WO2013047543A1 - Power controller - Google Patents

Power controller Download PDF

Info

Publication number
WO2013047543A1
WO2013047543A1 PCT/JP2012/074618 JP2012074618W WO2013047543A1 WO 2013047543 A1 WO2013047543 A1 WO 2013047543A1 JP 2012074618 W JP2012074618 W JP 2012074618W WO 2013047543 A1 WO2013047543 A1 WO 2013047543A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
conversion
voltage
units
Prior art date
Application number
PCT/JP2012/074618
Other languages
French (fr)
Japanese (ja)
Inventor
中島 武
中井 智通
一男 石本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013047543A1 publication Critical patent/WO2013047543A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power control apparatus that performs power input / output control.
  • the power system that transmits and receives power between multiple power blocks is used in various devices and facilities.
  • one or more power blocks that output power and one or more power blocks that receive power input are connected via a switching unit, and the switching unit is controlled to perform desired power transmission and transmission. Power is received (see, for example, Patent Document 1 below).
  • FIG. 8 is a schematic configuration diagram of a power system provided with a power conversion unit 911 that performs a power conversion operation.
  • the power conversion unit 911 converts the input voltage into another voltage by the power conversion operation, and outputs the obtained other voltage as an output voltage.
  • the input voltage is an AC voltage and the output voltage is a DC voltage.
  • a switching unit 912 is provided between a plurality of power input units (power blocks) that can receive power supply from the power conversion unit 911 and the power conversion unit 911, and the control unit 913 controls the switching unit 912. For each power input unit, it is possible to control whether or not the output voltage of the power conversion unit 911 is supplied to the power input unit.
  • the power conversion unit 911 outputs a current only to the power input unit connected via the switching unit 912.
  • the conversion efficiency depends on the output current (see FIG. 9).
  • the output current of the power conversion unit 911 varies between 10A and 50A. If the power conversion unit 911 is designed so that the conversion efficiency of the power conversion unit 911 is maximized when the output current of the power conversion unit 911 is 30 A, the output current of the power conversion unit 911 is 10A, 20A, When it is 40 A or 50 A, the conversion efficiency of the power conversion unit 911 is lowered. Needless to say, it is beneficial to improve the conversion efficiency of the power converter.
  • an object of the present invention is to provide a power control device that contributes to improvement of conversion efficiency in power conversion.
  • the power control device includes a power conversion unit that converts an input voltage into an output voltage, and a control unit that controls the operation of the power conversion unit. Includes a plurality of element conversion units that convert the input voltage into the output voltage, and the control unit controls whether or not to perform a conversion operation in each element conversion unit, and receives power supply from the power conversion unit The number of element conversion units that perform the conversion operation is controlled according to the number of power input units or according to the output current of the power conversion unit.
  • Another power control device is a power control device comprising: a power conversion unit that converts an input voltage into an output voltage; and a control unit that controls the operation of the power conversion unit.
  • a power conversion unit that converts an input voltage into an output voltage
  • a control unit that controls the operation of the power conversion unit.
  • Each comprising a plurality of element converters for converting the input voltage into the output voltage
  • the plurality of element converters include two or more element converters having different maximum output capacities
  • the element conversion unit controls whether or not to perform the conversion operation in the element conversion unit, and performs the conversion operation according to the required capacity of the power input unit that receives power supply from the power conversion unit. It is characterized by selecting from the part.
  • FIG. 1 is a schematic overall configuration diagram of a power system according to a first embodiment of the present invention. It is a modified block diagram of the electric power system of FIG. It is a detailed block diagram of a part of the electric power system of FIG. It is an internal block diagram of the power converter of FIG. It is a figure which shows the structural example of the electric power system which concerns on 1st Embodiment of this invention. It is a schematic whole block diagram of the electric power system which concerns on 2nd Embodiment of this invention. It is a figure which concerns on 2nd Embodiment of this invention and shows the relationship between BSU and several electric power blocks. It is a block diagram of the conventional electric power system. It is a figure which shows the output current dependence of the conversion efficiency in a power converter device.
  • FIG. 1 is a schematic overall configuration diagram of the power system according to the first embodiment.
  • the power system includes all or a part of the parts shown in FIG.
  • An input voltage V I is supplied to the power converter 11.
  • the power conversion unit 11 performs power conversion for converting the input voltage V I into an output voltage V O different from the input voltage V I under the control of the control unit 13, and outputs the obtained output voltage V O to the switching unit 12. Output.
  • a switch circuit 15 formed of a semiconductor switching element or the like may be provided between the power conversion unit 11 and the switching unit 12.
  • the input voltage V I may be an AC voltage or a DC voltage.
  • the output voltage V O may also be an AC voltage or a DC voltage.
  • an AC voltage from the commercial AC power source (not shown) is supplied to the power conversion unit 11 as the input voltage V I, the power converter 11 converts the AC voltage as the input voltage V I to a DC voltage Assuming that In this case, the power conversion unit 11 outputs the resulting DC voltage as the output voltage V O.
  • the switching unit 12 is interposed between the power conversion unit 11 and the power input unit group 14 including a plurality of power input units, and supplies the output voltage V O to the power input unit under the control of the control unit 13. No is switched for each power input unit.
  • Power input unit is any site that can be powered from the power conversion unit 11, for example, the secondary battery is charged by the output power of the power conversion unit 11 (power by the output voltage V O), or includes load driven by the output power of the power conversion unit 11 (power by the output voltage V O).
  • a certain power input unit includes a DC / AC inverter that converts an output voltage V O as a DC voltage into an AC voltage and outputs the AC voltage, and an AC load that is driven by the output AC voltage of the DC / AC inverter.
  • AC load may be included.
  • a certain power input unit converts the output voltage V O as a DC voltage into another DC voltage and outputs the other DC voltage, and the output DC voltage of the DC / DC converter It may include a DC load (direct current load) driven by.
  • FIG. 3 shows an example of a connection relationship between the switching unit 12 and the power input unit group 14.
  • the m power input units forming the power input unit group 14 are referred to by reference numerals 14 [1] to 14 [m].
  • m is an arbitrary integer of 2 or more.
  • Output voltage V O from power conversion unit 11 is applied to power line PL.
  • the term “line” and the term “wiring” are synonymous.
  • the switching unit 12 includes a plurality of switch circuits interposed between the power line PL and the power input unit group 14, and controls the energization state of each switch circuit under the control of the control unit 13. The connection or disconnection between the power line PL and the power input unit can be switched every time.
  • the control unit 13 can control to switch on or off each switch circuit in the switching unit 12 for each switch circuit.
  • a switch circuit provided between the power line PL and the power input unit 14 [i] is referred to by a symbol 12 [i] (i is an arbitrary integer).
  • the plurality of switch circuits provided in the switching unit 12 are the switch circuits 12 [1] to 12 [m].
  • Each of the switch circuits 12 [1] to 12 [m] can be formed by a semiconductor switching element or a mechanical relay, and the semiconductor switching element is, for example, a field-effect transistor or an insulated gate. It is a bipolar transistor (Insulated Gate Bipolar Transistor).
  • each switch circuit should be designed so that the rated current of the switch circuit 15 in FIG. 2 is larger than the rated current of the switch circuit 12 [i]. Is desirable.
  • FIG. 4 is an internal configuration diagram of the power conversion unit 11.
  • the power conversion unit 11 includes a plurality of element conversion units.
  • the plurality of element conversion units are connected in parallel to each other.
  • Each of the plurality of element conversion units individually converts the input voltage V I into the output voltage V O under the control of the control unit 13, and outputs the obtained output voltage V O to the power line PL and the switching unit 12. be able to.
  • element converting unit an operation for obtaining an output voltage V O from the input voltage V I, referred to as a power conversion operation (or conversion operation).
  • the control unit 13 can control whether or not to execute the power conversion operation for each element conversion unit.
  • a backflow suppression element (such as a diode) may be provided on the output side of each element converter so that current does not flow backward from one element converter to another element converter. In the present embodiment, for simplification of description, the voltage drop of the backflow suppressing element is ignored.
  • n element conversion units forming the power conversion unit 11 are referred to by reference numerals 11 [1] to 11 [n].
  • n is an arbitrary integer of 2 or more.
  • the element conversion unit 11 [i] converts the input voltage V I into the output voltage V O and outputs the output voltage V O to the power line PL and the switching unit 12 only when the power conversion operation is performed.
  • the switch-on number SW NUM corresponds to the number of power input units connected to the power line PL and the power conversion unit 11 via the switching unit 12 and receives power supply from the power conversion unit 11 via the switching unit 12. This corresponds to the number of power input units.
  • the switch-on number SW NUM is 2
  • the power input unit 14 [ 1] to 14 [m] only the power input units 14 [1] and 14 [2] are connected to the power line PL and the power conversion unit 11 via the switching unit 12, and are connected via the switching unit 12.
  • Power is supplied from the power converter 11. Since the control unit 13 can control switching on or off of each switch circuit of the switching unit 12 for each switch circuit, naturally, the switch-on number SW NUM can be controlled.
  • the number of element conversion units that execute the power conversion operation is referred to as a conversion ON number CON NUM .
  • the conversion ON number CON NUM is 1, and the element conversion units 11 [1] to 11 [11] Of [n], only the element conversion unit 11 [1] performs the power conversion operation. Since the control unit 13 can control whether or not to execute the power conversion operation for each element conversion unit, naturally, the conversion ON number CON NUM can be controlled.
  • control unit 13 can control the conversion ON number CON NUM according to the switch ON number SW NUM .
  • control unit 13 may increase the conversion ON number CON NUM as the switch ON number SW NUM increases.
  • This can be expressed as follows.
  • control unit 13 may control the conversion ON number CON NUM according to the output current I O of the power conversion unit 11.
  • a current sensor (not shown) for detecting the value of the current flowing from the power conversion unit 11 to the switching unit 12 is provided in the power system, and the current value detected by the current sensor is controlled as the value of the output current IO. Is transmitted to the unit 13.
  • control unit 13 may increase the conversion ON number CON NUM as the output current IO increases. This can be expressed as follows. Control unit 13, a transformation on the number CON NUM when the value of the output current I O is the predetermined value I L, greater than the conversion on the number CON NUM when the value of the output current I O is the predetermined value I S To do. Here, “I S ⁇ I L ”.
  • the predetermined value I L, the actual measurement value or a design value or measured value and a value based on the design value of the current supplied from the power conversion unit 11 to the power input portion group 14 when the switch-on number SW NUM is m there are, and, the predetermined value I S, the actually measured value or a design value or the measured value and the design value of the current supplied from the power conversion unit 11 to the power input portion group 14 when the switch-on number SW NUM is 1 It may be a value based on it.
  • predetermined value I L the measured value of the current
  • load and the like LED the design value as a predetermined value I L problem is small (predetermined value I S is similar).
  • the conversion efficiency depends on the output current (see FIG. 9).
  • the control unit 13 may control the conversion ON number CON NUM according to the switch ON number SW NUM or the output current IO so that the conversion efficiency is maximized in each element conversion unit.
  • the conversion efficiency of the power conversion unit 11 can be kept high by adapting to the change in the current to be supplied (ideally, the conversion efficiency of the power conversion unit 11 is maximized regardless of the change in the current to be supplied. Value or maximum value).
  • the control unit 13 when controlling the conversion ON number CON NUM according to the switch ON number SW NUM , the control unit 13 is not only the switch ON number SW NUM but also the power input unit connected to the power line PL via the switching unit 12.
  • the conversion ON number CON NUM may be determined in consideration of the current consumption (for example, the design value of the current consumption).
  • the power input unit 14 [1] in FIG. 5 is a battery unit composed of one or more secondary batteries (lithium ion battery, nickel metal hydride battery, etc.), and the power input unit 14 [2] in FIG. DC load (such as a lighting fixture).
  • the switch circuit 12 [1] When the switch circuit 12 [1] is turned on in a state where the output voltage V O due to the power conversion operation is applied to the power line PL, the output power of the power conversion unit 11 in the power input unit 14 [1] is turned on.
  • the secondary battery is charged and the switch circuit 12 [2] is turned on, the DC load as the power input unit 14 [2] is driven by the output power of the power conversion unit 11.
  • the control unit 13 turns on the switch circuits 12 [1] and 12 [2] in a state where there is no power output of the power conversion unit 11, the discharge power of the secondary battery in the power input unit 14 [1]. It is also possible to drive a DC load as the power input unit 14 [2].
  • conversion is performed according to the output current I O rather than a method of controlling the conversion ON number CON NUM according to the switch-on number SW NUM. It can be said that the method of controlling the ON number CON NUM is more suitable.
  • the control unit 13 when the switch circuit 15 of FIG. 2 is provided, the control unit 13 not only switches the switch-on number SW NUM but also the switch circuit 15.
  • the conversion ON number CON NUM may be controlled in accordance with the conduction state (whether it is on or off).
  • the control unit 13 selects one of the element conversion units 11 [1] and 11 [2]. When only one of them performs the power conversion operation and turns on both the switch circuits 12 [1] and 12 [2], the power conversion operation is performed on both of the element conversion units 11 [1] and 11 [2]. Is executed. As a simple example, a current of 10 A (ampere) flows from the power line PL to the power input unit 14 [1] when the switch circuit 11 [1] is on and 10 A (ampere) when the switch circuit 11 [2] is on.
  • the conversion efficiency of the element conversion unit 11 [1] is maximized when the output current of the element conversion unit 11 [1] is 10A and If the element conversion units 11 [1] and 11 [2] are designed so that the conversion efficiency of the element conversion unit 11 [2] is maximized when the output current of the element conversion unit 11 [2] is 10A. In this way, the conversion efficiency of the power conversion unit 11 can be maintained at or near the maximum value regardless of changes in the current to be supplied.
  • the control unit 13 sets the element conversion unit for executing the power conversion operation.
  • the element conversion units 11 [1] and 11 [2] may be switched as appropriate.
  • the control unit 13 causes the power conversion operation to be performed every time a predetermined time elapses.
  • the element conversion unit may be switched between the element conversion units 11 [1] and 11 [2].
  • the control unit 13 may cause the element conversion unit 11 [2] to execute the power conversion operation (that is, the element conversion units 11 [1] and 11 [2] Alternatively, the power conversion operation may be executed).
  • an element converting unit 11 [1] total time length of performing a power conversion operation L 1 and element converting unit 11 [2] is the total time length L 2 of performing power conversion operation
  • the control unit 13 It may be measured. In this case, when to perform either only the power conversion operation of the element converting unit 11 [1] and 11 [2], the control unit 13, the difference between the total time length L 1 and L 2 are reduced As described above, it may be determined which of the element conversion units 11 [1] and 11 [2] is to perform the power conversion operation.
  • the element conversion unit 11 [i] is formed to include an electronic component (for example, an aluminum electric field capacitor) that deteriorates over time, and the deterioration of each electronic component progresses as the execution time of the power conversion operation becomes longer.
  • an electronic component for example, an aluminum electric field capacitor
  • the element conversion unit that executes the power conversion operation is temporarily fixed by the element conversion unit 11 [1]. Then, the deterioration of the element conversion unit 11 [1] proceeds faster than the element conversion unit 11 [2].
  • the element conversion unit that performs the power conversion operation is switched between the plurality of element conversion units, the progress of deterioration is equalized between the plurality of element conversion units, and as a result, the entire power conversion unit 11 is obtained. It becomes possible to extend the lifetime of the.
  • the control unit 13 when the control unit 13 causes only some of the element conversion units 11 [1] to 11 [n] to perform the power conversion operation, the control unit 13 performs the power conversion operation at the first timing.
  • the element conversion unit and the element conversion unit that performs the power conversion operation at the second timing can be made different from each other.
  • the second timing is an arbitrary timing different from the first timing.
  • the element conversion unit that performs the power conversion operation may be common between the first and second timings. There is also.
  • a power output unit (not shown) that outputs power may be connected in parallel to the power conversion unit 11, and the power output unit is a solar cell unit including a solar cell. (Not shown) may be used.
  • the power output terminal of the solar cell unit is connected to the power line PL via a diode, and the solar cell unit supplies DC power based on the power generated by sunlight to the power input unit connected to the power line PL. be able to.
  • the power generation of the solar cell unit is performed.
  • the output power from the power converter 11 changes as the power changes.
  • the control unit 13 may change the conversion ON number CON NUM in accordance with the generated power of the solar cell unit (in accordance with the amount of current to be output from the power conversion unit 11).
  • the solar cell unit is provided in the power system of FIG. 1 or the like, for example, a state in which only the switch circuit 12 [1] is turned on from a state in which a plurality of switch circuits in the switching unit 12 are turned on.
  • the control unit 13 may limit the current supplied to the power input unit 14 [1].
  • the control unit 13 can limit the current supplied to the power input unit 14 [1] by periodically switching the state of the switch circuit 12 [1] between on and off.
  • the maximum output capacities of the element conversion units 11 [1] to 11 [n] may be common, but the maximum of two or more element conversion units among the element conversion units 11 [1] to 11 [n].
  • the output capacities may be different from each other.
  • the control unit 13 causes the power conversion operation to be performed according to the required capacity of the power input unit group 14 that receives power supply from the power conversion unit 11 so that the conversion efficiency in the power conversion unit 11 is as high as possible.
  • One or more element conversion units may be selected from the element conversion units 11 [1] to 11 [n].
  • the maximum output capacity of the element converter 11 [i] is the maximum power value that can be output by the element converter 11 [i].
  • the required capacity of the power input unit group 14 corresponds to the value of power required by the power input unit group 14 from time to time. For example, an actual value or design value of the power, or a power value based on the actual value and the design value It is.
  • the maximum output capacity and the required capacity are power values, but the unit of the maximum output capacity and the required capacity may be a unit of current.
  • control unit 13 can recognize the necessary capacity of the power input unit group 14 based on the measurement result of a sensor (not shown) that measures the power consumption of the power input unit group 14.
  • control unit 13 is based on information indicating which of the switch circuits 12 [1] to 12 [m] is turned on and a predetermined power consumption value for each power input unit.
  • the necessary capacity of the power input unit group 14 may be recognized.
  • n 3 and the maximum output capacities of the element conversion units 11 [1], 11 [2], and 11 [3] are 100 W, 200 W, and 400 W (watts), respectively.
  • the control unit 13 causes only the element conversion unit 11 [1] to perform the power conversion operation when the required capacity of the power input unit group 14 is 80 W, and the required capacity of the power input unit group 14 is 150 W.
  • the control unit 13 causes only the element conversion units 11 [1] and 11 [3] to perform the power conversion operation, and the required capacity of the power input unit group 14
  • 500 500 W
  • the above-described operation example (example of the power conversion operation selection execution control) with specific numerical values regarding the capacity is merely an example, and the element conversion units that perform the power conversion operation are Not only the maximum output capacity and the required capacity of the power input unit group 14 but also the conversion efficiency characteristics of each element conversion unit (depending on the output capacity of the conversion efficiency) and the margin can vary.
  • the control unit 13 determines the value of the output capacity to be operated (for example, the conversion efficiency in FIG. (A value near the maximum) is set for each element conversion unit, and the element conversion unit that actually performs the power conversion operation is selected based on the set value and the necessary capacity of the power input unit group 14. good.
  • FIG. 6 is a schematic overall configuration diagram of a power system according to the second embodiment.
  • the power system of FIG. 6 includes a battery charge / discharge control unit (hereinafter referred to as BMU (Battery Management Unit)) 31 and a battery charge / discharge switch circuit unit (hereinafter referred to as BSU (hereinafter referred to as BSU)). Battery Switching Unit) 32).
  • BMU Battery Management Unit
  • BSU battery charge / discharge switch circuit unit
  • Battery Switching Unit 32
  • the board refers to a printed board on which electronic components are mounted.
  • a plurality of power blocks PP that output power or receive power can be connected to the BSU 32, and the number of power blocks according to the number of power blocks PP to be connected to the BSU 32.
  • the unit substrate UU can be provided in the BSU 32.
  • three power block unit substrates UU are provided in the BSU 32 as power block unit substrates UU [1] to UU [3].
  • the first power block PP composed of the AC / DC converter 61A and the AC power source 61B is connected to the first power block unit substrate UU [1]
  • the second power block PP composed of the battery unit 62 is the second power.
  • a third power block PP connected to the block unit substrate UU [2] and composed of the DC / DC converter 63A and the DC load 63B is connected to the third power block unit substrate UU [3].
  • a switch circuit, a microcomputer (hereinafter referred to as a microcomputer) and a protection circuit are mounted on each power block unit substrate UU.
  • the switch circuit, the microcomputer, and the protection circuit in the power block unit substrate UU [i] are referred to by reference numerals 41 [i], 42 [i], and 43 [i], respectively.
  • the microcomputer 42 [i] can control the operations of the switch circuit 41 [i] and the protection circuit 43 [i].
  • the switch circuit 41 [i] is the same as each switch circuit in the switching unit 12 of the first embodiment.
  • the first board on which the microcomputer 42 [i] is mounted and the second board on which the switch circuit 41 [i] and the protection circuit 43 [i] are mounted are separated.
  • a combination of the second substrates is called a power block unit substrate UU [i]. Note that the first and second substrates may be combined into one substrate.
  • the BSU32 so that the power line P BUS is common bus line to the power block unit substrate UU [1] ⁇ UU [3 ], transverse to the power block substrate UU [1] ⁇ UU [3 ]
  • the power block unit substrates UU [1] to UU [3] are connected to each other through at least the power line PBUS .
  • the power line PBUS includes a negative power line having a negative potential and a positive power line having a positive potential.
  • the AC power source 61B is a power source that outputs AC power having a predetermined voltage value and frequency.
  • the AC power source 61B may be a commercial AC power source.
  • the AC / DC converter 61A converts the AC voltage from the AC power source 61B into a DC voltage, and outputs the DC voltage from its output terminal T [1].
  • the switch circuit 41 [1] is interposed in series between the power line PBUS and the output terminal T [1] of the AC / DC converter 61A. Only when the switch circuit 41 [1] is ON, the output DC voltage of the AC / DC converter 61A is applied to the power line PBUS (more specifically, the negative power line and the positive power that form the power line PBUS). When the switch circuit 41 [1] is off, the AC / DC converter 61A is disconnected from the power line PBUS .
  • the switch circuit 41 [2] is interposed in series between the power line PBUS and the input / output terminal T [2] of the battery unit 62.
  • the switch circuit 41 [2] when on only input and output terminals T of the battery unit 62 [2] is connected to the power line P BUS, it is possible to charge or discharge of the battery 62 via the power line P BUS .
  • Switching circuit 41 [3] is interposed in series between the input terminal T of the power line P BUS and the DC / DC converter 63A [3]. Only when the switch circuit 41 [3] is on, the DC voltage applied to the power line PBUS is applied to the input terminal T [3]. When the switch circuit 41 [3] is off, the DC / DC converter 63A Disconnected from line PBUS . The DC / DC converter 63A converts the DC voltage applied to the input terminal T [3] into another DC voltage, and outputs the other DC voltage to the DC load 63B.
  • the DC load 63B is a DC load that is driven using the output DC voltage of the DC / DC converter 63A as a drive voltage.
  • the microcomputer 42 [i] performs on / off switching control of the switch circuit 41 [i], and the protection circuit 43 [i] generates an abnormality. At the time (for example, when the switch circuit 41 [i] abnormally generates heat), the switch circuit 41 [i] is forcibly turned off.
  • BMU 31 can communicate with each other. Thereby, communication is possible between the arbitrary microcomputer 42 [i] and the BMU 31. However, as long as communication is possible between any microcomputer 42 [i] and the BMU 31, the connection methods of the microcomputers 42 [1] to 42 [3] and the BMU 31 are arbitrary.
  • the BMU 31 can output various commands to the microcomputers 42 [1] to 42 [3] using the communication with the microcomputers 42 [1] to 42 [3], and thereby the switch circuits 41 [1] to 42 [3]. It is also possible to control on or off of 41 [3].
  • the switch circuit 41 [1], the switch circuit 41 [2], the switch circuit 41 [3], and the power line PBUS are respectively connected to the switch circuit 15, the switch circuit 12 [1],
  • the battery unit 62 is regarded as the power input unit 14 [1] of the first embodiment
  • the DC / DC converter 63A and the DC load 63B are further regarded as the switch circuit 12 [2] and the power line PL. What is necessary is just to consider it as the electric power input part 14 [2] (refer FIG.2 and FIG.5).
  • the power converter 11 of the first embodiment can be used as the AC / DC converter 61A.
  • the BMU 31 can control the conversion ON number CON NUM according to the method described in the first embodiment, and can perform a process of switching an element conversion unit that executes a power conversion operation among a plurality of element conversion units. .
  • a combination of the BMU 31 and the microcomputers 42 [1] to 42 [3] functions as the control unit 13 of the first embodiment, and the switch circuits 41 [2] and 41 [ 3] can be said to function as the switching unit 12 of the first embodiment.
  • power transmission and power reception are performed between three power blocks PP, but the BSU 32 may be formed so that power transmission and power reception is performed between four or more power blocks PP. Also in this case, the conversion ON number CON NUM and the like can be controlled according to the method described in the first embodiment.
  • a dedicated board is prepared by arranging the required number of power block unit boards UU in the BSU 32 according to the number of power blocks PP that transmit or receive power and centrally manage the operations in each power block unit board UU with the BMU 31. The same effect as that obtained can be obtained. If the power block unit substrate UU provided in the BSU 32 is shared, it is expected that the substrate development time can be reduced and the maintainability can be improved.
  • the new power block PP can be incorporated into the power system simply by adding the power block unit board UU to the BSU 32. That is, the power system of this embodiment has high expandability. Normally, when the power system is expanded or the like, the load amount or the like changes. However, by performing the above-described execution control of the power conversion operation, it is possible to maintain high conversion efficiency even after the expansion.
  • control unit 13 is provided outside the power conversion unit 11, but the control unit 13 may be provided in the power conversion unit 11.
  • a mobile body an electric vehicle, a ship, an aircraft, an elevator, a walking robot, etc.
  • an electronic device that drives the power system or power control device of each embodiment described above using the output power of the power converter 11 or the AC / DC converter 61A
  • You may mount in apparatus (a personal computer, a portable terminal, etc.), and you may incorporate in the electric power system of a house or a factory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A plurality of element converters (11[1], 11[2]) for converting an input voltage (V­I) into an output voltage (VO) by a power conversion operation is set in a power converter (11). A switching unit (12) is set up between a power line (PL) for applying an output voltage and a plurality of power input units (14[1], 14[2]). A controller (13) uses the switching unit (12) to control whether to connect the power input unit to the power line (PL) in each power input unit, and to control the number of element converters that execute the power conversion operation in response to the number of power input units connected to the power line (PL) (that is, the number of power input units that receive the power supplied by the power converter (11)).

Description

電力制御装置Power control device
 本発明は、電力の入出力制御を行う電力制御装置に関する。 The present invention relates to a power control apparatus that performs power input / output control.
 複数の電力ブロック間で送電及び受電を行う電力システムが、様々な機器、施設などで利用されている。この種の電力システムでは、電力の出力を行う1以上の電力ブロックと電力の入力を受ける1以上の電力ブロックがスイッチング部を介して接続され、該スイッチング部が制御されることで所望の送電及び受電が成される(例えば、下記特許文献1参照)。 The power system that transmits and receives power between multiple power blocks is used in various devices and facilities. In this type of power system, one or more power blocks that output power and one or more power blocks that receive power input are connected via a switching unit, and the switching unit is controlled to perform desired power transmission and transmission. Power is received (see, for example, Patent Document 1 below).
 電力の出力を行う電力ブロックには、電力変換動作を行う電力変換部が設けられることも多い。図8は、電力変換動作を行う電力変換部911が設けられた電力システムの概略構成図である。電力変換部911は、電力変換動作によって入力電圧を他の電圧に変換し、得られた他の電圧を出力電圧として出力する。例えば、入力電圧は交流電圧であって出力電圧は直流電圧である。電力変換部911から電力供給を受けることのできる複数の電力入力部(電力ブロック)と電力変換部911との間にスイッチング部912が設けられ、制御部913は、スイッチング部912を制御することで、電力入力部ごとに、電力変換部911の出力電圧を電力入力部に供給するか否かを制御することができる。 In many cases, a power block that performs power conversion operation is provided in a power block that outputs power. FIG. 8 is a schematic configuration diagram of a power system provided with a power conversion unit 911 that performs a power conversion operation. The power conversion unit 911 converts the input voltage into another voltage by the power conversion operation, and outputs the obtained other voltage as an output voltage. For example, the input voltage is an AC voltage and the output voltage is a DC voltage. A switching unit 912 is provided between a plurality of power input units (power blocks) that can receive power supply from the power conversion unit 911 and the power conversion unit 911, and the control unit 913 controls the switching unit 912. For each power input unit, it is possible to control whether or not the output voltage of the power conversion unit 911 is supplied to the power input unit.
 電力変換部911は、スイッチング部912を介して接続された電力入力部にのみ電流を出力する。一方、周知の如く、電力変換部911のような電力変換装置において変換効率は出力電流に依存する(図9参照)。 The power conversion unit 911 outputs a current only to the power input unit connected via the switching unit 912. On the other hand, as is well known, in a power converter such as the power converter 911, the conversion efficiency depends on the output current (see FIG. 9).
特開2010-231939号公報JP 2010-231939 A
 このため、図8のようなシステムでは、電力変換部911の変換効率を常に最大値付近に保つことは困難である。 Therefore, in the system as shown in FIG. 8, it is difficult to always keep the conversion efficiency of the power conversion unit 911 near the maximum value.
 単純な例として、5つの電力入力部が設けられ、各電流入力部の消費電流が10A(アンペア)である場合を考える。この場合、電力変換部911に接続された電力入力部が1以上であるとすると、電力変換部911の出力電流は10Aから50Aの間で変動する。仮に、電力変換部911の出力電流が30Aであるときに電力変換部911の変換効率が最大となるように電力変換部911を設計したならば、電力変換部911の出力電流が10A、20A、40A又は50Aであるとき、電力変換部911の変換効率が低くなる。電力変換部の変換効率の向上が有益であることは言うまでも無い。 As a simple example, let us consider a case where five power input units are provided and the current consumption of each current input unit is 10 A (ampere). In this case, assuming that the power input unit connected to the power conversion unit 911 is 1 or more, the output current of the power conversion unit 911 varies between 10A and 50A. If the power conversion unit 911 is designed so that the conversion efficiency of the power conversion unit 911 is maximized when the output current of the power conversion unit 911 is 30 A, the output current of the power conversion unit 911 is 10A, 20A, When it is 40 A or 50 A, the conversion efficiency of the power conversion unit 911 is lowered. Needless to say, it is beneficial to improve the conversion efficiency of the power converter.
 そこで本発明は、電力変換における変換効率向上に寄与する電力制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a power control device that contributes to improvement of conversion efficiency in power conversion.
 本発明に係る電力制御装置は、入力電圧を出力電圧に変換する電力変換部と、前記電力変換部の動作を制御する制御部と、を備えた電力制御装置において、前記電力変換部は、各々が前記入力電圧を前記出力電圧に変換する複数の要素変換部を備え、前記制御部は、各要素変換部において変換動作を実行させるか否かを制御し、前記電力変換部から電力供給を受ける電力入力部の個数に応じて又は前記電力変換部の出力電流に応じて、前記変換動作を実行させる前記要素変換部の個数を制御することを特徴とする。 The power control device according to the present invention includes a power conversion unit that converts an input voltage into an output voltage, and a control unit that controls the operation of the power conversion unit. Includes a plurality of element conversion units that convert the input voltage into the output voltage, and the control unit controls whether or not to perform a conversion operation in each element conversion unit, and receives power supply from the power conversion unit The number of element conversion units that perform the conversion operation is controlled according to the number of power input units or according to the output current of the power conversion unit.
 本発明に係る他の電力制御装置は、入力電圧を出力電圧に変換する電力変換部と、前記電力変換部の動作を制御する制御部と、を備えた電力制御装置において、前記電力変換部は、各々が前記入力電圧を前記出力電圧に変換する複数の要素変換部を備え、前記複数の要素変換部は、最大出力容量が互いに異なる2以上の要素変換部を含み、前記制御部は、各要素変換部において変換動作を実行させるか否かを制御し、前記電力変換部から電力供給を受ける電力入力部の必要容量に応じて、前記変換動作を実行させる要素変換部を前記複数の要素変換部の中から選択することを特徴とする。 Another power control device according to the present invention is a power control device comprising: a power conversion unit that converts an input voltage into an output voltage; and a control unit that controls the operation of the power conversion unit. , Each comprising a plurality of element converters for converting the input voltage into the output voltage, the plurality of element converters include two or more element converters having different maximum output capacities, The element conversion unit controls whether or not to perform the conversion operation in the element conversion unit, and performs the conversion operation according to the required capacity of the power input unit that receives power supply from the power conversion unit. It is characterized by selecting from the part.
 本発明によれば、電力変換における変換効率向上に寄与する電力制御装置を提供することが可能である。 According to the present invention, it is possible to provide a power control apparatus that contributes to improvement in conversion efficiency in power conversion.
本発明の第1実施形態に係る電力システムの概略的な全体構成図である。1 is a schematic overall configuration diagram of a power system according to a first embodiment of the present invention. 図1の電力システムの変形構成図である。It is a modified block diagram of the electric power system of FIG. 図1の電力システムの一部分の詳細構成図である。It is a detailed block diagram of a part of the electric power system of FIG. 図1の電力変換部の内部構成図である。It is an internal block diagram of the power converter of FIG. 本発明の第1実施形態に係る電力システムの構成例を示す図である。It is a figure which shows the structural example of the electric power system which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る電力システムの概略的な全体構成図である。It is a schematic whole block diagram of the electric power system which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係り、BSUと複数の電力ブロックとの関係を示す図である。It is a figure which concerns on 2nd Embodiment of this invention and shows the relationship between BSU and several electric power blocks. 従来の電力システムの構成図である。It is a block diagram of the conventional electric power system. 電力変換装置における変換効率の出力電流依存性を示す図である。It is a figure which shows the output current dependence of the conversion efficiency in a power converter device.
 以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。 Hereinafter, an example of an embodiment of the present invention will be specifically described with reference to the drawings. In each of the drawings to be referred to, the same part is denoted by the same reference numeral, and redundant description regarding the same part is omitted in principle. In this specification, for simplification of description, a symbol or reference that refers to information, signal, physical quantity, state quantity, member, or the like is written to indicate information, signal, physical quantity, state quantity or Names of members and the like may be omitted or abbreviated.
<<第1実施形態>>
 本発明の第1実施形態を説明する。図1は、第1実施形態に係る電力システムの概略的な全体構成図である。電力システムは、図1に示される部位の全部又は一部を備える。
<< First Embodiment >>
A first embodiment of the present invention will be described. FIG. 1 is a schematic overall configuration diagram of the power system according to the first embodiment. The power system includes all or a part of the parts shown in FIG.
 電力変換部11には入力電圧Vが供給される。電力変換部11は、制御部13の制御の下で、入力電圧Vを入力電圧Vと異なる出力電圧Vに変換する電力変換を行い、得られた出力電圧Vをスイッチング部12に出力する。図2に示す如く、電力変換部11及びスイッチング部12間に、半導体スイッチング素子等にて形成されたスイッチ回路15が設けられていても構わない。入力電圧Vは、交流電圧であっても良いし、直流電圧であっても良い。出力電圧Vも、交流電圧であっても良いし、直流電圧であっても良い。以下では、例として、商用交流電源(不図示)からの交流電圧が入力電圧Vとして電力変換部11に供給され、電力変換部11は、入力電圧Vとしての交流電圧を直流電圧に変換することを想定する。この場合、電力変換部11は、得られた直流電圧を出力電圧Vとして出力する。 An input voltage V I is supplied to the power converter 11. The power conversion unit 11 performs power conversion for converting the input voltage V I into an output voltage V O different from the input voltage V I under the control of the control unit 13, and outputs the obtained output voltage V O to the switching unit 12. Output. As shown in FIG. 2, a switch circuit 15 formed of a semiconductor switching element or the like may be provided between the power conversion unit 11 and the switching unit 12. The input voltage V I may be an AC voltage or a DC voltage. The output voltage V O may also be an AC voltage or a DC voltage. In the following, as an example, an AC voltage from the commercial AC power source (not shown) is supplied to the power conversion unit 11 as the input voltage V I, the power converter 11 converts the AC voltage as the input voltage V I to a DC voltage Assuming that In this case, the power conversion unit 11 outputs the resulting DC voltage as the output voltage V O.
 スイッチング部12は、電力変換部11と複数の電力入力部から成る電力入力部群14との間に介在し、制御部13の制御の下で、出力電圧Vを電力入力部に供給するか否かを電力入力部ごとに切り替える。電力入力部は、電力変換部11から電力供給を受けることのできる任意の部位であり、例えば、電力変換部11の出力電力(出力電圧Vによる電力)にて充電される二次電池、又は、電力変換部11の出力電力(出力電圧Vによる電力)にて駆動される負荷を含む。或る電力入力部は、直流電圧としての出力電圧Vを交流電圧に変換して該交流電圧を出力するDC/ACインバータ、及び、該DC/ACインバータの出力交流電圧にて駆動するAC負荷(交流負荷)を含んでいても良い。また、或る電力入力部は、直流電圧としての出力電圧Vを他の直流電圧に変換して該他の直流電圧を出力するDC/DCコンバータ、及び、該DC/DCコンバータの出力直流電圧にて駆動するDC負荷(直流負荷)を含んでいても良い。 The switching unit 12 is interposed between the power conversion unit 11 and the power input unit group 14 including a plurality of power input units, and supplies the output voltage V O to the power input unit under the control of the control unit 13. No is switched for each power input unit. Power input unit is any site that can be powered from the power conversion unit 11, for example, the secondary battery is charged by the output power of the power conversion unit 11 (power by the output voltage V O), or includes load driven by the output power of the power conversion unit 11 (power by the output voltage V O). A certain power input unit includes a DC / AC inverter that converts an output voltage V O as a DC voltage into an AC voltage and outputs the AC voltage, and an AC load that is driven by the output AC voltage of the DC / AC inverter. (AC load) may be included. In addition, a certain power input unit converts the output voltage V O as a DC voltage into another DC voltage and outputs the other DC voltage, and the output DC voltage of the DC / DC converter It may include a DC load (direct current load) driven by.
 図3に、スイッチング部12と電力入力部群14との接続関係例を示す。電力入力部群14を形成するm個の電力入力部を符号14[1]~14[m]によって参照する。mは2以上の任意の整数である。電力変換部11からの出力電圧Vは、電力ラインPLに印加される。本明細書において、用語「ライン」と用語「配線」は同義である。スイッチング部12は、電力ラインPLと電力入力部群14との間に介在する複数のスイッチ回路を備え、制御部13の制御の下で各スイッチ回路の通電状態を制御することにより、電力入力部ごとに電力ラインPL及び電力入力部間の接続又は遮断を切り替えることができる。制御部13は、スイッチング部12内の各スイッチ回路のオン又はオフをスイッチ回路ごとに切り替え制御することができる。電力ラインPLと電力入力部14[i]との間に設けられたスイッチ回路を符号12[i]によって参照する(iは任意の整数)。そうすると、スイッチング部12に設けられた複数のスイッチ回路は、スイッチ回路12[1]~12[m]である。スイッチ回路12[1]~12[m]の夫々を、半導体スイッチング素子又は機械式リレー等にて形成することができ、半導体スイッチング素子は、例えば、電界効果トランジスタ(Field-Effect Transistor)又は絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor)である。 FIG. 3 shows an example of a connection relationship between the switching unit 12 and the power input unit group 14. The m power input units forming the power input unit group 14 are referred to by reference numerals 14 [1] to 14 [m]. m is an arbitrary integer of 2 or more. Output voltage V O from power conversion unit 11 is applied to power line PL. In this specification, the term “line” and the term “wiring” are synonymous. The switching unit 12 includes a plurality of switch circuits interposed between the power line PL and the power input unit group 14, and controls the energization state of each switch circuit under the control of the control unit 13. The connection or disconnection between the power line PL and the power input unit can be switched every time. The control unit 13 can control to switch on or off each switch circuit in the switching unit 12 for each switch circuit. A switch circuit provided between the power line PL and the power input unit 14 [i] is referred to by a symbol 12 [i] (i is an arbitrary integer). Then, the plurality of switch circuits provided in the switching unit 12 are the switch circuits 12 [1] to 12 [m]. Each of the switch circuits 12 [1] to 12 [m] can be formed by a semiconductor switching element or a mechanical relay, and the semiconductor switching element is, for example, a field-effect transistor or an insulated gate. It is a bipolar transistor (Insulated Gate Bipolar Transistor).
 スイッチ回路12[i]がオンのときには、電力ラインPLと電力入力部14[i]とがスイッチ回路12[i]を介して接続されて出力電圧Vが電力入力部14[i]に供給される(即ち、電力変換部11の出力電力が電力入力部14[i]に供給される)。一方、スイッチ回路12[i]がオフのときには、電力ラインPLと電力入力部14[i]とがスイッチ回路12[i]によって遮断されて出力電圧Vが電力入力部14[i]に供給されない(即ち、電力変換部11の出力電力が電力入力部14[i]に供給されない)。尚、図2に示す如くスイッチ回路15が設けられる場合、スイッチ回路12[i]の定格電流よりも図2のスイッチ回路15の定格電流の方が大きくなるように、各スイッチ回路を設計することが望ましい。 When the switch circuit 12 [i] is on, the power line PL and the power input unit 14 [i] are connected via the switch circuit 12 [i] and the output voltage VO is supplied to the power input unit 14 [i]. (That is, the output power of the power conversion unit 11 is supplied to the power input unit 14 [i]). On the other hand, when the switch circuit 12 [i] is off, the power line PL and the power input unit 14 [i] are cut off by the switch circuit 12 [i] and the output voltage V O is supplied to the power input unit 14 [i]. (That is, the output power of the power conversion unit 11 is not supplied to the power input unit 14 [i]). When the switch circuit 15 is provided as shown in FIG. 2, each switch circuit should be designed so that the rated current of the switch circuit 15 in FIG. 2 is larger than the rated current of the switch circuit 12 [i]. Is desirable.
 図4は、電力変換部11の内部構成図である。図4に示す如く、電力変換部11は複数の要素変換部から成る。複数の要素変換部は互いに並列接続されている。複数の要素変換部の夫々は、制御部13の制御の下で個別に入力電圧Vを出力電圧Vに変換し、得られた出力電圧Vを電力ラインPL及びスイッチング部12に出力することができる。要素変換部による、入力電圧Vから出力電圧Vを得るための動作を、電力変換動作(又は変換動作)と呼ぶ。制御部13は、要素変換部ごとに電力変換動作を実行させるか否かを制御することができる。或る要素変換部から他の要素変換部へ電流が逆流しないように、各要素変換部の出力側に逆流抑制素子(ダイオード等)を設けておくと良い。本実施形態では、説明の簡略化上、逆流抑制素子の電圧降下を無視する。 FIG. 4 is an internal configuration diagram of the power conversion unit 11. As shown in FIG. 4, the power conversion unit 11 includes a plurality of element conversion units. The plurality of element conversion units are connected in parallel to each other. Each of the plurality of element conversion units individually converts the input voltage V I into the output voltage V O under the control of the control unit 13, and outputs the obtained output voltage V O to the power line PL and the switching unit 12. be able to. By element converting unit, an operation for obtaining an output voltage V O from the input voltage V I, referred to as a power conversion operation (or conversion operation). The control unit 13 can control whether or not to execute the power conversion operation for each element conversion unit. A backflow suppression element (such as a diode) may be provided on the output side of each element converter so that current does not flow backward from one element converter to another element converter. In the present embodiment, for simplification of description, the voltage drop of the backflow suppressing element is ignored.
 電力変換部11を形成するn個の要素変換部を符号11[1]~11[n]によって参照する。nは2以上の任意の整数である。要素変換部11[1]~11[n]の夫々において電力変換動作が実行される場合、要素変換部11[1]~11[n]から出力される電圧の値は複数の要素変換部間でほぼ共通である。要素変換部11[i]は、電力変換動作の実行時においてのみ入力電圧Vを出力電圧Vに変換して出力電圧Vを電力ラインPL及びスイッチング部12に出力する。従って、要素変換部11[i]において電力変換動作が行われ且つスイッチング部12内の何れか1以上のスイッチ回路がオンであるならば、要素変換部11[i]から何れかの1以上の電力入力部への電流供給が生じる。要素変換部11[i]において電力変換動作が行われない場合、スイッチング部12の各スイッチ回路の状態に依存せず、要素変換部11[i]から電力入力部群14への電流供給は無い。 The n element conversion units forming the power conversion unit 11 are referred to by reference numerals 11 [1] to 11 [n]. n is an arbitrary integer of 2 or more. When the power conversion operation is executed in each of the element conversion units 11 [1] to 11 [n], the voltage value output from the element conversion units 11 [1] to 11 [n] is between a plurality of element conversion units. It is almost common. The element conversion unit 11 [i] converts the input voltage V I into the output voltage V O and outputs the output voltage V O to the power line PL and the switching unit 12 only when the power conversion operation is performed. Therefore, if a power conversion operation is performed in the element conversion unit 11 [i] and any one or more switch circuits in the switching unit 12 are on, any one or more from the element conversion unit 11 [i]. Current supply to the power input occurs. When the power conversion operation is not performed in the element conversion unit 11 [i], no current is supplied from the element conversion unit 11 [i] to the power input unit group 14 without depending on the state of each switch circuit of the switching unit 12. .
 スイッチ回路12[1]~12[m]の内、オンになっているスイッチ回路の個数をスイッチオン数SWNUMと呼ぶ。スイッチオン数SWNUMは、スイッチング部12を介して電力ラインPL及び電力変換部11に接続される電力入力部の個数に相当すると共に、スイッチング部12を介して電力変換部11から電力供給を受ける電力入力部の個数に相当する。つまり例えば、スイッチ回路12[1]~12[m]の内、スイッチ回路12[1]及び12[2]のみがオンである場合、スイッチオン数SWNUMは2であり、電力入力部14[1]~14[m]の内の電力入力部14[1]及び14[2]のみが、スイッチング部12を介して電力ラインPL及び電力変換部11に接続されて、スイッチング部12を介して電力変換部11から電力供給を受ける。制御部13は、スイッチング部12の各スイッチ回路のオン又はオフをスイッチ回路ごとに切り替え制御することができるため、当然に、スイッチオン数SWNUMを制御可能である。 Of the switch circuits 12 [1] to 12 [m], the number of switch circuits that are turned on is referred to as a switch-on number SW NUM . The switch-on number SW NUM corresponds to the number of power input units connected to the power line PL and the power conversion unit 11 via the switching unit 12 and receives power supply from the power conversion unit 11 via the switching unit 12. This corresponds to the number of power input units. That is, for example, when only the switch circuits 12 [1] and 12 [2] among the switch circuits 12 [1] to 12 [m] are on, the switch-on number SW NUM is 2, and the power input unit 14 [ 1] to 14 [m], only the power input units 14 [1] and 14 [2] are connected to the power line PL and the power conversion unit 11 via the switching unit 12, and are connected via the switching unit 12. Power is supplied from the power converter 11. Since the control unit 13 can control switching on or off of each switch circuit of the switching unit 12 for each switch circuit, naturally, the switch-on number SW NUM can be controlled.
 要素変換部11[1]~11[n]の内、電力変換動作を実行する要素変換部の個数を変換オン数CONNUMと呼ぶ。例えば、要素変換部11[1]~11[n]の内、要素変換部11[1]のみがオンである場合、変換オン数CONNUMは1であり、要素変換部11[1]~11[n]の内、要素変換部11[1]のみが電力変換動作を行う。制御部13は、要素変換部ごとに電力変換動作を実行させるか否かを制御することができるため、当然に、変換オン数CONNUMを制御可能である。 Of the element conversion units 11 [1] to 11 [n], the number of element conversion units that execute the power conversion operation is referred to as a conversion ON number CON NUM . For example, when only the element conversion unit 11 [1] is ON among the element conversion units 11 [1] to 11 [n], the conversion ON number CON NUM is 1, and the element conversion units 11 [1] to 11 [11] Of [n], only the element conversion unit 11 [1] performs the power conversion operation. Since the control unit 13 can control whether or not to execute the power conversion operation for each element conversion unit, naturally, the conversion ON number CON NUM can be controlled.
 そして、制御部13は、スイッチオン数SWNUMに応じて変換オン数CONNUMを制御することができる。 Then, the control unit 13 can control the conversion ON number CON NUM according to the switch ON number SW NUM .
 基本的には例えば、制御部13は、スイッチオン数SWNUMが増大するにつれて変換オン数CONNUMを増大させると良い。これを、以下のように表現することができる。制御部13は、スイッチオン数SWNUMが所定整数SWNUMLであるときの変換オン数CONNUMを、スイッチオン数SWNUMが所定整数SWNUMSであるときの変換オン数CONNUMよりも大きくする。ここで、“1≦SWNUMS<SWNUML”であり、SWNUMS=1且つSWNUML=m、であっても良い。尚、スイッチオン数SWNUMが増加したからといって、制御部13は、変換オン数CONNUMを常に増加させる必要は必ずしもない。 Basically, for example, the control unit 13 may increase the conversion ON number CON NUM as the switch ON number SW NUM increases. This can be expressed as follows. Control unit 13, a transformation on the number CON NUM when the switch-on number SW NUM is a predetermined integer SW NUML, larger than the conversion on the number CON NUM when the switch-on number SW NUM is a predetermined integer SW nums. Here, “1 ≦ SW NUMS <SW NUML ” may be satisfied , and SW NUMS = 1 and SW NUML = m. Note that just because the switch-on number SW NUM increases, the control unit 13 does not always need to increase the conversion-on number CON NUM .
 或いは、制御部13は、電力変換部11の出力電流Iに応じて変換オン数CONNUMを制御してもよい。この場合、電力変換部11からスイッチング部12に流れる電流の値を検出する電流センサ(不図示)が電力システムに設けられ、該電流センサによって検出された電流値が出力電流Iの値として制御部13に伝達される。 Alternatively, the control unit 13 may control the conversion ON number CON NUM according to the output current I O of the power conversion unit 11. In this case, a current sensor (not shown) for detecting the value of the current flowing from the power conversion unit 11 to the switching unit 12 is provided in the power system, and the current value detected by the current sensor is controlled as the value of the output current IO. Is transmitted to the unit 13.
 基本的には例えば、制御部13は、出力電流Iが増大するにつれて変換オン数CONNUMを増大させると良い。これを、以下のように表現することができる。制御部13は、出力電流Iの値が所定値Iであるときの変換オン数CONNUMを、出力電流Iの値が所定値Iであるときの変換オン数CONNUMよりも大きくする。ここで、“I<I”である。例えば、所定値Iは、スイッチオン数SWNUMがmであるときに電力変換部11から電力入力部群14に供給される電流の実測値若しくは設計値又は実測値と設計値に基づく値であって、且つ、所定値Iは、スイッチオン数SWNUMが1であるときに電力変換部11から電力入力部群14に供給される電流の実測値若しくは設計値又は実測値と設計値に基づく値であってもよい。尚、所定値Iとして電流の実測値を用いることが望ましく、負荷がLEDなどであって、電力消費が一定であることが見込まれる場合などにおいては、所定値Iとして設計値を用いても問題は少ない(所定値Iも同様)。 Basically, for example, the control unit 13 may increase the conversion ON number CON NUM as the output current IO increases. This can be expressed as follows. Control unit 13, a transformation on the number CON NUM when the value of the output current I O is the predetermined value I L, greater than the conversion on the number CON NUM when the value of the output current I O is the predetermined value I S To do. Here, “I S <I L ”. For example, the predetermined value I L, the actual measurement value or a design value or measured value and a value based on the design value of the current supplied from the power conversion unit 11 to the power input portion group 14 when the switch-on number SW NUM is m there are, and, the predetermined value I S, the actually measured value or a design value or the measured value and the design value of the current supplied from the power conversion unit 11 to the power input portion group 14 when the switch-on number SW NUM is 1 It may be a value based on it. Incidentally, it is desirable to use the measured value of the current as the predetermined value I L, the load and the like LED, in a case where power consumption is expected to be constant, using the design value as a predetermined value I L problem is small (predetermined value I S is similar).
 周知の如く、要素変換部のような電力変換装置において変換効率は出力電流に依存する(図9参照)。制御部13は、各要素変換部において変換効率がなるだけ最大化されるように、スイッチオン数SWNUM又は出力電流Iに応じて変換オン数CONNUMを制御すると良い。これにより、供給すべき電流の変化に適応して電力変換部11の変換効率を高く保つことができる(理想的には、供給すべき電流の変化に関わらず電力変換部11の変換効率を最大値又は最大値付近に保つことができる)。 As is well known, in a power conversion device such as an element conversion unit, the conversion efficiency depends on the output current (see FIG. 9). The control unit 13 may control the conversion ON number CON NUM according to the switch ON number SW NUM or the output current IO so that the conversion efficiency is maximized in each element conversion unit. As a result, the conversion efficiency of the power conversion unit 11 can be kept high by adapting to the change in the current to be supplied (ideally, the conversion efficiency of the power conversion unit 11 is maximized regardless of the change in the current to be supplied. Value or maximum value).
 尚、電力入力部が必要とする電流は、複数の電力入力部間で互いに異なりうる。従って、スイッチオン数SWNUMに応じて変換オン数CONNUMを制御する場合、制御部13は、スイッチオン数SWNUMだけでなく、スイッチング部12を介して電力ラインPLに接続される電力入力部の消費電流(例えば、消費電流の設計値)をも考慮して変換オン数CONNUMを決定してもよい。 In addition, the electric current which a power input part requires may mutually differ between several power input parts. Therefore, when controlling the conversion ON number CON NUM according to the switch ON number SW NUM , the control unit 13 is not only the switch ON number SW NUM but also the power input unit connected to the power line PL via the switching unit 12. The conversion ON number CON NUM may be determined in consideration of the current consumption (for example, the design value of the current consumption).
 図5に、m=n=2である場合の電力システムの構成を示す。図5の電力入力部14[1]は、1以上の二次電池(リチウムイオン電池、ニッケル水素電池など)から成る電池部であり、図5の電力入力部14[2]は、直流電力にて駆動するDC負荷(照明器具など)である。電力変換動作による出力電圧Vが電力ラインPLに印加されている状態において、スイッチ回路12[1]がオンとされると電力変換部11の出力電力にて電力入力部14[1]内の二次電池が充電され、スイッチ回路12[2]がオンとされると電力変換部11の出力電力にて電力入力部14[2]としてのDC負荷が駆動される。尚、電力変換部11の電力出力が無い状態において、制御部13がスイッチ回路12[1]及び12[2]をオンにすれば、電力入力部14[1]内の二次電池の放電電力にて電力入力部14[2]としてのDC負荷を駆動することもできる。このような電力入力部の放電電力の利用が行われうる電力システムに対しては、スイッチオン数SWNUMに応じて変換オン数CONNUMを制御する方式よりも、出力電流Iに応じて変換オン数CONNUMを制御する方式の方が好適であるとも言える。また、電力入力部の放電電力の利用が行われうる電力システムにおいて、図2のスイッチ回路15が設けられている場合には、制御部13は、スイッチオン数SWNUMだけでなく、スイッチ回路15の導通状態(オンであるか又はオフであるか)にも応じて、変換オン数CONNUMを制御するようにしてもよい。 FIG. 5 shows the configuration of the power system when m = n = 2. The power input unit 14 [1] in FIG. 5 is a battery unit composed of one or more secondary batteries (lithium ion battery, nickel metal hydride battery, etc.), and the power input unit 14 [2] in FIG. DC load (such as a lighting fixture). When the switch circuit 12 [1] is turned on in a state where the output voltage V O due to the power conversion operation is applied to the power line PL, the output power of the power conversion unit 11 in the power input unit 14 [1] is turned on. When the secondary battery is charged and the switch circuit 12 [2] is turned on, the DC load as the power input unit 14 [2] is driven by the output power of the power conversion unit 11. If the control unit 13 turns on the switch circuits 12 [1] and 12 [2] in a state where there is no power output of the power conversion unit 11, the discharge power of the secondary battery in the power input unit 14 [1]. It is also possible to drive a DC load as the power input unit 14 [2]. For a power system in which the discharge power of the power input unit can be used, conversion is performed according to the output current I O rather than a method of controlling the conversion ON number CON NUM according to the switch-on number SW NUM. It can be said that the method of controlling the ON number CON NUM is more suitable. In the power system in which the discharge power of the power input unit can be used, when the switch circuit 15 of FIG. 2 is provided, the control unit 13 not only switches the switch-on number SW NUM but also the switch circuit 15. The conversion ON number CON NUM may be controlled in accordance with the conduction state (whether it is on or off).
 図5の電力システムにおいて、制御部13は、スイッチ回路12[1]及び12[2]のどちらか一方のみをオンにする場合には、要素変換部11[1]及び11[2]のどちらか一方のみに電力変換動作を実行させ、スイッチ回路12[1]及び12[2]の双方をオンにする場合には、要素変換部11[1]及び11[2]の双方に電力変換動作を実行させる。単純な例として、スイッチ回路11[1]がオンのときに10A(アンペア)の電流が電力ラインPLから電力入力部14[1]に流れ込み且つスイッチ回路11[2]がオンのときに10A(アンペア)の電流が電力ラインPLから電力入力部14[2]に流れ込む場合、要素変換部11[1]の出力電流が10Aのときに要素変換部11[1]の変換効率が最大化され且つ要素変換部11[2]の出力電流が10Aのときに要素変換部11[2]の変換効率が最大化されるように要素変換部11[1]及び11[2]を設計しておけばよく、これにより、供給すべき電流の変化に関わらず電力変換部11の変換効率を最大値又は最大値付近に保つことができる。 In the power system of FIG. 5, when only one of the switch circuits 12 [1] and 12 [2] is turned on, the control unit 13 selects one of the element conversion units 11 [1] and 11 [2]. When only one of them performs the power conversion operation and turns on both the switch circuits 12 [1] and 12 [2], the power conversion operation is performed on both of the element conversion units 11 [1] and 11 [2]. Is executed. As a simple example, a current of 10 A (ampere) flows from the power line PL to the power input unit 14 [1] when the switch circuit 11 [1] is on and 10 A (ampere) when the switch circuit 11 [2] is on. Ampere) current flows from the power line PL into the power input unit 14 [2], the conversion efficiency of the element conversion unit 11 [1] is maximized when the output current of the element conversion unit 11 [1] is 10A and If the element conversion units 11 [1] and 11 [2] are designed so that the conversion efficiency of the element conversion unit 11 [2] is maximized when the output current of the element conversion unit 11 [2] is 10A. In this way, the conversion efficiency of the power conversion unit 11 can be maintained at or near the maximum value regardless of changes in the current to be supplied.
 また、図5の電力システムにおいて、要素変換部11[1]及び11[2]のどちらか一方のみに電力変換動作を実行させる場合、制御部13は、電力変換動作を実行させる要素変換部を、適宜、要素変換部11[1]及び11[2]間で切り替えるようにしてもよい。 In the power system of FIG. 5, when only one of the element conversion units 11 [1] and 11 [2] performs the power conversion operation, the control unit 13 sets the element conversion unit for executing the power conversion operation. The element conversion units 11 [1] and 11 [2] may be switched as appropriate.
 例えば、要素変換部11[1]及び11[2]のどちらか一方のみに電力変換動作を継続的に実行させる場合、制御部13は、一定時間が経過するごとに、電力変換動作を実行させる要素変換部を要素変換部11[1]及び11[2]間で切り替えるようにしてもよい。
 或いは例えば、要素変換部11[1]のみに電力変換動作を実行させて該電力変換動作が停止した後、再度、要素変換部11[1]及び11[2]のどちらか一方のみに電力変換動作を行わせる際、制御部13は、今度は、要素変換部11[2]に電力変換動作を実行させるようにしてもよい(即ち、要素変換部11[1]及び11[2]に、交互に、電力変換動作を実行させてもよい)。
 或いは例えば、要素変換部11[1]が電力変換動作を行った総時間長さLと要素変換部11[2]が電力変換動作を行った総時間長さLを、制御部13に計測させておいても良い。この場合において、要素変換部11[1]及び11[2]のどちらか一方のみに電力変換動作を行わせる際、制御部13は、総時間長さL及びL間の差が減少するように、要素変換部11[1]及び11[2]のどちらに電力変換動作を行わせるかを決定しても良い。
For example, in the case where only one of the element conversion units 11 [1] and 11 [2] performs the power conversion operation continuously, the control unit 13 causes the power conversion operation to be performed every time a predetermined time elapses. The element conversion unit may be switched between the element conversion units 11 [1] and 11 [2].
Alternatively, for example, after the power conversion operation is executed only by the element conversion unit 11 [1] and the power conversion operation is stopped, the power conversion is performed again only to one of the element conversion units 11 [1] and 11 [2]. When the operation is performed, the control unit 13 may cause the element conversion unit 11 [2] to execute the power conversion operation (that is, the element conversion units 11 [1] and 11 [2] Alternatively, the power conversion operation may be executed).
Or, for example, an element converting unit 11 [1] total time length of performing a power conversion operation L 1 and element converting unit 11 [2] is the total time length L 2 of performing power conversion operation, the control unit 13 It may be measured. In this case, when to perform either only the power conversion operation of the element converting unit 11 [1] and 11 [2], the control unit 13, the difference between the total time length L 1 and L 2 are reduced As described above, it may be determined which of the element conversion units 11 [1] and 11 [2] is to perform the power conversion operation.
 要素変換部11[i]は経年劣化する電子部品(例えばアルミ電界コンデンサ)を含んで形成され、電力変換動作の実行時間が長くなれば各電子部品の劣化も進行する。要素変換部11[1]及び11[2]のどちらか一方のみに電力変換動作を実行させる場合において、電力変換動作を実行させる要素変換部が仮に要素変換部11[1]で固定されていたならば、要素変換部11[2]と比べて要素変換部11[1]の劣化が早く進行する。上述の如く、電力変換動作を行わせる要素変換部を複数の要素変換部間で切り替えるようにすれば、劣化の進行度合いが複数の要素変換部間で均等化され、結果、電力変換部11全体の寿命を伸ばすことが可能となる。 The element conversion unit 11 [i] is formed to include an electronic component (for example, an aluminum electric field capacitor) that deteriorates over time, and the deterioration of each electronic component progresses as the execution time of the power conversion operation becomes longer. In the case where only one of the element conversion units 11 [1] and 11 [2] performs the power conversion operation, the element conversion unit that executes the power conversion operation is temporarily fixed by the element conversion unit 11 [1]. Then, the deterioration of the element conversion unit 11 [1] proceeds faster than the element conversion unit 11 [2]. As described above, if the element conversion unit that performs the power conversion operation is switched between the plurality of element conversion units, the progress of deterioration is equalized between the plurality of element conversion units, and as a result, the entire power conversion unit 11 is obtained. It becomes possible to extend the lifetime of the.
 電力変換動作を実行させる要素変換部を複数の要素変換部間で切り替える処理を、図5の電力システム(即ち、m=n=2の電力システム)について説明したが、この処理は、図1~図4に対応する電力システム(即ち、m=n=2に限定されない電力システム)にも適用可能である。何れにせよ、制御部13は、要素変換部11[1]~11[n]の内の一部の要素変換部にのみ電力変換動作を行わせる際、第1タイミングにおいて電力変換動作を行わせる要素変換部と第2タイミングにおいて電力変換動作を行わせる要素変換部とを互いに異ならせることができる。第2タイミングは、第1タイミングと異なる任意のタイミングである。勿論、第2タイミングによっては(例えば、第2タイミングが第1タイミングから微小時間だけ経過したタイミングである場合)、電力変換動作を行う要素変換部が第1及び第2タイミング間で共通になることもある。 The process of switching the element conversion unit for executing the power conversion operation between the plurality of element conversion units has been described for the power system of FIG. 5 (that is, the power system of m = n = 2). The present invention can also be applied to a power system corresponding to FIG. 4 (that is, a power system not limited to m = n = 2). In any case, when the control unit 13 causes only some of the element conversion units 11 [1] to 11 [n] to perform the power conversion operation, the control unit 13 performs the power conversion operation at the first timing. The element conversion unit and the element conversion unit that performs the power conversion operation at the second timing can be made different from each other. The second timing is an arbitrary timing different from the first timing. Of course, depending on the second timing (for example, when the second timing is a timing after a minute time has elapsed from the first timing), the element conversion unit that performs the power conversion operation may be common between the first and second timings. There is also.
 尚、図1等の電力システムにおいて、電力を出力する電力出力部(不図示)が電力変換部11に対し並列に接続されていても良く、該電力出力部は、太陽電池から成る太陽電池ユニット(不図示)であっても良い。例えば、太陽電池ユニットの電力出力端子はダイオードを介して電力ラインPLに接続され、太陽電池ユニットは、太陽光による発電電力に基づく直流電力を、電力ラインPLに接続された電力入力部に供給することができる。さらに太陽電池ユニットと電力変換部11の両方から電力入力部群14に対して電力供給が成される場合には、電力入力部群14の消費電力が不変であっても、太陽電池ユニットの発電電力が変化することで電力変換部11からの出力電力が変化する。従って、制御部13は、太陽電池ユニットの発電電力に応じて(電力変換部11から出力すべき電流量に応じて)、変換オン数CONNUMを変更するようにしても良い。図1等の電力システムに太陽電池ユニットが設けられている場合において、例えば、スイッチング部12内の複数のスイッチ回路がオンとされている状態からスイッチ回路12[1]のみがオンとされる状態へと遷移したとき、今まで複数の電力入力部に流れていた太陽電池ユニットの出力電流が全て電力入力部14[1]に流れることになり、電力入力部14[1]において過電流が生じうる(特に、図5に示す如く、電力入力部14[1]が電池部である場合には過電流の問題が大きくなりうる)。これを防止すべく、上記のような遷移が発生した場合、制御部13は、電力入力部14[1]へ供給される電流に制限を加えても良い。制御部13は、例えば、スイッチ回路12[1]の状態を周期的にオン又はオフ間で切り替えることにより、電力入力部14[1]へ供給される電流を制限することができる。 In the power system of FIG. 1 or the like, a power output unit (not shown) that outputs power may be connected in parallel to the power conversion unit 11, and the power output unit is a solar cell unit including a solar cell. (Not shown) may be used. For example, the power output terminal of the solar cell unit is connected to the power line PL via a diode, and the solar cell unit supplies DC power based on the power generated by sunlight to the power input unit connected to the power line PL. be able to. Further, when power is supplied from both the solar cell unit and the power conversion unit 11 to the power input unit group 14, even if the power consumption of the power input unit group 14 is unchanged, the power generation of the solar cell unit is performed. The output power from the power converter 11 changes as the power changes. Therefore, the control unit 13 may change the conversion ON number CON NUM in accordance with the generated power of the solar cell unit (in accordance with the amount of current to be output from the power conversion unit 11). In the case where the solar cell unit is provided in the power system of FIG. 1 or the like, for example, a state in which only the switch circuit 12 [1] is turned on from a state in which a plurality of switch circuits in the switching unit 12 are turned on. When the transition to, all output currents of the solar cell units that have been flowing to the plurality of power input units until now flow to the power input unit 14 [1], and overcurrent occurs in the power input unit 14 [1]. (In particular, as shown in FIG. 5, when the power input unit 14 [1] is a battery unit, the problem of overcurrent may be increased). In order to prevent this, when the above transition occurs, the control unit 13 may limit the current supplied to the power input unit 14 [1]. For example, the control unit 13 can limit the current supplied to the power input unit 14 [1] by periodically switching the state of the switch circuit 12 [1] between on and off.
 また、要素変換部11[1]~11[n]の最大出力容量は共通であっても良いが、要素変換部11[1]~11[n]の内、2以上の要素変換部の最大出力容量は互いに異なっていても良い。この場合、制御部13は、電力変換部11における変換効率がなるだけ高くなるように、電力変換部11から電力供給を受ける電力入力部群14の必要容量に応じて、電力変換動作を行わせる1以上の要素変換部を要素変換部11[1]~11[n]の中から選択するようにしても良い。要素変換部11[i]の最大出力容量とは、要素変換部11[i]が出力可能な最大電力値である。電力入力部群14の必要容量とは、その時々で電力入力部群14が必要としている電力の値に相当し、例えば、その電力の実測値若しくは設計値又は実測値と設計値に基づく電力値である。ここでは、最大出力容量及び必要容量が電力値であることを想定しているが、最大出力容量及び必要容量の単位は電流の単位であっても良い。 Further, the maximum output capacities of the element conversion units 11 [1] to 11 [n] may be common, but the maximum of two or more element conversion units among the element conversion units 11 [1] to 11 [n]. The output capacities may be different from each other. In this case, the control unit 13 causes the power conversion operation to be performed according to the required capacity of the power input unit group 14 that receives power supply from the power conversion unit 11 so that the conversion efficiency in the power conversion unit 11 is as high as possible. One or more element conversion units may be selected from the element conversion units 11 [1] to 11 [n]. The maximum output capacity of the element converter 11 [i] is the maximum power value that can be output by the element converter 11 [i]. The required capacity of the power input unit group 14 corresponds to the value of power required by the power input unit group 14 from time to time. For example, an actual value or design value of the power, or a power value based on the actual value and the design value It is. Here, it is assumed that the maximum output capacity and the required capacity are power values, but the unit of the maximum output capacity and the required capacity may be a unit of current.
 例えば、制御部13は、電力入力部群14の消費電力を測定するセンサ(不図示)の測定結果に基づき、電力入力部群14の必要容量を認識することができる。或いは例えば、制御部13は、スイッチ回路12[1]~12[m]の内、何れのスイッチ回路がオンになっているかを示す情報と、電力入力部ごとの所定の消費電力値とに基づき、電力入力部群14の必要容量を認識しても良い。 For example, the control unit 13 can recognize the necessary capacity of the power input unit group 14 based on the measurement result of a sensor (not shown) that measures the power consumption of the power input unit group 14. Alternatively, for example, the control unit 13 is based on information indicating which of the switch circuits 12 [1] to 12 [m] is turned on and a predetermined power consumption value for each power input unit. The necessary capacity of the power input unit group 14 may be recognized.
 具体的な例として、今、n=3であって、且つ、要素変換部11[1]、11[2]及び11[3]の最大出力容量が、夫々、100W、200W及び400W(ワット)である場合を考える。この場合において、制御部13は、電力入力部群14の必要容量が80Wであるとき要素変換部11[1]のみに電力変換動作を行わせ、電力入力部群14の必要容量が150Wであるとき要素変換部11[2]のみに電力変換動作を行わせ、電力入力部群14の必要容量が300Wであるとき要素変換部11[3]のみに電力変換動作を行わせると良い。電力入力部群14の必要容量が300Wであるとき、要素変換部11[3]を停止させる一方で要素変換部11[1]及び11[2]に電力変換動作を行わせるという方法も採用可能ではあるが、要素変換部を最大出力容量付近で動作させたときの変換効率は最も望ましい変換効率でないことも多い(図9参照)。故に、電力入力部群14の必要容量が300Wであるときには、要素変換部11[3]のみに電力変換動作を行わせた方が望ましい。従って例えば、制御部13は、電力入力部群14の必要容量が400Wであるときには要素変換部11[1]及び11[3]のみに電力変換動作を行わせ、電力入力部群14の必要容量が500Wであるときには要素変換部11[2]及び11[3]のみに電力変換動作を行わせると良い。このような電力変換動作の選択実行制御により、電力入力部群14の必要容量の変化に追従して、電力変換部11の変換効率を常に高い状態に保つことが可能となる。 As a specific example, n = 3 and the maximum output capacities of the element conversion units 11 [1], 11 [2], and 11 [3] are 100 W, 200 W, and 400 W (watts), respectively. Consider the case. In this case, the control unit 13 causes only the element conversion unit 11 [1] to perform the power conversion operation when the required capacity of the power input unit group 14 is 80 W, and the required capacity of the power input unit group 14 is 150 W. Sometimes, it is preferable that only the element conversion unit 11 [2] perform the power conversion operation, and when the necessary capacity of the power input unit group 14 is 300 W, only the element conversion unit 11 [3] performs the power conversion operation. When the required capacity of the power input unit group 14 is 300 W, a method of stopping the element conversion unit 11 [3] while allowing the element conversion units 11 [1] and 11 [2] to perform a power conversion operation may be employed. However, the conversion efficiency when the element conversion unit is operated near the maximum output capacity is often not the most desirable conversion efficiency (see FIG. 9). Therefore, when the required capacity of the power input unit group 14 is 300 W, it is desirable that only the element conversion unit 11 [3] perform the power conversion operation. Therefore, for example, when the required capacity of the power input unit group 14 is 400 W, the control unit 13 causes only the element conversion units 11 [1] and 11 [3] to perform the power conversion operation, and the required capacity of the power input unit group 14 When 500 is 500 W, it is preferable that only the element conversion units 11 [2] and 11 [3] perform the power conversion operation. By such execution control of the power conversion operation, it is possible to keep the conversion efficiency of the power conversion unit 11 always high following the change in the required capacity of the power input unit group 14.
 尚、図9に示すように低い出力容量で電力変換を行うと、最大出力容量付近で電力変換を行うときよりも変換効率が低下することがある。一方で、必要容量が変動した場合にも対応できるようにするためには、最大出力容量に対して一定のマージンがあり、かつ、高い変換効率となる出力容量で電力変換を行うのが好ましい(例えば図9で変換効率が最大となる付近)。従って、容量に関する具体的な数値を挙げて上述した動作例(電力変換動作の選択実行制御の例)は、あくまで一例に過ぎず、電力変換動作を行わせる要素変換部は、各要素変換部の最大出力容量及び電力入力部群14の必要容量だけでなく、各要素変換部の変換効率特性(変換効率の出力容量依存性)及び上記マージンにも依存して、変化しうる。よって例えば、制御部13は、要素変換部の最大出力容量に対するマージン(所定の余裕度)と要素変換部の変換効率特性とに基づき、動作させるべき出力容量の値(例えば図9で変換効率が最大となる付近の値)を要素変換部ごとに設定し、その設定値と電力入力部群14の必要容量に基づき、実際に電力変換動作を行わせる要素変換部の選択を行うようにしても良い。 As shown in FIG. 9, when power conversion is performed with a low output capacity, conversion efficiency may be lower than when power conversion is performed near the maximum output capacity. On the other hand, it is preferable to perform power conversion with an output capacity that has a certain margin with respect to the maximum output capacity and has high conversion efficiency in order to be able to cope with a change in required capacity ( For example, in the vicinity of the maximum conversion efficiency in FIG. 9). Accordingly, the above-described operation example (example of the power conversion operation selection execution control) with specific numerical values regarding the capacity is merely an example, and the element conversion units that perform the power conversion operation are Not only the maximum output capacity and the required capacity of the power input unit group 14 but also the conversion efficiency characteristics of each element conversion unit (depending on the output capacity of the conversion efficiency) and the margin can vary. Thus, for example, the control unit 13 determines the value of the output capacity to be operated (for example, the conversion efficiency in FIG. (A value near the maximum) is set for each element conversion unit, and the element conversion unit that actually performs the power conversion operation is selected based on the set value and the necessary capacity of the power input unit group 14. good.
<<第2実施形態>>
 本発明の第2実施形態を説明する。図6は、第2実施形態に係る電力システムの概略的な全体構成図である。
<< Second Embodiment >>
A second embodiment of the present invention will be described. FIG. 6 is a schematic overall configuration diagram of a power system according to the second embodiment.
 図6の電力システムは、バッテリ充放電制御ユニット(以下、BMU(Battery Management Unit)という)31と、複数の電力ブロック単位基板を有して構成されるバッテリ充放電スイッチ回路ユニット(以下、BSU(Battery Switching Unit)という)32と、を備える。本実施形態において、基板とは、電子部品を実装したプリント基板を指す。図7に示す如く、BSU32に、電力の出力を行う又は電力の入力を受ける複数の電力ブロックPPを接続することができ、BSU32に接続されるべき電力ブロックPPの個数に合わせた個数の電力ブロック単位基板UUをBSU32に設けておくことができる。 The power system of FIG. 6 includes a battery charge / discharge control unit (hereinafter referred to as BMU (Battery Management Unit)) 31 and a battery charge / discharge switch circuit unit (hereinafter referred to as BSU (hereinafter referred to as BSU)). Battery Switching Unit) 32). In the present embodiment, the board refers to a printed board on which electronic components are mounted. As shown in FIG. 7, a plurality of power blocks PP that output power or receive power can be connected to the BSU 32, and the number of power blocks according to the number of power blocks PP to be connected to the BSU 32. The unit substrate UU can be provided in the BSU 32.
 図6の例では、3つの電力ブロック単位基板UUが、電力ブロック単位基板UU[1]~UU[3]としてBSU32に設けられている。AC/DCコンバータ61A及び交流電力源61Bから成る第1の電力ブロックPPが第1の電力ブロック単位基板UU[1]に接続され、電池部62から成る第2の電力ブロックPPが第2の電力ブロック単位基板UU[2]に接続され、DC/DCコンバータ63A及びDC負荷63Bから成る第3の電力ブロックPPが第3の電力ブロック単位基板UU[3]に接続されている。 In the example of FIG. 6, three power block unit substrates UU are provided in the BSU 32 as power block unit substrates UU [1] to UU [3]. The first power block PP composed of the AC / DC converter 61A and the AC power source 61B is connected to the first power block unit substrate UU [1], and the second power block PP composed of the battery unit 62 is the second power. A third power block PP connected to the block unit substrate UU [2] and composed of the DC / DC converter 63A and the DC load 63B is connected to the third power block unit substrate UU [3].
 各電力ブロック単位基板UUには、スイッチ回路、マイクロコンピュータ(以下、マイコンという)及び保護回路が実装されている。電力ブロック単位基板UU[i]におけるスイッチ回路、マイコン及び保護回路を、夫々、符号41[i]、42[i]及び43[i]によって参照する。各電力ブロック単位基板UUにおいて、マイコン42[i]は、スイッチ回路41[i]及び保護回路43[i]の動作を制御することができる。スイッチ回路41[i]は、第1実施形態のスイッチング部12内の各スイッチ回路と同様のものである。図6の構成例では、マイコン42[i]が実装される第1基板と、スイッチ回路41[i]及び保護回路43[i]が実装される第2基板が別になっており、第1及び第2基板を合わせたものを電力ブロック単位基板UU[i]と呼んでいる。尚、第1及び第2基板を1つの基板にまとめてもよい。 A switch circuit, a microcomputer (hereinafter referred to as a microcomputer) and a protection circuit are mounted on each power block unit substrate UU. The switch circuit, the microcomputer, and the protection circuit in the power block unit substrate UU [i] are referred to by reference numerals 41 [i], 42 [i], and 43 [i], respectively. In each power block unit substrate UU, the microcomputer 42 [i] can control the operations of the switch circuit 41 [i] and the protection circuit 43 [i]. The switch circuit 41 [i] is the same as each switch circuit in the switching unit 12 of the first embodiment. In the configuration example of FIG. 6, the first board on which the microcomputer 42 [i] is mounted and the second board on which the switch circuit 41 [i] and the protection circuit 43 [i] are mounted are separated. A combination of the second substrates is called a power block unit substrate UU [i]. Note that the first and second substrates may be combined into one substrate.
 BSU32には、電力ブロック単位基板UU[1]~UU[3]に対して共通のバスラインである電力ラインPBUSが、電力ブロック単位基板UU[1]~UU[3]を横断するように設けられており、電力ブロック単位基板UU[1]~UU[3]は、少なくとも電力ラインPBUSを介して互いに接続されている。電力ラインPBUSは、負側の電位を有する負側電力ラインと正側の電位を有する正側電力ラインとから成る。 The BSU32, so that the power line P BUS is common bus line to the power block unit substrate UU [1] ~ UU [3 ], transverse to the power block substrate UU [1] ~ UU [3 ] The power block unit substrates UU [1] to UU [3] are connected to each other through at least the power line PBUS . The power line PBUS includes a negative power line having a negative potential and a positive power line having a positive potential.
 交流電力源61Bは、所定の電圧値及び周波数の交流電力を出力する電力源である。交流電力源61Bは、商用交流電源であっても良い。AC/DCコンバータ61Aは、交流電力源61Bからの交流電圧を直流電圧に変換して該直流電圧を自身の出力端子T[1]から出力する。スイッチ回路41[1]は、電力ラインPBUSとAC/DCコンバータ61Aの出力端子T[1]との間に直列に介在している。スイッチ回路41[1]がオンのときのみ、AC/DCコンバータ61Aの出力直流電圧が電力ラインPBUSに印加され(より詳細には、電力ラインPBUSを形成する負側電力ライン及び正側電力ライン間に印加され)、スイッチ回路41[1]がオフのとき、AC/DCコンバータ61Aは、電力ラインPBUSから遮断される。 The AC power source 61B is a power source that outputs AC power having a predetermined voltage value and frequency. The AC power source 61B may be a commercial AC power source. The AC / DC converter 61A converts the AC voltage from the AC power source 61B into a DC voltage, and outputs the DC voltage from its output terminal T [1]. The switch circuit 41 [1] is interposed in series between the power line PBUS and the output terminal T [1] of the AC / DC converter 61A. Only when the switch circuit 41 [1] is ON, the output DC voltage of the AC / DC converter 61A is applied to the power line PBUS (more specifically, the negative power line and the positive power that form the power line PBUS). When the switch circuit 41 [1] is off, the AC / DC converter 61A is disconnected from the power line PBUS .
 スイッチ回路41[2]は、電力ラインPBUSと電池部62の入出力端子T[2]との間に直列に介在している。スイッチ回路41[2]がオンのときのみ、電池部62の入出力端子T[2]が電力ラインPBUSに接続され、電力ラインPBUSを介した電池部62の充電又は放電が可能となる。 The switch circuit 41 [2] is interposed in series between the power line PBUS and the input / output terminal T [2] of the battery unit 62. The switch circuit 41 [2] when on only input and output terminals T of the battery unit 62 [2] is connected to the power line P BUS, it is possible to charge or discharge of the battery 62 via the power line P BUS .
 スイッチ回路41[3]は、電力ラインPBUSとDC/DCコンバータ63Aの入力端子T[3]との間に直列に介在している。スイッチ回路41[3]がオンのときのみ、電力ラインPBUSに印加された直流電圧が入力端子T[3]に加わり、スイッチ回路41[3]がオフのとき、DC/DCコンバータ63Aは電力ラインPBUSから遮断される。DC/DCコンバータ63Aは、入力端子T[3]に印加された直流電圧を他の直流電圧に変換し、該他の直流電圧をDC負荷63Bに出力する。DC負荷63Bは、DC/DCコンバータ63Aの出力直流電圧を駆動電圧として用いて駆動する直流負荷である。 Switching circuit 41 [3] is interposed in series between the input terminal T of the power line P BUS and the DC / DC converter 63A [3]. Only when the switch circuit 41 [3] is on, the DC voltage applied to the power line PBUS is applied to the input terminal T [3]. When the switch circuit 41 [3] is off, the DC / DC converter 63A Disconnected from line PBUS . The DC / DC converter 63A converts the DC voltage applied to the input terminal T [3] into another DC voltage, and outputs the other DC voltage to the DC load 63B. The DC load 63B is a DC load that is driven using the output DC voltage of the DC / DC converter 63A as a drive voltage.
 電力ブロック単位基板UU[i]において(iは任意の整数)、マイコン42[i]はスイッチ回路41[i]のオン又はオフの切り替え制御を行い、保護回路43[i]は、異常の発生時(例えば、スイッチ回路41[i]の異常発熱時)においてスイッチ回路41[i]を強制的にオフにする。 In the power block unit substrate UU [i] (i is an arbitrary integer), the microcomputer 42 [i] performs on / off switching control of the switch circuit 41 [i], and the protection circuit 43 [i] generates an abnormality. At the time (for example, when the switch circuit 41 [i] abnormally generates heat), the switch circuit 41 [i] is forcibly turned off.
 互いに隣接するマイコン42[1]及び42[2]間で通信が可能であると共に、互いに隣接するマイコン42[2]及び42[3]間で通信が可能であり、更に、マイコン42[3]及びBMU31間で通信が可能である。これにより、任意のマイコン42[i]とBMU31との間で通信が可能となっている。但し、任意のマイコン42[i]とBMU31との間で通信が可能となる限り、マイコン42[1]~42[3]及びBMU31の接続方法は任意である。BMU31は、マイコン42[1]~42[3]との通信を利用してマイコン42[1]~42[3]に各種指令を出力することができ、これによって、スイッチ回路41[1]~41[3]のオン又はオフを制御することもできる。 Communication is possible between the microcomputers 42 [1] and 42 [2] adjacent to each other, communication is possible between the microcomputers 42 [2] and 42 [3] adjacent to each other, and the microcomputer 42 [3]. And BMU 31 can communicate with each other. Thereby, communication is possible between the arbitrary microcomputer 42 [i] and the BMU 31. However, as long as communication is possible between any microcomputer 42 [i] and the BMU 31, the connection methods of the microcomputers 42 [1] to 42 [3] and the BMU 31 are arbitrary. The BMU 31 can output various commands to the microcomputers 42 [1] to 42 [3] using the communication with the microcomputers 42 [1] to 42 [3], and thereby the switch circuits 41 [1] to 42 [3]. It is also possible to control on or off of 41 [3].
 図6の電力システムに対して、第1実施形態で述べた技術を適用することができる。この適用の際、スイッチ回路41[1]、スイッチ回路41[2]、スイッチ回路41[3]及び電力ラインPBUSを、夫々、第1実施形態のスイッチ回路15、スイッチ回路12[1]、スイッチ回路12[2]及び電力ラインPLとみなすと共に、電池部62を第1実施形態の電力入力部14[1]とみなし、更に、DC/DCコンバータ63A及びDC負荷63Bを第1実施形態の電力入力部14[2]とみなせばよい(図2及び図5参照)。その上で、AC/DCコンバータ61Aとして第1実施形態の電力変換部11を用いることができる。BMU31は、第1実施形態で述べた方法に従い、変換オン数CONNUMを制御することができると共に、電力変換動作を実行させる要素変換部を複数の要素変換部間で切り替える処理を成すことができる。図6の構成例では、BMU31とマイコン42[1]~マイコン42[3]をまとめたものが第1実施形態の制御部13として機能していると言え、スイッチ回路41[2]及び41[3]を含む部位が第1実施形態のスイッチング部12として機能していると言える。 The technique described in the first embodiment can be applied to the power system of FIG. In this application, the switch circuit 41 [1], the switch circuit 41 [2], the switch circuit 41 [3], and the power line PBUS are respectively connected to the switch circuit 15, the switch circuit 12 [1], The battery unit 62 is regarded as the power input unit 14 [1] of the first embodiment, and the DC / DC converter 63A and the DC load 63B are further regarded as the switch circuit 12 [2] and the power line PL. What is necessary is just to consider it as the electric power input part 14 [2] (refer FIG.2 and FIG.5). In addition, the power converter 11 of the first embodiment can be used as the AC / DC converter 61A. The BMU 31 can control the conversion ON number CON NUM according to the method described in the first embodiment, and can perform a process of switching an element conversion unit that executes a power conversion operation among a plurality of element conversion units. . In the configuration example of FIG. 6, it can be said that a combination of the BMU 31 and the microcomputers 42 [1] to 42 [3] functions as the control unit 13 of the first embodiment, and the switch circuits 41 [2] and 41 [ 3] can be said to function as the switching unit 12 of the first embodiment.
 図6の電力システムでは、3つの電力ブロックPP間で送電及び受電が行われるが、4以上の電力ブロックPP間で送電及び受電が行われるようにBSU32を形成することもできる。この場合も、第1実施形態で述べた方法に従って、変換オン数CONNUMなどの制御を行うことができる。 In the power system of FIG. 6, power transmission and power reception are performed between three power blocks PP, but the BSU 32 may be formed so that power transmission and power reception is performed between four or more power blocks PP. Also in this case, the conversion ON number CON NUM and the like can be controlled according to the method described in the first embodiment.
 複数の電力ブロックPP間で送電及び受電を行う場合、従来システムでは、システムの構成に合わせて当該システムの専用基板を開発及び作成する必要があったが、本実施形態に係る電力システムによれば、このようなシステムごとの専用基板の開発及び作成は不要となる。送電又は受電を行う電力ブロックPPの個数に応じて必要枚数の電力ブロック単位基板UUをBSU32内に配置し、各電力ブロック単位基板UUにおける動作をBMU31にて統括管理することで、専用基板を用意した場合と同様の作用を得ることができる。BSU32に設けられる電力ブロック単位基板UUを共通化しておけば、基板開発の時間削減効果や保守性向上効果が期待される。また、電力システムを一旦形成した後、新たな電力ブロックPPを追加したい場合には、BSU32に電力ブロック単位基板UUを追加するだけで、新たな電力ブロックPPを電力システムに組み込むことができる。即ち、本実施形態の電力システムは高い拡張性を有している。通常、電力システムの拡張等を行うと負荷量等が変化するが、上述した電力変換動作の実行制御を行うことにより、拡張後においても高い変換効率を維持することが可能になる。 When transmitting and receiving power between a plurality of power blocks PP, in the conventional system, it is necessary to develop and create a dedicated board for the system according to the system configuration. According to the power system according to the present embodiment, however, Thus, development and creation of a dedicated board for each system is not necessary. A dedicated board is prepared by arranging the required number of power block unit boards UU in the BSU 32 according to the number of power blocks PP that transmit or receive power and centrally manage the operations in each power block unit board UU with the BMU 31. The same effect as that obtained can be obtained. If the power block unit substrate UU provided in the BSU 32 is shared, it is expected that the substrate development time can be reduced and the maintainability can be improved. In addition, when it is desired to add a new power block PP after forming the power system once, the new power block PP can be incorporated into the power system simply by adding the power block unit board UU to the BSU 32. That is, the power system of this embodiment has high expandability. Normally, when the power system is expanded or the like, the load amount or the like changes. However, by performing the above-described execution control of the power conversion operation, it is possible to maintain high conversion efficiency even after the expansion.
 <<変形等>>
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態に適用可能な注釈事項として、以下に、注釈1~注釈4を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
<< Deformation, etc. >>
The embodiment of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims. The above embodiment is merely an example of the embodiment of the present invention, and the meaning of the term of the present invention or each constituent element is not limited to that described in the above embodiment. The specific numerical values shown in the above description are merely examples, and as a matter of course, they can be changed to various numerical values. As annotation items applicable to the above-described embodiment, annotations 1 to 4 are described below. The contents described in each comment can be arbitrarily combined as long as there is no contradiction.
[注釈1]
 図1等に示される電力システムでは、制御部13が電力変換部11の外側に設けられているが、制御部13は電力変換部11内に設けられていても構わない。
[Note 1]
In the power system shown in FIG. 1 and the like, the control unit 13 is provided outside the power conversion unit 11, but the control unit 13 may be provided in the power conversion unit 11.
[注釈2]
 上述の各実施形態の電力システムは、電力制御装置として機能する又は電力制御装置を内包していると考えることができる。
[Note 2]
It can be considered that the power system of each of the embodiments described above functions as a power control device or includes the power control device.
[注釈3]
 上述の各実施形態の電力システム又は電力制御装置を、電力変換部11又はAC/DCコンバータ61Aの出力電力を用いて駆動する移動体(電動車両、船、航空機、エレベータ、歩行ロボット等)又は電子機器(パーソナルコンピュータ、携帯端末等)に搭載しても良いし、家屋や工場の電力システムに組み込んでも良い。
[Note 3]
A mobile body (an electric vehicle, a ship, an aircraft, an elevator, a walking robot, etc.) or an electronic device that drives the power system or power control device of each embodiment described above using the output power of the power converter 11 or the AC / DC converter 61A You may mount in apparatus (a personal computer, a portable terminal, etc.), and you may incorporate in the electric power system of a house or a factory.
[注釈4]
 上述の各実施形態の電力システム又は電力制御装置にて実現される機能の全部又は一部を、ソフトウェアを用いて実現しても構わない。ソフトウェアを用いて実現される機能をプログラムとして記述し、該プログラムをプログラム実行装置(例えばコンピュータ)上で実行することによって、その機能を実現するようにしてもよい。
[Note 4]
You may implement | achieve all or one part of the function implement | achieved with the electric power system or electric power control apparatus of each above-mentioned embodiment using software. A function realized using software may be described as a program, and the function may be realized by executing the program on a program execution device (for example, a computer).
 11 電力変換部
 11[1]~11[n] 要素変換部
 12 スイッチング部
 12[1]~12[m] スイッチ回路
 13 制御部
 14 電力入力部群
 14[1]~14[m] 電力入力部
 15 スイッチ回路
 PL 電力ライン
DESCRIPTION OF SYMBOLS 11 Power conversion part 11 [1] -11 [n] Element conversion part 12 Switching part 12 [1] -12 [m] Switch circuit 13 Control part 14 Power input part group 14 [1] -14 [m] Power input part 15 Switch circuit PL Power line

Claims (4)

  1.  入力電圧を出力電圧に変換する電力変換部と、
     前記電力変換部の動作を制御する制御部と、を備えた電力制御装置において、
     前記電力変換部は、各々が前記入力電圧を前記出力電圧に変換する複数の要素変換部を備え、
     前記制御部は、各要素変換部において変換動作を実行させるか否かを制御し、前記電力変換部から電力供給を受ける電力入力部の個数に応じて又は前記電力変換部の出力電流に応じて、前記変換動作を実行させる前記要素変換部の個数を制御する
    ことを特徴とする電力制御装置。
    A power converter that converts input voltage to output voltage;
    In a power control device comprising a control unit that controls the operation of the power conversion unit,
    The power conversion unit includes a plurality of element conversion units each converting the input voltage to the output voltage,
    The control unit controls whether to perform a conversion operation in each element conversion unit, and according to the number of power input units that receive power supply from the power conversion unit or according to the output current of the power conversion unit A power control apparatus that controls the number of the element conversion units that execute the conversion operation.
  2.  前記制御部は、第1タイミングと前記第1タイミングと異なる第2タイミングの夫々において、前記複数の要素変換部の内の一部の要素変換部にのみ前記変換動作を行わせる際、前記第1タイミングにおいて前記変換動作を行わせる要素変換部と前記第2タイミングにおいて前記変換動作を行わせる要素変換部とを互いに異ならせる
    ことを特徴とする請求項1に記載の電力制御装置。
    When the control unit causes only a part of the plurality of element conversion units to perform the conversion operation at each of a first timing and a second timing different from the first timing, The power control apparatus according to claim 1, wherein an element conversion unit that performs the conversion operation at a timing and an element conversion unit that performs the conversion operation at the second timing are different from each other.
  3.  前記電力変換部からの前記出力電圧が加わる電力ラインと、
     前記電力ラインと複数の電力入力部との間に介在し、前記制御部による制御の下、前記電力ラインと各電力入力部との間を接続又は遮断するスイッチング部を備え、
     前記個数は、前記スイッチング部を介して前記電力ラインに接続される前記電力入力部の個数である
    ことを特徴とする請求項1又は請求項2に記載の電力制御装置。
    A power line to which the output voltage from the power converter is applied;
    A switching unit interposed between the power line and a plurality of power input units, and connected or cut off between the power line and each power input unit under the control of the control unit,
    The power control apparatus according to claim 1 or 2, wherein the number is the number of the power input units connected to the power line via the switching unit.
  4.  入力電圧を出力電圧に変換する電力変換部と、
     前記電力変換部の動作を制御する制御部と、を備えた電力制御装置において、
     前記電力変換部は、各々が前記入力電圧を前記出力電圧に変換する複数の要素変換部を備え、
     前記複数の要素変換部は、最大出力容量が互いに異なる2以上の要素変換部を含み、
     前記制御部は、各要素変換部において変換動作を実行させるか否かを制御し、前記電力変換部から電力供給を受ける電力入力部の必要容量に応じて、前記変換動作を実行させる要素変換部を前記複数の要素変換部の中から選択する
    ことを特徴とする電力制御装置。
    A power converter that converts input voltage to output voltage;
    In a power control device comprising a control unit that controls the operation of the power conversion unit,
    The power conversion unit includes a plurality of element conversion units each converting the input voltage to the output voltage,
    The plurality of element converters include two or more element converters having different maximum output capacities,
    The control unit controls whether or not to execute a conversion operation in each element conversion unit, and performs the conversion operation according to a required capacity of a power input unit that receives power supply from the power conversion unit Is selected from the plurality of element conversion units.
PCT/JP2012/074618 2011-09-28 2012-09-26 Power controller WO2013047543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011212544 2011-09-28
JP2011-212544 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047543A1 true WO2013047543A1 (en) 2013-04-04

Family

ID=47995574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074618 WO2013047543A1 (en) 2011-09-28 2012-09-26 Power controller

Country Status (1)

Country Link
WO (1) WO2013047543A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3259152A4 (en) * 2015-02-18 2018-09-12 Kitty Hawk Corporation Electric vehicle power distribution system
US11515584B1 (en) 2021-11-10 2022-11-29 Beta Air, Llc Systems and methods for aircraft power management and distribution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129256A (en) * 1993-11-01 1995-05-19 Fujitsu Ltd Power supply device with output correcting function
JP2003527062A (en) * 2000-03-14 2003-09-09 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Improved efficiency of polyphase switching power supplies during low power modes
JP2009140138A (en) * 2007-12-05 2009-06-25 Nec Corp Power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129256A (en) * 1993-11-01 1995-05-19 Fujitsu Ltd Power supply device with output correcting function
JP2003527062A (en) * 2000-03-14 2003-09-09 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Improved efficiency of polyphase switching power supplies during low power modes
JP2009140138A (en) * 2007-12-05 2009-06-25 Nec Corp Power supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3259152A4 (en) * 2015-02-18 2018-09-12 Kitty Hawk Corporation Electric vehicle power distribution system
US10744890B2 (en) 2015-02-18 2020-08-18 Wisk Aero Llc Electric vehicle power distribution system
US11515584B1 (en) 2021-11-10 2022-11-29 Beta Air, Llc Systems and methods for aircraft power management and distribution

Similar Documents

Publication Publication Date Title
EP2988387B1 (en) Power control system, power control device, and method for controlling power control system
EP2899606B1 (en) Power conditioner, and method for controlling same
EP2737603B1 (en) Single-battery power topologies for online ups systems
EP3742572B1 (en) Photovoltaic power generation system and photovoltaic power transmission method
CN104393666B (en) Power supply system for data center
EP2988388B1 (en) Power control system, power control device, and method for controlling power control system
JP5330941B2 (en) Equipment control system
US8723364B2 (en) Uninterruptible power supply having integrated charge/discharge circuit
KR20130124772A (en) System and method for converting electric power, and apparatus and method for controlling the system
CN103904726A (en) System for common redundant bypass feed paths in uninterruptible power supplies
CN105515167A (en) Uninterruptible power supply UPS device and power supply method thereof
US20150303731A1 (en) Electric Energy Storage Device
JP2011151952A (en) Power supply device
JP2015027210A (en) Parallel-type power supply
JP2017514432A (en) Device and method for wiring a battery management system
KR101226628B1 (en) Series voltage compensation apparatus for solar generating system
JP2006230029A (en) Uninterruptible power supply unit
JP2012120414A (en) Dc power supply system and bidirectional power conversion device
JP2017184607A (en) Power distribution system and power combination circuit
CN108054409B (en) Thermoelectric system and method for active temperature control of fuel cell
WO2013047543A1 (en) Power controller
WO2016111080A1 (en) Power control system
JP2013038871A (en) Switching device
KR102176094B1 (en) Energy storage system including energy storage device
WO2006136100A1 (en) Power supplying device and power supplying method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP