WO2013047193A1 - Radiography system - Google Patents

Radiography system Download PDF

Info

Publication number
WO2013047193A1
WO2013047193A1 PCT/JP2012/073256 JP2012073256W WO2013047193A1 WO 2013047193 A1 WO2013047193 A1 WO 2013047193A1 JP 2012073256 W JP2012073256 W JP 2012073256W WO 2013047193 A1 WO2013047193 A1 WO 2013047193A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
radiation
unit
image
radiographic
Prior art date
Application number
PCT/JP2012/073256
Other languages
French (fr)
Japanese (ja)
Inventor
西納直行
大田恭義
岩切直人
中津川晴康
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013047193A1 publication Critical patent/WO2013047193A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • G03B42/021Apparatus for direct X-ray cinematography

Definitions

  • the present invention relates to a radiographic imaging system capable of obtaining a moving image and a still image of a radiographic image by executing radiography at a set frame rate using a radiographic imaging device.
  • radiation image capturing systems that irradiate a subject with radiation and guide the radiation transmitted through the subject to a radiation detector to capture radiation image information are widely used.
  • the radiation detector a conventional radiation film in which the radiation image information is exposed and recorded, or radiation energy as the radiation image information is accumulated in a phosphor, and the radiation image information is obtained by irradiating excitation light.
  • a stimulable phosphor panel that can be extracted as stimulated emission light is known.
  • These radiation detectors supply the radiation film on which the radiation image information is recorded to a developing device to perform development processing, or supply the storage phosphor panel to a reading device to perform reading processing. A visible image can be obtained.
  • radiation image information can be read and displayed immediately from the radiation detector after imaging in order to quickly and accurately treat the patient. is necessary.
  • a radiation detector capable of meeting such demands a solid-state detection element (referred to as a pixel) that converts radiation directly into an electrical signal, or converts radiation into visible light with a scintillator and then converts it into an electrical signal for reading.
  • a radiation detector referred to as a flat panel detector (FPD) using the above has been developed.
  • the same part of the subject is imaged with different tube voltages, and image processing (hereinafter referred to as “difference”) is performed by weighting the radiographic images obtained by imaging with each tube voltage.
  • image processing By performing "subtraction image processing", a radiographic image in which one of an image portion corresponding to a hard tissue such as a bone portion and an image portion corresponding to a soft tissue in the image is emphasized and the other is removed (
  • a technique for obtaining an “energy subtraction image” is known. For example, when an energy subtraction image corresponding to the soft tissue of the chest is used, it is possible to see a lesion hidden by the ribs, and the diagnostic performance can be improved.
  • energy-sub moving image shooting energy subtraction shooting for moving images
  • the required specifications differ between still images and moving images, and it is impossible to realize a highly versatile device that satisfies both.
  • body movement during moving image shooting it is desirable to be able to perform subtraction image processing with a single exposure.
  • the present invention has been made in consideration of such problems, and can perform still image shooting, moving image shooting, and energy-sub moving image shooting with one system.
  • An object of the present invention is to provide a radiographic imaging system that can perform subtraction image processing and has high versatility.
  • a radiographic imaging system includes a radiation irradiation system having a radiation source, and a radiation image output system that converts the radiation from the radiation source that has passed through the subject into a radiation image and outputs the radiation image.
  • the radiation image output systems have different characteristics, and the radiation is converted into a radiation image.
  • the system control unit includes a synchronization unit that synchronizes a plurality of successive imaging timings of the first imaging unit and the second imaging unit. To do.
  • “characteristics are different” means that at least one or more of the sensitivity, resolution, imaging area size, driving speed, etc. of the first imaging unit and the second imaging unit is different.
  • the driving speed varies depending on the resolution, the imaging region size, and the like, but also varies depending on the structure of the element that transfers the accumulated charge to the output side.
  • Examples of the structure of this element include a thin film transistor made of amorphous silicon, a thin film transistor made of an organic material, a thin film transistor made of an oxide semiconductor (for example, InGaZnOx: IGZO), a CMOS transistor, and the like.
  • the system control unit may execute and control radiation imaging by switching between still image imaging and moving image imaging as required.
  • the system control unit performs subtraction based on a plurality of radiographic images obtained by the first imaging unit and the second imaging unit at a plurality of consecutive imaging timings by the synchronization unit.
  • You may have an energy subtraction animation creation part which performs image processing and produces the energy subtraction image of a animation.
  • the synchronization unit may synchronize the imaging timing so that the charge accumulation period in the first imaging unit and the charge accumulation period in the second imaging unit overlap at least partially. Good.
  • the synchronization unit synchronizes the imaging timing to synchronize the start of the charge accumulation period in the first imaging unit and the start of the charge accumulation period in the second imaging unit. Also good.
  • the synchronization unit synchronizes the imaging timing to synchronize the end of the charge accumulation period in the first imaging unit and the end of the charge accumulation period in the second imaging unit. Also good.
  • the synchronization unit synchronizes the imaging timing to synchronize the start of the charge accumulation period in the first imaging unit and the start of the charge accumulation period in the second imaging unit, In addition, the end of the charge accumulation period in the first imaging unit and the end of the charge accumulation period in the second imaging unit may be synchronized.
  • the first imaging unit is sensitive to at least a low energy component of the radiation
  • the second imaging unit is sensitive to at least a high energy component of the radiation. May be.
  • a maximum frame rate of the imaging timing corresponding to the first imaging unit may be larger than a frame rate of the imaging timing corresponding to the second imaging unit.
  • the spatial resolution of the second imaging unit may be higher than that of the first imaging unit.
  • the number of pixels of the first image pickup unit is n
  • the number of pixels the second imaging unit may be an n 2.
  • the area of the sensitive part of the second imaging unit may be larger than the area of the sensitive part of the first imaging unit.
  • At least the second imaging unit may perform conversion into a radiation image by thinning or binning according to the setting of the system control unit.
  • the system control unit may set at least thinning out or binning of the second imaging unit in accordance with the imaging timing synchronized by the synchronization unit.
  • a light shielding layer may be provided between the first imaging unit and the second imaging unit.
  • a filter having a characteristic of absorbing a specific wavelength may be provided between the first imaging unit and the second imaging unit.
  • the first imaging unit may be installed on the radiation incident side.
  • the second imaging unit may be installed on the radiation incident side.
  • radiographic image capturing system of the present invention it is possible to perform still image capturing, moving image capturing, and energy subtraction image capturing with a single system, and subtraction with a single exposure.
  • Image processing can be performed, and a highly versatile radiographic imaging system can be obtained.
  • 5A to 5C are cross-sectional views showing first to third modes of the radiation detector.
  • 6A and 6B are sectional views showing fourth and fifth modes of the radiation detector.
  • 7A to 7C are cross-sectional views showing sixth to eighth embodiments of the radiation detector. 8A to 8C are sectional views showing ninth to eleventh aspects of the radiation detector.
  • 9A and 9B are sectional views showing twelfth and thirteenth aspects of the radiation detector.
  • 10A to 10C are sectional views showing fourteenth to sixteenth aspects of the radiation detector.
  • 11A and 11B are sectional views showing the seventeenth and eighteenth aspects of the radiation detector.
  • It is a circuit diagram which shows the structure of a radiation detection apparatus, and shows the structure of a radiation detector especially. It is a block diagram which mainly shows the structure of the system control part of a radiographic imaging system. It is a flowchart which shows the processing operation (still image imaging process) of a radiographic imaging system. It is a time chart which shows the processing operation (still image photography processing) of a radiographic imaging system.
  • 20A to 20C are time charts showing examples (first to third cases) in which the charge accumulation period in the first imaging unit and the charge accumulation period in the second imaging unit overlap.
  • 21A and 21B are time charts showing an example (fourth and fifth cases) in which the charge accumulation period in the first imaging unit and the charge accumulation period in the second imaging unit overlap.
  • 22A to 22C are explanatory views showing a radiation irradiation system having a plurality of radiation sources.
  • the radiographic imaging system 10 performs system control for performing radiographic imaging on the radiographic imaging apparatus 12 and the radiographic imaging apparatus 12 at a set imaging timing.
  • a console 16 is connected to the system control unit 14 so that data communication with the console 16 is possible.
  • a monitor 18 for image observation and diagnostic imaging
  • an input device 20 keyboard, mouse, etc.
  • Operators are required to provide radiation irradiation energy (tube voltage, Tube current, irradiation time, etc.) and the frame rate of radiography are set using the input device 20.
  • Data input using the input device 20 and data created and edited by the console 16 are input to the system control unit 14.
  • the display of a moving image energy subtraction image energy sub moving image
  • the radiation image from the system control unit 14 is supplied to the console 16 and displayed on the monitor 18.
  • the radiographic image capturing apparatus 12 converts a radiation irradiation system 28 that irradiates a radiation 26 toward the subject 24 on the photographing table 22 with the set irradiation energy, and converts the radiation 26 that has passed through the subject 24 into a radiation image to perform system control.
  • a radiation image output system 29 for outputting to the unit 14.
  • the radiation image output system 29 transmits and receives data such as a radiation image between the radiation detection device 30 that converts the radiation 26 that has passed through the subject 24 into a radiation image with a set gain and the radiation detection device 30 and the system control unit 14.
  • a detection device control unit 32 that controls (including movement drive) the radiation detection device 30 based on an instruction from the system control unit 14.
  • the movement detection of the radiation detection apparatus 30 is performed when a relatively wide range is imaged, for example, a moving image of the spine or a moving image of the catheter entry position. That is, in such imaging, a movement control signal based on an operation input from an operator (doctor or radiographer) is output from the system control unit 14 and input to the detection device control unit 32. Based on the movement control signal from the system control unit 14, the detection device control unit 32 controls the movement drive mechanism (not shown) to move the radiation detection device 30.
  • the radiation irradiation system 28 is based on a radiation source 34, a radiation source controller 36 that controls the radiation source 34 based on an instruction from the system controller 14, and an instruction from the system controller 14. And an automatic collimator unit 38 that widens or narrows the irradiation area of the radiation 26.
  • the radiation detection device 30 includes a housing 40 made of a material that transmits the radiation 26. Inside the housing 40, the radiation detector 42 is disposed opposite to one surface of the radiation detector 42 (a surface near the irradiation surface 40 a of the housing 40), and the radiation 26 scattered by the subject 24 is scattered. It has a grid 44 to be removed, and a lead plate 46 that is disposed opposite to the other surface of the radiation detector 42 and absorbs back scattered radiation of the radiation 26. Note that the irradiation surface 40 a of the housing 40 may be configured as a grid 44.
  • the radiation detection apparatus 30 further transmits / receives a signal including a radiation image from the radiation detector 42 to / from the battery 48 as a power source, a cassette control unit 50 that drives and controls the radiation detector 42.
  • a transceiver 52 is accommodated.
  • the radiation image output from the transceiver 52 is input to the system control unit 14 and the console 16 via the detection device control unit 32 and is displayed on the monitor 18. That is, when still image shooting is performed, one radiographic image is input to the system control unit 14, and thus the radiographic image is displayed on the monitor 18 as a still image.
  • a moving image is a moving image or CT (computer tomography image) for positioning the imaging region of at least the subject 24, the operation timing of a medical instrument (such as a catheter) on the subject 24, and the like. It includes not only a single shot image but also a plurality of shot images obtained by continuous shooting (continuous shooting).
  • the cassette control unit 50 and the transceiver 52 are provided with lead plates or the like on the irradiation surface side of the cassette control unit 50 and the transceiver 52 in order to avoid damage due to radiation 26 irradiation. Is preferred.
  • the radiation detector 42 includes two imaging units (a first imaging unit 54A and a second imaging unit 54B) having different characteristics.
  • “characteristics are different” means that at least one or more of the sensitivity, resolution, imaging area size, driving speed, and the like of the first imaging unit 54A and the second imaging unit 654B are different.
  • the driving speed varies depending on the resolution, the imaging region size, and the like, but also varies depending on the structure of the element that transfers the accumulated charge to the output side.
  • Examples of the structure of this element include a thin film transistor made of amorphous silicon, a thin film transistor made of an organic material, a thin film transistor made of an oxide semiconductor (for example, InGaZnOx: IGZO), a CMOS transistor, and the like.
  • a thin film transistor made of amorphous silicon a thin film transistor made of an organic material
  • a thin film transistor made of an oxide semiconductor for example, InGaZnOx: IGZO
  • a CMOS transistor and the like.
  • the first imaging unit 54A is sensitive to at least the low energy component of the radiation 26, and the second imaging unit 54B is sensitive to at least the high energy component of the radiation. Further, the first imaging unit 54A and the second imaging unit 54B are stacked. Thereby, energy subtraction imaging can also be performed by one exposure.
  • the order of lamination is arbitrary, and a specific aspect thereof will be described later.
  • the first imaging unit 54A is an imaging unit for moving images
  • the second imaging unit 54B is an imaging unit for still images.
  • the spatial resolution of the second imaging unit 54B is set higher than that of the first imaging unit 54A. Thereby, a high-definition still image can be obtained.
  • the first imaging unit 54A has a limited number of pixels so that it can capture a moving image at a set frame rate (for example, 15 frames / second to 60 frames / second).
  • the second imaging unit 54B has a larger number of pixels than the first imaging unit 54A so that a high-definition still image can be obtained.
  • the first imaging unit 54A is set such that the area seen from above (the area of the sensitive portion where the pixels are arranged) is set smaller than that of the second imaging unit 54B, and a relatively small range of moving images at a high frame rate. An image can be taken.
  • the area of the first imaging unit 54A viewed from the top surface and the area of the second imaging unit 54B viewed from the top surface may be substantially the same.
  • the number of pixels per unit length in the vertical direction (vertical direction) of the first imaging unit 54A is G1v
  • the number of pixels in the horizontal direction (horizontal direction) per unit length of the first imaging unit 54A is G1h
  • the number of pixels in the vertical direction (vertical direction) per unit length of the imaging unit 54B is G2v
  • the number of pixels per unit length in the horizontal direction (horizontal direction) of the second imaging unit 54B is G2h
  • G2v kv ⁇ G1v
  • G2h kh ⁇ G1h
  • kv and kh are proportional coefficients (integer) of 2 or more.
  • the coefficient kv and kh Is set.
  • the first image capturing unit 54A can perform moving image shooting at a high frame rate of 30 frames / second or more, and the second image capturing unit 54B can obtain a high-definition still image. .
  • the first imaging unit 54A and the second imaging unit 54B are the same and signal charges are read from all pixels per unit area
  • the comparison is made with the drive clock cycle being the same, but in actuality, the drive clock cycle may be different between the first imaging unit 54A and the second imaging unit 54B depending on the specification.
  • first imaging unit 54A and the second imaging unit 54B will be described with reference to FIGS. 5A to 11B.
  • the first imaging unit 54A and the second imaging unit 54B for example, there are 18 modes.
  • the first mode is the sensor substrate 56, the first scintillator 58A installed on one surface of the sensor substrate 56 (the surface on the incident side of the radiation 26), and the other of the sensor substrate 56. And a second scintillator 58B installed on the surface.
  • the sensor substrate 56 is formed on, for example, the glass substrate 60, the first photodiode portion 62 ⁇ / b> A formed on one surface of the glass substrate 60 (the surface on the incident side of the radiation 26), and the other surface of the glass substrate 60. And a second photodiode portion 62B.
  • the first photodiode portion 62A and the second photodiode portion 62B can employ a configuration in which a large number of photodiodes each made of amorphous silicon (a-Si) are arranged in accordance with the pixels.
  • the first imaging unit 54A is configured by the first scintillator 58A and the first photodiode unit 62A
  • the second imaging unit 54B is configured by the second scintillator 58B and the second photodiode unit 62B.
  • a plurality of gate lines and a plurality of signal lines for reading out the charges photoelectrically converted by the first photodiode portion 62A and TFTs (thin film transistors) corresponding to the pixels are formed on one surface of the glass substrate 60.
  • a plurality of gate lines, a plurality of signal lines, and TFTs (thin film transistors) corresponding to the pixels for reading out the charges photoelectrically converted by the second photodiode portion 62B are formed.
  • a crystalline silicon substrate or a SiC substrate may be used instead of the glass substrate 60.
  • a CMOS circuit including a TFT may be formed.
  • the first scintillator 58A for example, a BaFBr phosphor (blue emission) having sensitivity to a low energy component is used, and for example, a CaWO 4 phosphor (blue emission) having sensitivity to a high energy component is used as the second scintillator 58B.
  • the low energy component is converted into visible light by the first scintillator 58A and is incident on the first photodiode 62A
  • the high energy component is incident on the second scintillator 58B.
  • the light is converted into visible light and is incident on the second photodiode portion 62B.
  • a filter that absorbs a specific wavelength for example, a filter that absorbs a blue light-emitting component
  • a light shielding layer 64 is installed between the glass substrate 60 and the first photodiode portion 62A, crosstalk can be prevented. Good.
  • a light reflecting layer is installed at each end of the first scintillator 58A and the second scintillator 58B (the end where the first photodiode unit 62A and the second photodiode unit 62B are not installed), and the first photo The light receiving efficiency in the diode part 62A and the second photodiode part 62B may be improved.
  • first scintillator 58A a columnar crystal CsI: Na phosphor (blue light emission) or CsI: Tl phosphor (green light emission) may be used.
  • a radiographic image (first radiographic image D1) using a low energy component is required to have high image quality because an image of a complex tissue such as a soft tissue is extracted. Since the columnar crystals can suppress the divergence of light emission, the first radiation image D1 can be improved in image quality, and the above-described requirements can be met.
  • the second mode has substantially the same configuration as the first mode described above, but differs in that an organic photoconductor (OPC) is used instead of the photodiode.
  • OPC organic photoconductor
  • a first organic photoconductor 66A is installed between the sensor substrate 56 and the first scintillator 58A
  • a second organic photoconductor 66B is installed between the sensor substrate 56 and the second scintillator 58B.
  • the first imaging unit 54A is configured by the first scintillator 58A and the first organic photoconductor 66A
  • the second imaging unit 54B is configured by the second scintillator 58B and the second organic photoconductor 66B.
  • the sensor substrate 56 corresponds to, for example, a resin substrate 68, and a plurality of gate lines, a plurality of signal lines, and pixels for reading out charges photoelectrically converted by the first organic photoconductor 66A on one surface of the resin substrate 68.
  • a TFT made of an organic TFT (thin film transistor made of an organic material) or an oxide semiconductor (for example, InGaZnOx: IGZO) is formed, and similarly, the other surface of the resin substrate 68 is photoelectrically converted by the second organic photoconductor 66B.
  • a plurality of gate lines and a plurality of signal lines for reading out electric charges and organic TFTs or oxide semiconductor TFTs corresponding to the pixels are formed.
  • a crystalline silicon substrate or a SiC substrate may be used instead of the resin substrate 68.
  • a CMOS circuit including a TFT may be formed.
  • the first organic photoconductor 66A if the first scintillator 58A is, for example, BaFBr or CsI: Na (columnar crystal) that emits blue light, an organic photoconductor that absorbs blue light is used, and the first scintillator 58A is used. If CsI: Tl (columnar crystal) emits green light, an organic photoconductor that absorbs green light is used.
  • the second organic photoconductor 66B is an organic photoconductor that absorbs blue light if the second scintillator 58B emits blue light, for example, CaWO 4 , and the second scintillator 58B is green light, for example, GOS. If present, an organic photoconductor that absorbs green light is used.
  • 3rd aspect has the structure which combined the 1st aspect and 2nd aspect which were mentioned above, as shown to FIG. 5C. That is, the sensor substrate 56 having the first photodiode portion 62A, the first scintillator 58A installed on one surface of the sensor substrate 56, and the second organic installed between the sensor substrate 56 and the second scintillator 58B. A photoconductor 66B. The second photodiode portion 62B is not installed on the sensor substrate 56.
  • the first imaging unit 54A is configured by the first scintillator 58A and the first photodiode unit 62A
  • the second imaging unit 54B is configured by the second scintillator 58B and the second organic photoconductor 66B.
  • BaFBr is used as the first scintillator 58A
  • GOS is used as the second scintillator 58B
  • an organic photoconductor that absorbs green light for example, is used as the second organic photoconductor 66B. Since GOS emits blue light slightly, it is preferable to interpose a filter 70 that absorbs blue light on the sensor substrate 56 in order to prevent crosstalk.
  • the fourth aspect is different from the second aspect in that BaFBr / GOS obtained by blending BaFBr and GOS is used as the first scintillator 58A and the second scintillator 58B.
  • the fifth aspect is different from the third aspect in that BaFBr / GOS obtained by blending BaFBr and GOS is used as the first scintillator 58A and the second scintillator 58B.
  • the first scintillator 58A and the second scintillator 58B emit blue light in response to the low energy component of the radiation 26, and green light in response to the high energy component of the radiation 26.
  • blue light from the first scintillator 58A is mainly incident and absorbed, but leakage light (blue light) from the second scintillator 58B is also incident. Is absorbed.
  • the second organic photoconductor 66B green light from the second scintillator 58B is mainly incident and absorbed, but leakage light (green light) from the first scintillator 58A is also incident and absorbed.
  • the first scintillator 58A and the second scintillator 58B can be effectively used in the first organic photoconductor 66A and the second organic photoconductor 66B, the thicknesses of the first scintillator 58A and the second scintillator 58B are reduced. The thickness can be reduced, which is advantageous for reducing the height of the radiation detector 42. It is not necessary to install the filter 70 that absorbs blue light on the sensor substrate 56.
  • the sixth mode includes a first sensor substrate 56A installed on the incident side of the radiation 26, a second sensor substrate 56B installed facing the first sensor substrate 56A, and a first sensor board 56A.
  • a second scintillator 58 ⁇ / b> B installed between the light reflection layer 72.
  • a first photodiode portion 62A is installed in a portion of the first sensor substrate 56A that faces the first scintillator 58A, and a second photodiode portion 62B is placed in a portion of the second sensor substrate 56B that faces the second scintillator 58B. Is installed.
  • the first scintillator 58A for example, a BaFBr phosphor (blue light emission) having sensitivity to a low energy component is used, and for example, a CaWO 4 phosphor (blue light emission) having sensitivity to a high energy component is used as the second scintillator 58B.
  • the low energy component is converted into visible light by the first scintillator 58A and is incident on the first photodiode 62A
  • the high energy component is incident on the second scintillator 58B.
  • the light is converted into visible light and is incident on the second photodiode portion 62B.
  • the light reflecting layer 72 is provided between the first scintillator 58A and the second scintillator 58B, crosstalk can be effectively prevented, and the first photodiode portion 62A and the second photo diode are separated.
  • the light receiving efficiency in the diode part 62B is improved.
  • a columnar crystal CsI: Na phosphor (blue light emission) or CsI: Tl phosphor (green light emission) may be used.
  • the seventh aspect has substantially the same configuration as the sixth aspect described above, but the first sensor board 56A (the first photodiode portion 62A is not installed) and the first scintillator. 58A, the first organic photoconductor 66A is installed, and the second organic photoconductor 66B is provided between the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the second scintillator 58B. It is different in that is installed.
  • the first organic photoconductor 66A if the first scintillator 58A is, for example, BaFBr or CsI: Na (columnar crystal) that emits blue light, an organic photoconductor that absorbs blue light is used, and the first scintillator 58A is used. If CsI: Tl (columnar crystal) emits green light, an organic photoconductor that absorbs green light is used.
  • the second organic photoconductor 66B is an organic photoconductor that absorbs blue light if the second scintillator 58B emits blue light, for example, CaWO 4 , and the second scintillator 58B is green light, for example, GOS. If present, an organic photoconductor that absorbs green light is used.
  • the eighth aspect has substantially the same configuration as the sixth aspect described above, but the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the second scintillator. 58B is different in that a second organic photoconductor 66B is installed. If the second scintillator 58B is, for example, GOS that emits green light, an organic photoconductor that absorbs green light is used as the second organic photoconductor 66B.
  • a scintillator 58 in which two kinds of phosphors are blended is installed between the first sensor substrate 56A and the second sensor substrate 56B, and among the first sensor substrates 56A,
  • the first photodiode portion 62A is installed at a portion facing the scintillator 58
  • the second photodiode portion 62B is installed at a portion facing the scintillator 58 in the second sensor substrate 56B.
  • BaFBr / CaWO 4 in which BaFBr and CaWO 4 are blended, BaFBr / GOS in which BaFBr and GOS are blended, or the like can be used.
  • the ratio of BaFBr may be increased toward one surface of the scintillator so that the incident side of the radiation 26 is sensitive to low energy components.
  • the tenth aspect has substantially the same configuration as the ninth aspect, but between the first sensor board 56A (the first photodiode portion 62A is not installed) and the scintillator 58.
  • the first organic photoconductor 66A is installed, and the second organic photoconductor 66B is installed between the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the scintillator 58. It is different.
  • the first organic photoconductor 66A is an organic photoconductor that absorbs blue light.
  • the second organic photoconductor 66B uses an organic photoconductor that absorbs blue light if the scintillator 58 is, for example, BaFBr / CaWO 4 , and absorbs green light if the scintillator 58 is, for example, BaFBr / GOS.
  • An organic photoconductor is used.
  • the eleventh aspect has substantially the same configuration as the ninth aspect, but between the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the scintillator 58. Is different in that the second organic photoconductor 66B is installed.
  • the scintillator 58 is, for example, BaFBr / GOS
  • an organic photoconductor that absorbs green light is used. In this case, by increasing the ratio of BaFBr toward one surface of the scintillator 58 so that the incident side of the radiation 26 is sensitive to low energy components, crosstalk due to slight blue light emission from the GOS is suppressed. Can do.
  • the first organic photoconductor 66A and the second organic photoconductor 66B are arranged alternately on one surface of the sensor substrate 56, for example.
  • the first scintillator 58A is installed on one surface side of the body 66A and the second organic photoconductor 66B, and the second scintillator 58B is installed on the other surface of the sensor substrate 56.
  • the first scintillator 58A uses, for example, a BaFBr phosphor (blue light emission) having sensitivity to a low energy component
  • the second scintillator 58B uses, for example, a GOS phosphor (green light emission) having sensitivity to a high energy component.
  • BaFBr / GOS obtained by blending BaFBr and GOS can be used as the first scintillator 58A and the second scintillator 58B.
  • the thirteenth aspect has substantially the same configuration as the twelfth aspect as shown in FIG. 9B, but differs in that the first scintillator 58A is not installed.
  • BaFBr / GOS obtained by blending BaFBr and GOS can be used as the second scintillator 58B.
  • the fourteenth aspect has substantially the same configuration as the first aspect described above, but instead of the first scintillator 58A and the first photodiode portion 62A, the radiation 26 is directly converted into an electrical signal.
  • the solid detection element 74 is made of a substance such as amorphous selenium (a-Se) to be converted.
  • a-Se amorphous selenium
  • the second scintillator 58B for example, a CaWO 4 phosphor (blue light emission) or a GOS phosphor (green light emission) having sensitivity to high energy components can be used.
  • a bias voltage Vb is applied to the solid state detection element 74.
  • the a-Se solid-state detection element 74 is sensitive to blue light, when the CaWO 4 phosphor (blue light emission) is used as the second scintillator 58B, blue light is emitted between the sensor substrate 56 and the solid-state detection element 74. In order to prevent crosstalk, it is preferable to interpose a filter that absorbs.
  • the fifteenth aspect has substantially the same configuration as the sixth aspect described above, but instead of the first scintillator 58A and the first photodiode portion 62A, the radiation 26 is directly converted into an electrical signal.
  • the solid detection element 74 is made of a substance such as amorphous selenium (a-Se) to be converted.
  • a-Se amorphous selenium
  • the second scintillator 58B for example, a CaWO 4 phosphor (blue light emission) or a GOS phosphor (green light emission) having sensitivity to high energy components can be used.
  • the so-called surface reading method (ISS method) can be adopted for the low energy component, the image quality of the first radiation image D1 by the low energy component can be improved.
  • the a-Se solid-state detection element 74 has sensitivity to blue light, when the GOS that emits green light is used as the second scintillator 58B, the light reflection layer 72 is not necessarily installed, but the second scintillator 58B In order to receive the light emitted by the second photodiode portion 62B as much as possible, the light reflecting layer 72 is preferably provided.
  • the sixteenth aspect has a configuration opposite to the fifteenth aspect described above, as shown in FIG. 10C. That is, the second sensor substrate 56B having the second photodiode portion 62B and the second scintillator 58B are installed on the incident side of the radiation 26, and the first sensor substrate 56A and the a ⁇ are opposite to the incident side of the radiation 26. A Se solid detection element 74 is installed.
  • the a-Se solid state detection element 74 deteriorates (crystallizes) by repeated irradiation of the radiation 26.
  • the a-Se solid state detection element 74 is moved away from the incident side of the radiation 26. Therefore, deterioration can be suppressed.
  • the a-Se solid state detection element 74 is crystallized at a high temperature and its function is deteriorated.
  • the cooling plate 76 can be installed on the solid state detection element 74 side, the crystallization is further suppressed. Can do.
  • the seventeenth aspect has substantially the same configuration as the first aspect described above, but differs in that the first scintillator 58A is used as the second scintillator 58B. That is, the first scintillator 58A is installed on the incident side of the radiation 26 and on the opposite side. In this case, it is preferable to install a light reflection layer 72 on the sensor substrate 56 in order to suppress crosstalk.
  • the eighteenth aspect has substantially the same configuration as the sixth aspect described above, but differs in that the first scintillator 58A is installed on the radiation 26 incident side and the opposite side, respectively. Also in this case, in order to suppress crosstalk, it is preferable to install the light reflecting layer 72 between the first scintillators 58A.
  • BaFBr blue light emission
  • the lower energy component is absorbed more on the incident side of the radiation 26, and the absorption ratio of the remaining high energy component is increased on the opposite side of the incident side of the radiation 26.
  • the first radiation image D1 with a low energy component is taken out through the first photodiode portion 62A on the incident side of the light, and the radiation image with the high energy component (second radiation image) through the second photodiode portion 62B on the opposite side. D2) will be taken out.
  • the columnar crystal such as CsI: Tl phosphor becomes thicker, fusion between the columnar shapes is more likely to occur, so it is necessary to lower the filling rate in the initial stage of vapor deposition. In this case, the light emission amount is reduced.
  • the seventeenth and eighteenth aspects are divided and configured, it is not necessary to lower the filling rate in advance. Accordingly, it is possible to avoid a decrease in the light emission amount.
  • FIG. 12 relates to the circuit configuration of the radiation detection apparatus 30 when the indirect conversion type radiation detector 42 is employed, for example, the configuration of the readout circuit (first readout circuit 78A) of the first imaging unit 54A. Details will be described with reference to FIG.
  • the first imaging unit 54A includes, for example, an array of thin film transistors (hereinafter referred to as TFTs 84) in a matrix form, in which the photoelectric conversion layer 82 in which each pixel 80 made of a material such as a-Si that converts visible light into an electrical signal is formed. It has a structure arranged on the top. In this case, since charges generated by converting visible light into electrical signals (analog signals) are accumulated in each pixel 80, for example, by sequentially turning on the TFT 84 for each row, the charges are used as image signals. Can be read.
  • TFTs 84 thin film transistors
  • the first readout circuit includes a TFT 84 connected to each pixel 80, a gate line 86 connected to the TFT 84 and extending parallel to the row direction, and a signal line 88 connected to the TFT 84 and extending parallel to the column direction.
  • Each gate line 86 is connected to a line scan driver 90, and each signal line 88 is connected to a multiplexer 92.
  • Control signals Von and Voff for controlling on / off of the TFTs 84 arranged in the row direction are supplied from the line scanning drive unit 90 to the gate line 86.
  • the line scan driving unit 90 includes a plurality of switches SW1 for switching the gate lines 86, and a first address decoder 94 for outputting a selection signal for selecting the switches SW1.
  • An address signal is supplied from the cassette control unit 50 to the first address decoder 94.
  • each pixel 80 flows out to the signal line 88 through the TFTs 84 arranged in the column direction. This electric charge is amplified by the charge amplifier 96.
  • a multiplexer 92 is connected to the charge amplifier 96 via a sample and hold circuit 98.
  • each charge amplifier 96 includes an operational amplifier 100, a capacitor 102, and a switch 104. When the switch 104 is off, the charge amplifier 96 converts the charge signal input to one input terminal of the operational amplifier 100 into a voltage signal and outputs the voltage signal.
  • the charge amplifier 96 amplifies and outputs the electrical signal with the gain set by the cassette control unit 50.
  • Information relating to the gain of the charge amplifier 96 (gain setting information) is supplied from the system control unit 14 to the cassette control unit 50 via the detection device control unit 32.
  • the cassette control unit 50 sets the gain of the charge amplifier 96 based on the supplied gain setting information.
  • the other input terminal of the operational amplifier 100 is connected to GND (ground potential) (ground).
  • GND ground potential
  • the switch 104 When all the TFTs 84 are turned on and the switch 104 is turned on, the charge accumulated in the capacitor 102 is discharged by the closed circuit of the capacitor 102 and the switch 104 and the charge accumulated in the pixel 80 is closed. It is swept out to GND (ground potential) via the switch 104 and the operational amplifier 100.
  • the operation of turning on the switch 104 of the charge amplifier 96 to discharge the charge stored in the capacitor 102 and sweeping out the charge stored in the pixel 80 to GND (ground potential) is a reset operation (empty reading operation). Call it.
  • the operation of sweeping out charges of all pixels to GND is referred to as an all-pixel reset operation. That is, in the reset operation, the voltage signal corresponding to the charge signal stored in the pixel 80 is discarded without being output to the multiplexer 92.
  • the multiplexer 92 includes a plurality of switches SW2 for switching the signal line 88 and a second address decoder 106 for outputting a selection signal for selecting the switch SW2.
  • An address signal is supplied from the cassette control unit 50 to the second address decoder 106.
  • An A / D converter 108 is connected to the multiplexer 92, and a radiation image converted into a digital signal by the A / D converter 108 is supplied to the cassette control unit 50.
  • the configurations of the second imaging unit 54B and the second readout circuit 78B are substantially the same as the configurations of the first imaging unit 54A and the first readout circuit 78A described above, and a duplicate description thereof will be omitted.
  • the TFT 84 functioning as a switching element may be realized in combination with another imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Furthermore, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting the charges with a shift pulse corresponding to a gate signal referred to as a TFT.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the cassette controller 50 of the radiation detector 30 includes a first address signal generator 110A for the first readout circuit 78A and a second address signal generator 110B for the second readout circuit 78B.
  • the first address signal generation unit 110A for example, read control information for moving images (first read control information Sb1 described later) from the system control unit 14 and read control information (hereinafter referred to as energy sub) for energy subtraction (described later). Based on the third read control information Sb3), the address signal is supplied to the first address decoder 94 of the line scan driver 90 and the second address decoder 106 of the multiplexer 92 in the first read circuit 78A shown in FIG. .
  • the first read control information Sb1 and the third read control information Sb3 include, for example, a progressive mode, an interlace mode (odd row read mode, even row read mode, second row read mode, third row read mode, etc.), binning mode (1 Information on the readout mode indicating the pixel / 4 pixel readout mode, 1 pixel / 6 pixel readout mode, 1 pixel / 9 pixel readout mode, etc.). For example, in the 1-pixel / 4-pixel readout mode, two adjacent gate lines are simultaneously activated (set to Von), and two adjacent signal lines are selected at the same time. In this mode, charges for pixels are mixed and read as one pixel.
  • the first address signal generator 110A creates an address signal corresponding to the mode indicated by the first read control information Sb1 or the third read control information Sb3, and the first address decoder 94 and the multiplexer 92 of the line scan driver 90 Output to the second address decoder 106.
  • the first read control information Sb1 and the third read control information Sb3 are created by the system control unit 14 based on, for example, an operation input from an operator, and are input to the cassette control unit 50 of the radiation detection apparatus 30.
  • the first readout control information Sb1 and the third readout control information Sb3 supplied from the system control unit 14 include imaging range information for designating an imaging range in addition to the information related to the above-described readout mode (readout mode information).
  • the imaging range information includes, for example, the address of the gate line 86 and the address of the signal line 88 included in the set imaging range when the operator sets the imaging range of a moving image, for example, using the input device 20 and the monitor 18. It is done. By using “0” as the first address of the first gate line 86 and the first signal line 88, operations such as address conversion are facilitated.
  • the start address (number) and end address (number) of the gate line 86 included in the imaging range and the start address (number) and end address (number) of the signal line 88 may be used.
  • the readout mode information is, for example, an odd-numbered row readout mode (decimation)
  • odd-numbered gate lines 86 are sequentially selected from among the gate lines 86 included in the imaging range of the first imaging unit 54A, and the first imaging unit is selected.
  • the signal charges from the signal line 88 included in the imaging range of 54A are sequentially transferred toward the A / D converter 108 without being synthesized.
  • the readout mode information is, for example, a 1-pixel / 4-pixel readout mode (binning), for example, two gate lines 86 included in the imaging range are sequentially selected, and signal charges from the signal lines 88 included in the imaging range are combined. (In this case, signal charges from two adjacent signal lines 88 are combined), that is, signal charges for four pixels are combined and sequentially transferred to the A / D converter 108. Become.
  • second address signal generator 110B For example, still image read control information (second read control information Sb2 described later) and energy sub read control information (described later) from the system control unit 14 are used. Based on the fourth read control information Sb4), an address signal is supplied to the first address decoder 94 of the line scan driver 90 and the second address decoder 106 of the multiplexer 92 in the second read circuit 78B shown in FIG.
  • the first image memory 112A stores the first radiation image D1 from the first readout circuit 78A of the radiation detector 42
  • the second image memory 112B stores the second radiation image D2 from the second readout circuit 78B.
  • the cassette ID memory 114 stores cassette ID information for specifying the radiation detection apparatus 30.
  • the transceiver 52 transmits the cassette ID information stored in the cassette ID memory 114 and the first radiation image D1 and the second radiation image D2 stored in the first image memory 112A and the second image memory 112B by wired communication or wireless communication.
  • the data is transmitted to the system control unit 14 via the detection device control unit 32.
  • the detection device control unit 32 includes a first image input / output control unit 116 ⁇ / b> A that controls input and output of the first radiation image D ⁇ b> 1 from the radiation detection device 30, and a second image from the radiation detection device 30. And a second image input / output control unit 116B that controls input and output of the radiation image D2.
  • the system control part 14 of this radiographic imaging system 10 has the moving image imaging
  • the moving image shooting processing unit 118 sets the irradiation energy for moving image shooting corresponding to the imaging region based on the operation input of the moving image shooting request by the operator or the input of the moving image shooting request from another device, and the moving image is set.
  • the radiation imaging for obtaining is controlled.
  • the moving image shooting processing unit 118 includes a first parameter setting unit 126A for moving images, a first parameter history storage unit 128A, and a moving image transfer unit 130.
  • the first parameter setting unit 126A stores the first parameter history for moving images when new parameters (radiation irradiation energy, frame rate, etc.) are set by an operation input from the operator during moving image shooting.
  • the irradiation energy and frame rate newly set in the unit 128A are stored as the latest parameters.
  • the first irradiation energy setting information Sa1 including information on the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is supplied to the radiation irradiation system 28.
  • the first readout control information Sb1 including the newly set readout mode information and imaging range information is detected via the detection device control unit 32. Output to device 30.
  • the first parameter history storage unit 128A stores the irradiation energy and the frame rate set over the predetermined period from the present time among the irradiation energy and the frame rate set so far.
  • the moving image transfer unit 130 receives the first radiation images D1 sequentially supplied from the radiation detection device 30 (the first imaging unit 54A and the first readout circuit 78A of the radiation detector 42) via the detection device control unit 32, Transfer to console 16.
  • the console 16 displays the first radiation image D1 sequentially transferred on the monitor 18. Thereby, the moving image of the first radiation image D1 is displayed on the monitor 18.
  • the still image capturing processing unit 120 sets irradiation energy for still image capturing corresponding to, for example, an imaging region based on, for example, an operation input of a still image capturing request by an operator or an input of a still image capturing request from another device ( Radiation imaging for obtaining a still image is executed and controlled with higher energy than for moving images).
  • the still image shooting processing unit 120 includes a second parameter setting unit 126B for still images, a second parameter history storage unit 128B, and a still image transfer unit 132.
  • the second parameter history storage unit 128B has the same configuration as the first parameter history storage unit 128A described above.
  • the second parameter setting unit 126B sets new parameters (irradiation energy of the radiation 26, frame rate, etc.) in response to an operation input from the operator or the like during still image shooting. If there is, the irradiation energy and frame rate newly set in the second parameter history storage unit 128B for still images are stored as the latest parameters.
  • the second irradiation energy setting information Sa2 including information on the newly set irradiation energy (information such as tube voltage, tube current, and irradiation time) is input to the radiation irradiation system 28.
  • the radiation detection device receives the second readout control information Sb2 including the newly set readout mode information, imaging range information, and the like via the detection device control unit 32. Output to 30.
  • the still image transfer unit 132 receives the second radiation image D2 supplied from the radiation detection device 30 (the second imaging unit 54B and the second readout circuit 78B of the radiation detector 42) via the detection device control unit 32, and Transfer to console 16.
  • the console 16 displays the transferred second radiation image D2 on the monitor 18. As a result, a still image of the radiation image is displayed on the monitor 18.
  • the energy sub imaging processing unit 122 sets the irradiation energy for subtraction imaging corresponding to the imaging region, for example, based on the operation input of the energy sub imaging request by the operator or the input of the energy sub imaging request from another device (from the moving image). (High energy) and control the execution of radiography to obtain an energy sub-image.
  • the energy sub imaging processing unit 122 includes an energy sub third parameter setting unit 126C, a third parameter history storage unit 128C, an energy sub moving image creating unit 134 (energy subtraction moving image generating unit), and an energy sub moving image transfer unit 136.
  • the third parameter history storage unit 128C has the same configuration as the first parameter history storage unit 128A described above.
  • the third parameter setting unit 126C newly sets parameters (radiation irradiation energy, frame rate, etc.) by an operation input from the operator or the like at the time of energy sub imaging.
  • the irradiation energy and frame rate newly set in the third parameter history storage unit 128C are stored as the latest parameters.
  • the third irradiation energy setting information Sa3 including information on the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is supplied to the radiation irradiation system 28.
  • the radiation detection device receives the third readout control information Sb3 including the newly set readout mode information and imaging range information through the detection device control unit 32. Output to 30.
  • the synchronization unit 124 Based on the third readout control information Sb3 from the energy sub imaging processing unit 122, the synchronization unit 124 sets the continuous imaging timing in the second imaging unit 54B to the continuous imaging times in the first imaging unit 54A. Information (fourth readout control information Sb4) for synchronizing with the imaging timing is created, and the fourth readout control information Sb4 is output to the radiation detection apparatus 30 via the detection apparatus control unit 32.
  • the synchronization unit 124 includes an information table 138 in which information on the spatial resolution of the first imaging unit 54A and the second imaging unit 54B, for example, information such as the coefficients kv and kh described above, and a compression of the gate line 86 set in advance.
  • a read control information creating unit 140 that creates the fourth read control information Sb4 based on the method information (information indicating decimation and binning), the third read control information Sb3, the above spatial resolution information, the compression method information, and the like. And have.
  • the readout control information creation unit 140 creates imaging range information corresponding to the second imaging unit 54B based on the imaging range information included in the third readout control information Sb3. Specifically, the coefficient (kv) is multiplied by the address (or start address, end address) of the gate line 86 included in the imaging range, and the coefficient is calculated for the address (or start address, end address) of the signal line 88 included in the imaging range. By multiplying kh, imaging range information corresponding to the second imaging unit 54B can be obtained. Further, the read control information creating unit 140 creates read mode information based on information on a preset compression method.
  • the compression method indicates thinning
  • information indicating the thinning out coefficient kv-1 for the gate line 86 and the binning of coefficient kh for the signal line 88 is created.
  • the compression technique indicates binning
  • information indicating kv bins for the gate line 86 and kh bins for the signal line 88 is generated.
  • the synchronization unit 124 outputs the fourth readout control information Sb4 including the imaging range information, readout mode information, and the like created by the readout control information creation unit 140 to the radiation detection device 30 via the detection device control unit 32.
  • the energy sub moving image creation unit 134 in the energy sub imaging processing unit 122 is sequentially supplied from the radiation detection device 30 (the first imaging unit 54A and the first readout circuit 78A of the radiation detector 42) via the detection device control unit 32. Weighting of the first radiation image D1 and the second radiation image D2 sequentially supplied from the radiation detection device 30 (the second imaging unit 54B and the second readout circuit 78B of the radiation detector 42) via the detection device control unit 32 A subtraction process is performed to create a radiation image (energy sub image Ds) for energy sub moving image capturing.
  • the energy sub moving image transfer unit 136 transfers the energy sub images Ds that are sequentially generated to the console 16.
  • the console 16 displays the energy sub-image Ds sequentially transferred on the monitor 18. As a result, the moving image of the energy sub-image Ds is displayed on the monitor 18.
  • step S1 of FIG. 14 the second parameter setting unit 126B of the still image capturing processing unit 120 determines whether or not new parameters (irradiation energy of radiation 26, gain, readout mode, etc.) are set. . For example, when the operator newly sets a parameter, the process proceeds to step S2, and the irradiation energy newly set in the second parameter history storage unit 128B is stored as the latest parameter.
  • new parameters irradiation energy of radiation 26, gain, readout mode, etc.
  • step S3 the second irradiation energy setting information Sa2 including the latest irradiation energy information (tube voltage, tube current, irradiation time, etc.) is output to the radiation irradiation system 28.
  • the radiation source control unit 36 of the radiation irradiation system 28 sets the irradiation energy output from the radiation source 34 to a new irradiation energy based on the second irradiation energy setting information Sa2 from the system control unit 14.
  • step S4 the second reading control information Sb2 including the latest imaging range information and reading mode information is output to the radiation detecting device 30 via the detecting device control unit 32.
  • the cassette control unit 50 of the radiation detection apparatus 30 supplies the input second read control information Sb2 to the second address signal generation unit 110B.
  • step S5 the system control unit 14 determines whether or not the exposure switch has been operated. When the exposure switch is operated, the process proceeds to step S6, and the system control unit 14 outputs an exposure start signal Sc (see FIG. 15) to the radiation irradiation system 28.
  • the radiation source control unit 36 of the radiation irradiation system 28 controls the radiation source 34 based on the input of the exposure start signal Sc from the system control unit 14, and emits radiation with the irradiation energy set from the radiation source 34. Irradiate.
  • step S ⁇ b> 7 the system control unit 14 outputs an exposure notification Sd (see FIG. 15) indicating that the radiation irradiation system 28 has started exposure to the detection device control unit 32.
  • step S8 the detection device controller 32 outputs an operation start signal Se (see FIG. 15) indicating charge accumulation and charge reading to the radiation detection device 30 based on the input of the exposure notification Sd.
  • step S9 the radiation detection apparatus 30 performs charge accumulation and charge read based on the input of the operation start signal Se from the detection apparatus control unit 32. That is, the radiation 26 that has passed through the subject 24 is temporarily converted into visible light, for example, by the scintillator of the second imaging unit 54B, and the visible light is photoelectrically converted in each pixel 80 of the second imaging unit 54B according to the amount of light. An amount of charge is accumulated.
  • a second synchronization signal Sf2 (for example, vertical synchronization signal: see FIG. 15) is output at the start of the reading period of the second reading circuit 78B, and is input to the second image input / output control unit 116B of the detection device control unit 32.
  • the second image input / output control unit 116B synchronizes the reception timing of the second radiation image D2 with the output timing of the second radiation image D2 from the radiation detection device 30 based on the input of the second synchronization signal Sf2.
  • the second address signal generator 110B creates an address signal corresponding to the supplied second readout control information Sb2 (imaging range information, readout mode information, etc.), and the line in the second readout circuit 78B.
  • the data is output to the first address decoder 94 of the scan driver 90 and the second address decoder 106 of the multiplexer 92.
  • the second readout circuit 78B reads out charges in accordance with the second readout control information Sb2, and outputs the second radiation image D2 for a still image by using, for example, the FIFO method using the second image memory 112B.
  • the second radiation image D2 from the radiation detection device 30 is supplied to the system control unit 14 via the second image input / output control unit 116B of the detection device control unit 32.
  • step S10 the still image transfer unit 132 of the still image capturing processing unit 120 transfers the supplied second radiographic image D2 for still images to the console 16.
  • the console 16 stores the transferred second radiation image D2 in the frame memory and displays it on the monitor 18 as a still image.
  • step S11 the system control unit 14 determines whether or not there is a still image shooting end request (for example, a moving image shooting request or an energy sub moving image shooting request). If there is no request for termination of still image shooting, the process returns to step S1, and the processes in and after step S1 are repeated. On the other hand, when it is determined in step S11 that there is a request to end still image shooting, still image shooting ends.
  • a still image shooting end request for example, a moving image shooting request or an energy sub moving image shooting request.
  • the second parameter setting unit 126B The second irradiation energy setting information Sa2 including the information of the newly set irradiation energy is output to the radiation irradiation system 28, and the second reading control information Sb2 including the newly set photographing range information, reading mode information, and the like is output.
  • the data is output to the radiation detection device 30 via the detection device control unit 32.
  • the cassette control unit 50 of the radiation detection apparatus 30 supplies the input second read control information Sb2 to the second address signal generation unit 110B.
  • the radiation irradiation system 28 is set to a new irradiation energy
  • the second readout circuit 78B is set to a new imaging range, a readout mode, and the like.
  • the system control unit 14 After that, at the radiation imaging start time t0, the system control unit 14 outputs an exposure start signal Sc to the radiation irradiation system 28, and performs an exposure notification Sd to the detection device control unit 32, whereby the system control unit 14 is notified. Then, the second radiation image D2 obtained by still image shooting is supplied. The system control unit 14 transfers the supplied second radiation image D2 to the console 16 and displays it on the monitor 18 as a still image.
  • step S102 the first parameter setting unit 126A determines whether or not parameters (irradiation energy of the radiation 26, frame rate, imaging range, readout mode, etc.) are newly set. For example, when the operator newly sets a parameter, the process proceeds to step S103, and the irradiation energy, frame rate, and the like newly set in the first parameter history storage unit 128A are stored as the latest parameters.
  • parameters irradiation energy of the radiation 26, frame rate, imaging range, readout mode, etc.
  • the first irradiation energy setting information Sa1 including information of the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is radiated.
  • the radiation source control unit 36 of the radiation irradiation system 28 sets the irradiation energy output from the radiation source 34 to a new irradiation energy based on the first irradiation energy setting information Sa1 from the system control unit 14.
  • the first reading control information Sb1 including the newly set shooting range information and reading mode information is sent via the detection device control unit 32. Output to the radiation detector 30.
  • the cassette control unit of the radiation detection apparatus 30 supplies the input first read control information Sb1 to the first address signal generation unit 110A.
  • step S106 the system control unit 14 determines whether or not a time corresponding to the latest frame rate Fr has elapsed since the start of the previous radiation imaging.
  • the system control unit 14 proceeds to the next step S107, and the system control unit 14 At the start of imaging, an exposure start signal Sc (see FIG. 17) is output to the radiation irradiation system 28.
  • the radiation source control unit 36 of the radiation irradiation system 28 controls the radiation source 34 based on the input of the exposure start signal Sc from the system control unit 14, and emits radiation with the irradiation energy set from the radiation source 34. Irradiate.
  • step S108 the system control unit 14 outputs to the detection device control unit 32 an exposure notification Sd (see FIG. 17) indicating that the radiation irradiation system 28 has started exposure.
  • step S109 the detection device controller 32 outputs an operation start signal Se (see FIG. 17) indicating charge accumulation and charge reading to the radiation detection device 30 based on the input of the exposure notification Sd.
  • step S110 the radiation detection apparatus 30 performs charge accumulation and charge read based on the input of the operation start signal Se from the detection apparatus control unit 32. That is, the radiation 26 transmitted through the subject 24 is temporarily converted into visible light, for example, by the scintillator of the first imaging unit 54A, and the visible light is photoelectrically converted in each pixel 80 of the first imaging unit 54A according to the amount of light. An amount of charge is accumulated.
  • a first synchronization signal Sf1 (for example, a vertical synchronization signal: see FIG. 17) is output at the start of the reading period in the first reading circuit 78A, and is input to the first image input / output control unit 116A of the detection device control unit 32.
  • the first image input / output control unit 116A synchronizes the reception timing of the first radiation image D1 with the output timing of the first radiation image D1 from the radiation detection device 30 based on the input of the first synchronization signal Sf1.
  • the first address signal generator 110A creates an address signal corresponding to the supplied first readout control information (imaging range information, readout mode information, etc.), and performs line scanning in the first readout circuit 78A.
  • the data is output to the first address decoder 94 of the driving unit 90 and the second address decoder 106 of the multiplexer 92.
  • the first readout circuit 78A reads out charges in accordance with the first readout control information Sb1, and outputs the first radiation image D1 for moving image using, for example, the FIFO method using the first image memory 112A.
  • the first radiation image D1 from the radiation detection device 30 is supplied to the system control unit 14 via the detection device control unit 32.
  • step S111 the system control unit 14 transfers the supplied first radiation image D1 for moving image to the console 16.
  • the console 16 stores the transferred first radiation image D1 in the frame memory and displays it on the monitor 18 as a radiation image obtained by the k-th radiation imaging, that is, a k-th radiation image.
  • step S112 the value of the counter k is updated by +1.
  • step S113 the system control unit 14 determines whether or not there is a moving image shooting end request (for example, a still image shooting request or an energy sub moving image shooting request). If there is no moving image shooting end request, the process returns to step S102, and the processes in and after step S102 are repeated. Thereby, the moving image of the radiation image at the set frame rate is displayed on the monitor 18. On the other hand, when it is determined in step S113 that there is an end request for moving image shooting, the moving image shooting ends.
  • a moving image shooting end request for example, a still image shooting request or an energy sub moving image shooting request.
  • the first parameter setting unit 126A outputs the first irradiation energy setting information Sa1 including information on the newly set irradiation energy to the radiation irradiation system 28, and the newly set imaging range information.
  • the first readout control information Sb1 including the readout mode information is output to the radiation detection apparatus 30 via the detection apparatus control unit 32.
  • the cassette control unit 50 of the radiation detection apparatus 30 supplies the input first read control information Sb1 to the first address signal generation unit 110A.
  • the radiation irradiation system 28 is set to a new irradiation energy
  • the first readout circuit 78A is set to a new imaging range, a readout mode, and the like.
  • the system control unit 14 outputs the exposure start signal Sc to the radiation irradiation system 28 and performs the exposure notification Sd to the detection device control unit 32.
  • the first radiographic image D1 obtained by the (N-1) th radiography is supplied to the system control unit 14.
  • the system control unit 14 transfers the supplied first radiation image D1 to the console 16 and displays it on the monitor 18 as a radiation image of the (N ⁇ 1) th frame.
  • the system control unit 14 outputs an exposure start signal Sc to the radiation irradiation system 28 at the start time tn of the N-th radiography in which the latest frame rate Fr has elapsed from the start time tn ⁇ 1 described above.
  • the exposure notification Sd to the detection device control unit 32 the first radiographic image D1 obtained by the N-th radiography is supplied to the system control unit 14.
  • the system control unit 14 transfers the supplied first radiographic image D1 to the console 16 and displays it on the monitor 18 as an Nth frame radiographic image. By repeating these operations, the moving image of the radiation image is displayed on the monitor 18.
  • step S202 the third parameter setting unit 126C determines whether or not parameters (radiation irradiation energy, frame rate, imaging range, readout mode, etc.) are newly set. For example, when the operator newly sets a parameter, the process proceeds to step S203, and the irradiation energy, frame rate, and the like newly set in the third parameter history storage unit 128C are stored as the latest parameters.
  • parameters radiation irradiation energy, frame rate, imaging range, readout mode, etc.
  • the third irradiation energy setting information Sa3 including information of the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is radiated. Output to the irradiation system 28.
  • the radiation source control unit 36 of the radiation irradiation system 28 sets the irradiation energy output from the radiation source 34 to a new irradiation energy based on the third irradiation energy setting information Sa3 from the system control unit 14.
  • the third parameter setting unit 126C obtains the third reading control information Sb3 including the newly set shooting range information and reading mode information.
  • the data is output to the radiation detection device 30 via the detection device control unit 32.
  • the cassette control unit of the radiation detection apparatus 30 supplies the input third read control information Sb3 to the first address signal generation unit 110A.
  • step S206 based on the third readout control information Sb3, the synchronization unit 124 changes the continuous imaging timing at the second imaging unit 54B to the continuous imaging timing at the first imaging unit 54A.
  • Information for synchronization (fourth read control information Sb4) is created.
  • step S207 the created fourth readout control information Sb4 is output to the radiation detection apparatus 30 via the detection apparatus control unit 32. Since an example of a method for creating the fourth read control information Sb4 has been described above, a duplicate description thereof is omitted here.
  • the system control unit 14 outputs the created fourth readout control information Sb4 to the radiation detection device 30 via the detection device control unit 32.
  • the cassette control unit 50 of the radiation detection apparatus 30 supplies the input fourth read control information Sb4 to the second address signal generation unit 110B.
  • step S208 the system control unit 14 determines whether or not a time corresponding to the latest frame rate Fra in the energy sub imaging has elapsed since the start of the previous radiation imaging.
  • the system control unit 14 proceeds to the next step S209, and the system control unit 14 At the start of imaging, an exposure start signal Sc is output to the radiation irradiation system 28.
  • the radiation source control unit 36 of the radiation irradiation system 28 controls the radiation source 34 based on the input of the exposure start signal Sc from the system control unit 14, and emits radiation with the irradiation energy set from the radiation source 34. Irradiate.
  • step S210 the system control unit 14 outputs to the detection device control unit 32 an exposure notification Sd (see FIG. 19) indicating that the irradiation start has been performed on the radiation irradiation system 28.
  • step S211 the detection device controller 32 outputs an operation start signal Se (see FIG. 19) indicating charge accumulation and charge reading to the radiation detection device 30 based on the input of the exposure notification Sd.
  • step S212 the radiation detection apparatus 30 performs charge accumulation and charge reading based on the input of the operation start signal Se from the detection apparatus control unit 32. That is, of the radiation 26 that has passed through the subject 24, the low-energy component radiation is once converted into visible light by the scintillator of the first imaging unit 54A, and the visible light is photoelectrically converted in each pixel 80 of the first imaging unit 54A. Thus, an amount of electric charge corresponding to the amount of light is accumulated. Similarly, the high-energy component radiation is once converted into visible light by the scintillator of the second imaging unit 54B, and the visible light is photoelectrically converted in each pixel 80 of the second imaging unit, and an amount of charge corresponding to the amount of light is generated. Accumulated.
  • the first synchronization signal Sf1 (for example, vertical synchronization signal: see FIG. 19) is output at the start of the reading period in the first reading circuit 78A, and is input to the first image input / output control unit 116A of the detection device control unit 32.
  • the first image input / output control unit 116A synchronizes the reception timing of the first radiation image D1 with the output timing of the first radiation image D1 from the radiation detection device 30 based on the input of the first synchronization signal Sf1.
  • a second synchronization signal Sf2 (for example, vertical synchronization signal: see FIG. 19) is output at the start of the reading period in the second reading circuit 78B, and is input to the second image input / output control unit 116B of the detection device control unit 32. Is done.
  • the second image input / output control unit 116B synchronizes the reception timing of the second radiation image D2 with the output timing of the second radiation image D2 from the radiation detection device 30 based on the input of the second synchronization signal Sf2.
  • the first address signal generator 110A creates an address signal corresponding to the supplied third readout control information Sb3 (imaging range information, readout mode information, etc.), and the line in the first readout circuit 78A.
  • the data is output to the first address decoder 94 of the scan driver 90 and the second address decoder 106 of the multiplexer 92.
  • the second address signal generator 110B creates an address signal corresponding to the supplied fourth read control information Sb4 (imaging range information, read mode information, etc.), and performs line scanning drive in the second read circuit 78B.
  • the data is output to the first address decoder 94 of the unit 90 and the second address decoder 106 of the multiplexer 92.
  • the first readout circuit 78A reads out charges in accordance with the third readout control information Sb3, and outputs the first radiation image D1 with low energy using, for example, the FIFO method using the first image memory 112A.
  • the second readout circuit 78B reads out charges in accordance with the fourth readout control information Sb4, and outputs the second radiation image D2 with high energy using, for example, the FIFO method using the second image memory 112B.
  • the gate lines 86 included in the imaging range are selected one by one, and the signal charges from the signal lines 88 included in the imaging range are sequentially synthesized toward the A / D converter 108. Forward.
  • the gate line of coefficient kv is sequentially selected in a skipped manner, and further, for each coefficient kh included in the imaging range.
  • the signal charges from the signal lines 88 are combined and sequentially transferred to the A / D converter 108.
  • the first radiation image D1 with low energy and the second radiation image D2 with high energy from the radiation detection device 30 are passed through the first image input / output control unit 116A and the second image input / output control unit 116B of the detection device control unit 32. To the system control unit 14.
  • step S213 the energy sub moving image creating unit 134 performs weighted subtraction processing between the first radiation image D1 with low energy and the second radiation image D2 with high energy supplied from the radiation detection device 30 via the detection device control unit 32. Then, the energy sub-image Ds is created.
  • step S214 the energy sub moving image transfer unit 136 transfers the generated energy sub image Ds to the console 16.
  • the console 16 stores the transferred energy sub-image Ds in the frame memory and displays it on the monitor 18 as the energy sub-image Ds obtained by the k-th radiography, that is, the k-th energy sub-image Ds.
  • step S215 the value of the counter k is updated by +1.
  • step S216 the system control unit 14 determines whether there is an energy sub moving image shooting end request (for example, a still image shooting request or a moving image shooting request). If there is no request to end the energy-sub moving image shooting, the process returns to step S202, and the processes in and after step S202 are repeated. As a result, the moving image of the energy sub-image Ds at the set frame rate is displayed on the monitor 18. On the other hand, in step S216, when it is determined that there is a request to end the energy sub moving image shooting, the energy sub moving image shooting ends.
  • an energy sub moving image shooting end request for example, a still image shooting request or a moving image shooting request.
  • the third parameter setting unit 126C outputs the third irradiation energy setting information Sa3 including information on the newly set irradiation energy to the radiation irradiation system 28, and the newly set imaging range information.
  • third readout control information Sb3 including readout mode information is output to the radiation detection apparatus 30 via the detection apparatus control section 32.
  • the cassette control unit 50 of the radiation detection apparatus 30 supplies the input third read control information Sb3 to the first address signal generation unit 110A.
  • the radiation irradiation system 28 is set to a new irradiation energy
  • the first readout circuit 78A is set to a new imaging range, a readout mode, and the like.
  • the synchronization unit 124 synchronizes a plurality of consecutive imaging timings in the second imaging unit 54B with a plurality of consecutive imaging timings in the first imaging unit 54A.
  • Information (fourth read control information Sb4) is generated, and the fourth read control information Sb4 is output to the radiation detection apparatus 30 via the detection apparatus control unit 32.
  • the cassette control unit 50 of the radiation detection apparatus 30 supplies the input fourth read control information Sb4 to the second address signal generation unit 110B.
  • the second readout circuit 78B is set to a new imaging range and readout mode for synchronizing with the first imaging unit 54A.
  • the system control unit 14 outputs the exposure start signal Sc to the radiation irradiation system 28 and performs the exposure notification Sd to the detection device control unit 32.
  • two radiographic images obtained by the N-1th radiography that is, a first radiographic image D1 with low energy and a second radiographic image D2 with high energy are supplied to the system control unit 14.
  • the system control unit 14 performs the weighted subtraction process on the supplied first radiation image D1 and second radiation image D2 to create an energy sub-image Ds. Then, the created energy sub image Ds is transferred to the console 16 and displayed on the monitor 18 as the energy sub image Ds of the (N ⁇ 1) th frame.
  • the system control unit 14 sends the exposure start signal Sc to the radiation irradiation system 28.
  • the system control unit 14 is given two radiographic images (first radiographic image D1 with low energy and second radiographic image with high energy) by the N-th radiography. D2) is supplied.
  • the system control unit 14 creates an energy sub-image Ds from the two supplied radiographic images, transfers it to the console 16, and displays it on the monitor 18 as the energy sub-image Ds of the Nth frame. By repeating these operations, the monitor 18 displays the moving image of the energy sub-image Ds.
  • the first imaging unit 54A and the second imaging unit 54B that have different sensitivity characteristics and convert radiation into a radiographic image are provided, and the system control unit 14 includes a plurality of continuous first imaging units 54A and second imaging units 54B.
  • the synchronization unit 124 that synchronizes the imaging timing of the image is included, the energy that could only be realized for still image use until now
  • the Bed shooting can widen the applications to the Enesabu shooting video, it can contribute to the spread of the radiation image capturing system 10 which performs Enesabu shooting.
  • the subtraction image processing can be performed by one exposure, the energy sub-image Ds can be created without being affected by the body movement of the subject 24, and the moving image of the energy sub-image Ds with good image quality can be created. Obtainable.
  • the charge accumulation period in the first imaging unit 54A and the charge accumulation period in the second imaging unit 54B overlap at least partly (all Period or part of the period).
  • the substrate 56 is used, there is almost no time difference in the arrival time of visible light to each pixel of the first imaging unit 54A and each pixel of the second imaging unit 54B.
  • the time difference is only shorter than the pulse width of the reference clock used in the system. Therefore, in this case, as shown in FIG.
  • the output time td of the vertical synchronization signals (Sf1, Sf2) is the end of the charge accumulation periods Ta1 and Ta2. Therefore, the end time tc1 of the charge accumulation period Ta1 in the first imaging unit 54A and the end time tc2 of the charge accumulation period Ta2 in the second imaging unit 54B are synchronized.
  • the first sensor substrate 56A is made incident with radiation 26. Since the second sensor substrate 56B is installed on the side opposite to the incident side of the radiation 26 and the first imaging unit 54A detects visible light by the ISS method, each pixel of the first imaging unit 54A and A time difference ⁇ t longer than the pulse width of the reference clock occurs in the arrival time of the visible light to each pixel of the second imaging unit 54B. Therefore, in this case, as shown in FIG.
  • the time difference ⁇ t is shifted.
  • the output time td of the vertical synchronization signals (Sf1, Sf2) is the end time of the charge accumulation time.
  • the end time tc1 of the charge accumulation period Ta1 in the first imaging unit 54A and the end time tc2 of the charge accumulation period Ta2 in the second imaging unit 54B are synchronized. In this case, the charge accumulation period Ta2 in the second imaging unit 54B is shortened by the time difference ⁇ t described above.
  • the second sensor substrate 56B is installed on the incident side of the radiation 26, and the first sensor substrate 56A is installed on the opposite side of the incident side of the radiation 26. Since the second imaging unit 54B detects visible light by the ISS method, the pulse width of the reference clock depends on the arrival time of the visible light to each pixel of the first imaging unit 54A and each pixel of the second imaging unit 54B. Longer time difference ⁇ t occurs. Therefore, in this case, as shown in FIG. 21A, the start time tb1 of the charge accumulation period Ta1 in the first imaging unit 54A and the start time tb2 of the charge accumulation period Ta2 in the second imaging unit 54B from the imaging start time ta.
  • the time difference ⁇ t is shifted.
  • the output time of the vertical synchronization signals (Sf1, Sf2) is the end time of the charge accumulation time.
  • the end time tc1 of the charge accumulation period Ta1 in the first imaging unit 54A and the end time tc2 of the charge accumulation period Ta2 in the second imaging unit 54B are synchronized. In this case, the charge accumulation period Ta1 in the first imaging unit 54A is shortened by the time difference ⁇ t described above.
  • the image quality of the energy sub-image Ds can be improved.
  • the output time points of the vertical synchronization signals (Sf1, Sf2) can be synchronized, it is not necessary to set an extra latch time when transferring the radiation image, and the transfer speed of the radiation image can be improved.
  • the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B are the same, so that the image quality of the energy sub-image Ds is improved. Can do.
  • the time difference ⁇ t described above occurs between the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B, but the vertical synchronization signal (Sf1, Since the output time of Sf2) can be synchronized, the transfer speed of the radiation image can be improved.
  • the radiation irradiation system 28 may include a plurality of radiation sources 34 as shown in FIGS. 22A to 22C.
  • the plurality of radiation sources 34 for example, one radiation source 34 may perform radiography for moving images, and two or more radiation sources 34 may perform radiography for still images.
  • the radiation 26 can be irradiated with high followability even at a fast time interval of 1/60 seconds to 1/15 seconds, and a moving image display of the radiation image can be realized.
  • the irradiation energy for moving images is set for each radiation source 34, and at the time of still image shooting, two or more radiation sources may be selected and set to the irradiation energy necessary for still images.
  • radiography may be performed with one radiation source selected randomly or in sequence for each radiography. In this case, it is preferable not to select an adjacent radiation source between frames for heat countermeasures.
  • radiography may be performed with two or more radiation sources 34 selected randomly or as one cluster for each radiography.
  • high-energy radiation 26 may be emitted from one radiation source 34, and low-energy radiation 26 may be emitted from the other radiation source 34.
  • angiography is a method of inspecting blood vessels and tumors by injecting an iodine contrast agent into the blood vessel and performing radiography using the fact that the iodine contrast agent is selectively taken into the tumor. is there.
  • the radiation absorption characteristic of an iodine, ie, the high absorption factor with respect to the radiation 26 with an energy of 33 keV or more is utilized, and the high energy radiation 26 with less than 33 keV and the high energy radiation 26 with 33 keV or more.
  • an energy sub moving image obtained by separating a blood vessel image from an image of a bone or the like is obtained.
  • Bone has a high absorption rate for radiation 26 of less than 33 keV.
  • the radiation irradiation system irradiates radiation 26 having different energy simultaneously from two radiation sources 34 as shown in FIG. 9A, for example.
  • the radiation detection device the radiation detection device 30 according to the present embodiment is applied, and the radiation source 34 and the radiation detection device 30 are controlled by the system control unit 14 according to the present embodiment.
  • Energy sub-moving imaging is performed by simultaneously irradiating radiation 26 of different energy from the two radiation sources 34.
  • a mammary gland and calcification have a large absorption rate with respect to radiation of less than 33 keV.
  • radiographic imaging system is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

This radiography system has: a radiography device having a radiation radiating system, which has a radiation source, and a radiograph outputting system, which converts the radiation from the radiation source having passed through a subject to a radiograph, and outputs the result; and a system control unit that controls the radiography device in a manner so as to execute radiography at a set imaging timing. The radiograph outputting system has a first imaging unit and a second imaging unit that each have different sensitivity characteristics, and that convert radiation into radiographs. The system control unit has a synchronization unit that synchronizes the imaging timing over a plurality of successive instances by the first imaging unit and the second imaging unit.

Description

放射線画像撮影システムRadiation imaging system
 本発明は、放射線画像撮影装置を用いて、設定されたフレームレートで放射線撮影を実行することで放射線画像の動画と静止画とを得ることができる放射線画像撮影システムに関する。 The present invention relates to a radiographic imaging system capable of obtaining a moving image and a still image of a radiographic image by executing radiography at a set frame rate using a radiographic imaging device.
 医療分野において、被写体に放射線を照射し、該被写体を透過した前記放射線を放射線検出器に導いて放射線画像情報を撮影する放射線画像撮影システムが広汎に使用されている。前記放射線検出器としては、前記放射線画像情報が露光記録される従来からの放射線フイルムや、蛍光体に前記放射線画像情報としての放射線エネルギーを蓄積し、励起光を照射することで前記放射線画像情報を輝尽発光光として取り出すことのできる蓄積性蛍光体パネルが知られている。これらの放射線検出器は、前記放射線画像情報が記録された放射線フイルムを現像装置に供給して現像処理を行い、あるいは、前記蓄積性蛍光体パネルを読取装置に供給して読取処理を行うことで、可視画像を得ることができる。 In the medical field, radiation image capturing systems that irradiate a subject with radiation and guide the radiation transmitted through the subject to a radiation detector to capture radiation image information are widely used. As the radiation detector, a conventional radiation film in which the radiation image information is exposed and recorded, or radiation energy as the radiation image information is accumulated in a phosphor, and the radiation image information is obtained by irradiating excitation light. A stimulable phosphor panel that can be extracted as stimulated emission light is known. These radiation detectors supply the radiation film on which the radiation image information is recorded to a developing device to perform development processing, or supply the storage phosphor panel to a reading device to perform reading processing. A visible image can be obtained.
 一方、手術時等、造影撮影時、あるいは骨折等の治療時等においては、患者に対して迅速且つ的確な処置を施すため、撮影後の放射線検出器から直ちに放射線画像情報を読み出して表示できることが必要である。このような要求に対応可能な放射線検出器として、放射線を直接電気信号に変換し、あるいは、放射線をシンチレータで可視光に変換した後、電気信号に変換して読み出す固体検出素子(画素という。)を用いたフラットパネルディテクタ(FPD)と称される放射線検出器が開発されている。 On the other hand, at the time of surgery, contrast imaging, or treatment of fractures, etc., radiation image information can be read and displayed immediately from the radiation detector after imaging in order to quickly and accurately treat the patient. is necessary. As a radiation detector capable of meeting such demands, a solid-state detection element (referred to as a pixel) that converts radiation directly into an electrical signal, or converts radiation into visible light with a scintillator and then converts it into an electrical signal for reading. A radiation detector referred to as a flat panel detector (FPD) using the above has been developed.
 特に、設定されたフレームレートで放射線撮影を実行することで放射線画像による動画をモニタに表示することで、被写体に対する例えばカテーテルの進入状況等をリアルタイムで把握できるようにし、さらに、切り替えによって、静止画像も表示できるようにしたX線画像診断装置が提案されている(特開2011-004966号公報及び特開2002-102213号公報参照)。 In particular, by performing radiography at a set frame rate, a moving image based on a radiographic image is displayed on a monitor, so that, for example, the state of catheter entry with respect to a subject can be grasped in real time. An X-ray diagnostic imaging apparatus has also been proposed (see Japanese Patent Application Laid-Open Nos. 2011-004966 and 2002-102213).
 また、従来では、放射線画像の撮影において、被写体の同一の部位を異なる管電圧で撮影し、各管電圧での撮影によって得られた放射線画像に重みを付けて差分を演算する画像処理(以下、「サブトラクション画像処理」と呼ぶ)を行うことで、画像中の骨部等の硬部組織に相当する画像部、及び軟部組織に相当する画像部の一方を強調して他方を除去した放射線画像(以下、「エネルギーサブトラクション画像」と呼ぶ)を得る技術が知られている。例えば、胸部の軟部組織に相当するエネルギーサブトラクション画像を用いると、肋骨で隠れていた病変を見ることが可能になり、診断性能を向上させることができる。 Conventionally, in radiographic imaging, the same part of the subject is imaged with different tube voltages, and image processing (hereinafter referred to as “difference”) is performed by weighting the radiographic images obtained by imaging with each tube voltage. By performing "subtraction image processing"), a radiographic image in which one of an image portion corresponding to a hard tissue such as a bone portion and an image portion corresponding to a soft tissue in the image is emphasized and the other is removed ( Hereinafter, a technique for obtaining an “energy subtraction image”) is known. For example, when an energy subtraction image corresponding to the soft tissue of the chest is used, it is possible to see a lesion hidden by the ribs, and the diagnostic performance can be improved.
 管電圧を変えて撮影する場合は、2回続けて曝射することから、患者等の体動等が有った場合に、診断性能の良い画像が得られない可能性が高い。そこで、1回の曝射でサブトラクション画像処理が提案されている(特開2010-056396号公報参照)。 When photographing with changing the tube voltage, since it is continuously exposed twice, there is a high possibility that an image with good diagnostic performance cannot be obtained when there is a body movement of a patient or the like. Therefore, subtraction image processing has been proposed with one exposure (see Japanese Patent Application Laid-Open No. 2010-056396).
 しかしながら、従来においては、2枚の特性の異なるパネルを積層することでエネサブ撮影を行うことは可能であるが、静止画用途にとどまり、動画でのエネルギーサブトラクション撮影(以下、エネサブ動画撮影)には対応できなかった。というのも、静止画と動画とでは要求仕様が異なり、双方を満たす汎用性の高い装置を実現することができないためである。もちろん、動画撮影時は体動の問題があるため、1回の曝射でサブトラクション画像処理ができることが望ましい。 However, in the past, it was possible to perform energy-sub shooting by stacking two panels with different characteristics, but for still image use, energy subtraction shooting for moving images (hereinafter referred to as energy-sub moving image shooting) I could not respond. This is because the required specifications differ between still images and moving images, and it is impossible to realize a highly versatile device that satisfies both. Of course, since there is a problem of body movement during moving image shooting, it is desirable to be able to perform subtraction image processing with a single exposure.
 また、放射線撮像装置は高価なため、専用機を複数導入するより汎用性の高いもので数多くの手技を撮影可能であることが望まれる。これは、放射線撮影可能な場所も限られ、設置場所の制限の問題もあるからである。 In addition, since the radiation imaging apparatus is expensive, it is desired that a large number of procedures can be taken with a more versatile device than introducing a plurality of dedicated machines. This is because the places where radiography can be performed are limited, and there is a problem of restriction of the installation location.
 本発明はこのような課題を考慮してなされたものであり、1つのシステムで、静止画用の撮影、動画用の撮影、及びエネサブ動画撮影を行うことができ、しかも、1回の曝射でサブトラクション画像処理ができ、汎用性の高い放射線画像撮影システムを提供することを目的とする。 The present invention has been made in consideration of such problems, and can perform still image shooting, moving image shooting, and energy-sub moving image shooting with one system. An object of the present invention is to provide a radiographic imaging system that can perform subtraction image processing and has high versatility.
[1] 本発明に係る放射線画像撮影システムは、放射線源を有する放射線照射系と、被写体を透過した前記放射線源からの放射線を放射線画像に変換して出力する放射線画像出力系と、を有する放射線画像撮影装置と、前記放射線画像撮影装置を、設定された撮像タイミングで放射線撮影を実行制御するシステム制御部とを有し、前記放射線画像出力系は、それぞれ特性が異なり、前記放射線を放射線画像に変換する第1撮像部及び第2撮像部を有し、前記システム制御部は、前記第1撮像部及び第2撮像部の連続する複数回の撮像タイミングを同期させる同期部を有することを特徴とする。 [1] A radiographic imaging system according to the present invention includes a radiation irradiation system having a radiation source, and a radiation image output system that converts the radiation from the radiation source that has passed through the subject into a radiation image and outputs the radiation image. An image capturing apparatus; and a system control unit that executes and controls radiation imaging at a set imaging timing. The radiation image output systems have different characteristics, and the radiation is converted into a radiation image. The system control unit includes a synchronization unit that synchronizes a plurality of successive imaging timings of the first imaging unit and the second imaging unit. To do.
 ここで、「それぞれ特性が異なり」とは、第1撮像部と第2撮像部の感度、解像度、撮影領域サイズ、駆動速度等の少なくとも1つ以上がそれぞれ異なることを示す。駆動速度は解像度、撮影領域サイズ等によっても異なってくるが、蓄積した電荷を出力側に転送する素子の構造の違いによっても異なる。この素子の構造としては、例えばアモルファスシリコンからなる薄膜トランジスタ、有機材料からなる薄膜トランジスタ、酸化物半導体(例えばInGaZnOx:IGZO)による薄膜トランジスタ、CMOSトランジスタ等が挙げられる。 Here, “characteristics are different” means that at least one or more of the sensitivity, resolution, imaging area size, driving speed, etc. of the first imaging unit and the second imaging unit is different. The driving speed varies depending on the resolution, the imaging region size, and the like, but also varies depending on the structure of the element that transfers the accumulated charge to the output side. Examples of the structure of this element include a thin film transistor made of amorphous silicon, a thin film transistor made of an organic material, a thin film transistor made of an oxide semiconductor (for example, InGaZnOx: IGZO), a CMOS transistor, and the like.
[2] 本発明において、前記システム制御部は、要求に応じて静止画用撮影と動画用撮影とを切り替えて放射線撮影を実行制御してもよい。 [2] In the present invention, the system control unit may execute and control radiation imaging by switching between still image imaging and moving image imaging as required.
[3] 本発明において、前記システム制御部は、前記同期部による前記連続する複数回の撮像タイミングによって前記第1撮像部及び前記第2撮像部にて得られた複数の放射線画像に基づいてサブトラクション画像処理を行って、動画のエネルギーサブトラクション画像を作成するエネルギーサブトラクション動画作成部を有してもよい。 [3] In the present invention, the system control unit performs subtraction based on a plurality of radiographic images obtained by the first imaging unit and the second imaging unit at a plurality of consecutive imaging timings by the synchronization unit. You may have an energy subtraction animation creation part which performs image processing and produces the energy subtraction image of a animation.
[4] 本発明において、前記同期部は、前記撮像タイミングを同期させて、前記第1撮像部での電荷蓄積期間と前記第2撮像部での電荷蓄積期間とを少なくとも一部期間重ねてもよい。 [4] In the present invention, the synchronization unit may synchronize the imaging timing so that the charge accumulation period in the first imaging unit and the charge accumulation period in the second imaging unit overlap at least partially. Good.
[5] 本発明において、前記同期部は、前記撮像タイミングを同期させて、前記第1撮像部での電荷蓄積期間の開始と前記第2撮像部での電荷蓄積期間の開始とを同期させてもよい。 [5] In the present invention, the synchronization unit synchronizes the imaging timing to synchronize the start of the charge accumulation period in the first imaging unit and the start of the charge accumulation period in the second imaging unit. Also good.
[6] 本発明において、前記同期部は、前記撮像タイミングを同期させて、前記第1撮像部での電荷蓄積期間の終了と前記第2撮像部での電荷蓄積期間の終了とを同期させてもよい。 [6] In the present invention, the synchronization unit synchronizes the imaging timing to synchronize the end of the charge accumulation period in the first imaging unit and the end of the charge accumulation period in the second imaging unit. Also good.
[7] 本発明において、前記同期部は、前記撮像タイミングを同期させて、前記第1撮像部での電荷蓄積期間の開始と前記第2撮像部での電荷蓄積期間の開始とを同期させ、且つ、前記第1撮像部での電荷蓄積期間の終了と前記第2撮像部での電荷蓄積期間の終了とを同期させてもよい。 [7] In the present invention, the synchronization unit synchronizes the imaging timing to synchronize the start of the charge accumulation period in the first imaging unit and the start of the charge accumulation period in the second imaging unit, In addition, the end of the charge accumulation period in the first imaging unit and the end of the charge accumulation period in the second imaging unit may be synchronized.
[8] 本発明において、前記第1撮像部は、少なくとも前記放射線の低エネルギー成分に対して感度を有し、前記第2撮像部は、少なくとも前記放射線の高エネルギー成分に対して感度を有してもよい。 [8] In the present invention, the first imaging unit is sensitive to at least a low energy component of the radiation, and the second imaging unit is sensitive to at least a high energy component of the radiation. May be.
[9] 本発明において、前記第1撮像部に応じた前記撮像タイミングの最高フレームレートが、前記第2撮像部に応じた前記撮像タイミングのフレームレートより大きくてもよい。 [9] In the present invention, a maximum frame rate of the imaging timing corresponding to the first imaging unit may be larger than a frame rate of the imaging timing corresponding to the second imaging unit.
[10] 本発明において、前記第2撮像部の空間分解能が前記第1撮像部より高くてもよい。 [10] In the present invention, the spatial resolution of the second imaging unit may be higher than that of the first imaging unit.
[11] 本発明において、前記第1撮像部の画素数をnとしたとき、前記第2撮像部の画素数がnであってもよい。 [11] In the present invention, the number of pixels of the first image pickup unit is n, the number of pixels the second imaging unit may be an n 2.
[12] 本発明において、前記第2撮像部の感応部分の面積が前記第1撮像部の感応部分の面積よりも大きくてもよい。 [12] In the present invention, the area of the sensitive part of the second imaging unit may be larger than the area of the sensitive part of the first imaging unit.
[13] 本発明において、少なくとも前記第2撮像部は、前記システム制御部の設定によって、間引き又はビニングによる放射線画像への変換を行ってもよい。 [13] In the present invention, at least the second imaging unit may perform conversion into a radiation image by thinning or binning according to the setting of the system control unit.
[14] 本発明において、前記システム制御部は、前記同期部による同期された撮像タイミングに応じて、少なくとも前記第2撮像部の間引き又はビニングを設定してもよい。 [14] In the present invention, the system control unit may set at least thinning out or binning of the second imaging unit in accordance with the imaging timing synchronized by the synchronization unit.
[15] 本発明において、前記第1撮像部と前記第2撮像部との間に、遮光層を有してもよい。 [15] In the present invention, a light shielding layer may be provided between the first imaging unit and the second imaging unit.
[16] 本発明において、前記第1撮像部と前記第2撮像部との間に、特定波長を吸収する特性を有するフィルタを有してもよい。 [16] In the present invention, a filter having a characteristic of absorbing a specific wavelength may be provided between the first imaging unit and the second imaging unit.
[17] 本発明において、前記第1撮像部が前記放射線の入射側に設置されていてもよい。 [17] In the present invention, the first imaging unit may be installed on the radiation incident side.
[18] 本発明において、前記第2撮像部が前記放射線の入射側に設置されていてもよい。 [18] In the present invention, the second imaging unit may be installed on the radiation incident side.
 本発明に係る放射線画像撮影システムによれば、1つのシステムで、静止画用の撮影、動画用の撮影、及び動画でのエネルギーサブトラクション撮影を行うことができ、しかも、1回の曝射でサブトラクション画像処理ができ、汎用性の高い放射線画像撮影システムを得ることができる。 According to the radiographic image capturing system of the present invention, it is possible to perform still image capturing, moving image capturing, and energy subtraction image capturing with a single system, and subtraction with a single exposure. Image processing can be performed, and a highly versatile radiographic imaging system can be obtained.
本実施の形態に係る放射線画像撮影システムを示す構成図である。It is a block diagram which shows the radiographic imaging system which concerns on this Embodiment. 主に放射線画像撮影システムの放射線照射系及び放射線検出装置の構成を示すブロック図である。It is a block diagram which mainly shows the structure of the radiation irradiation system of a radiographic imaging system, and a radiation detection apparatus. 放射線検出装置の構成を一部破断して示す斜視図である。It is a perspective view which shows the structure of a radiation detection apparatus partially fractured | ruptured. 放射線検出器の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of a radiation detector. 図5A~図5Cは放射線検出器の第1~第3の態様を示す断面図である。5A to 5C are cross-sectional views showing first to third modes of the radiation detector. 図6A及び図6Bは放射線検出器の第4及び第5の態様を示す断面図である。6A and 6B are sectional views showing fourth and fifth modes of the radiation detector. 図7A~図7Cは放射線検出器の第6~第8の態様を示す断面図である。7A to 7C are cross-sectional views showing sixth to eighth embodiments of the radiation detector. 図8A~図8Cは放射線検出器の第9~第11の態様を示す断面図である。8A to 8C are sectional views showing ninth to eleventh aspects of the radiation detector. 図9A及び図9Bは放射線検出器の第12及び第13の態様を示す断面図である。9A and 9B are sectional views showing twelfth and thirteenth aspects of the radiation detector. 図10A~図10Cは放射線検出器の第14~第16の態様を示す断面図である。10A to 10C are sectional views showing fourteenth to sixteenth aspects of the radiation detector. 図11A及び図11Bは放射線検出器の第17及び第18の態様を示す断面図である。11A and 11B are sectional views showing the seventeenth and eighteenth aspects of the radiation detector. 放射線検出装置の構成を示し、特に、放射線検出器の構成を示す回路図である。It is a circuit diagram which shows the structure of a radiation detection apparatus, and shows the structure of a radiation detector especially. 主に放射線画像撮影システムのシステム制御部の構成を示すブロック図である。It is a block diagram which mainly shows the structure of the system control part of a radiographic imaging system. 放射線画像撮影システムの処理動作(静止画撮影処理)を示すフローチャートである。It is a flowchart which shows the processing operation (still image imaging process) of a radiographic imaging system. 放射線画像撮影システムの処理動作(静止画撮影処理)を示すタイムチャートである。It is a time chart which shows the processing operation (still image photography processing) of a radiographic imaging system. 放射線画像撮影システムの処理動作(動画撮影処理)を示すフローチャートである。It is a flowchart which shows the processing operation (moving image imaging process) of a radiographic imaging system. 放射線画像撮影システムの処理動作(動画撮影処理)を示すタイムチャートである。It is a time chart which shows the processing operation (moving image imaging process) of a radiographic image imaging system. 放射線画像撮影システムの処理動作(エネサブ撮影処理)を示すフローチャートである。It is a flowchart which shows the processing operation (energy sub imaging process) of a radiographic imaging system. 放射線画像撮影システムの処理動作(エネサブ撮影処理)を示すタイムチャートである。It is a time chart which shows the processing operation (energy sub imaging process) of a radiographic imaging system. 図20A~図20Cは第1撮像部での電荷蓄積期間と第2撮像部での電荷蓄積期間とが重なる例(第1~第3のケース)を示すタイムチャートである。20A to 20C are time charts showing examples (first to third cases) in which the charge accumulation period in the first imaging unit and the charge accumulation period in the second imaging unit overlap. 図21A及び図21Bは第1撮像部での電荷蓄積期間と第2撮像部での電荷蓄積期間とが重なる例(第4及び第5のケース)を示すタイムチャートである。21A and 21B are time charts showing an example (fourth and fifth cases) in which the charge accumulation period in the first imaging unit and the charge accumulation period in the second imaging unit overlap. 図22A~図22Cは複数の放射線源を有する放射線照射系を示す説明図である。22A to 22C are explanatory views showing a radiation irradiation system having a plurality of radiation sources.
 以下、本発明に係る放射線画像撮影システムの実施の形態例を図1~図22Cを参照しながら説明する。 Hereinafter, embodiments of the radiation image capturing system according to the present invention will be described with reference to FIGS. 1 to 22C.
 先ず、本実施の形態に係る放射線画像撮影システム10は、図1に示すように、放射線画像撮影装置12と、放射線画像撮影装置12を、設定された撮像タイミングで放射線撮影を実行制御するシステム制御部14とを有する。システム制御部14には、コンソール16が接続され、コンソール16とのデータ通信が可能となっている。コンソール16には、画像観察や画像診断用のモニタ18や、操作入力用の入力装置20(キーボードやマウス等)が接続されている。オペレータ(医師、放射線技師)は、静止画用撮影や動画用撮影の指示、並びに動画を観察しながらの手術やカテーテルの挿入作業等において、現在の状況に適した放射線の照射エネルギー(管電圧、管電流、照射時間等)や放射線撮影のフレームレートを入力装置20を使って設定する。入力装置20を使用して入力されたデータやコンソール16にて作成編集等されたデータはシステム制御部14に入力される。さらに、例えば入力装置20を介して、動画のエネルギーサブトラクション画像(エネサブ動画)の表示を指示することもできる。また、システム制御部14からの放射線画像はコンソール16に供給されて、モニタ18に映し出される。 First, as shown in FIG. 1, the radiographic imaging system 10 according to the present exemplary embodiment performs system control for performing radiographic imaging on the radiographic imaging apparatus 12 and the radiographic imaging apparatus 12 at a set imaging timing. Part 14. A console 16 is connected to the system control unit 14 so that data communication with the console 16 is possible. Connected to the console 16 are a monitor 18 for image observation and diagnostic imaging, and an input device 20 (keyboard, mouse, etc.) for operation input. Operators (physicians and radiographers) are required to provide radiation irradiation energy (tube voltage, Tube current, irradiation time, etc.) and the frame rate of radiography are set using the input device 20. Data input using the input device 20 and data created and edited by the console 16 are input to the system control unit 14. Furthermore, for example, the display of a moving image energy subtraction image (energy sub moving image) can be instructed via the input device 20. The radiation image from the system control unit 14 is supplied to the console 16 and displayed on the monitor 18.
 放射線画像撮影装置12は、撮影台22上の被写体24に向けて放射線26を設定された照射エネルギーで照射する放射線照射系28と、被写体24を透過した放射線26を放射線画像に変換してシステム制御部14に出力する放射線画像出力系29とを有する。放射線画像出力系29は、被写体24を透過した放射線26を設定されたゲインで放射線画像に変換する放射線検出装置30と、放射線検出装置30とシステム制御部14間で放射線画像等のデータの送受信を行ったり、放射線検出装置30をシステム制御部14からの指示に基づいて制御(移動駆動を含む)する検出装置制御部32とを有する。 The radiographic image capturing apparatus 12 converts a radiation irradiation system 28 that irradiates a radiation 26 toward the subject 24 on the photographing table 22 with the set irradiation energy, and converts the radiation 26 that has passed through the subject 24 into a radiation image to perform system control. A radiation image output system 29 for outputting to the unit 14. The radiation image output system 29 transmits and receives data such as a radiation image between the radiation detection device 30 that converts the radiation 26 that has passed through the subject 24 into a radiation image with a set gain and the radiation detection device 30 and the system control unit 14. And a detection device control unit 32 that controls (including movement drive) the radiation detection device 30 based on an instruction from the system control unit 14.
 放射線検出装置30の移動駆動は、例えば背骨の動画撮影やカテーテルの進入位置の動画撮影等のように比較的広範囲を撮影させる場合に行われる。すなわち、このような撮影において、オペレータ(医師や放射線技師)からの操作入力に基づいた移動制御信号がシステム制御部14から出力されて検出装置制御部32に入力される。検出装置制御部32は、システム制御部14からの移動制御信号に基づいて、図示しない移動駆動機構を駆動制御して、放射線検出装置30を移動させる。 The movement detection of the radiation detection apparatus 30 is performed when a relatively wide range is imaged, for example, a moving image of the spine or a moving image of the catheter entry position. That is, in such imaging, a movement control signal based on an operation input from an operator (doctor or radiographer) is output from the system control unit 14 and input to the detection device control unit 32. Based on the movement control signal from the system control unit 14, the detection device control unit 32 controls the movement drive mechanism (not shown) to move the radiation detection device 30.
 放射線照射系28は、図2に示すように、放射線源34と、システム制御部14からの指示に基づいて放射線源34を制御する線源制御部36と、システム制御部14からの指示に基づいて放射線26の照射領域を広げたり狭くする自動コリメータ部38とを有する。 As shown in FIG. 2, the radiation irradiation system 28 is based on a radiation source 34, a radiation source controller 36 that controls the radiation source 34 based on an instruction from the system controller 14, and an instruction from the system controller 14. And an automatic collimator unit 38 that widens or narrows the irradiation area of the radiation 26.
 放射線検出装置30は、図3に示すように、放射線26を透過させる材料からなる筐体40を備える。筐体40の内部には、放射線検出器42と、放射線検出器42の一方の面(筐体40の照射面40a寄りの面)に対向して配置され、被写体24による放射線26の散乱線を除去するグリッド44と、放射線検出器42の他方の面に対向して配置され、放射線26のバック散乱線を吸収する鉛板46とを有する。なお、筐体40の照射面40aをグリッド44として構成してもよい。 As shown in FIG. 3, the radiation detection device 30 includes a housing 40 made of a material that transmits the radiation 26. Inside the housing 40, the radiation detector 42 is disposed opposite to one surface of the radiation detector 42 (a surface near the irradiation surface 40 a of the housing 40), and the radiation 26 scattered by the subject 24 is scattered. It has a grid 44 to be removed, and a lead plate 46 that is disposed opposite to the other surface of the radiation detector 42 and absorbs back scattered radiation of the radiation 26. Note that the irradiation surface 40 a of the housing 40 may be configured as a grid 44.
 また、放射線検出装置30は、さらに、電源としてのバッテリ48と、放射線検出器42を駆動制御するカセッテ制御部50と、放射線検出器42からの放射線画像を含む信号を外部との間で送受信する送受信機52とが収容されている。送受信機52から出力された放射線画像は、検出装置制御部32を介してシステム制御部14及びコンソール16に入力され、モニタ18に映し出される。すなわち、静止画用撮影を行った場合は、システム制御部14に、1つの放射線画像が入力されることから、モニタ18には、放射線画像が静止画として映し出される。動画用撮影を行った場合は、システム制御部14に、設定されたフレームレートでの放射線撮影に基づく放射線画像が順次入力されることから、モニタ18には、放射線画像の動画がリアルタイムで映し出されることになる。なお、動画とは、被写体24の少なくとも撮影部位のポジショニング、被写体24への医療器具(カテーテル等)の操作タイミング等を合わせるための動画、CT(コンピュータ断層撮影画像)であり、静止画とは1枚の撮影画像だけでなく、連続撮影(連写)して得られた複数の撮影画像も含む。 Further, the radiation detection apparatus 30 further transmits / receives a signal including a radiation image from the radiation detector 42 to / from the battery 48 as a power source, a cassette control unit 50 that drives and controls the radiation detector 42. A transceiver 52 is accommodated. The radiation image output from the transceiver 52 is input to the system control unit 14 and the console 16 via the detection device control unit 32 and is displayed on the monitor 18. That is, when still image shooting is performed, one radiographic image is input to the system control unit 14, and thus the radiographic image is displayed on the monitor 18 as a still image. When shooting for moving images is performed, radiographic images based on the radiographic imaging at the set frame rate are sequentially input to the system control unit 14, so that moving images of the radiographic images are displayed on the monitor 18 in real time. It will be. A moving image is a moving image or CT (computer tomography image) for positioning the imaging region of at least the subject 24, the operation timing of a medical instrument (such as a catheter) on the subject 24, and the like. It includes not only a single shot image but also a plurality of shot images obtained by continuous shooting (continuous shooting).
 なお、カセッテ制御部50及び送受信機52には、放射線26が照射されることによる損傷を回避するため、カセッテ制御部50及び送受信機52の照射面側に鉛板等を配設しておくことが好ましい。 The cassette control unit 50 and the transceiver 52 are provided with lead plates or the like on the irradiation surface side of the cassette control unit 50 and the transceiver 52 in order to avoid damage due to radiation 26 irradiation. Is preferred.
 ここで、放射線検出器42の構造について図4~図11Bを参照しながら説明する。 Here, the structure of the radiation detector 42 will be described with reference to FIGS. 4 to 11B.
 放射線検出器42は、図4に示すように、それぞれ特性が異なる2つの撮像部(第1撮像部54A及び第2撮像部54B)を有する。ここで、「それぞれ特性が異なる」とは、第1撮像部54Aと第2撮像部654Bの感度、解像度、撮影領域サイズ、駆動速度等の少なくとも1つ以上がそれぞれ異なることを示す。駆動速度は解像度、撮影領域サイズ等によっても異なってくるが、蓄積した電荷を出力側に転送する素子の構造の違いによっても異なる。この素子の構造としては、例えばアモルファスシリコンからなる薄膜トランジスタ、有機材料からなる薄膜トランジスタ、酸化物半導体(例えばInGaZnOx:IGZO)による薄膜トランジスタ、CMOSトランジスタ等が挙げられる。 As shown in FIG. 4, the radiation detector 42 includes two imaging units (a first imaging unit 54A and a second imaging unit 54B) having different characteristics. Here, “characteristics are different” means that at least one or more of the sensitivity, resolution, imaging area size, driving speed, and the like of the first imaging unit 54A and the second imaging unit 654B are different. The driving speed varies depending on the resolution, the imaging region size, and the like, but also varies depending on the structure of the element that transfers the accumulated charge to the output side. Examples of the structure of this element include a thin film transistor made of amorphous silicon, a thin film transistor made of an organic material, a thin film transistor made of an oxide semiconductor (for example, InGaZnOx: IGZO), a CMOS transistor, and the like.
 第1撮像部54Aは、少なくとも放射線26の低エネルギー成分に対して感度を有し、第2撮像部54Bは、少なくとも放射線の高エネルギー成分に対して感度を有する。また、第1撮像部54Aと第2撮像部54Bとを積層させている。これにより、1回の曝射でエネルギーサブトラクション撮影も行うことができる。積層の順番は任意であり、その具体的態様は後述する。 The first imaging unit 54A is sensitive to at least the low energy component of the radiation 26, and the second imaging unit 54B is sensitive to at least the high energy component of the radiation. Further, the first imaging unit 54A and the second imaging unit 54B are stacked. Thereby, energy subtraction imaging can also be performed by one exposure. The order of lamination is arbitrary, and a specific aspect thereof will be described later.
 第1撮像部54Aは動画用の撮像部であり、第2撮像部54Bは静止画用の撮像部である。第2撮像部54Bの空間分解能は第1撮像部54Aよりも高く設定されている。これにより、高精細度の静止画像を得ることができる。 The first imaging unit 54A is an imaging unit for moving images, and the second imaging unit 54B is an imaging unit for still images. The spatial resolution of the second imaging unit 54B is set higher than that of the first imaging unit 54A. Thereby, a high-definition still image can be obtained.
 具体的には、第1撮像部54Aは、設定されたフレームレート(例えば15フレーム/秒~60フレーム/秒等)での動画用の撮影ができるように、画素数が制限されている。第2撮像部54Bは、高精細度の静止画像が得られるように、画素数が第1撮像部54Aよりも多くなっている。また、第1撮像部54Aは、上面から見た面積(画素が配列された感応部分の面積)が、第2撮像部54Bよりも小さく設定されており、高いフレームレートで比較的小範囲の動画像を撮影することができる。もちろん、第1撮像部54Aを上面から見た面積と第2撮像部54Bを上面から見た面積とがほぼ同じであってもよい。 Specifically, the first imaging unit 54A has a limited number of pixels so that it can capture a moving image at a set frame rate (for example, 15 frames / second to 60 frames / second). The second imaging unit 54B has a larger number of pixels than the first imaging unit 54A so that a high-definition still image can be obtained. In addition, the first imaging unit 54A is set such that the area seen from above (the area of the sensitive portion where the pixels are arranged) is set smaller than that of the second imaging unit 54B, and a relatively small range of moving images at a high frame rate. An image can be taken. Of course, the area of the first imaging unit 54A viewed from the top surface and the area of the second imaging unit 54B viewed from the top surface may be substantially the same.
 また、例えば第1撮像部54Aの縦方向(垂直方向)の単位長さ当たりの画素数をG1v、第1撮像部54Aの単位長さ当たりの横方向(水平方向)の画素数をG1h、第2撮像部54Bの単位長さ当たりの縦方向(垂直方向)の画素数をG2v、第2撮像部54Bの横方向(水平方向)の単位長さ当たりの画素数をG2hとしたとき、
   G2v=kv×G1v
   G2h=kh×G1h
に示す関係を有する。ここで、kv及びkhは2以上の比例係数(整数)である。
For example, the number of pixels per unit length in the vertical direction (vertical direction) of the first imaging unit 54A is G1v, the number of pixels in the horizontal direction (horizontal direction) per unit length of the first imaging unit 54A is G1h, 2 When the number of pixels in the vertical direction (vertical direction) per unit length of the imaging unit 54B is G2v, and the number of pixels per unit length in the horizontal direction (horizontal direction) of the second imaging unit 54B is G2h,
G2v = kv × G1v
G2h = kh × G1h
It has the relationship shown in Here, kv and kh are proportional coefficients (integer) of 2 or more.
 特に、本実施の形態では、第1撮像部54Aの単位面積当たりの画素数をnとしたとき、第2撮像部54Bの単位面積当たりの画素数がnとなるように、係数kv及びkhを設定してある。これにより、第1撮像部54Aにて30フレーム/秒以上の高いフレームレートで動画用の撮影を行うことができ、しかも、第2撮像部54Bにて高精細度の静止画像を得ることができる。この場合、例えば第1撮像部54A及び第2撮像部54Bの駆動クロックの周期が同じであって、単位面積当たりの全画素から信号電荷を読み出す場合を想定したとき、第1撮像部54A及び第2撮像部54Bの読み出し開始時点から読み出し終了時点までの時間は、第2撮像部54Bが第1撮像部54Aのkv×kh(=n)倍となる。つまり、第2撮像部54Bにおいても動画用の撮影を行う場合を考えたとき、第1撮像部54Aの最高フレームレートは、第2撮像部54Bのフレームレートよりも大きくなる。第2撮像部54Bの全体の面積が、第1撮像部54Aの全体の面積よりも大きい場合はさらに顕著となる。上述の説明では、駆動クロックの周期を同じにして比較したが、実際には、仕様によって、第1撮像部54Aと第2撮像部54Bとで駆動クロックの周期が異なる場合もある。 In particular, in this embodiment, when the number of pixels per unit area of the first image pickup unit 54A is n, as the number of pixels per unit area in the second imaging unit 54B is n 2, the coefficient kv and kh Is set. As a result, the first image capturing unit 54A can perform moving image shooting at a high frame rate of 30 frames / second or more, and the second image capturing unit 54B can obtain a high-definition still image. . In this case, for example, assuming that the drive clock cycles of the first imaging unit 54A and the second imaging unit 54B are the same and signal charges are read from all pixels per unit area, the first imaging unit 54A and the second imaging unit 54A The time from the reading start time of the second imaging unit 54B to the reading end time is kv × kh (= n) times that of the first imaging unit 54A in the second imaging unit 54B. That is, when considering the case where the second imaging unit 54B also performs moving image shooting, the maximum frame rate of the first imaging unit 54A is larger than the frame rate of the second imaging unit 54B. It becomes more remarkable when the entire area of the second imaging unit 54B is larger than the entire area of the first imaging unit 54A. In the above description, the comparison is made with the drive clock cycle being the same, but in actuality, the drive clock cycle may be different between the first imaging unit 54A and the second imaging unit 54B depending on the specification.
 次に、第1撮像部54Aと第2撮像部54Bの具体例について図5A~図11Bを参照しながら説明する。第1撮像部54Aと第2撮像部54Bの具体例としては、例えば18の態様が挙げられる。 Next, specific examples of the first imaging unit 54A and the second imaging unit 54B will be described with reference to FIGS. 5A to 11B. As specific examples of the first imaging unit 54A and the second imaging unit 54B, for example, there are 18 modes.
 第1の態様は、図5Aに示すように、センサ基板56と、該センサ基板56の一方の面(放射線26の入射側の面)に設置された第1シンチレータ58Aと、センサ基板56の他方の面に設置された第2シンチレータ58Bとを有する。 As shown in FIG. 5A, the first mode is the sensor substrate 56, the first scintillator 58A installed on one surface of the sensor substrate 56 (the surface on the incident side of the radiation 26), and the other of the sensor substrate 56. And a second scintillator 58B installed on the surface.
 センサ基板56は、例えばガラス基板60と、該ガラス基板60の一方の面(放射線26の入射側の面)に形成された第1フォトダイオード部62Aと、ガラス基板60の他方の面に形成された第2フォトダイオード部62Bとを有する。第1フォトダイオード部62A及び第2フォトダイオード部62Bは、それぞれアモルファスシリコン(a-Si)にて構成されたフォトダイオードが画素に応じて多数配列された構成を採用することができる。この場合、第1シンチレータ58Aと第1フォトダイオード部62Aとで第1撮像部54Aが構成され、第2シンチレータ58Bと第2フォトダイオード部62Bとで第2撮像部54Bが構成される。 The sensor substrate 56 is formed on, for example, the glass substrate 60, the first photodiode portion 62 </ b> A formed on one surface of the glass substrate 60 (the surface on the incident side of the radiation 26), and the other surface of the glass substrate 60. And a second photodiode portion 62B. The first photodiode portion 62A and the second photodiode portion 62B can employ a configuration in which a large number of photodiodes each made of amorphous silicon (a-Si) are arranged in accordance with the pixels. In this case, the first imaging unit 54A is configured by the first scintillator 58A and the first photodiode unit 62A, and the second imaging unit 54B is configured by the second scintillator 58B and the second photodiode unit 62B.
 また、このガラス基板60の一方の面には、第1フォトダイオード部62Aにて光電変換した電荷を読み出すための複数のゲート線及び複数の信号線並びに画素に対応したTFT(薄膜トランジスタ)が形成され、同様に、ガラス基板60の他方の面にも、第2フォトダイオード部62Bにて光電変換した電荷を読み出すための複数のゲート線及び複数の信号線並びに画素に対応したTFT(薄膜トランジスタ)が形成されている。 In addition, on one surface of the glass substrate 60, a plurality of gate lines and a plurality of signal lines for reading out the charges photoelectrically converted by the first photodiode portion 62A and TFTs (thin film transistors) corresponding to the pixels are formed. Similarly, on the other surface of the glass substrate 60, a plurality of gate lines, a plurality of signal lines, and TFTs (thin film transistors) corresponding to the pixels for reading out the charges photoelectrically converted by the second photodiode portion 62B are formed. Has been.
 ガラス基板60に代えて、結晶シリコン基板やSiC基板(炭化珪素基板)を用いてもよい。この場合、TFTを備えたCMOS回路が形成されていてもよい。 Instead of the glass substrate 60, a crystalline silicon substrate or a SiC substrate (silicon carbide substrate) may be used. In this case, a CMOS circuit including a TFT may be formed.
 そして、第1シンチレータ58Aとして、低エネルギー成分に感度を有する例えばBaFBr蛍光体(青色発光)を用い、第2シンチレータ58Bとして、高エネルギー成分に感度を有する例えばCaWO蛍光体(青色発光)を用いることができる。これにより、放射線検出器42に入射した放射線26のうち、低エネルギー成分が第1シンチレータ58Aにて可視光に変換されて第1フォトダイオード部62Aに入射され、高エネルギー成分が第2シンチレータ58Bにて可視光に変換されて第2フォトダイオード部62Bに入射される。この場合、ガラス基板60と第1フォトダイオード部62Aとの間に特定波長を吸収するフィルタ(例えば青色の発光成分を吸収するフィルタ)や遮光層等64を設置してクロストークを防止してもよい。また、第1シンチレータ58A及び第2シンチレータ58Bの各端部(第1フォトダイオード部62A及び第2フォトダイオード部62Bが設置されていない端部)にそれぞれ光反射層を設置して、第1フォトダイオード部62A及び第2フォトダイオード部62Bでの受光効率を向上させてもよい。 As the first scintillator 58A, for example, a BaFBr phosphor (blue emission) having sensitivity to a low energy component is used, and for example, a CaWO 4 phosphor (blue emission) having sensitivity to a high energy component is used as the second scintillator 58B. be able to. Thereby, of the radiation 26 incident on the radiation detector 42, the low energy component is converted into visible light by the first scintillator 58A and is incident on the first photodiode 62A, and the high energy component is incident on the second scintillator 58B. Then, the light is converted into visible light and is incident on the second photodiode portion 62B. In this case, even if a filter that absorbs a specific wavelength (for example, a filter that absorbs a blue light-emitting component) or a light shielding layer 64 is installed between the glass substrate 60 and the first photodiode portion 62A, crosstalk can be prevented. Good. In addition, a light reflecting layer is installed at each end of the first scintillator 58A and the second scintillator 58B (the end where the first photodiode unit 62A and the second photodiode unit 62B are not installed), and the first photo The light receiving efficiency in the diode part 62A and the second photodiode part 62B may be improved.
 第1シンチレータ58Aとして柱状結晶のCsI:Na蛍光体(青発光)やCsI:Tl蛍光体(緑発光)を用いてもよい。低エネルギー成分による放射線画像(第1放射線画像D1)は軟部組織等の複雑な組織の画像が抽出されるため、高画質が要求される。柱状結晶は発光の発散を抑えることができるため、第1放射線画像D1の高画質化を実現することができ、上述の要求に対応させることができる。 As the first scintillator 58A, a columnar crystal CsI: Na phosphor (blue light emission) or CsI: Tl phosphor (green light emission) may be used. A radiographic image (first radiographic image D1) using a low energy component is required to have high image quality because an image of a complex tissue such as a soft tissue is extracted. Since the columnar crystals can suppress the divergence of light emission, the first radiation image D1 can be improved in image quality, and the above-described requirements can be met.
 第2の態様は、図5Bに示すように、上述した第1の態様とほぼ同様の構成を有するが、フォトダイオードに代えて有機光導電体(OPC:Organic Photo Conductors)を使用する点で異なる。センサ基板56と第1シンチレータ58Aとの間に第1有機光導電体66Aが設置され、センサ基板56と第2シンチレータ58Bとの間に第2有機光導電体66Bが設置されている。この場合、第1シンチレータ58Aと第1有機光導電体66Aとで第1撮像部54Aが構成され、第2シンチレータ58Bと第2有機光導電体66Bとで第2撮像部54Bが構成される。 As shown in FIG. 5B, the second mode has substantially the same configuration as the first mode described above, but differs in that an organic photoconductor (OPC) is used instead of the photodiode. . A first organic photoconductor 66A is installed between the sensor substrate 56 and the first scintillator 58A, and a second organic photoconductor 66B is installed between the sensor substrate 56 and the second scintillator 58B. In this case, the first imaging unit 54A is configured by the first scintillator 58A and the first organic photoconductor 66A, and the second imaging unit 54B is configured by the second scintillator 58B and the second organic photoconductor 66B.
 センサ基板56は、例えば樹脂基板68と、樹脂基板68の一方の面に第1有機光導電体66Aにて光電変換した電荷を読み出すための複数のゲート線及び複数の信号線並びに画素に対応した有機TFT(有機材料からなる薄膜トランジスタ)又は酸化物半導体(例えばInGaZnOx:IGZO)によるTFTが形成され、同様に、樹脂基板68の他方の面にも、第2有機光導電体66Bにて光電変換した電荷を読み出すための複数のゲート線及び複数の信号線並びに画素に対応した有機TFT又は酸化物半導体によるTFTが形成されている。 The sensor substrate 56 corresponds to, for example, a resin substrate 68, and a plurality of gate lines, a plurality of signal lines, and pixels for reading out charges photoelectrically converted by the first organic photoconductor 66A on one surface of the resin substrate 68. A TFT made of an organic TFT (thin film transistor made of an organic material) or an oxide semiconductor (for example, InGaZnOx: IGZO) is formed, and similarly, the other surface of the resin substrate 68 is photoelectrically converted by the second organic photoconductor 66B. A plurality of gate lines and a plurality of signal lines for reading out electric charges and organic TFTs or oxide semiconductor TFTs corresponding to the pixels are formed.
 樹脂基板68に代えて、結晶シリコン基板やSiC基板(炭化珪素基板)を用いてもよい。この場合、TFTを備えたCMOS回路が形成されていてもよい。 Instead of the resin substrate 68, a crystalline silicon substrate or a SiC substrate (silicon carbide substrate) may be used. In this case, a CMOS circuit including a TFT may be formed.
 そして、第1有機光導電体66Aは、第1シンチレータ58Aが青色発光の例えばBaFBrやCsI:Na(柱状結晶)であれば、青色光を吸収する有機光導電体が用いられ、第1シンチレータ58Aが緑色発光の例えばCsI:Tl(柱状結晶)であれば、緑色光を吸収する有機光導電体が用いられる。 For the first organic photoconductor 66A, if the first scintillator 58A is, for example, BaFBr or CsI: Na (columnar crystal) that emits blue light, an organic photoconductor that absorbs blue light is used, and the first scintillator 58A is used. If CsI: Tl (columnar crystal) emits green light, an organic photoconductor that absorbs green light is used.
 一方、第2有機光導電体66Bは、第2シンチレータ58Bが青色発光の例えばCaWOであれば、青色光を吸収する有機光導電体が用いられ、第2シンチレータ58Bが緑色発光の例えばGOSであれば、緑色光を吸収する有機光導電体が用いられる。 On the other hand, the second organic photoconductor 66B is an organic photoconductor that absorbs blue light if the second scintillator 58B emits blue light, for example, CaWO 4 , and the second scintillator 58B is green light, for example, GOS. If present, an organic photoconductor that absorbs green light is used.
 第3の態様は、図5Cに示すように、上述した第1の態様と第2の態様を組み合わせた構成を有する。すなわち、第1フォトダイオード部62Aを有するセンサ基板56と、センサ基板56の一方の面に設置された第1シンチレータ58Aと、センサ基板56と第2シンチレータ58Bとの間に設置された第2有機光導電体66Bとを有する。センサ基板56に第2フォトダイオード部62Bは設置されていない。この場合、第1シンチレータ58Aと第1フォトダイオード部62Aとで第1撮像部54Aが構成され、第2シンチレータ58Bと第2有機光導電体66Bとで第2撮像部54Bが構成される。 3rd aspect has the structure which combined the 1st aspect and 2nd aspect which were mentioned above, as shown to FIG. 5C. That is, the sensor substrate 56 having the first photodiode portion 62A, the first scintillator 58A installed on one surface of the sensor substrate 56, and the second organic installed between the sensor substrate 56 and the second scintillator 58B. A photoconductor 66B. The second photodiode portion 62B is not installed on the sensor substrate 56. In this case, the first imaging unit 54A is configured by the first scintillator 58A and the first photodiode unit 62A, and the second imaging unit 54B is configured by the second scintillator 58B and the second organic photoconductor 66B.
 そして、第1シンチレータ58Aとして例えばBaFBrを用い、第2シンチレータ58Bとして例えばGOSを用い、第2有機光導電体66Bとして例えば緑色光を吸収する有機光導電体が用いられる。GOSは、わずかに青色光が出るため、センサ基板56に青色光を吸収するフィルタ70を介在させることが、クロストークを防止する上で好ましい。 For example, BaFBr is used as the first scintillator 58A, GOS is used as the second scintillator 58B, and an organic photoconductor that absorbs green light, for example, is used as the second organic photoconductor 66B. Since GOS emits blue light slightly, it is preferable to interpose a filter 70 that absorbs blue light on the sensor substrate 56 in order to prevent crosstalk.
 第4の態様は、図6Aに示すように、第2の態様において、第1シンチレータ58A及び第2シンチレータ58Bとして、それぞれBaFBrとGOSをブレンドしたBaFBr/GOSを用いた点で異なる。 As shown in FIG. 6A, the fourth aspect is different from the second aspect in that BaFBr / GOS obtained by blending BaFBr and GOS is used as the first scintillator 58A and the second scintillator 58B.
 第5の態様は、図6Bに示すように、第3の態様において、第1シンチレータ58A及び第2シンチレータ58Bとして、それぞれBaFBrとGOSをブレンドしたBaFBr/GOSを用いた点で異なる。 As shown in FIG. 6B, the fifth aspect is different from the third aspect in that BaFBr / GOS obtained by blending BaFBr and GOS is used as the first scintillator 58A and the second scintillator 58B.
 これら第4及び第5の態様では、第1シンチレータ58A及び第2シンチレータ58Bにおいて、放射線26の低エネルギー成分に感応して青色光が出射し、放射線26の高エネルギー成分に感応して緑色光が出射する。従って、第1有機光導電体66A及び第1フォトダイオード部62Aでは、主に第1シンチレータ58Aからの青色光が入射、吸収されるが、第2シンチレータ58Bからの漏れ光(青色光)も入射、吸収される。一方、第2有機光導電体66Bでは、主に第2シンチレータ58Bからの緑色光が入射、吸収されるが、第1シンチレータ58Aからの漏れ光(緑色光)も入射、吸収される。これにより、第1有機光導電体66A及び第2有機光導電体66Bにおいて、第1シンチレータ58A及び第2シンチレータ58Bを有効利用することができることから、第1シンチレータ58A及び第2シンチレータ58Bの厚みを薄くすることができ、放射線検出器42の低背化に有利である。なお、青色光を吸収するフィルタ70をセンサ基板56に設置する必要はない。 In these fourth and fifth aspects, the first scintillator 58A and the second scintillator 58B emit blue light in response to the low energy component of the radiation 26, and green light in response to the high energy component of the radiation 26. Exit. Therefore, in the first organic photoconductor 66A and the first photodiode portion 62A, blue light from the first scintillator 58A is mainly incident and absorbed, but leakage light (blue light) from the second scintillator 58B is also incident. Is absorbed. On the other hand, in the second organic photoconductor 66B, green light from the second scintillator 58B is mainly incident and absorbed, but leakage light (green light) from the first scintillator 58A is also incident and absorbed. Thereby, since the first scintillator 58A and the second scintillator 58B can be effectively used in the first organic photoconductor 66A and the second organic photoconductor 66B, the thicknesses of the first scintillator 58A and the second scintillator 58B are reduced. The thickness can be reduced, which is advantageous for reducing the height of the radiation detector 42. It is not necessary to install the filter 70 that absorbs blue light on the sensor substrate 56.
 第6の態様は、図7Aに示すように、放射線26の入射側に設置された第1センサ基板56Aと、第1センサ基板56Aに対向して設置された第2センサ基板56Bと、第1センサ基板56Aと第2センサ基板56Bとの間に設置された光反射層72と、第1センサ基板56Aと光反射層72との間に設置された第1シンチレータ58Aと、第2センサ基板56Bと光反射層72との間に設置された第2シンチレータ58Bとを有する。 As shown in FIG. 7A, the sixth mode includes a first sensor substrate 56A installed on the incident side of the radiation 26, a second sensor substrate 56B installed facing the first sensor substrate 56A, and a first sensor board 56A. A light reflecting layer 72 disposed between the sensor substrate 56A and the second sensor substrate 56B, a first scintillator 58A disposed between the first sensor substrate 56A and the light reflecting layer 72, and a second sensor substrate 56B. And a second scintillator 58 </ b> B installed between the light reflection layer 72.
 第1センサ基板56Aのうち、第1シンチレータ58Aと対向する部分に第1フォトダイオード部62Aが設置され、第2センサ基板56Bのうち、第2シンチレータ58Bと対向する部分に第2フォトダイオード部62Bが設置されている。 A first photodiode portion 62A is installed in a portion of the first sensor substrate 56A that faces the first scintillator 58A, and a second photodiode portion 62B is placed in a portion of the second sensor substrate 56B that faces the second scintillator 58B. Is installed.
 そして、第1シンチレータ58Aとして、低エネルギー成分に感度を有する例えばBaFBr蛍光体(青発光)を用い、第2シンチレータ58Bとして、高エネルギー成分に感度を有する例えばCaWO蛍光体(青発光)を用いることができる。これにより、放射線検出器42に入射した放射線26のうち、低エネルギー成分が第1シンチレータ58Aにて可視光に変換されて第1フォトダイオード部62Aに入射され、高エネルギー成分が第2シンチレータ58Bにて可視光に変換されて第2フォトダイオード部62Bに入射される。この場合、第1シンチレータ58Aと第2シンチレータ58Bとの間に光反射層72が設置されているため、クロストークを有効に防止することができ、しかも、第1フォトダイオード部62A及び第2フォトダイオード部62Bでの受光効率が向上する。 As the first scintillator 58A, for example, a BaFBr phosphor (blue light emission) having sensitivity to a low energy component is used, and for example, a CaWO 4 phosphor (blue light emission) having sensitivity to a high energy component is used as the second scintillator 58B. be able to. Thereby, of the radiation 26 incident on the radiation detector 42, the low energy component is converted into visible light by the first scintillator 58A and is incident on the first photodiode 62A, and the high energy component is incident on the second scintillator 58B. Then, the light is converted into visible light and is incident on the second photodiode portion 62B. In this case, since the light reflecting layer 72 is provided between the first scintillator 58A and the second scintillator 58B, crosstalk can be effectively prevented, and the first photodiode portion 62A and the second photo diode are separated. The light receiving efficiency in the diode part 62B is improved.
 第1シンチレータ58Aとして柱状結晶のCsI:Na蛍光体(青発光)やCsI:Tl蛍光体(緑発光)を用いてもよい。 As the first scintillator 58A, a columnar crystal CsI: Na phosphor (blue light emission) or CsI: Tl phosphor (green light emission) may be used.
 第7の態様は、図7Bに示すように、上述した第6の態様とほぼ同様の構成を有するが、第1センサ基板56A(第1フォトダイオード部62Aは設置されていない)と第1シンチレータ58Aとの間に第1有機光導電体66Aが設置され、第2センサ基板56B(第2フォトダイオード部62Bは設置されていない)と第2シンチレータ58Bとの間に第2有機光導電体66Bが設置されている点で異なる。 As shown in FIG. 7B, the seventh aspect has substantially the same configuration as the sixth aspect described above, but the first sensor board 56A (the first photodiode portion 62A is not installed) and the first scintillator. 58A, the first organic photoconductor 66A is installed, and the second organic photoconductor 66B is provided between the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the second scintillator 58B. It is different in that is installed.
 そして、第1有機光導電体66Aは、第1シンチレータ58Aが青色発光の例えばBaFBrやCsI:Na(柱状結晶)であれば、青色光を吸収する有機光導電体が用いられ、第1シンチレータ58Aが緑色発光の例えばCsI:Tl(柱状結晶)であれば、緑色光を吸収する有機光導電体が用いられる。 For the first organic photoconductor 66A, if the first scintillator 58A is, for example, BaFBr or CsI: Na (columnar crystal) that emits blue light, an organic photoconductor that absorbs blue light is used, and the first scintillator 58A is used. If CsI: Tl (columnar crystal) emits green light, an organic photoconductor that absorbs green light is used.
 一方、第2有機光導電体66Bは、第2シンチレータ58Bが青色発光の例えばCaWOであれば、青色光を吸収する有機光導電体が用いられ、第2シンチレータ58Bが緑色発光の例えばGOSであれば、緑色光を吸収する有機光導電体が用いられる。 On the other hand, the second organic photoconductor 66B is an organic photoconductor that absorbs blue light if the second scintillator 58B emits blue light, for example, CaWO 4 , and the second scintillator 58B is green light, for example, GOS. If present, an organic photoconductor that absorbs green light is used.
 第8の態様は、図7Cに示すように、上述した第6の態様とほぼ同様の構成を有するが、第2センサ基板56B(第2フォトダイオード部62Bは設置されていない)と第2シンチレータ58Bとの間に第2有機光導電体66Bが設置されている点で異なる。第2有機光導電体66Bは、第2シンチレータ58Bが緑色発光の例えばGOSであれば、緑色光を吸収する有機光導電体が用いられる。 As shown in FIG. 7C, the eighth aspect has substantially the same configuration as the sixth aspect described above, but the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the second scintillator. 58B is different in that a second organic photoconductor 66B is installed. If the second scintillator 58B is, for example, GOS that emits green light, an organic photoconductor that absorbs green light is used as the second organic photoconductor 66B.
 第9の態様は、図8Aに示すように、第1センサ基板56Aと第2センサ基板56Bとの間に2種類の蛍光体をブレンドしたシンチレータ58が設置され、第1センサ基板56Aのうち、シンチレータ58と対向する部分に第1フォトダイオード部62Aが設置され、第2センサ基板56Bのうち、シンチレータ58と対向する部分に第2フォトダイオード部62Bが設置されている。 As shown in FIG. 8A, in the ninth mode, a scintillator 58 in which two kinds of phosphors are blended is installed between the first sensor substrate 56A and the second sensor substrate 56B, and among the first sensor substrates 56A, The first photodiode portion 62A is installed at a portion facing the scintillator 58, and the second photodiode portion 62B is installed at a portion facing the scintillator 58 in the second sensor substrate 56B.
 この場合、低エネルギー成分について、いわゆる表面読取方式(ISS(Irradiation Side Sampling)方式)を採用することができるため、光の拡散・減衰を抑えることができ、第1放射線画像D1の分解能を高めることができる。 In this case, since the so-called surface reading method (ISS (Irradiation Side Sampling) method) can be adopted for the low energy component, it is possible to suppress the diffusion and attenuation of light, and to increase the resolution of the first radiation image D1. Can do.
 シンチレータとしては、BaFBrとCaWOをブレンドしたBaFBr/CaWOや、BaFBrとGOSをブレンドしたBaFBr/GOS等を用いることができる。この場合、2種類の蛍光体のブレンドに分布をつけることが好ましい。放射線26の入射側が低エネルギー成分に感度を持つように、シンチレータの一方の面に向かってBaFBrの比率を増加させればよい。 As the scintillator, BaFBr / CaWO 4 in which BaFBr and CaWO 4 are blended, BaFBr / GOS in which BaFBr and GOS are blended, or the like can be used. In this case, it is preferable to distribute the blend of the two types of phosphors. The ratio of BaFBr may be increased toward one surface of the scintillator so that the incident side of the radiation 26 is sensitive to low energy components.
 第10の態様は、図8Bに示すように、第9の態様とほぼ同様の構成を有するが、第1センサ基板56A(第1フォトダイオード部62Aは設置されていない)とシンチレータ58との間に第1有機光導電体66Aが設置され、第2センサ基板56B(第2フォトダイオード部62Bは設置されていない)とシンチレータ58との間に第2有機光導電体66Bが設置されている点で異なる。この場合、第1有機光導電体66Aは、青色光を吸収する有機光導電体が用いられる。第2有機光導電体66Bは、シンチレータ58が例えばBaFBr/CaWOであれば、青色光を吸収する有機光導電体が用いられ、シンチレータ58が例えばBaFBr/GOSであれば、緑色光を吸収する有機光導電体が用いられる。 As shown in FIG. 8B, the tenth aspect has substantially the same configuration as the ninth aspect, but between the first sensor board 56A (the first photodiode portion 62A is not installed) and the scintillator 58. The first organic photoconductor 66A is installed, and the second organic photoconductor 66B is installed between the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the scintillator 58. It is different. In this case, the first organic photoconductor 66A is an organic photoconductor that absorbs blue light. The second organic photoconductor 66B uses an organic photoconductor that absorbs blue light if the scintillator 58 is, for example, BaFBr / CaWO 4 , and absorbs green light if the scintillator 58 is, for example, BaFBr / GOS. An organic photoconductor is used.
 第11の態様は、図8Cに示すように、第9の態様とほぼ同様の構成を有するが、第2センサ基板56B(第2フォトダイオード部62Bは設置されていない)とシンチレータ58との間に第2有機光導電体66Bが設置されている点で異なる。第2有機光導電体66Bは、シンチレータ58が例えばBaFBr/GOSであれば、緑色光を吸収する有機光導電体が用いられる。この場合、放射線26の入射側が低エネルギー成分に感度を持つように、シンチレータ58の一方の面に向かってBaFBrの比率を増加させることで、GOSからの僅かな青色発光によるクロストークを抑制することができる。 As shown in FIG. 8C, the eleventh aspect has substantially the same configuration as the ninth aspect, but between the second sensor substrate 56B (the second photodiode portion 62B is not installed) and the scintillator 58. Is different in that the second organic photoconductor 66B is installed. For the second organic photoconductor 66B, if the scintillator 58 is, for example, BaFBr / GOS, an organic photoconductor that absorbs green light is used. In this case, by increasing the ratio of BaFBr toward one surface of the scintillator 58 so that the incident side of the radiation 26 is sensitive to low energy components, crosstalk due to slight blue light emission from the GOS is suppressed. Can do.
 第12の態様は、図9Aに示すように、センサ基板56の一方の面に、第1有機光導電体66Aと第2有機光導電体66Bが例えば互い違いに配列され、これら第1有機光導電体66A及び第2有機光導電体66Bの一方の面側に第1シンチレータ58Aが設置され、センサ基板56の他方の面に第2シンチレータ58Bが設置されている。 In the twelfth aspect, as shown in FIG. 9A, the first organic photoconductor 66A and the second organic photoconductor 66B are arranged alternately on one surface of the sensor substrate 56, for example. The first scintillator 58A is installed on one surface side of the body 66A and the second organic photoconductor 66B, and the second scintillator 58B is installed on the other surface of the sensor substrate 56.
 この場合、第1シンチレータ58Aは、低エネルギー成分に感度を有する例えばBaFBr蛍光体(青色発光)を用い、第2シンチレータ58Bとして、高エネルギー成分に感度を有する例えばGOS蛍光体(緑色発光)を用いることができる。あるいは、第1シンチレータ58A及び第2シンチレータ58Bとして、それぞれBaFBrとGOSをブレンドしたBaFBr/GOSを用いることができる。 In this case, the first scintillator 58A uses, for example, a BaFBr phosphor (blue light emission) having sensitivity to a low energy component, and the second scintillator 58B uses, for example, a GOS phosphor (green light emission) having sensitivity to a high energy component. be able to. Alternatively, BaFBr / GOS obtained by blending BaFBr and GOS can be used as the first scintillator 58A and the second scintillator 58B.
 第13の態様は、図9Bに示すように、第12の態様とほぼ同様の構成を有するが、第1シンチレータ58Aが設置されていない点で異なる。この場合、第2シンチレータ58Bとして、BaFBrとGOSをブレンドしたBaFBr/GOSを用いることができる。 The thirteenth aspect has substantially the same configuration as the twelfth aspect as shown in FIG. 9B, but differs in that the first scintillator 58A is not installed. In this case, BaFBr / GOS obtained by blending BaFBr and GOS can be used as the second scintillator 58B.
 第14の態様は、図10Aに示すように、上述した第1の態様とほぼ同様の構成を有するが、第1シンチレータ58Aと第1フォトダイオード部62Aに代えて、放射線26を直接電気信号に変換するアモルファスセレン(a-Se)等の物質からなる固体検出素子74とした点で異なる。第2シンチレータ58Bとしては、高エネルギー成分に感度を有する例えばCaWO蛍光体(青色発光)やGOS蛍光体(緑色発光)を用いることができる。なお、固体検出素子74にはバイアス電圧Vbが印加される。 As shown in FIG. 10A, the fourteenth aspect has substantially the same configuration as the first aspect described above, but instead of the first scintillator 58A and the first photodiode portion 62A, the radiation 26 is directly converted into an electrical signal. The difference is that the solid detection element 74 is made of a substance such as amorphous selenium (a-Se) to be converted. As the second scintillator 58B, for example, a CaWO 4 phosphor (blue light emission) or a GOS phosphor (green light emission) having sensitivity to high energy components can be used. A bias voltage Vb is applied to the solid state detection element 74.
 a-Seの固体検出素子74が青色光に感度を有するため、第2シンチレータ58Bとして、CaWO蛍光体(青色発光)を用いる場合は、センサ基板56と固体検出素子74との間に青色光を吸収するフィルタを介在させることが、クロストークを防止する上で好ましい。 Since the a-Se solid-state detection element 74 is sensitive to blue light, when the CaWO 4 phosphor (blue light emission) is used as the second scintillator 58B, blue light is emitted between the sensor substrate 56 and the solid-state detection element 74. In order to prevent crosstalk, it is preferable to interpose a filter that absorbs.
 第15の態様は、図10Bに示すように、上述した第6の態様とほぼ同様の構成を有するが、第1シンチレータ58Aと第1フォトダイオード部62Aに代えて、放射線26を直接電気信号に変換するアモルファスセレン(a-Se)等の物質からなる固体検出素子74とした点で異なる。第2シンチレータ58Bとしては、高エネルギー成分に感度を有する例えばCaWO蛍光体(青色発光)やGOS蛍光体(緑色発光)を用いることができる。 As shown in FIG. 10B, the fifteenth aspect has substantially the same configuration as the sixth aspect described above, but instead of the first scintillator 58A and the first photodiode portion 62A, the radiation 26 is directly converted into an electrical signal. The difference is that the solid detection element 74 is made of a substance such as amorphous selenium (a-Se) to be converted. As the second scintillator 58B, for example, a CaWO 4 phosphor (blue light emission) or a GOS phosphor (green light emission) having sensitivity to high energy components can be used.
 この場合、低エネルギー成分について、いわゆる表面読取方式(ISS方式)を採用することができるため、低エネルギー成分による第1放射線画像D1の高画質化を図ることができる。 In this case, since the so-called surface reading method (ISS method) can be adopted for the low energy component, the image quality of the first radiation image D1 by the low energy component can be improved.
 なお、a-Seの固体検出素子74は青色光に感度を有するため、第2シンチレータ58Bとして、緑色発光するGOSを用いた場合、光反射層72の設置は必須ではないが、第2シンチレータ58Bにて発光した光をできるだけ第2フォトダイオード部62Bで受光させるためには、光反射層72を設置することが好ましい。 Since the a-Se solid-state detection element 74 has sensitivity to blue light, when the GOS that emits green light is used as the second scintillator 58B, the light reflection layer 72 is not necessarily installed, but the second scintillator 58B In order to receive the light emitted by the second photodiode portion 62B as much as possible, the light reflecting layer 72 is preferably provided.
 第16の態様は、図10Cに示すように、上述した第15の態様と反対の構成を有する。すなわち、放射線26の入射側に、第2フォトダイオード部62Bを有する第2センサ基板56Bと第2シンチレータ58Bが設置され、放射線26の入射側とは反対側に、第1センサ基板56Aとa-Seの固体検出素子74が設置されている。 The sixteenth aspect has a configuration opposite to the fifteenth aspect described above, as shown in FIG. 10C. That is, the second sensor substrate 56B having the second photodiode portion 62B and the second scintillator 58B are installed on the incident side of the radiation 26, and the first sensor substrate 56A and the a− are opposite to the incident side of the radiation 26. A Se solid detection element 74 is installed.
 通常、a-Seの固体検出素子74は、放射線26の照射を繰り返すことで、劣化(結晶化)するが、この態様では、a-Seの固体検出素子74を放射線26の入射側から遠ざけることができるため、劣化を抑制することができる。また、a-Seの固体検出素子74は、高温になると結晶化して機能が低下してしまうが、固体検出素子74側に冷却板76を設置することができるため、結晶化をさらに抑制することができる。 Normally, the a-Se solid state detection element 74 deteriorates (crystallizes) by repeated irradiation of the radiation 26. In this embodiment, the a-Se solid state detection element 74 is moved away from the incident side of the radiation 26. Therefore, deterioration can be suppressed. Further, the a-Se solid state detection element 74 is crystallized at a high temperature and its function is deteriorated. However, since the cooling plate 76 can be installed on the solid state detection element 74 side, the crystallization is further suppressed. Can do.
 第17の態様は、図11Aに示すように、上述した第1の態様とほぼ同様の構成を有するが、第2シンチレータ58Bとして第1シンチレータ58Aを用いた点で異なる。すなわち、放射線26の入射側及びその反対側に、それぞれ第1シンチレータ58Aを設置して構成される。この場合、センサ基板56には、クロストークを抑制するために、光反射層72を設置することが好ましい。 As shown in FIG. 11A, the seventeenth aspect has substantially the same configuration as the first aspect described above, but differs in that the first scintillator 58A is used as the second scintillator 58B. That is, the first scintillator 58A is installed on the incident side of the radiation 26 and on the opposite side. In this case, it is preferable to install a light reflection layer 72 on the sensor substrate 56 in order to suppress crosstalk.
 第18の態様は、図11Bに示すように、上述した第6の態様とほぼ同様の構成を有するが、放射線26の入射側及びその反対側に、それぞれ第1シンチレータ58Aを設置した点で異なる。この場合も、クロストークを抑制するために、第1シンチレータ58A間に光反射層72を設置することが好ましい。 As shown in FIG. 11B, the eighteenth aspect has substantially the same configuration as the sixth aspect described above, but differs in that the first scintillator 58A is installed on the radiation 26 incident side and the opposite side, respectively. . Also in this case, in order to suppress crosstalk, it is preferable to install the light reflecting layer 72 between the first scintillators 58A.
 第17及び第18の態様において、第1シンチレータ58Aとしては、BaFBr(青色発光)や、CsI:Tl蛍光体(緑発光)等を用いることができる。 In the seventeenth and eighteenth aspects, BaFBr (blue light emission), CsI: Tl phosphor (green light emission), or the like can be used as the first scintillator 58A.
 第17及び第18の態様では、放射線26の入射側では、より低エネルギー成分がより多く吸収され、放射線26の入射側の反対側では、残った高エネルギー成分の吸収比率が増えるため、放射線26の入射側の第1フォトダイオード部62Aを介して低エネルギー成分による第1放射線画像D1が取り出され、その反対側の第2フォトダイオード部62Bを介して高エネルギー成分による放射線画像(第2放射線画像D2)が取り出されることになる。 In the seventeenth and eighteenth aspects, the lower energy component is absorbed more on the incident side of the radiation 26, and the absorption ratio of the remaining high energy component is increased on the opposite side of the incident side of the radiation 26. The first radiation image D1 with a low energy component is taken out through the first photodiode portion 62A on the incident side of the light, and the radiation image with the high energy component (second radiation image) through the second photodiode portion 62B on the opposite side. D2) will be taken out.
 通常、CsI:Tl蛍光体等の柱状結晶は、厚くなればなるほど、柱状間の融着が発生しやすくなるため、蒸着初期の充填率を予め下げておくことが必要となる。この場合、発光量が低下することとなる。しかし、第17及び第18の態様では、分割して構成しているため、予め充填率を下げておく必要がない。従って、発光量の低下を回避することができる。 Usually, as the columnar crystal such as CsI: Tl phosphor becomes thicker, fusion between the columnar shapes is more likely to occur, so it is necessary to lower the filling rate in the initial stage of vapor deposition. In this case, the light emission amount is reduced. However, since the seventeenth and eighteenth aspects are divided and configured, it is not necessary to lower the filling rate in advance. Accordingly, it is possible to avoid a decrease in the light emission amount.
 次に、一例として、間接変換型の放射線検出器42を採用した場合の放射線検出装置30の回路構成、例えば第1撮像部54Aの読出回路(第1読出回路78A)の構成に関し、図12を参照しながら詳細に説明する。 Next, as an example, FIG. 12 relates to the circuit configuration of the radiation detection apparatus 30 when the indirect conversion type radiation detector 42 is employed, for example, the configuration of the readout circuit (first readout circuit 78A) of the first imaging unit 54A. Details will be described with reference to FIG.
 第1撮像部54Aは、例えば可視光を電気信号に変換するa-Si等の物質からなる各画素80が形成された光電変換層82を、行列状の薄膜トランジスタ(以下、TFT84と記す)のアレイの上に配置した構造を有する。この場合、各画素80では、可視光を電気信号(アナログ信号)に変換することにより発生した電荷が蓄積されることから、例えば各行毎にTFT84を順次オンにすることにより前記電荷を画像信号として読み出すことができる。 The first imaging unit 54A includes, for example, an array of thin film transistors (hereinafter referred to as TFTs 84) in a matrix form, in which the photoelectric conversion layer 82 in which each pixel 80 made of a material such as a-Si that converts visible light into an electrical signal is formed. It has a structure arranged on the top. In this case, since charges generated by converting visible light into electrical signals (analog signals) are accumulated in each pixel 80, for example, by sequentially turning on the TFT 84 for each row, the charges are used as image signals. Can be read.
 第1読出回路は、各画素80に接続されるTFT84と、TFT84に接続され、行方向と平行に延びるゲート線86と、TFT84に接続され、列方向と平行に延びる信号線88とを有する。各ゲート線86は、ライン走査駆動部90に接続され、各信号線88は、マルチプレクサ92に接続される。ゲート線86には、行方向に配列されたTFT84をオンオフ制御する制御信号Von、Voffがライン走査駆動部90から供給される。この場合、ライン走査駆動部90は、ゲート線86を切り替える複数のスイッチSW1と、スイッチSW1を選択する選択信号を出力する第1アドレスデコーダ94とを備える。第1アドレスデコーダ94には、カセッテ制御部50からアドレス信号が供給される。 The first readout circuit includes a TFT 84 connected to each pixel 80, a gate line 86 connected to the TFT 84 and extending parallel to the row direction, and a signal line 88 connected to the TFT 84 and extending parallel to the column direction. Each gate line 86 is connected to a line scan driver 90, and each signal line 88 is connected to a multiplexer 92. Control signals Von and Voff for controlling on / off of the TFTs 84 arranged in the row direction are supplied from the line scanning drive unit 90 to the gate line 86. In this case, the line scan driving unit 90 includes a plurality of switches SW1 for switching the gate lines 86, and a first address decoder 94 for outputting a selection signal for selecting the switches SW1. An address signal is supplied from the cassette control unit 50 to the first address decoder 94.
 また、信号線88には、列方向に配列されたTFT84を介して各画素80に保持されている電荷が流出する。この電荷は、チャージアンプ96によって増幅される。チャージアンプ96には、サンプルホールド回路98を介してマルチプレクサ92が接続される。 Further, the charge held in each pixel 80 flows out to the signal line 88 through the TFTs 84 arranged in the column direction. This electric charge is amplified by the charge amplifier 96. A multiplexer 92 is connected to the charge amplifier 96 via a sample and hold circuit 98.
 すなわち、読み出された各列の電荷は、各信号線88を介して各列のチャージアンプ96に入力される。各チャージアンプ96は、オペアンプ100と、コンデンサ102と、スイッチ104とで構成されている。チャージアンプ96は、スイッチ104がオフの場合には、オペアンプ100の一方の入力端子に入力された電荷信号を電圧信号に変換して出力する。チャージアンプ96は、カセッテ制御部50によって設定されたゲインで電気信号を増幅して出力する。チャージアンプ96のゲインに関する情報(ゲイン設定情報)は、システム制御部14から検出装置制御部32を介してカセッテ制御部50に供給される。カセッテ制御部50は、供給されたゲイン設定情報に基づいてチャージアンプ96のゲインを設定する。 That is, the read charge of each column is input to the charge amplifier 96 of each column via each signal line 88. Each charge amplifier 96 includes an operational amplifier 100, a capacitor 102, and a switch 104. When the switch 104 is off, the charge amplifier 96 converts the charge signal input to one input terminal of the operational amplifier 100 into a voltage signal and outputs the voltage signal. The charge amplifier 96 amplifies and outputs the electrical signal with the gain set by the cassette control unit 50. Information relating to the gain of the charge amplifier 96 (gain setting information) is supplied from the system control unit 14 to the cassette control unit 50 via the detection device control unit 32. The cassette control unit 50 sets the gain of the charge amplifier 96 based on the supplied gain setting information.
 オペアンプ100の他方の入力端子はGND(グランド電位)に接続されている(接地)。全TFT84がオンとなって、且つ、スイッチ104がオンした場合は、コンデンサ102に蓄積された電荷がコンデンサ102とスイッチ104の閉回路により放電されると共に、画素80に蓄積されていた電荷が閉じられたスイッチ104及びオペアンプ100を介してGND(グランド電位)に掃き出される。チャージアンプ96のスイッチ104をオンにして、コンデンサ102に蓄積された電荷を放電させると共に、画素80に蓄積された電荷をGND(グランド電位)に掃き出す動作のことを、リセット動作(空読み動作)と呼ぶ。特に、全画素の電荷をGNDに掃き捨てる動作を全画素リセット動作をという。つまり、リセット動作の場合は、画素80に蓄積された電荷信号に対応する電圧信号は、マルチプレクサ92に出力されずに捨てられる。 The other input terminal of the operational amplifier 100 is connected to GND (ground potential) (ground). When all the TFTs 84 are turned on and the switch 104 is turned on, the charge accumulated in the capacitor 102 is discharged by the closed circuit of the capacitor 102 and the switch 104 and the charge accumulated in the pixel 80 is closed. It is swept out to GND (ground potential) via the switch 104 and the operational amplifier 100. The operation of turning on the switch 104 of the charge amplifier 96 to discharge the charge stored in the capacitor 102 and sweeping out the charge stored in the pixel 80 to GND (ground potential) is a reset operation (empty reading operation). Call it. In particular, the operation of sweeping out charges of all pixels to GND is referred to as an all-pixel reset operation. That is, in the reset operation, the voltage signal corresponding to the charge signal stored in the pixel 80 is discarded without being output to the multiplexer 92.
 マルチプレクサ92は、信号線88を切り替える複数のスイッチSW2と、スイッチSW2を選択する選択信号を出力する第2アドレスデコーダ106とを備える。第2アドレスデコーダ106には、カセッテ制御部50からアドレス信号が供給される。マルチプレクサ92には、A/D変換器108が接続され、A/D変換器108によってデジタル信号に変換された放射線画像がカセッテ制御部50に供給される。 The multiplexer 92 includes a plurality of switches SW2 for switching the signal line 88 and a second address decoder 106 for outputting a selection signal for selecting the switch SW2. An address signal is supplied from the cassette control unit 50 to the second address decoder 106. An A / D converter 108 is connected to the multiplexer 92, and a radiation image converted into a digital signal by the A / D converter 108 is supplied to the cassette control unit 50.
 第2撮像部54B及び第2読出回路78Bの構成は、上述の第1撮像部54A及び第1読出回路78Aの構成とほぼ同じであるため、その重複説明を省略する。 The configurations of the second imaging unit 54B and the second readout circuit 78B are substantially the same as the configurations of the first imaging unit 54A and the first readout circuit 78A described above, and a duplicate description thereof will be omitted.
 なお、スイッチング素子として機能するTFT84は、CMOS(Complementary Metal-Oxside Semiconductor)イメージセンサ等、他の撮像素子と組み合わせて実現してもよい。さらにまた、TFTで言うところのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えることも可能である。 Note that the TFT 84 functioning as a switching element may be realized in combination with another imaging element such as a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. Furthermore, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting the charges with a shift pulse corresponding to a gate signal referred to as a TFT.
 放射線検出装置30のカセッテ制御部50は、図2に示すように、第1読出回路78Aのための第1アドレス信号発生部110Aと、第2読出回路78Bのための第2アドレス信号発生部110Bと、第1画像メモリ112Aと、第2画像メモリ112Bと、カセッテIDメモリ114とを備える。 As shown in FIG. 2, the cassette controller 50 of the radiation detector 30 includes a first address signal generator 110A for the first readout circuit 78A and a second address signal generator 110B for the second readout circuit 78B. A first image memory 112A, a second image memory 112B, and a cassette ID memory 114.
 第1アドレス信号発生部110Aは、例えばシステム制御部14からの動画用の読出制御情報(後述する第1読出制御情報Sb1)及びエネルギーサブストラクション(以下、エネサブと記す)用の読出制御情報(後述する第3読出制御情報Sb3)に基づいて、図12に示す第1読出回路78Aにおけるライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に対してアドレス信号を供給する。第1読出制御情報Sb1及び第3読出制御情報Sb3は、例えばプログレッシブモード、インターレースモード(奇数行読出モード、偶数行読出モード、2行置き読出モード、3行置き読出モード等)、ビニングモード(1画素/4画素読出モード、1画素/6画素読出モード、1画素/9画素読出モード等)を示す読出モードに関する情報が含まれる。例えば1画素/4画素読出モードは、隣接する2本のゲート線を同時に活性化(Vonとする)し、隣接する2本の信号線を同時に選択することで、隣接する2行2列の4画素分の電荷を混合して1画素として読み出すモードである。第1アドレス信号発生部110Aは、第1読出制御情報Sb1又は第3読出制御情報Sb3が示すモードに応じたアドレス信号を作成して、ライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に出力する。第1読出制御情報Sb1及び第3読出制御情報Sb3は、例えばオペレータからの操作入力に基づいてシステム制御部14にて作成されて、放射線検出装置30のカセッテ制御部50に入力される。 The first address signal generation unit 110A, for example, read control information for moving images (first read control information Sb1 described later) from the system control unit 14 and read control information (hereinafter referred to as energy sub) for energy subtraction (described later). Based on the third read control information Sb3), the address signal is supplied to the first address decoder 94 of the line scan driver 90 and the second address decoder 106 of the multiplexer 92 in the first read circuit 78A shown in FIG. . The first read control information Sb1 and the third read control information Sb3 include, for example, a progressive mode, an interlace mode (odd row read mode, even row read mode, second row read mode, third row read mode, etc.), binning mode (1 Information on the readout mode indicating the pixel / 4 pixel readout mode, 1 pixel / 6 pixel readout mode, 1 pixel / 9 pixel readout mode, etc.). For example, in the 1-pixel / 4-pixel readout mode, two adjacent gate lines are simultaneously activated (set to Von), and two adjacent signal lines are selected at the same time. In this mode, charges for pixels are mixed and read as one pixel. The first address signal generator 110A creates an address signal corresponding to the mode indicated by the first read control information Sb1 or the third read control information Sb3, and the first address decoder 94 and the multiplexer 92 of the line scan driver 90 Output to the second address decoder 106. The first read control information Sb1 and the third read control information Sb3 are created by the system control unit 14 based on, for example, an operation input from an operator, and are input to the cassette control unit 50 of the radiation detection apparatus 30.
 システム制御部14から供給される第1読出制御情報Sb1及び第3読出制御情報Sb3としては、上述した読出モードに関する情報(読出モード情報)に加えて、撮像範囲を指定する撮像範囲情報も含まれる。この撮像範囲情報は、例えばオペレータが入力装置20とモニタ18を使って例えば動画の撮像範囲を設定した場合に、設定された撮像範囲に含まれるゲート線86のアドレスと信号線88のアドレスが挙げられる。1番目のゲート線86及び1番目の信号線88の先頭アドレスとしてそれぞれ「0」を用いることでアドレス変換等の演算が容易になる。もちろん、撮像範囲に含まれるゲート線86の開始アドレス(番号)と終了アドレス(番号)並びに信号線88の開始アドレス(番号)と終了アドレス(番号)であってもよい。そして、読出モード情報が例えば奇数行読出モード(間引き)であれば、第1撮像部54Aの撮像範囲に含まれるゲート線86のうち、奇数行のゲート線86が順次選択され、第1撮像部54Aの撮像範囲に含まれる信号線88からの信号電荷が合成されずにA/D変換器108に向かって順次転送されることになる。読出モード情報が例えば1画素/4画素読出モード(ビニング)であれば、撮像範囲に含まれるゲート線86が例えば2本ずつ順次選択され、撮像範囲に含まれる信号線88からの信号電荷が合成(この場合、隣接する2本の信号線88からの信号電荷がそれぞれ合成)されて、すなわち、4画素分の信号電荷が合成されてA/D変換器108に向かって順次転送されることになる。 The first readout control information Sb1 and the third readout control information Sb3 supplied from the system control unit 14 include imaging range information for designating an imaging range in addition to the information related to the above-described readout mode (readout mode information). . The imaging range information includes, for example, the address of the gate line 86 and the address of the signal line 88 included in the set imaging range when the operator sets the imaging range of a moving image, for example, using the input device 20 and the monitor 18. It is done. By using “0” as the first address of the first gate line 86 and the first signal line 88, operations such as address conversion are facilitated. Of course, the start address (number) and end address (number) of the gate line 86 included in the imaging range and the start address (number) and end address (number) of the signal line 88 may be used. If the readout mode information is, for example, an odd-numbered row readout mode (decimation), odd-numbered gate lines 86 are sequentially selected from among the gate lines 86 included in the imaging range of the first imaging unit 54A, and the first imaging unit is selected. The signal charges from the signal line 88 included in the imaging range of 54A are sequentially transferred toward the A / D converter 108 without being synthesized. If the readout mode information is, for example, a 1-pixel / 4-pixel readout mode (binning), for example, two gate lines 86 included in the imaging range are sequentially selected, and signal charges from the signal lines 88 included in the imaging range are combined. (In this case, signal charges from two adjacent signal lines 88 are combined), that is, signal charges for four pixels are combined and sequentially transferred to the A / D converter 108. Become.
 これは、第2アドレス信号発生部110Bについても同様であり、例えばシステム制御部14からの静止画用の読出制御情報(後述する第2読出制御情報Sb2)及びエネサブ用の読出制御情報(後述する第4読出制御情報Sb4)に基づいて、図12に示す第2読出回路78Bにおけるライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に対してアドレス信号を供給する。 The same applies to the second address signal generator 110B. For example, still image read control information (second read control information Sb2 described later) and energy sub read control information (described later) from the system control unit 14 are used. Based on the fourth read control information Sb4), an address signal is supplied to the first address decoder 94 of the line scan driver 90 and the second address decoder 106 of the multiplexer 92 in the second read circuit 78B shown in FIG.
 第1画像メモリ112Aは、放射線検出器42の第1読出回路78Aからの第1放射線画像D1を記憶し、第2画像メモリ112Bは、第2読出回路78Bからの第2放射線画像D2を記憶する。カセッテIDメモリ114は、放射線検出装置30を特定するためのカセッテID情報を記憶する。送受信機52は、カセッテIDメモリ114に記憶されたカセッテID情報並びに第1画像メモリ112A及び第2画像メモリ112Bに記憶された第1放射線画像D1及び第2放射線画像D2を有線通信又は無線通信により検出装置制御部32を介してシステム制御部14に送信する。 The first image memory 112A stores the first radiation image D1 from the first readout circuit 78A of the radiation detector 42, and the second image memory 112B stores the second radiation image D2 from the second readout circuit 78B. . The cassette ID memory 114 stores cassette ID information for specifying the radiation detection apparatus 30. The transceiver 52 transmits the cassette ID information stored in the cassette ID memory 114 and the first radiation image D1 and the second radiation image D2 stored in the first image memory 112A and the second image memory 112B by wired communication or wireless communication. The data is transmitted to the system control unit 14 via the detection device control unit 32.
 検出装置制御部32は、図13に示すように、放射線検出装置30からの第1放射線画像D1の入力及び出力を制御する第1画像入出力制御部116Aと、放射線検出装置30からの第2放射線画像D2の入力及び出力を制御する第2画像入出力制御部116Bとを有する。 As shown in FIG. 13, the detection device control unit 32 includes a first image input / output control unit 116 </ b> A that controls input and output of the first radiation image D <b> 1 from the radiation detection device 30, and a second image from the radiation detection device 30. And a second image input / output control unit 116B that controls input and output of the radiation image D2.
 そして、この放射線画像撮影システム10のシステム制御部14は、図13に示すように、動画撮影処理部118と、静止画撮影処理部120と、エネサブ撮影処理部122と、同期部124とを有する。 And the system control part 14 of this radiographic imaging system 10 has the moving image imaging | photography process part 118, the still image imaging | photography process part 120, the energy sub imaging | photography process part 122, and the synchronizer 124, as shown in FIG. .
 動画撮影処理部118は、例えばオペレータによる動画撮影要求の操作入力や他の機器からの動画撮影要求の入力に基づいて、照射エネルギーを撮影部位に応じた動画撮影用に設定して、動画像を得るための放射線撮影を実行制御する。 For example, the moving image shooting processing unit 118 sets the irradiation energy for moving image shooting corresponding to the imaging region based on the operation input of the moving image shooting request by the operator or the input of the moving image shooting request from another device, and the moving image is set. The radiation imaging for obtaining is controlled.
 また、この動画撮影処理部118は、動画用の第1パラメータ設定部126Aと、第1パラメータ履歴記憶部128Aと、動画転送部130とを有する。 The moving image shooting processing unit 118 includes a first parameter setting unit 126A for moving images, a first parameter history storage unit 128A, and a moving image transfer unit 130.
 第1パラメータ設定部126Aは、動画撮影の際に、オペレータからの操作入力等によって新たにパラメータ(放射線の照射エネルギー、フレームレート等)の設定があった場合に、動画用の第1パラメータ履歴記憶部128Aに新たに設定された照射エネルギー、フレームレートを最新のパラメータとして記憶する。特に、照射エネルギーが新たに設定された場合は、新たに設定された照射エネルギーの情報(管電圧、管電流、照射時間等の情報)を含む第1照射エネルギー設定情報Sa1を放射線照射系28に出力し、読出モードや撮像範囲等が新たに設定された場合は、新たに設定された読出モード情報や撮像範囲情報等を含む第1読出制御情報Sb1を検出装置制御部32を介して放射線検出装置30に出力する。 The first parameter setting unit 126A stores the first parameter history for moving images when new parameters (radiation irradiation energy, frame rate, etc.) are set by an operation input from the operator during moving image shooting. The irradiation energy and frame rate newly set in the unit 128A are stored as the latest parameters. In particular, when the irradiation energy is newly set, the first irradiation energy setting information Sa1 including information on the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is supplied to the radiation irradiation system 28. If the readout mode and the imaging range are newly set, the first readout control information Sb1 including the newly set readout mode information and imaging range information is detected via the detection device control unit 32. Output to device 30.
 第1パラメータ履歴記憶部128Aは、いままで設定された照射エネルギーとフレームレートとのうち、現時点から過去の所定期間にわたって設定された照射エネルギーとフレームレートが記憶される。 The first parameter history storage unit 128A stores the irradiation energy and the frame rate set over the predetermined period from the present time among the irradiation energy and the frame rate set so far.
 動画転送部130は、放射線検出装置30(放射線検出器42の第1撮像部54A及び第1読出回路78A)から検出装置制御部32を介して順次供給される第1放射線画像D1を受け取って、コンソール16に転送する。コンソール16は、順次転送されてくる第1放射線画像D1をモニタ18に表示する。これにより、モニタ18には、第1放射線画像D1の動画が表示されることになる。 The moving image transfer unit 130 receives the first radiation images D1 sequentially supplied from the radiation detection device 30 (the first imaging unit 54A and the first readout circuit 78A of the radiation detector 42) via the detection device control unit 32, Transfer to console 16. The console 16 displays the first radiation image D1 sequentially transferred on the monitor 18. Thereby, the moving image of the first radiation image D1 is displayed on the monitor 18.
 静止画撮影処理部120は、例えばオペレータによる静止画撮影要求の操作入力や他の機器からの静止画撮影要求の入力に基づいて、照射エネルギーを例えば撮影部位に応じた静止画撮影用に設定(動画用よりも高いエネルギー)して、静止画像を得るための放射線撮影を実行制御する。 The still image capturing processing unit 120 sets irradiation energy for still image capturing corresponding to, for example, an imaging region based on, for example, an operation input of a still image capturing request by an operator or an input of a still image capturing request from another device ( Radiation imaging for obtaining a still image is executed and controlled with higher energy than for moving images).
 また、この静止画撮影処理部120は、静止画用の第2パラメータ設定部126Bと第2パラメータ履歴記憶部128Bと、静止画転送部132とを有する。第2パラメータ履歴記憶部128Bは、上述した第1パラメータ履歴記憶部128Aと同様の構成を有する。 The still image shooting processing unit 120 includes a second parameter setting unit 126B for still images, a second parameter history storage unit 128B, and a still image transfer unit 132. The second parameter history storage unit 128B has the same configuration as the first parameter history storage unit 128A described above.
 第2パラメータ設定部126Bは、上述した第1パラメータ設定部126Aと同様に、静止画撮影の際に、オペレータからの操作入力等によって新たにパラメータ(放射線26の照射エネルギー、フレームレート等)の設定があった場合に、静止画用の第2パラメータ履歴記憶部128Bに新たに設定された照射エネルギー、フレームレートを最新のパラメータとして記憶する。特に、照射エネルギーが新たに設定された場合は、新たに設定された照射エネルギーの情報(管電圧、管電流、照射時間等の情報)を含む第2照射エネルギー設定情報Sa2を放射線照射系28に出力し、読出モードや撮像範囲が新たに設定された場合は、新たに設定された読出モード情報や撮像範囲情報等を含む第2読出制御情報Sb2を検出装置制御部32を介して放射線検出装置30に出力する。 Similar to the first parameter setting unit 126A described above, the second parameter setting unit 126B sets new parameters (irradiation energy of the radiation 26, frame rate, etc.) in response to an operation input from the operator or the like during still image shooting. If there is, the irradiation energy and frame rate newly set in the second parameter history storage unit 128B for still images are stored as the latest parameters. In particular, when the irradiation energy is newly set, the second irradiation energy setting information Sa2 including information on the newly set irradiation energy (information such as tube voltage, tube current, and irradiation time) is input to the radiation irradiation system 28. When the read mode and the imaging range are newly set, the radiation detection device receives the second readout control information Sb2 including the newly set readout mode information, imaging range information, and the like via the detection device control unit 32. Output to 30.
 静止画転送部132は、放射線検出装置30(放射線検出器42の第2撮像部54B及び第2読出回路78B)から検出装置制御部32を介して供給される第2放射線画像D2を受け取って、コンソール16に転送する。コンソール16は、転送された第2放射線画像D2をモニタ18に表示する。これにより、モニタ18には、放射線画像の静止画が表示されることになる。 The still image transfer unit 132 receives the second radiation image D2 supplied from the radiation detection device 30 (the second imaging unit 54B and the second readout circuit 78B of the radiation detector 42) via the detection device control unit 32, and Transfer to console 16. The console 16 displays the transferred second radiation image D2 on the monitor 18. As a result, a still image of the radiation image is displayed on the monitor 18.
 エネサブ撮影処理部122は、例えばオペレータによるエネサブ撮影要求の操作入力や他の機器からのエネサブ撮影要求の入力に基づいて、照射エネルギーを例えば撮影部位に応じたサブストラクション撮影用に設定(動画用よりも高いエネルギー)して、エネサブ画像を得るための放射線撮影を実行制御する。 The energy sub imaging processing unit 122 sets the irradiation energy for subtraction imaging corresponding to the imaging region, for example, based on the operation input of the energy sub imaging request by the operator or the input of the energy sub imaging request from another device (from the moving image). (High energy) and control the execution of radiography to obtain an energy sub-image.
 また、このエネサブ撮影処理部122は、エネサブ用の第3パラメータ設定部126Cと、第3パラメータ履歴記憶部128Cと、エネサブ動画作成部134(エネルギーサブトラクション動画作成部)と、エネサブ動画転送部136とを有する。第3パラメータ履歴記憶部128Cは、上述した第1パラメータ履歴記憶部128Aと同様の構成を有する。 The energy sub imaging processing unit 122 includes an energy sub third parameter setting unit 126C, a third parameter history storage unit 128C, an energy sub moving image creating unit 134 (energy subtraction moving image generating unit), and an energy sub moving image transfer unit 136. Have The third parameter history storage unit 128C has the same configuration as the first parameter history storage unit 128A described above.
 第3パラメータ設定部126Cは、上述した第1パラメータ設定部126Aと同様に、エネサブ撮影の際に、オペレータからの操作入力等によって新たにパラメータ(放射線の照射エネルギー、フレームレート等)の設定があった場合に、第3パラメータ履歴記憶部128Cに新たに設定された照射エネルギー、フレームレートを最新のパラメータとして記憶する。特に、照射エネルギーが新たに設定された場合は、新たに設定された照射エネルギーの情報(管電圧、管電流、照射時間等の情報)を含む第3照射エネルギー設定情報Sa3を放射線照射系28に出力し、読出モードや撮像範囲が新たに設定された場合は、新たに設定された読出モード情報や撮像範囲情報等を含む第3読出制御情報Sb3を検出装置制御部32を介して放射線検出装置30に出力する。 Similar to the first parameter setting unit 126A described above, the third parameter setting unit 126C newly sets parameters (radiation irradiation energy, frame rate, etc.) by an operation input from the operator or the like at the time of energy sub imaging. In this case, the irradiation energy and frame rate newly set in the third parameter history storage unit 128C are stored as the latest parameters. In particular, when the irradiation energy is newly set, the third irradiation energy setting information Sa3 including information on the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is supplied to the radiation irradiation system 28. If the readout mode and the imaging range are newly set, the radiation detection device receives the third readout control information Sb3 including the newly set readout mode information and imaging range information through the detection device control unit 32. Output to 30.
 同期部124は、エネサブ撮影処理部122からの第3読出制御情報Sb3に基づいて、第2撮像部54Bでの連続する複数回の撮像タイミングを、第1撮像部54Aでの連続する複数回の撮像タイミングに同期させるための情報(第4読出制御情報Sb4)を作成し、該第4読出制御情報Sb4を検出装置制御部32を介して放射線検出装置30に出力する。 Based on the third readout control information Sb3 from the energy sub imaging processing unit 122, the synchronization unit 124 sets the continuous imaging timing in the second imaging unit 54B to the continuous imaging times in the first imaging unit 54A. Information (fourth readout control information Sb4) for synchronizing with the imaging timing is created, and the fourth readout control information Sb4 is output to the radiation detection apparatus 30 via the detection apparatus control unit 32.
 同期部124は、第1撮像部54Aと第2撮像部54Bの空間分解能の情報、例えば上述した係数kv及びkh等の情報が登録された情報テーブル138と、予め設定されたゲート線86の圧縮手法の情報(間引き、ビニングを示す情報)と、第3読出制御情報Sb3、上述の空間分解能の情報、圧縮手法の情報等に基づいて第4読出制御情報Sb4を作成する読出制御情報作成部140とを有する。 The synchronization unit 124 includes an information table 138 in which information on the spatial resolution of the first imaging unit 54A and the second imaging unit 54B, for example, information such as the coefficients kv and kh described above, and a compression of the gate line 86 set in advance. A read control information creating unit 140 that creates the fourth read control information Sb4 based on the method information (information indicating decimation and binning), the third read control information Sb3, the above spatial resolution information, the compression method information, and the like. And have.
 読出制御情報作成部140は、第3読出制御情報Sb3に含まれる撮像範囲情報に基づいて第2撮像部54Bに対応した撮像範囲情報を作成する。具体的には、撮像範囲に含まれるゲート線86のアドレス(又は開始アドレス、終了アドレス)に係数kvを乗算し、撮像範囲に含まれる信号線88のアドレス(又は開始アドレス、終了アドレス)に係数khを乗算することで、第2撮像部54Bに対応した撮像範囲情報を得ることができる。また、読出制御情報作成部140は、予め設定された圧縮手法の情報に基づいて、読出モード情報を作成する。圧縮手法が例えば間引きを示す場合は、ゲート線86について係数kv-1本の間引きと、信号線88について係数kh本のビニングを示す情報を作成する。圧縮手法が例えばビニングを示す場合は、ゲート線86について係数kv本のビニングと、信号線88について係数kh本のビニングを示す情報を作成する。 The readout control information creation unit 140 creates imaging range information corresponding to the second imaging unit 54B based on the imaging range information included in the third readout control information Sb3. Specifically, the coefficient (kv) is multiplied by the address (or start address, end address) of the gate line 86 included in the imaging range, and the coefficient is calculated for the address (or start address, end address) of the signal line 88 included in the imaging range. By multiplying kh, imaging range information corresponding to the second imaging unit 54B can be obtained. Further, the read control information creating unit 140 creates read mode information based on information on a preset compression method. For example, when the compression method indicates thinning, information indicating the thinning out coefficient kv-1 for the gate line 86 and the binning of coefficient kh for the signal line 88 is created. For example, when the compression technique indicates binning, information indicating kv bins for the gate line 86 and kh bins for the signal line 88 is generated.
 同期部124は、読出制御情報作成部140にて作成された撮像範囲情報、読出モード情報等を含む第4読出制御情報Sb4を検出装置制御部32を介して放射線検出装置30に出力する。 The synchronization unit 124 outputs the fourth readout control information Sb4 including the imaging range information, readout mode information, and the like created by the readout control information creation unit 140 to the radiation detection device 30 via the detection device control unit 32.
 一方、エネサブ撮影処理部122におけるエネサブ動画作成部134は、放射線検出装置30(放射線検出器42の第1撮像部54A及び第1読出回路78A)から検出装置制御部32を介して順次供給される第1放射線画像D1と、放射線検出装置30(放射線検出器42の第2撮像部54B及び第2読出回路78B)から検出装置制御部32を介して順次供給される第2放射線画像D2との加重減算処理を行ってエネサブ動画撮影の放射線画像(エネサブ画像Ds)を作成する。エネサブ動画転送部136は、順次作成されたエネサブ画像Dsをコンソール16に転送する。コンソール16は、順次転送されてくるエネサブ画像Dsをモニタ18に表示する。これにより、モニタ18には、エネサブ画像Dsの動画が表示されることになる。 On the other hand, the energy sub moving image creation unit 134 in the energy sub imaging processing unit 122 is sequentially supplied from the radiation detection device 30 (the first imaging unit 54A and the first readout circuit 78A of the radiation detector 42) via the detection device control unit 32. Weighting of the first radiation image D1 and the second radiation image D2 sequentially supplied from the radiation detection device 30 (the second imaging unit 54B and the second readout circuit 78B of the radiation detector 42) via the detection device control unit 32 A subtraction process is performed to create a radiation image (energy sub image Ds) for energy sub moving image capturing. The energy sub moving image transfer unit 136 transfers the energy sub images Ds that are sequentially generated to the console 16. The console 16 displays the energy sub-image Ds sequentially transferred on the monitor 18. As a result, the moving image of the energy sub-image Ds is displayed on the monitor 18.
 次に、放射線画像撮影システム10の処理動作を図14~図19も参照しながら説明する。 Next, the processing operation of the radiation image capturing system 10 will be described with reference to FIGS.
 最初に、静止画撮影について図14及び図15を参照しながら説明する。先ず、図14のステップS1において、静止画撮影処理部120の第2パラメータ設定部126Bは、新たにパラメータ(放射線26の照射エネルギー、ゲイン、読出モード等)の設定があるか否かを判別する。例えばオペレータが新たにパラメータの設定を行った場合は、ステップS2に進み、第2パラメータ履歴記憶部128Bに新たに設定された照射エネルギー等を最新のパラメータとして記憶する。 First, still image shooting will be described with reference to FIGS. First, in step S1 of FIG. 14, the second parameter setting unit 126B of the still image capturing processing unit 120 determines whether or not new parameters (irradiation energy of radiation 26, gain, readout mode, etc.) are set. . For example, when the operator newly sets a parameter, the process proceeds to step S2, and the irradiation energy newly set in the second parameter history storage unit 128B is stored as the latest parameter.
 ステップS3において、最新の照射エネルギーの情報(管電圧、管電流、照射時間等の情報)を含む第2照射エネルギー設定情報Sa2を放射線照射系28に出力する。放射線照射系28の線源制御部36は、システム制御部14からの第2照射エネルギー設定情報Sa2に基づいて、放射線源34から出力される照射エネルギーを新たな照射エネルギーに設定する。 In step S3, the second irradiation energy setting information Sa2 including the latest irradiation energy information (tube voltage, tube current, irradiation time, etc.) is output to the radiation irradiation system 28. The radiation source control unit 36 of the radiation irradiation system 28 sets the irradiation energy output from the radiation source 34 to a new irradiation energy based on the second irradiation energy setting information Sa2 from the system control unit 14.
 ステップS4において、最新の撮影範囲情報や読出モード情報を含む第2読出制御情報Sb2を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部50は、入力された第2読出制御情報Sb2を第2アドレス信号発生部110Bに供給する。 In step S4, the second reading control information Sb2 including the latest imaging range information and reading mode information is output to the radiation detecting device 30 via the detecting device control unit 32. The cassette control unit 50 of the radiation detection apparatus 30 supplies the input second read control information Sb2 to the second address signal generation unit 110B.
 ステップS5において、システム制御部14は、曝射スイッチが操作されたか否かが判別される。曝射スイッチが操作された時点で、ステップS6に進み、システム制御部14は、放射線照射系28に曝射開始信号Sc(図15参照)を出力する。放射線照射系28の線源制御部36は、システム制御部14からの曝射開始信号Scの入力に基づいて放射線源34を制御して、該放射線源34から設定されている照射エネルギーの放射線を照射させる。 In step S5, the system control unit 14 determines whether or not the exposure switch has been operated. When the exposure switch is operated, the process proceeds to step S6, and the system control unit 14 outputs an exposure start signal Sc (see FIG. 15) to the radiation irradiation system 28. The radiation source control unit 36 of the radiation irradiation system 28 controls the radiation source 34 based on the input of the exposure start signal Sc from the system control unit 14, and emits radiation with the irradiation energy set from the radiation source 34. Irradiate.
 ステップS7において、システム制御部14は、検出装置制御部32に、放射線照射系28に対して曝射開始を行ったことを示す曝射通知Sd(図15参照)を出力する。 In step S <b> 7, the system control unit 14 outputs an exposure notification Sd (see FIG. 15) indicating that the radiation irradiation system 28 has started exposure to the detection device control unit 32.
 ステップS8において、検出装置制御部32は、曝射通知Sdの入力に基づいて、放射線検出装置30に電荷蓄積及び電荷読出を示す動作開始信号Se(図15参照)を出力する。 In step S8, the detection device controller 32 outputs an operation start signal Se (see FIG. 15) indicating charge accumulation and charge reading to the radiation detection device 30 based on the input of the exposure notification Sd.
 ステップS9において、放射線検出装置30は、検出装置制御部32からの動作開始信号Seの入力に基づいて、電荷蓄積と電荷読出を行う。すなわち、被写体24を透過した放射線26が、例えば第2撮像部54Bのシンチレータにより可視光に一旦変換され、第2撮像部54Bの各画素80において、可視光が光電変換されて、光量に応じた量の電荷が蓄積される。そして、第2読出回路78Bの読出期間の開始時点で第2同期信号Sf2(例えば垂直同期信号:図15参照)が出力され、検出装置制御部32の第2画像入出力制御部116Bに入力される。第2画像入出力制御部116Bは、第2同期信号Sf2の入力に基づいて、第2放射線画像D2の受け取りタイミングを、放射線検出装置30からの第2放射線画像D2の出力タイミングと同期させる。 In step S9, the radiation detection apparatus 30 performs charge accumulation and charge read based on the input of the operation start signal Se from the detection apparatus control unit 32. That is, the radiation 26 that has passed through the subject 24 is temporarily converted into visible light, for example, by the scintillator of the second imaging unit 54B, and the visible light is photoelectrically converted in each pixel 80 of the second imaging unit 54B according to the amount of light. An amount of charge is accumulated. Then, a second synchronization signal Sf2 (for example, vertical synchronization signal: see FIG. 15) is output at the start of the reading period of the second reading circuit 78B, and is input to the second image input / output control unit 116B of the detection device control unit 32. The The second image input / output control unit 116B synchronizes the reception timing of the second radiation image D2 with the output timing of the second radiation image D2 from the radiation detection device 30 based on the input of the second synchronization signal Sf2.
 続く読出期間において、第2アドレス信号発生部110Bは、供給された第2読出制御情報Sb2(撮像範囲情報、読出モード情報等)に応じたアドレス信号を作成して、第2読出回路78Bにおけるライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に出力する。第2読出回路78Bは、第2読出制御情報Sb2に従って電荷の読み出しを行い、第2画像メモリ112Bを用いて、例えばFIFO方式で静止画用の第2放射線画像D2を出力する。放射線検出装置30からの第2放射線画像D2は、検出装置制御部32の第2画像入出力制御部116Bを介してシステム制御部14に供給される。 In the subsequent readout period, the second address signal generator 110B creates an address signal corresponding to the supplied second readout control information Sb2 (imaging range information, readout mode information, etc.), and the line in the second readout circuit 78B. The data is output to the first address decoder 94 of the scan driver 90 and the second address decoder 106 of the multiplexer 92. The second readout circuit 78B reads out charges in accordance with the second readout control information Sb2, and outputs the second radiation image D2 for a still image by using, for example, the FIFO method using the second image memory 112B. The second radiation image D2 from the radiation detection device 30 is supplied to the system control unit 14 via the second image input / output control unit 116B of the detection device control unit 32.
 ステップS10において、静止画撮影処理部120の静止画転送部132は、供給された静止画用の第2放射線画像D2をコンソール16に転送する。コンソール16は、転送された第2放射線画像D2をフレームメモリに記憶すると共に、静止画像としてモニタ18に表示する。 In step S10, the still image transfer unit 132 of the still image capturing processing unit 120 transfers the supplied second radiographic image D2 for still images to the console 16. The console 16 stores the transferred second radiation image D2 in the frame memory and displays it on the monitor 18 as a still image.
 ステップS11において、システム制御部14は、静止画撮影の終了要求(例えば動画撮影要求やエネサブ動画撮影要求等)があるか否かを判別する。静止画撮影の終了要求がなければ、ステップS1に戻り、ステップS1以降の処理を繰り返す。一方、ステップS11において、静止画撮影の終了要求があると判別された段階で、静止画撮影が終了する。 In step S11, the system control unit 14 determines whether or not there is a still image shooting end request (for example, a moving image shooting request or an energy sub moving image shooting request). If there is no request for termination of still image shooting, the process returns to step S1, and the processes in and after step S1 are repeated. On the other hand, when it is determined in step S11 that there is a request to end still image shooting, still image shooting ends.
 図15の例で示すと、例えば放射線撮影の開始時点t0の前段階で、例えばオペレータの操作入力によって、例えば照射エネルギー、読出モード、撮影範囲等が変更された場合、第2パラメータ設定部126Bは、新たに設定された照射エネルギーの情報を含む第2照射エネルギー設定情報Sa2を放射線照射系28に出力し、新たに設定された撮影範囲情報や読出モード情報等を含む第2読出制御情報Sb2を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部50は、入力された第2読出制御情報Sb2を第2アドレス信号発生部110Bに供給する。これにより、放射線照射系28は新たな照射エネルギーに設定され、第2読出回路78Bは新たな撮影範囲や読出モード等に設定される。 In the example of FIG. 15, for example, when the irradiation energy, the readout mode, the imaging range, and the like are changed, for example, by an operation input by an operator, for example, before the radiation imaging start time t0, the second parameter setting unit 126B The second irradiation energy setting information Sa2 including the information of the newly set irradiation energy is output to the radiation irradiation system 28, and the second reading control information Sb2 including the newly set photographing range information, reading mode information, and the like is output. The data is output to the radiation detection device 30 via the detection device control unit 32. The cassette control unit 50 of the radiation detection apparatus 30 supplies the input second read control information Sb2 to the second address signal generation unit 110B. Thereby, the radiation irradiation system 28 is set to a new irradiation energy, and the second readout circuit 78B is set to a new imaging range, a readout mode, and the like.
 その後、放射線撮影の開始時点t0において、システム制御部14は、放射線照射系28に曝射開始信号Scを出力し、検出装置制御部32に曝射通知Sdを行うことで、システム制御部14に、静止画撮影による第2放射線画像D2が供給される。システム制御部14は、供給された第2放射線画像D2をコンソール16に転送し、静止画像としてモニタ18に表示させる。 After that, at the radiation imaging start time t0, the system control unit 14 outputs an exposure start signal Sc to the radiation irradiation system 28, and performs an exposure notification Sd to the detection device control unit 32, whereby the system control unit 14 is notified. Then, the second radiation image D2 obtained by still image shooting is supplied. The system control unit 14 transfers the supplied second radiation image D2 to the console 16 and displays it on the monitor 18 as a still image.
 次に、動画撮影について図16及び図17を参照しながら説明する。先ず、図16のステップS101において、システム制御部14は、撮影回数のカウンタkに初期値(=1)を格納する。 Next, movie shooting will be described with reference to FIGS. First, in step S101 of FIG. 16, the system control unit 14 stores an initial value (= 1) in the counter k of the number of photographing times.
 ステップS102において、第1パラメータ設定部126Aは、新たにパラメータ(放射線26の照射エネルギー、フレームレート、撮影範囲、読出モード等)の設定があるか否かを判別する。例えばオペレータが新たにパラメータの設定を行った場合は、ステップS103に進み、第1パラメータ履歴記憶部128Aに新たに設定された照射エネルギー、フレームレート等を最新のパラメータとして記憶する。 In step S102, the first parameter setting unit 126A determines whether or not parameters (irradiation energy of the radiation 26, frame rate, imaging range, readout mode, etc.) are newly set. For example, when the operator newly sets a parameter, the process proceeds to step S103, and the irradiation energy, frame rate, and the like newly set in the first parameter history storage unit 128A are stored as the latest parameters.
 照射エネルギーが新たに設定された場合は、次のステップS104において、新たに設定された照射エネルギーの情報(管電圧、管電流、照射時間等の情報)を含む第1照射エネルギー設定情報Sa1を放射線照射系28に出力する。放射線照射系28の線源制御部36は、システム制御部14からの第1照射エネルギー設定情報Sa1に基づいて、放射線源34から出力される照射エネルギーを新たな照射エネルギーに設定する。 When the irradiation energy is newly set, in the next step S104, the first irradiation energy setting information Sa1 including information of the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is radiated. Output to the irradiation system 28. The radiation source control unit 36 of the radiation irradiation system 28 sets the irradiation energy output from the radiation source 34 to a new irradiation energy based on the first irradiation energy setting information Sa1 from the system control unit 14.
 撮影範囲や読出モード等が新たに設定された場合は、次のステップS105において、新たに設定された撮影範囲情報や読出モード情報を含む第1読出制御情報Sb1を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部は、入力された第1読出制御情報Sb1を第1アドレス信号発生部110Aに供給する。 When the shooting range, the reading mode, and the like are newly set, in the next step S105, the first reading control information Sb1 including the newly set shooting range information and reading mode information is sent via the detection device control unit 32. Output to the radiation detector 30. The cassette control unit of the radiation detection apparatus 30 supplies the input first read control information Sb1 to the first address signal generation unit 110A.
 ステップS106において、システム制御部14は、前回の放射線撮影の開始時点から最新のフレームレートFrに相当する時間が経過したか否かを判別する。カウンタkの値が初期値である場合あるいは前回の放射線撮影の開始時点から最新のフレームレートFrに相当する時間が経過した段階で次のステップS107に進み、システム制御部14は、k回目の放射線撮影の開始時点にて、放射線照射系28に曝射開始信号Sc(図17参照)を出力する。放射線照射系28の線源制御部36は、システム制御部14からの曝射開始信号Scの入力に基づいて放射線源34を制御して、該放射線源34から設定されている照射エネルギーの放射線を照射させる。 In step S106, the system control unit 14 determines whether or not a time corresponding to the latest frame rate Fr has elapsed since the start of the previous radiation imaging. When the value of the counter k is an initial value or when the time corresponding to the latest frame rate Fr has elapsed since the start of the previous radiation imaging, the system control unit 14 proceeds to the next step S107, and the system control unit 14 At the start of imaging, an exposure start signal Sc (see FIG. 17) is output to the radiation irradiation system 28. The radiation source control unit 36 of the radiation irradiation system 28 controls the radiation source 34 based on the input of the exposure start signal Sc from the system control unit 14, and emits radiation with the irradiation energy set from the radiation source 34. Irradiate.
 ステップS108において、システム制御部14は、検出装置制御部32に、放射線照射系28に対して曝射開始を行ったことを示す曝射通知Sd(図17参照)を出力する。 In step S108, the system control unit 14 outputs to the detection device control unit 32 an exposure notification Sd (see FIG. 17) indicating that the radiation irradiation system 28 has started exposure.
 ステップS109において、検出装置制御部32は、曝射通知Sdの入力に基づいて、放射線検出装置30に電荷蓄積及び電荷読出を示す動作開始信号Se(図17参照)を出力する。 In step S109, the detection device controller 32 outputs an operation start signal Se (see FIG. 17) indicating charge accumulation and charge reading to the radiation detection device 30 based on the input of the exposure notification Sd.
 ステップS110において、放射線検出装置30は、検出装置制御部32からの動作開始信号Seの入力に基づいて、電荷蓄積と電荷読出を行う。すなわち、被写体24を透過した放射線26が、例えば第1撮像部54Aのシンチレータにより可視光に一旦変換され、第1撮像部54Aの各画素80において、可視光が光電変換されて、光量に応じた量の電荷が蓄積される。そして、第1読出回路78Aにおける読出期間の開始時点で第1同期信号Sf1(例えば垂直同期信号:図17参照)が出力され、検出装置制御部32の第1画像入出力制御部116Aに入力される。第1画像入出力制御部116Aは、第1同期信号Sf1の入力に基づいて、第1放射線画像D1の受け取りタイミングを、放射線検出装置30からの第1放射線画像D1の出力タイミングと同期させる。 In step S110, the radiation detection apparatus 30 performs charge accumulation and charge read based on the input of the operation start signal Se from the detection apparatus control unit 32. That is, the radiation 26 transmitted through the subject 24 is temporarily converted into visible light, for example, by the scintillator of the first imaging unit 54A, and the visible light is photoelectrically converted in each pixel 80 of the first imaging unit 54A according to the amount of light. An amount of charge is accumulated. Then, a first synchronization signal Sf1 (for example, a vertical synchronization signal: see FIG. 17) is output at the start of the reading period in the first reading circuit 78A, and is input to the first image input / output control unit 116A of the detection device control unit 32. The The first image input / output control unit 116A synchronizes the reception timing of the first radiation image D1 with the output timing of the first radiation image D1 from the radiation detection device 30 based on the input of the first synchronization signal Sf1.
 続く読出期間において、第1アドレス信号発生部110Aは、供給された第1読出制御情報(撮像範囲情報、読出モード情報等)に応じたアドレス信号を作成して、第1読出回路78Aにおけるライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に出力する。第1読出回路78Aは、第1読出制御情報Sb1に従って電荷の読み出しを行い、第1画像メモリ112Aを用いて、例えばFIFO方式で動画用の第1放射線画像D1を出力する。放射線検出装置30からの第1放射線画像D1は、検出装置制御部32を介してシステム制御部14に供給される。 In the subsequent readout period, the first address signal generator 110A creates an address signal corresponding to the supplied first readout control information (imaging range information, readout mode information, etc.), and performs line scanning in the first readout circuit 78A. The data is output to the first address decoder 94 of the driving unit 90 and the second address decoder 106 of the multiplexer 92. The first readout circuit 78A reads out charges in accordance with the first readout control information Sb1, and outputs the first radiation image D1 for moving image using, for example, the FIFO method using the first image memory 112A. The first radiation image D1 from the radiation detection device 30 is supplied to the system control unit 14 via the detection device control unit 32.
 ステップS111において、システム制御部14は、供給された動画用の第1放射線画像D1をコンソール16に転送する。コンソール16は、転送された第1放射線画像D1をフレームメモリに記憶すると共に、k回目の放射線撮影による放射線画像、すなわち、kフレーム目の放射線画像としてモニタ18に表示する。 In step S111, the system control unit 14 transfers the supplied first radiation image D1 for moving image to the console 16. The console 16 stores the transferred first radiation image D1 in the frame memory and displays it on the monitor 18 as a radiation image obtained by the k-th radiation imaging, that is, a k-th radiation image.
 ステップS112において、カウンタkの値を+1更新する。 In step S112, the value of the counter k is updated by +1.
 ステップS113において、システム制御部14は、動画撮影の終了要求(例えば静止画撮影要求やエネサブ動画撮影要求等)があるか否かを判別する。動画撮影の終了要求がなければ、ステップS102に戻り、ステップS102以降の処理を繰り返す。これにより、モニタ18には設定されたフレームレートでの放射線画像の動画が表示されることになる。一方、ステップS113において、動画撮影の終了要求があると判別された段階で、動画撮影が終了する。 In step S113, the system control unit 14 determines whether or not there is a moving image shooting end request (for example, a still image shooting request or an energy sub moving image shooting request). If there is no moving image shooting end request, the process returns to step S102, and the processes in and after step S102 are repeated. Thereby, the moving image of the radiation image at the set frame rate is displayed on the monitor 18. On the other hand, when it is determined in step S113 that there is an end request for moving image shooting, the moving image shooting ends.
 図17の例で示すと、例えばN-1(N=2、3、・・・)回目の放射線撮影の開始時点tn-1の前段階で、例えばオペレータの操作入力によって、例えば照射エネルギー及び読出モードが変更された場合、第1パラメータ設定部126Aは、新たに設定された照射エネルギーの情報を含む第1照射エネルギー設定情報Sa1を放射線照射系28に出力し、新たに設定された撮影範囲情報や読出モード情報を含む第1読出制御情報Sb1を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部50は、入力された第1読出制御情報Sb1を第1アドレス信号発生部110Aに供給する。これにより、放射線照射系28は新たな照射エネルギーに設定され、第1読出回路78Aは新たな撮影範囲や読出モード等に設定される。 In the example of FIG. 17, for example, the irradiation energy and readout are performed, for example, by an operation input of an operator, for example, before the start time tn−1 of the N−1 (N = 2, 3,...) Radiation imaging. When the mode is changed, the first parameter setting unit 126A outputs the first irradiation energy setting information Sa1 including information on the newly set irradiation energy to the radiation irradiation system 28, and the newly set imaging range information. The first readout control information Sb1 including the readout mode information is output to the radiation detection apparatus 30 via the detection apparatus control unit 32. The cassette control unit 50 of the radiation detection apparatus 30 supplies the input first read control information Sb1 to the first address signal generation unit 110A. Thereby, the radiation irradiation system 28 is set to a new irradiation energy, and the first readout circuit 78A is set to a new imaging range, a readout mode, and the like.
 その後、N-1回目の放射線撮影の開始時点tn-1において、システム制御部14は、放射線照射系28に曝射開始信号Scを出力し、検出装置制御部32に曝射通知Sdを行うことで、システム制御部14にN-1回目の放射線撮影による第1放射線画像D1が供給される。システム制御部14は、供給された第1放射線画像D1をコンソール16に転送し、N-1フレーム目の放射線画像としてモニタ18に表示させる。 Thereafter, at the start time tn−1 of the (N−1) th radiography, the system control unit 14 outputs the exposure start signal Sc to the radiation irradiation system 28 and performs the exposure notification Sd to the detection device control unit 32. Thus, the first radiographic image D1 obtained by the (N-1) th radiography is supplied to the system control unit 14. The system control unit 14 transfers the supplied first radiation image D1 to the console 16 and displays it on the monitor 18 as a radiation image of the (N−1) th frame.
 同様に、上述の開始時点tn-1から最新のフレームレートFrが経過したN回目の放射線撮影の開始時点tnにおいて、システム制御部14は、放射線照射系28に曝射開始信号Scを出力し、検出装置制御部32に曝射通知Sdを行うことで、システム制御部14にN回目の放射線撮影による第1放射線画像D1が供給される。システム制御部14は、供給された第1放射線画像D1をコンソール16に転送し、Nフレーム目の放射線画像としてモニタ18に表示させる。これらの動作が繰り返されることで、モニタ18には放射線画像の動画が表示されることになる。 Similarly, the system control unit 14 outputs an exposure start signal Sc to the radiation irradiation system 28 at the start time tn of the N-th radiography in which the latest frame rate Fr has elapsed from the start time tn−1 described above. By performing the exposure notification Sd to the detection device control unit 32, the first radiographic image D1 obtained by the N-th radiography is supplied to the system control unit 14. The system control unit 14 transfers the supplied first radiographic image D1 to the console 16 and displays it on the monitor 18 as an Nth frame radiographic image. By repeating these operations, the moving image of the radiation image is displayed on the monitor 18.
 次に、エネサブ動画撮影について図18及び図19を参照しながら説明する。先ず、図18のステップS201において、システム制御部14は、撮影回数のカウンタkに初期値(=1)を格納する。 Next, energy-sub moving image shooting will be described with reference to FIGS. First, in step S201 in FIG. 18, the system control unit 14 stores an initial value (= 1) in the counter k of the number of photographing times.
 ステップS202において、第3パラメータ設定部126Cは、新たにパラメータ(放射線の照射エネルギー、フレームレート、撮影範囲、読出モード等)の設定があるか否かを判別する。例えばオペレータが新たにパラメータの設定を行った場合は、ステップS203に進み、第3パラメータ履歴記憶部128Cに新たに設定された照射エネルギー、フレームレート等を最新のパラメータとして記憶する。 In step S202, the third parameter setting unit 126C determines whether or not parameters (radiation irradiation energy, frame rate, imaging range, readout mode, etc.) are newly set. For example, when the operator newly sets a parameter, the process proceeds to step S203, and the irradiation energy, frame rate, and the like newly set in the third parameter history storage unit 128C are stored as the latest parameters.
 照射エネルギーが新たに設定された場合は、次のステップS204において、新たに設定された照射エネルギーの情報(管電圧、管電流、照射時間等の情報)を含む第3照射エネルギー設定情報Sa3を放射線照射系28に出力する。放射線照射系28の線源制御部36は、システム制御部14からの第3照射エネルギー設定情報Sa3に基づいて、放射線源34から出力される照射エネルギーを新たな照射エネルギーに設定する。 When the irradiation energy is newly set, in the next step S204, the third irradiation energy setting information Sa3 including information of the newly set irradiation energy (information such as tube voltage, tube current, irradiation time) is radiated. Output to the irradiation system 28. The radiation source control unit 36 of the radiation irradiation system 28 sets the irradiation energy output from the radiation source 34 to a new irradiation energy based on the third irradiation energy setting information Sa3 from the system control unit 14.
 撮影範囲や読出モード等が新たに設定された場合は、次のステップS205において、第3パラメータ設定部126Cは、新たに設定された撮影範囲情報や読出モード情報を含む第3読出制御情報Sb3を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部は、入力された第3読出制御情報Sb3を第1アドレス信号発生部110Aに供給する。 When the shooting range, the reading mode, and the like are newly set, in the next step S205, the third parameter setting unit 126C obtains the third reading control information Sb3 including the newly set shooting range information and reading mode information. The data is output to the radiation detection device 30 via the detection device control unit 32. The cassette control unit of the radiation detection apparatus 30 supplies the input third read control information Sb3 to the first address signal generation unit 110A.
 ステップS206において、同期部124は、第3読出制御情報Sb3に基づいて、第2撮像部54Bでの連続する複数回の撮像タイミングを、第1撮像部54Aでの連続する複数回の撮像タイミングに同期させるための情報(第4読出制御情報Sb4)を作成する。次いで、ステップS207において、作成された第4読出制御情報Sb4を検出装置制御部32を介して放射線検出装置30に出力する。なお、第4読出制御情報Sb4の作成手法の一例は、上述したので、ここではその重複説明を省略する。 In step S206, based on the third readout control information Sb3, the synchronization unit 124 changes the continuous imaging timing at the second imaging unit 54B to the continuous imaging timing at the first imaging unit 54A. Information for synchronization (fourth read control information Sb4) is created. Next, in step S207, the created fourth readout control information Sb4 is output to the radiation detection apparatus 30 via the detection apparatus control unit 32. Since an example of a method for creating the fourth read control information Sb4 has been described above, a duplicate description thereof is omitted here.
 システム制御部14は、作成された第4読出制御情報Sb4を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部50は、入力された第4読出制御情報Sb4を第2アドレス信号発生部110Bに供給する。 The system control unit 14 outputs the created fourth readout control information Sb4 to the radiation detection device 30 via the detection device control unit 32. The cassette control unit 50 of the radiation detection apparatus 30 supplies the input fourth read control information Sb4 to the second address signal generation unit 110B.
 ステップS208において、システム制御部14は、前回の放射線撮影の開始時点からエネサブ撮影における最新のフレームレートFraに相当する時間が経過したか否かを判別する。カウンタkの値が初期値である場合あるいは前回の放射線撮影の開始時点から最新のフレームレートFraに相当する時間が経過した段階で次のステップS209に進み、システム制御部14は、k回目の放射線撮影の開始時点にて、放射線照射系28に曝射開始信号Scを出力する。放射線照射系28の線源制御部36は、システム制御部14からの曝射開始信号Scの入力に基づいて放射線源34を制御して、該放射線源34から設定されている照射エネルギーの放射線を照射させる。 In step S208, the system control unit 14 determines whether or not a time corresponding to the latest frame rate Fra in the energy sub imaging has elapsed since the start of the previous radiation imaging. When the value of the counter k is an initial value or when a time corresponding to the latest frame rate Fra has elapsed since the start of the previous radiation imaging, the system control unit 14 proceeds to the next step S209, and the system control unit 14 At the start of imaging, an exposure start signal Sc is output to the radiation irradiation system 28. The radiation source control unit 36 of the radiation irradiation system 28 controls the radiation source 34 based on the input of the exposure start signal Sc from the system control unit 14, and emits radiation with the irradiation energy set from the radiation source 34. Irradiate.
 ステップS210において、システム制御部14は、検出装置制御部32に、放射線照射系28に対して曝射開始を行ったことを示す曝射通知Sd(図19参照)を出力する。 In step S210, the system control unit 14 outputs to the detection device control unit 32 an exposure notification Sd (see FIG. 19) indicating that the irradiation start has been performed on the radiation irradiation system 28.
 ステップS211において、検出装置制御部32は、曝射通知Sdの入力に基づいて、放射線検出装置30に電荷蓄積及び電荷読出を示す動作開始信号Se(図19参照)を出力する。 In step S211, the detection device controller 32 outputs an operation start signal Se (see FIG. 19) indicating charge accumulation and charge reading to the radiation detection device 30 based on the input of the exposure notification Sd.
 ステップS212において、放射線検出装置30は、検出装置制御部32からの動作開始信号Seの入力に基づいて、電荷蓄積と電荷読出を行う。すなわち、被写体24を透過した放射線26のうち、低エネルギー成分の放射線が第1撮像部54Aのシンチレータにより可視光に一旦変換され、第1撮像部54Aの各画素80において、可視光が光電変換されて、光量に応じた量の電荷が蓄積される。同様に、高エネルギー成分の放射線が第2撮像部54Bのシンチレータにより可視光に一旦変換され、第2撮像部の各画素80において、可視光が光電変換されて、光量に応じた量の電荷が蓄積される。 In step S212, the radiation detection apparatus 30 performs charge accumulation and charge reading based on the input of the operation start signal Se from the detection apparatus control unit 32. That is, of the radiation 26 that has passed through the subject 24, the low-energy component radiation is once converted into visible light by the scintillator of the first imaging unit 54A, and the visible light is photoelectrically converted in each pixel 80 of the first imaging unit 54A. Thus, an amount of electric charge corresponding to the amount of light is accumulated. Similarly, the high-energy component radiation is once converted into visible light by the scintillator of the second imaging unit 54B, and the visible light is photoelectrically converted in each pixel 80 of the second imaging unit, and an amount of charge corresponding to the amount of light is generated. Accumulated.
 そして、第1読出回路78Aにおける読出期間の開始時点で第1同期信号Sf1(例えば垂直同期信号:図19参照)が出力され、検出装置制御部32の第1画像入出力制御部116Aに入力される。第1画像入出力制御部116Aは、第1同期信号Sf1の入力に基づいて、第1放射線画像D1の受け取りタイミングを、放射線検出装置30からの第1放射線画像D1の出力タイミングと同期させる。 Then, the first synchronization signal Sf1 (for example, vertical synchronization signal: see FIG. 19) is output at the start of the reading period in the first reading circuit 78A, and is input to the first image input / output control unit 116A of the detection device control unit 32. The The first image input / output control unit 116A synchronizes the reception timing of the first radiation image D1 with the output timing of the first radiation image D1 from the radiation detection device 30 based on the input of the first synchronization signal Sf1.
 同様に、第2読出回路78Bにおける読出期間の開始時点で第2同期信号Sf2(例えば垂直同期信号:図19参照)が出力され、検出装置制御部32の第2画像入出力制御部116Bに入力される。第2画像入出力制御部116Bは、第2同期信号Sf2の入力に基づいて、第2放射線画像D2の受け取りタイミングを、放射線検出装置30からの第2放射線画像D2の出力タイミングと同期させる。 Similarly, a second synchronization signal Sf2 (for example, vertical synchronization signal: see FIG. 19) is output at the start of the reading period in the second reading circuit 78B, and is input to the second image input / output control unit 116B of the detection device control unit 32. Is done. The second image input / output control unit 116B synchronizes the reception timing of the second radiation image D2 with the output timing of the second radiation image D2 from the radiation detection device 30 based on the input of the second synchronization signal Sf2.
 続く読出期間において、第1アドレス信号発生部110Aは、供給された第3読出制御情報Sb3(撮像範囲情報、読出モード情報等)に応じたアドレス信号を作成して、第1読出回路78Aにおけるライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に出力する。同様に、第2アドレス信号発生部110Bは、供給された第4読出制御情報Sb4(撮像範囲情報、読出モード情報等)に応じたアドレス信号を作成して、第2読出回路78Bにおけるライン走査駆動部90の第1アドレスデコーダ94及びマルチプレクサ92の第2アドレスデコーダ106に出力する。 In the subsequent readout period, the first address signal generator 110A creates an address signal corresponding to the supplied third readout control information Sb3 (imaging range information, readout mode information, etc.), and the line in the first readout circuit 78A. The data is output to the first address decoder 94 of the scan driver 90 and the second address decoder 106 of the multiplexer 92. Similarly, the second address signal generator 110B creates an address signal corresponding to the supplied fourth read control information Sb4 (imaging range information, read mode information, etc.), and performs line scanning drive in the second read circuit 78B. The data is output to the first address decoder 94 of the unit 90 and the second address decoder 106 of the multiplexer 92.
 第1読出回路78Aは、第3読出制御情報Sb3に従って電荷の読み出しを行い、第1画像メモリ112Aを用いて、例えばFIFO方式で低エネルギーによる第1放射線画像D1を出力する。同じく、第2読出回路78Bは、第4読出制御情報Sb4に従って電荷の読み出しを行い、第2画像メモリ112Bを用いて、例えばFIFO方式で高エネルギーによる第2放射線画像D2を出力する。 The first readout circuit 78A reads out charges in accordance with the third readout control information Sb3, and outputs the first radiation image D1 with low energy using, for example, the FIFO method using the first image memory 112A. Similarly, the second readout circuit 78B reads out charges in accordance with the fourth readout control information Sb4, and outputs the second radiation image D2 with high energy using, for example, the FIFO method using the second image memory 112B.
 第1読出回路78Aでは、例えば撮影範囲に含まれるゲート線86を1本ずつ選択し、撮像範囲に含まれる信号線88からの信号電荷を合成せずにA/D変換器108に向かって順次転送する。一方、第2読出回路78Bでは、間引きの場合は、撮影範囲に含まれるゲート線86のうち、係数kv本目のゲート線が飛び越しで順次選択され、さらに、撮影範囲に含まれるそれぞれ係数kh本分の信号線88からの信号電荷をそれぞれ合成してA/D変換器108に向かって順次転送する。これによって、第1撮像部54Aでの撮像タイミング及びフレームレートと、第2撮像部54Bでの撮像タイミング及びフレームレートとを同期させることができる。 In the first readout circuit 78A, for example, the gate lines 86 included in the imaging range are selected one by one, and the signal charges from the signal lines 88 included in the imaging range are sequentially synthesized toward the A / D converter 108. Forward. On the other hand, in the second readout circuit 78B, in the case of thinning, among the gate lines 86 included in the imaging range, the gate line of coefficient kv is sequentially selected in a skipped manner, and further, for each coefficient kh included in the imaging range. The signal charges from the signal lines 88 are combined and sequentially transferred to the A / D converter 108. Thereby, the imaging timing and frame rate in the first imaging unit 54A can be synchronized with the imaging timing and frame rate in the second imaging unit 54B.
 放射線検出装置30からの低エネルギーによる第1放射線画像D1及び高エネルギーによる第2放射線画像D2は、検出装置制御部32の第1画像入出力制御部116A及び第2画像入出力制御部116Bを介してシステム制御部14に供給される。 The first radiation image D1 with low energy and the second radiation image D2 with high energy from the radiation detection device 30 are passed through the first image input / output control unit 116A and the second image input / output control unit 116B of the detection device control unit 32. To the system control unit 14.
 ステップS213において、エネサブ動画作成部134は、放射線検出装置30から検出装置制御部32を介して供給される低エネルギーによる第1放射線画像D1と高エネルギーによる第2放射線画像D2との加重減算処理を行ってエネサブ画像Dsを作成する。 In step S213, the energy sub moving image creating unit 134 performs weighted subtraction processing between the first radiation image D1 with low energy and the second radiation image D2 with high energy supplied from the radiation detection device 30 via the detection device control unit 32. Then, the energy sub-image Ds is created.
 ステップS214において、エネサブ動画転送部136は、作成されたエネサブ画像Dsをコンソール16に転送する。コンソール16は、転送されたエネサブ画像Dsをフレームメモリに記憶すると共に、k回目の放射線撮影によるエネサブ画像Ds、すなわち、kフレーム目のエネサブ画像Dsとしてモニタ18に表示する。 In step S214, the energy sub moving image transfer unit 136 transfers the generated energy sub image Ds to the console 16. The console 16 stores the transferred energy sub-image Ds in the frame memory and displays it on the monitor 18 as the energy sub-image Ds obtained by the k-th radiography, that is, the k-th energy sub-image Ds.
 ステップS215において、カウンタkの値を+1更新する。 In step S215, the value of the counter k is updated by +1.
 ステップS216において、システム制御部14は、エネサブ動画撮影の終了要求(例えば静止画撮影要求や動画撮影要求等)があるか否かを判別する。エネサブ動画撮影の終了要求がなければ、ステップS202に戻り、ステップS202以降の処理を繰り返す。これにより、モニタ18には設定されたフレームレートでのエネサブ画像Dsの動画が表示されることになる。一方、ステップS216において、エネサブ動画撮影の終了要求があると判別された段階で、エネサブ動画撮影が終了する。 In step S216, the system control unit 14 determines whether there is an energy sub moving image shooting end request (for example, a still image shooting request or a moving image shooting request). If there is no request to end the energy-sub moving image shooting, the process returns to step S202, and the processes in and after step S202 are repeated. As a result, the moving image of the energy sub-image Ds at the set frame rate is displayed on the monitor 18. On the other hand, in step S216, when it is determined that there is a request to end the energy sub moving image shooting, the energy sub moving image shooting ends.
 図19の例で示すと、例えばN-1(N=2、3、・・・)回目の放射線撮影の開始時点tn-1の前段階で、例えばオペレータの操作入力によって、例えば照射エネルギー及び読出モードが変更された場合、第3パラメータ設定部126Cは、新たに設定された照射エネルギーの情報を含む第3照射エネルギー設定情報Sa3を放射線照射系28に出力し、新たに設定された撮影範囲情報や読出モード情報を含む第3読出制御情報Sb3を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部50は、入力された第3読出制御情報Sb3を第1アドレス信号発生部110Aに供給する。これにより、放射線照射系28は新たな照射エネルギーに設定され、第1読出回路78Aは新たな撮影範囲や読出モード等に設定される。 In the example of FIG. 19, for example, the irradiation energy and readout are performed, for example, by an operation input of the operator, for example, at the stage before the start time tn-1 of the N-1 (N = 2, 3,. When the mode is changed, the third parameter setting unit 126C outputs the third irradiation energy setting information Sa3 including information on the newly set irradiation energy to the radiation irradiation system 28, and the newly set imaging range information. And third readout control information Sb3 including readout mode information is output to the radiation detection apparatus 30 via the detection apparatus control section 32. The cassette control unit 50 of the radiation detection apparatus 30 supplies the input third read control information Sb3 to the first address signal generation unit 110A. Thereby, the radiation irradiation system 28 is set to a new irradiation energy, and the first readout circuit 78A is set to a new imaging range, a readout mode, and the like.
 一方、同期部124は、第3読出制御情報Sb3に基づいて、第2撮像部54Bでの連続する複数回の撮像タイミングを、第1撮像部54Aでの連続する複数回の撮像タイミングに同期させるための情報(第4読出制御情報Sb4)を作成し、該第4読出制御情報Sb4を検出装置制御部32を介して放射線検出装置30に出力する。放射線検出装置30のカセッテ制御部50は、入力された第4読出制御情報Sb4を第2アドレス信号発生部110Bに供給する。これにより、第2読出回路78Bは第1撮像部54Aと同期させるための新たな撮影範囲や読出モード等に設定される。 On the other hand, based on the third readout control information Sb3, the synchronization unit 124 synchronizes a plurality of consecutive imaging timings in the second imaging unit 54B with a plurality of consecutive imaging timings in the first imaging unit 54A. Information (fourth read control information Sb4) is generated, and the fourth read control information Sb4 is output to the radiation detection apparatus 30 via the detection apparatus control unit 32. The cassette control unit 50 of the radiation detection apparatus 30 supplies the input fourth read control information Sb4 to the second address signal generation unit 110B. As a result, the second readout circuit 78B is set to a new imaging range and readout mode for synchronizing with the first imaging unit 54A.
 その後、N-1回目の放射線撮影の開始時点tn-1において、システム制御部14は、放射線照射系28に曝射開始信号Scを出力し、検出装置制御部32に曝射通知Sdを行うことで、システム制御部14にN-1回目の放射線撮影による2つの放射線画像、すなわち、低エネルギーによる第1放射線画像D1と高エネルギーによる第2放射線画像D2が供給される。システム制御部14は、供給された第1放射線画像D1と第2放射線画像D2との加重減算処理を行ってエネサブ画像Dsを作成する。そして、作成したエネサブ画像Dsをコンソール16に転送し、N-1フレーム目のエネサブ画像Dsとしてモニタ18に表示させる。 Thereafter, at the start time tn−1 of the (N−1) th radiography, the system control unit 14 outputs the exposure start signal Sc to the radiation irradiation system 28 and performs the exposure notification Sd to the detection device control unit 32. Thus, two radiographic images obtained by the N-1th radiography, that is, a first radiographic image D1 with low energy and a second radiographic image D2 with high energy are supplied to the system control unit 14. The system control unit 14 performs the weighted subtraction process on the supplied first radiation image D1 and second radiation image D2 to create an energy sub-image Ds. Then, the created energy sub image Ds is transferred to the console 16 and displayed on the monitor 18 as the energy sub image Ds of the (N−1) th frame.
 同様に、上述の開始時点tn-1からエネサブ撮影における最新のフレームレートFraが経過したN回目の放射線撮影の開始時点tnにおいて、システム制御部14は、放射線照射系28に曝射開始信号Scを出力し、検出装置制御部32に曝射通知Sdを行うことで、システム制御部14にN回目の放射線撮影による2つの放射線画像(低エネルギーによる第1放射線画像D1と高エネルギーによる第2放射線画像D2)が供給される。システム制御部14は、供給された2つの放射線画像からエネサブ画像Dsを作成してコンソール16に転送し、Nフレーム目のエネサブ画像Dsとしてモニタ18に表示させる。これらの動作が繰り返されることで、モニタ18にはエネサブ画像Dsの動画が表示されることになる。 Similarly, at the start time tn of the N-th radiography in which the latest frame rate Fra in the energy sub-imaging has elapsed from the start time tn−1, the system control unit 14 sends the exposure start signal Sc to the radiation irradiation system 28. By outputting and performing exposure notification Sd to the detection device control unit 32, the system control unit 14 is given two radiographic images (first radiographic image D1 with low energy and second radiographic image with high energy) by the N-th radiography. D2) is supplied. The system control unit 14 creates an energy sub-image Ds from the two supplied radiographic images, transfers it to the console 16, and displays it on the monitor 18 as the energy sub-image Ds of the Nth frame. By repeating these operations, the monitor 18 displays the moving image of the energy sub-image Ds.
 このように、放射線画像撮影システム10においては、放射線源34を有する放射線照射系28と、被写体24を透過した放射線源34からの放射線26を放射線画像に変換して出力する放射線画像出力系29と、を有する放射線画像撮影装置12と、該放射線画像撮影装置12を、設定された撮像タイミングで放射線撮影を実行制御するシステム制御部14とを有する放射線画像撮影システムにおいて、放射線画像出力系29に、それぞれ感度特性が異なり、且つ、放射線を放射線画像に変換する第1撮像部54A及び第2撮像部54Bを設け、システム制御部14に、第1撮像部54A及び第2撮像部54Bの連続する複数回の撮像タイミングを同期させる同期部124を有するので、いままで静止画用途でしか実現できなかったエネサブ撮影を、動画でのエネサブ撮影にまで用途を広げることができ、エネサブ撮影を行う放射線画像撮影システム10の普及に寄与させることができる。しかも、1回の曝射でサブトラクション画像処理を行うことができるため、被写体24の体動に影響されることなく、エネサブ画像Dsを作成することができ、画質の良好なエネサブ画像Dsの動画を得ることができる。 Thus, in the radiographic imaging system 10, the radiation irradiation system 28 having the radiation source 34, the radiation image output system 29 that converts the radiation 26 from the radiation source 34 that has passed through the subject 24 into a radiation image, and outputs the radiation image. , And a radiographic imaging system having a radiographic imaging system 12 that executes and controls radiographic imaging at a set imaging timing. The first imaging unit 54A and the second imaging unit 54B that have different sensitivity characteristics and convert radiation into a radiographic image are provided, and the system control unit 14 includes a plurality of continuous first imaging units 54A and second imaging units 54B. Since the synchronization unit 124 that synchronizes the imaging timing of the image is included, the energy that could only be realized for still image use until now The Bed shooting can widen the applications to the Enesabu shooting video, it can contribute to the spread of the radiation image capturing system 10 which performs Enesabu shooting. Moreover, since the subtraction image processing can be performed by one exposure, the energy sub-image Ds can be created without being affected by the body movement of the subject 24, and the moving image of the energy sub-image Ds with good image quality can be created. Obtainable.
 ところで、第1撮像部54Aと第2撮像部54Bの具体例によっては、第1撮像部54Aでの電荷蓄積期間と第2撮像部54Bでの電荷蓄積期間とが少なくとも一部期間重なる(全部の期間あるいは一部の期間で重なる)場合がある。 By the way, depending on specific examples of the first imaging unit 54A and the second imaging unit 54B, the charge accumulation period in the first imaging unit 54A and the charge accumulation period in the second imaging unit 54B overlap at least partly (all Period or part of the period).
 第1のケースとして、例えば図5A~図6Bに示す第1~第5の態様、図9A~図10Aに示す第12~第14の態様並びに図11Aに示す第17の態様では、1つのセンサ基板56を用いているため、第1撮像部54Aの各画素及び第2撮像部54Bの各画素への可視光の到達時間にほとんど時間差がない。例えばシステムで用いられる基準クロックのパルス幅よりも短い時間差でしかない。従って、この場合、図20Aに示すように、撮影開始時点taから第1撮像部54Aでの電荷蓄積期間Ta1の開始時点tb1と第2撮像部54Bでの電荷蓄積期間Ta2の開始時点tb2とが同期することとなる。そして、撮影開始時点taから一定期間経過した時点tdで垂直同期信号(Sf1、Sf2)を出力させる場合は、この垂直同期信号(Sf1、Sf2)の出力時点tdが電荷蓄積期間Ta1及びTa2の終了時点となるため、第1撮像部54Aでの電荷蓄積期間Ta1の終了時点tc1と第2撮像部54Bでの電荷蓄積期間Ta2の終了時点tc2とが同期することとなる。 As the first case, for example, in the first to fifth embodiments shown in FIGS. 5A to 6B, the twelfth to fourteenth embodiments shown in FIGS. 9A to 10A, and the seventeenth embodiment shown in FIG. 11A, one sensor is used. Since the substrate 56 is used, there is almost no time difference in the arrival time of visible light to each pixel of the first imaging unit 54A and each pixel of the second imaging unit 54B. For example, the time difference is only shorter than the pulse width of the reference clock used in the system. Therefore, in this case, as shown in FIG. 20A, the start time tb1 of the charge accumulation period Ta1 in the first imaging unit 54A and the start time tb2 of the charge accumulation period Ta2 in the second imaging unit 54B from the imaging start time ta. Will be synchronized. When the vertical synchronization signals (Sf1, Sf2) are output at a time td after a certain period of time has elapsed from the photographing start time ta, the output time td of the vertical synchronization signals (Sf1, Sf2) is the end of the charge accumulation periods Ta1 and Ta2. Therefore, the end time tc1 of the charge accumulation period Ta1 in the first imaging unit 54A and the end time tc2 of the charge accumulation period Ta2 in the second imaging unit 54B are synchronized.
 第2のケースとして、図7A~図8Cに示す第6~第11の態様、図10Bに示す第15の態様並びに図11Bに示す第18の態様では、第1センサ基板56Aが放射線26の入射側に設置され、第2センサ基板56Bが放射線26の入射側の反対側に設置されて、第1撮像部54AがISS方式で可視光を検出することから、第1撮像部54Aの各画素及び第2撮像部54Bの各画素への可視光の到達時間に基準クロックのパルス幅よりも長い時間差Δtが生じる。従って、この場合、図20Bに示すように、撮影開始時点taから第1撮像部54Aでの電荷蓄積期間Ta1の開始時点tb1と第2撮像部54Bでの電荷蓄積期間Ta2の開始時点tb2とがその時間差Δtだけずれることとなる。そして、撮影開始時点taから一定期間経過した時点で垂直同期信号(Sf1、Sf2)を出力させる場合は、この垂直同期信号(Sf1、Sf2)の出力時点tdが電荷蓄積時間の終了時点となるため、第1撮像部54Aでの電荷蓄積期間Ta1の終了時点tc1と第2撮像部54Bでの電荷蓄積期間Ta2の終了時点tc2とが同期する。この場合、第2撮像部54Bでの電荷蓄積期間Ta2が上述した時間差Δtだけ短くなる。 As a second case, in the sixth to eleventh modes shown in FIGS. 7A to 8C, the fifteenth mode shown in FIG. 10B, and the eighteenth mode shown in FIG. 11B, the first sensor substrate 56A is made incident with radiation 26. Since the second sensor substrate 56B is installed on the side opposite to the incident side of the radiation 26 and the first imaging unit 54A detects visible light by the ISS method, each pixel of the first imaging unit 54A and A time difference Δt longer than the pulse width of the reference clock occurs in the arrival time of the visible light to each pixel of the second imaging unit 54B. Therefore, in this case, as shown in FIG. 20B, the start time tb1 of the charge accumulation period Ta1 in the first imaging unit 54A and the start time tb2 of the charge accumulation period Ta2 in the second imaging unit 54B from the imaging start time ta. The time difference Δt is shifted. When the vertical synchronization signals (Sf1, Sf2) are output after a certain period of time has elapsed from the photographing start time ta, the output time td of the vertical synchronization signals (Sf1, Sf2) is the end time of the charge accumulation time. The end time tc1 of the charge accumulation period Ta1 in the first imaging unit 54A and the end time tc2 of the charge accumulation period Ta2 in the second imaging unit 54B are synchronized. In this case, the charge accumulation period Ta2 in the second imaging unit 54B is shortened by the time difference Δt described above.
 第3のケースとして、図20Cに示すように、第2撮像部54Bでの垂直同期信号(Sf2)の出力時点tdを上述の時間差Δtを見込んで遅延させている場合は、第2撮像部54Bでの電荷蓄積期間Ta2の終了時点tc2が上述した時間差Δtだけずれるため、第1撮像部54Aでの電荷蓄積期間Ta1と第2撮像部54Bでの電荷蓄積期間Ta2は同じになる。 As a third case, as shown in FIG. 20C, when the output time td of the vertical synchronization signal (Sf2) in the second imaging unit 54B is delayed in anticipation of the above time difference Δt, the second imaging unit 54B Since the end time tc2 of the charge accumulation period Ta2 is shifted by the time difference Δt described above, the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B are the same.
 第4のケースとして、反対に、図10Cに示す第16の態様では、第2センサ基板56Bが放射線26の入射側に設置され、第1センサ基板56Aが放射線26の入射側の反対側に設置されて、第2撮像部54BがISS方式で可視光を検出することから、第1撮像部54Aの各画素及び第2撮像部54Bの各画素への可視光の到達時間に基準クロックのパルス幅よりも長い時間差Δtが生じる。従って、この場合、図21Aに示すように、撮影開始時点taから第1撮像部54Aでの電荷蓄積期間Ta1の開始時点tb1と第2撮像部54Bでの電荷蓄積期間Ta2の開始時点tb2とがその時間差Δtだけずれることとなる。そして、撮影開始時点taから一定期間経過した時点で垂直同期信号(Sf1、Sf2)を出力させる場合は、この垂直同期信号(Sf1、Sf2)の出力時点が電荷蓄積時間の終了時点となるため、第1撮像部54Aでの電荷蓄積期間Ta1の終了時点tc1と第2撮像部54Bでの電荷蓄積期間Ta2の終了時点tc2とが同期する。この場合、第1撮像部54Aでの電荷蓄積期間Ta1が上述した時間差Δtだけ短くなる。 As a fourth case, conversely, in the sixteenth mode shown in FIG. 10C, the second sensor substrate 56B is installed on the incident side of the radiation 26, and the first sensor substrate 56A is installed on the opposite side of the incident side of the radiation 26. Since the second imaging unit 54B detects visible light by the ISS method, the pulse width of the reference clock depends on the arrival time of the visible light to each pixel of the first imaging unit 54A and each pixel of the second imaging unit 54B. Longer time difference Δt occurs. Therefore, in this case, as shown in FIG. 21A, the start time tb1 of the charge accumulation period Ta1 in the first imaging unit 54A and the start time tb2 of the charge accumulation period Ta2 in the second imaging unit 54B from the imaging start time ta. The time difference Δt is shifted. When the vertical synchronization signals (Sf1, Sf2) are output when a certain period has elapsed from the photographing start time ta, the output time of the vertical synchronization signals (Sf1, Sf2) is the end time of the charge accumulation time. The end time tc1 of the charge accumulation period Ta1 in the first imaging unit 54A and the end time tc2 of the charge accumulation period Ta2 in the second imaging unit 54B are synchronized. In this case, the charge accumulation period Ta1 in the first imaging unit 54A is shortened by the time difference Δt described above.
 第5のケースとして、図21Bに示すように、第1撮像部54Aでの垂直同期信号(Sf1)の出力時点tdを上述の時間差Δtを見込んで遅延させている場合は、第1撮像部54Aでの電荷蓄積期間Ta1の終了時点tc1が上述した時間差Δtだけずれるため、第1撮像部54Aでの電荷蓄積期間Ta1と第2撮像部54Bでの電荷蓄積期間Ta2は同じになる。 As a fifth case, as shown in FIG. 21B, when the output time td of the vertical synchronization signal (Sf1) from the first imaging unit 54A is delayed in anticipation of the above-described time difference Δt, the first imaging unit 54A Since the end point tc1 of the charge accumulation period Ta1 is shifted by the above-described time difference Δt, the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B are the same.
 上述した第1のケースでは、第1撮像部54Aでの電荷蓄積期間Ta1と第2撮像部54Bでの電荷蓄積期間Ta2は同じになるため、エネサブ画像Dsの画質の向上を図ることができる。しかも、垂直同期信号(Sf1、Sf2)の出力時点を同期させることができるため、放射線画像の転送にあたって余分なラッチ時間を設定する必要がなくなり、放射線画像の転送速度を向上させることができる。 In the first case described above, since the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B are the same, the image quality of the energy sub-image Ds can be improved. In addition, since the output time points of the vertical synchronization signals (Sf1, Sf2) can be synchronized, it is not necessary to set an extra latch time when transferring the radiation image, and the transfer speed of the radiation image can be improved.
 上述した第3及び第5のケースでは、第1撮像部54Aでの電荷蓄積期間Ta1と第2撮像部54Bでの電荷蓄積期間Ta2は同じになるため、エネサブ画像Dsの画質の向上を図ることができる。 In the third and fifth cases described above, the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B are the same, so that the image quality of the energy sub-image Ds is improved. Can do.
 上述した第2及び第4のケースでは、第1撮像部54Aでの電荷蓄積期間Ta1と第2撮像部54Bでの電荷蓄積期間Ta2とで上述した時間差Δtが生じるが、垂直同期信号(Sf1、Sf2)の出力時点を同期させることができるため、放射線画像の転送速度を向上させることができる。 In the second and fourth cases described above, the time difference Δt described above occurs between the charge accumulation period Ta1 in the first imaging unit 54A and the charge accumulation period Ta2 in the second imaging unit 54B, but the vertical synchronization signal (Sf1, Since the output time of Sf2) can be synchronized, the transfer speed of the radiation image can be improved.
 また、本実施の形態において、放射線照射系28は、図22A~図22Cに示すように、複数の放射線源34を有してもよい。この場合、複数の放射線源34のうち、例えば1つの放射線源34で動画用の放射線撮影を行い、2つ以上の放射線源34で静止画用の放射線撮影を行ってもよい。これにより、1/60秒~1/15秒という速い時間間隔でも、高い追従性をもって放射線26を照射させることができ、放射線画像の動画表示を実現させることができる。また、各放射線源34に動画用の照射エネルギーを設定し、静止画撮影のときに、2以上の放射線源を選択して、静止画用として必要な照射エネルギーに設定すればよいため、動画用の放射線撮影から静止画用の放射線撮影に迅速に切り替えることが可能となる。さらに、動画用の放射線撮影では、放射線撮影毎に、ランダムにあるいは順番に選択された1つの放射線源で放射線撮影を行ってもよい。この場合、熱対策のために、フレーム間で隣接する放射線源を選択しないことが好ましい。静止画用の放射線撮影においても、放射線撮影毎に、ランダムにあるいは1つのクラスタとして選択された2以上の放射線源34で放射線撮影を行ってもよい。 In the present embodiment, the radiation irradiation system 28 may include a plurality of radiation sources 34 as shown in FIGS. 22A to 22C. In this case, among the plurality of radiation sources 34, for example, one radiation source 34 may perform radiography for moving images, and two or more radiation sources 34 may perform radiography for still images. As a result, the radiation 26 can be irradiated with high followability even at a fast time interval of 1/60 seconds to 1/15 seconds, and a moving image display of the radiation image can be realized. Moreover, since the irradiation energy for moving images is set for each radiation source 34, and at the time of still image shooting, two or more radiation sources may be selected and set to the irradiation energy necessary for still images. Thus, it is possible to quickly switch from radiography to radiography for still images. Furthermore, in radiography for moving images, radiography may be performed with one radiation source selected randomly or in sequence for each radiography. In this case, it is preferable not to select an adjacent radiation source between frames for heat countermeasures. Even in radiography for still images, radiography may be performed with two or more radiation sources 34 selected randomly or as one cluster for each radiography.
 さらに、例えば図22Aに示す2つの放射線源34を用いる場合において、一方の放射線源34から高エネルギーの放射線26を照射し、他方の放射線源34から低エネルギーの放射線26を照射させてもよい。 Furthermore, for example, when two radiation sources 34 shown in FIG. 22A are used, high-energy radiation 26 may be emitted from one radiation source 34, and low-energy radiation 26 may be emitted from the other radiation source 34.
 これにより、例えば以下に示す2つの態様(第1態様及び第2態様)のエネサブ動画撮影を行うことが可能となる。 Thereby, for example, it is possible to perform energy sub moving image shooting in the following two modes (first mode and second mode).
[第1態様]
 例えば血管造影法(アンギオグラフィー:Angiography)において、造影剤を使って、2つの放射線源34から同時に異なるエネルギーの放射線26を照射してエネサブ動画撮影を行う。
[First aspect]
For example, in angiography (angiography), energy sub-moving imaging is performed by simultaneously irradiating radiation 26 of different energy from two radiation sources 34 using a contrast agent.
 一般に、血管造影法は、血管内にヨード造影剤を注入し、また、ヨード造影剤が腫瘍に選択的に取り込まれることを利用して放射線撮影を行うことで、血管及び腫瘍を検査する方法である。 In general, angiography is a method of inspecting blood vessels and tumors by injecting an iodine contrast agent into the blood vessel and performing radiography using the fact that the iodine contrast agent is selectively taken into the tumor. is there.
 そして、この第1態様では、ヨードの放射線吸収特性、すなわち、エネルギー33keV以上の放射線26に対する吸収率が高いことを利用して、33keV未満の高エネルギーの放射線26と33keV以上の高エネルギーの放射線26を同時に照射することで、例えば血管の画像を骨等の画像から分離したエネサブ動画像を得る。なお、骨は、33keV未満の放射線26に対する吸収率が大きい。 And in this 1st aspect, the radiation absorption characteristic of an iodine, ie, the high absorption factor with respect to the radiation 26 with an energy of 33 keV or more, is utilized, and the high energy radiation 26 with less than 33 keV and the high energy radiation 26 with 33 keV or more. Are simultaneously obtained, for example, an energy sub moving image obtained by separating a blood vessel image from an image of a bone or the like is obtained. Bone has a high absorption rate for radiation 26 of less than 33 keV.
 この第1態様では、下記効果を奏することになる。
 (1-a) 骨に隠れて見づらかった血管、腫瘍が見やすくなる。
 (1-b) エネルギーの異なる2種類の放射線26が同じ位相で照射されるため、ずれの無い画像(動画像)を得ることができる。
 (1-c) 造影剤を使用しない画像を取得しなくてもよいため、被写体24に対する被曝量を低減することができる。
In the first aspect, the following effects are produced.
(1-a) It becomes easier to see blood vessels and tumors that are difficult to see because they are hidden behind bones.
(1-b) Since two types of radiations 26 having different energies are irradiated in the same phase, an image (moving image) having no deviation can be obtained.
(1-c) Since it is not necessary to acquire an image that does not use a contrast agent, the exposure dose to the subject 24 can be reduced.
[第2態様]
 近時、乳房を圧迫しないで三次元画像を取得する放射線画像撮影装置が提案されている(特開2009-22601号公報参照、特開2008-93135号公報参照)。このような放射線画像撮影装置を用いて、上述した第1態様と同様の血管造影法を行う。具体的には、乳房の周りを旋回する放射線照射系及び放射線検出装置のうち、放射線照射系を、例えば図9Aに示すように、2つの放射線源34から同時に異なるエネルギーの放射線26を照射する構成とし、放射線検出装置として、本実施の形態に係る放射線検出装置30を適用し、そして、これら放射線源34及び放射線検出装置30等を本実施の形態に係るシステム制御部14にて制御することで、2つの放射線源34から同時に異なるエネルギーの放射線26を照射してエネサブ動画撮影を行う。なお、乳腺、石灰化は、33keV未満の放射線に対する吸収率が大きい。
[Second embodiment]
Recently, a radiographic imaging apparatus that acquires a three-dimensional image without compressing the breast has been proposed (see Japanese Patent Application Laid-Open Nos. 2009-22601 and 2008-93135). An angiography similar to that in the first aspect described above is performed using such a radiographic imaging device. Specifically, among the radiation irradiation system and the radiation detection apparatus that rotate around the breast, the radiation irradiation system irradiates radiation 26 having different energy simultaneously from two radiation sources 34 as shown in FIG. 9A, for example. As the radiation detection device, the radiation detection device 30 according to the present embodiment is applied, and the radiation source 34 and the radiation detection device 30 are controlled by the system control unit 14 according to the present embodiment. Energy sub-moving imaging is performed by simultaneously irradiating radiation 26 of different energy from the two radiation sources 34. In addition, a mammary gland and calcification have a large absorption rate with respect to radiation of less than 33 keV.
 この第2態様では、下記効果を奏することになる。
 (2-a) 乳腺、石灰化で見づらかった腫瘍が見やすくなる。
 (2-b) エネルギーの異なる2種類の放射線26が同じ位相で照射されるため、ずれの無い画像(動画像)を得ることができる。
 (2-c) 造影剤を使用しない画像を取得しなくてもよいため、被写体24に対する被曝量を低減することができる。
In the second aspect, the following effects are produced.
(2-a) The mammary gland and tumors that were difficult to see due to calcification become easier to see.
(2-b) Since two types of radiations 26 having different energies are irradiated with the same phase, an image (moving image) without deviation can be obtained.
(2-c) Since it is not necessary to acquire an image that does not use a contrast agent, the exposure dose to the subject 24 can be reduced.
 なお、本発明に係る放射線画像撮影システムは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 Of course, the radiographic imaging system according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Claims (18)

  1.  放射線源(34)を有する放射線照射系(28)と、被写体(24)を透過した前記放射線源(34)からの放射線(26)を放射線画像に変換して出力する放射線画像出力系(29)と、を有する放射線画像撮影装置(12)と、
     前記放射線画像撮影装置(12)を、設定された撮像タイミングで放射線撮影を実行制御するシステム制御部(14)とを有し、
     前記放射線画像出力系(29)は、それぞれ感度特性が異なり、前記放射線(26)を放射線画像に変換する第1撮像部(54A)及び第2撮像部(54B)を有し、
     前記システム制御部(14)は、前記第1撮像部(54A)及び第2撮像部(54B)の連続する複数回の撮像タイミングを同期させる同期部(124)を有することを特徴とする放射線画像撮影システム。
    A radiation irradiation system (28) having a radiation source (34), and a radiation image output system (29) for converting the radiation (26) from the radiation source (34) transmitted through the subject (24) into a radiation image and outputting the radiation image. A radiographic imaging device (12) comprising:
    A system controller (14) that controls the radiographic imaging apparatus (12) to execute radiographic imaging at a set imaging timing;
    The radiation image output system (29) has different sensitivity characteristics, and includes a first imaging unit (54A) and a second imaging unit (54B) that convert the radiation (26) into a radiation image.
    The system control unit (14) includes a synchronization unit (124) that synchronizes a plurality of consecutive imaging timings of the first imaging unit (54A) and the second imaging unit (54B). Shooting system.
  2.  請求項1記載の放射線画像撮影システムにおいて、
     前記システム制御部(14)は、要求に応じて静止画用撮影と動画用撮影とを切り替えて放射線撮影を実行制御することを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 1,
    The system control unit (14) performs radiographic imaging control by switching between still image imaging and moving image imaging in response to a request.
  3.  請求項1又は2記載の放射線画像撮影システムにおいて、
     前記システム制御部(14)は、前記同期部(124)による前記連続する複数回の撮像タイミングによって前記第1撮像部(54A)及び前記第2撮像部(54B)にて得られた複数の放射線画像に基づいてサブトラクション画像処理を行って、動画のエネルギーサブトラクション画像を作成するエネルギーサブトラクション動画作成部(134)を有することを特徴とする放射線画像撮影システム。
    In the radiographic imaging system according to claim 1 or 2,
    The system control unit (14) includes a plurality of radiations obtained by the first imaging unit (54A) and the second imaging unit (54B) at the plurality of consecutive imaging timings by the synchronization unit (124). A radiographic imaging system comprising an energy subtraction moving image creating unit (134) that performs subtraction image processing based on an image to create a moving energy subtraction image.
  4.  請求項1~3のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記同期部(124)は、前記撮像タイミングを同期させて、前記第1撮像部(54A)での電荷蓄積期間(Ta1)と前記第2撮像部(54B)での電荷蓄積期間(Ta2)とを少なくとも一部期間重ねることを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 3,
    The synchronization unit (124) synchronizes the imaging timing, and a charge accumulation period (Ta1) in the first imaging unit (54A) and a charge accumulation period (Ta2) in the second imaging unit (54B). A radiographic imaging system characterized by overlapping at least a part of the period.
  5.  請求項4記載の放射線画像撮影システムにおいて、
     前記同期部(124)は、前記撮像タイミングを同期させて、前記第1撮像部(54A)での電荷蓄積期間(Ta1)の開始と前記第2撮像部(54B)での電荷蓄積期間(Ta2)の開始とを同期させることを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 4,
    The synchronization unit (124) synchronizes the imaging timing to start the charge accumulation period (Ta1) in the first imaging unit (54A) and the charge accumulation period (Ta2) in the second imaging unit (54B). The radiographic image capturing system is synchronized with the start of
  6.  請求項4記載の放射線画像撮影システムにおいて、
     前記同期部(124)は、前記撮像タイミングを同期させて、前記第1撮像部(54A)での電荷蓄積期間(Ta1)の終了と前記第2撮像部(54B)での電荷蓄積期間(Ta2)の終了とを同期させることを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 4,
    The synchronization unit (124) synchronizes the imaging timing to end the charge accumulation period (Ta1) in the first imaging unit (54A) and the charge accumulation period (Ta2) in the second imaging unit (54B). ) Is synchronized with the end of the radiographic imaging system.
  7.  請求項4記載の放射線画像撮影システムにおいて、
     前記同期部(124)は、前記撮像タイミングを同期させて、前記第1撮像部(54A)での電荷蓄積期間(Ta1)の開始と前記第2撮像部(54B)での電荷蓄積期間(Ta2)の開始とを同期させ、且つ、前記第1撮像部(54A)での電荷蓄積期間(Ta1)の終了と前記第2撮像部(54B)での電荷蓄積期間(Ta2)の終了とを同期させることを特徴とする放射線画像撮影システム。
    In the radiographic imaging system of Claim 4,
    The synchronization unit (124) synchronizes the imaging timing to start the charge accumulation period (Ta1) in the first imaging unit (54A) and the charge accumulation period (Ta2) in the second imaging unit (54B). ) And the end of the charge accumulation period (Ta1) in the first imaging unit (54A) and the end of the charge accumulation period (Ta2) in the second imaging unit (54B). A radiographic imaging system characterized in that
  8.  請求項1~7のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記第1撮像部(54A)は、少なくとも前記放射線(26)の低エネルギー成分に対して感度を有し、
     前記第2撮像部(54B)は、少なくとも前記放射線(26)の高エネルギー成分に対して感度を有することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 7,
    The first imaging unit (54A) has sensitivity to at least a low energy component of the radiation (26),
    The radiographic image capturing system, wherein the second imaging unit (54B) has sensitivity to at least a high energy component of the radiation (26).
  9.  請求項8記載の放射線画像撮影システムにおいて、
     前記第1撮像部(54A)に応じた前記撮像タイミングの最高フレームレートが、前記第2撮像部(54B)に応じた前記撮像タイミングのフレームレートより大きいことを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to claim 8, wherein
    A radiographic imaging system, wherein a maximum frame rate of the imaging timing according to the first imaging unit (54A) is larger than a frame rate of the imaging timing according to the second imaging unit (54B).
  10.  請求項8又は9記載の放射線画像撮影システムにおいて、
     前記第2撮像部(54B)の空間分解能が前記第1撮像部(54A)より高いことを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to claim 8 or 9,
    The radiographic imaging system characterized in that the spatial resolution of the second imaging unit (54B) is higher than that of the first imaging unit (54A).
  11.  請求項10記載の放射線画像撮影システムにおいて、
     前記第1撮像部(54A)の画素数をnとしたとき、
     前記第2撮像部(54B)の画素数がnであることを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to claim 10, wherein
    When the number of pixels of the first imaging unit (54A) is n,
    Radiographic imaging system, wherein the number of pixels the second image pickup unit (54B) is n 2.
  12.  請求項8~11のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記第2撮像部(54B)の感応部分の面積が前記第1撮像部(54A)の感応部分の面積よりも大きいことを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 8 to 11,
    The radiographic imaging system, wherein an area of a sensitive portion of the second imaging unit (54B) is larger than an area of a sensitive portion of the first imaging unit (54A).
  13.  請求項8~12のいずれか1項に記載の放射線画像撮影システムにおいて、
     少なくとも前記第2撮像部(54B)は、前記システム制御部(14)の設定によって、間引き又はビニングによる放射線画像への変換を行うことを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 8 to 12,
    At least the second imaging unit (54B) performs conversion to a radiographic image by thinning or binning according to the setting of the system control unit (14).
  14.  請求項13記載の放射線画像撮影システムにおいて、
     前記システム制御部(14)は、前記同期部(124)による同期された撮像タイミングに応じて、少なくとも前記第2撮像部(54B)の間引き又はビニングを設定することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to claim 13, wherein
    The system control unit (14) sets at least thinning out or binning of the second imaging unit (54B) in accordance with the synchronized imaging timing by the synchronization unit (124). .
  15.  請求項1~14のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記第1撮像部(54A)と前記第2撮像部(54B)との間に、遮光層を有することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 14,
    A radiographic imaging system comprising a light shielding layer between the first imaging unit (54A) and the second imaging unit (54B).
  16.  請求項1~15のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記第1撮像部(54A)と前記第2撮像部(54B)との間に、特定波長を吸収する特性を有するフィルタを有することを特徴とする放射線画像撮影システム。
    The radiographic imaging system according to any one of claims 1 to 15,
    A radiographic imaging system comprising a filter having a characteristic of absorbing a specific wavelength between the first imaging unit (54A) and the second imaging unit (54B).
  17.  請求項1~16のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記第1撮像部(54A)が前記放射線(26)の入射側に設置されていることを特徴とする放射線画像撮影システム。
    The radiographic image capturing system according to any one of claims 1 to 16,
    The radiographic imaging system, wherein the first imaging unit (54A) is installed on an incident side of the radiation (26).
  18.  請求項1~16のいずれか1項に記載の放射線画像撮影システムにおいて、
     前記第2撮像部(54B)が前記放射線(26)の入射側に設置されていることを特徴とする放射線画像撮影システム。
    The radiographic image capturing system according to any one of claims 1 to 16,
    The radiographic image capturing system, wherein the second imaging unit (54B) is installed on an incident side of the radiation (26).
PCT/JP2012/073256 2011-09-28 2012-09-12 Radiography system WO2013047193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213425 2011-09-28
JP2011-213425 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047193A1 true WO2013047193A1 (en) 2013-04-04

Family

ID=47995227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073256 WO2013047193A1 (en) 2011-09-28 2012-09-12 Radiography system

Country Status (1)

Country Link
WO (1) WO2013047193A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052616A1 (en) * 2014-09-30 2016-04-07 日立金属株式会社 Fluorescent material, scintillator, scintillator array, and radiation detector
JP2016524152A (en) * 2013-06-27 2016-08-12 ヴァリアン メディカル システムズ インコーポレイテッド X-ray imager with a CMOS sensor embedded in a TFT flat panel
JP2018015454A (en) * 2016-07-29 2018-02-01 富士フイルム株式会社 Radiography system, radiography method, and radiography program
JP2019024570A (en) * 2017-07-25 2019-02-21 キヤノンメディカルシステムズ株式会社 X-ray diagnostic apparatus
US10512440B2 (en) 2016-07-29 2019-12-24 Fujifilm Corporation Radiography system, image processing method, and image processing program
JP2020162950A (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Radiographic apparatus, operation method of radiographic apparatus, and operation program of radiographic apparatus
WO2022065318A1 (en) 2020-09-28 2022-03-31 富士フイルム株式会社 Image processing apparatus, image processing method, and image processing program
WO2022064910A1 (en) 2020-09-28 2022-03-31 富士フイルム株式会社 Information processing device, information processing method, and information processing program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289985A (en) * 1996-04-26 1997-11-11 Canon Inc X-ray image display method and device
JP2008284081A (en) * 2007-05-16 2008-11-27 Shimadzu Corp Radiographic equipment
JP2011000235A (en) * 2009-06-17 2011-01-06 Fujifilm Corp Radiation detecting device and radiation image detection system
JP2011022132A (en) * 2009-06-17 2011-02-03 Fujifilm Corp Radiation detection device and radiation image detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289985A (en) * 1996-04-26 1997-11-11 Canon Inc X-ray image display method and device
JP2008284081A (en) * 2007-05-16 2008-11-27 Shimadzu Corp Radiographic equipment
JP2011000235A (en) * 2009-06-17 2011-01-06 Fujifilm Corp Radiation detecting device and radiation image detection system
JP2011022132A (en) * 2009-06-17 2011-02-03 Fujifilm Corp Radiation detection device and radiation image detection system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524152A (en) * 2013-06-27 2016-08-12 ヴァリアン メディカル システムズ インコーポレイテッド X-ray imager with a CMOS sensor embedded in a TFT flat panel
WO2016052616A1 (en) * 2014-09-30 2016-04-07 日立金属株式会社 Fluorescent material, scintillator, scintillator array, and radiation detector
JPWO2016052616A1 (en) * 2014-09-30 2017-04-27 日立金属株式会社 Fluorescent material, scintillator, scintillator array, and radiation detector
US10562785B2 (en) 2014-09-30 2020-02-18 Hitachi Metals, Ltd. Fluorescent material, scintillator, scintillator array, and radiation detector
JP2018015454A (en) * 2016-07-29 2018-02-01 富士フイルム株式会社 Radiography system, radiography method, and radiography program
US10512440B2 (en) 2016-07-29 2019-12-24 Fujifilm Corporation Radiography system, image processing method, and image processing program
JP2019024570A (en) * 2017-07-25 2019-02-21 キヤノンメディカルシステムズ株式会社 X-ray diagnostic apparatus
JP7179448B2 (en) 2017-07-25 2022-11-29 キヤノンメディカルシステムズ株式会社 X-ray diagnostic equipment
JP2020162950A (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Radiographic apparatus, operation method of radiographic apparatus, and operation program of radiographic apparatus
WO2022065318A1 (en) 2020-09-28 2022-03-31 富士フイルム株式会社 Image processing apparatus, image processing method, and image processing program
WO2022064910A1 (en) 2020-09-28 2022-03-31 富士フイルム株式会社 Information processing device, information processing method, and information processing program

Similar Documents

Publication Publication Date Title
WO2013047193A1 (en) Radiography system
JP5583191B2 (en) Radiation image detection apparatus and operation method thereof
JP5620249B2 (en) Radiation imaging system
WO2014038481A1 (en) Radiography system and method for operating same, and radiographic image detection device and operating program thereof
WO2012008229A1 (en) Radiological image-capturing device, radiological image-capturing system, radiological image-capturing method, and program
US7953207B2 (en) Radiation conversion panel and method of capturing radiation image therewith
WO2014038480A1 (en) Radiation image detection device
JP6745755B2 (en) Radiation image capturing system, radiation image capturing method, radiation image capturing program, and body thickness estimation device
JP5950912B2 (en) Radiation imaging system
JP2013096759A (en) Radiation detection apparatus and radiation image photographing system
JP5496063B2 (en) Radiation imaging apparatus, drive control method thereof, and radiation imaging system
JP2010051689A (en) Radiation image detector and radiation image photographing apparatus
WO2013008685A1 (en) Radiation output device, radiography system, and radiography method
JP2011212427A (en) Radiation imaging system
WO2013031667A1 (en) Radiation imaging system and radiation imaging method
JP2013094454A (en) Radiographic apparatus, radiographic system and radiographic method
CN104023637B (en) Radiographic image camera chain and radiation line detector
JP2011224338A (en) Radiation imaging apparatus and radiation imaging system
JP2018093954A (en) Radiographic imaging system
JP5984294B2 (en) Radiation imaging system, radiation generation apparatus and method of operating the same
JP5889897B2 (en) Radiographic imaging system and radiographic imaging method
JP6068700B2 (en) Radiation image detection apparatus and operation method thereof
WO2013001917A1 (en) Radiation output device, radiation imaging system and radiation imaging method
JP2014179356A (en) Radiation image detector and radiograph device
JP2013180050A (en) Radiographic imaging control device, radiation image photographing system, control method for radiographic apparatus and control program for radiation image photographing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP