de la movilidad durante al menos 30 minutos, pelo erizado, saltos (jumping), o confinamiento en una esquina de la jaula. Los estudios realizados con los compuestos racémicos y con los enantiómeros de la presente invención demuestran que en todos los casos el enantiómero [-] tiene una mayor potencia antitumoral que las otras formas moleculares para inhibir el crecimiento de células de cáncer humano (A549, Tabla 4). En este sentido, las concentraciones que inhiben el crecimiento de células tumorales (IC50) son inferiores para el enantiómero S ([-]) en todas las líneas tumorales estudiadas (Tabla 5). Este Por el contrario, estos compuestos no indujeron la muerte de células normales (MRC-5, IMR90). En todos los casos, las moléculas empleadas fueron la sal de sodio. Tabla 4. Efecto de los compuestos de la invención sobre el crecimiento de células de cáncer de pulmón humano, A549 2. Registered symptoms and percentage of animals in which it has been observed. Behavioral symptoms include reduced mobility for at least 30 minutes, ruffled hair, jumping (jumping), or confinement in a corner of the cage. Studies conducted with the racemic compounds and with the enantiomers of the present invention demonstrate that in all cases the enantiomer [-] has a higher antitumor potency than the other molecular forms to inhibit the growth of human cancer cells (A549, Table 4 ). In this sense, the concentrations that inhibit the growth of tumor cells (IC 50 ) are lower for the S ([-]) enantiomer in all the tumor lines studied (Table 5). On the contrary, these compounds did not induce the death of normal cells (MRC-5, IMR90). In all cases, the molecules used were sodium salt. Table 4. Effect of the compounds of the invention on the growth of human lung cancer cells, A549
Ι(Ι5ο (μΜ) Ι (Ι 5 ο (μΜ)
Racémico [-] [+]  Racemic [-] [+]
201-116:1 192.7±9.3 110.2±14.0* 299.0±34.2* 201-116: 1 192.7 ± 9.3 110.2 ± 14.0 * 299.0 ± 34.2 *
201-118:1 94.Ü8.8 52.6±9.5** 133.3±9.8*201-118: 1 94.Ü8.8 52.6 ± 9.5 ** 133.3 ± 9.8 *
20H18:2 105.0±4.1 69.9±11.2* 186.3±21.9*20H18: 2 105.0 ± 4.1 69.9 ± 11.2 * 186.3 ± 21.9 *
20H18:3a 219.2±15.4 146.1±10.9* 351.4±22.7**20H18: 3rd 219.2 ± 15.4 146.1 ± 10.9 * 351.4 ± 22.7 **
20H18:3g 206.5±21.7 155±7.5* 341.8±31.5**20H18: 3g 206.5 ± 21.7 155 ± 7.5 * 341.8 ± 31.5 **
*P<0.05; **P<0.01 : significativamente diferente respecto al racémico; P<0.001 respecto al enantiómero [+]. Ejemplo 8. Regulación de los compuestos de la invención sobre la actividad de la enzima EC 2.3.1.50. * P <0.05; ** P <0.01: significantly different from the racemic; P <0.001 with respect to the enantiomer [+]. Example 8. Regulation of the compounds of the invention on the activity of the enzyme EC 2.3.1.50.
Se incubaron células de glioma humano U118 en presencia o ausencia (control) de 20HOA (200 μΜ, 24 h) y luego se incubaron con [3H]palmitato durante 5 minutos. Tras dichos períodos de incubación, los lípidos celulares se extrajeron y se separaron mediante TLC. Las bandas correspondientes a cada especie lipídica se extrajeron y la cantidad de palmitato radiactivo incorporado se midió mediante centelleo líquido. Como se puede apreciar, no sólo hubo una incorporación importante en la fracción de SM (indicador de la activación de la EC 2.7.8.27), sino también en la fracción de ceramida, lo que demuestra la activación de la enzima EC 2.3.1.50 (serín-palmitoil transferasa). Por todo ello, se puede concluir que el 20HOA es un activador específico de la enzima EC 2.3.1.50 (Figura 9). Tabla 5. Efecto del 20HOA racémico y sus enantiómeros sobre el crecimiento de varias líneas de diferentes tipos de cáncer humano. Valores de IC50 (μΜ). U118 human glioma cells were incubated in the presence or absence (control) of 20HOA (200 μΜ, 24 h) and then incubated with [ 3 H] palmitate for 5 minutes. After said incubation periods, cell lipids were extracted and separated by TLC. The bands corresponding to each lipid species were extracted and the amount of radioactive palmitate incorporated was measured by liquid scintillation. As can be seen, there was not only an important incorporation in the SM fraction (indicator of activation of EC 2.7.8.27), but also in the ceramide fraction, which demonstrates the activation of the enzyme EC 2.3.1.50 ( serine palmitoyl transferase). Therefore, it can be concluded that 20HOA is a specific activator of the enzyme EC 2.3.1.50 (Figure 9). Table 5. Effect of racemic 20HOA and its enantiomers on the growth of several lines of different types of human cancer. IC 50 values (μΜ).
Línea Celular Tipo de Cáncer 20HOA Racémico H20HOA [+]20HOA Cell Line Cancer Type 20HOA Racemic H20HOA [+] 20HOA
U118 Glioma (humano) 142.3 97.8 211.6 U118 Glioma (human) 142.3 97.8 211.6
SF767 Glioma (humano) 214.8 102.1 304.1SF767 Glioma (human) 214.8 102.1 304.1
U87 Glioma (humano) 81.6 53.5 148.3U87 Glioma (human) 81.6 53.5 148.3
SH-SY5Y Neuroblastoma 119.1 64.4 193.4 SH-SY5Y Neuroblastoma 119.1 64.4 193.4
(humano)  (human)
A549 Cáncer pulmón 94.1 52.6 133.3  A549 Lung cancer 94.1 52.6 133.3
(humano)  (human)
Jurkat Leucemia (humano) 62.9 35.7 97.2 Jurkat Leukemia (human) 62.9 35.7 97.2
U937 Linfoma (humano) 183.2 136.3 213.5U937 Lymphoma (human) 183.2 136.3 213.5
HepG2 Cáncer hígado 41.4 32.9 76.7 HepG2 Liver cancer 41.4 32.9 76.7
(humano)  (human)
MDA-MB-231 Cáncer de mama 243.7 145.2 328.0  MDA-MB-231 Breast cancer 243.7 145.2 328.0
(humano)  (human)
PC3 Cáncer próstata 137.5 87.0 232.8  PC3 Prostate Cancer 137.5 87.0 232.8
(humano)  (human)
BXPC3 Cáncer de páncreas 98.3 61.8 154.1  BXPC3 Pancreatic Cancer 98.3 61.8 154.1
(humano)  (human)
HeLa Cáncer de útero 126.8 74.5 205.7  HeLa Uterine Cancer 126.8 74.5 205.7
(humano)  (human)
HT29 Cáncer de colon 224.6 159.4 341.6  HT29 Colon cancer 224.6 159.4 341.6
(humano)  (human)
A375 Melanoma maligno 272.9 163.1 407.3  A375 Malignant melanoma 272.9 163.1 407.3
(humano)  (human)
IMR90 Fibroblasto no >5,000 >5,000 >5,000  IMR90 Fibroblast no> 5,000> 5,000> 5,000
tumoral (humano)  tumor (human)
MRC-5 Fibroblasto no >5,000 >5,000 >5,000  MRC-5 Fibroblast no> 5,000> 5,000> 5,000
tumoral (humano) Ejemplo 9. Regulación de los compuestos de la invención sobre la actividad de la enzima EC 1.14.19.1.  tumor (human) Example 9. Regulation of the compounds of the invention on the activity of the enzyme EC 1.14.19.1.
El ácido oleico es sintetizado a partir del ácido esteárico mediante la actividad del enzima estearoil-CoA desaturasa (EC 1.14.19.1). Este enzima es crucial en el metabolismo lipídico, ya que es limitante en la síntesis de ácidos grasos. Para estudiar si esta reducción se debía a la regulación de la EC 1.14.19.1, se incubaron células Ul 18 en presencia o ausencia de 20HOA (200 μΜ, 24 h) y, posteriormente, en presencia de [3H]oleato (5 minutos). Se pudo constatar que la incorporación de ácido oleico radiactivo en membranas de células U118 incubadas en presencia de 20HOA era significativamente menor que en las células control (Figura 10). Este resultado indica que el 20HOA es un potente inhibidor de la EC 1.14.19.1, cuya regulación se ha sugerido que puede ser importante en el tratamiento de diferentes patologías humanas. Oleic acid is synthesized from stearic acid through the activity of the enzyme stearoyl-CoA desaturase (EC 1.14.19.1). This enzyme is crucial in lipid metabolism, since it is limiting in the synthesis of fatty acids. To study whether this reduction was due to EC regulation 1.14.19.1, Ul 18 cells were incubated in the presence or absence of 20HOA (200 μΜ, 24 h) and, subsequently, in the presence of [ 3 H] oleate (5 minutes ). It was found that the incorporation of radioactive oleic acid into U118 cell membranes incubated in the presence of 20HOA was significantly lower than in control cells (Figure 10). This result indicates that 20HOA is a potent inhibitor of CD 1.14.19.1, whose regulation has been suggested to be important in the treatment of different human pathologies.
REFERENCIAS REFERENCES
1. Albi, E. y M. V. Magni (1999). Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS Lett 460: 369-72.  1. Albi, E. and M. V. Magni (1999). Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS Lett 460: 369-72.
2. Alemany R, Terés S, Baamonde C, Benet M, Vógler O, Escribá PV. (2004) 2- hydroxyoleic acid: a new hypotensive molecule. Hypertension. 43: 249-54. 2. Alemany R, Terés S, Baamonde C, Benet M, Vógler O, Write PV. (2004) 2- hydroxyoleic acid: a new hypotensive molecule. Hypertension 43: 249-54.
3. Alemany R, Perona JS, Sánchez-Domínguez JM, Montero E, Cañizares J, Brezan R, Escribá PV y Ruiz-Gutiérrez V (2007) G protein-coupled receptor systems and their lipid environment in health disorders during aging. BBA Biomembr. 1768:964- 975. 4. Buda C, Dey I, Balogh N, Horvath LI, Maderspach K, Juhasz M, Yeo YK, Farkas T (1994) Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Nati. Acad. Sci USA 91:8234-8238. 3. Alemany R, Perona JS, Sánchez-Domínguez JM, Montero E, Cañizares J, Brezan R, Escribá PV and Ruiz-Gutiérrez V (2007) G protein-coupled receptor systems and their lipid environment in health disorders during aging. BBA Biomembr. 1768: 964-975. 4. Buddha C, Dey I, Balogh N, Horvath LI, Maderspach K, Juhasz M, Yeo YK, Farkas T (1994) Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Nati Acad. Sci USA 91: 8234-8238.
5. Escriba PV, Sastre M, García-Sevilla JA. (1995) Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures. Proc Nati Acad Sci U S A. 92:7595-7599. 5. Type PV, Sastre M, García-Sevilla JA. (1995) Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures. Proc Nati Acad Sci U S A. 92: 7595-7599.
6. Escriba PV, Ozaita A, Ribas C, Miralles A, Fodor E, Farkas T, García-Sevilla JA (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc Nati Acad Sci U S A. 94: 11375-11380. 7. Escribá PV (2006) Membrane-lipid therapy : a new approach in molecular medicine. Trends Mol. Med. 12:34-43 6. Enter PV, Ozaita A, Ribas C, Miralles A, Fodor E, Farkas T, García-Sevilla JA (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc Nati Acad Sci U S A. 94: 11375-11380. 7. Write PV (2006) Membrane-lipid therapy: a new approach in molecular medicine. Trends Mol. Med. 12: 34-43
8. Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez- Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G (2008) Membranes: A meeting point for lipids, proteins and therapies. J Cell. Mol. Med. 12:829-875. 8. Write PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G (2008) Membranes: A meeting point for lipids, proteins and therapies J Cell. Mol. Med. 12: 829-875.
9. Florent S, Malaplate-Armand C, Youssef I, Kriem B, Koziel V, Escanyé MC, Fifre A, Sponne I, Leininger-Mull er B , Olivi er JL, Pill ot T, O ster T . (2006) Docosahexanoic acid prevents neuronal apoptosis inducced by soluble amyloid-beta oligomers. J Neurochem. 96:385-95. 10. Huitema, K., et al. (2004). Identification of a family of animal sphingomyelin synthases. EMBO J 23:33-44. 9. Florent S, Malaplate-Armand C, Youssef I, Kriem B, Koziel V, Escanyé MC, Fifre A, Sponne I, Leininger-Mull er B, Olivi er JL, Pill ot T, O ster T. (2006) Docosahexanoic acid prevents neuronal apoptosis inducced by soluble amyloid-beta oligomers. J Neurochem. 96: 385-95. 10. Huitema, K., et al. (2004). Identification of a family of animal sphingomyelin synthases. EMBO J 23: 33-44.
11. Jackson CL, Schwartz SM (1992) Pharmacology of smooth muscle cell replication. 11. Jackson CL, Schwartz SM (1992) Pharmacology of smooth muscle cell replication.
Hypertension 20: 713-716. 12. Jiang Q, et al. (2011). Gamma-tocotrienol induces apoptosis and autophagy in prostate cáncer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cáncer, doi: 10.1002/ijc.26054.  Hypertension 20: 713-716. 12. Jiang Q, et al. (2011). Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer, doi: 10.1002 / ijc.26054.
13. Jung UJ, Torrejon C, Tighe AP, Deckelbaum RJ. (2008). N-3 Fatty acids and cardiovascular disease mechanisms underlying beneficial effects. Am J Clin Nutr. 87:2003S-2009S. 13. Jung UJ, Torrejon C, Tighe AP, Deckelbaum RJ. (2008). N-3 Fatty acids and cardiovascular disease mechanisms underlying beneficial effects. Am J Clin Nutr. 87: 2003S-2009S.
14. Lañe RM, Farlow MR.(2005) Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer's disease. J Lipid Res. 46: 949-968. 14. Lañe RM, Farlow MR. (2005) Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer's disease. J Lipid Res. 46: 949-968.
15. Lladó V, Gutiérrez A, Martínez J, et al. Minerval induces apoptosis in Jurkat and other cáncer cells. J. Cell Mol Med. 2010; 13 : 1-12. 16. Martínez J, O, Casas J, F, Alemany R, Prades J, Nagy T, Baamonde C, Kasprzyk P, Terés S, Saus C, Escribá PV. (2005) Membrane structure modulation, protein kinase C alpha activation, and anticancer activity of minerval. Mol Pharmacol 67:531-40. 15. Lladó V, Gutiérrez A, Martínez J, et al. Minerval induces apoptosis in Jurkat and other cancer cells. J. Cell Mol Med. 2010; 13: 1-12. 16. Martínez J, O, Casas J, F, Alemany R, Prades J, Nagy T, Baamonde C, Kasprzyk P, Terés S, Saus C, Write PV. (2005) Membrane structure modulation, protein kinase C alpha activation, and anticancer activity of minerval. Mol Pharmacol 67: 531-40.
17. Perona JS, Vógler O, Sánchez-Domínguez JM, Montero E, Escribá PV y Ruiz- Gutiérrez EV (2007) Consumption of virgin olive oil influences membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus. J. Gerontol A Biol Sci Med Sci 62: 256-263. 17. Perona JS, Vógler O, Sánchez-Domínguez JM, Montero E, Escribá PV and Ruiz-Gutiérrez EV (2007) Consumption of virgin olive oil influences membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus. J. Gerontol A Biol Sci Med Sci 62: 256-263.
18. Sagin FG, Sozmen EY (2008) Lipids as key players in Alzheimer disease: alterations in metabolism and genetics. Curr Alzheimer Res 5:4-14. 19. Simons, K. y D. Toomre (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1 : 31-9. 0. Sloan, F. A., Bethel, M. A, Ruiz, D. Jr., Shea, A. M & Feinglos, M. N. The growing burden of diabetes mellitus in the US elderly population. Arch. Intern. Med. 168, 192-199 (2008). 20. Slomiany A, Murty VL, Aono M, Snyder CE, Herp A y Slomiany BL (1982) Lipid composition of tracheobronchial secretions from normal individuáis and patients with cystic fibrosis. Biochim Biophys Acta. 10: 106-111. 18. Sagin FG, Sozmen EY (2008) Lipids as key players in Alzheimer disease: alterations in metabolism and genetics. Alzheimer's Curr Res 5: 4-14. 19. Simons, K. and D. Toomre (2000). Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31-9. 0. Sloan, FA, Bethel, M. A, Ruiz, D. Jr., Shea, A. M & Feinglos, MN The growing burden of diabetes mellitus in the US elderly population. Arch. Intern. Med. 168, 192-199 (2008). 20. Slomiany A, Murty VL, Aono M, Snyder CE, Herp A and Slomiany BL (1982) Lipid composition of tracheobronchial secretions from normal individuals and patients with cystic fibrosis. Biochim Biophys Acta. 10: 106-111.
21. Stender S, Dyerberg J (2004) Influence of trans fatty acids on health. Ann. Nutr. 21. Stender S, Dyerberg J (2004) Influence of trans fatty acids on health. Ann. Nutr.
Metab. 48:61-66.  Metab 48: 61-66.
22. Schwartz SM, Campbell GR, Campbell JH. (1985). Replication of smooth muscle cells in vascular disease. Circ Res 58:427-444. 22. Schwartz SM, Campbell GR, Campbell JH. (1985). Replication of smooth muscle cells in vascular disease. Circ Res 58: 427-444.
23. Tafesse, F. G., P. Ternes, et al. (2006). The multigenic sphingomyelin synthase family. J Biol Chem 281(: 29421-5. 24. Trombetta A, Maggiora M, Martinasso G, Cotogni P, Canuto RA, Muzio G. (2007). 23. Tafesse, F. G., P. Ternes, et al. (2006). The multigenic sphingomyelin synthase family. J Biol Chem 281 (: 29421-5. 24. Trombetta A, Maggiora M, Martinasso G, Cotogni P, Canuto RA, Muzio G. (2007).
Arachidonic and docosahexanoic acids reduce the growth of A549 human lung tumor cells increasing lípido peroxidation and PPARs. Chem Biol Interact. 165:239- 50.  Arachidonic and docosahexanoic acids reduce the growth of A549 human lung tumor cells increasing lipid peroxidation and PPARs. Chem Biol Interact. 165: 239-50.
25. Van Helvoort, A., W. van't Hof, et al. (1994). Conversión of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem 269: 1763-9. 25. Van Helvoort, A., W. van't Hof, et al. (1994). Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem 269: 1763-9.
26. Vógler O, Casas J, Capó D, Nagy T, Borchert G, Martorell G y Escribá PV. (2004) The G betagamma dimer drives the interaction of heterotrimeric Gi proteins with nonlamellar membrane structures. J Biol Chem. 279:36540-36545. 26. Vógler O, Casas J, Capó D, Nagy T, Borchert G, Martorell G and Escribá PV. (2004) The G betagamma dimer drives the interaction of heterotrimeric Gi proteins with nonlamellar membrane structures. J Biol Chem. 279: 36540-36545.
27. Vógler O, López-Bellan A, Alemany R, Tofé S, González M, Quevedo J, Pereg V, Barceló F y Escribá PV.(2008) Structure-effect relation of C18 long-chain fatty acids in the reduction of body weight in rats. IntJObes. 32: 464-473. 27. Vógler O, López-Bellan A, Alemany R, Tofé S, González M, Quevedo J, Pereg V, Barceló F and Escribá PV. (2008) Structure-effect relation of C18 long-chain fatty acids in the reduction of body weight in rats. IntJObes 32: 464-473.
28. Yang, Q, Alemany, R, Casas, J, Kitaj ka, K, Lanier, SM, Escribá PV (2005) Influence of the membrane lipid structure on signal processing via G protein- coupled receptors. Mol Pharmacol 68:210-7. 28. Yang, Q, Alemany, R, Casas, J, Kitaj ka, K, Lanier, SM, Write PV (2005) Influence of the membrane lipid structure on signal processing via G protein-coupled receptors. Mol Pharmacol 68: 210-7.

Claims

REIVINDICACIONES
1. Enantiómero [-] o [+] de un compuesto de Fórmula I: 1. Enantiomer [-] or [+] of a compound of Formula I:
HOOC-HOCH-(CH2)„-(CH=CH-CH2)é-(CH2)c-CH3 HOOC-HOCH- (CH2) „- (CH = CH-CH2) é - (CH2) c -CH 3
(I)  (I)
o sus sales farmacéuticamente aceptables, caracterizado porque a, b y c pueden tomar valores independientes entre O y ó, con la condición de que el número total de carbonos sea < 20. or its pharmaceutically acceptable salts, characterized in that a, b and c can take independent values between O and or, with the proviso that the total number of carbons is <20.
2. Enantiómero, según la reivindicación 1, resultante de la selección de al menos una de las siguientes combinaciones de valores a, b y c: 2. Enantiomer according to claim 1, resulting from the selection of at least one of the following combinations of values a, b and c:
a=6, 6=1 y c=4  a = 6, 6 = 1 and c = 4
a=6, 6=1 y c=6  a = 6, 6 = 1 and c = 6
a=6, b=2 y c=3  a = 6, b = 2 and c = 3
a=6, b=3 y c=0  a = 6, b = 3 and c = 0
a=3, b=3 y c=3  a = 3, b = 3 and c = 3
3. Enantiómero, según la reivindicación 2, caracterizado por la fórmula: 3. Enantiomer according to claim 2, characterized by the formula:
[-]HOOC-HOCH-(CH2)é-(CH=CH-CH2)i-(CH2)-CH3 o sus sales farmacéuticamente aceptables. [-] HOOC-HOCH- (CH 2 ) é - (CH = CH-CH 2 ) i- (CH 2 ) -CH 3 or its pharmaceutically acceptable salts.
4. Enantiómero, según la reivindicación 2, caracterizado por la fórmula: 4. Enantiomer according to claim 2, characterized by the formula:
[+]HOOC-HOCH-(CH2)é-(CH=CH-CH2)i-(CH2)-CH3 o sus sales farmacéuticamente aceptables. [+] HOOC-HOCH- (CH 2 ) é - (CH = CH-CH 2 ) i- (CH 2 ) -CH 3 or its pharmaceutically acceptable salts.
5. Enantiómero, según las reivindicaciones 1 a 4, caracterizado porque la sal farmacéuticamente aceptable es una sal de sodio. 5. Enantiomer according to claims 1 to 4, characterized in that the pharmaceutically acceptable salt is a sodium salt.
6. Composición farmacéutica que comprende al menos un enantiómero de las reivindicaciones 1 a 5, y/o al menos una de sus sales farmacéuticamente aceptables, y, opcionalmente, cualquier vehículo farmacéuticamente aceptable. 6. Pharmaceutical composition comprising at least one enantiomer of claims 1 to 5, and / or at least one of its pharmaceutically acceptable salts, and, optionally, any pharmaceutically acceptable carrier.
7. Uso de al menos un enantiómero de las reivindicaciones 1 a 5, o al menos una de sus sales farmacéuticamente aceptables, para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología común sea la alteración estructural y/o funcional de la membrana celular, debida a la desregulación de la actividad de la enzima EC 2.7.8.27, del nivel de esfingomielina, del nivel de PFAG o del nivel de DHFR. 7. Use of at least one enantiomer of claims 1 to 5, or at least one of its pharmaceutically acceptable salts, for the preparation of a pharmaceutical composition for the treatment and / or prevention of pathologies whose common etiology is structural alteration and / or functional membrane cell, due to deregulation of the activity of the enzyme EC 2.7.8.27, the level of sphingomyelin, the level of PFAG or the level of DHFR.
8. Uso del enantiómero de fórmula [-]HOOC-HOCH-(CH2)¿-(CH=CH-CH2)7- (CH2)<5-CH3; y/o al menos una de sus sales farmacéuticamente aceptables, según la reivindicación 7, para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología sea la alteración estructural y/o funcional en la membrana celular debida a un déficit en la actividad de la enzima EC 2.7.8.27, a un nivel anormalmente baj o de esfingomielina, a un nivel anormalmente b aj o de PFAG o a un nivel anormalmente alto de DHFR. 8. Use of the enantiomer of the formula [-] HOOC-HOCH- (CH2) ¿- (CH = CH-CH2) 7 - (CH2) <5-CH 3; and / or at least one of its pharmaceutically acceptable salts, according to claim 7, for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of pathologies whose etiology is the structural and / or functional alteration in the cell membrane due to a EC 2.7.8.27 enzyme activity deficit, at an abnormally low level of sphingomyelin, at an abnormally low level of PFAG or at an abnormally high level of DHFR.
9. Uso, según la reivindicación 8, caracterizado porque la patología se selecciona entre: cáncer, preferentemente, cáncer hepático, melanoma, cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro o cáncer de pulmón. 9. Use according to claim 8, characterized in that the pathology is selected from: cancer, preferably liver cancer, melanoma, prostate cancer, breast cancer, pancreatic cancer, leukemia, uterine cancer, colon cancer, cancer of brain or lung cancer
10. Uso, según la reivindicación 8, caracterizado porque la patología se selecciona entre: patologías vasculares, preferentemente, hipertensión, arterieesclerosis, cardiomiopatías, angiogénesis, hiperplasia cardiaca; o patologías metabólicas, preferentemente, diabetes, síndrome metabólico u obesidad. 10. Use according to claim 8, characterized in that the pathology is selected from: vascular pathologies, preferably hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia; or metabolic pathologies, preferably diabetes, metabolic syndrome or obesity.
11. Uso del enantiómero de fórmula [+]HOOC-HOCH-(CH2)¿-(CH=CH-CH2)7- (CH2)<5-CH3; y/o al menos una de sus sales farmacéuticamente aceptables, según la reivindicación 7, para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología sea la alteración estructural y/o funcional en la membrana celular debida a un exceso en la actividad de la enzima EC 2.7.8.27, a un nivel anormalmente elevado de esfingomielina, a un nivel normalmente elevado de PFAG o a un nivel anormalmente bajo de DFIFR. 11. Use of the enantiomer of formula [+] HOOC-HOCH- (CH2) ¿- (CH = CH-CH2) 7 - (CH2) <5-CH 3; and / or at least one of its pharmaceutically acceptable salts, according to claim 7, for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of pathologies whose etiology is the structural and / or functional alteration in the cell membrane due to a excess in the activity of the enzyme EC 2.7.8.27, at an abnormally high level of sphingomyelin, at a normally high level of PFAG or at an abnormally low level of DFIFR.
12. Uso, según la reivindicación 11, caracterizado porque las patologías son preferentemente hipercolesterolemia, hipertrigliceridemia y fibrosis quística. 12. Use according to claim 11, characterized in that the pathologies are preferably hypercholesterolemia, hypertriglyceridemia and cystic fibrosis.
13. Método in vitro para la selección de compuestos candidatos útiles en el tratamiento y/o prevención de patologías cuya etiología sea la alteración estructural y/o funcional de los lípidos localizados en la membrana celular, que comprende la evaluación de la actividad de la enzima EC 2.7.8.27, del nivel de esfingomielina, del nivel de PFAG o del nivel de DHFR en presencia de dicho compuesto candidato. 13. In vitro method for the selection of candidate compounds useful in the treatment and / or prevention of pathologies whose etiology is the structural and / or functional alteration of lipids located in the cell membrane, which includes the evaluation of the enzyme activity EC 2.7.8.27, of the level of sphingomyelin, of the level of PFAG or of the level of DHFR in the presence of said candidate compound.
14. Método in vitro para el pronóstico/diagnóstico de patologías cuya etiología sea la alteración estructural y/o funcional de los lípidos localizados en la membrana celular, que comprende la determinación de la desregulación de la actividad de la enzima EC 2.7.8.27, del nivel de esfingomielina, del nivel de PFAG o del nivel de DHFR 14. In vitro method for the prognosis / diagnosis of pathologies whose etiology is the structural and / or functional alteration of lipids located in the cell membrane, which includes the determination of the deregulation of the activity of the enzyme EC 2.7.8.27, of sphingomyelin level, PFAG level or DHFR level
15. Método in vitro para el pronóstico/diagnóstico de patologías cuya etiología sea la alteración estructural y/o funcional de los lípidos localizados en la membrana celular, según la reivindicación 14, que comprende la determinación del déficit en la actividad de la enzima EC 2.7.8.27, de la presencia de un nivel anormalmente bajo de esfingomielina, de un nivel anormalmente bajo de PFAG o de un nivel anormalmente alto de DFIFR. 15. In vitro method for the prognosis / diagnosis of pathologies whose etiology is the structural and / or functional alteration of the lipids located in the cell membrane, according to claim 14, which comprises the determination of the deficit in the activity of the enzyme EC 2.7 .8.27, the presence of an abnormally low level of sphingomyelin, an abnormally low level of PFAG or an abnormally high level of DFIFR.
16. Método in vitro, según la reivindicación 15, donde las patologías se seleccionan entre: cáncer, preferentemente, cáncer hepático, melanoma, cáncer de próstata, cáncer de mama, cáncer de páncreas, leucemia, cáncer de útero, cáncer de colon, cáncer de cerebro o cáncer de pulmón. 16. In vitro method according to claim 15, wherein the pathologies are selected from: cancer, preferably liver cancer, melanoma, prostate cancer, breast cancer, pancreatic cancer, leukemia, uterine cancer, colon cancer, cancer of brain or lung cancer.
17. Método in vitro, según la reivindicación 15, donde las patologías se seleccionan entre: patologías vasculares, preferentemente, hipertensión, arterieesclerosis, cardiomiopatías, angiogénesis, hiperplasia cardiaca; o patologías metabólicas, preferentemente, diabetes, síndrome metabólico u obesidad. 17. In vitro method according to claim 15, wherein the pathologies are selected from: vascular pathologies, preferably hypertension, arteriosclerosis, cardiomyopathies, angiogenesis, cardiac hyperplasia; or metabolic pathologies, preferably diabetes, metabolic syndrome or obesity.
18. Método in vitro para el pronóstico/diagnóstico de patologías cuya etiología sea la alteración estructural y/o funcional de los lípidos localizados en la membrana celular, según la reivindicación 14, que comprende la determinación del exceso en la actividad de la enzima EC 2.7.8.27, de la presencia de un nivel anormalmente alto de esfingomielina, de un nivel anormalmente alto de PFAG o de un nivel anormalmente bajo de DHFR 18. In vitro method for the prognosis / diagnosis of pathologies whose etiology is the structural and / or functional alteration of the lipids located in the cell membrane, according to claim 14, which comprises the determination of the excess in the activity of the enzyme EC 2.7 .8.27, of the presence of a level abnormally high sphingomyelin, an abnormally high level of PFAG or an abnormally low level of DHFR
19. Método in vitro, según la reivindicación 18, donde la patología es la hipercolesterolemia, hipertrigliceridemia o la fibrosis quística. 19. In vitro method according to claim 18, wherein the pathology is hypercholesterolemia, hypertriglyceridemia or cystic fibrosis.
20. Kit para ser usado en el método de prono stico/diagnóstico de l as reivindicaciones 14 a 19 que comprende medios útiles para la determinación de la actividad de la enzima EC 2.7.8.27, del nivel de esfingomielina, del nivel de PFAG o del nivel de DHFR. 20. Kit for use in the prone / diagnostic method of claims 14 to 19 comprising useful means for determining the activity of the EC enzyme 2.7.8.27, the level of sphingomyelin, the level of PFAG or the DHFR level
21. Kit, según la reivindicación 20, que comprende medios útiles para la determinación directa de esfingomielina, de sus precursores, de sus derivados o para la medición indirecta de esfingomielina. 21. Kit according to claim 20, comprising useful means for the direct determination of sphingomyelin, its precursors, its derivatives or for the indirect measurement of sphingomyelin.
22. Kit, según la reivindicación 21, donde el precursor es la ceramida, el derivado es BD-Cer o BD-SM y la medición indirecta se hace a través de la lisenina. 22. Kit according to claim 21, wherein the precursor is ceramide, the derivative is BD-Cer or BD-SM and indirect measurement is made through lysenin.
23. Kit, según la reivindicaciones 20 a 22, donde los medios útiles comprenden: técnica TLC y FtPTLC, cromatografía de gases, análi si s de imagen, espectroscopia de absorción o de fluorescencia, microscopía óptica de fluorescencia o de contraste de fases, microscopía confocal, inmunoblot, reacción en cadena de la polimerasa, ELISA, RIA, EIA, dot blot o cualquier otra técnica relacionada. 23. Kit according to claims 20 to 22, wherein the useful means comprise: TLC and FtPTLC technique, gas chromatography, image analysis, absorption or fluorescence spectroscopy, fluorescence or phase contrast optical microscopy, microscopy confocal, immunoblot, polymerase chain reaction, ELISA, RIA, EIA, dot blot or any other related technique.
24. Procedimiento de síntesis de 2-hidroxiderivados de ácidos grasos y posterior aislamiento y purificación de sus enantiómeros que comprende: 24. Method of synthesis of 2-hydroxy derivatives of fatty acids and subsequent isolation and purification of their enantiomers comprising:
a) Hidroxilación del ácido graso en medio ácido y posterior purificación de la sal de sodio, 2-hidroxioleato sódico en el caso de partir de ácido oleico.  a) Hydroxylation of fatty acid in acidic medium and subsequent purification of the sodium salt, sodium 2-hydroxyoleate in the case of starting from oleic acid.
b) Esterificación de la mezcla racémica de 2-hidroxioleato de sodio, o cualquiera de los ácidos grasos hidroxilados de la presente invención, con una disolución de ácido sulfúrico en etanol, preferentemente al 10%. c) Hidrólisis enantio selectiva del éster, catalizada por una lipasa, preferentemente la lipasa de pseudomona y preferentemente a 25°C. d) Control del progreso de la reacción preferentemente mediante cromatografía líquida. b) Esterification of the racemic mixture of sodium 2-hydroxyoleate, or any of the hydroxylated fatty acids of the present invention, with a solution of sulfuric acid in ethanol, preferably 10%. c) Selective enantium hydrolysis of the ester, catalyzed by a lipase, preferably pseudomone lipase and preferably at 25 ° C. d) Control of the progress of the reaction preferably by liquid chromatography.
e) Hidrólisis de la mezcla con HC1 diluido hasta pH menor de 2. f) Extracción de los productos y lavado de la fase orgánica.  e) Hydrolysis of the mixture with diluted HC1 to pH less than 2. f) Extraction of the products and washing of the organic phase.
g) Eliminación del disolvente a vacío para obtener un crudo con la mezcla de ácido y éster.  g) Removal of the solvent in vacuo to obtain a crude with the mixture of acid and ester.
h) Separación de ácido y éster preferentemente mediante cristalización del primero.  h) Separation of acid and ester preferably by crystallization of the first.
i) Volver al paso a) en el caso del ácido y paso b) en el caso del éster para iniciar el reprocesado de cada una de las fracciones aisladas (ácido y éster) hasta obtener la pureza enantiomérica deseada.  i) Return to step a) in the case of acid and step b) in the case of the ester to start reprocessing each of the isolated fractions (acid and ester) until the desired enantiomeric purity is obtained.
25. Uso de un compuesto de Fórmula I 25. Use of a compound of Formula I
HOOC-HOCH-(CH2)„-(CH=CH-CH2)é-(CH2)c-CH3 HOOC-HOCH- (CH2) „- (CH = CH-CH2) é - (CH2) c -CH 3
y/o al menos una de sus sales farmacéuticamente aceptables para la elaboración de una composición farmacéutica destinada al tratamiento y/o prevención de patologías cuya etiología común sea la alteración estructural y/o funcional de la membrana celular, debida a la desregulación de la actividad de la enzima EC 2.7.8.27, del nivel de esfingomielina, del nivel de PFAG o del nivel de DHFR.  and / or at least one of its pharmaceutically acceptable salts for the preparation of a pharmaceutical composition intended for the treatment and / or prevention of pathologies whose common etiology is the structural and / or functional alteration of the cell membrane, due to the deregulation of activity EC 2.7.8.27 enzyme, sphingomyelin level, PFAG level or DHFR level.
26. Uso de un compuesto de Fórmula I 26. Use of a compound of Formula I
HOOC-HOCH-(CH2)fl-(CH=CH-CH2)/,-(CH2)c-CH3 HOOC-HOCH- (CH2) fl - (CH = CH-CH2) / , - (CH2) c -CH 3
(I)  (I)
como activador de la enzima EC 2.7.8.27, y/o como activador de la enzima EC 2.3.1.50, y/o como inhibidor de la enzima EC 1.14.19.1, in vitro. as activator of the enzyme EC 2.7.8.27, and / or as activator of the enzyme EC 2.3.1.50, and / or as inhibitor of the enzyme EC 1.14.19.1, in vitro.
27. Uso, según la reivindicación 26, caracterizado porque el compuesto de Fórmula I resulta de la selección de al menos una de las siguientes combinaciones de valores a, b y c: 27. Use according to claim 26, characterized in that the compound of Formula I results from the selection of at least one of the following combinations of values a, b and c:
a=6, 6=1 y c=4  a = 6, 6 = 1 and c = 4
a=6, 6=1 y c=6  a = 6, 6 = 1 and c = 6
a=6, b=2 y c=3  a = 6, b = 2 and c = 3
a=6, b=3 y c=0  a = 6, b = 3 and c = 0
a=3, b=3 y c=3  a = 3, b = 3 and c = 3
PCT/ES2012/070697 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids WO2013050644A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK12838506.9T DK2774910T3 (en) 2011-10-07 2012-10-08 ENANTIOMES OF 2-HYDROXY DERIVATIVES OF FAT ACIDS
RU2014118123A RU2637937C2 (en) 2011-10-07 2012-10-08 Enantiomers-2-hydroxy-derivatives of fatty acids
CN201280060748.XA CN104321300A (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids
EP17191078.9A EP3287437B1 (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxide derivatives of fatty acids
IN3111CHN2014 IN2014CN03111A (en) 2011-10-07 2012-10-08
PL12838506T PL2774910T3 (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids
US14/349,962 US9359281B2 (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids
ES12838506.9T ES2653675T3 (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids
EP12838506.9A EP2774910B1 (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201131622 2011-10-07
ES201131622A ES2401629B1 (en) 2011-10-07 2011-10-07 ENANTIOMERS OF 2-HYDROXIDERIVATES OF FATTY ACIDS AND THEIR USE AS MEDICINES.
US201261610762P 2012-03-14 2012-03-14
US61/610,762 2012-03-14

Publications (1)

Publication Number Publication Date
WO2013050644A1 true WO2013050644A1 (en) 2013-04-11

Family

ID=48043212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070697 WO2013050644A1 (en) 2011-10-07 2012-10-08 Enantiomers of 2-hydroxy derivatives of fatty acids

Country Status (12)

Country Link
US (1) US9359281B2 (en)
EP (2) EP2774910B1 (en)
JP (1) JP2014530806A (en)
CN (1) CN104321300A (en)
DK (1) DK2774910T3 (en)
ES (3) ES2401629B1 (en)
HU (1) HUE035430T2 (en)
IN (1) IN2014CN03111A (en)
PL (1) PL2774910T3 (en)
PT (1) PT2774910T (en)
RU (2) RU2687967C2 (en)
WO (1) WO2013050644A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021160650A1 (en) * 2020-02-10 2021-08-19 Ability Pharmaceuticals S.L. A pharmaceutical combination for the treatment of a cancer
EP4098649A4 (en) * 2020-01-29 2024-04-17 Univ Illes Balears Alpha-hydroxylated fatty-acid metabolites, medical uses of same and use as biomarkers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345241B1 (en) * 2009-03-16 2011-09-08 Lipopharma Therapeutics USE OF 2-HYDROXIDERIVATES OF POLYINSATURATED FATTY ACIDS AS MEDICINES.
ES2731251T3 (en) * 2014-10-21 2019-11-14 Univ Illes Balears 2-hydroxy-triacylglycerol compounds for use in the treatment of a disease
US11260042B2 (en) * 2017-05-16 2022-03-01 Ability Pharmaceuticals S.L. Pharmaceutical combination for the treatment of cancer
WO2019099664A1 (en) * 2017-11-16 2019-05-23 The Research Foundation For The State University Of New York Use of 2-hydroxyoleic acid for the treatment of systemic lupus erythematosus and other immune pathologies
ES2911474B2 (en) * 2020-11-17 2023-02-06 Univ Illes Balears PRODRUGS OF MONOUNSATURATED FATTY ACIDS AND THEIR METABOLITES: MEDICAL USES AND AS BIOMARKERS
ES2846824B2 (en) * 2020-01-29 2022-01-19 Univ Illes Balears PRODRUGS OF POLYUNSATURATED FATTY ACIDS AND THEIR MEDICAL USES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066931A1 (en) * 2008-12-09 2010-06-17 Universitat De Les Illes Balears Alpha-derivatives of cis-monounsaturated fatty acids intended for use as a drug
WO2010106211A1 (en) * 2009-03-16 2010-09-23 Lipopharma Therapeutics, S.L Use of derivatives of polyunsaturated fatty acids as medicaments

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2235541C2 (en) * 1994-10-04 2004-09-10 Эмори Юниверсити Treatment of atherosclerosis and other cardio-vascular diseases
AUPR547601A0 (en) * 2001-06-05 2001-06-28 Carcraft Qld Pty Ltd Tab with writing surface
ES2186576B1 (en) * 2001-10-11 2004-09-16 Universitat De Les Illes Balears 2-HYDROXYOLEIC ACID TO USE AS A MEDICINAL PRODUCT.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066931A1 (en) * 2008-12-09 2010-06-17 Universitat De Les Illes Balears Alpha-derivatives of cis-monounsaturated fatty acids intended for use as a drug
WO2010106211A1 (en) * 2009-03-16 2010-09-23 Lipopharma Therapeutics, S.L Use of derivatives of polyunsaturated fatty acids as medicaments

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
ALBI, E.; M. V. MAGNI: "Sphingomyelin synthase in rat liver nuclear membrane and chromatin", FEBS LETT, vol. 460, 1999, pages 369 - 72
ALEMANY R; PERONA JS; SÁNCHEZ-DOMÍNGUEZ JM; MONTERO E; CANIZARES J; BREZAN R; ESCRIBA PV; RUIZ-GUTIERREZ V: "G protein-coupled receptor systems and their lipid environment in health disorders during aging", BBA BIOMEMBR, vol. 1768, 2007, pages 964 - 975
ALEMANY R; TERES S; BAAMONDE C; BENET M; VÖGLER 0; ESCRIBÁ PV: "2- hydroxyoleic acid: a new hypotensive molecule", HYPERTENSION, vol. 43, 2004, pages 249 - 54
BUDA C; DEY I; BALOGH N; HORVATH LI; MADERSPACH K; JUHASZ M; YEO YK; FARKAS T: "Structural order_of membranes and composition of phospholipids in fish brain cells during thermal acclimatization", PROC. NATL. ACAD. SCI USA, vol. 91, 1994, pages 8234 - 8238
DATABASE REGISTRY [online] 12 November 1998 (1998-11-12), XP003030286, accession no. STN Database accession no. 214204-40-7 *
ESCRIBA PV ET AL: "Membranes: A meeting point for lipids, proteins and therapies", J CELL. MOL. MED., vol. 12, 2008, pages 829 - 875
ESCRIBA PV: "Membrane-lipid therapy: a new approach in molecular medicine", TRENDS MOL. MED., vol. 12, 2006, pages 34 - 43
ESCRIBA PV; OZAITA A; RIBAS C; MIRALLES A; FODOR E; FARKAS T; GARCIA-SEVILLA JA: "Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes", PROC NATL ACAD SCI U S A., vol. 94, 1997, pages 11375 - 11380
ESCRIBA PV; SASTRE M; GARCIA-SEVILLA JA: "Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures", PROC NATL ACAD SCI USA., vol. 92, 1995, pages 7595 - 7599
FLORENT S ET AL: "Docosahexanoic acid prevents neuronal apoptosis inducced by soluble amyloid-beta oligomers", JNEUROCHEM, vol. 96, 2006, pages 385 - 95
HUITEMA, K. ET AL.: "Identification of a family of animal sphingomyelin synthases", EMBO J, vol. 23, 2004, pages 33 - 44
JACKSON CL; SCHWARTZ SM: "Pharmacology of smooth muscle cell replication", HYPERTENSION, vol. 20, 1992, pages 713 - 716
JIANG Q ET AL.: "Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide", INT J CANCER, 2011
JUNG UJ; TORREJON C; TIGHE AP; DECKELBAUM RJ: "N-3 Fatty acids and cardiovascular disease mechanisms underlying beneficial effects", AM J CLIN NUTR., vol. 87, 2008, pages 2003S - 2009S
LANE RM; FARLOW MR: "Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer's disease", JLIPID RES., vol. 46, 2005, pages 949 - 968
LLADO V; GUTIERREZ A; MARTINEZ J ET AL.: "Minerval induces apoptosis in Jurkat and other cancer cells", J. CELL MOL MED., vol. 13, 2010, pages 1 - 12
M R HOJJATI ET AL.: "Rapid, specific and sensitive measurements of plasma sphingomyelin and phosphatidylcholine", JOURNAL OF LIPID RESEARCH, vol. 47, 2006, pages 673 - 676, XP055087713 *
MARTINEZ J, 0; CASAS J, F; ALEMANY R; PRADES J; NAGY T; BAAMONDE C; KASPRZYK P; TERES S; SAUS C; ESCRIBA PV.: "Membrane structure modulation, protein kinase C alpha activation, and anticancer activity of minerval", MOL PHARMACOL, vol. 67, 2005, pages 531 - 40
PERONA JS; VOGLER 0; SANCHEZ-DOMINGUEZ JM; MONTERO E; ESCRIBA PV; RUIZ- GUTIERREZ EV: "Consumption of virgin olive oil influences membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus", J. GERONTOL A BIOL SCI MED SCI, vol. 62, 2007, pages 256 - 263
SAGIN FG; SOZMEN EY: "Lipids as key players in Alzheimer disease: alterations in metabolism and genetics", CURR ALZHEIMER RES, vol. 5, 2008, pages 4 - 14
SCHWARTZ SM; CAMPBELL GR; CAMPBELL JH: "Replication of smooth muscle cells in vascular disease", CIRC RES, vol. 58, 1985, pages 427 - 444
See also references of EP2774910A4
SIMONS, K.; D. TOOMRE: "Lipid rafts and signal transduction", NAT REV MOL CELL BIOL, vol. 1, 2000, pages 31 - 9
SLOAN, F.A.; BETHEL, M. A; RUIZ, D. JR.; SHEA, A. M; FEINGLOS, M. N.: "The growing burden of diabetes mellitus in the US elderly population", ARCH. INTERN. MED., vol. 168, 2008, pages 192 - 199
SLOMIANY A; MURTY VL; AONO M; SNYDER CE; HERP A; SLOMIANY BL: "Lipid composition of tracheobronchial secretions from normal individuals and patients with cystic fibrosis", BIOCHIM BIOPHYS ACTA, vol. 10, 1982, pages 106 - 111 D
SOTO, ELENA: "Minerval, the molécula victoriosa", DIARIO THE MUNDO BALEARES, 21 April 2009 (2009-04-21), XP055133744, Retrieved from the Internet <URL:http://www.elmundo.es/elmundo/baleares.html> [retrieved on 20121010] *
STENDER S; DYERBERG J: "Influence of trans fatty acids on health", ANN. NUTR. METAB., vol. 48, 2004, pages 61 - 66
TAFESSE, F. G.; P. TERNES ET AL.: "The multigenic sphingomyelin synthase family", J BIOL CHEM, vol. 281, 2006, pages 29421 - 5
TROMBETTA A; MAGGIORA M; MARTINASSO G; COTOGNI P; CANUTO RA; MUZIO G: "? Arachidonic and docosahexanoic acids reduce the growth of A549 human lung tumor cells increasing lipid peroxidation and PPARs", CHEM BIOL INTERACT., vol. 165, 2007, pages 239 - 50
VAN HELVOORT, A.; W. VAN'T HOF ET AL.: "Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase", J BIOL CHEM, vol. 269, 1994, pages 1763 - 9
VÖGLER 0; CASAS J; CAPO D; NAGY T; BORCHERT G; MARTORELL G; ESCRIBA PV: "The G betagamma dimer drives the interaction of heterotrimeric Gi proteins with nonlamellar membrane structures", JBIOL CHEM., vol. 279, 2004, pages 36540 - 36545
VÖGLER 0; L6PEZ-BELLAN A; ALEMANY R; TOFE S; GONZALEZ M; QUEVEDO J; PEREG V; BARCELO F; ESCRIBA PV.: "Structure-effect relation of C18 long-chain fatty acids in the reduction of body weight in rats", INT J OBES., vol. 32, 2008, pages 464 - 473
W ADAM ET AL.: "Synthesis of optically active alfa-hydroxyacids by kinetic resolution through lipase-catalyzed enantioselective acetylacion", EUROPEAN JOURNAL ORGANIC CHEMISTRY, 1998, pages 2013 - 2018, XP055087712 *
WISE LE; IREDALE PA; STOKES RJ; LITCHMAN AH: "Combination of Rimonabant and Donepezil prolongs spatial memory duration", NEUROPSYCHOPHARMACOIOGY, vol. 32, 2007, pages 1805 - 1812
YANG, Q; ALEMANY, R; CASAS, J; KITAJKA, K; LANIER, SM; ESCRIBA PV: "Influence of the membrane lipid structure on signal processing via G protein- coupled receptors", MOL PHARMACOL, vol. 68, 2005, pages 210 - 7

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098649A4 (en) * 2020-01-29 2024-04-17 Univ Illes Balears Alpha-hydroxylated fatty-acid metabolites, medical uses of same and use as biomarkers
WO2021160650A1 (en) * 2020-02-10 2021-08-19 Ability Pharmaceuticals S.L. A pharmaceutical combination for the treatment of a cancer

Also Published As

Publication number Publication date
ES2401629A1 (en) 2013-04-23
PT2774910T (en) 2018-01-03
DK2774910T3 (en) 2018-01-08
RU2014118123A (en) 2015-11-20
EP3287437A1 (en) 2018-02-28
US9359281B2 (en) 2016-06-07
HUE035430T2 (en) 2018-05-02
ES2773784T3 (en) 2020-07-14
PL2774910T3 (en) 2018-03-30
EP2774910B1 (en) 2017-09-27
US20140288176A1 (en) 2014-09-25
RU2687967C2 (en) 2019-05-17
EP2774910A1 (en) 2014-09-10
RU2637937C2 (en) 2017-12-08
RU2017141446A3 (en) 2019-02-13
RU2017141446A (en) 2019-02-13
IN2014CN03111A (en) 2015-07-03
CN104321300A (en) 2015-01-28
ES2653675T3 (en) 2018-02-08
ES2401629B1 (en) 2014-03-04
EP3287437B1 (en) 2019-12-11
EP2774910A4 (en) 2015-02-25
JP2014530806A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
ES2773784T3 (en) Enantiomers of 2-hydroxy derivatives of fatty acids
ES2345241B1 (en) USE OF 2-HYDROXIDERIVATES OF POLYINSATURATED FATTY ACIDS AS MEDICINES.
Belayev et al. Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection
Kim et al. Phosphatidylserine in the brain: metabolism and function
JP2014530806A5 (en)
Fontaine et al. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease
JP2007119361A (en) Phospholipase a2 inhibitor
Wang et al. Lipidomics approach in alcoholic liver disease mice with sphingolipid metabolism disorder: Alleviation using sea cucumber phospholipids
ES2927760T3 (en) Halogenated esters of cyclopropanated unsaturated fatty acids for use in the treatment of neurodegenerative diseases
JP2020516602A (en) Cyclic plasmenylethanolamine
Akbar et al. Role of omega-3 fatty acids in the brain and their signaling mechanisms
Babenko Fish Oil n-3 Fatty Acids to Prevent Hippocampus and Cognitive Dysfunction in Experimental Alcoholism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838506

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14349962

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014533953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012838506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012838506

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014118123

Country of ref document: RU

Kind code of ref document: A