WO2013049968A1 - 绝缘子及输电线设备 - Google Patents

绝缘子及输电线设备 Download PDF

Info

Publication number
WO2013049968A1
WO2013049968A1 PCT/CN2011/080552 CN2011080552W WO2013049968A1 WO 2013049968 A1 WO2013049968 A1 WO 2013049968A1 CN 2011080552 W CN2011080552 W CN 2011080552W WO 2013049968 A1 WO2013049968 A1 WO 2013049968A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
conductive
coating
conductive coating
insulating surface
Prior art date
Application number
PCT/CN2011/080552
Other languages
English (en)
French (fr)
Inventor
李岩
贾志东
赵宇明
许志海
黎小林
关志成
廖伟焱
韦晓星
覃煜
邓禹
苏华锋
Original Assignee
清华大学深圳研究生院
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院, 南方电网科学研究院有限责任公司 filed Critical 清华大学深圳研究生院
Priority to CN2011800017219A priority Critical patent/CN102511065B/zh
Priority to US13/980,197 priority patent/US9196396B2/en
Priority to PCT/CN2011/080552 priority patent/WO2013049968A1/zh
Publication of WO2013049968A1 publication Critical patent/WO2013049968A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/02Suspension insulators; Strain insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/50Insulators or insulating bodies characterised by their form with surfaces specially treated for preserving insulating properties, e.g. for protection against moisture, dirt, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/008Power cables for overhead application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/54Insulators or insulating bodies characterised by their form having heating or cooling devices

Definitions

  • the present invention relates to the field of power transmission and transformation, and more particularly to an insulator and a power line apparatus having the same. Background technique
  • insulator surface materials such as RTV (Room Temperature Vulcanized Silicone Rubber), PRTV (Ultra Long-Term Room Temperature Vulcanized Silicone Rubber), etc., have good water repellency at normal temperature, but due to the nature of the material itself, water repellency will be close to zero. Disappeared, does not have anti-icing performance.
  • the anti-icing method of increasing the surface temperature by energy consumption is the most effective anti-icing method at present, and has achieved good results in anti-icing of transmission wires, but it is also needed to solve the problem of not affecting the insulation of the insulator itself. And how to control the loss of these two problems. At present, there is no effective means to remove or prevent insulator icing. The flashover of insulators caused by ice coating occurs frequently, affecting the safe and stable operation of the power system. Summary of the invention
  • the object of the present invention is to provide an insulator and a power line device having the same according to the deficiencies of the prior art, so that the leakage current of the insulator during normal operation is equivalent to that of the conventional insulator, and the leakage current value is increased under the icing weather condition.
  • An insulator comprising an insulating surface, a portion of the insulating surface is coated with a conductive coating of a specific resistivity, and a conductive resist region of a specific resistivity and a non-conductive coating region are configured to: the insulator is at the end of the fitting in a dry environment There is no continuous conductive path between, and the leakage current caused by the conductive resist of the specific resistivity on the insulating surface causes the insulating surface under ice-covered weather conditions to reach a temperature to prevent ice coating.
  • the insulator is a disc-shaped suspension insulator, and the coating position of the conductive coating is removed.
  • the upper edge of the edge of the edge is selected from the area outside the area.
  • the conductive coating is applied to a lower surface of the insulator.
  • the conductive coating has a volume resistivity 10 3 ohm cm to 105 ohm cm.
  • the coating thickness of the conductive coating is 0. 2mm-0. 6 ⁇ , especially 0. 3mm_0. 4 legs.
  • the base material of the conductive coating is a conductive silicone rubber.
  • carbon black is added to the silicone rubber, especially 10% to 30% by weight of carbon black.
  • the non-conductive coating region is coated with a room temperature vulcanized silicone rubber or an ultra long-lasting room temperature vulcanized silicone rubber.
  • the insulator is a ceramic suspension insulator or a glass suspension insulator.
  • a power line apparatus comprising at least one of the foregoing insulators, preferably comprising a plurality of insulator strings connected to a power transmission conductor.
  • the present invention coats the surface of the insulator portion by applying a conductive coating having a specific resistivity, so that the leakage current when the insulator is normally operated in a dry environment is equivalent to the non-conductive paint, and there is no significant leakage current, and on the other hand, the portion
  • the surface coating of the conductive coating changes the surface resistivity distribution of the conventional insulator, so that the leakage current value of the insulator surface can be increased under the icing weather condition, thereby improving the surface temperature of the insulator and preventing the formation of ice coating.
  • a conductive coating of a specific resistivity is applied to the surface of the insulator portion, so that the leakage current value of the insulator surface changes according to the climatic environment: in a dry environment, no current or no significant current, the insulator is equivalent to the disconnected state of the switch; There is a current, and the insulator is equivalent to the closed state of the switch, thereby forming an insulator having a self-shutdown effect.
  • the insulator since the non-conductive paint region on the surface of the insulator in the dry environment has no continuous conductive path between the upper and lower metal fittings, the insulator always operates in a case where the leakage current is relatively small, and the power loss is low, and no significant difference occurs.
  • the thermal effect accelerates the thermal aging of silicone rubber; in the environment of high humidity or precipitation and low temperature, the insulating strength of the non-conductive coating area of the insulator is also reduced due to the low temperature water repellency of the conductive coating area of the insulator, and the non-conductive coating area Corona and local small arc discharge point are generated to raise the surface temperature to prevent the formation of an ice coating on the surface of the insulator.
  • the invention coats the surface of the insulator part with a low-resistance paint, and can dry the surface of the insulator by surface discharge heating in ice coating, condensation and other high-humidity environments, thereby reducing surface conductivity and preventing pollution flashover accidents. Occurs, which is beneficial to the safe operation of the insulators of the transmission line. At the same time, the leakage current of the insulator in the dry environment is very low, and the energy consumption level is lowered. Moreover, the surface coating construction process of the invention is simple, and has high cost-effectiveness and application value.
  • the surface coating can maintain water repellency under low temperature and freezing weather conditions, and after being applied to the insulator, the heat generation performance is excellent, and the supercooled water droplets can be effectively reduced in the insulator.
  • the adhesion and freezing of the surface is conducive to the safe operation of the insulation of the transmission line. The test results show that the application of the invention can effectively prevent the formation of ice on the surface of the insulator and the edge of the shed.
  • Figure 1 is a half cross-sectional view showing an embodiment of an insulator according to the present invention
  • Figure 2 shows a comparison of the icing conditions of the present invention and conventional insulators after a 2 hour ice coating test
  • Figure 3 illustrates the leakage current waveform of the insulator string glazing according to one embodiment of the present invention.
  • the insulator includes an insulating surface, a portion of the insulating surface being coated with a conductive coating of a particular resistivity.
  • the insulator of one embodiment is delimited by a center line, the left half of the center line a is an outer surface view of the insulator, and the right half b is a cross-sectional view of the insulator, and the specific resistivity conductive paint area of the insulating surface is as shown in FIG. point 2 to the point between the surface 3, the specific volume resistivity of the resistivity of the conductive coating material is preferably 10 5 ohms centimeters, a low-temperature surface hydrophobic, the coating thickness is preferably 0. 3mm_0. 4mm.
  • the area between points 1 and 2 in Figure 1 is not coated with a conductive coating and is a non-conductive coating area.
  • the specific resistivity conductive coating region and the non-conductive coating region are configured to: in a dry environment, the insulator has no continuous conductive path between the end fittings (for the insulator shown in FIG. 1 between the upper and lower fittings), and due to the specific resistance
  • the leakage current caused by the conductive coating on the insulating surface can make the insulating surface reach the temperature of preventing ice coating under the climatic conditions.
  • the insulator and its conductive coating regions, coating thickness, and volume resistivity shown in Fig. 1 are merely exemplary, and it should be understood that the coated conductive coating satisfies the aforementioned configuration conditions to achieve the object of the present invention.
  • the coating position of the conductive coating is preferably selected from a region other than the vicinity of the fitting on the insulator.
  • the conductive coating is applied to the lower surface of the insulator, and the upper surface blank region of the uncoated conductive coating extends to the edge of the insulator radius.
  • the conductive coating preferably has a volume resistivity of from 10 3 ohm cm to 10 5 ohms. M cm.
  • the thickness of the coating of the conductive coating is 0. 3 mm-0. 4 mm.
  • the coating thickness of the conductive coating is 0. 3 mm-0. 4 mm.
  • the base material of the conductive coating is a conductive silicone rubber, in particular, the volume resistivity of the silicone rubber 105 ohm cm, the coating thickness of the surface coating of about 0. 3mm-0. 4mm.
  • the non-conductive coating region is coated with a room temperature vulcanized silicone rubber or an ultra long lasting room temperature vulcanized silicone rubber.
  • carbon black is preferably added to the coating silicone rubber, especially 10% to 30% by weight of carbon black.
  • the coated surface coating can maintain water repellency under low temperature and freezing rain conditions, and the insulator has excellent heat generation performance, and can effectively reduce the adhesion and freezing of supercooled water droplets on the surface of the insulator.
  • the type of insulator is not limited.
  • the insulator may be a ceramic suspension insulator or a glass suspension insulator.
  • a power line apparatus comprising at least one insulator according to the various embodiments described above, the power line apparatus preferably comprising an insulator string of a plurality of insulators connected to the power transmission conductor (as shown in FIG. 2). ).
  • the experimental group insulator string consists of 7 insulators coated with a conductive coating on the lower surface;
  • the control insulator string consisted of 7 insulators not coated with a conductive coating.
  • the two strings are suspended side by side in the climatic chamber, the left side is an insulator string without conductive coating, the right side is the insulator string of the embodiment of the invention, and the bottom surface is coated with a conductive coating.
  • test spray water was filtered using deionized tap water and mixed with tap water to adjust the conductivity to 100 s/cm. Use the freezer to pre-cool the ice-cold water to near zero, then pressurize it into the climate test chamber via a water pump and spray it out from the nozzle. The ice coating rate was measured using a rotating cylinder method to be 3 mm/h. Table 2 Ice test test parameters
  • the ice test voltage is AC 50 Hz, the effective value is 63. 5 kV, and the ice test is three hours.
  • the ice-covered form of the two strings of insulators after icing is shown in Figure 2.
  • the leakage current value of the ice coating is shown in Figure 3.
  • the surface of the insulator string according to the embodiment of the present invention is free from ice coating and ice formation; under the same conditions, the surface of the uncoated insulator forms a dense continuous ice layer, and the edge ice bridge bridges the entire string of insulators.
  • the test results show that the invention can effectively prevent the surface of the insulator from being coated with ice, and at the same time, the insulator has a low leakage current and a low energy consumption level in an ice-free environment.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulators (AREA)

Abstract

本发明公开了一种绝缘子,包括绝缘表面,所述绝缘表面的一部分涂覆有特定电阻率的导电涂料,特定电阻率的导电涂料区域与非导电涂料区域配置成在干燥环境下所述绝缘子的上下金具间无连续导电通道,且所述特定电阻率的导电涂料区域在所述绝缘表面上所能引起的泄漏电流值在覆冰气候条件下使所述绝缘表面达到防止覆冰的温度。还公开了一种采用了所述绝缘子的输电设备。在覆冰气候条件下,导电涂料能够起到提高绝缘子表面泄漏电流值从而防止覆冰形成的作用。

Description

绝缘子及输电线设备
技术领域
本发明涉及输变电领域, 具体地说, 本发明涉及一种绝缘子及具有该绝缘 子的输电线设备。 背景技术
对于经过广阔地域的大量输电线路, 在寒冷气候条件下, 绝缘子和导线表 面往往形成覆冰层, 严重时可引发断线、 倒塔和闪络跳闸等事故。 传统的绝缘 子表面材料如 RTV (室温硫化硅橡胶)、 PRTV (超长效室温硫化硅橡胶)等, 在常温 下具有良好的憎水性, 但由于其材料本身的特性, 在接近零度时憎水性会消失, 不具备防覆冰性能。 通过能耗发热提高表面温度的防冰方法是目前最为有效的 防冰手段, 在输电导线防冰上取得了很好的效果, 但应用于绝缘子上, 还需要 解决如何不影响绝缘子本身的绝缘性, 以及如何控制损耗这两个问题。 目前尚 无清除或防止绝缘子覆冰的有效手段, 由覆冰引发的绝缘子闪络事故时有发生, 影响电力系统的安全稳定运行。 发明内容
本发明的目的在于针对现有技术的不足, 提出一种绝缘子及具有该绝缘子 的输电线设备, 使得绝缘子在正常运行时泄漏电流与传统绝缘子相当, 在覆冰 气候条件下泄漏电流值提高, 起到提高绝缘子表面温度, 防止覆冰形成的效果, 而能耗被控制在较低水平。
为实现上述目的, 本发明采取了以下技术方案:
一种绝缘子, 包括绝缘表面, 所述绝缘表面的一部分涂覆有特定电阻率的 导电涂料, 特定电阻率的导电涂料区域与非导电涂料区域配置成: 在干燥环境 下所述绝缘子在端部金具之间无连续导电通道, 且由于所述特定电阻率的导电 涂料在所述绝缘表面上所导致的泄漏电流使得在覆冰气候条件下的所述绝缘表 面达到防止覆冰的温度。
优选地, 所述绝缘子为盘形悬式绝缘子, 所述导电涂料的涂覆位置从除绝 缘子的上金具邻近区域外的区域内选取。
优选地, 所述导电涂料涂覆在所述绝缘子的下表面。
优选地, 所述导电涂料的体积电阻率为 103欧姆厘米至 105欧姆厘米。
优选地, 所述导电涂料的涂层厚度为 0. 2mm-0. 6匪, 尤其是 0. 3mm_0. 4腿。 优选地, 所述导电涂料的基础物质为导电硅橡胶。
优选地,所述硅橡胶内添加有炭黑,尤其是以质量百分比计 10%_30%的炭黑。 优选地, 所述非导电涂料区域涂覆有室温硫化硅橡胶或超长效室温硫化硅 橡胶。
优选地, 所述绝缘子为瓷悬式绝缘子或玻璃悬式绝缘子。
一种输电线设备, 包括至少一个前述的一种绝缘子, 优选包括与输电导线 相连的多个绝缘子串成的绝缘子串。
本发明通过将具有特定电阻率的导电涂料涂覆在绝缘子部分表面, 使得一 方面在干燥环境下绝缘子正常运行时的泄漏电流与不采用导电涂料相当, 无明 显泄漏电流, 而另一方面, 部分表面涂覆导电涂料改变了传统绝缘子表面电阻 率分布, 使得能够在覆冰气候条件下增大绝缘子表面泄漏电流值, 达到提高绝 缘子表面温度、 防止覆冰形成的效果。 因此, 在绝缘子部分表面涂覆特定电阻 率的导电涂料, 使绝缘子表面泄漏电流值根据气候环境变化: 干燥环境下, 无 电流或无明显电流, 绝缘子相当于开关的断开状态; 覆冰环境下有电流, 绝缘 子相当于开关的闭合状态, 从而形成具有自关断效应的绝缘子。
进一歩来说, 根据本发明, 由于在干燥环境下绝缘子表面的非导电涂料区 域使上下金具间没有连续导电通道, 绝缘子一直运行在泄漏电流比较小的情况 下, 电能损耗低, 不会产生明显的热效应而加速硅橡胶的热老化; 在高湿度或 降水且低温的环境下, 由于绝缘子导电涂料区域具有很好的低温憎水性, 绝缘 子非导电涂料区域的绝缘强度也相应下降, 非导电涂料区域产生电晕和局部小 电弧放点, 升高表面温度, 防止在绝缘子表面形成覆冰层。
与现有技术相比, 本发明通过在绝缘子部分表面涂覆低电阻涂料, 在覆冰、 凝露以及其他高湿度环境可通过表面放电发热烘干绝缘子表面, 降低表面电导 率, 防范污闪事故发生, 有利于输电线路绝缘子的安全运行, 同时, 绝缘子在 干燥环境下泄漏电流很低, 降低了能耗水平, 而且, 本发明表面涂料施工工艺 简单, 具有很高的成本效益和应用价值。 在优选的实施方式中, 通过在表面涂料内添加发热填料炭黑, 使表面涂料 在低温冻雨天气条件下能保持憎水性, 应用于绝缘子后, 发热性能优良, 能够 有效地减少过冷却水滴在绝缘子表面的附着和冻结, 有利于输电线路绝缘子的 安全运行。 试验结果表明应用本发明后, 可有效阻止绝缘子表面冰层和伞裙边 沿处冰凌的形成。 附图说明
图 1为根据本发明绝缘子的一个实施例的半剖视图;
图 2展示了本发明和传统绝缘子经 2小时覆冰试验后的覆冰情况对比; 图 3展示了根据本发明一个实施例的绝缘子串覆冰期泄漏电流波形。 具体实施方式
以下结合附图和具体实施例来详细说明本发明。
在一个实施例中, 绝缘子包括绝缘表面, 所述绝缘表面的一部分涂覆有特 定电阻率的导电涂料。 参见图 1, 一个实施例的绝缘子以中心线为分界, 中心线 左半部分 a为绝缘子外表面视图, 右半部分 b为绝缘子的剖面视图, 绝缘表面 的特定电阻率导电涂料区域为图 1中点 2至点 3之间的表面, 该特定电阻率导 电涂料的体积电阻率优选为 105欧姆厘米, 形成低温憎水性表面, 涂层厚度优选 为 0. 3mm_0. 4mm。 图 1中点 1至点 2间区域不涂导电涂料, 为非导电涂料区域。 特定电阻率导电涂料区域与非导电涂料区域配置成: 在干燥环境下绝缘子在端 部金具间 (对于如图 1 所示的绝缘子, 为上下金具之间) 无连续导电通道, 且 由于该特定电阻率导电涂料在绝缘表面上所导致的泄漏电流, 在覆冰气候条件 下可使绝缘表面达到防止覆冰的温度。 图 1 所示的绝缘子及其导电涂料区域、 涂层厚度、 体积电阻率仅仅是示例性的, 应理解, 涂覆的导电涂料满足前述配 置条件即可实现本发明的目的。
典型地, 如采用盘形悬式绝缘子, 导电涂料的涂覆位置优选是从除绝缘子 上金具的邻近区域外的区域内选取。
如图 1 所示, 在优选的实施例中, 所述导电涂料涂覆在所述绝缘子的下表 面, 而未涂导电涂料的上表面空白区域延伸至绝缘子半径边缘处。
在一些实施例中, 所述导电涂料的体积电阻率优选为 103欧姆厘米至 105欧 姆厘米。
在一些实施例中, 所述导电涂料的涂层厚度优选为 0. 2mm-0. 6mm, 更优选为 所述导电涂料的涂层厚度为 0. 3 mm-0. 4mm。
在一个实施例中, 所述导电涂料的基础物质为导电硅橡胶, 特别来说, 所 述硅橡胶体积电阻率为 105欧姆厘米,该表面涂料的涂层厚度约为 0. 3mm-0. 4mm。
在一些实施例中, 所述非导电涂料区域涂覆有室温硫化硅橡胶或超长效室 温硫化硅橡胶。
在一些实施例中, 涂料硅橡胶内优选添加有炭黑, 尤其是以质量百分比计 10%_30%的炭黑。 所涂覆的表面涂料在低温冻雨天气条件下能保持憎水性, 使绝 缘子发热性能优良, 能够有效地减少过冷却水滴在绝缘子表面的附着和冻结。
绝缘子的类型并不受到限制, 举例来说, 绝缘子可以是瓷悬式绝缘子, 也 可以是玻璃悬式绝缘子。
在此也提供一种输电线设备, 其包括至少一个根据前述多种实施例的任一 种绝缘子, 输电线设备优选包括与输电导线相连的多个绝缘子串成的绝缘子串 (如图 2所示)。
HOkV绝缘子串的防冰效果对照试验:
(1)试验对象
本试验用的绝缘子结构参数如表 1所示。
表 1 绝缘子 xp3-16结构参数
Figure imgf000006_0001
实验组绝缘子串由 7片下表面涂覆导电涂料的绝缘子组成;
对照组绝缘子串由 7片未涂覆导电涂料的绝缘子组成。
双串并列悬挂于气候室内, 左侧为无导电涂料的绝缘子串, 右侧为本发明 实施例的绝缘子串, 底面涂覆导电性涂料。
(2) 试验条件
试验喷淋用水使用经过滤去离子处理的自来水, 和自来水进行不同比例的 混合以调整电导率到 100 s/cm。使用冰柜预冷却覆冰水至零度附近, 再经由水 泵加压进入气候试验箱, 由喷头喷出。 使用旋转圆柱法测量覆冰速率为 3mm/h。 表 2 覆冰试验控制参数
Figure imgf000007_0001
覆冰实验电压为交流 50 Hz , 有效值 63. 5 kV, 覆冰实验三小时。
气候室内左右各有一列喷头, 中间可并列悬挂两串绝缘子, 两串绝缘子的 覆冰条件相同。
(3)试验结果
覆冰后两串绝缘子覆冰形态如图 2所示, 覆冰泄漏电流值如图 3所示。 对 比可见根据本发明实施例的绝缘子串表面无覆冰层和冰凌形成; 而同等条件下 无涂层绝缘子表面均形成致密连续冰层, 边缘冰凌桥接了整串绝缘子。 试验结 果表明, 本发明可有效防止绝缘子表面覆冰形成, 同时, 绝缘子在无冰环境下 泄漏电流很低, 能耗水平低。
以上内容是结合具体的优选实施方式对本发明所作的进一歩详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

1、 一种绝缘子, 包括绝缘表面, 其特征在于, 所述绝缘表面的一部分涂覆 有特定电阻率的导电涂料, 特定电阻率的导电涂料区域与非导电涂料区域配置 成: 在干燥环境下所述绝缘子在端部金具之间无连续导电通道, 且由于所述特 定电阻率的导电涂料在所述绝缘表面上所导致的泄漏电流使得在覆冰气候条件 下的所述绝缘表面达到防止覆冰的温度。
2、 根据权利要求 1所述的绝缘子, 其特征在于, 所述绝缘子为盘形悬式绝 缘子, 所述导电涂料的涂覆位置从除绝缘子的上金具邻近区域外的区域内选取。
3、 根据权利要求 2所述的绝缘子, 其特征在于, 所述导电涂料涂覆在所述 绝缘子的下表面。
4、 根据权利要求 1-3所述的绝缘子, 其特征在于, 所述导电涂料的体积电 阻率为 103欧姆厘米至 105欧姆厘米。
5、 根据权利要求 1-4任一项所述的绝缘子, 其特征在于, 所述导电涂料的 涂层厚度为 0. 2mm-0. 6腿, 尤其是 0. 3mm-0. 4腿。
6、 根据权利要求 1-5任一项所述的绝缘子, 其特征在于, 所述导电涂料的 基础物质为导电硅橡胶。
7、 根据权利要求 1-6任一项所述的绝缘子, 其特征在于, 所述非导电涂料 区域涂覆有室温硫化硅橡胶或超长效室温硫化硅橡胶。
8、 根据权利要求 6或 7所述的绝缘子, 其特征在于, 所述硅橡胶内添加有 炭黑, 尤其是以质量百分比计 10%_30%的炭黑。
9、 根据权利要求 1-8任一项所述的绝缘子, 其特征在于, 所述绝缘子为瓷 悬式绝缘子或玻璃悬式绝缘子。
10、 一种输电线设备, 其特征在于, 包括至少一个根据权利要求 1-9任一 项所述的绝缘子。
PCT/CN2011/080552 2011-10-08 2011-10-08 绝缘子及输电线设备 WO2013049968A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800017219A CN102511065B (zh) 2011-10-08 2011-10-08 绝缘子及输电线设备
US13/980,197 US9196396B2 (en) 2011-10-08 2011-10-08 Insulator and power transmission line apparatus
PCT/CN2011/080552 WO2013049968A1 (zh) 2011-10-08 2011-10-08 绝缘子及输电线设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080552 WO2013049968A1 (zh) 2011-10-08 2011-10-08 绝缘子及输电线设备

Publications (1)

Publication Number Publication Date
WO2013049968A1 true WO2013049968A1 (zh) 2013-04-11

Family

ID=46222775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080552 WO2013049968A1 (zh) 2011-10-08 2011-10-08 绝缘子及输电线设备

Country Status (3)

Country Link
US (1) US9196396B2 (zh)
CN (1) CN102511065B (zh)
WO (1) WO2013049968A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076548B (zh) * 2013-02-01 2015-04-29 江苏省电力公司电力科学研究院 一种用表面电导率和泄漏电流预测闪络电压的方法
CN107331481B (zh) * 2017-06-07 2019-08-23 国网江西省电力公司电力科学研究院 一种电场自热型防覆冰绝缘子
CN107993778A (zh) * 2018-01-26 2018-05-04 西华大学 一种基于无线电能传输的绝缘子防覆冰装置
CN108520810A (zh) * 2018-06-11 2018-09-11 贵州电网有限责任公司 一种具有防自爆脱落功能的玻璃绝缘子及其加工方法
CN112649347A (zh) * 2020-12-14 2021-04-13 国网湖南省电力有限公司 多类型防冰材料防冰试验平台及其测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995251A (zh) * 2006-12-27 2007-07-11 清华大学深圳研究生院 防绝缘子覆冰涂料及其制备方法
CN101488383A (zh) * 2009-02-23 2009-07-22 同济大学 一种抗冻雨绝缘子
CN201549283U (zh) * 2009-12-03 2010-08-11 湖北省电力公司襄樊供电公司 融冰型复合绝缘子
CN102140310A (zh) * 2010-12-10 2011-08-03 广东电网公司电力科学研究院 一种绝缘子防冰凌涂料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2947801A (en) * 1957-05-02 1960-08-02 Fred B Doolittle Contamination and moisture resistant insulator
US3192312A (en) * 1961-06-07 1965-06-29 Westinghouse Electric Corp Ceramic suspension insulator with an elastomeric boot
US3836705A (en) * 1972-12-14 1974-09-17 Ca Porcelain Co Ltd Electrical insulator and conducting tar therefor
JPH0686310B2 (ja) * 1989-04-28 1994-11-02 セントラル硝子株式会社 透明非膨張性結晶化ガラス
US5493072A (en) * 1994-06-15 1996-02-20 Amerace Corporation High voltage cable termination
CN102906825B (zh) * 2010-05-28 2016-09-21 拉普绝缘体有限责任公司 合成绝缘子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995251A (zh) * 2006-12-27 2007-07-11 清华大学深圳研究生院 防绝缘子覆冰涂料及其制备方法
CN101488383A (zh) * 2009-02-23 2009-07-22 同济大学 一种抗冻雨绝缘子
CN201549283U (zh) * 2009-12-03 2010-08-11 湖北省电力公司襄樊供电公司 融冰型复合绝缘子
CN102140310A (zh) * 2010-12-10 2011-08-03 广东电网公司电力科学研究院 一种绝缘子防冰凌涂料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, GANG: "The Icing Mechanism on Insulators and a New De-icing Method", SCIENCE-ENGINEERING (B), CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, August 2011 (2011-08-01), pages 74 - 82, 87 *

Also Published As

Publication number Publication date
CN102511065B (zh) 2013-07-17
US20140069684A1 (en) 2014-03-13
US9196396B2 (en) 2015-11-24
CN102511065A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
Xu et al. Anti-icing performance of RTV coatings on porcelain insulators by controlling the leakage current
WO2013049968A1 (zh) 绝缘子及输电线设备
Liu et al. Icing flashover characteristics and discharge process of 500 kV AC transmission line suspension insulator strings
Watanabe Flashover tests of insulators covered with ice or snow
Su et al. Field and laboratory tests of insulator flashovers under conditions of light ice accumulation and contamination
CN102140310A (zh) 一种绝缘子防冰凌涂料
Wei et al. Effect of the Parameters of the Semiconductive Coating on the Anti-Icing Performance of the Insulators
Wei et al. Development of anti-icing coatings applied to insulators in China
Akkal et al. Improving electrical performance of ehv post station insulators under severe icing conditions using modified grading rings
Zhao et al. Icing performances of super-hydrophobic PDMS/nano-silica hybrid coating on insulators
Yan et al. An OH-PDMS-modified nano-silica/carbon hybrid coating for anti-icing of insulators part ii: Anti-icing performance
Wei et al. Selection of semiconductive coatings at different ambient temperatures
CN105974284A (zh) 特高压覆冰区外绝缘配置方法
Qin et al. An application of RTV with different conductivities in anti-icing
Chao et al. Preliminary study on icing and flashover characteristics of inverted T-type insulator strings
Xu et al. Anti-icing performance of RTV coating with different resistivity on insulators
CN105427971A (zh) 抗冰涂层及具有抗冰涂层的绝缘子
Xu et al. Impact of surface characteristics on the micro process of ice formation
Liu et al. Study of the effect of ice adhesion on electrical power transmission insulator
Farzaneh et al. A laboratory investigation of the flashover performance of outdoor insulators covered with ice
Farzaneh‐Dehkordi et al. Experimental study and mathematical modelling of flashover on extra‐high voltage insulators covered with ice
CN104992793B (zh) 防覆冰绝缘子设备及输电线路
Yu et al. DC flashover performance of ice-covered insulator strings adopted in±800kV transmission lines based on up-and-down method
Qin et al. Reducing ice coating on insulators by combining RTV with different volume resistivity
CN210443355U (zh) 一种具有长效疏水结构的三防绝缘子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001721.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980197

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873660

Country of ref document: EP

Kind code of ref document: A1