WO2013047223A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2013047223A1
WO2013047223A1 PCT/JP2012/073475 JP2012073475W WO2013047223A1 WO 2013047223 A1 WO2013047223 A1 WO 2013047223A1 JP 2012073475 W JP2012073475 W JP 2012073475W WO 2013047223 A1 WO2013047223 A1 WO 2013047223A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
carbon atoms
allyl
optical
Prior art date
Application number
PCT/JP2012/073475
Other languages
French (fr)
Japanese (ja)
Inventor
浩文 井上
喜彦 前田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2013047223A1 publication Critical patent/WO2013047223A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/08Allyl alcohol
    • C08F216/085Allyl alcohol alkoxylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Definitions

  • the present invention relates to a curable composition. More specifically, the present invention relates to a curable composition from which an optical resin film or sheet having high flexibility and excellent heat resistance, transparency, and surface hardness can be obtained by curing.
  • Patent Document 1 International Publication No. 02/33447 pamphlet (EP1331494) A1)
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-197102 (US2009 / 209718 A1)
  • Patent Document 3 Japanese Patent Laid-Open No.
  • Examples of resins that have been used as glass substitutes include polycarbonate (PC) and polyethylene terephthalate (PET) from the viewpoint of having good mechanical strength and excellent transparency, and each has a glass transition temperature of 70.
  • the temperature is about 140 ° C. and the heat resistance is not sufficient, and the usage is limited.
  • a cured product obtained by polymerizing and curing a polyvalent allyl ester compound has higher heat resistance and transparency than polycarbonate (PC) and polyethylene terephthalate (PET), but has sufficient flexibility depending on the application. In addition to transparency and heat resistance, moderate flexibility is strongly desired.
  • thermosetting resin As a method for improving the flexibility of a thermosetting resin, introduction of a highly flexible skeleton represented by a polyether skeleton into a molecular chain (for example, Patent Document 6: JP-A-2007-138002), core shell Addition of a rubber-like rubber (for example, Patent Document 7: JP 2011-57734 A) and introduction of a thermoplastic resin (for example, Patent Document 8: JP 2010-202862 A) have been performed.
  • problems such as a decrease in light resistance and transparency, and a decrease in handling properties due to an increase in viscosity.
  • An object of the present invention is to provide a curable composition suitable for the production of a film or sheet having transparency required for optical applications, high flexibility, excellent heat resistance, handling properties, and high surface hardness. It is what.
  • the present invention provides the following curable compositions [1] to [12], an optical material [13], an optical film [14], an optical sheet, an optical waveguide, an optical lens, an optical sealant,
  • the present invention relates to an optical adhesive or a light guide plate.
  • the allyl group-terminated allyl ester oligomer (B) is further represented by the general formula (6) (Wherein R 3 represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 5 represents a cycloalkylene group or substituent having 5 to 10 carbon atoms which may have a substituent. Represents an optionally substituted alkylene group having 2 to 10 carbon atoms, and q represents an arbitrary natural number.) 2.
  • the curable composition according to item 1 which has a structure represented by: [3] 1 to 40 parts by mass of the allyl group-terminated allyl ester oligomer (B) and 5 to 60 parts by mass of the polyfunctional (meth) acrylic compound (C) with respect to 100 parts by mass of the allyl group-terminated allyl ester oligomer (A). 1 or 2 containing 0.1 to 10 parts by mass of a photopolymerization initiator (D1) as a polymerization initiator (D) and 0.1 to 10 parts by mass of a thermal polymerization initiator (D2) as a polymerization initiator (D)
  • D1 photopolymerization initiator
  • D2 thermal polymerization initiator
  • X 1 and X 2 in the general formulas (1) and (2) may each independently have a substituent, 1,2-cyclohexylene group, 1,3-cyclohexane 4.
  • the curable composition according to any one of items 1 to 3, which is a xylene group, 1,4-cyclohexylene group, or norbornylene group.
  • Y 1 in the general formula (2) is an organic residue derived from a polyhydric alcohol having 3 to 4 hydroxyl groups and having 5 to 10 carbon atoms
  • the allyl group-terminated allyl ester oligomer (A) is represented by the following formula: (Wherein r represents an arbitrary natural number), or (In the formula, s represents an arbitrary natural number.) 6.
  • the curable composition according to any one of 1 to 5 above, [7] X 3 , X 4 and X 5 in the general formulas (3), (5) and (6) are each independently 1,2-cyclohexylene group or 1,3-cyclohexylene group 7.
  • R 1 represents R 4
  • R 2 represents R 5
  • X 3 and X 4 are 1,4-cyclohexylene groups (7)
  • R 4 and R 5 each independently represents a 1,6-hexylene group or a 2-methyl-1,5-pentylene group, and n and m represent an arbitrary natural number.
  • the curable composition of the present invention is characterized by including the following components (A) to (D).
  • Allyl group-terminated allyl ester oligomer The main component of the curable composition of the present invention, having three or more terminal groups represented by the following general formula (1), and having a structure represented by the following general formula (2) It is a component that contributes to the development of heat resistance.
  • X 1 represents an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure.
  • X 2 represents an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure.
  • Y 1 represents an organic residue derived from a polyhydric alcohol having 2 to 20 carbon atoms and having 3 to 6 hydroxyl groups. However, Y 1 may have a branched structure having a structural unit represented by the above general formula (2) by an ester bond and having a group represented by the above general formula (1) as a terminal group.
  • X 1 and X 2 in the general formulas (1) and (2) represent an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure.
  • 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene which may have a substituent may be obtained because a cured product having excellent heat resistance can be obtained.
  • Group, norbornylene group and bicyclodecylene group are preferable, and the radical polymerizable compound has relatively low viscosity and high handling property, and therefore may have a substituent, 1,2-cyclohexylene group, 1, More preferred are 3-cyclohexylene group, 1,4-cyclohexylene group and norbornylene group.
  • X 1 and X 2 may be the same or different. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms.
  • Y 1 in the general formula (2) represents an organic residue derived from a polyhydric alcohol having 2 to 20 carbon atoms and having 3 to 6 hydroxyl groups.
  • Specific examples include 1-methylethylene group, 2-methylethylene group, 1-methyl-propylene group, 2-methyl-propylene group, 2-ethyl-3-propylpropylene group, 2-ethyl-2-butylpropylene group.
  • the number of hydroxyl groups is 2 or less, heat resistance and surface hardness are lowered.
  • the number of hydroxyl groups is 7 or more, gelation may occur when the allyl group-terminated allyl ester oligomer is synthesized, or the viscosity of the oligomer may become too high.
  • organic residues derived from polyhydric alcohols having 3 or 4 hydroxyl groups and 5 to 10 carbon atoms are preferable, and organic residues derived from trimethylolpropane and pentaerythritol are more preferable.
  • the number of hydroxyl groups is 5 or more, gelation tends to occur during oligomer synthesis.
  • some hydroxyl groups of the polyhydric alcohol may remain as hydroxyl groups without ester bonding.
  • At least one structural unit represented by the general formula (2) is required in the (A) allyl group-terminated allyl ester oligomer, but since an appropriate viscosity is obtained, workability is improved and toughness of the cured product is obtained. Therefore, it is better to repeat this structure to increase the molecular weight of the whole (A) allyl group-terminated allyl ester oligomer to some extent. However, if the molecular weight becomes too large, the molecular weight between cross-linking points becomes excessively large, the glass transition temperature (Tg) is lowered, and the heat resistance is lowered. Therefore, the number average molecular weight of the allyl ester oligomer of component (A) is preferably 500 to 50,000, and more preferably 800 to 10,000.
  • allyl group-terminated allyl ester oligomer (A) having the structure represented by the general formulas (1) and (2) one type of compound may be used alone, or two or more types may be used in combination.
  • Specific examples of the allyl group-terminated allyl ester oligomer (A) include those represented by the following formulae.
  • r represents an arbitrary natural number.
  • s represents an arbitrary natural number.
  • An allyl group-terminated allyl ester oligomer (A) having an allyl group and an ester structure is (1) an esterification reaction between a compound containing an allyl group and a hydroxyl group (hereinafter collectively referred to as allyl alcohol) and a compound containing a carboxyl group, It can be obtained by (2) an esterification reaction between a compound containing an allyl group and a carboxyl group and a compound containing a hydroxyl group, or (3) an ester exchange reaction between an ester compound consisting of allyl alcohol and dicarboxylic acid and a polyhydric alcohol.
  • Allyl group terminal allyl ester oligomer It is a characteristic component in the curable composition of the present invention, contains a terminal group represented by the following general formulas (3) and (4), and a structure represented by the following general formula (5), This component contributes to the development of the flexibility of the cured product having an average molecular weight of 500 to 50,000.
  • X 3 represents an optionally substituted cycloalkylene group having 5 to 10 carbon atoms or an optionally substituted alkylene group having 2 to 10 carbon atoms.
  • each of R 1 and R 2 independently represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 4 has 5 to 10 carbon atoms which may have a substituent. It represents a cycloalkylene group or an alkylene group having 2 to 10 carbon atoms which may have a substituent, and n and m represent any natural number.
  • the allyl group terminal allyl ester oligomer (B) may further have a structure represented by the general formula (6).
  • R 3 represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch
  • X 5 represents a cycloalkylene group or substituent having 5 to 10 carbon atoms which may have a substituent.
  • q represents an arbitrary natural number.
  • the number average molecular weight of the allyl group-terminated allyl ester oligomer (B) is from 500 to 50,000, more preferably from 1,000 to 10,000, and even more preferably from 1,500 to 5,000.
  • the number average molecular weight is a molecular weight in terms of polystyrene measured by GPC. When the number average molecular weight is less than 500, the effect of imparting flexibility may be lowered. If it exceeds 50,000, the viscosity of the allyl group-terminated allyl ester oligomer (B) increases and the handling property decreases. In addition, the compatibility with the polyvalent allyl ester compound is reduced, and the cured product may be whitened.
  • N and m in the general formula (5) are arbitrary natural numbers.
  • the number average molecular weight of the allyl group-terminated allyl ester oligomer (B) has a distribution of 500 to 50,000.
  • the values of n and m indicate the number of repetitions that is the number average molecular weight. Therefore, the values of n and m cannot be uniquely determined, but n is 1 to 500 and m is 1 to 180. More preferably, n is 1 to 300, m is 1 to 120, more preferably n is 1 to 150, and m is 1 to 100.
  • Q in the general formula (6) is an arbitrary natural number. Although it cannot be uniquely determined for the same reason as in the case of n and m, q is 1 to 500. More preferably, it is 1 to 120, and further preferably 1 to 100.
  • X 3 , X 4 and X 5 in the general formulas (3), (5) and (6) may have a cycloalkylene group having 5 to 10 carbon atoms or a substituent which may have a substituent.
  • X 3 , X 4 and X 5 are preferably the same, but may be different.
  • Method for producing allyl terminal allyl ester oligomer (B) will be described later, using a dicarboxylic acid diallyl ester containing the structure of X 3, X 4 and X 5 as part of the raw materials.
  • X 3 , X 4 and X 5 are the same, and if different types of dicarboxylic acid diallyl ester are used, X 3 , X 4 and X 5 may be different. There are also X 4 is different for each unit structure of Formula (5) where m pieces present in the allyl group-terminated allyl ester oligomer (B).
  • the cycloalkylene group having 5 to 10 carbon atoms which may have a substituent represented by X 3 , X 4 and X 5 is a cyclohexane group having 6 to 8 carbon atoms from the viewpoint of achieving both heat resistance, transparency and handling properties.
  • An alkylene group is preferred.
  • the cycloalkylene group having 5 to 10 carbon atoms may have a single ring or a plurality of ring structures such as a bicycloalkylene group.
  • the cycloalkylene group having 5 to 10 carbon atoms is preferably a cyclohexylene group, a norbornylene group or a bicyclodecylene group from the viewpoint of heat resistance.
  • Examples of the substituent for the cycloalkylene group having 5 to 10 carbon atoms include alkyl groups such as a methyl group and an ethyl group.
  • allyl group-terminated allyl ester oligomer (B) has a relatively low viscosity and high handling properties, so that 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4- A cyclohexylene group and a norbornylene group are more preferable.
  • the alkylene group having 2 to 10 carbon atoms which may have a substituent represented by X 3 , X 4 and X 5 is preferably an alkylene group having 2 to 8 carbon atoms from the viewpoint of versatility.
  • substituent of the alkylene group having 2 to 10 carbon atoms include alkyl groups such as a methyl group and an ethyl group.
  • alkylene group having 2 to 10 carbon atoms which may have a substituent include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group and decylene group.
  • an ethylene group, a propylene group, a butylene group, and an octylene group are preferable.
  • R 1 and R 2 in the general formula (5) each independently represent an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch.
  • R 1 and R 2 in the general formula (5) are derived from carbonate diol which is one of the raw materials of the allyl group terminal allyl ester oligomer (B).
  • N R 1 present in the general formula (5) may be the same or different. If alkylene groups corresponding to R 1 and R 2 of the starting carbonate diol are plural kinds (copolymerization type), plural kinds of R 1 are also present.
  • the alkylene group having 2 to 20 carbon atoms which may have an alkyl branch is preferably an alkylene group having 2 to 10 carbon atoms from the viewpoint of achieving both flexibility and handleability of the cured product, and alkylene having 4 to 9 carbon atoms. Groups are more preferred.
  • the alkyl branch is preferably an alkyl group having 1 to 3 carbon atoms. There may be two or more alkyl branches.
  • Examples of the alkylene group represented by R 1 and R 2 include those having a linear or branched skeleton.
  • Specific examples of the linear alkylene group include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, and a decylene group, and among them, a butylene group and a hexylene group.
  • a nonylene group is preferred.
  • alkylene group having a branched skeleton that is, the alkylene group having 2 to 20 carbon atoms having an alkyl branch
  • alkylene group having 2 to 20 carbon atoms having an alkyl branch include 1-methylethylene group, 2-methylethylene group, 1-methyl-propylene group, 2-methyl-propylene.
  • R 1 , R 2 and R 3 is a branched alkylene group.
  • the crystallinity of the allyl group-terminated allyl ester oligomer (B) can be suppressed, the viscosity and the melting point can be lowered, and the handling property of the radical polymerizable compound can be improved.
  • the branched alkylene groups 2-methyl-propylene group, 2-ethyl-2-butylpropylene group, 2-methylpentylene group, 3-methylpentylene group, and 2,4-dimethylpentylene are particularly preferable.
  • the ratio of the alkylene group having a branch in the total amount of alkylene groups of R 1 , R 2 and R 3 in the allyl group terminal allyl ester oligomer (B) is preferably 10 mol% or more, more preferably 30 mol% or more.
  • the allyl group-terminated allyl ester oligomer (B) of the present invention is generally Formula (7)
  • R 4 and R 5 each independently represents a 1,6-hexylene group or a 2-methyl-1,5-pentylene group
  • n and m represent any natural number. Indicated by
  • the allyl group-terminated allyl ester oligomer (B) of the present invention is It is shown by the following general formula.
  • R 6 and R 7 each independently represent — (CH 2 ) 9 — or — (CH) 2 CH (CH 3 ) (CH 2 ) 6 —, and n and m represent any natural number.
  • allyl group-terminated allyl ester oligomer (B) one type of compound may be used alone, or two or more types may be used in combination.
  • the allyl group terminal allyl ester oligomer (B) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the allyl group terminal allyl ester oligomer (A). If the amount of the allyl group terminal allyl ester oligomer (B) is too small, the flexibility is inferior, and if it is too large, the heat resistance may be lowered.
  • the allyl group-terminated allyl ester oligomer (B) can be produced by distilling off allyl alcohol produced as a by-product while conducting a transesterification reaction between the compound of the general formula (8) and polycarbonate diol in the presence of a catalyst.
  • X 6 represents an optionally substituted cycloalkylene group having 5 to 10 carbon atoms or an optionally substituted alkylene group having 2 to 10 carbon atoms.
  • Examples of the cycloalkylene group having 5 to 10 carbon atoms which may have a substituent represented by X 6 or the alkylene group having 2 to 10 carbon atoms which may have a substituent include X 3 , X 4 and X 5. And the same group as the cycloalkylene group having 5 to 10 carbon atoms which may have a substituent or an alkylene group having 2 to 10 carbon atoms which may have a substituent. ), (5) and (6) may be selected appropriately in accordance with the structure shown.
  • X 6 is not limited to one type, and a plurality of types of compounds represented by the general formula (8) can be used.
  • the polycarbonate diol used for the production of the allyl group-terminated allyl ester oligomer (B) is represented by the general formula (9).
  • R 1 and R 2 each independently represents an alkylene group having 2 to 20 carbon atoms, as in the case of the general formula (5).
  • R 1 and R 2 are branched alkylene groups.
  • the alkylene groups having a branch those having no branch at the terminal carbon are particularly preferable.
  • Polycarbonate diol derived from an alkylene group having no branch at the end is preferable from the viewpoint of productivity because the hydroxyl groups in the molecule are all primary hydroxyl groups and the reaction rate of the transesterification reaction is fast. When the substituent is present at the terminal, the reaction rate is lowered, and the productivity is lowered.
  • alkylene group having no branch at the terminal carbon examples include 2-methyl-propylene group, 2-ethyl-2-butylpropylene group, 2-methylpentylene group, 3-methylpentylene group, 2,4 -A dimethylpentylene group, a 2-methyloctylene group and the like.
  • Polycarbonate diols can be used in combination of two or more as required. Moreover, it is not limited to the above-mentioned specific example.
  • the polycarbonate diol used in the reaction is generally a condensate produced by a transesterification reaction between a diol compound such as dimethyl carbonate, diphenyl carbonate or ethylene carbonate and a diol, and is an aggregate of oligomers having different molecular weights. Have a distribution.
  • the number average molecular weight of the polycarbonate diol for the radical polymerizable compound of the present invention is preferably 300 to 10,000, and more preferably 500 to 3,000.
  • various properties such as heat resistance and toughness derived from the polycarbonate skeleton are hardly expressed.
  • the average molecular weight is large, the polycarbonate diol becomes a solid and the workability is lowered, for example, heating is required during use.
  • combined using it and an allyl group terminal allyl ester oligomer (A) are hardened, problems, such as whitening of hardened
  • an alkylene diol can be used together with a polycarbonate diol as the diol.
  • the alkylene diol include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 1,3 -Butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Examples include hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, and 1,9-n
  • the molar ratio of the charged amount of the compound represented by the general formula (8) and the polycarbonate diol is preferably 1.1: 1 to 6: 1, and more preferably 1.5: 1 to 3: 1.
  • the molar ratio of the charged amount of the compound represented by the general formula (8) and the alkylene diol is preferably 1.1: 1 to 6: 1, more preferably 1.5: 1 to 3: 1. preferable.
  • a conventionally known transesterification catalyst can be used as the transesterification reaction catalyst.
  • alkali metals, alkaline earth metals, oxides and weak acid salts thereof; oxides of Mn, U, Zn, Cd, Zr, Pb, Ti, Co, and Sn, hydroxides, inorganic acid salts examples include alcoholates and organic acid salts; organic tin compounds such as dibutyltin oxide, dioctyltin oxide, and dibutyltin dichloride.
  • tetraisopropoxy titanium tetrabutoxy titanium, dibutyl tin oxide, dioctyl tin oxide, acetylacetone hafnium, and acetylacetone zirconium are preferable, and dibutyltin oxide and dioctyltin oxide are more preferable.
  • the amount of the catalyst used varies depending on the activity of the catalyst, but an amount that can distill allyl alcohol at an appropriate rate is used. Generally, about 0.0001 to 1% by mass, preferably about 0.001 to 0.5% by mass is used with respect to the diallyl ester compound represented by the general formula (8).
  • the reaction temperature in this production process is preferably less than 180 ° C, more preferably 170 ° C or less, and further preferably 160 ° C or less. Increasing the reaction temperature shortens the reaction time, but there is a possibility of coloring and increasing the amount of by-products.
  • reaction in order to promote the progress of the reaction, it is preferable to carry out the reaction under reduced pressure, using an appropriate solvent, and the like while removing by-product allyl alcohol from the reaction system.
  • the curable composition of the present invention contains a polyfunctional (meth) acrylic compound.
  • the polyfunctional (meth) acrylic compound means an organic compound having two or more (meth) acryloyloxy groups, and is a component that contributes to the development of high surface hardness of the cured product.
  • the polyfunctional (meth) acrylic compound is mainly composed of a (meth) acrylate monomer or oligomer having 10 to 30 carbon atoms having 3 or more (meth) acryloyloxy groups in terms of dimensional stability.
  • a compound having an aliphatic or alicyclic skeleton having no aromatic ring in the molecule is preferable from the viewpoint of transparency.
  • trimethylolpropane tri (meth) acrylate ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tris ( 2-hydroxyethyl) isocyanurate tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) Acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tet (Met
  • the (meth) acrylic compound means a methacrylic compound or an acrylic compound, similarly (meth) acrylate means methacrylate or acrylate, and (meth) acryloyloxy group means methacryloyloxy group or acryloyloxy. Means a group.
  • the amount of the polyfunctional (meth) acrylic compound used as the component (C) is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the component (A). If the amount of the (meth) acrylic compound is too small, the hardness of the film is difficult to be obtained, and the scratch resistance may be deteriorated. On the other hand, if the amount is too large, cracks may occur as the curing shrinks.
  • the curable composition of the present invention contains a polymerization initiator for obtaining a cured product.
  • a polymerization initiator for obtaining a cured product.
  • a photopolymerization initiator (D1) or a thermal polymerization initiator (D2) can be used as the polymerization initiator.
  • the photopolymerization initiator (D1) and the thermal polymerization initiator (D2) can be used either alone or in combination.
  • the photopolymerization initiator (D1) a photocleavable type and / or a hydrogen abstracting type that can be easily cleaved to form two radicals by known ultraviolet irradiation, or a mixture thereof can be used.
  • These compounds include benzophenone, benzoylbenzoic acid, 4-phenylbenzophenone, hydroxybenzophenone, benzophenones such as 4,4'-bis (diethylamino) benzophenone, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, benzoin isobutyl Benzoin alkyl ethers such as ether, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, 2-benzyl-2-dimethylamino-1- (4- Acetophenones such as
  • the blending amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount is less than 0.1 parts by mass, the photocurability is insufficient, and if it exceeds 10 parts by mass, the solvent resistance and flexibility are deteriorated.
  • a photosensitizer can be used in combination as necessary in order to improve the polymerization rate.
  • the sensitizer used for such purpose include pyrene, perylene, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 2,4-dichlorothioxanthone, phenothiazine and the like.
  • the amount of the sensitizer used in combination is preferably in the range of 0.1 to 100 parts by mass with respect to 100 parts by mass of the photopolymerization initiator.
  • the thermal polymerization initiator (D2) a known organic peroxide or azo compound can be used.
  • the organic peroxide include diacyl peroxides [dibenzoyl peroxide, lauroyl peroxide, etc.], dialkyl peroxides [di-tert-butyl peroxide, dicumyl peroxide, etc.]; peroxyesters [tert -Butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, tert-hexylperoxyisopropyl monocarbonate, etc.]; Ketone peroxides [methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.]; Peroxydicarbonates [Bis (4-tert-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, etc.]; Peroxymonocarbonate type [tert-butyl
  • azo compound examples include azo compounds such as 2,2'-azobisisobutyronitrile, 2,2'-azobisisovaleronitrile, dimethyl-2,2'-azobisisobutyrate, and the like.
  • thermal polymerization initiators can be used alone or as a mixture of two or more.
  • the blending amount of the thermal polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount is less than 0.1 parts by mass, the thermosetting property may be insufficient. On the other hand, if it exceeds 10 parts by mass, the solvent resistance and flexibility are unfavorable.
  • the curable composition of the present invention is an ultraviolet absorber, an antioxidant, a mold release agent, a lubricant, for the purpose of improving hardness, strength, moldability, durability, and water resistance within a range that does not interfere with the effects of the present invention.
  • Various known additives such as colorants, flame retardants, crosslinking aids, inorganic fillers, organic fillers, polymerization inhibitors, thickeners, antifoaming agents, leveling agents, and adhesion promoters can be used. . In particular, those that do not inhibit the light transmittance are preferred.
  • UV absorbers include triazoles such as 2- (2′-hydroxy-tert-butylphenyl) benzotriazole, benzophenones such as 2,4-dihydroxybenzophenone, 4-tert-butylphenyl salicylate, etc. Of salicylates.
  • the blending amount of the ultraviolet absorber varies depending on the type and amount of the other blends, but is generally 0.01 to 2 parts by weight with respect to 100 parts by weight of all radical polymerizable components in the composition for optical materials. Part is preferable, 0.03 to 1.7 parts by weight is more preferable, and 0.05 to 1.4 parts by weight is most preferable. If the ultraviolet absorber is less than 0.01 parts by mass, a sufficient effect cannot be expected, and if it exceeds 2 parts by mass, it is economically undesirable.
  • Antioxidants include 2,6-di-tert-butyl-4-methylphenol, tetrakis- [methylene-3- (3 ′, 5′-di-tert-butyl-4-hydroxyphenyl) propionate] methane, etc. Phenol-based, sulfur-based dilauryl-3,3′-thiodipropionate, etc., phosphorus-based antioxidants such as trisnonylphenyl phosphite, bis- (2,2,6,6-tetramethyl-4- Hindered amines such as piperidinyl) sebacate and the like.
  • the blending amount of the antioxidant varies depending on the type and amount of other blends, but is generally 0.01 to 5 with respect to 100 parts by weight of all radically polymerizable components in the composition for optical materials. Part by mass is preferable, 0.05 to 4 parts by mass is more preferable, and 1 to 3 parts by mass is most preferable. If the antioxidant is less than 0.01 parts by mass, a sufficient effect cannot be expected, and if it exceeds 5 parts by mass, it is economically undesirable.
  • the mold release agent examples include stearic acid, butyl stearate, zinc stearate, stearic acid amide, fluorine-based compounds, and silicone compounds.
  • the compounding amount of the release agent varies depending on the type and amount of other compounds, but is generally 0.01 to 2 with respect to 100 parts by mass of all radical polymerizable components in the composition for optical materials. Part by mass is preferred, 0.03 to 1.7 parts by mass is more preferred, and 0.05 to 1.4 parts by mass is most preferred. If the release agent is less than 0.01 parts by mass, a sufficient effect cannot be expected, and if it exceeds 2 parts by mass, it is not economically preferable.
  • metal soap lubricants fatty acid ester lubricants, aliphatic hydrocarbon lubricants and the like are preferable, and metal soap lubricants are particularly preferable.
  • metal soap lubricant include barium stearate, calcium stearate, zinc stearate, magnesium stearate and aluminum stearate. These may be used as a complex.
  • Colorants include anthraquinone, azo, carbonium, quinoline, quinoneimine, indigoid, phthalocyanine and other organic pigments, azoic dyes, sulfur dyes and other organic dyes, titanium yellow, yellow iron oxide, zinc yellow, Examples thereof include inorganic pigments such as chromium orange, molybdenum red, cobalt purple, cobalt blue, cobalt green, chromium oxide, titanium oxide, zinc sulfide, and carbon black.
  • the blending amount is not particularly limited.
  • the flame retardant include brominated epoxy compounds, acid-modified brominated epoxy compounds, brominated epoxy compounds having an acryloyl group, bromine-containing compounds such as acid-modified brominated epoxy compounds having an acryloyl group, red phosphorus, Inorganic flame retardants such as tin oxide, antimony compounds, zirconium hydroxide, barium metaborate, aluminum hydroxide, magnesium hydroxide, ammonium phosphate compounds, phosphate compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphate esters And phosphorus compounds such as nitrogen-containing phosphorus compounds and phosphazene compounds.
  • Inorganic flame retardants such as tin oxide, antimony compounds, zirconium hydroxide, barium metaborate, aluminum hydroxide, magnesium hydroxide, ammonium phosphate compounds, phosphate compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphate esters And phosphorus compounds such as nitrogen-containing
  • the blending amount of the flame retardant varies depending on the type and amount of other blends, but generally 10 to 50 parts by weight with respect to 100 parts by weight of all radical polymerizable components in the composition for optical materials. preferable. If the flame retardant is less than 10 parts by mass, a sufficient flame retardant effect cannot be expected, and if it exceeds 50 parts by mass, the transparency is undesirably lowered.
  • crosslinking aid examples are compounds that act as a crosslinking aid in the partial crosslinking treatment with a thermal polymerization initiator, and examples thereof include polyfunctional vinyl monomers such as divinylbenzene and triallyl cyanurate.
  • the amount of the crosslinking aid varies depending on the type and amount of the other compound, but is generally 1 to 30 parts by mass with respect to 100 parts by mass of all radical polymerizable components in the composition for optical materials. Is preferred. If the crosslinking aid is less than 1 part by mass, a sufficient effect cannot be expected, and if it exceeds 30 parts by mass, the flexibility of the film is lowered, which is not preferable.
  • the inorganic filler examples include barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, crystalline silica, amorphous silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide,
  • inorganic fillers such as a mica powder, a glass sphere, glass fiber, and carbon fiber, can be illustrated, it is not limited to these.
  • organic filler known organic fillers such as acrylic resin, melamine resin, styrene resin, silicone resin, silicone rubber, and fluorine resin can be used, but the organic filler can be exemplified. is not.
  • inorganic fillers and organic fillers can be used singly or in combination of two or more, and are within the range not impairing the gist of the present invention, that is, 100 parts by mass of all radical polymerizable components in the composition for optical materials. 1 to 50 parts by mass can be added.
  • known and conventional polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, pyrogallol and phenothiazine
  • known and conventional thickeners such as silica, asbestos, olben, benton and montmorillonite, silicone type , Fluorine-based, acrylic-based, polymer-based and other antifoaming agents and / or known conventional additives such as leveling agents, imidazole-based, thiazole-based, triazole-based, silane coupling agents and other adhesion-imparting agents Can be added as long as the gist of the present invention is not impaired.
  • additives are not limited to the specific examples described above, and any additives can be added within a range that does not impair the object or effect of the present invention.
  • a solvent may be used if it is necessary to reduce the viscosity by a curing method.
  • solvents that can be used for viscosity adjustment include aromatic hydrocarbons such as toluene and xylene, acetates such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Ketones, ethers such as tetrahydrofuran and 1,4-dioxane
  • alcohols such as ethyl alcohol, (iso) propyl alcohol, and butyl alcohol.
  • the viscosity is preferably adjusted with a component (C) polyfunctional (meth) acrylic compound that can also be used as a reactive viscosity modifier.
  • any curing method may be selected as long as a certain surface hardness is obtained.
  • the conditions for curing the curable composition are not particularly limited, but after being applied and cast on a transparent plastic film, metal sheet, or glass plate, photocuring and thermosetting, or thermosetting is performed. It is preferred to implement.
  • an ultraviolet irradiation method is generally used.
  • ultraviolet rays can be generated and irradiated using an ultraviolet lamp.
  • ultraviolet lamps include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, pulse-type xenon lamps, xenon / mercury mixed lamps, low-pressure sterilization lamps, electrodeless lamps, and LED lamps, all of which can be used.
  • a metal halide lamp or a high-pressure mercury lamp is preferable.
  • Irradiation conditions vary depending on each lamp condition, but the irradiation exposure dose is preferably about 20 to 5000 mJ / cm 2 .
  • an elliptical, parabolic, diffusive or the like reflector to the ultraviolet lamp, and a heat cut filter or the like as a cooling measure. Further, in order to accelerate curing, it may be preheated to 30 to 80 ° C. and irradiated with ultraviolet rays.
  • the heating method is not particularly limited, but a heating method excellent in uniformity such as a hot air oven or a far infrared oven is preferable.
  • the curing temperature is about 100 to 200 ° C, preferably 120 to 180 ° C.
  • the curing time varies depending on the curing method, it is preferably 0.5 to 5 hours for a hot air oven and 0.5 to 60 minutes for a far infrared oven.
  • ultraviolet curing using a photopolymerization initiator and thermal curing using an organic peroxide or an azo compound are radical reactions and thus are susceptible to reaction inhibition by oxygen.
  • the resin composition is curable when coated and cast on a transparent plastic film, metal sheet, or glass plate, followed by photocuring and / or thermosetting. It is preferable to apply a transparent cover film on the varnish and to reduce the oxygen concentration on the surface of the cast curable composition to 1% or less. It is necessary to use a transparent cover film that does not have pores on the surface, has a low oxygen permeability, and can withstand the heat generated during ultraviolet curing or thermal curing.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PP polypropylene
  • acrylic resin vinyl fluoride
  • polyamide polyamide
  • polyarylate polyarylate
  • polyethersulfone norbornene resin
  • the curable composition of the present invention is in a liquid state, it can be applied and coated so as to have a predetermined shape and form using a known coating apparatus.
  • Coating methods include gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion coating, spinner coating, casting molding method, Known methods such as stereolithography can be used.
  • the preferred viscosity range at this time is in the range of 100 to 100,000 mPa ⁇ s at room temperature.
  • the physical properties of the allyl ester oligomers obtained in Synthesis Examples 1 to 3 were determined by the following measuring methods.
  • [Hazen color number] Based on JIS K0071, the Hazen color number of the allyl ester oligomer was measured by comparison with a standard solution using a colorimetric tube.
  • Measuring method cone plate viscometer, rotor No. Measurement was performed at a liquid temperature of 25 ° C. and 10 rpm using a rotor of 1 ° 34 ′ ⁇ R24.
  • Model used GPC system SIC-480II manufactured by Showa Denko KK Column: Showa Denko KPC column K-801, K-802, K-802.5 Detector: Showa Denko Co., Ltd.
  • RI-201H Eluent Chloroform measurement method: 100 ⁇ L of a sample dissolved in chloroform was introduced into a column controlled at 40 ° C., and the number average molecular weight in terms of polystyrene was measured.
  • Total light transmittance With respect to a film having a thickness of 0.1 mm, total light transmittance was determined as an index of optical characteristics using NDH-2000 manufactured by JEOL Ltd. according to JIS K7361-1. In the present specification, “highly transparent” means that the total light transmittance is 85% or more.
  • Transtensile modulus A strip-shaped film piece (length: 150 mm, width: 15 mm) was cut out from a film having a thickness of 0.1 mm, and a distance between chucks: 100 mm using a tensile tester [Universal Tester Autograph manufactured by Shimadzu Corporation].
  • Difference in average thermal expansion coefficient average thermal expansion coefficient (150 to 200 ° C)-average thermal expansion coefficient (0 to 50 ° C) Heat resistance ⁇ : Difference in average thermal expansion coefficient is less than 50 ppm / K Heat resistance x: Difference in average thermal expansion coefficient is 50 ppm / K or more [surface hardness] In accordance with JIS K5600-5-4, tilt the pencil-shaped pencil lead to a 45 degree angle, apply a load of 750 g from the top, scratch the surface of the object to be measured about 5 mm, and check for scratches. Pencil hardness was determined as an index of surface hardness.
  • Synthesis Example 1 Synthesis of allyl ester oligomer (AEO) [a1] 400 g of diallyl 1,4-cyclohexanedicarboxylate (manufactured by Showa Denko KK), 60 g of trimethylolpropane (TMP manufactured by Mitsubishi Gas Chemical Co., Ltd., molecular weight 134) 60 g Then, 1.0 g of dioctyltin oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged into a three-necked flask and heated to react with an oil bath adjusted to 180 ° C. Allyl alcohol produced with the progress of the reaction was distilled off.
  • AEO allyl ester oligomer
  • the reaction was gradually reduced from normal pressure to 1.4 kPa, and the reaction was terminated when the theoretical amount of allyl alcohol was distilled off.
  • the reaction time was about 12 hours.
  • the reaction solution was taken out to obtain 353 g of allyl ester oligomer (AEO).
  • AEO allyl ester oligomer
  • the obtained AEO was liquid at room temperature, had a Hazen color number of 15, a viscosity at 25 ° C. of 1800 mPa ⁇ s, and a polystyrene-equivalent number average molecular weight of 820.
  • Synthesis Example 2 Synthesis of allyl ester oligomer (PCD-1) [b1] 400 g diallyl 1,4-cyclohexanedicarboxylate (Showa Denko), polycarbonate diol (C590, Kuraray Co., Ltd., number average molecular weight 500) 400 g and dioctyltin oxide (Tokyo Chemical Industry Co., Ltd.) 0.4 g were charged into a three-necked flask and heated in an oil bath adjusted to 160 ° C. for reaction. Allyl alcohol produced with the progress of the reaction was distilled off. The reaction was gradually reduced from normal pressure to 1.4 kPa, and the reaction was terminated when the theoretical amount of allyl alcohol was distilled off.
  • PCD-1 diallyl 1,4-cyclohexanedicarboxylate
  • C590 Kuraray Co., Ltd., number average molecular weight 500
  • dioctyltin oxide Tokyo Chemical Industry Co., Ltd.
  • PCD-1 flexible allyl ester oligomer
  • the obtained PCD-1 was liquid at room temperature, had a Hazen color number of 15, a viscosity at 25 ° C. of 3200 mPa ⁇ s, and a polystyrene-equivalent number average molecular weight of 1300.
  • Synthesis Example 3 Synthesis of allyl ester oligomer (PCD-2) [b2] 400 g diallyl 1,4-cyclohexanedicarboxylate (produced by Showa Denko KK), polycarbonate diol (UHC 50-100 produced by Ube Industries), number average 800 g of molecular weight 1000) and 0.8 g of dioctyltin oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged into a three-necked flask and heated in an oil bath adjusted to 160 ° C. for reaction. Allyl alcohol produced with the progress of the reaction was distilled off.
  • PCD-2 allyl ester oligomer
  • the reaction was gradually reduced from normal pressure to 1.4 kPa, and the reaction was terminated when the theoretical amount of allyl alcohol was distilled off.
  • the reaction time was about 10 hours.
  • the reaction solution was taken out to obtain 1025 g of flexible allyl ester oligomer (PCD-2).
  • the resulting PCD-2 was liquid at room temperature, had a Hazen color number of 50, a viscosity at 25 ° C. of 5500 mPa ⁇ s, and a polystyrene-equivalent number average molecular weight of 2000.
  • Example 1 15 parts by mass of the allyl ester oligomer (PCD-1) obtained in Synthesis Example 2 and trimethylolpropane triacrylate (trade name; A-TMPT, new) with respect to 100 parts by mass of the allyl ester oligomer AEO obtained in Synthesis Example 1 30 parts by mass of Nakamura Chemical Co., Ltd., 1,4 parts of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name; LUCIRIN TPO, manufactured by BASF Japan Ltd.), and tert-hexyl par 1 part by mass of oxyisopropyl monocarbonate (trade name; Perhexyl I, manufactured by Nippon Oil & Fats Co., Ltd.) was added and sufficiently stirred to obtain a curable composition.
  • PCD-1 allyl ester oligomer
  • A-TMPT trimethylolpropane triacrylate
  • This curable composition was applied onto a PET film having a thickness of 0.1 mm, and further laminated with a PET film having a thickness of 0.1 mm.
  • This laminated film was irradiated with UV under the conditions of a peak illuminance of 300 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 with a UV irradiator having a metal halide lamp to produce a UV cured laminated film. Furthermore, after thermosetting at 160 ° C. for 1 hour in an oven under an air atmosphere, it was cooled to room temperature. By peeling the PET film from both sides of the laminated film, a cured film having a thickness of about 0.1 mm obtained by curing the curable composition was produced. Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
  • Example 2 A curable composition was prepared and a cured film was prepared in the same manner as in Example 1 except that the allyl ester oligomer (PCD-2) obtained in Synthesis Example 3 was used instead of the allyl ester oligomer (PCD-1). The characteristics of the cured film were evaluated. Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
  • Comparative Example 1 A curable composition was prepared in the same manner as in Example 1 except that no allyl ester oligomer (PCD-1) was added, a cured film was prepared, and the characteristics of the cured film were evaluated. Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
  • PCD-1 allyl ester oligomer
  • Comparative Example 2 30 parts by mass of A-600 (manufactured by Shin-Nakamura Chemical Co., Ltd., polyethylene glycol # 600 diacrylate (having 14 ethylene oxide units)) and 2,4 parts per 100 parts by mass of the allyl ester oligomer AEO obtained in Synthesis Example 1 , 6-Trimethylbenzoyl-diphenyl-phosphine oxide (trade name; LUCIRIN TPO, manufactured by BASF Japan Ltd.) and 1 part by weight of tert-hexyl peroxyisopropyl monocarbonate (trade name; Perhexyl I, Nippon Oil & Fats Co., Ltd.) 1) 1 part by mass was added and stirred sufficiently to obtain a curable composition. Using the obtained curable composition, the cured film was produced like Example 1, and the characteristic of the cured film was evaluated. Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
  • the curable composition of the present invention can be polymerized and cured, a transparent molded article suitable for optical applications having high flexibility and excellent heat resistance, handling properties, and high surface hardness can be obtained. It is useful for optical applications such as optical sheets, optical waveguides, optical lenses, optical sealants, optical adhesives, and light guide plates.

Abstract

The present invention relates to: a curable composition which contains (A) an allyl group-terminated allyl ester oligomer which has three or more terminal allyl groups, (B) a flexible allyl group-terminated allyl ester oligomer which contains, as the main skeleton, a structural unit containing a carbonate bond and which has a number average molecular weight of 500-50,000, (C) a polyfunctional (meth)acrylic compound and (D) a polymerization initiator; a transparent optical material which is obtained by polymerizing and curing the curable composition by applying light and/or heat to the curable composition, said transparent optical material having excellent flexibility, heat resistance, transparency and surface hardness; and an optical film, an optical sheet, an optical waveguide, an optical lens, an optical sealing agent, an optical adhesive and a light guide plate, each of which uses the optical material.

Description

硬化性組成物Curable composition
 本発明は、硬化性組成物に関する。さらに詳しく言えば、硬化することにより柔軟性が高く、耐熱性、透明性、表面硬度に優れる光学用樹脂フィルムまたはシートが得られる硬化性組成物に関する。 The present invention relates to a curable composition. More specifically, the present invention relates to a curable composition from which an optical resin film or sheet having high flexibility and excellent heat resistance, transparency, and surface hardness can be obtained by curing.
 従来、分子内に複数のアリルエステル基を有する多価アリルエステル化合物を重合硬化して得られる硬化物は、透明性、耐熱性、電気特性、耐光性に優れ、光学材料、電子機器、人造大理石、化粧板、不飽和ポリエステル樹脂のクラック防止材等として用いられている。例えば、特許文献1(国際公開第02/33447号パンフレット(EP1331494 A1))及び特許文献2(特開2009-197102号公報(US2009/209718 A1))には多価アリルエステル化合物を用いた光学レンズが、特許文献3(特開2011-22490号公報)及び特許文献4(特開2008-44357号公報(WO2008/010588 A1))には多価アリルエステル化合物を用いた基板が、特許文献5(特開2010-84008号公報)には多価アリルエステル化合物を用いた半導体装置が開示されている。 Conventionally, cured products obtained by polymerizing and curing polyvalent allyl ester compounds having a plurality of allyl ester groups in the molecule are excellent in transparency, heat resistance, electrical properties, and light resistance, and are optical materials, electronic equipment, artificial marble. , Decorative plates, unsaturated polyester resin crack prevention materials, and the like. For example, Patent Document 1 (International Publication No. 02/33447 pamphlet (EP1331494) A1)) and Patent Document 2 (Japanese Patent Laid-Open No. 2009-197102 (US2009 / 209718 A1)) describe an optical lens using a polyvalent allyl ester compound. However, in Patent Document 3 (Japanese Patent Laid-Open No. 2011-22490) and Patent Document 4 (Japanese Patent Laid-Open No. 2008-44357 (WO2008 / 010588 A1)), a substrate using a polyvalent allyl ester compound is disclosed in Patent Document 5 ( Japanese Laid-Open Patent Publication No. 2010-84008) discloses a semiconductor device using a polyvalent allyl ester compound.
 近年、携帯電話や薄型テレビに代表される電子機器は、高機能化、小型化、薄型化、軽量化のニーズが強く、それらに使用される光学部材をガラス製部材から樹脂製部材への置き換えが検討されている。ガラス代替として用いられる樹脂には、ガラスにより近い耐熱性と透明性、さらにガラスよりも軽量で割れにくいという特性が求められている。 In recent years, electronic devices represented by mobile phones and flat-screen TVs have a strong need for higher functionality, smaller size, thinner thickness, and lighter weight, and the optical members used for them have been replaced by glass members instead of resin members. Is being considered. Resins used as glass substitutes are required to have heat resistance and transparency that are closer to glass, and lighter and more difficult to break than glass.
 ガラス代替として用いられてきた樹脂としては、良好な機械強度を備え、その優れた透明性を有する観点から、ポリカーボネート(PC)やポリエチレンテレフタレート(PET)が例示されるが、ガラス転移温度がそれぞれ70℃、140℃程度であり、耐熱性が充分とは言えず、使用用途が限られていた。 Examples of resins that have been used as glass substitutes include polycarbonate (PC) and polyethylene terephthalate (PET) from the viewpoint of having good mechanical strength and excellent transparency, and each has a glass transition temperature of 70. The temperature is about 140 ° C. and the heat resistance is not sufficient, and the usage is limited.
 多価アリルエステル化合物を重合硬化して得られる硬化物は、ポリカーボネート(PC)やポリエチレンテレフタレート(PET)と比較して高い耐熱性、透明性を有するが、その用途によっては充分な柔軟性を有しているとは言えず、透明性、耐熱性に加えて、適度な柔軟性が強く望まれている。 A cured product obtained by polymerizing and curing a polyvalent allyl ester compound has higher heat resistance and transparency than polycarbonate (PC) and polyethylene terephthalate (PET), but has sufficient flexibility depending on the application. In addition to transparency and heat resistance, moderate flexibility is strongly desired.
 熱硬化性樹脂の柔軟性を改善する方法としては、ポリエーテル骨格などに代表される柔軟性の高い骨格の分子鎖への導入(例えば、特許文献6:特開2007-138002号公報)、コアシェル状のゴムの添加(例えば、特許文献7:特開2011-57734号公報)や、熱可塑性樹脂の導入(例えば、特許文献8:特開2010-202862号公報)などが行われてきたが、耐光性、透明性の低下や粘度の上昇によるハンドリング性の低下などが問題となっていた。 As a method for improving the flexibility of a thermosetting resin, introduction of a highly flexible skeleton represented by a polyether skeleton into a molecular chain (for example, Patent Document 6: JP-A-2007-138002), core shell Addition of a rubber-like rubber (for example, Patent Document 7: JP 2011-57734 A) and introduction of a thermoplastic resin (for example, Patent Document 8: JP 2010-202862 A) have been performed. There have been problems such as a decrease in light resistance and transparency, and a decrease in handling properties due to an increase in viscosity.
国際公開第02/33447号パンフレットInternational Publication No. 02/33447 Pamphlet 特開2009-197102号公報JP 2009-197102 A 特開2011-22490号公報JP 2011-22490 A 特開2008-44357号公報JP 2008-44357 A 特開2010-84008号公報JP 2010-84008 A 特開2007-138002号公報JP 2007-138002 A 特開2011-57734号公報JP 2011-57734 A 特開2010-202862号公報JP 2010-202862 A
 本発明は、光学用途に求められる透明性を有し、高い柔軟性と優れた耐熱性、ハンドリング性、高い表面硬度を有するフィルムまたはシートの製造に好適な硬化性組成物を提供することを目的とするものである。 An object of the present invention is to provide a curable composition suitable for the production of a film or sheet having transparency required for optical applications, high flexibility, excellent heat resistance, handling properties, and high surface hardness. It is what.
 本発明者らは、上記の目的を達成するために、鋭意研究を重ねた結果、本発明を完成させた。
 すなわち、本発明は下記[1]~[12]の硬化性組成物、[13]の光学材料、及び[14]の光学フィルム、光学シート、光道波路、光学レンズ、光学用封止剤、光学用接着剤、または導光板に関する。
[1](A)一般式(1)
Figure JPOXMLDOC01-appb-C000010
(式中、X1は脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表す。)で示される末端基を3つ以上有し、かつ一般式(2)
Figure JPOXMLDOC01-appb-C000011
(式中、X2は脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表し、Y1は3~6個の水酸基を有する炭素数2~20の多価アルコールから誘導される有機残基を表す。ただし、Y1はエステル結合によって、さらに上記一般式(1)で示される基を末端基とし、上記一般式(2)で示される構造単位を有する分岐構造を有することができる。)で示される構造を有するアリル基末端アリルエステルオリゴマー;
(B)一般式(3)
Figure JPOXMLDOC01-appb-C000012
(式中、X3は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表す。)及び式(4)
Figure JPOXMLDOC01-appb-C000013
で示される末端基、並びに一般式(5)
Figure JPOXMLDOC01-appb-C000014
(式中、R1及びR2は、それぞれ独立してアルキル分岐を有してもよい炭素数2~20のアルキレン基を表し、X4は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表し、n及びmは任意の自然数を表す。)
で示される構造を有し、数平均分子量が500~50000であるアリル基末端アリルエステルオリゴマー;
(C)多官能(メタ)アクリル化合物;及び(D)重合開始剤を含有することを特徴とする硬化性組成物。
[2]前記アリル基末端アリルエステルオリゴマー(B)が、さらに一般式(6)
Figure JPOXMLDOC01-appb-C000015
(式中、R3はアルキル分岐を有してもよい炭素数2~20のアルキレン基を表し、X5は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表し、qは任意の自然数を表す。)
で示される構造を有する前項1に記載の硬化性組成物。
[3]前記アリル基末端アリルエステルオリゴマー(A)100質量部に対し、アリル基末端アリルエステルオリゴマー(B)を1~40質量部、多官能(メタ)アクリル化合物(C)を5~60質量部、重合開始剤(D)として光重合開始剤(D1)を0.1~10質量部、及び熱重合開始剤(D2)を0.1~10質量部の割合で含有する前項1または2に記載の硬化性組成物。
[4]前記一般式(1)及び(2)中のX1及びX2が、それぞれ独立して置換基を有してもよい、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、またはノルボルニレン基である前項1~3のいずれかに記載の硬化性組成物。
[5]前記一般式(2)中のY1が、3または4個の水酸基を有する炭素数が5~10の多価アルコールから誘導される有機残基である前項1~4のいずれかに記載の硬化性組成物。
[6]前記アリル基末端アリルエステルオリゴマー(A)が、以下の式
Figure JPOXMLDOC01-appb-C000016
(式中、rは任意の自然数を表す。)、または
Figure JPOXMLDOC01-appb-C000017
(式中、sは任意の自然数を表す。)
で示される前項1~5のいずれかに記載の硬化性組成物。
[7]前記一般式(3)、(5)及び(6)中のX3、X4及びX5が、それぞれ独立して1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、またはノルボルニレン基である前項1~6のいずれかに記載の硬化性組成物。
[8]前記一般式(5)及び(6)中のR1、R2及びR3の少なくとも1つが炭素数1~4のアルキル分岐を有するアルキレン基である前項1~7のいずれかに記載の硬化性組成物。
[9]前記一般式(5)中のR1及びR2が1,6-ヘキシレン基または2-メチル-1,5-ペンチレン基である前項1~8のいずれかに記載の硬化性組成物。
[10]前記一般式(5)中のR1及びR2がノニレン基である前項1~8のいずれかに記載の硬化性組成物。
[11]前記アリル基末端アリルエステルオリゴマー(B)が、R1がR4を表し、R2がR5を表し、X3及びX4が1,4-シクロヘキシレン基である一般式(7)
Figure JPOXMLDOC01-appb-C000018
(式中、R4及びR5は、それぞれ独立して1,6-ヘキシレン基または2-メチル-1,5-ペンチレン基を表し、n及びmは任意の自然数を表す。)
で示されるオリゴマー化合物である前項1~10のいずれかに記載の硬化性組成物。
[12]前記多官能(メタ)アクリル化合物(C)が、(メタ)アクリロイルオキシ基を3つ以上有する(メタ)アクリレートモノマーまたはオリゴマーを主成分とするものである前項1~11のいずれかに記載の硬化性組成物。
[13]前項1~12のいずれかに記載の硬化性組成物に、光及び/または熱を加えて硬化させてなる光学材料。
[14]前項13に記載の光学材料を用いた、光学フィルム、光学シート、光道波路、光学レンズ、光学用封止剤、光学用接着剤、または導光板。
The inventors of the present invention have completed the present invention as a result of intensive studies in order to achieve the above object.
That is, the present invention provides the following curable compositions [1] to [12], an optical material [13], an optical film [14], an optical sheet, an optical waveguide, an optical lens, an optical sealant, The present invention relates to an optical adhesive or a light guide plate.
[1] (A) General formula (1)
Figure JPOXMLDOC01-appb-C000010
(Wherein X 1 represents an organic residue derived from a divalent carboxylic acid or carboxylic acid anhydride having an alicyclic structure) and has at least three end groups represented by the general formula ( 2)
Figure JPOXMLDOC01-appb-C000011
(In the formula, X 2 represents an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure, and Y 1 has 2 to 20 carbon atoms having 3 to 6 hydroxyl groups. Represents an organic residue derived from a polyhydric alcohol, wherein Y 1 represents an ester bond, a group represented by the above general formula (1) as a terminal group, and a structural unit represented by the above general formula (2). An allyl group-terminated allyl ester oligomer having a structure represented by:
(B) General formula (3)
Figure JPOXMLDOC01-appb-C000012
(Wherein X 3 represents an optionally substituted cycloalkylene group having 5 to 10 carbon atoms or an optionally substituted alkylene group having 2 to 10 carbon atoms) and formula (4)
Figure JPOXMLDOC01-appb-C000013
As well as the end group represented by formula (5)
Figure JPOXMLDOC01-appb-C000014
(Wherein R 1 and R 2 each independently represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 4 may have a substituent having 5 to 10 carbon atoms) A cycloalkylene group or an alkylene group having 2 to 10 carbon atoms which may have a substituent, and n and m represent any natural number.)
An allyl group-terminated allyl ester oligomer having a structure represented by the formula:
A curable composition comprising (C) a polyfunctional (meth) acrylic compound; and (D) a polymerization initiator.
[2] The allyl group-terminated allyl ester oligomer (B) is further represented by the general formula (6)
Figure JPOXMLDOC01-appb-C000015
(Wherein R 3 represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 5 represents a cycloalkylene group or substituent having 5 to 10 carbon atoms which may have a substituent. Represents an optionally substituted alkylene group having 2 to 10 carbon atoms, and q represents an arbitrary natural number.)
2. The curable composition according to item 1, which has a structure represented by:
[3] 1 to 40 parts by mass of the allyl group-terminated allyl ester oligomer (B) and 5 to 60 parts by mass of the polyfunctional (meth) acrylic compound (C) with respect to 100 parts by mass of the allyl group-terminated allyl ester oligomer (A). 1 or 2 containing 0.1 to 10 parts by mass of a photopolymerization initiator (D1) as a polymerization initiator (D) and 0.1 to 10 parts by mass of a thermal polymerization initiator (D2) as a polymerization initiator (D) The curable composition according to 1.
[4] X 1 and X 2 in the general formulas (1) and (2) may each independently have a substituent, 1,2-cyclohexylene group, 1,3-cyclohexane 4. The curable composition according to any one of items 1 to 3, which is a xylene group, 1,4-cyclohexylene group, or norbornylene group.
[5] In any one of the above items 1 to 4, wherein Y 1 in the general formula (2) is an organic residue derived from a polyhydric alcohol having 3 to 4 hydroxyl groups and having 5 to 10 carbon atoms The curable composition as described.
[6] The allyl group-terminated allyl ester oligomer (A) is represented by the following formula:
Figure JPOXMLDOC01-appb-C000016
(Wherein r represents an arbitrary natural number), or
Figure JPOXMLDOC01-appb-C000017
(In the formula, s represents an arbitrary natural number.)
6. The curable composition according to any one of 1 to 5 above,
[7] X 3 , X 4 and X 5 in the general formulas (3), (5) and (6) are each independently 1,2-cyclohexylene group or 1,3-cyclohexylene group 7. The curable composition according to any one of 1 to 6 above, which is 1,4-cyclohexylene group or norbornylene group.
[8] Any one of [1] to [7], wherein at least one of R 1 , R 2 and R 3 in the general formulas (5) and (6) is an alkylene group having an alkyl branch having 1 to 4 carbon atoms. Curable composition.
[9] The curable composition as described in any one of 1 to 8 above, wherein R 1 and R 2 in the general formula (5) are 1,6-hexylene group or 2-methyl-1,5-pentylene group. .
[10] The curable composition as described in any one of 1 to 8 above, wherein R 1 and R 2 in the general formula (5) are nonylene groups.
[11] In the allyl group-terminated allyl ester oligomer (B), R 1 represents R 4 , R 2 represents R 5 , and X 3 and X 4 are 1,4-cyclohexylene groups (7) )
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 4 and R 5 each independently represents a 1,6-hexylene group or a 2-methyl-1,5-pentylene group, and n and m represent an arbitrary natural number.)
11. The curable composition according to any one of items 1 to 10, which is an oligomeric compound represented by
[12] Any one of [1] to [11] above, wherein the polyfunctional (meth) acrylic compound (C) is mainly composed of a (meth) acrylate monomer or oligomer having three or more (meth) acryloyloxy groups. The curable composition as described.
[13] An optical material obtained by curing the curable composition as described in any one of 1 to 12 above by applying light and / or heat.
[14] An optical film, an optical sheet, an optical waveguide, an optical lens, an optical sealant, an optical adhesive, or a light guide plate using the optical material according to item 13 above.
 本発明の硬化性組成物を重合硬化させることで、高い柔軟性と優れた耐熱性、ハンドリング性、高い表面硬度を有する光学用途に好適な透明な樹脂フィルムまたはシート材料を得ることができる。 By polymerizing and curing the curable composition of the present invention, a transparent resin film or sheet material suitable for optical applications having high flexibility, excellent heat resistance, handling properties, and high surface hardness can be obtained.
 以下、本発明について詳細に説明する。
 本発明の硬化性組成物は、以下の(A)~(D)成分を含むことを特徴とする。
Hereinafter, the present invention will be described in detail.
The curable composition of the present invention is characterized by including the following components (A) to (D).
(A)アリル基末端アリルエステルオリゴマー:
 本発明の硬化性組成物における主成分であり、以下の一般式(1)で示される末端基を3つ以上有し、かつ以下の一般式(2)で示される構造を有する、硬化物の耐熱性の発現に寄与する成分である。
Figure JPOXMLDOC01-appb-C000019
 式中、X1は脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表す。
Figure JPOXMLDOC01-appb-C000020
 式中、X2は脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表す。Y1は3~6個の水酸基を有する炭素数2~20の多価アルコールから誘導される有機残基を表す。ただし、Y1はエステル結合によって、さらに上記一般式(1)で示される基を末端基とし、上記一般式(2)で示される構造単位を有する分岐構造を有することができる。
(A) Allyl group-terminated allyl ester oligomer:
The main component of the curable composition of the present invention, having three or more terminal groups represented by the following general formula (1), and having a structure represented by the following general formula (2) It is a component that contributes to the development of heat resistance.
Figure JPOXMLDOC01-appb-C000019
In the formula, X 1 represents an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure.
Figure JPOXMLDOC01-appb-C000020
In the formula, X 2 represents an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure. Y 1 represents an organic residue derived from a polyhydric alcohol having 2 to 20 carbon atoms and having 3 to 6 hydroxyl groups. However, Y 1 may have a branched structure having a structural unit represented by the above general formula (2) by an ester bond and having a group represented by the above general formula (1) as a terminal group.
 一般式(1)及び(2)におけるX1及びX2は、脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表す。具体例としては置換基を有してもよい、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、メチルシクロへキシレン基、ジメチルシクロへキシレン基、シクロヘプチレン基、1-エチルシクロペンチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、ビシクロデシレン基、ノルボルニレン基及びシクロヘキサンジメチレン基等が挙げられる。 X 1 and X 2 in the general formulas (1) and (2) represent an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure. As specific examples, 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1, 4-cyclohexylene, methylcyclohexylene, dimethylcyclohexylene, cycloheptylene, 1-ethylcyclopentylene, cyclooctylene, cyclononylene, cyclodecylene, bicyclodecylene, norbornylene and cyclohexanedi A methylene group etc. are mentioned.
 これらの中でも、耐熱性に優れた硬化物が得られるため、置換基を有してもよい、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、ノルボルニレン基及びビシクロデシレン基が好ましく、ラジカル重合性化合物の粘度が相対的に低く、ハンドリング性が高いため、置換基を有してもよい、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基及びノルボルニレン基がさらに好ましい。また、X1及びX2は、同一でも、異なっていてもよい。置換基としては炭素数1~4のアルキル基が挙げられる。 Among these, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene which may have a substituent may be obtained because a cured product having excellent heat resistance can be obtained. Group, norbornylene group and bicyclodecylene group are preferable, and the radical polymerizable compound has relatively low viscosity and high handling property, and therefore may have a substituent, 1,2-cyclohexylene group, 1, More preferred are 3-cyclohexylene group, 1,4-cyclohexylene group and norbornylene group. X 1 and X 2 may be the same or different. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms.
 一般式(2)におけるY1は、3~6個の水酸基を有する炭素数2~20の多価アルコールから誘導される有機残基を表す。具体例としては、1-メチルエチレン基、2-メチルエチレン基、1-メチル-プロピレン基、2-メチル-プロピレン基、2-エチル-3-プロピルプロピレン基、2-エチル-2-ブチルプロピレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、2,4-ジメチルペンチレン基、1-メチルオクチレン基、2-メチルオクチレン基、2-メチル-2-メチレンプロピレン基、2-エチル-2-メチレンプロピレン基、及び2,2-ジメチレンプロピレン基等が挙げられる。水酸基が2つ以下であると耐熱性、表面硬度が低下する。水酸基の数が7個以上であると、アリル基末端アリルエステルオリゴマーを合成する際ゲル化が発生したり、オリゴマーの粘度が高くなりすぎることがある。 Y 1 in the general formula (2) represents an organic residue derived from a polyhydric alcohol having 2 to 20 carbon atoms and having 3 to 6 hydroxyl groups. Specific examples include 1-methylethylene group, 2-methylethylene group, 1-methyl-propylene group, 2-methyl-propylene group, 2-ethyl-3-propylpropylene group, 2-ethyl-2-butylpropylene group. 1-methylpentylene group, 2-methylpentylene group, 3-methylpentylene group, 2,4-dimethylpentylene group, 1-methyloctylene group, 2-methyloctylene group, 2-methyl-2 -Methylenepropylene group, 2-ethyl-2-methylenepropylene group, 2,2-dimethylenepropylene group and the like. When the number of hydroxyl groups is 2 or less, heat resistance and surface hardness are lowered. When the number of hydroxyl groups is 7 or more, gelation may occur when the allyl group-terminated allyl ester oligomer is synthesized, or the viscosity of the oligomer may become too high.
 これらの中でも、3または4個の水酸基を有する炭素数が5~10の多価アルコールから誘導される有機残基が好ましく、トリメチロールプロパン及びペンタエリスリトールから誘導される有機残基がより好ましい。水酸基が5個以上になるとオリゴマー合成時にゲル化を起こしやすくなる。なお、多価アルコールの一部の水酸基はエステル結合せず水酸基のまま残っていてもよい。 Among these, organic residues derived from polyhydric alcohols having 3 or 4 hydroxyl groups and 5 to 10 carbon atoms are preferable, and organic residues derived from trimethylolpropane and pentaerythritol are more preferable. When the number of hydroxyl groups is 5 or more, gelation tends to occur during oligomer synthesis. In addition, some hydroxyl groups of the polyhydric alcohol may remain as hydroxyl groups without ester bonding.
 一般式(2)で示される構造単位は、(A)アリル基末端アリルエステルオリゴマー中に少なくとも1つは必要であるが、適切な粘度が得られるため、作業性が向上し、硬化物の靭性も向上するので、この構造をくり返して(A)アリル基末端アリルエステルオリゴマー全体の分子量をある程度大きくした方がよい。しかし、分子量が大きくなりすぎると、架橋点間分子量が過剰に大きくなり、ガラス転移温度(Tg)が低下し、耐熱性が低下する。そのため、成分(A)のアリルエステルオリゴマーの数平均分子量は、500~50,000が好ましく、800~10,000がさらに好ましい。 At least one structural unit represented by the general formula (2) is required in the (A) allyl group-terminated allyl ester oligomer, but since an appropriate viscosity is obtained, workability is improved and toughness of the cured product is obtained. Therefore, it is better to repeat this structure to increase the molecular weight of the whole (A) allyl group-terminated allyl ester oligomer to some extent. However, if the molecular weight becomes too large, the molecular weight between cross-linking points becomes excessively large, the glass transition temperature (Tg) is lowered, and the heat resistance is lowered. Therefore, the number average molecular weight of the allyl ester oligomer of component (A) is preferably 500 to 50,000, and more preferably 800 to 10,000.
 上記一般式(1)及び(2)で示される構造を有するアリル基末端アリルエステルオリゴマー(A)は、1種の化合物を単独で使用してもよいし、2種以上を併用してもよい。アリル基末端アリルエステルオリゴマー(A)の具体例としては、以下の式で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000021
 式中、rは任意の自然数を表す。
Figure JPOXMLDOC01-appb-C000022
 式中、sは任意の自然数を表す。
In the allyl group-terminated allyl ester oligomer (A) having the structure represented by the general formulas (1) and (2), one type of compound may be used alone, or two or more types may be used in combination. . Specific examples of the allyl group-terminated allyl ester oligomer (A) include those represented by the following formulae.
Figure JPOXMLDOC01-appb-C000021
In the formula, r represents an arbitrary natural number.
Figure JPOXMLDOC01-appb-C000022
In the formula, s represents an arbitrary natural number.
 アリル基とエステル構造を有するアリル基末端アリルエステルオリゴマー(A)は、(1)アリル基及び水酸基を含む化合物(以下、アリルアルコールと総称する。)とカルボキシル基を含む化合物とのエステル化反応、(2)アリル基及びカルボキシル基を含む化合物と水酸基を含む化合物とのエステル化反応、または(3)アリルアルコールとジカルボン酸からなるエステル化合物と多価アルコールとのエステル交換反応により得ることができる。 An allyl group-terminated allyl ester oligomer (A) having an allyl group and an ester structure is (1) an esterification reaction between a compound containing an allyl group and a hydroxyl group (hereinafter collectively referred to as allyl alcohol) and a compound containing a carboxyl group, It can be obtained by (2) an esterification reaction between a compound containing an allyl group and a carboxyl group and a compound containing a hydroxyl group, or (3) an ester exchange reaction between an ester compound consisting of allyl alcohol and dicarboxylic acid and a polyhydric alcohol.
(B)アリル基末端アリルエステルオリゴマー:
 本発明の硬化性組成物における特徴的な成分であり、以下の一般式(3)及び式(4)で示される末端基、並びに以下の一般式(5)で示される構造を含有し、数平均分子量が500~50000である、硬化物の柔軟性の発現に寄与する成分である。
Figure JPOXMLDOC01-appb-C000023
 式中、X3は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式中、R1及びR2は、それぞれ独立してアルキル分岐を有してもよい炭素数2~20のアルキレン基を表し、X4は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表し、n及びmは任意の自然数を表す。
(B) Allyl group terminal allyl ester oligomer:
It is a characteristic component in the curable composition of the present invention, contains a terminal group represented by the following general formulas (3) and (4), and a structure represented by the following general formula (5), This component contributes to the development of the flexibility of the cured product having an average molecular weight of 500 to 50,000.
Figure JPOXMLDOC01-appb-C000023
In the formula, X 3 represents an optionally substituted cycloalkylene group having 5 to 10 carbon atoms or an optionally substituted alkylene group having 2 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
In the formula, each of R 1 and R 2 independently represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 4 has 5 to 10 carbon atoms which may have a substituent. It represents a cycloalkylene group or an alkylene group having 2 to 10 carbon atoms which may have a substituent, and n and m represent any natural number.
 また、アリル基末端アリルエステルオリゴマー(B)は、さらに一般式(6)で示される構造を有してもよい。
Figure JPOXMLDOC01-appb-C000026
 式中、R3はアルキル分岐を有してもよい炭素数2~20のアルキレン基を表し、X5は置換基を有してもよい炭素数5~10個のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表し、qは任意の自然数を表す。
Moreover, the allyl group terminal allyl ester oligomer (B) may further have a structure represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000026
In the formula, R 3 represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 5 represents a cycloalkylene group or substituent having 5 to 10 carbon atoms which may have a substituent. Represents an alkylene group having 2 to 10 carbon atoms which may be present, and q represents an arbitrary natural number.
 アリル基末端アリルエステルオリゴマー(B)の数平均分子量は500~50000であり、1000~10000がより好ましく、1500~5000の範囲がさらに好ましい。数平均分子量はGPCにより測定されたポリスチレン換算の分子量である。数平均分子量が500未満であると、柔軟性を付与する効果が低くなることがある。50000を超えるとアリル基末端アリルエステルオリゴマー(B)の粘度が増大しハンドリング性が低下する。また、多価アリルエステル化合物への相溶性が低下し、硬化物が白化する可能性も生じる。 The number average molecular weight of the allyl group-terminated allyl ester oligomer (B) is from 500 to 50,000, more preferably from 1,000 to 10,000, and even more preferably from 1,500 to 5,000. The number average molecular weight is a molecular weight in terms of polystyrene measured by GPC. When the number average molecular weight is less than 500, the effect of imparting flexibility may be lowered. If it exceeds 50,000, the viscosity of the allyl group-terminated allyl ester oligomer (B) increases and the handling property decreases. In addition, the compatibility with the polyvalent allyl ester compound is reduced, and the cured product may be whitened.
 一般式(5)中のn及びmは任意の自然数である。上述のとおりアリル基末端アリルエステルオリゴマー(B)の数平均分子量は500~50000となる分布をとる。n及びmの値は前記数平均分子量となる繰り返し数を示す。したがって、n及びmの値を一義的に定めることはできないが、nは1~500であり、mは1~180である。より好ましくはnは1~300、mは1~120であり、さらに好ましくはnは1~150、mは1~100である。 N and m in the general formula (5) are arbitrary natural numbers. As described above, the number average molecular weight of the allyl group-terminated allyl ester oligomer (B) has a distribution of 500 to 50,000. The values of n and m indicate the number of repetitions that is the number average molecular weight. Therefore, the values of n and m cannot be uniquely determined, but n is 1 to 500 and m is 1 to 180. More preferably, n is 1 to 300, m is 1 to 120, more preferably n is 1 to 150, and m is 1 to 100.
 一般式(6)中のqは任意の自然数である。n及びmの場合と同じ理由で一義的定めることはできないが、qは1~500である。より好ましくは1~120であり、さらに好ましくは1~100である。 Q in the general formula (6) is an arbitrary natural number. Although it cannot be uniquely determined for the same reason as in the case of n and m, q is 1 to 500. More preferably, it is 1 to 120, and further preferably 1 to 100.
 一般式(3)、(5)及び(6)中のX3、X4及びX5は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基である。X3、X4及びX5は同一であることが好ましいが異なっていてもよい。
 アリル基末端アリルエステルオリゴマー(B)の製造方法は後述するが、原料の一部としてX3、X4及びX5の構造を含むジカルボン酸ジアリルエステルを使用する。一種類のジカルボン酸ジアリルエステルを原料とすれば、X3、X4及びX5は同一になり、異なる種類のジカルボン酸ジアリルエステルを用いるとX3、X4及びX5は異なる場合がある。また、アリル基末端アリルエステルオリゴマー(B)中にm個存在する一般式(5)の単位構造ごとにX4が異なることもある。
X 3 , X 4 and X 5 in the general formulas (3), (5) and (6) may have a cycloalkylene group having 5 to 10 carbon atoms or a substituent which may have a substituent. An alkylene group having 2 to 10 carbon atoms. X 3 , X 4 and X 5 are preferably the same, but may be different.
Method for producing allyl terminal allyl ester oligomer (B) will be described later, using a dicarboxylic acid diallyl ester containing the structure of X 3, X 4 and X 5 as part of the raw materials. If one type of dicarboxylic acid diallyl ester is used as a raw material, X 3 , X 4 and X 5 are the same, and if different types of dicarboxylic acid diallyl ester are used, X 3 , X 4 and X 5 may be different. There are also X 4 is different for each unit structure of Formula (5) where m pieces present in the allyl group-terminated allyl ester oligomer (B).
 X3、X4及びX5が表す置換基を有してもよい炭素数5~10のシクロアルキレン基としては、耐熱性、透明性、ハンドリング性を両立させる点から炭素数6~8のシクロアルキレン基が好ましい。炭素数5~10のシクロアルキレン基は単環でもビシクロアルキレン基のような複数の環構造を有してよい。
 炭素数5~10のシクロアルキレン基としては、耐熱性の面でシクロへキシレン基、ノルボルニレン基、ビシクロデシレン基が好ましい。
 炭素数5~10のシクロアルキレン基の置換基としては、メチル基、エチル基等のアルキル基が挙げられる。
The cycloalkylene group having 5 to 10 carbon atoms which may have a substituent represented by X 3 , X 4 and X 5 is a cyclohexane group having 6 to 8 carbon atoms from the viewpoint of achieving both heat resistance, transparency and handling properties. An alkylene group is preferred. The cycloalkylene group having 5 to 10 carbon atoms may have a single ring or a plurality of ring structures such as a bicycloalkylene group.
The cycloalkylene group having 5 to 10 carbon atoms is preferably a cyclohexylene group, a norbornylene group or a bicyclodecylene group from the viewpoint of heat resistance.
Examples of the substituent for the cycloalkylene group having 5 to 10 carbon atoms include alkyl groups such as a methyl group and an ethyl group.
 置換基を有してもよい炭素数5~10のシクロアルキレン基の具体例としては、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロヘキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、メチルシクロへキシレン基、ジメチルシクロへキシレン基、シクロヘプチレン基、1-エチルシクロペンチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、ビシクロデシレン基、ノルボルニレン基、シクロヘキサンジメチレン基が挙げられる。これらの中でも、耐熱性に優れた硬化物が得られるため、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、ノルボルニレン基、ビシクロデシレン基が好ましく、アリル基末端アリルエステルオリゴマー(B)の粘度が相対的に低くなり、ハンドリング性が高くなるため、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、ノルボルニレン基がさらに好ましい。 Specific examples of the cycloalkylene group having 5 to 10 carbon atoms which may have a substituent include 1,2-cyclopentylene group, 1,3-cyclopentylene group, 1,2-cyclohexylene group, 1 , 3-cyclohexylene group, 1,4-cyclohexylene group, methylcyclohexylene group, dimethylcyclohexylene group, cycloheptylene group, 1-ethylcyclopentylene group, cyclooctylene group, cyclononylene group, cyclodecylene group, Bicyclodecylene group, norbornylene group, and cyclohexanedimethylene group can be mentioned. Among these, since a cured product having excellent heat resistance can be obtained, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene group, norbornylene group, bicyclodecylene group The allyl group-terminated allyl ester oligomer (B) has a relatively low viscosity and high handling properties, so that 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4- A cyclohexylene group and a norbornylene group are more preferable.
 X3、X4及びX5が表す置換基を有してもよい炭素数2~10のアルキレン基としては、汎用性の面から炭素数2~8個のアルキレン基が好ましい。
 炭素数2~10のアルキレン基の置換基としてはメチル基、エチル基等のアルキル基が挙げられる。
The alkylene group having 2 to 10 carbon atoms which may have a substituent represented by X 3 , X 4 and X 5 is preferably an alkylene group having 2 to 8 carbon atoms from the viewpoint of versatility.
Examples of the substituent of the alkylene group having 2 to 10 carbon atoms include alkyl groups such as a methyl group and an ethyl group.
 置換基を有してもよい炭素数2~10のアルキレン基の具体例としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基及びデシレン基が挙げられ、中でも汎用性の面から、エチレン基、プロピレン基、ブチレン基及びオクチレン基が好ましい。 Specific examples of the alkylene group having 2 to 10 carbon atoms which may have a substituent include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group and decylene group. Among them, from the viewpoint of versatility, an ethylene group, a propylene group, a butylene group, and an octylene group are preferable.
 一般式(5)中のR1及びR2はそれぞれ独立してアルキル分岐を有してもよい炭素数2~20のアルキレン基を表す。
 一般式(5)中のR1及びR2は、アリル基末端アリルエステルオリゴマー(B)の原料の1つであるカーボネートジオールに由来する。一般式(5)中にn個存在するR1は同一であっても異なっていてもよい。原料のカーボネートジオールのR1及びR2に相当するアルキレン基が複数種(共重合タイプ)であれば、R1も複数種存在することになる。
R 1 and R 2 in the general formula (5) each independently represent an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch.
R 1 and R 2 in the general formula (5) are derived from carbonate diol which is one of the raw materials of the allyl group terminal allyl ester oligomer (B). N R 1 present in the general formula (5) may be the same or different. If alkylene groups corresponding to R 1 and R 2 of the starting carbonate diol are plural kinds (copolymerization type), plural kinds of R 1 are also present.
 アルキル分岐を有してもよい炭素数2~20のアルキレン基としては、硬化物の柔軟性とハンドリング性を両立させる面から炭素数2~10のアルキレン基が好ましく、炭素数4~9のアルキレン基がさらに好ましい。アルキル分岐としては炭素数1~3のアルキル基が好ましい。アルキル分岐は2つ以上あってもよい。 The alkylene group having 2 to 20 carbon atoms which may have an alkyl branch is preferably an alkylene group having 2 to 10 carbon atoms from the viewpoint of achieving both flexibility and handleability of the cured product, and alkylene having 4 to 9 carbon atoms. Groups are more preferred. The alkyl branch is preferably an alkyl group having 1 to 3 carbon atoms. There may be two or more alkyl branches.
 R1及びR2が表すアルキレン基としては、直鎖状、分岐骨格を有するものが挙げられる。
 直鎖状のアルキレン基の具体例としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられ、中でもブチレン基、ヘキシレン基、ノニレン基が好ましい。
Examples of the alkylene group represented by R 1 and R 2 include those having a linear or branched skeleton.
Specific examples of the linear alkylene group include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, and a decylene group, and among them, a butylene group and a hexylene group. A nonylene group is preferred.
 分岐骨格を有するアルキレン基、すなわちアルキル分岐を有する炭素数2~20のアルキレン基の具体例としては、1-メチルエチレン基、2-メチルエチレン基、1-メチル-プロピレン基、2-メチル-プロピレン基、2-エチル-3-プロピルプロピレン基、2-エチル-2-ブチルプロピレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、2,4-ジメチルペンチレン基、1-メチルオクチレン基、2-メチルオクチレン基、2-メチル-2-メチレンプロピレン基、2-エチル-2-メチレンプロピレン基、及び2,2-ジメチレンプロピレン基等が挙げられる。 Specific examples of the alkylene group having a branched skeleton, that is, the alkylene group having 2 to 20 carbon atoms having an alkyl branch include 1-methylethylene group, 2-methylethylene group, 1-methyl-propylene group, 2-methyl-propylene. Group, 2-ethyl-3-propylpropylene group, 2-ethyl-2-butylpropylene group, 1-methylpentylene group, 2-methylpentylene group, 3-methylpentylene group, 2,4-dimethylpentylene Group, 1-methyloctylene group, 2-methyloctylene group, 2-methyl-2-methylenepropylene group, 2-ethyl-2-methylenepropylene group, 2,2-dimethylenepropylene group and the like.
 一般式(6)中のアルキル分岐を有してもよい炭素数2~20のアルキレン基を表すR3は、アリル基末端アリルエステルオリゴマー(B)の任意の原料であるアルキレンジオールに由来する。具体例としては前記のR1及びR2が表す炭素数2~20のアルキレン基の場合と同じものが挙げられる。 R 3 representing an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch in the general formula (6) is derived from an alkylene diol which is an arbitrary raw material of the allyl group-terminated allyl ester oligomer (B). Specific examples thereof are the same as those of the alkylene group having 2 to 20 carbon atoms represented by R 1 and R 2 described above.
 さらに、R1、R2及びR3の少なくとも1つは分岐を有するアルキレン基であることがさらに好ましい。分岐を有することにより、アリル基末端アリルエステルオリゴマー(B)の結晶性を抑制し、粘度や融点が低下させることが可能となり、ラジカル重合性化合物のハンドリング性を向上させることができる。分岐を有するアルキレン基の中でも特に好ましいのは、2-メチル-プロピレン基、2-エチル-2-ブチルプロピレン基、2-メチルペンチレン基、3-メチルペンチレン基、2,4-ジメチルペンチレン基、2-メチルオクチレン基である。 Furthermore, it is more preferable that at least one of R 1 , R 2 and R 3 is a branched alkylene group. By having branching, the crystallinity of the allyl group-terminated allyl ester oligomer (B) can be suppressed, the viscosity and the melting point can be lowered, and the handling property of the radical polymerizable compound can be improved. Among the branched alkylene groups, 2-methyl-propylene group, 2-ethyl-2-butylpropylene group, 2-methylpentylene group, 3-methylpentylene group, and 2,4-dimethylpentylene are particularly preferable. A 2-methyloctylene group.
 アリル基末端アリルエステルオリゴマー(B)におけるR1、R2及びR3のアルキレン基総量中の分岐を有するアルキレン基の比率は好ましくは10モル%以上、さらに好ましくは30モル%以上である。 The ratio of the alkylene group having a branch in the total amount of alkylene groups of R 1 , R 2 and R 3 in the allyl group terminal allyl ester oligomer (B) is preferably 10 mol% or more, more preferably 30 mol% or more.
 X3及びX4が1,4-シクロヘキシレン基、R1、R2及びR3がヘキシレン基または2-メチルペンチレン基である場合、本願発明のアリル基末端アリルエステルオリゴマー(B)は一般式(7)
Figure JPOXMLDOC01-appb-C000027
 式中、R4及びR5は、それぞれ独立して1,6-ヘキシレン基または2-メチル-1,5-ペンチレン基を表し、n及びmは任意の自然数を表す。
で示される。
When X 3 and X 4 are 1,4-cyclohexylene groups and R 1 , R 2 and R 3 are hexylene groups or 2-methylpentylene groups, the allyl group-terminated allyl ester oligomer (B) of the present invention is generally Formula (7)
Figure JPOXMLDOC01-appb-C000027
In the formula, R 4 and R 5 each independently represents a 1,6-hexylene group or a 2-methyl-1,5-pentylene group, and n and m represent any natural number.
Indicated by
 X3及びX4が1,4-シクロヘキシレン基、R1、R2及びR3がアルキル分岐を有してもよいノニレン基である場合、本願発明のアリル基末端アリルエステルオリゴマー(B)は下記の一般式で示される。
Figure JPOXMLDOC01-appb-C000028
 式中、R6及びR7はそれぞれ独立して-(CH29-または-(CH)2CH(CH3)(CH26-を表し、n及びmは任意の自然数を表す。
When X 3 and X 4 are 1,4-cyclohexylene groups and R 1 , R 2 and R 3 are nonylene groups which may have an alkyl branch, the allyl group-terminated allyl ester oligomer (B) of the present invention is It is shown by the following general formula.
Figure JPOXMLDOC01-appb-C000028
In the formula, R 6 and R 7 each independently represent — (CH 2 ) 9 — or — (CH) 2 CH (CH 3 ) (CH 2 ) 6 —, and n and m represent any natural number.
 アリル基末端アリルエステルオリゴマー(B)は、1種の化合物を単独で使用してもよいし、2種以上を併用してもよい。アリル基末端アリルエステルオリゴマー(B)は、アリル基末端アリルエステルオリゴマー(A)100質量部に対して、1~40質量部が好ましい。アリル基末端アリルエステルオリゴマー(B)の量が少なすぎると柔軟性に劣り、多すぎると耐熱性の低下を生じる場合がある。 As the allyl group-terminated allyl ester oligomer (B), one type of compound may be used alone, or two or more types may be used in combination. The allyl group terminal allyl ester oligomer (B) is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the allyl group terminal allyl ester oligomer (A). If the amount of the allyl group terminal allyl ester oligomer (B) is too small, the flexibility is inferior, and if it is too large, the heat resistance may be lowered.
 アリル基末端アリルエステルオリゴマー(B)は一般式(8)の化合物とポリカーボネートジオールとを触媒の存在下、エステル交換反応を行いつつ、副生するアリルアルコールを留去させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000029
 式中、X6は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表す。
The allyl group-terminated allyl ester oligomer (B) can be produced by distilling off allyl alcohol produced as a by-product while conducting a transesterification reaction between the compound of the general formula (8) and polycarbonate diol in the presence of a catalyst. .
Figure JPOXMLDOC01-appb-C000029
In the formula, X 6 represents an optionally substituted cycloalkylene group having 5 to 10 carbon atoms or an optionally substituted alkylene group having 2 to 10 carbon atoms.
 X6が表す置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基としては、X3、X4及びX5が表す置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基と同じ基が挙げられ、目的物である一般式(3)、(5)及び(6)で示される構造に対応して適切に選択すればよい。X6は一種類に限定されず、複数種の一般式(8)で示される化合物を使用することができる。 Examples of the cycloalkylene group having 5 to 10 carbon atoms which may have a substituent represented by X 6 or the alkylene group having 2 to 10 carbon atoms which may have a substituent include X 3 , X 4 and X 5. And the same group as the cycloalkylene group having 5 to 10 carbon atoms which may have a substituent or an alkylene group having 2 to 10 carbon atoms which may have a substituent. ), (5) and (6) may be selected appropriately in accordance with the structure shown. X 6 is not limited to one type, and a plurality of types of compounds represented by the general formula (8) can be used.
 一般式(8)で示される化合物の具体例としては、1,2-シクロヘキサンジカルボン酸ジアリル、1,3-シクロヘキサンジカルボン酸ジアリル、1,4-シクロヘキサンジカルボン酸ジアリル、エンドメチレンテトラヒドロフタル酸ジアリル、メチルテトラヒドロフタル酸ジアリル、デカヒドロナフタレンジカルボン酸ジアリル、5-ノルボルネン2,3-ジカルボン酸ジアリル、アジピン酸ジアリル、コハク酸ジアリル、マレイン酸ジアリル等が挙げられる。これら化合物は必要に応じて2種以上を併用することもできる。また、上述の具体例に限定されるものではない。 Specific examples of the compound represented by the general formula (8) include diallyl 1,2-cyclohexanedicarboxylate, diallyl 1,3-cyclohexanedicarboxylate, diallyl 1,4-cyclohexanedicarboxylate, diallyl endomethylenetetrahydrophthalate, methyl Examples include diallyl tetrahydrophthalate, diallyl decahydronaphthalenedicarboxylate, diallyl 5-norbornene 2,3-dicarboxylate, diallyl adipate, diallyl succinate, diallyl maleate, and the like. These compounds can be used in combination of two or more as required. Moreover, it is not limited to the above-mentioned specific example.
 アリル基末端アリルエステルオリゴマー(B)の製造に使用するポリカーボネートジオールは一般式(9)で示される。
Figure JPOXMLDOC01-appb-C000030
 式中、R1及びR2は前記(一般式(5)の場合)と同じく、それぞれ独立して炭素数2~20のアルキレン基を表す。
The polycarbonate diol used for the production of the allyl group-terminated allyl ester oligomer (B) is represented by the general formula (9).
Figure JPOXMLDOC01-appb-C000030
In the formula, R 1 and R 2 each independently represents an alkylene group having 2 to 20 carbon atoms, as in the case of the general formula (5).
 前述のようにアリル基末端アリルエステルオリゴマー(B)において、R1及びR2の少なくとも1つは分岐を有するアルキレン基であることがさらに好ましい。分岐を有するアルキレン基の中でも末端炭素に分岐を有さないものが特に好ましい。末端に分岐を有さないアルキレン基から誘導されるポリカーボネートジオールは分子中の水酸基が全て一級水酸基となり、エステル交換反応の反応速度が速く生産性の点で好ましい。末端に置換基を有すると反応速度が低下するため、生産性が低下する。末端炭素に分岐を有さないアルキレン基の具体例としては、2-メチル-プロピレン基、2-エチル-2-ブチルプロピレン基、2-メチルペンチレン基、3-メチルペンチレン基、2,4-ジメチルペンチレン基、2-メチルオクチレン基等が挙げられる。 As described above, in the allyl group-terminated allyl ester oligomer (B), it is more preferable that at least one of R 1 and R 2 is a branched alkylene group. Among the alkylene groups having a branch, those having no branch at the terminal carbon are particularly preferable. Polycarbonate diol derived from an alkylene group having no branch at the end is preferable from the viewpoint of productivity because the hydroxyl groups in the molecule are all primary hydroxyl groups and the reaction rate of the transesterification reaction is fast. When the substituent is present at the terminal, the reaction rate is lowered, and the productivity is lowered. Specific examples of the alkylene group having no branch at the terminal carbon include 2-methyl-propylene group, 2-ethyl-2-butylpropylene group, 2-methylpentylene group, 3-methylpentylene group, 2,4 -A dimethylpentylene group, a 2-methyloctylene group and the like.
 ポリカーボネートジオールは必要に応じて2種以上を併用することもできる。また、上述の具体例に限定されるものではない。 Polycarbonate diols can be used in combination of two or more as required. Moreover, it is not limited to the above-mentioned specific example.
 反応に用いられるポリカーボネートジオールは一般的にはジメチルカーボネートやジフェニルカーボネート、エチレンカーボネート等のカーボネート化合物とジオールとのエステル交換反応により製造される縮合体であり、分子量の異なるオリゴマーの集合体であり、分子量分布を有している。 The polycarbonate diol used in the reaction is generally a condensate produced by a transesterification reaction between a diol compound such as dimethyl carbonate, diphenyl carbonate or ethylene carbonate and a diol, and is an aggregate of oligomers having different molecular weights. Have a distribution.
 本発明のラジカル重合性化合物用のポリカーボネートジオールの数平均分子量は300~10000であることが好ましく、500~3000がさらに好ましい。平均分子量が小さいとポリカーボネート骨格由来の耐熱性、靭性等の諸特性が発現されにくくなる。平均分子量が大きいと、ポリカーボネートジオールが固体状となり、使用時に加温を要するなど作業性が低下する。また、それを用いて合成したアリル基末端アリルエステルオリゴマー(B)をアリル基末端アリルエステルオリゴマー(A)と混合し、硬化させた際に硬化物が白化するなどの問題が生ずることがある。 The number average molecular weight of the polycarbonate diol for the radical polymerizable compound of the present invention is preferably 300 to 10,000, and more preferably 500 to 3,000. When the average molecular weight is small, various properties such as heat resistance and toughness derived from the polycarbonate skeleton are hardly expressed. When the average molecular weight is large, the polycarbonate diol becomes a solid and the workability is lowered, for example, heating is required during use. Moreover, when the allyl group terminal allyl ester oligomer (B) synthesize | combined using it and an allyl group terminal allyl ester oligomer (A) are hardened, problems, such as whitening of hardened | cured material, may arise.
 アリル基末端アリルエステルオリゴマー(B)が一般式(6)で示される構造を有する場合、ジオールとしてポリカーボネートジオールとともにアルキレンジオールを使用することもできる。アルキレンジオールの具体例としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、2,4-ジメチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等が挙げられる。 When the allyl group-terminated allyl ester oligomer (B) has a structure represented by the general formula (6), an alkylene diol can be used together with a polycarbonate diol as the diol. Specific examples of the alkylene diol include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, 1,3 -Butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6- Examples include hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, and 1,9-nonanediol.
 一般式(8)で示される化合物とポリカーボネートジオールとの仕込み量のモル比率は1.1:1~6:1が好ましく、1.5:1~3:1がさらに好ましい。
 アルキレンジールを併用する場合、一般式(8)で示される化合物とアルキレンジオールとの仕込み量のモル比率は1.1:1~6:1が好ましく、1.5:1~3:1がさらに好ましい。
The molar ratio of the charged amount of the compound represented by the general formula (8) and the polycarbonate diol is preferably 1.1: 1 to 6: 1, and more preferably 1.5: 1 to 3: 1.
In the case of using an alkylenediol together, the molar ratio of the charged amount of the compound represented by the general formula (8) and the alkylene diol is preferably 1.1: 1 to 6: 1, more preferably 1.5: 1 to 3: 1. preferable.
 エステル交換反応触媒としては、従来知られているエステル交換触媒を使用することができる。具体的には、アルカリ金属、アルカリ土類金属、それらの酸化物及び弱酸塩;Mn、U、Zn、Cd、Zr、Pb、Ti、Co及びSnの酸化物、水酸化物、無機酸塩、アルコラート及び有機酸塩;ジブチル錫オキサイド、ジオクチル錫オキサイド、ジブチル錫ジクロライド等の有機錫化合物等が挙げられる。中でも、テトライソプロポキシチタン、テトラブトキシチタン、ジブチル錫オキサイド、ジオクチル錫オキサイド、アセチルアセトンハフニウム、アセチルアセトンジルコニウムか好ましく、ジブチル錫オキサイド、ジオクチル錫オキサイドがさらに好ましい。 A conventionally known transesterification catalyst can be used as the transesterification reaction catalyst. Specifically, alkali metals, alkaline earth metals, oxides and weak acid salts thereof; oxides of Mn, U, Zn, Cd, Zr, Pb, Ti, Co, and Sn, hydroxides, inorganic acid salts, Examples include alcoholates and organic acid salts; organic tin compounds such as dibutyltin oxide, dioctyltin oxide, and dibutyltin dichloride. Among these, tetraisopropoxy titanium, tetrabutoxy titanium, dibutyl tin oxide, dioctyl tin oxide, acetylacetone hafnium, and acetylacetone zirconium are preferable, and dibutyltin oxide and dioctyltin oxide are more preferable.
 触媒の使用量は、触媒の活性によって異なるが、適度な速度でアリルアルコールを留出させ得るような量を使用する。一般的には、一般式(8)で示されるジアリルエステル化合物に対して0.0001~1質量%、好ましくは0.001~0.5質量%程度を使用する。 The amount of the catalyst used varies depending on the activity of the catalyst, but an amount that can distill allyl alcohol at an appropriate rate is used. Generally, about 0.0001 to 1% by mass, preferably about 0.001 to 0.5% by mass is used with respect to the diallyl ester compound represented by the general formula (8).
 この製造工程における反応温度は、180℃未満が好ましく、170℃以下がより好ましく、160℃以下がさらに好ましい。反応温度を上げると反応時間は短くなるが、着色、副生物量の増加の可能性がある。 The reaction temperature in this production process is preferably less than 180 ° C, more preferably 170 ° C or less, and further preferably 160 ° C or less. Increasing the reaction temperature shortens the reaction time, but there is a possibility of coloring and increasing the amount of by-products.
 反応の実施の形態としては、反応の進行を促進させるため、減圧下での反応、適当な溶媒を使用するなどして、副生するアリルアルコールを反応系外に除去しながら行うことが好ましい。 As an embodiment of the reaction, in order to promote the progress of the reaction, it is preferable to carry out the reaction under reduced pressure, using an appropriate solvent, and the like while removing by-product allyl alcohol from the reaction system.
(C)多官能(メタ)アクリル化合物:
 本発明の硬化性組成物は多官能(メタ)アクリル化合物を含む。本明細書において多官能(メタ)アクリル化合物は(メタ)アクリロイルオキシ基を2つ以上有する有機化合物を意味し、硬化物の高い表面硬度の発現に寄与する成分である。
 多官能(メタ)アクリル化合物としては、寸法安定性の点で、3つ以上の(メタ)アクリロイルオキシ基を有する炭素数が10~30の(メタ)アクリレートモノマーまたはオリゴマーを主成分とするものが好ましく、透明性の点で分子内に芳香環を有さない脂肪族あるいは脂環骨格を有する化合物が好ましい。具体的には、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。より好ましい具体例としては、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
(C) Polyfunctional (meth) acrylic compound:
The curable composition of the present invention contains a polyfunctional (meth) acrylic compound. In the present specification, the polyfunctional (meth) acrylic compound means an organic compound having two or more (meth) acryloyloxy groups, and is a component that contributes to the development of high surface hardness of the cured product.
The polyfunctional (meth) acrylic compound is mainly composed of a (meth) acrylate monomer or oligomer having 10 to 30 carbon atoms having 3 or more (meth) acryloyloxy groups in terms of dimensional stability. A compound having an aliphatic or alicyclic skeleton having no aromatic ring in the molecule is preferable from the viewpoint of transparency. Specifically, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tris ( 2-hydroxyethyl) isocyanurate tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) Acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tet (Meth) acrylate, dipentaerythritol tri (meth) acrylate. More preferred specific examples include trimethylolpropane tri (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
 また、ジペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジシクロペンタニルジメチレンジ(メタ)アクリレート及び/または5-エチル-2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-(ヒドロキシメチル)-1,3-ジオキサジ(メタ)アクリレート、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ビスフェノールA-ジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールA-エチレンオキシド変性ジ(メタ)アクリレート、水添ビスフェノールA-ジグリシジルエーテルジ(メタ)アクリレート、水添ビスフェノールA-エチレンオキシド変性ジ(メタ)アクリレート、ビスフェノールF-ジグリシジルエーテルジアクリレート、ビスフェノールF-エチレンオキシド変性ジ(メタ)アクリレート、水添ビスフェノールF-ジグリシジルエーテルジ(メタ)アクリレート、水添ビスフェノールF-エチレンオキシド変性ジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート等のエポキシ(メタ)アクリレート、多価アルコールと多価カルボン酸及び/またはその無水物とアクリル酸とをエステル化することにより得られるポリエステルジ(メタ)アクリレート、多価アルコール、多価イソシアネート及び水酸基含有(メタ)アクリレートを反応させることにより得られるウレタンジ(メタ)アクリレート等の2官能(メタ)アクリル化合物を反応性希釈剤を兼ねて併用することができる。これらの多官能(メタ)アクリル化合物は単独で用いてもまたは2種以上混合して用いてもよい。 Dipentaerythritol di (meth) acrylate, trimethylolpropane di (meth) acrylate, dicyclopentanyldimethylene di (meth) acrylate and / or 5-ethyl-2- (2-hydroxy-1,1-dimethylethyl) ) -5- (hydroxymethyl) -1,3-dioxadi (meth) acrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,3-butanediol di (meth) acrylate, 1,4- Butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol diacrylate, tetraethylene glycol diacrylate, triethylene glycol di (meth) acrylate Propylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, zinc di (meth) acrylate, bisphenol A-diglycidyl ether di (meth) acrylate, bisphenol A-ethylene oxide modified di (meth) acrylate, hydrogenated bisphenol A- Diglycidyl ether di (meth) acrylate, hydrogenated bisphenol A-ethylene oxide modified di (meth) acrylate, bisphenol F-diglycidyl ether diacrylate, bisphenol F-ethylene oxide modified di (meth) acrylate, hydrogenated bisphenol F-diglycidyl ether Di (meth) acrylate, hydrogenated bisphenol F-ethylene oxide modified di (meth) acrylate, neopentyl glycol diglycidyl ether di ( E) esterifying epoxy (meth) acrylate such as acrylate, 1,6-hexanediol diglycidyl ether di (meth) acrylate, polyhydric alcohol and polyhydric carboxylic acid and / or anhydride thereof and acrylic acid Reactive diluent for bifunctional (meth) acrylic compounds such as urethane di (meth) acrylate obtained by reacting the resulting polyester di (meth) acrylate, polyhydric alcohol, polyvalent isocyanate and hydroxyl group-containing (meth) acrylate Can also be used in combination. These polyfunctional (meth) acrylic compounds may be used alone or in combination of two or more.
 なお、本明細書において、(メタ)アクリル化合物は、メタクリル化合物またはアクリル化合物を意味し、同様に(メタ)アクリレートは、メタクリレートまたはアクリレートを、(メタ)アクリロイルオキシ基はメタアクリロイルオキシ基またはアクリロイルオキシ基を意味する。 In the present specification, the (meth) acrylic compound means a methacrylic compound or an acrylic compound, similarly (meth) acrylate means methacrylate or acrylate, and (meth) acryloyloxy group means methacryloyloxy group or acryloyloxy. Means a group.
 成分(C)の多官能(メタ)アクリル化合物の使用量は、成分(A)100質量部に対して、5~60質量部が好ましい。(メタ)アクリル化合物の量が少なすぎると膜の硬度が出にくくなり、耐擦傷性が悪くなるおそれがある。また、多すぎると硬化収縮に伴いクラックが生じる場合がある。 The amount of the polyfunctional (meth) acrylic compound used as the component (C) is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the component (A). If the amount of the (meth) acrylic compound is too small, the hardness of the film is difficult to be obtained, and the scratch resistance may be deteriorated. On the other hand, if the amount is too large, cracks may occur as the curing shrinks.
(D)重合開始剤:
 本発明の硬化性組成物は硬化物を得るための重合開始剤を含む。重合開始剤としては光重合開始剤(D1)、熱重合開始剤(D2)を用いることができる。光重合開始剤(D1)と熱重合開始剤(D2)はいずれか単独で使用することもできるし、両者を併用することもできる。
(D) Polymerization initiator:
The curable composition of the present invention contains a polymerization initiator for obtaining a cured product. As the polymerization initiator, a photopolymerization initiator (D1) or a thermal polymerization initiator (D2) can be used. The photopolymerization initiator (D1) and the thermal polymerization initiator (D2) can be used either alone or in combination.
 光重合開始剤(D1)としては、公知の紫外線照射によって、容易に開裂して2個のラジカルができる光開裂型及び/または水素引き抜き型、あるいはこれらを混合して使用することができる。これらの化合物としては、ベンゾフェノン、ベンゾイル安息香酸、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン類、ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインブチルエーテル、ベンゾインイソブチルエーテル等のベンゾインアルキルエーテル類、4―フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、4-t-ブチル-トリクロロアセトフェノン、ジエトキシアセトフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のアセトフェノン類、チオキサンテン、2-クロルチオキサンテン、2-メチルチオキサンテン、2,4-ジメチルチオキサンテン等のチオキサンテン類、エチルアントラキノン、ブチルアントラキノン等のアルキルアントラキノン類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド類、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンジルジメチルケタール類、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノケトン類、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-プロパン-1-オン等のα-ヒドロキシケトン類、9,10-フェナンスレンキノン等を挙げることができる。これらは単独、あるいは2種以上の混合物として用いることができる。 As the photopolymerization initiator (D1), a photocleavable type and / or a hydrogen abstracting type that can be easily cleaved to form two radicals by known ultraviolet irradiation, or a mixture thereof can be used. These compounds include benzophenone, benzoylbenzoic acid, 4-phenylbenzophenone, hydroxybenzophenone, benzophenones such as 4,4'-bis (diethylamino) benzophenone, benzoin, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, benzoin isobutyl Benzoin alkyl ethers such as ether, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, 4-t-butyl-trichloroacetophenone, diethoxyacetophenone, 2-benzyl-2-dimethylamino-1- (4- Acetophenones such as morpholinophenyl) -butanone-1, thioxanthene, 2-chlorothioxanthene, 2-methylthioxanthene, 2,4-di Thioxanthenes such as tilthioxanthene, alkylanthraquinones such as ethyl anthraquinone and butyl anthraquinone, acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2-dimethoxy-1,2-diphenylethane Benzyldimethylketals such as -1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4- Α-aminoketones such as morpholinophenyl) -butanone-1, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy Α-hydroxy ketones such as -2-methyl-propan-1-one, , Mention may be made of 10-phenanthrenequinone and the like. These can be used alone or as a mixture of two or more.
 光重合開始剤の配合量は、成分(A)100質量部に対して、0.1~10質量部が好ましい。配合量が0.1質量部未満では光硬化性が不十分となり、10質量部を超えると耐溶剤性や柔軟性が低下するため好ましくない。 The blending amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount is less than 0.1 parts by mass, the photocurability is insufficient, and if it exceeds 10 parts by mass, the solvent resistance and flexibility are deteriorated.
 また、光重合開始剤を使用し、紫外線で重合硬化させる場合には、重合速度を向上させるために必要に応じて光増感剤を併用することができる。そのような目的で使用する増感剤としては、ピレン、ペリレン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジクロロチオキサントン、フェノチアジン等が挙げられる。増感剤を併用する場合の使用量は、光重合開始剤100質量部に対して、0.1~100質量部の範囲が好ましい。 Also, when a photopolymerization initiator is used and polymerized and cured with ultraviolet rays, a photosensitizer can be used in combination as necessary in order to improve the polymerization rate. Examples of the sensitizer used for such purpose include pyrene, perylene, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 2,4-dichlorothioxanthone, phenothiazine and the like. The amount of the sensitizer used in combination is preferably in the range of 0.1 to 100 parts by mass with respect to 100 parts by mass of the photopolymerization initiator.
 熱重合開始剤(D2)は、公知の有機過酸化物やアゾ化合物を使用することができる。有機過酸化物としては、例えばジアシルパーオキサイド系[ジベンゾイルパーオキサイド、ラウロイルパーオキサイド等]、ジアルキルパーオキサイド系[ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド等];パーオキシエステル系[tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ヘキシルパーオキシイソプロピルモノカーボネート等];ケトンパーオキサイド系[メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等];パーオキシジカーボネート系[ビス(4-tert-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等];パーオキシモノカーボネート系[tert-ブチルパーオキシイソプロピルカーボネート等];パーオキシケタール系[1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、2,2-ビス(tert-ブチルパーオキシ)オクタン等];及びこれらの2種以上の混合物が挙げられる。これらの中でも、パーオキシエステル系有機過酸化物が好適である。 As the thermal polymerization initiator (D2), a known organic peroxide or azo compound can be used. Examples of the organic peroxide include diacyl peroxides [dibenzoyl peroxide, lauroyl peroxide, etc.], dialkyl peroxides [di-tert-butyl peroxide, dicumyl peroxide, etc.]; peroxyesters [tert -Butylperoxybenzoate, tert-butylperoxy-2-ethylhexanoate, tert-hexylperoxyisopropyl monocarbonate, etc.]; Ketone peroxides [methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.]; Peroxydicarbonates [Bis (4-tert-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, etc.]; Peroxymonocarbonate type [tert-butylperoxyisopropylcarbonate, etc.] Peroxyketal type [1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, 2,2-bis (tert-butylperoxy) octane, etc.]; and two or more of these A mixture is mentioned. Among these, peroxyester organic peroxides are preferable.
 アゾ化合物としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビスイソバレロニトリル、ジメチル-2,2’-アゾビスイソブチレート等のアゾ系化合物等が挙げられる。 Examples of the azo compound include azo compounds such as 2,2'-azobisisobutyronitrile, 2,2'-azobisisovaleronitrile, dimethyl-2,2'-azobisisobutyrate, and the like.
 これらの熱重合開始剤は単独、あるいは2種以上の混合物として用いることができる。熱重合開始剤の配合量は、成分(A)100質量部に対し0.1~10質量部が好ましい。配合量が0.1質量部未満では熱硬化性が不十分となる場合がある。一方、10質量部を超えると耐溶剤性や柔軟性が低下するため好ましくない。 These thermal polymerization initiators can be used alone or as a mixture of two or more. The blending amount of the thermal polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount is less than 0.1 parts by mass, the thermosetting property may be insufficient. On the other hand, if it exceeds 10 parts by mass, the solvent resistance and flexibility are unfavorable.
 本発明の硬化性組成物は本発明の効果を妨げない範囲で、硬度、強度、成形性、耐久性、耐水性を改良する目的で、紫外線吸収剤、酸化防止剤、離型剤、滑剤、着色剤、難燃剤、架橋助剤、無機充填材、有機充填材、重合禁止剤、増粘剤、消泡剤、レベリング剤、密着性付与剤等の公知の各種添加剤を使用することができる。特に、光線透過率を阻害しないものが好ましい。 The curable composition of the present invention is an ultraviolet absorber, an antioxidant, a mold release agent, a lubricant, for the purpose of improving hardness, strength, moldability, durability, and water resistance within a range that does not interfere with the effects of the present invention. Various known additives such as colorants, flame retardants, crosslinking aids, inorganic fillers, organic fillers, polymerization inhibitors, thickeners, antifoaming agents, leveling agents, and adhesion promoters can be used. . In particular, those that do not inhibit the light transmittance are preferred.
 紫外線吸収剤の具体例としては、2-(2’-ヒドロキシ-tert-ブチルフェニル)ベンゾトリアゾール等のトリアゾール類、2,4-ジヒドロキシベンゾフェノン等のベンゾフェノン類、4-tert-ブチルフェニルサリシラート等のサリシラート類が挙げられる。 Specific examples of UV absorbers include triazoles such as 2- (2′-hydroxy-tert-butylphenyl) benzotriazole, benzophenones such as 2,4-dihydroxybenzophenone, 4-tert-butylphenyl salicylate, etc. Of salicylates.
 紫外線吸収剤の配合量は、他の配合物の種類、量等により変わるが、一般的には、光学材料用組成物中の全ラジカル重合性成分100質量部に対して0.01~2質量部が好ましく、0.03~1.7質量部がより好ましく、0.05~1.4質量部が最も好ましい。紫外線吸収剤が0.01質量部未満では十分な効果が期待できず、2質量部を超えると経済的に好ましくない。 The blending amount of the ultraviolet absorber varies depending on the type and amount of the other blends, but is generally 0.01 to 2 parts by weight with respect to 100 parts by weight of all radical polymerizable components in the composition for optical materials. Part is preferable, 0.03 to 1.7 parts by weight is more preferable, and 0.05 to 1.4 parts by weight is most preferable. If the ultraviolet absorber is less than 0.01 parts by mass, a sufficient effect cannot be expected, and if it exceeds 2 parts by mass, it is economically undesirable.
 酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]メタン等のフェノール系、ジラウリル-3,3’-チオジプロピオナート等の硫黄系、トリスノニルフェニルホスファイト等のリン系の酸化防止剤、ビス-(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート等のヒンダードアミン類等が挙げられる。 Antioxidants include 2,6-di-tert-butyl-4-methylphenol, tetrakis- [methylene-3- (3 ′, 5′-di-tert-butyl-4-hydroxyphenyl) propionate] methane, etc. Phenol-based, sulfur-based dilauryl-3,3′-thiodipropionate, etc., phosphorus-based antioxidants such as trisnonylphenyl phosphite, bis- (2,2,6,6-tetramethyl-4- Hindered amines such as piperidinyl) sebacate and the like.
 酸化防止剤の配合量は、他の配合物の種類、量等により変わるが、一般的には、光学材料用組成物中の全ラジカル重合性成分100質量部に対して、0.01~5質量部が好ましく、0.05~4質量部がより好ましく、1~3質量部が最も好ましい。酸化防止剤が0.01質量部未満では十分な効果が期待できず、5質量部を超えると経済的に好ましくない。 The blending amount of the antioxidant varies depending on the type and amount of other blends, but is generally 0.01 to 5 with respect to 100 parts by weight of all radically polymerizable components in the composition for optical materials. Part by mass is preferable, 0.05 to 4 parts by mass is more preferable, and 1 to 3 parts by mass is most preferable. If the antioxidant is less than 0.01 parts by mass, a sufficient effect cannot be expected, and if it exceeds 5 parts by mass, it is economically undesirable.
 離型剤としては、ステアリン酸、ステアリン酸ブチル、ステアリン酸亜鉛、ステアリン酸アミド、フッ素系化合物類、シリコーン化合物類等が挙げられる。離型剤の配合量は、他の配合物の種類、量等により変わるが、一般的には、光学材料用組成物中の全ラジカル重合性成分100質量部に対して、0.01~2質量部が好ましく、0.03~1.7質量部がより好ましく、0.05~1.4質量部が最も好ましい。離型剤が0.01質量部未満では十分な効果が期待できず、2質量部を超えると経済的に好ましくない。 Examples of the mold release agent include stearic acid, butyl stearate, zinc stearate, stearic acid amide, fluorine-based compounds, and silicone compounds. The compounding amount of the release agent varies depending on the type and amount of other compounds, but is generally 0.01 to 2 with respect to 100 parts by mass of all radical polymerizable components in the composition for optical materials. Part by mass is preferred, 0.03 to 1.7 parts by mass is more preferred, and 0.05 to 1.4 parts by mass is most preferred. If the release agent is less than 0.01 parts by mass, a sufficient effect cannot be expected, and if it exceeds 2 parts by mass, it is not economically preferable.
 滑剤としては、特に制限はなく、一般に使用されているものを用いることができる。中でも、金属石鹸系滑剤、脂肪酸エステル系滑剤、脂肪族炭化水素系滑剤等が好ましく、金属石鹸系滑剤が特に好ましい。金属石鹸系滑剤としては、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム及びステアリン酸アルミニウム等が挙げられる。これらは複合体として用いてもよい。 There is no restriction | limiting in particular as a lubricant, What is generally used can be used. Among these, metal soap lubricants, fatty acid ester lubricants, aliphatic hydrocarbon lubricants and the like are preferable, and metal soap lubricants are particularly preferable. Examples of the metal soap lubricant include barium stearate, calcium stearate, zinc stearate, magnesium stearate and aluminum stearate. These may be used as a complex.
 着色剤としては、アントラキノン系、アゾ系、カルボニウム系、キノリン系、キノンイミン系、インジゴイド系、フタロシアニン系等の有機顔料、アゾイック染料、硫化染料等の有機染料、チタンイエロー、黄色酸化鉄、亜鉛黄、クロムオレンジ、モリブデンレッド、コバルト紫、コバルトブルー、コバルトグリーン、酸化クロム、酸化チタン、硫化亜鉛、カーボンブラック等の無機顔料等が挙げられる。その配合量は特に限定されない。 Colorants include anthraquinone, azo, carbonium, quinoline, quinoneimine, indigoid, phthalocyanine and other organic pigments, azoic dyes, sulfur dyes and other organic dyes, titanium yellow, yellow iron oxide, zinc yellow, Examples thereof include inorganic pigments such as chromium orange, molybdenum red, cobalt purple, cobalt blue, cobalt green, chromium oxide, titanium oxide, zinc sulfide, and carbon black. The blending amount is not particularly limited.
 難燃剤の具体例としては、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アクリロイル基を有する臭素化エポキシ化合物、アクリロイル基を有する酸変性臭素化エポキシ化合物等のような臭素含有化合物、赤リン、酸化スズ、アンチモン系化合物、水酸化ジルコニウム、メタホウ酸バリウム、水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤、リン酸アンモニウム化合物、ホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル、含窒素リン化合物、ホスファゼン化合物等のリン系化合物等が挙げられる。 Specific examples of the flame retardant include brominated epoxy compounds, acid-modified brominated epoxy compounds, brominated epoxy compounds having an acryloyl group, bromine-containing compounds such as acid-modified brominated epoxy compounds having an acryloyl group, red phosphorus, Inorganic flame retardants such as tin oxide, antimony compounds, zirconium hydroxide, barium metaborate, aluminum hydroxide, magnesium hydroxide, ammonium phosphate compounds, phosphate compounds, aromatic condensed phosphate esters, halogen-containing condensed phosphate esters And phosphorus compounds such as nitrogen-containing phosphorus compounds and phosphazene compounds.
 難燃剤の配合量としては、他の配合物の種類、量等により変わるが、一般的には、光学材料用組成物中の全ラジカル重合性成分100質量部に対して10~50質量部が好ましい。難燃剤が10質量部未満では十分な難燃効果が期待できず、50質量部を超えると透明性が低下し好ましくない。 The blending amount of the flame retardant varies depending on the type and amount of other blends, but generally 10 to 50 parts by weight with respect to 100 parts by weight of all radical polymerizable components in the composition for optical materials. preferable. If the flame retardant is less than 10 parts by mass, a sufficient flame retardant effect cannot be expected, and if it exceeds 50 parts by mass, the transparency is undesirably lowered.
 架橋助剤の具体例としては、熱重合開始剤による部分架橋処理に際し架橋助剤として働く化合物であり、ジビニルベンゼン、トリアリルシアヌレートのような多官能性ビニルモノマーが例示される。架橋助剤の配合量は、他の配合物の種類、量等により変わるが、一般的には、光学材料用組成物中の全ラジカル重合性成分100質量部に対して、1~30質量部が好ましい。架橋助剤が1質量部未満では十分な効果が期待できず、30質量部を超えるとフィルムの柔軟性が低下し好ましくない。 Specific examples of the crosslinking aid are compounds that act as a crosslinking aid in the partial crosslinking treatment with a thermal polymerization initiator, and examples thereof include polyfunctional vinyl monomers such as divinylbenzene and triallyl cyanurate. The amount of the crosslinking aid varies depending on the type and amount of the other compound, but is generally 1 to 30 parts by mass with respect to 100 parts by mass of all radical polymerizable components in the composition for optical materials. Is preferred. If the crosslinking aid is less than 1 part by mass, a sufficient effect cannot be expected, and if it exceeds 30 parts by mass, the flexibility of the film is lowered, which is not preferable.
 無機充填材の具体例としては、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、結晶性シリカ、無定形シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、雲母粉、ガラス球、ガラス繊維、炭素繊維等の公知慣用の無機充填材を例示できるが、これらに限定されるものではない。また、有機充填剤の具体例としては、アクリル樹脂、メラミン樹脂、スチレン樹脂、シリコーン樹脂、シリコンゴム、弗素樹脂等の公知慣用の有機充填材が使用できるが例示できるが、これらに限定されるものではない。これらの無機充填材や有機充填材は、1種または2種以上を組み合わせて用いることができ、本発明の主旨を損ねない範囲、すなわち光学材料用組成物中の全ラジカル重合性成分100質量部に対して1~50質量部で添加することができる。 Specific examples of the inorganic filler include barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, crystalline silica, amorphous silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, Although well-known and usual inorganic fillers, such as a mica powder, a glass sphere, glass fiber, and carbon fiber, can be illustrated, it is not limited to these. As specific examples of the organic filler, known organic fillers such as acrylic resin, melamine resin, styrene resin, silicone resin, silicone rubber, and fluorine resin can be used, but the organic filler can be exemplified. is not. These inorganic fillers and organic fillers can be used singly or in combination of two or more, and are within the range not impairing the gist of the present invention, that is, 100 parts by mass of all radical polymerizable components in the composition for optical materials. 1 to 50 parts by mass can be added.
 さらに、必要に応じて、ハイドロキノン、ハイドロキノンモノメチルエーテル、tert-ブチルカテコール、ピロガロール、フェノチアジン等の公知慣用の重合禁止剤、シリカ、アスベスト、オルベン、ベントン、モンモリロナイト等の公知慣用の増粘剤、シリコーン系、フッ素系、アクリル系、高分子系等の消泡剤及び/または、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤のような公知慣用の添加剤類を、本発明の主旨を損ねない範囲で添加することができる。 Further, if necessary, known and conventional polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, tert-butylcatechol, pyrogallol and phenothiazine, known and conventional thickeners such as silica, asbestos, olben, benton and montmorillonite, silicone type , Fluorine-based, acrylic-based, polymer-based and other antifoaming agents and / or known conventional additives such as leveling agents, imidazole-based, thiazole-based, triazole-based, silane coupling agents and other adhesion-imparting agents Can be added as long as the gist of the present invention is not impaired.
 これらの添加剤は上述した具体例に制限されるものではなく、本発明の目的、または効果を阻害しない範囲であらゆるものを添加することができる。 These additives are not limited to the specific examples described above, and any additives can be added within a range that does not impair the object or effect of the present invention.
 本発明の硬化性組成物を硬化する際、硬化方法により粘度を低下させる必要があれば、溶剤を使用してもよい。粘度調整に使用することのできる溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、エチルアルコール、(イソ)プロピルアルコール、ブチルアルコール等のアルコール類等が挙げられる。ただし、後で溶媒の除去が必要となるので、粘度は反応性粘度調整剤としても使用できる成分(C)多官能(メタ)アクリル化合物で調整することが好ましい。 When curing the curable composition of the present invention, a solvent may be used if it is necessary to reduce the viscosity by a curing method. Examples of solvents that can be used for viscosity adjustment include aromatic hydrocarbons such as toluene and xylene, acetates such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, acetone, methyl ethyl ketone, and methyl isobutyl ketone. Ketones, ethers such as tetrahydrofuran and 1,4-dioxane, and alcohols such as ethyl alcohol, (iso) propyl alcohol, and butyl alcohol. However, since it is necessary to remove the solvent later, the viscosity is preferably adjusted with a component (C) polyfunctional (meth) acrylic compound that can also be used as a reactive viscosity modifier.
 本発明の硬化性組成物から光学用樹脂フィルムまたはシートを作製するにあたっては、一定の表面硬度が得られれば、どのような硬化方法を選択してもよい。一定以上の表面硬度を得るには、硬化性組成物をフィルム形状に塗工した後、光硬化及び熱硬化手法、もしくは熱硬化手法のみをとるのが好ましい。 In producing an optical resin film or sheet from the curable composition of the present invention, any curing method may be selected as long as a certain surface hardness is obtained. In order to obtain a surface hardness of a certain level or more, it is preferable to apply only a photocuring and thermosetting method or a thermosetting method after coating the curable composition into a film shape.
 硬化性組成物を硬化させる際の条件等には特に制限はないが、透明プラスチックフィルム、金属シート、もしくはガラス板上に塗工し流延させた後、光硬化及び熱硬化、もしくは熱硬化を実施するのが好適である。 The conditions for curing the curable composition are not particularly limited, but after being applied and cast on a transparent plastic film, metal sheet, or glass plate, photocuring and thermosetting, or thermosetting is performed. It is preferred to implement.
 光硬化の場合、紫外線照射法が一般的であり、例えば紫外線ランプを使用して紫外線を発生させて照射することができる。紫外線ランプには、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、パルス型キセノンランプ、キセノン/水銀混合ランプ、低圧殺菌ランプ、無電極ランプ、LEDランプ等があり、いずれも使用することができる。これらの紫外線ランプの中でも、メタルハライドランプもしくは高圧水銀ランプが好ましい。照射条件はそれぞれのランプ条件によって異なるが、照射露光量が20~5000mJ/cm2程度が好ましい。また、紫外線ランプには楕円型、放物線型、拡散型等の反射板を取り付け、冷却対策として熱カットフィルター等を装着するのが好ましい。また、硬化促進のために、予め30~80℃に加温し、これに紫外線を照射してもよい。 In the case of photocuring, an ultraviolet irradiation method is generally used. For example, ultraviolet rays can be generated and irradiated using an ultraviolet lamp. Examples of ultraviolet lamps include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, pulse-type xenon lamps, xenon / mercury mixed lamps, low-pressure sterilization lamps, electrodeless lamps, and LED lamps, all of which can be used. Among these ultraviolet lamps, a metal halide lamp or a high-pressure mercury lamp is preferable. Irradiation conditions vary depending on each lamp condition, but the irradiation exposure dose is preferably about 20 to 5000 mJ / cm 2 . In addition, it is preferable to attach an elliptical, parabolic, diffusive or the like reflector to the ultraviolet lamp, and a heat cut filter or the like as a cooling measure. Further, in order to accelerate curing, it may be preheated to 30 to 80 ° C. and irradiated with ultraviolet rays.
 熱硬化の場合、加熱方法は特に限定されないが、熱風オーブン、遠赤外線オーブン等の均一性に優れた加熱方法がよい。硬化温度は約100~200℃、好ましくは120~180℃である。硬化時間は、硬化方法により異なるが、熱風オーブンであれば0.5~5時間、遠赤外線オーブンであれば0.5~60分間が好ましい。 In the case of thermosetting, the heating method is not particularly limited, but a heating method excellent in uniformity such as a hot air oven or a far infrared oven is preferable. The curing temperature is about 100 to 200 ° C, preferably 120 to 180 ° C. Although the curing time varies depending on the curing method, it is preferably 0.5 to 5 hours for a hot air oven and 0.5 to 60 minutes for a far infrared oven.
 また、光重合開始剤を用いた紫外線硬化や、有機過酸化物やアゾ化合物を用いた熱硬化は、ラジカル反応であるため酸素による反応阻害を受けやすい。硬化反応時の酸素阻害を防止するため、樹脂組成物は、透明プラスチックフィルム、金属シート、もしくはガラス板上へ塗工、流延後、光硬化及び/または熱硬化を実施する際に、硬化性ワニス上へ透明カバーフィルムを施し、流延された硬化性組成物表面の酸素濃度を1%以下にすることが好ましい。透明カバーフィルムは、表面に空孔がなく、酸素透過率の小さいもので、かつ紫外線硬化や熱硬化時に発生する熱に耐えられるものを使用する必要がある。例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)、PP(ポリプロピレン)、アセテート樹脂、アクリル樹脂、フッ化ビニル、ポリアミド、ポリアリレート、ポリエーテルスルホン、ノルボルネン樹脂系、等のフィルムであり、これらを単独で、あるいは2種類以上を組み合わせて使用できる。ただし、硬化後の硬化物との剥離が可能でなければならないため、これらの透明カバーフィルムの表面にシリコーン樹脂塗布、フッ素樹脂塗布等の易剥離処理が施されていてもよい。 In addition, ultraviolet curing using a photopolymerization initiator and thermal curing using an organic peroxide or an azo compound are radical reactions and thus are susceptible to reaction inhibition by oxygen. In order to prevent oxygen inhibition during the curing reaction, the resin composition is curable when coated and cast on a transparent plastic film, metal sheet, or glass plate, followed by photocuring and / or thermosetting. It is preferable to apply a transparent cover film on the varnish and to reduce the oxygen concentration on the surface of the cast curable composition to 1% or less. It is necessary to use a transparent cover film that does not have pores on the surface, has a low oxygen permeability, and can withstand the heat generated during ultraviolet curing or thermal curing. For example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), PP (polypropylene), acetate resin, acrylic resin, vinyl fluoride, polyamide, polyarylate, polyethersulfone, norbornene resin, etc. These are films, and these can be used alone or in combination of two or more. However, since it must be possible to peel from the cured product after curing, the surface of these transparent cover films may be subjected to easy peeling treatment such as silicone resin coating or fluororesin coating.
 本発明の硬化性組成物は液状であることから、公知の塗布装置を用いて所定の形状や形態となるように塗布、塗工等を行うことができる。塗布方式としては、グラビアコート、ロールコート、リバースコート、ナイフコート、ダイコート、リップコート、ドクターコート、エクストルージョンコート、スライドコート、ワイヤーバーコート、カーテンコート、押出コート、スピナーコート、注型成形法、光造形法等の公知の方法を用いることができる。なお、このときの好ましい粘度範囲としては常温で100~100,000mPa・sの範囲である。 Since the curable composition of the present invention is in a liquid state, it can be applied and coated so as to have a predetermined shape and form using a known coating apparatus. Coating methods include gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion coating, spinner coating, casting molding method, Known methods such as stereolithography can be used. The preferred viscosity range at this time is in the range of 100 to 100,000 mPa · s at room temperature.
 以下、合成例、実施例及び比較例を挙げて本発明をさらに説明するが、本発明はこれらの記載により限定されるものではない。 Hereinafter, the present invention will be further described with reference to synthesis examples, examples and comparative examples, but the present invention is not limited to these descriptions.
 合成例1~3で得られたアリルエステルオリゴマーの物性は以下の測定方法により求めた。
[ハーゼン色数]
 JIS K0071に準拠し、比色管を用いて標準液との比較によりアリルエステルオリゴマーのハーゼン色数を測定した。
[粘度]
使用機種:東機産業(株)製TVE-20H
測定方法:コーンプレート型粘度計、ローターNo.1°34’×R24のローターを用い、液温25℃、10rpmで測定した。
[数平均分子量]
使用機種:昭和電工(株)製GPCシステムSIC-480II
カラム :昭和電工(株)製GPC用カラムK-801、K-802、K-802.5
検出器 :昭和電工(株)製RI-201H
溶離液 :クロロホルム
測定方法:クロロホルムに溶解した試料を、40℃に制御されたカラムへ100μL導入し、ポリスチレン換算の数平均分子量を測定した。
The physical properties of the allyl ester oligomers obtained in Synthesis Examples 1 to 3 were determined by the following measuring methods.
[Hazen color number]
Based on JIS K0071, the Hazen color number of the allyl ester oligomer was measured by comparison with a standard solution using a colorimetric tube.
[viscosity]
Model used: TVE-20H manufactured by Toki Sangyo Co., Ltd.
Measuring method: cone plate viscometer, rotor No. Measurement was performed at a liquid temperature of 25 ° C. and 10 rpm using a rotor of 1 ° 34 ′ × R24.
[Number average molecular weight]
Model used: GPC system SIC-480II manufactured by Showa Denko KK
Column: Showa Denko KPC column K-801, K-802, K-802.5
Detector: Showa Denko Co., Ltd. RI-201H
Eluent: Chloroform measurement method: 100 μL of a sample dissolved in chloroform was introduced into a column controlled at 40 ° C., and the number average molecular weight in terms of polystyrene was measured.
 実施例1~2及び比較例1~2で得られた硬化フィルムの諸物性は以下の方法により評価した。
[全光線透過率]
 厚さ0.1mmのフィルムについて、JIS K7361-1に従い、日本電子工業(株)製のNDH-2000を使用して、全光線透過率を光学特性の指標として求めた。本明細書において「高透明」とは全光線透過率が85%以上であることを意味する。
[引張弾性率]
 厚さ0.1mmのフィルムから、短冊状フィルム片(長さ:150mm、幅:15mm)を切出し、引張り試験機[(株)島津製作所製万能試験機オートグラフ]を用い、チャック間距離:100mm、クロスヘッドスピード:5mm/分の条件で引張試験を行い、引張弾性率(GPa)を柔軟性の指標として求めた。
[加工性]
 実施例1,2及び比較例1,2の硬化性組成物を用いて同様の方法により厚さ0.5mmの硬化フィルムを作製し、これらの硬化フィルムをNCルータ加工機「メガロテクニカ製 マシニングセンタ NCK1210F-1ATV」を用いて、主軸回転数50,000rpm、送り速度F1000mm/分の条件で切り出した。加工表面をデジタルマイクロスコープ「キーエンス製VHX900」を用いて、レンズ倍率300倍の視野内に観察された長さ30μm以上に欠けた部分を目視で数え、加工性の指標として求めた。
 欠け数0~9 :○
 欠け数10以上:×
[耐熱性]
 耐熱性の指標として平均熱膨張係数をエスアイアイ・ナノテクノロジー(株)製のEXSTER TMA/SS6100を用い、引っ張りモードで測定した。フィルム状試験片は、厚さ0.1mm×4mm×20mm、荷重 30N、窒素雰囲気下で、昇温速度5℃/minで200℃まで温度を上げ、0~50℃と、150~200℃までの平均熱膨張係数の差を求めた。
 平均熱膨張係数の差=平均熱膨張係数(150~200℃)-平均熱膨張係数(0~50℃)
 耐熱性○:平均熱膨張係数の差が50ppm/K未満
 耐熱性×:平均熱膨張係数の差が50ppm/K以上
[表面硬度]
 JIS K5600-5-4に基づいて、円柱状に削った鉛筆芯を45度の角度に傾け、上から750gの荷重を掛け、被測定物の表面を5mm程度引っかいて傷の有無を確認し、鉛筆硬度を表面硬度の指標として求めた。
Various physical properties of the cured films obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated by the following methods.
[Total light transmittance]
With respect to a film having a thickness of 0.1 mm, total light transmittance was determined as an index of optical characteristics using NDH-2000 manufactured by JEOL Ltd. according to JIS K7361-1. In the present specification, “highly transparent” means that the total light transmittance is 85% or more.
[Tensile modulus]
A strip-shaped film piece (length: 150 mm, width: 15 mm) was cut out from a film having a thickness of 0.1 mm, and a distance between chucks: 100 mm using a tensile tester [Universal Tester Autograph manufactured by Shimadzu Corporation]. , Crosshead speed: Tensile test was performed under the condition of 5 mm / min, and tensile modulus (GPa) was obtained as an index of flexibility.
[Machinability]
Using the curable compositions of Examples 1 and 2 and Comparative Examples 1 and 2, cured films having a thickness of 0.5 mm were prepared in the same manner, and these cured films were processed by NC router processing machine “Machino Technica Machining Center NCK1210F”. -1 ATV ", the sample was cut out under conditions of a spindle rotation speed of 50,000 rpm and a feed rate of F 1000 mm / min. Using a digital microscope “Keyence VHX900” on the processed surface, the portions lacking in a length of 30 μm or more observed in the field of view with a lens magnification of 300 times were visually counted to obtain an index of workability.
Missing number 0-9: ○
Number of chipping 10 or more: ×
[Heat-resistant]
As an index of heat resistance, an average thermal expansion coefficient was measured in a tensile mode using EXSTER TMA / SS6100 manufactured by SII Nanotechnology. The film-like test piece is 0.1 mm × 4 mm × 20 mm in thickness, 30 N in load, and in a nitrogen atmosphere, the temperature is raised to 200 ° C. at a temperature rising rate of 5 ° C./min. The difference in the average thermal expansion coefficient was determined.
Difference in average thermal expansion coefficient = average thermal expansion coefficient (150 to 200 ° C)-average thermal expansion coefficient (0 to 50 ° C)
Heat resistance ○: Difference in average thermal expansion coefficient is less than 50 ppm / K Heat resistance x: Difference in average thermal expansion coefficient is 50 ppm / K or more [surface hardness]
In accordance with JIS K5600-5-4, tilt the pencil-shaped pencil lead to a 45 degree angle, apply a load of 750 g from the top, scratch the surface of the object to be measured about 5 mm, and check for scratches. Pencil hardness was determined as an index of surface hardness.
合成例1:アリルエステルオリゴマー(AEO)[a1]の合成
 1,4-シクロヘキサンジカルボン酸ジアリル(昭和電工(株)製)400g、トリメチロールプロパン(三菱ガス化学(株)製TMP、分子量134)60g、ジオクチルスズオキシド(東京化成工業(株)製)1.0gを三ツ口フラスコに仕込み、180℃に調節したオイルバスにより加熱して反応を行った。反応の進行とともに生成するアリルアルコールを留出させた。反応は常圧から1.4kPaまで徐々に圧力を下げ、理論量のアリルアルコールが留出した時点を反応終了とした。反応時間は約12時間であった。冷却後、反応液を取り出し、アリルエステルオリゴマー(AEO)を353g得た。得られたAEOは室温で液状であり、ハーゼン色数は15、25℃での粘度は1800mPa・s、ポリスチレン換算数平均分子量は820であった。
Synthesis Example 1: Synthesis of allyl ester oligomer (AEO) [a1] 400 g of diallyl 1,4-cyclohexanedicarboxylate (manufactured by Showa Denko KK), 60 g of trimethylolpropane (TMP manufactured by Mitsubishi Gas Chemical Co., Ltd., molecular weight 134) 60 g Then, 1.0 g of dioctyltin oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) was charged into a three-necked flask and heated to react with an oil bath adjusted to 180 ° C. Allyl alcohol produced with the progress of the reaction was distilled off. The reaction was gradually reduced from normal pressure to 1.4 kPa, and the reaction was terminated when the theoretical amount of allyl alcohol was distilled off. The reaction time was about 12 hours. After cooling, the reaction solution was taken out to obtain 353 g of allyl ester oligomer (AEO). The obtained AEO was liquid at room temperature, had a Hazen color number of 15, a viscosity at 25 ° C. of 1800 mPa · s, and a polystyrene-equivalent number average molecular weight of 820.
合成例2:アリルエステルオリゴマー(PCD-1)[b1]の合成
 1,4-シクロヘキサンジカルボン酸ジアリル(昭和電工(株)製)400g、ポリカーボネートジオール((株)クラレ製C590、数平均分子量500)400g、ジオクチルスズオキシド(東京化成工業(株)製)0.4gを三ツ口フラスコに仕込み、160℃に調節したオイルバスにより加熱して反応を行った。反応の進行とともに生成するアリルアルコールを留出させた。反応は常圧から1.4kPaまで徐々に圧力を下げ、理論量のアリルアルコールが留出した時点を反応終了とした。反応時間は約8時間であった。冷却後、反応液を取り出し、柔軟性アリルエステルオリゴマー(PCD-1)を692g得た。得られたPCD-1は室温で液状であり、ハーゼン色数は15、25℃での粘度は3200mPa・s、ポリスチレン換算数平均分子量は1300であった。
Synthesis Example 2: Synthesis of allyl ester oligomer (PCD-1) [b1] 400 g diallyl 1,4-cyclohexanedicarboxylate (Showa Denko), polycarbonate diol (C590, Kuraray Co., Ltd., number average molecular weight 500) 400 g and dioctyltin oxide (Tokyo Chemical Industry Co., Ltd.) 0.4 g were charged into a three-necked flask and heated in an oil bath adjusted to 160 ° C. for reaction. Allyl alcohol produced with the progress of the reaction was distilled off. The reaction was gradually reduced from normal pressure to 1.4 kPa, and the reaction was terminated when the theoretical amount of allyl alcohol was distilled off. The reaction time was about 8 hours. After cooling, the reaction solution was taken out to obtain 692 g of flexible allyl ester oligomer (PCD-1). The obtained PCD-1 was liquid at room temperature, had a Hazen color number of 15, a viscosity at 25 ° C. of 3200 mPa · s, and a polystyrene-equivalent number average molecular weight of 1300.
合成例3:アリルエステルオリゴマー(PCD-2)[b2]の合成
 1,4-シクロヘキサンジカルボン酸ジアリル(昭和電工(株)製)400g、ポリカーボネートジオール(宇部興産(株)製UHC50-100、数平均分子量1000)800g、ジオクチルスズオキシド(東京化成工業(株)製)0.8gを三ツ口フラスコに仕込み、160℃に調節したオイルバスにより加熱して反応を行った。反応の進行とともに生成するアリルアルコールを留出させた。反応は常圧から1.4kPaまで徐々に圧力を下げ、理論量のアリルアルコールが留出した時点を反応終了とした。反応時間は約10時間であった。冷却後、反応液を取り出し、柔軟性アリルエステルオリゴマー(PCD-2)を1025g得た。得られたPCD-2は室温で液状であり、ハーゼン色数は50、25℃での粘度は5500mPa・s、ポリスチレン換算数平均分子量は2000であった。
Synthesis Example 3: Synthesis of allyl ester oligomer (PCD-2) [b2] 400 g diallyl 1,4-cyclohexanedicarboxylate (produced by Showa Denko KK), polycarbonate diol (UHC 50-100 produced by Ube Industries), number average 800 g of molecular weight 1000) and 0.8 g of dioctyltin oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged into a three-necked flask and heated in an oil bath adjusted to 160 ° C. for reaction. Allyl alcohol produced with the progress of the reaction was distilled off. The reaction was gradually reduced from normal pressure to 1.4 kPa, and the reaction was terminated when the theoretical amount of allyl alcohol was distilled off. The reaction time was about 10 hours. After cooling, the reaction solution was taken out to obtain 1025 g of flexible allyl ester oligomer (PCD-2). The resulting PCD-2 was liquid at room temperature, had a Hazen color number of 50, a viscosity at 25 ° C. of 5500 mPa · s, and a polystyrene-equivalent number average molecular weight of 2000.
実施例1:
 合成例1で得られたアリルエステルオリゴマーAEO100質量部に対し、合成例2で得られたアリルエステルオリゴマー(PCD-1)を15質量部、トリメチロールプロパントリアクリレート(商品名;A-TMPT、新中村化学(株)製)を30質量部、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(商品名;LUCIRIN TPO、BASFジャパン(株)製)を1質量部、及びtert-ヘキシルパーオキシイソプロピルモノカーボネート(商品名;パーヘキシルI、日本油脂(株)製)1質量部を加え十分撹拌し、硬化性組成物を得た。
 この硬化性組成物を0.1mm厚のPETフィルム上に塗布し、さらに0.1mm厚のPETフィルムでラミネートした。この積層フィルムを、メタルハライドランプを有するUV照射機にて、ピーク照度300mW/cm2、照射量800mJ/cm2の条件でUVを照射し、UV硬化積層フィルムを作製した。さらに、空気雰囲気下のオーブン中、160℃で1時間熱硬化した後、室温まで冷却した。積層フィルムの両面からPETフィルムを剥離することにより、硬化性組成物を硬化処理した厚さ約0.1mmの硬化フィルムを作製した。
 硬化性組成物の組成及び硬化フィルムの評価結果を表1にまとめて示す。
Example 1:
15 parts by mass of the allyl ester oligomer (PCD-1) obtained in Synthesis Example 2 and trimethylolpropane triacrylate (trade name; A-TMPT, new) with respect to 100 parts by mass of the allyl ester oligomer AEO obtained in Synthesis Example 1 30 parts by mass of Nakamura Chemical Co., Ltd., 1,4 parts of 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name; LUCIRIN TPO, manufactured by BASF Japan Ltd.), and tert-hexyl par 1 part by mass of oxyisopropyl monocarbonate (trade name; Perhexyl I, manufactured by Nippon Oil & Fats Co., Ltd.) was added and sufficiently stirred to obtain a curable composition.
This curable composition was applied onto a PET film having a thickness of 0.1 mm, and further laminated with a PET film having a thickness of 0.1 mm. This laminated film was irradiated with UV under the conditions of a peak illuminance of 300 mW / cm 2 and an irradiation amount of 800 mJ / cm 2 with a UV irradiator having a metal halide lamp to produce a UV cured laminated film. Furthermore, after thermosetting at 160 ° C. for 1 hour in an oven under an air atmosphere, it was cooled to room temperature. By peeling the PET film from both sides of the laminated film, a cured film having a thickness of about 0.1 mm obtained by curing the curable composition was produced.
Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
実施例2:
 アリルエステルオリゴマー(PCD-1)を用いる代わりに合成例3で得られたアリルエステルオリゴマー(PCD-2)を用いたこと以外は実施例1と同様に硬化性組成物を調製、硬化フィルムを作製し、硬化フィルムの特性を評価した。
 硬化性組成物の組成及び硬化フィルムの評価結果を表1にまとめて示す。
Example 2:
A curable composition was prepared and a cured film was prepared in the same manner as in Example 1 except that the allyl ester oligomer (PCD-2) obtained in Synthesis Example 3 was used instead of the allyl ester oligomer (PCD-1). The characteristics of the cured film were evaluated.
Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
比較例1:
 アリルエステルオリゴマー(PCD-1)を配合しない以外は実施例1と同様に硬化性組成物を調製、硬化フィルムを作製し、硬化フィルムの特性を評価した。
 硬化性組成物の組成及び硬化フィルムの評価結果を表1にまとめて示す。
Comparative Example 1:
A curable composition was prepared in the same manner as in Example 1 except that no allyl ester oligomer (PCD-1) was added, a cured film was prepared, and the characteristics of the cured film were evaluated.
Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
比較例2:
 合成例1で得られたアリルエステルオリゴマーAEO100質量部に対し、A-600(新中村化学(株)製ポリエチレングリコール#600ジアクリレート(エチレンオキサイド単位を14有する))を30質量部、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(商品名;LUCIRIN TPO、BASFジャパン(株)製)を1質量部、及びtert-ヘキシルパーオキシイソプロピルモノカーボネート(商品名;パーヘキシルI、日本油脂(株)製)1質量部を加え十分撹拌し、硬化性組成物を得た。得られた硬化性組成物を用いて、実施例1と同様にして硬化フィルムを作製し、硬化フィルムの特性を評価した。
 硬化性組成物の組成及び硬化フィルムの評価結果を表1にまとめて示す。
Comparative Example 2:
30 parts by mass of A-600 (manufactured by Shin-Nakamura Chemical Co., Ltd., polyethylene glycol # 600 diacrylate (having 14 ethylene oxide units)) and 2,4 parts per 100 parts by mass of the allyl ester oligomer AEO obtained in Synthesis Example 1 , 6-Trimethylbenzoyl-diphenyl-phosphine oxide (trade name; LUCIRIN TPO, manufactured by BASF Japan Ltd.) and 1 part by weight of tert-hexyl peroxyisopropyl monocarbonate (trade name; Perhexyl I, Nippon Oil & Fats Co., Ltd.) 1) 1 part by mass was added and stirred sufficiently to obtain a curable composition. Using the obtained curable composition, the cured film was produced like Example 1, and the characteristic of the cured film was evaluated.
Table 1 summarizes the composition of the curable composition and the evaluation results of the cured film.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 実施例1及び2と比較例1の結果の比較から、カーボネート構造を含有するアリル基末端アリルエステルオリゴマーを配合した硬化性組成物を用いることにより、全光線透過率、耐熱性、表面硬度を保持しながら、引張弾性率が低減、加工性が改良し、硬化物に柔軟性が付与されたことがわかる。これに対して、柔軟性付与のために一般的に用いられるアクリル化合物を配合した比較例2では、硬化物の引張弾性率の低下とともに耐熱性、表面硬度も著しく低下した。 From the comparison of the results of Examples 1 and 2 and Comparative Example 1, the total light transmittance, heat resistance, and surface hardness are maintained by using a curable composition containing an allyl group-terminated allyl ester oligomer containing a carbonate structure. However, it can be seen that the tensile modulus was reduced, the processability was improved, and the cured product was given flexibility. On the other hand, in the comparative example 2 which mix | blended the acrylic compound generally used for a softness | flexibility provision, the heat resistance and surface hardness fell significantly with the fall of the tensile elasticity modulus of hardened | cured material.
 本発明の硬化性組成物は、重合硬化させることにより、高い柔軟性と優れた耐熱性、ハンドリング性、高い表面硬度を有する光学用途に好適な透明な成形体を得ることができるため、光学フィルム、光学シート、光道波路、光学レンズ、光学用封止剤、光学用接着剤、導光板等の光学用途に有用である。 Since the curable composition of the present invention can be polymerized and cured, a transparent molded article suitable for optical applications having high flexibility and excellent heat resistance, handling properties, and high surface hardness can be obtained. It is useful for optical applications such as optical sheets, optical waveguides, optical lenses, optical sealants, optical adhesives, and light guide plates.

Claims (14)

  1.  (A)一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1は脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表す。)で示される末端基を3つ以上有し、かつ一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、X2は脂環式構造を有する2価のカルボン酸またはカルボン酸無水物から誘導される有機残基を表し、Y1は3~6個の水酸基を有する炭素数2~20の多価アルコールから誘導される有機残基を表す。ただし、Y1はエステル結合によって、さらに上記一般式(1)で示される基を末端基とし、上記一般式(2)で示される構造単位を有する分岐構造を有することができる。)で示される構造を有するアリル基末端アリルエステルオリゴマー;
    (B)一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、X3は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表す。)及び式(4)
    Figure JPOXMLDOC01-appb-C000004
    で示される末端基、並びに一般式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1及びR2は、それぞれ独立してアルキル分岐を有してもよい炭素数2~20のアルキレン基を表し、X4は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表し、n及びmは任意の自然数を表す。)
    で示される構造を有し、数平均分子量が500~50000であるアリル基末端アリルエステルオリゴマー;
    (C)多官能(メタ)アクリル化合物;及び(D)重合開始剤を含有することを特徴とする硬化性組成物。
    (A) General formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 represents an organic residue derived from a divalent carboxylic acid or carboxylic acid anhydride having an alicyclic structure) and has at least three end groups represented by the general formula ( 2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X 2 represents an organic residue derived from a divalent carboxylic acid or carboxylic anhydride having an alicyclic structure, and Y 1 has 2 to 20 carbon atoms having 3 to 6 hydroxyl groups. Represents an organic residue derived from a polyhydric alcohol, wherein Y 1 represents an ester bond, a group represented by the above general formula (1) as a terminal group, and a structural unit represented by the above general formula (2). An allyl group-terminated allyl ester oligomer having a structure represented by:
    (B) General formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X 3 represents an optionally substituted cycloalkylene group having 5 to 10 carbon atoms or an optionally substituted alkylene group having 2 to 10 carbon atoms) and formula (4)
    Figure JPOXMLDOC01-appb-C000004
    As well as the end group represented by formula (5)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 1 and R 2 each independently represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 4 may have a substituent having 5 to 10 carbon atoms) A cycloalkylene group or an alkylene group having 2 to 10 carbon atoms which may have a substituent, and n and m represent any natural number.)
    An allyl group-terminated allyl ester oligomer having a structure represented by the formula:
    A curable composition comprising (C) a polyfunctional (meth) acrylic compound; and (D) a polymerization initiator.
  2.  前記アリル基末端アリルエステルオリゴマー(B)が、さらに一般式(6)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R3はアルキル分岐を有してもよい炭素数2~20のアルキレン基を表し、X5は置換基を有してもよい炭素数5~10のシクロアルキレン基または置換基を有してもよい炭素数2~10のアルキレン基を表し、qは任意の自然数を表す。)
    で示される構造を有する請求項1に記載の硬化性組成物。
    The allyl group-terminated allyl ester oligomer (B) is further represented by the general formula (6)
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 3 represents an alkylene group having 2 to 20 carbon atoms which may have an alkyl branch, and X 5 represents a cycloalkylene group or substituent having 5 to 10 carbon atoms which may have a substituent. Represents an optionally substituted alkylene group having 2 to 10 carbon atoms, and q represents an arbitrary natural number.)
    The curable composition of Claim 1 which has a structure shown by these.
  3.  前記アリル基末端アリルエステルオリゴマー(A)100質量部に対し、アリル基末端アリルエステルオリゴマー(B)を1~40質量部、多官能(メタ)アクリル化合物(C)を5~60質量部、重合開始剤(D)として光重合開始剤(D1)を0.1~10質量部、及び熱重合開始剤(D2)を0.1~10質量部の割合で含有する請求項1または2に記載の硬化性組成物。 1 to 40 parts by mass of the allyl group-terminated allyl ester oligomer (B) and 5 to 60 parts by mass of the polyfunctional (meth) acrylic compound (C) are polymerized per 100 parts by mass of the allyl group-terminated allyl ester oligomer (A). 3. The photopolymerization initiator (D1) is contained in an amount of 0.1 to 10 parts by mass and the thermal polymerization initiator (D2) is contained in an amount of 0.1 to 10 parts by mass as the initiator (D). Curable composition.
  4.  前記一般式(1)及び(2)中のX1及びX2が、それぞれ独立して置換基を有してもよい、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、またはノルボルニレン基である請求項1~3のいずれかに記載の硬化性組成物。 In the general formulas (1) and (2), X 1 and X 2 may each independently have a substituent, 1,2-cyclohexylene group, 1,3-cyclohexylene group, The curable composition according to any one of claims 1 to 3, which is a 1,4-cyclohexylene group or a norbornylene group.
  5.  前記一般式(2)中のY1が、3または4個の水酸基を有する炭素数が5~10の多価アルコールから誘導される有機残基である請求項1~4のいずれかに記載の硬化性組成物。 The Y 1 in the general formula (2) is an organic residue derived from a polyhydric alcohol having 3 or 4 hydroxyl groups and having 5 to 10 carbon atoms. Curable composition.
  6.  前記アリル基末端アリルエステルオリゴマー(A)が、以下の式
    Figure JPOXMLDOC01-appb-C000007
    (式中、rは任意の自然数を表す。)、または
    Figure JPOXMLDOC01-appb-C000008
    (式中、sは任意の自然数を表す。)
    で示される請求項1~5のいずれかに記載の硬化性組成物。
    The allyl group terminal allyl ester oligomer (A) is represented by the following formula:
    Figure JPOXMLDOC01-appb-C000007
    (Wherein r represents an arbitrary natural number), or
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, s represents an arbitrary natural number.)
    The curable composition according to any one of claims 1 to 5, which is represented by:
  7.  前記一般式(3)、(5)及び(6)中のX3、X4及びX5が、それぞれ独立して1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、またはノルボルニレン基である請求項1~6のいずれかに記載の硬化性組成物。 X 3 , X 4 and X 5 in the general formulas (3), (5) and (6) are each independently 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1, The curable composition according to any one of claims 1 to 6, which is a 4-cyclohexylene group or a norbornylene group.
  8.  前記一般式(5)及び(6)中のR1、R2及びR3の少なくとも1つが炭素数1~4のアルキル分岐を有するアルキレン基である請求項1~7のいずれかに記載の硬化性組成物。 The curing according to any one of claims 1 to 7, wherein at least one of R 1 , R 2 and R 3 in the general formulas (5) and (6) is an alkylene group having an alkyl branch having 1 to 4 carbon atoms. Sex composition.
  9.  前記一般式(5)中のR1及びR2が1,6-ヘキシレン基または2-メチル-1,5-ペンチレン基である請求項1~8のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein R 1 and R 2 in the general formula (5) are a 1,6-hexylene group or a 2-methyl-1,5-pentylene group.
  10.  前記一般式(5)中のR1及びR2がノニレン基である請求項1~8のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein R 1 and R 2 in the general formula (5) are nonylene groups.
  11.  前記アリル基末端アリルエステルオリゴマー(B)が、R1がR4を表し、R2がR5を表し、X3及びX4が1,4-シクロヘキシレン基である一般式(7)
    Figure JPOXMLDOC01-appb-C000009
    (式中、R4及びR5は、それぞれ独立して1,6-ヘキシレン基または2-メチル-1,5-ペンチレン基を表し、n及びmは任意の自然数を表す。)
    で示されるオリゴマー化合物である請求項1~10のいずれかに記載の硬化性組成物。
    In the allyl group-terminated allyl ester oligomer (B), R 1 represents R 4 , R 2 represents R 5 , and X 3 and X 4 are 1,4-cyclohexylene groups (7)
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, R 4 and R 5 each independently represents a 1,6-hexylene group or a 2-methyl-1,5-pentylene group, and n and m represent an arbitrary natural number.)
    The curable composition according to any one of claims 1 to 10, which is an oligomer compound represented by the formula:
  12.  前記多官能(メタ)アクリル化合物(C)が、(メタ)アクリロイルオキシ基を3つ以上有する(メタ)アクリレートモノマーまたはオリゴマーを主成分とするものである請求項1~11のいずれかに記載の硬化性組成物。 The polyfunctional (meth) acrylic compound (C) is mainly composed of a (meth) acrylate monomer or oligomer having three or more (meth) acryloyloxy groups. Curable composition.
  13.  請求項1~12のいずれかに記載の硬化性組成物に、光及び/または熱を加えて硬化させてなる光学材料。 An optical material obtained by curing the curable composition according to any one of claims 1 to 12 by applying light and / or heat.
  14.  請求項13に記載の光学材料を用いた、光学フィルム、光学シート、光道波路、光学レンズ、光学用封止剤、光学用接着剤、または導光板。 An optical film, an optical sheet, an optical waveguide, an optical lens, an optical sealant, an optical adhesive, or a light guide plate using the optical material according to claim 13.
PCT/JP2012/073475 2011-09-28 2012-09-13 Curable composition WO2013047223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011211993 2011-09-28
JP2011-211993 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047223A1 true WO2013047223A1 (en) 2013-04-04

Family

ID=47995256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073475 WO2013047223A1 (en) 2011-09-28 2012-09-13 Curable composition

Country Status (3)

Country Link
JP (1) JPWO2013047223A1 (en)
TW (1) TW201329115A (en)
WO (1) WO2013047223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065129A (en) * 2017-09-29 2019-04-25 昭和電工株式会社 Resist ink, cured product of the same, protective film, and method for forming electrode wiring line of photovoltaic power generation cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089070A4 (en) * 2020-01-06 2024-04-17 Resonac Corp (meth)acrylic acid ester compound having isocyanate group, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091702A (en) * 1999-07-22 2001-04-06 Showa Denko Kk Composition for plastic lens, plastic lens for correcting vision and method for manufacturing this plastic lens
JP2001518633A (en) * 1997-09-30 2001-10-16 アクゾ ノーベル ナムローゼ フェンノートシャップ Ophthalmic lens
JP2009197102A (en) * 2008-02-20 2009-09-03 Lintec Corp Resin composition, film using the same and method for producing the film
JP2011022490A (en) * 2009-07-17 2011-02-03 Showa Denko Kk Substrate for color filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518633A (en) * 1997-09-30 2001-10-16 アクゾ ノーベル ナムローゼ フェンノートシャップ Ophthalmic lens
JP2001091702A (en) * 1999-07-22 2001-04-06 Showa Denko Kk Composition for plastic lens, plastic lens for correcting vision and method for manufacturing this plastic lens
JP2009197102A (en) * 2008-02-20 2009-09-03 Lintec Corp Resin composition, film using the same and method for producing the film
JP2011022490A (en) * 2009-07-17 2011-02-03 Showa Denko Kk Substrate for color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065129A (en) * 2017-09-29 2019-04-25 昭和電工株式会社 Resist ink, cured product of the same, protective film, and method for forming electrode wiring line of photovoltaic power generation cell

Also Published As

Publication number Publication date
TW201329115A (en) 2013-07-16
JPWO2013047223A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP6378667B2 (en) Curable composition and method for producing transparent heat-resistant material
KR101798206B1 (en) Curable resin composition and cured product thereof
KR101798089B1 (en) Radical-curable hot-melt urethane resin composition and moldings for optical use
JP5587869B2 (en) Curable composition and cured product thereof
JP5903472B2 (en) Optical component resin, raw material composition used for optical component resin, and optical component
JPWO2009110453A1 (en) Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
US20100311919A1 (en) Silicone resin, process for producing the same, and curable resin composition comprising the same
US20110319582A1 (en) Curable composition comprising inorganic oxide microparticles that are surface-modified with maleimide groups
KR20070058642A (en) Curable formulations, cured compositions, and articles derived therefrom
JP2013137485A (en) Film
KR20170097658A (en) Curable composition for manufacturing resin sheet
JP6315820B2 (en) Transparent adhesive sheet
WO2013047223A1 (en) Curable composition
JP5698566B2 (en) Silicone resin composition and molded body thereof
WO2015115154A1 (en) Molded resin object and use thereof
JP6039322B2 (en) Radical polymerizable compound and radical curable composition
JP2013018827A (en) Curable composition and cured product thereof
JP2011063726A (en) Acrylic resin composition for molding
JP2013043902A (en) Curable resin composition and cured product
JP2013057010A (en) Curable resin composition and cured product
JP7210844B2 (en) Shaped film and photocurable composition
WO2022209922A1 (en) Curable composition, hardcoat film, and product, image display device, and flexible display including hardcoat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834952

Country of ref document: EP

Kind code of ref document: A1