WO2013047143A1 - Suspension system - Google Patents

Suspension system Download PDF

Info

Publication number
WO2013047143A1
WO2013047143A1 PCT/JP2012/072745 JP2012072745W WO2013047143A1 WO 2013047143 A1 WO2013047143 A1 WO 2013047143A1 JP 2012072745 W JP2012072745 W JP 2012072745W WO 2013047143 A1 WO2013047143 A1 WO 2013047143A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
oil
cylinder chamber
suspension system
valve
Prior art date
Application number
PCT/JP2012/072745
Other languages
French (fr)
Japanese (ja)
Inventor
大下守人
児島史雄
境孝介
大谷佳史
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011210702A external-priority patent/JP2013071523A/en
Priority claimed from JP2012174319A external-priority patent/JP5761578B2/en
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to US14/347,829 priority Critical patent/US20140232082A1/en
Priority to CN201280047095.1A priority patent/CN103826887A/en
Publication of WO2013047143A1 publication Critical patent/WO2013047143A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • B60G21/073Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • B60G2800/9123Active Body Control [ABC]

Definitions

  • the present invention relates to a suspension system that improves the ride comfort and handling stability of a vehicle.
  • the suspension includes a spring that supports the vehicle weight and absorbs the shock, and a shock absorber that attenuates the vibration of the spring, and buffers the shock from the road surface.
  • a technique related to such a suspension there are those described in Patent Document 1 and Patent Document 2, which are cited below.
  • the roll damping force control device for a vehicle described in Patent Document 1 includes a damping force generation mechanism and front and rear roll damping force control means.
  • the damping force generation mechanism is installed between the front wheel and the vehicle body, and between the rear wheel and the vehicle body, and generates a damping force proportional to the roll angular velocity of the vehicle body.
  • the upper cylinder chamber of the left wheel side hydraulic cylinder is connected to the lower cylinder chamber of the right wheel side hydraulic cylinder via the hydraulic piping, and the lower side of the left wheel side hydraulic cylinder.
  • the cylinder chamber is connected to the upper cylinder chamber of the right wheel side hydraulic cylinder via another hydraulic pipe. Thereby, each cylinder is cross-piped.
  • Each hydraulic pipe is provided with a variable throttle valve.
  • the front and rear roll damping force control means increases the damping force of the front and rear wheels as the vehicle speed increases, and controls the damping force generation mechanism so that the ratio of the damping force of the front wheels to the rear wheels increases as the steering angular velocity increases.
  • a shock absorber is interposed between the left wheel and the vehicle body and between the right wheel and the vehicle body, and the left wheel and the vehicle body are separated from the shock absorber.
  • the left hydraulic cylinder interposed between the left hydraulic cylinder, the right hydraulic cylinder interposed between the right wheel and the vehicle body, and the upper cylinder chamber of the left hydraulic cylinder and the lower cylinder chamber of the right hydraulic cylinder are connected in communication.
  • a damping mechanism including a road, a fourth oil path that connects the second oil path and the reservoir tank, and a variable throttle provided in each of the third oil path and the fourth oil path. With relative vertical movement It is provided with a control mechanism for controlling the degree of narrowing of the variable throttle.
  • Patent Documents 3-5 which is cited below.
  • the hydraulic cylinders described in Patent Documents 3 and 4 are composed of a double cylinder type including a slidable piston and a piston rod, and the volume of the cylinder chamber divided into two chambers by the piston changes due to the movement of the piston. .
  • the rigidity of an automobile suspension is controlled by generating an oil flow through a port provided in the hydraulic cylinder.
  • the fluid pressure damper of the suspension device described in Patent Document 5 is also composed of a double-cylinder type incorporating a slidable piston and a piston rod. This fluid pressure damper also changes the volume of the oil chamber (corresponding to the “cylinder chamber”) partitioned by the piston in the cylinder due to the movement of the piston, and suppresses a change in the attitude of the automobile by generating an oil flow. .
  • the vehicle roll damping force control device of Patent Document 1 is not provided with a device for adding roll rigidity in addition to a spring. For this reason, for example, in a situation where the vehicle turns for a long time such as a rampway, it is inevitable that the roll amount of the vehicle becomes large and the turning performance deteriorates. In addition, although the ride comfort can be ensured when the in-phase bounce is input, the unsprung flapping due to the input of each wheel is in accordance with the initially set damping force of the shock absorber. For this reason, it is not always possible to ensure optimal grounding and riding comfort.
  • the damping force in the roll direction of the front and rear wheels during turning can be controlled by a variable throttle valve provided in the hydraulic piping.
  • a variable throttle valve provided in the hydraulic piping.
  • understeer and oversteer are improved by controlling the front and rear damping force valves using vehicle speed sensors and steering angle sensors to change the absolute value and ratio of front and rear roll damping.
  • the neutral steer turning state cannot be secured.
  • the cylinder outer cylinder and the port are integrally formed.
  • the fluid pressure damper described in Patent Document 5 has a hollow rod interior and uses the rod interior as an oil passage. For this reason, since it is necessary to connect piping to the outer cylinder of a cylinder, when mounting in a vehicle is considered, it is necessary to arrange
  • an object of the present invention is to provide a suspension system capable of realizing optimum riding comfort and running stability regardless of the running state of a vehicle.
  • the characteristic configuration of the suspension system according to the present invention for achieving the above object is as follows:
  • the upper cylinder chamber that increases in volume when expanded and decreases in volume when contracted, the lower cylinder chamber that decreases in volume when expanded and increases in volume when contracted, and the flow rate of oil flowing out of the lower cylinder chamber A variable valve that adjusts based on a detection result of a detection unit that detects a physical quantity of the vehicle, and a damping force control cylinder incorporated in a pair of wheels among a plurality of wheels of the vehicle,
  • a first communication passage communicating the upper cylinder chamber of one damping force control cylinder and the lower cylinder chamber of the other damping force control cylinder;
  • a pair of oil receivers that are provided in each of the first communication path and the second communication path, and store and discharge oil in the first communication path and the second communication path according to the operation of the damping force control
  • the damping force in the extension direction of the suspension can be optimized, so that the ground contact with the road surface can be improved. For this reason, between the pair of wheels assembled with the pair of damping force control cylinders, the damping force can be controlled to suppress the movement of the vehicle body. Therefore, it is possible to realize optimum riding comfort and running stability regardless of the running state of the vehicle.
  • an acceleration detection unit that detects vertical acceleration of the vehicle body of the vehicle is provided, and the variable valve adjusts the flow rate of the oil based on a detection result of the acceleration detection unit.
  • the damping force of the suspension can be adjusted according to the running state of the vehicle, so that the ride comfort can be improved. Therefore, it is possible to realize optimum traveling stability.
  • the oil receiving portion is an accumulator.
  • variable valve for limiting the flow rate of the oil flowing into the accumulator is provided.
  • the accumulator can appropriately store and discharge the oil in the first communication path and the second communication path.
  • a check valve is provided in parallel with the variable valve for limiting the flow rate of the oil flowing into the accumulator.
  • the pair of wheels are a left wheel and a right wheel provided to face each other in the width direction of the vehicle.
  • the pair of wheels may be a front wheel and a rear wheel provided in the front-rear direction of the vehicle.
  • the left hydraulic cylinder interposed between the left wheel and the vehicle body and the right hydraulic cylinder interposed between the right wheel and the vehicle body are respectively connected to the upper cylinder chamber and the lower cylinder chamber. It is preferable that the port for supplying and discharging the oil is disposed at a position separated from the lower fixing portion.
  • the port for supplying and discharging oil in the upper cylinder chamber and the port for supplying and discharging oil in the lower cylinder chamber are disposed on the side of the fixed portion of the rod provided on the upper side. It is.
  • An upper cylinder chamber oil passage for supplying and discharging oil in the upper cylinder chamber and a lower cylinder chamber oil passage for supplying and discharging oil in the lower cylinder chamber are provided on the radially inner side of the rod. It is preferable that
  • the upper cylinder chamber oil passage and the lower cylinder chamber oil passage can be protected by the rod. Therefore, it is not necessary to take measures to increase the durability of the upper cylinder chamber oil passage and the lower cylinder chamber oil passage, and thus an increase in cost can be avoided.
  • a cylindrical member is coaxially arranged on the radially inner side of the rod, the lower cylinder chamber oil passage is formed on the radially inner side of the tubular member, and the inner peripheral surface of the rod and the cylinder It is preferable that the upper cylinder chamber oil passage is formed between the outer peripheral surface of the cylindrical member.
  • the suspension system 100 is mounted on a vehicle and has a function of realizing optimal riding comfort and running stability for a vehicle occupant.
  • FIG. 1 schematically shows a suspension system 100 according to this embodiment mounted on a vehicle 1.
  • the suspension system 100 includes a damping force control cylinder 10, a first communication path 21, a second communication path 22, and an oil receiving portion 23.
  • the damping force control cylinder 10 is incorporated into a pair of wheels 2 among a plurality of wheels 2 of the vehicle 1.
  • the plurality of wheels 2 are the left front wheel 2A, the right front wheel 2B, the left rear wheel 2C, and the right rear wheel 2D of the vehicle 1.
  • the pair of wheels 2 are a left wheel and a right wheel provided to face each other in the width direction of the vehicle 1.
  • the damping force control cylinder 10 is composed of a pair and is incorporated in the left rear wheel 2C and the right rear wheel 2D.
  • the damping force control cylinder 10 incorporated in the left rear wheel 2C is denoted by reference numeral 10A, and the damping force control cylinder 10 incorporated in the right rear wheel 2D. Is shown with reference numeral 10B.
  • the damping force control cylinder 10 has an upper cylinder chamber 10U, a lower cylinder chamber 10L, and a variable valve 11, and is composed of an extendable cylinder damper.
  • the upper cylinder chamber 10U is configured to increase in volume when the cylinder damper extends and to decrease in volume when the cylinder damper contracts.
  • the lower cylinder chamber 10L is configured to have a smaller volume when extended and a larger volume when contracted.
  • the variable valve 11 adjusts the flow rate of the oil R flowing out from the lower cylinder chamber 10L based on the detection result of the detection unit that detects the physical quantity of the vehicle.
  • the damping force control cylinder 10 includes a pair. Therefore, the variable valve 11 also includes a pair of variable valves 11A and 11B.
  • the pair of variable valves 11A and 11B are configured such that the flow rate of the oil R flowing out from the lower cylinder chamber 10L can be independently adjusted. That is, the variable valve 11A and the variable valve 11B can be adjusted to have different oil R flow rates.
  • Each lower cylinder chamber 10L is provided with an opening (not shown), and a variable valve 11 is provided in communication with the opening.
  • the variable valve 11 is configured such that the opening area can be changed by electrical control. Specifically, the opening area is changed by a signal from a control unit (not shown). Thereby, the variable valve 11 can restrict
  • the variable valve 11 can circulate oil R also in the inflow direction.
  • a check valve 12 is provided in parallel with the variable valve 11.
  • the variable valve 11 includes a pair of variable valves 11A and 11B.
  • the check valve 12 also includes a check valve 12A provided in parallel to the variable valve 11A and a check valve 12B provided in parallel to the variable valve 11B.
  • the check valve 12 operates so that the oil R does not flow out from the lower cylinder chamber 10L, and the oil R flows smoothly into the lower cylinder chamber 10L.
  • Each upper cylinder chamber 10U is provided with an opening (not shown), a damping force valve 14 (14A, 14B) that generates a damping force when oil R flows out (when contracted), and an inflow A check valve 17 (17A, 17B) for smoothly flowing the oil R at the time (extension) is provided in communication.
  • the check valve 17A is opened against the urging force of the spring, and the oil R flows only in directions different from the damping force valve 14A.
  • the check valve 17B is opened against the urging force of the spring, and the oil R flows only in directions different from the damping force valve 14B. Therefore, the path through which oil R flows out from each upper cylinder chamber 10U is different from the path through which oil R flows into 10U into each upper cylinder chamber.
  • the first communication path 21 communicates the upper cylinder chamber 10U of one damping force control cylinder 10A and the lower cylinder chamber 10L of the other damping force control cylinder 10B. That is, the upper cylinder chamber 10U of the damping force control cylinder 10A communicates with the first communication passage 21 via the check valve 17A and the damping force valve 14A, and the lower cylinder chamber 10L of the damping force control cylinder 10B includes the variable valve 11B, And it communicates with the first communication path 21 via the check valve 12B.
  • the second communication path 22 communicates the lower cylinder chamber 10L of one damping force control cylinder 10A and the upper cylinder chamber 10U of the other damping force control cylinder 10B. That is, the lower cylinder chamber 10L of the damping force control cylinder 10A communicates with the second communication path 22 via the variable valve 11A and the check valve 12A, and the upper cylinder chamber 10U of the damping force control cylinder 10B includes the check valve 17B and The second communication passage 22 communicates with the damping force valve 14B.
  • the oil receiving portion 23 is provided in each of the first communication path 21 and the second communication path 22, and stores oil R in the first communication path 21 and the second communication path 22 according to the operation of the damping force control cylinder 10. And discharge. Therefore, the oil receiving portion 23 includes a pair of an oil receiving portion 23 ⁇ / b> A communicating with the first communication passage 21 and an oil receiving portion 23 ⁇ / b> B communicating with the second communication passage 22.
  • the oil receiving part 23 is comprised from an accumulator.
  • the roll rigidity of the vehicle can be imparted by the accumulator.
  • the accumulator container is filled with gas, and acts as a gas spring by changing the volume of the gas due to the volume change of the oil R in the accumulator container.
  • the oil receiver 23 (23A, 23B) will be described as an accumulator 23 (23A, 23B).
  • the suspension system 100 includes a variable valve 24 that restricts the flow rate of the oil R flowing into the accumulator 23.
  • the accumulator 23 includes a pair of accumulators 23A and 23B. Therefore, the variable valve 24 also includes a pair of variable valves 24A and 24B. Similar to the variable valve 11, the variable valve 24 is configured such that the opening area can be changed by electrical control. Specifically, the opening area is changed by a signal from a control unit (not shown). Thereby, the variable valve 24 can limit the flow rate of the oil R flowing into the accumulator 23.
  • the variable valve 24 can circulate the oil R also in the outflow direction.
  • a check valve 25 is provided in parallel with the variable valve 24.
  • the variable valve 24 includes a pair of variable valves 24A and 24B.
  • the check valve 25 also includes a check valve 25A provided in parallel with the variable valve 24A and a check valve 25B provided in parallel with the variable valve 24B.
  • the check valve 25 operates so that the oil R flows smoothly from the accumulator 23 while preventing the oil R from flowing into the accumulator 23. Therefore, the oil R flows out from the accumulator 23 through the check valve 25. On the other hand, the oil R flows into the accumulator 23 only through the variable valve 24. Thereby, it becomes possible to adjust each pressure of the 1st communicating path 21 and the 2nd communicating path 22.
  • FIG. 2 The effect of such an accumulator 23 is shown in FIG.
  • the vertical axis represents the spring reaction force
  • the horizontal axis represents the stroke amount.
  • the broken line indicates the characteristic due to the spring 40 alone
  • the solid line indicates the characteristic due to both the spring 40 and the accumulator 23.
  • an orifice level communication path that is arranged in parallel to the variable valve 24 and the check valve 25 is provided in the variable valve 24.
  • the communication path allows the accumulator 23 to communicate with each of the first communication path 21 and the second communication path 22 at all times, and can also provide a damping force characteristic during a low-speed cylinder stroke.
  • the vehicle 1 is provided with an acceleration detection unit 30 that detects the acceleration in the vertical direction of the vehicle body of the vehicle 1.
  • the detection result of the acceleration detection unit 30 is transmitted to a control unit (not shown).
  • the control unit adjusts the flow rate of the oil R flowing out from the lower cylinder chamber 10L based on the detection result of the acceleration detection unit 30. Therefore, in the present embodiment, the “detection unit” described above corresponds to the “acceleration detection unit 30”.
  • the communication mechanism 39 makes the first communication path 21 and the second communication path 22 in communication and non-communication.
  • the communication mechanism 39 can be configured by a mechanical type or an electromagnetic type, and does not affect suspension performance based on the traveling of the vehicle 1 described later.
  • the communication mechanism 39 is a vehicle 1 that is caused by internal leakage of the oil R in the hydraulic circuit including the first communication path 21 and the hydraulic circuit including the second communication path 22, or by an increase or decrease in the volume of the oil R due to a temperature change of the oil R. For example, the oil R is leaked between the two hydraulic circuits at a very small flow rate to maintain the volume balance and prevent an unbalanced state.
  • shock absorbers 49 are incorporated in the left front wheel 2A and the right front wheel 2B of the vehicle 1, respectively.
  • This shock absorber 49 is composed of a pair, and the upper cylinder chamber 49U and the lower cylinder chamber 49L of each shock absorber 49 communicate with each other via a variable valve 350 and a check valve 351.
  • a known stabilizer 352 is provided between the pair of shock absorbers 49 incorporated in the left front wheel 2A and the right front wheel 2B of the vehicle 1.
  • the suspension system 100 having such a configuration is provided in the vehicle 1.
  • the oil R smoothly flows into the upper cylinder chamber 10U of one damping force control cylinder 10A via the check valve 17A, and the check valve 12B also enters the lower cylinder chamber 10L of the other damping force control cylinder 10B. Flows smoothly through.
  • These oils R correspond to those that have flowed out of the accumulator 23A through the check valve 25A.
  • a large damping force is applied to the damping force control cylinder 10A by the variable valve 11A of the lower cylinder chamber 10L of the damping force control cylinder 10A and the variable valve 24B of the accumulator 23B.
  • a large damping force acts on the damping force control cylinder 10B by the damping force valve 14B and the variable valve 24B of the accumulator 23B.
  • the suspension system 100 functions as a suspension with damping force control.
  • the acceleration detection unit 30 provided in the vehicle 1 estimates the movement of the vehicle body due to unsprung input (flapping) from the road surface, and optimally controls the damping force in the extension direction of each wheel. By doing so, the fluttering of the wheel 2 is suppressed, the grounding property is improved, and the riding comfort and the running stability are ensured.
  • FIG. 7 shows a flow of processing performed in the control unit when a rolling direction component force is input to the vehicle 1 by a single wheel input of the front wheel.
  • a rolling direction component force is input to the vehicle 1 by a single wheel input of the front wheels (step # 01)
  • the vehicle body side motion due to the input from the road surface is estimated based on the detection result of the acceleration detection unit 30 (step # 02).
  • the movement of the vehicle body is suppressed by controlling the damping force of the variable valve 11 on the rear wheel side (step # 03). Thereby, riding comfort can be improved.
  • FIG. 8 shows a flow of processing performed by the control unit when a rolling direction component force is input when the vehicle 1 is turning.
  • the movement of the vehicle body is estimated (step # 03) based on the detection result of the steering angle sensor (step # 01) and the detection result of the vehicle speed sensor (step # 02).
  • step # 04 By controlling the damping force of the variable valve 11 and the variable valve 24 on the rear wheel side so that the neutral steering is synchronized (step # 04) and changing the roll stiffness distribution, the vehicle stability during turning and turning can be improved. improves.
  • a traveling pattern of the vehicle 1 is shown in FIG.
  • a pair of pylons having a spacing of 2.25 m is arranged in three rows every 20 m.
  • the pair of pylons in the fourth row has a distance of 2.8 m centering on the left end of the pylon on the left side in the third row in the traveling direction, and is 20 m away from the third row pylon in the traveling direction.
  • a pair of pylons in the 5th to 7th rows are concentric with the pylons in the 1st to 3rd rows and are arranged every 20 m at intervals of 2.8 m.
  • the relationship between the steering angle and the yaw rate of the steering when the vehicle 1 travels in such a traveling pattern, the relationship between the steering angle and the roll angle, and the relationship between the steering angle and the lateral acceleration are shown in FIG. 12.
  • the characteristic when the suspension system 100 is not mounted is indicated by a broken line
  • the characteristic when the suspension system 100 is mounted is indicated by a solid line.
  • the yaw with respect to the steering angle is stable by the suspension system 100.
  • the suspension system 100 also stabilizes the roll posture with respect to the steering angle.
  • the suspension system 100 accelerates the rise of the lateral acceleration with respect to the steering angle.
  • the present suspension system 100 during normal traveling in a state where the lateral acceleration such as straight traveling or a gentle curve is small, the state of the vehicle body is detected based on the detection result of the acceleration detection unit 30 disposed on the vehicle body, and damping force control is performed. Riding comfort can be improved by controlling the damping force on the extension side of each wheel of the cylinder 10.
  • the rear wheel side variable valve 11 and the variable valve 24 function as a damping force variable valve, and control the damping force to control the vehicle body. Suppresses movement.
  • the damping force of the variable valve 11 on the rear wheel side and the variable valve 24 is controlled by the steering angle sensor and the vehicle speed sensor so that the neutral steering in which the yaw and the lateral acceleration are synchronized,
  • the damping force of the variable valve 11 on the rear wheel side and the variable valve 24 is controlled by the steering angle sensor and the vehicle speed sensor so that the neutral steering in which the yaw and the lateral acceleration are synchronized,
  • FIG. 13 schematically shows the vehicle 1 provided with the suspension system 100 according to the present embodiment.
  • the suspension system 100 on the rear wheel side is the same as that of the first embodiment.
  • the suspension system 100 on the front wheel side is the same as the suspension system 100 on the rear wheel side. Accordingly, the operation and function are the same as those in the first embodiment, and will be described briefly below.
  • the damping force control cylinders 10 on the front wheel side and the rear wheel side are configured by cross-connecting the upper cylinder chamber 10U and the lower cylinder chamber 10L on the left and right, respectively.
  • the effect can be further enhanced as compared with the suspension system 100 of the first embodiment. For example, when an input in the bounce direction is input to the right front wheel 2B, a vertical upward load is applied to the front right side of the vehicle body by the reaction force, and the vehicle body moves in the upward direction, and the entire vehicle body relatively moves in the rolling direction. .
  • the movement of the vehicle body is estimated from the detection result of the acceleration detection unit 30 mounted on the vehicle 1, and the variable valves 11 and the variable valves 24 on both the front wheel side and the rear wheel side are controlled to increase the roll damping force, Furthermore, the movement of the vehicle body is suppressed.
  • variable valve 11 on both the front wheel side and the rear wheel side so that the neutral steering in which the yaw and the lateral G are synchronized by the detection result of the steering angle sensor and the detection result of the vehicle speed sensor at the time of turning where the lateral acceleration occurs to some extent, and
  • the damping force of the variable valve 24 By controlling the damping force of the variable valve 24 and changing the roll stiffness distribution, agility and vehicle stability during turning are improved.
  • the roll rigidity based on the supply pressure from the accumulator 23 can be added only at the time of the roll, and even when turning for a relatively long time, the front wheel side And the roll can be suppressed on both the rear wheel side. Therefore, vehicle stability can be further improved.
  • the suspension system 100 is provided across the left wheel and the right wheel provided to face each other in the width direction of the vehicle 1.
  • the suspension system 100 is different from the first and second embodiments in that the suspension system 100 is provided over front and rear wheels provided in the front-rear direction of the vehicle 1. Below, it demonstrates focusing on a different point.
  • FIG. 14 schematically shows the suspension system 100 according to this embodiment mounted on the vehicle 1.
  • a damping force control cylinder 10 included in the suspension system 100 according to the present embodiment is incorporated into a pair of wheels 2 among a plurality of wheels 2 included in the vehicle 1.
  • the plurality of wheels 2 are the left front wheel 2A, the right front wheel 2B, the left rear wheel 2C, and the right rear wheel 2D of the vehicle 1.
  • the pair of wheels 2 are a front wheel and a rear wheel provided in the front-rear direction of the vehicle 1. Therefore, the damping force control cylinder 10 consists of a pair.
  • the left front wheel 2A and the left rear wheel 2C are paired
  • the right front wheel 2B and the right rear wheel 2D are paired.
  • the damping force control cylinder 10 incorporated in the left front wheel 2A and the right front wheel 2B is indicated by reference numeral 10A
  • the damping force incorporated in the left rear wheel 2C and the right rear wheel 2D is indicated by reference numeral 10B.
  • the force control cylinder 10 is indicated by reference numeral 10B. Since the suspension system 100 provided on the left side of the vehicle 1 and the suspension system 100 provided on the right side of the vehicle 1 are similar in operation and function, the suspension system 100 provided mainly on the left side of the vehicle 1 will be used below. I will explain.
  • the first communication path 21 communicates the upper cylinder chamber 10U of one damping force control cylinder 10A and the lower cylinder chamber 10L of the other damping force control cylinder 10B. That is, the upper cylinder chamber 10U of the damping force control cylinder 10A incorporated in the left front wheel 2A communicates with the first communication passage 21 via the damping force valve 14A and the check valve 17A, and the damping incorporated in the left rear wheel 2C.
  • the lower cylinder chamber 10L of the force control cylinder 10B communicates with the first communication passage 21 via the variable valve 11B and the check valve 12B.
  • the second communication path 22 communicates the lower cylinder chamber 10L of one damping force control cylinder 10A and the upper cylinder chamber 10U of the other damping force control cylinder 10B. That is, the lower cylinder chamber 10L of the damping force control cylinder 10A incorporated in the left front wheel 2A communicates with the second communication passage 22 via the variable valve 11A and the check valve 12A, and the damping incorporated in the left rear wheel 2C.
  • the upper cylinder chamber 10U of the force control cylinder 10B communicates with the second communication path 22 via the damping force valve 14B and the check valve 17B.
  • the suspension system 100 having such a configuration is provided on the left side of the vehicle 1.
  • the right front wheel 2B and the right rear wheel 2D of the vehicle 1 are also provided with a suspension system 100 configured in the same manner as described above.
  • the stabilizer 352 is provided on the front side of the vehicle 1 and the rear side of the vehicle 1 along the width direction (between the left side portion and the right side portion of the vehicle 1).
  • the operation of the suspension system 100 will be described.
  • the front wheel side damping force control cylinder 10A relatively strokes in the bound direction as the front of the vehicle body squeezes.
  • the damping force control cylinder 10B on the rear wheel side relatively strokes in the rebound direction.
  • the oil R flows out from the upper cylinder chamber 10U of one damping force control cylinder 10A via the damping force valve 14A, and the lower cylinder of the other damping force control cylinder 10B. It also flows out from the chamber 10L through the variable valve 11B.
  • These oils R flow into the accumulator 23A through the variable valve 24A.
  • the oil R smoothly flows into the lower cylinder chamber 10L of one damping force control cylinder 10A via the check valve 12A, and the check valve 17B enters the upper cylinder chamber 10U of the other damping force control cylinder 10B. Flows smoothly through. These oils R correspond to those that have flowed out of the accumulator 23B via the check valve 25B.
  • a large damping force acts on the damping force control cylinder 10A by the damping force valve 14A of the upper cylinder chamber 10U of the damping force control cylinder 10A and the variable valve 24A of the accumulator 23A.
  • a large damping force is applied to the damping force control cylinder 10B by the variable valve 11B of the lower cylinder chamber 10L of the damping force control cylinder 10B and the variable valve 24A of the accumulator 23A.
  • the front wheel side damping force control cylinder 10A relatively strokes in the rebound direction as the front of the vehicle 1 is lifted.
  • the rear of the vehicle squeezes, and accordingly, the damping force control cylinder 10B on the rear wheel side relatively strokes in the bound direction.
  • the oil R flows out from the lower cylinder chamber 10L of one damping force control cylinder 10A via the variable valve 11A, and the upper cylinder chamber of the other damping force control cylinder 10B. Also from 10U, it flows out through the damping force valve 14B.
  • These oils R flow into the accumulator 23B through the variable valve 24B.
  • the oil R smoothly flows into the upper cylinder chamber 10U of one damping force control cylinder 10A via the check valve 17A, and the check valve 12B also enters the lower cylinder chamber 10L of the other damping force control cylinder 10B. Flows smoothly through.
  • These oils R correspond to those that have flowed out of the accumulator 23A through the check valve 25A.
  • a large damping force is applied to the damping force control cylinder 10A by the variable valve 11A of the lower cylinder chamber 10L of the damping force control cylinder 10A and the variable valve 24B of the accumulator 23B.
  • a large damping force acts on the damping force control cylinder 10B by the damping force valve 14B and the variable valve 24B of the accumulator 23B.
  • the oil R flows out from the upper cylinder chamber 10U of the damping force control cylinder 10B incorporated in the left rear wheel 2C via the damping force valve 14B.
  • the oil R smoothly flows into the lower cylinder chamber 10L of the damping force control cylinder 10A incorporated in the left front wheel 2A via the check valve 12A, and a small amount of oil R corresponding to the rod entering the damping force control cylinder 10A. Flows into the accumulator 23B through the variable valve 24B.
  • the oil R flows out from the upper cylinder chamber 10U of the damping force control cylinder 10A incorporated in the left front wheel 2A through the damping force valve 14A.
  • This oil R flows smoothly into the lower cylinder chamber 10L of the damping force control cylinder 10B incorporated in the left rear wheel 2C via the check valve 12B, and a small amount of oil corresponding to the rod entering the damping force control cylinder 10B.
  • R flows into the accumulator 23A through the variable valve 24A.
  • a damping force is applied to the damping force control cylinder 10B by the damping force valve 14B, but the oil R flowing into the variable valve 24B of the accumulator 23B is a small amount corresponding to the amount of the rod entering the damping force control cylinder 10B. Therefore, the effect of the damping force is small.
  • a damping force is applied to the damping force control cylinder 10A by the damping force valve 14A, but the oil R flowing into the variable valve 24A of the accumulator 23A corresponds to the amount of the rod entering the damping force control cylinder 10B, but a small amount. Therefore, the effect of the damping force is small.
  • the oil R flows out from the lower cylinder chamber 10L of the damping force control cylinder 10A incorporated in the right front wheel 2B through the variable valve 11A.
  • the oil R smoothly flows into the upper cylinder chamber 10U of the damping force control cylinder 10B incorporated in the right rear wheel 2D via the check valve 17B.
  • the oil R corresponding to the rod volume discharged from the lower cylinder chamber 10L from the accumulator 23B flows into the upper cylinder chamber 10U via the check valve 25B.
  • the damping force in the extending direction of the damping force control cylinder 10A is mainly generated by the variable valve 11A in the lower cylinder chamber 10L.
  • the oil R flows out from the lower cylinder chamber 10L of the damping force control cylinder 10B incorporated in the right rear wheel 2D through the variable valve 11B.
  • the oil R smoothly flows into the upper cylinder chamber 10U of the damping force control cylinder 10A incorporated in the right front wheel 2B via the check valve 17A.
  • the oil R corresponding to the rod volume discharged from the lower cylinder chamber 10L from the accumulator 23A flows into the upper cylinder chamber 10U via the check valve 25A and the check valve 17A.
  • the damping force in the extending direction of the damping force control cylinder 10B is generated mainly by the variable valve 11B of the lower cylinder chamber 10L.
  • the suspension system 100 functions as a suspension with damping force control.
  • the suspension system 100 functions as a suspension with damping force control.
  • the acceleration detection unit 30 provided in the vehicle 1 estimates the movement of the vehicle body due to unsprung input (flapping) from the road surface, and optimally controls the damping force in the extending direction of each wheel, thereby varying the fluttering of the wheels 2. Suppressing and improving the ground contact, ensuring ride comfort and running stability.
  • a variable valve 24 provided in the accumulator 23 that exhibits an effect of attenuating the pitch in the hydraulic circuit by detecting the longitudinal direction and the pitch speed by the acceleration detection unit 30. It is controlled by the control unit to attenuate the pitch.
  • FIG. 21 shows a suspension system 100 according to a fourth embodiment, and is a schematic diagram showing a pair of front wheels (or rear wheels).
  • the suspension system 100 of the present embodiment can be applied to a pair of left and right wheels 2 of at least one of a front wheel and a rear wheel.
  • the left wheel 32A and the right wheel 32B are attached to the vehicle body 9 so as to be rotatable around the rotation axes XA and XB, respectively.
  • the wheel 2 is attached to the vehicle body 9 so as to be movable up and down via the left hydraulic cylinder 4 and the right hydraulic cylinder 5.
  • the wheel 2 is attached to the vehicle body 9 via a link member 3 that can swing up and down from the lower end 1 ⁇ / b> A of the vehicle body 9.
  • the left hydraulic cylinder 4 and the right hydraulic cylinder 5 have upper ends attached to the support portion 1B of the vehicle body 9, and lower ends attached to the intermediate portion 3A of the link member 3, so that the vehicle body 9 and the wheel 2 It is configured so that it can be attenuated by expanding and contracting with respect to the vertical relative movement.
  • the suspension system 100 includes a left hydraulic cylinder 4 and a right hydraulic cylinder 5 that are attached across the left and right support portions 1B of the vehicle body 9 and the intermediate portion 3A of the left and right link members 3,
  • the first oil passage 6 that connects the upper cylinder chamber 4U of the left hydraulic cylinder 4 and the lower cylinder chamber 5L of the right hydraulic cylinder 5 in communication, the upper cylinder chamber 5U of the right hydraulic cylinder 5 and the lower cylinder of the left hydraulic cylinder 4
  • the second oil passage 7 that communicates with the chamber 4L and the ports 110 and 111 of the cylinder chambers 4U, 4L, 5U, and 5L are provided corresponding to the ports 110 and 111, respectively.
  • a differential pressure mechanism 8 for making a difference in the input / output pressure, and accumulators 23A and 23B provided in communication with the first oil passage 6 and the second oil passage 7 are provided. That is, the accumulators 23A and 23B are a pair.
  • the accumulators 23A and 23B generate system pressure and supply oil R from the cylinder chambers 4U, 4L, 5U, and 5L, and conversely supply oil R to the cylinder chambers 4U, 4L, 5U, and 5L. Moreover, it is provided in order to provide the roll rigidity of the vehicle.
  • the containers of the accumulators 23A and 23B are filled with gas, and act as a gas spring by changing the volume of the gas according to the volume of the oil R. That is, when the oil R flows into the accumulators 23A and 23B, the gas is compressed, a repulsive force due to the spring force of the gas is added to the oil R, and the roll rigidity (stabilizer function) of the vehicle can be imparted.
  • the first oil passage 6 and the accumulator 23A are connected in communication by a third oil passage 311, while the second oil passage 7 and the accumulator 23B are connected in communication by a fourth oil passage 312.
  • the third oil passage 311 and the fourth oil passage 312 are respectively provided with load mechanisms 13 that apply a load when the oil R enters the accumulators 23A and 23B. Further, between the third oil passage 311 and the fourth oil passage 312, the oil volume between the oil passages increases and decreases, and the balance of the oil R is allowed with respect to the vehicle inclination or the like due to the difference.
  • a communication mechanism 39 is provided.
  • the upper and lower cylinder chambers of the hydraulic cylinders 4 and 5 are divided by pistons P, respectively, and the piston rod PR is provided so as to penetrate the lower cylinder chambers 4L and 5L.
  • the differential pressure mechanism 8 includes a check valve 8A that allows only the entry of the oil R into the cylinder chamber, and allows only the discharge of the oil R from the cylinder chamber and is opened while the differential pressure exceeds a predetermined pressure value.
  • a damping force valve 8B for adjusting the flow rate based on the pressure and an orifice 8C for providing resistance at the time of discharge are provided. The relationship between the differential pressure of the damping force valve 8B and the flow rate is as shown in FIG.
  • the check valve 8A and the damping force valve 8B are provided with a spring 15 that applies a closing force to the valve body.
  • the urging force of the spring 15 is large, the flow resistance of the oil R is increased, and conversely, when the urging force is small, the flow resistance of the oil R may be decreased, or a leaf valve structure may be used.
  • the check valve 8A is not set to a high flow resistance so that the oil R can easily flow in at the time of inflow.
  • the damping force valve 8B changes the valve opening amount in accordance with the flow rate and the differential pressure, and generates a corresponding damping force.
  • the damping force valve 8B is configured to apply an elastic biasing force by a leaf spring or the like in the valve closing direction. Can be used.
  • the differential pressure mechanism 8 is configured such that the flow resistance when the oil R is discharged from the cylinder chambers 4U, 4L, 5U, and 5L causes the oil R to enter the cylinder chambers 4U, 4L, 5U, and 5L. It is set larger than the flow resistance. That is, rather than the damping force when the oil R enters the cylinder chambers 4U, 4L, 5U, and 5L via the check valve 8A, the oil R passes through the cylinder chambers 4U, 4L, 5U, and the damping force valve 8B. The damping force when discharged from 5L is set larger.
  • the relationship between the piston speed and the flow resistance (corresponding to the damping force) is controlled by the flow resistance by the orifice 8C when the piston speed is low, as shown in FIG. 23, by the damping force valve 8B and the orifice 8C.
  • the flow resistance changes after the damping force valve 8B is opened.
  • the appropriate damping desired for the piston speed can be obtained.
  • the load mechanism 13 corresponds to a damping force valve 13A (corresponding to “second valve for accumulator” according to the present invention) and a check valve 13B (corresponding to “first valve for accumulator” according to the present invention). ) And an orifice 13C.
  • the check valve 13B is provided in each accumulator 23A, 23B so as to discharge the oil R from each accumulator 23A, 23B. Therefore, the check valve 13B only allows the oil R to be discharged from the accumulators 23A and 23B.
  • the damping force valve 13A is provided in the accumulators 23A and 10 so as to adjust the flow rate of the oil R entering the respective accumulators 23A and 23B. Therefore, the damping force valve 13A allows only the oil R to enter the accumulators 23A and 23B, and adjusts the flow rate based on the pressure value while the pressure is opened at a predetermined pressure value or more.
  • the damping force valve 13A and the check valve 13B are provided with springs that apply a closing force to the valve body.
  • the damping force valve 13A is configured to give a larger load to the oil R than the load of the check valve 13B. That is, the check valve 13B is set to a low flow resistance so that the oil R flows smoothly from the accumulators 23A and 23B, and the damping force valve 13A is configured to generate an appropriate damping force.
  • the damping force valve 13A on the accumulator 23A side is configured to apply a load larger than the load applied to the oil R by the check valve 13B on the accumulator 23A side
  • the damping force valve 13A on the accumulator 23B side is configured to be an accumulator.
  • the check valve 13B on the 23B side is not limited to the one configured to apply a load larger than the load applied to the oil R.
  • the damping force valve 13A provided in the accumulator 23A applies a larger load than the load applied to the oil R by the check valve 13B provided in the accumulator 23B on the side different from the accumulator 23A provided with the damping force valve 13A. It is also possible to configure.
  • the damping force valve 13A provided in the accumulator 23B has a load larger than the load applied to the oil R by the check valve 13B provided in the accumulator 23A on the side different from the accumulator 23A provided with the damping force valve 13A. It can also be configured to provide.
  • the damping force valve 13A on the accumulator 23A side is configured to apply a load larger than the load applied to the oil R by the check valve 13B on the accumulator 23A side
  • the damping force valve 13A on the accumulator 23B side is configured to be an accumulator.
  • the check valve 13B on the 23B side is configured to apply a load larger than the load applied to the oil R
  • the damping force valve 13A provided in the accumulator 23A is a load applied to the oil R by the check valve 13B provided in the accumulator 23B.
  • the damping force valve 13A provided in the accumulator 23B may be configured to apply a load larger than the load applied to the oil R by the check valve 13B provided in the accumulator 23A. This It is possible to.
  • the orifice 13C can adjust the damping force in a region where the piston speed is low.
  • the orifice 13C is not necessarily required, and may be omitted depending on the performance required for the suspension system 100.
  • both the left hydraulic cylinder 4 and the right hydraulic cylinder 5 extend, and the left hydraulic cylinder 4 and the right hydraulic cylinder 5 as shown in FIG.
  • a damping force is generated mainly by discharging the oil R via the differential pressure mechanism 8 corresponding to the lower cylinder chambers 4L and 5L.
  • the differential pressure mechanism 8 corresponding to the upper cylinder chambers 4U and 5U has the check valve 8A set so that the oil R flows smoothly in order to ensure a sufficient fluid pressure in the cylinder chamber. Yes.
  • “Shrink bounce” occurs when both wheels 2 bounce, and the oil R is discharged from the upper cylinder chambers 4U and 5U as shown in FIG. 25, via the corresponding differential pressure mechanism 8, It flows into the lower cylinder chambers 5L, 4L of the opposite cylinder. At this time, since the absolute value of the amount of expansion / contraction is equal between one upper cylinder chamber 4U (5U) and the other lower cylinder chamber 5L (4L), the upper cylinder chamber 4U (5U) enters. Oil R corresponding to the volume of the piston rod PR flows into the accumulator 23A (23B) via the load mechanism 13.
  • a damping force is generated by discharging the oil R through the differential pressure mechanism 8 corresponding to the upper cylinder chambers 4U and 5U.
  • the flow rate of the oil R corresponding to the volume of the rod passing through the load mechanism 13 is small, and the damping force generated by the load mechanism 13 is small.
  • the differential pressure mechanism 8 corresponding to the lower cylinder chambers 4L and 5L has a check valve 8A set to a characteristic that allows the oil R to flow smoothly in order to ensure a sufficient fluid pressure in the cylinder chamber.
  • “Roll” occurs when the vehicle turns to the right or left, and here, the case of turning left will be described.
  • the left wheel 32A (turning inner ring) moves relatively in the rebound direction, and the oil R is discharged from the lower cylinder chamber 4L as shown in FIG. 26, and the corresponding differential pressure mechanism 8 and load mechanism 13 are discharged. And flows into the accumulator 23B.
  • the right wheel 32B (turning outer wheel) moves in the relative bounce direction, and the oil R is discharged from the upper cylinder chamber 5U as shown in FIG. 26, and the corresponding differential pressure mechanism 8 and load mechanism 13 are moved. Via, it flows into the accumulator 23B.
  • the differential pressure mechanism 8 corresponding to the lower cylinder chamber 4L of the left hydraulic cylinder 4, the differential pressure mechanism 8 corresponding to the upper cylinder chamber 5U of the right hydraulic cylinder 5, and the load mechanism 13 corresponding to the accumulator 23B. Can exhibit a great damping effect.
  • Oil R is supplied from the accumulator 23A to the upper cylinder chamber 4U of the left hydraulic cylinder 4 and the lower cylinder chamber 5L of the right hydraulic cylinder 5, but the corresponding differential pressure mechanisms 8 are provided on the lower side.
  • the check valves 8A for the upper cylinder chamber 4U and the lower cylinder chamber 5L are set so that the oil R flows smoothly.
  • “bounce” or “bounce” or “bounce” can be achieved by providing the differential pressure mechanism 8 or the load mechanism 13 according to the vertical movement of the wheel 2 without providing a complicated mechanical mechanism or control mechanism. Good attenuation can be achieved with respect to the “roll”, and it is possible to ensure both running stability and good riding comfort. Further, according to the suspension system 100 of the present embodiment, the absorber function and the stabilizer function can be combined, the stabilizer bar can be omitted, and the structure around the wheel 2 can be simplified.
  • FIG. 27 shows the vehicle body 9 incorporating the suspension system 100 of the present embodiment.
  • the suspension system 100 according to the fourth embodiment includes the differential pressure mechanism 8, but the suspension system 100 according to the fifth embodiment includes a suspension mechanism 50 instead of the differential pressure mechanism 8.
  • the left hydraulic cylinder 4 and the right hydraulic cylinder 5 are attached across the left and right support portions 1B of the vehicle body 9 and the intermediate portion 3A of the left and right link members 3. Accordingly, the left hydraulic cylinder 4 and the right hydraulic cylinder 5 are respectively provided between the position where the support portion 1B of the vehicle body 9 is connected and the suspension mechanism 50 when viewed in the horizontal direction.
  • the upper cylinder chamber 4U of the left hydraulic cylinder 4 and the lower cylinder chamber 5L of the right hydraulic cylinder 5 are connected in communication by the first oil passage 6 so that the upper cylinder chamber 5U of the right hydraulic cylinder 5 and the lower hydraulic cylinder 4
  • the side cylinder chamber 4 ⁇ / b> L is connected in communication with the second oil passage 7.
  • the first oil passage 6 and the second oil passage 7 are respectively provided with accumulators 23A and 23B in communication.
  • the first oil passage 6 and the accumulator 23A are connected in communication by a third oil passage 311, and the second oil passage 7 and the accumulator 23B are connected in communication by a fourth oil passage 312.
  • the load mechanism 13 is provided in each of the third oil passage 311 and the fourth oil passage 312.
  • a communication mechanism 39 is also provided across the third oil passage 311 and the fourth oil passage 312.
  • the load mechanism 13 includes a damping force valve 13A, a check valve 13B, and an orifice 13C, and the damping force valve 13A is configured to apply a larger load to the oil R than the load of the check valve 13B. Has been. Thereby, the function of the stabilizer which suppresses the roll of the vehicle body 9 is realized.
  • the suspension mechanism 50 is provided to reinforce the absorber function.
  • the suspension mechanism 50 is provided in parallel with each of the left hydraulic cylinder 4 and the right hydraulic cylinder 5 and suspends the wheel 2.
  • the suspension mechanism 50 includes a so-called “shock absorber” including a hydraulic damper 51 and a spring 52. Since a well-known shock absorber can be used, a description of its configuration is omitted.
  • a double cylinder type hydraulic damper 51 is used, and a piston valve 60 having a check valve VA1 and a damping force valve VA2 and a base valve 70 having a check valve VA3 and a damping force valve VA4 are provided.
  • the damping force generated by the damping force valve VA4 is set to be larger than the damping force generated by the damping force valve VA2, and the damping force generated by the check valve VA1 and the check valve VA3 is extremely smaller than the damping force generated by the damping force valve VA2.
  • both the left hydraulic cylinder 4 and the right hydraulic cylinder 5 extend together, and the left hydraulic cylinder 4 and the right hydraulic cylinder 5 as shown in FIG.
  • “elongation bounce” by single wheel input as shown in FIG. 32 will be described.
  • “Shrink bounce” occurs when both wheels 2 bounce, and the oil R is discharged from the upper cylinder chambers 4U and 5U and the lower cylinder chambers 5L and 4L of the opposite cylinder as shown in FIG. Flow into.
  • the upper cylinder chamber 4U (5U) enters.
  • Oil R corresponding to the volume of the piston rod PR flows into the accumulator 23A (23B) via the load mechanism 13.
  • the flow rate of the oil R corresponding to the volume of the rod passing through the load mechanism 13 is small, and the damping force generated by the load mechanism 13 is small.
  • the hydraulic damper 51 of the suspension mechanism 50 also tries to contract both left and right. For this reason, a damping force is generated by the damping force valve VA4.
  • “Roll” occurs when the vehicle turns to the right or left, and here, the case of turning right will be described.
  • the left wheel 32A (turning outer wheel) moves relatively in the bounce direction, and the oil R is discharged from the upper cylinder chamber 4U and flows into the accumulator 23A via the load mechanism 13, as shown in FIG. .
  • the right wheel 32B (turning inner ring) moves relatively in the rebound direction, and the oil R is discharged from the lower cylinder chamber 5L and flows into the accumulator 23A via the load mechanism 13, as shown in FIG. To do.
  • the damping force valve 13A of the load mechanism 13 can exert a great damping effect.
  • the oil R is smoothly supplied from the accumulator 23B to the lower cylinder chamber 4L of the left hydraulic cylinder 4 and the upper cylinder chamber 5U of the right hydraulic cylinder 5.
  • the “roll” acts so that the damping force by the hydraulic damper 51 of the suspension mechanism 50 is added to the damping force by the left hydraulic cylinder 4 and the right hydraulic cylinder 5. In this way, it is possible to increase the damping force on the roll to suppress the roll, to ensure the grounding property of the vehicle, and to ensure both running stability and good riding comfort.
  • “Single-wheel input“ shrink bounce ” occurs when one of the left and right wheels 2 bounces when the left or right wheel 2 gets over a protrusion.
  • the left wheel 32A gets over a protrusion or the like.
  • the left wheel 32A moves in the bound direction, and in this case, as shown in FIG. 31, the right wheel 32B hardly strokes.
  • the lower cylinder chamber 5L of the right hydraulic cylinder 5 needs to have enough pressure to compress and retract the coil, the oil R discharged from the upper cylinder chamber 4U of the left hydraulic cylinder 4 hardly flows and passes through the load mechanism 13. Then, it flows into the accumulator 23A. At this time, a damping force corresponding to the stroke amount and the stroke speed is generated by the damping force valve 13A of the load mechanism 13.
  • the oil R is smoothly supplied from the accumulator 23B to the lower cylinder chamber 4L of the left hydraulic cylinder 4.
  • the flow of these oil R is shown in FIG. 31 for easy understanding. It is indicated by a broken line.
  • the damping force by the damping force valve 13A of the load mechanism 13 on the accumulator 23A side the damping force by the damping force valve VA4 of the hydraulic damper 51 on the left wheel 32A side, and Will occur.
  • the damping force is generated, the grounding property of the vehicle is ensured, and both the running stability and the good riding comfort can be achieved.
  • “Elongation bounce” for single wheel input occurs when either the left or right wheel 2 rebounds when passing through a depression or the like with either of the left or right wheel 2.
  • the left wheel 32A moves in the rebound direction.
  • the right wheel 32B hardly strokes. Since the upper cylinder chamber 5U of the right hydraulic cylinder 5 needs pressure to lift the vehicle body 9, the oil R discharged from the lower cylinder chamber 4L of the left hydraulic cylinder 4 hardly flows and passes through the load mechanism 13. Flows into the accumulator 23B. At this time, a damping force corresponding to the stroke amount and the stroke speed is generated by the damping force valve 13A of the load mechanism 13.
  • the oil R is smoothly supplied from the accumulator 23A to the upper cylinder chamber 4U of the left hydraulic cylinder 4.
  • the flow of these oil R is shown in FIG. 32 for easy understanding. It is indicated by a broken line.
  • the damping force by the damping force valve 13A of the load mechanism 13 on the accumulator 23B side and the damping force by the damping force valve VA2 of the hydraulic damper 51 on the left wheel 32A side are Will occur.
  • the damping force is generated, the grounding property of the vehicle is ensured, and both the running stability and the good riding comfort can be achieved.
  • FIG. 33 shows a vehicle body 9 incorporating the suspension system 100 of the present embodiment.
  • the suspension system 100 of the fourth embodiment has been described as including the differential pressure mechanism 8.
  • the suspension system 100 according to the fifth embodiment has been described as including the suspension mechanism 50 instead of the differential pressure mechanism 8.
  • the suspension system 100 according to the sixth embodiment differs from the fourth and fifth embodiments in that both the differential pressure mechanism 8 and the suspension mechanism 50 are provided. Since the configuration is the same as in the fourth and fifth embodiments, description thereof is omitted.
  • FIG. 1 A cross-sectional view schematically showing the configuration of the left hydraulic cylinder 4 is shown in FIG.
  • the damping force control cylinder 10A and the damping force control cylinder 10B it is naturally possible to apply a hydraulic cylinder having a configuration described below to the damping force control cylinder 10A and the damping force control cylinder 10B.
  • the left hydraulic cylinder 4 includes an outer cylinder 41, an inner cylinder 42, a piston P, and a piston rod PR.
  • the outer cylinder 41 and the inner cylinder 42 are formed in a cylindrical shape, and are formed so that the outer diameter of the inner cylinder 42 is smaller than the inner diameter of the outer cylinder 41.
  • the outer cylinder 41 and the inner cylinder 42 are arranged coaxially. Therefore, an annular space 90 is formed between the inner peripheral surface of the outer cylinder 41 and the outer peripheral surface of the inner cylinder 42.
  • the lid 80 is welded so that one side in the axial direction of the outer cylinder 41 is closed.
  • a cylindrical axially extending part 81 extending toward the axially central side of the outer cylinder 41 is formed inside the lid part 80, and the inner cylinder 42 is fitted into the axially extending part 81.
  • a seal member 85 is provided on the inner peripheral surface of the axially extending portion 81 at a portion that contacts the outer peripheral surface of the inner cylinder 42.
  • a fixing portion 101 for attaching the left hydraulic cylinder 4 to the link member 3 is welded to the outside (axially outside) of the lid portion 80.
  • a first cap member 82 is fitted on the other side in the axial direction of the inner cylinder 42 so that the outer peripheral surface is in contact with the inner peripheral surface of the outer cylinder 41, and is positioned with respect to the inner peripheral surface of the outer cylinder 41. Is done.
  • the first cap member 82 is supported by the second cap member 83 from the outside in the axial direction (the side opposite to the fixed portion 101).
  • the outer peripheral surface of the second cap member 83 is provided in contact with the inner peripheral surface of the outer cylinder 41.
  • a Teflon (registered trademark) rod seal 84 is disposed on the radially inner side of the second cap member 83 via an O-ring 131. Thereby, the sealing performance can be enhanced while reducing the sliding resistance when the piston rod PR slides.
  • a seal member 86 is disposed on the outer peripheral surface of the second cap member 83. Thereby, it becomes possible to form between the 2nd cap member 83 and the outer cylinder 41 liquid-tightly.
  • the annular space 90 can be configured in a liquid-tight manner.
  • oil or air is sealed in a liquid-tight manner.
  • the heat insulation of the left hydraulic cylinder 4 can be improved. It is also possible to prevent distortion of the sliding surface (outer peripheral surface) of the piston P due to a stepping stone from the outside.
  • the inner side of the inner cylinder 42 is provided with a piston P coaxially and a piston rod PR that is fixed to the piston P on one side in the axial direction.
  • the piston rod PR is formed so that its outer diameter is smaller than the inner diameter of the inner cylinder 42 and its outer peripheral surface is slidable on the inner peripheral surfaces of the first cap member 82 and the second cap member 83.
  • a region surrounded by the inner peripheral surface of the inner cylinder 42, the piston P, and the lid 80 corresponds to the lower cylinder chamber 4L.
  • a cylindrical tube 93 (corresponding to the “tubular member” of the present invention) is disposed coaxially on the radially inner side.
  • a cap 94 is fastened and fixed to the other side of the piston rod PR with a screw.
  • the cap 94 is formed with a port 111 for supplying and discharging oil R from the upper cylinder chamber 4U and a port 110 for supplying and discharging oil R from the lower cylinder chamber 4L.
  • the cap 94 is welded with a fixing portion 102 for attaching the left hydraulic cylinder 4 to the support portion 1B of the vehicle body 9. Therefore, the ports 110 and 111 can be disposed at positions separated from the lower fixing portion 101.
  • the piston rod PR is fastened and fixed by the cap 94.
  • fixed part 102 is corresponded to the fixing
  • One side of the pipe 93 in the axial direction is inserted through the piston P, and is communicated with the lower cylinder chamber 4L through a space inside the pipe 93 in the radial direction.
  • the space on the radially inner side of the pipe 93 serves as a lower cylinder chamber oil passage 171 for supplying and discharging the oil R in the lower cylinder chamber 4L.
  • the other axial side of the pipe 93, that is, the other axial side of the lower cylinder chamber oil passage 171 is communicated with the port 110 via the radial oil passage 181.
  • the space surrounded by the outer peripheral surface of the pipe 93, the inner peripheral surface of the inner cylinder 42, the piston P, and the first cap member 82 corresponds to the upper cylinder chamber 4U.
  • annular space is formed between the outer peripheral surface of the pipe 93 and the inner peripheral surface of the piston rod PR.
  • One side of this annular space communicates with the upper cylinder chamber 4 ⁇ / b> U via the radial oil passage 182, and the other side communicates with the port 111. Therefore, this annular space becomes the upper cylinder chamber oil passage 170 for supplying and discharging the oil R.
  • the upper cylinder chamber oil passage 170 and the lower cylinder chamber oil passage 171 are provided on the radially inner side of the piston rod PR.
  • the upper cylinder chamber 4U and the lower cylinder chamber 4L are filled with oil R, and the volumes of the upper cylinder chamber 4U and the lower cylinder chamber 4L change as the piston P moves in the inner cylinder 42.
  • oil R is supplied and discharged from the ports 110 and 111.
  • the piston rod PR also moves along the axial direction.
  • the bush 120 is disposed at a position facing the outer peripheral surface of the piston rod PR of the first cap member 82.
  • a small-diameter portion 41A that reduces the inner diameter is formed at the axial end of the outer cylinder 41.
  • a disk-shaped iron plate 150 is disposed on the axial position side (the second cap member 83 side) of the small diameter portion 41A.
  • the iron plate 150 is positioned with its outer peripheral surface in contact with the inner peripheral surface of the outer cylinder 41.
  • a rubber member 151 attached to the iron plate 150 is disposed on the radially inner side of the small diameter portion 41A, and a metal spring 152 that biases the rubber member 151 radially inward is disposed on the outer peripheral surface of the rubber member 151.
  • a disc-shaped iron plate 140 is disposed on the axial end surface of the iron plate 150 on the second cap member 83 side.
  • the outer peripheral surface of the iron plate 140 is positioned in contact with the inner peripheral surface of the outer cylinder 41.
  • a rubber seal member 121 is disposed on the inner peripheral surface of the iron plate 140 and the axial end surface on the second cap member 83 side.
  • the seal member 121 extends in the axial direction along the piston rod PR. This extending portion is urged radially inward by the metal spring 142 from the radially outer side.
  • a resin bush 191 is disposed on the radially inner side of the seal member 121 on which the iron plate 140 is disposed on the radially outer side.
  • the sealing performance especially at the time of low pressure can be enhanced, and the oil R in the left hydraulic cylinder 4 can be prevented from leaking through the outer peripheral surface of the piston rod PR. Therefore, the oil R can be prevented from leaking outside.
  • the piston rod PR can move coaxially with the piston P.
  • a cover member 160 is disposed on the cap 94 so as to cover at least part of the outer peripheral surface of the piston rod PR and the outer cylinder 41. Thereby, it becomes possible to protect the outer peripheral surface of the piston rod PR from dust or the like.
  • the acceleration detection unit 30 that detects the vertical acceleration of the vehicle body of the vehicle 1 is provided, and the variable valve 11 is based on the detection result of the acceleration detection unit 30. It has been described that the opening area is adjusted. However, the scope of application of the present invention is not limited to this. A method other than the acceleration detection unit 30, for example, a configuration in which the stroke amount of the wheel is detected and the opening area of the variable valve 11 is adjusted based on the detected result may be employed. Of course, it is naturally possible to use other methods.
  • the damping force valve 14 is illustrated as a mechanical valve.
  • the scope of application of the present invention is not limited to this. It is naturally possible to provide an electromagnetic variable valve in the upper cylinder chamber 10U as well as the lower cylinder chamber 10L.
  • the inflow side valve of the accumulator 23 is described as the variable valve 24.
  • the valve on the inflow side of the accumulator 23 can be constituted by a mechanical valve (damping force valve).
  • an orifice is provided in parallel with the mechanical valve (damping force valve) and the check valve 25 so that each of the first communication path 21 and the second communication path 22 does not become negative pressure.
  • the accumulator 23 can communicate with each of the first communication path 21 and the second communication path 22.
  • the differential pressure mechanism 8 and the load mechanism 13 in the fourth embodiment are not limited to being individually formed, and for example, as shown in FIG. It may be.
  • the unit Y can be installed simply by providing the oil passage connection portions 16 corresponding to the respective ports and connecting each oil passage to the oil passage connection portion 16. In this way, by integrating the differential pressure mechanism 8 and the load mechanism 13 as a unit, exposure of parts such as valves can be prevented to improve the durability of the parts, and the attachment of the unit Y to the vehicle body 9 can be improved. It can be improved and space saving can be realized.
  • the differential pressure mechanism 8 and the load mechanism 13 are not limited to the specific configuration described in the previous embodiment, and may include a configuration for electrically controlling the valve opening state.
  • the configuration of the left hydraulic cylinder 4 (right hydraulic cylinder 5) is schematically shown in FIG.
  • the scope of application of the present invention is not limited to this.
  • the present invention can naturally be applied to a hydraulic cylinder included in the McPherson-Strut type suspension mechanism 50.
  • the bracket 202 is used instead of the fixing portion 102 to fasten and fix to the vehicle body 9. It is also possible to fasten and fix the cap 94 and the pipe 93 with the nut 203.
  • the accumulator first valve 13B is a check valve and the accumulator second valve 13A is a damping force valve.
  • the scope of application of the present invention is not limited to this.
  • the first valve 13B for the accumulator is not a check valve, and can naturally be constituted by a damping force valve that applies a load smaller than the load of the damping force valve as the second valve 13A for the accumulator.
  • the suspension system 100 includes a left hydraulic cylinder interposed between the left wheel 32A and the vehicle body 9 in the pair of left and right wheels 2 of at least one of the front wheel and the rear wheel. 4, a right hydraulic cylinder 5 interposed between the right wheel 32 ⁇ / b> B and the vehicle body 9, a first oil that communicates and connects the upper cylinder chamber 4 ⁇ / b> U of the left hydraulic cylinder 4 and the lower cylinder chamber 5 ⁇ / b> L of the right hydraulic cylinder 5.
  • the passage 6 communicates with a second oil passage 7 communicatively connecting the upper cylinder chamber 5U of the right hydraulic cylinder 5 and the lower cylinder chamber 4L of the left hydraulic cylinder 4, and the first oil passage 6 and the second oil passage 7.
  • Accumulators 23A, 23B respectively provided in the state, and first accumulator valves provided in the accumulators 23A, 23B so as to discharge the oil R from the respective accumulators 23A, 23B. 13B and the flow rate of the oil R entering the respective accumulators 23A and 23B is adjusted to each of the accumulators 23A and 23B so that the load applied to the oil R is greater than the load applied to the oil R by the first accumulator valve 13B. It can be described that the second valve 13A for the accumulator is provided.
  • each of the ports 110 and 111 in each cylinder chamber may be provided corresponding to each of the ports, and each port 110 and 111 may be configured to include a differential pressure mechanism 8 that makes a difference in the input / output pressure of the oil R. .
  • the differential pressure mechanism 8 corresponding to each of the ports 110 and 111 can also generate a flow resistance, and as a result, the damping effect on the roll of the vehicle body 9 can be exerted more strongly.
  • differential pressure mechanism 8 can be configured such that the set pressure when the oil R is discharged from the cylinder chamber is set to be larger than the set pressure when the oil R enters the cylinder chamber.
  • the damping force can be increased when the oil R is discharged from the cylinder chamber, while the oil R can enter smoothly when the oil R enters the cylinder chamber. It is possible to effectively generate a damping force suitable for suppressing rolls and bounces.
  • differential pressure mechanism 8 may be provided with an orifice 8C, a check valve 8A, and a damping force valve 8B that generates a damping force by applying a load to the oil R when the oil R is discharged from the cylinder chamber.
  • the differential pressure mechanism 8 and the load mechanism 13 are unitized, so that the number of parts such as pipes can be reduced, the attachment to the vehicle body 9 can be improved, and the space can be saved. Can be realized. Moreover, it becomes easy to prevent parts, such as each valve which comprises the differential pressure mechanism 8 and the load mechanism 13, from being exposed, and it can aim at the improvement of component durability.
  • the second valve 13A for accumulator is supplied to the oil R by the first valve 13B for accumulator provided in the accumulator 23B (23A) on the side different from the accumulator 23A (23B) provided for the second valve 13A for accumulator. It is also possible to provide a load that is greater than the load.
  • the damper effect acting on the hydraulic cylinder can be increased, so that the roll of the vehicle body 9 can be suppressed and the running stability can be easily ensured.
  • a suspension mechanism 50 for suspending the wheel 2 may be provided.
  • the present invention can be used for a suspension system that improves the ride comfort and handling stability of a vehicle.
  • Vehicle 2 Wheel 9: Vehicle body 4: Left hydraulic cylinder 4L: Lower cylinder chamber 4U: Upper cylinder chamber 5: Right hydraulic cylinder 5L: Lower cylinder chamber 5U: Upper cylinder chamber 10: Damping force control cylinder 10A: One Damping force control cylinder 10B: the other damping force control cylinder 10U: upper cylinder chamber 10L: lower cylinder chamber 11: variable valve 21: first communication path 22: second communication path 23: accumulator (oil receiving portion) 24: Variable valve 25: Check valve 30: Acceleration detector 32A: Left wheel 32B: Right wheel 93: Tube (tubular member) DESCRIPTION OF SYMBOLS 100: Suspension system 101: Fixed part 102: Fixed part 110: Port 111: Port 170: Oil path for upper cylinder chamber 171: Oil path for lower cylinder chamber PR: Rod R: Oil

Abstract

The suspension system of the present invention has an upper cylinder chamber, a lower cylinder chamber, and a variable valve for adjusting the opening area of an opening part of the lower cylinder chamber. The suspension system is provided with: a first interconnecting path for interconnecting the upper cylinder chamber of one damping force control cylinder and the lower cylinder chamber of the other damping force control cylinder, incorporated into a pair of wheels of a vehicle; a second interconnecting path for interconnecting the lower cylinder chamber of one damping force control cylinder and the upper cylinder chamber of the other damping force control cylinder; and a pair of oil receptacles for retaining and discharging oil in response to the operation of the damping force control cylinders, the oil receptacles being provided respectively to the first connecting path and the second connecting path.

Description

サスペンションシステムSuspension system
 本発明は、車両の乗り心地及び操縦安定性を改善するサスペンションシステムに関する。 The present invention relates to a suspension system that improves the ride comfort and handling stability of a vehicle.
 従来、車両には乗り心地及び操縦安定性を改善するためにサスペンションが装備されている。サスペンションは、車重を支えると共に衝撃を吸収するスプリング、及び当該スプリングの振動を減衰するショックアブソーバを有して構成され、路面からの衝撃を緩衝する。このようなサスペンションに関する技術として下記に出典を示す特許文献1や特許文献2に記載のものがある。 Conventionally, vehicles are equipped with suspensions to improve ride comfort and handling stability. The suspension includes a spring that supports the vehicle weight and absorbs the shock, and a shock absorber that attenuates the vibration of the spring, and buffers the shock from the road surface. As a technique related to such a suspension, there are those described in Patent Document 1 and Patent Document 2, which are cited below.
 特許文献1に記載の車両用ロール減衰力制御装置は、減衰力発生機構と、前後ロール減衰力制御手段とを備えて構成される。減衰力発生機構は前輪と車体との間、及び後輪と車体との間に設置され、車体のロール角速度に比例した減衰力を発生させる。具体的には、前輪側及び後輪側の夫々において、左輪側油圧シリンダの上側シリンダ室が油圧配管を介して右輪側油圧シリンダの下側シリンダ室に接続され、左輪側油圧シリンダの下側シリンダ室が他の油圧配管を介して右輪側油圧シリンダの上側シリンダ室に接続される。これにより、各シリンダがクロス配管される。また、夫々の油圧配管には、可変絞り弁が設けられる。前後ロール減衰力制御手段は車速が速くなるにつれて前後輪の減衰力を高めると共に、操舵角速度が速くなるにつれて後輪に対する前輪の減衰力の比が大きくなるように減衰力発生機構を制御する。 The roll damping force control device for a vehicle described in Patent Document 1 includes a damping force generation mechanism and front and rear roll damping force control means. The damping force generation mechanism is installed between the front wheel and the vehicle body, and between the rear wheel and the vehicle body, and generates a damping force proportional to the roll angular velocity of the vehicle body. Specifically, on each of the front wheel side and the rear wheel side, the upper cylinder chamber of the left wheel side hydraulic cylinder is connected to the lower cylinder chamber of the right wheel side hydraulic cylinder via the hydraulic piping, and the lower side of the left wheel side hydraulic cylinder. The cylinder chamber is connected to the upper cylinder chamber of the right wheel side hydraulic cylinder via another hydraulic pipe. Thereby, each cylinder is cross-piped. Each hydraulic pipe is provided with a variable throttle valve. The front and rear roll damping force control means increases the damping force of the front and rear wheels as the vehicle speed increases, and controls the damping force generation mechanism so that the ratio of the damping force of the front wheels to the rear wheels increases as the steering angular velocity increases.
 特許文献2に記載の車両の揺動減衰装置は、左側車輪と車体との間、及び、右側車輪と車体との間に夫々ショックアブソーバを介在させると共に、ショックアブソーバとは別に、左側車輪と車体との間に介在された左油圧シリンダと、右側車輪と車体との間に介在された右油圧シリンダと、前記左油圧シリンダの上側シリンダ室と前記右油圧シリンダの下側シリンダ室とを連通接続する第1油路と、前記右油圧シリンダの上側シリンダ室と前記左油圧シリンダの下側シリンダ室とを連通接続する第2油路と、第1油路とリザーバタンクを連通接続する第3油路と、第2油路とリザーバタンクを連通接続する第4油路と、第3油路と第4油路とに夫々設けた可変絞りとを備えた減衰機構を設け、車輪と車体との相対的な上下動の状況に伴って可変絞りの絞り度合を制御する制御機構とを設けてある。 In the swing damping device for a vehicle described in Patent Document 2, a shock absorber is interposed between the left wheel and the vehicle body and between the right wheel and the vehicle body, and the left wheel and the vehicle body are separated from the shock absorber. The left hydraulic cylinder interposed between the left hydraulic cylinder, the right hydraulic cylinder interposed between the right wheel and the vehicle body, and the upper cylinder chamber of the left hydraulic cylinder and the lower cylinder chamber of the right hydraulic cylinder are connected in communication. A first oil passage, a second oil passage that connects the upper cylinder chamber of the right hydraulic cylinder and a lower cylinder chamber of the left hydraulic cylinder, and a third oil that connects the first oil passage and the reservoir tank. A damping mechanism including a road, a fourth oil path that connects the second oil path and the reservoir tank, and a variable throttle provided in each of the third oil path and the fourth oil path. With relative vertical movement It is provided with a control mechanism for controlling the degree of narrowing of the variable throttle.
 また、サスペンションシステムに備えられる油圧シリンダに係る技術として、以下に出典を示す特許文献3-5に記載のものもある。特許文献3及び4に記載の油圧シリンダは、摺動可能なピストンとピストンロッドとを内蔵した複筒式で構成され、ピストンによって2室に区分けされたシリンダ室がピストンの運動により容積が変化する。油圧シリンダに設けられたポートを通してオイルの流れを発生させることにより、自動車用サスペンションの剛性制御を行う。 Also, as a technique related to the hydraulic cylinder provided in the suspension system, there is a technique described in Patent Documents 3-5, which is cited below. The hydraulic cylinders described in Patent Documents 3 and 4 are composed of a double cylinder type including a slidable piston and a piston rod, and the volume of the cylinder chamber divided into two chambers by the piston changes due to the movement of the piston. . The rigidity of an automobile suspension is controlled by generating an oil flow through a port provided in the hydraulic cylinder.
 特許文献5に記載のサスペンション装置が有する流体圧ダンパーも、摺動可能なピストンとピストンロッドとを内蔵した複筒式で構成される。この流体圧ダンパーも、ピストンの運動により、シリンダ内にピストンで区画された油室(「シリンダ室」に相当)の容積が変化し、オイルの流れを発生させることにより自動車の姿勢変化を抑制する。 The fluid pressure damper of the suspension device described in Patent Document 5 is also composed of a double-cylinder type incorporating a slidable piston and a piston rod. This fluid pressure damper also changes the volume of the oil chamber (corresponding to the “cylinder chamber”) partitioned by the piston in the cylinder due to the movement of the piston, and suppresses a change in the attitude of the automobile by generating an oil flow. .
特開平4-46815号公報Japanese Patent Laid-Open No. 4-46815 特開平5-193331号公報JP-A-5-193331 特開2005-133902号公報JP 2005-133902 A 特開2007-205416号公報JP 2007-205416 A 特許第4740086号公報Japanese Patent No. 4740086
 特許文献1の車両用ロール減衰力制御装置は、スプリング以外にロール剛性を付加する装置は備えられていない。このため、例えばランプウェイ等のように長時間に亘って旋回するような状況では、車両のロール量が大きくなってしまい、旋回性能が悪化することを避けることができない。また、同相バウンスの入力時は乗り心地を確保できるが、各輪入力によるスプリング下のばたつきは、ショックアブソーバの初期設定された減衰力に応じたものとなる。このため、常に最適な接地性や乗り心地を確保することはできない。 The vehicle roll damping force control device of Patent Document 1 is not provided with a device for adding roll rigidity in addition to a spring. For this reason, for example, in a situation where the vehicle turns for a long time such as a rampway, it is inevitable that the roll amount of the vehicle becomes large and the turning performance deteriorates. In addition, although the ride comfort can be ensured when the in-phase bounce is input, the unsprung flapping due to the input of each wheel is in accordance with the initially set damping force of the shock absorber. For this reason, it is not always possible to ensure optimal grounding and riding comfort.
 また、油圧配管に設けられる可変絞り弁により、旋回時における前後輪のロール方向減衰力の制御は可能である。しかしながら、比較的大きな単輪入力により車体をロール方向へ動かす入力があった場合には、そのまま車体が揺られ、乗り心地及び走行安定性の悪化は避けられない。 Also, the damping force in the roll direction of the front and rear wheels during turning can be controlled by a variable throttle valve provided in the hydraulic piping. However, when there is an input for moving the vehicle body in the roll direction by a relatively large single wheel input, the vehicle body is shaken as it is, and deterioration of ride comfort and running stability is inevitable.
 また、車速センサや操舵角センサを用いて前後の減衰力バルブを制御して前後のロール減衰の絶対値や比率を変更し、アンダーステア及びオーバステアを改善している。しかしながら、ニュートラルステアの旋回状態を確保することはできない。 Also, understeer and oversteer are improved by controlling the front and rear damping force valves using vehicle speed sensors and steering angle sensors to change the absolute value and ratio of front and rear roll damping. However, the neutral steer turning state cannot be secured.
 また、特許文献2に記載の車両のサスペンション装置によれば、ショックアブソーバと減衰機構との両方を並設してあることから、車輪まわりの構造が複雑になっている問題点がある。更には、車輪と車体との相対的な上下動(量や速度等)を検出して、それに伴う減衰機構のコントロールが必要となり、装置としての制御が繁雑になり易い問題点がある。 Further, according to the vehicle suspension device described in Patent Document 2, since both the shock absorber and the damping mechanism are arranged in parallel, there is a problem that the structure around the wheel is complicated. Furthermore, it is necessary to detect the relative vertical movement (amount, speed, etc.) between the wheel and the vehicle body, and to control the damping mechanism that accompanies it.
 また、特許文献3及び4に記載の油圧シリンダでは、シリンダ外筒とポートとが一体成形されている。一方、特許文献5に記載の流体圧ダンパーは、ロッド内部が中空になっており、当該ロッド内部を油路として利用している。このため、シリンダの外筒に配管を繋ぐ必要があるため、車両への搭載を考えた場合、配管若しくはロッド、及びダストシール部のいずれか一方を車両の下方に配設する必要がある。このため、飛び石、ダストや泥水等により配管若しくはロッド、及びダストシール部が劣化したり損傷したりする可能性がある。 In the hydraulic cylinders described in Patent Documents 3 and 4, the cylinder outer cylinder and the port are integrally formed. On the other hand, the fluid pressure damper described in Patent Document 5 has a hollow rod interior and uses the rod interior as an oil passage. For this reason, since it is necessary to connect piping to the outer cylinder of a cylinder, when mounting in a vehicle is considered, it is necessary to arrange | position any one of piping, a rod, and a dust seal part below a vehicle. For this reason, piping or a rod and a dust seal part may deteriorate or be damaged by stepping stones, dust, muddy water, or the like.
 本発明の目的は、上記問題に鑑み、車両の走行状態に拘らず、最適な乗り心地及び走行安定性を実現することが可能なサスペンションシステムを提供することにある。 In view of the above problems, an object of the present invention is to provide a suspension system capable of realizing optimum riding comfort and running stability regardless of the running state of a vehicle.
 上記目的を達成するための本発明に係るサスペンションシステムの特徴構成は、
 伸長時に容積が大きくなると共に縮短時に容積が小さくなる上側シリンダ室と、伸長時に容積が小さくなると共に縮短時に容積が大きくなる下側シリンダ室と、前記下側シリンダ室から流出するオイルの流量を車両の物理量を検出する検出部の検出結果に基づいて調整する可変バルブと、を有し、前記車両が有する複数の車輪のうち、一対の車輪に組み込まれた減衰力制御シリンダと、
 一方の減衰力制御シリンダの上側シリンダ室と他方の減衰力制御シリンダの下側シリンダ室とを連通する第1連通路と、
 前記一方の減衰力制御シリンダの下側シリンダ室と前記他方の減衰力制御シリンダの上側シリンダ室とを連通する第2連通路と、
 前記第1連通路と前記第2連通路との夫々に設けられ、前記減衰力制御シリンダの動作に応じて前記第1連通路及び前記第2連通路のオイルを貯留及び排出する一対のオイル受部と、
を備えている点にある。
The characteristic configuration of the suspension system according to the present invention for achieving the above object is as follows:
The upper cylinder chamber that increases in volume when expanded and decreases in volume when contracted, the lower cylinder chamber that decreases in volume when expanded and increases in volume when contracted, and the flow rate of oil flowing out of the lower cylinder chamber A variable valve that adjusts based on a detection result of a detection unit that detects a physical quantity of the vehicle, and a damping force control cylinder incorporated in a pair of wheels among a plurality of wheels of the vehicle,
A first communication passage communicating the upper cylinder chamber of one damping force control cylinder and the lower cylinder chamber of the other damping force control cylinder;
A second communication passage communicating the lower cylinder chamber of the one damping force control cylinder and the upper cylinder chamber of the other damping force control cylinder;
A pair of oil receivers that are provided in each of the first communication path and the second communication path, and store and discharge oil in the first communication path and the second communication path according to the operation of the damping force control cylinder. And
It is in the point equipped with.
 このような特徴構成とすれば、サスペンションの伸長方向の減衰力を最適化することができるので、路面との接地性を高めることが可能となる。このため、一対の減衰力制御シリンダが組み付けられた一対の車輪の間において、減衰力を制御して車体の動きを抑制することができる。したがって、車両の走行状態に拘らず、最適な乗り心地及び走行安定性を実現することが可能となる。 With such a characteristic configuration, the damping force in the extension direction of the suspension can be optimized, so that the ground contact with the road surface can be improved. For this reason, between the pair of wheels assembled with the pair of damping force control cylinders, the damping force can be controlled to suppress the movement of the vehicle body. Therefore, it is possible to realize optimum riding comfort and running stability regardless of the running state of the vehicle.
 また、前記車両の車体の鉛直方向の加速度を検出する加速度検出部が備えられ、前記可変バルブは、前記加速度検出部の検出結果に基づいて前記オイルの流量を調整すると好適である。 Further, it is preferable that an acceleration detection unit that detects vertical acceleration of the vehicle body of the vehicle is provided, and the variable valve adjusts the flow rate of the oil based on a detection result of the acceleration detection unit.
 このような構成とすれば、車両の走行状態に応じてサスペンションの減衰力を調整することができるので、乗り心地を向上することが可能となる。したがって、最適な走行安定性を実現することが可能となる。 With such a configuration, the damping force of the suspension can be adjusted according to the running state of the vehicle, so that the ride comfort can be improved. Therefore, it is possible to realize optimum traveling stability.
 また、前記オイル受部は、アキュムレータであると好適である。 Further, it is preferable that the oil receiving portion is an accumulator.
 このような構成とすれば、第1連通路や第2連通路のオイルの流量を適切に維持することが可能となる。 With such a configuration, it is possible to appropriately maintain the oil flow rate in the first communication path and the second communication path.
 また、前記アキュムレータに流入するオイルの流量を制限する可変バルブが備えられていると好適である。 Further, it is preferable that a variable valve for limiting the flow rate of the oil flowing into the accumulator is provided.
 このような構成とすれば、アキュムレータが第1連通路及び第2連通路のオイルを適切に貯留及び排出することが可能となる。 With such a configuration, the accumulator can appropriately store and discharge the oil in the first communication path and the second communication path.
 また、前記アキュムレータに流入するオイルの流量を制限する可変バルブと並列にチェックバルブが設けられていると好適である。 Further, it is preferable that a check valve is provided in parallel with the variable valve for limiting the flow rate of the oil flowing into the accumulator.
 このような構成とすれば、チェックバルブによりアキュムレータにはオイルが流入しないようにしつつ、可変バルブによりアキュムレータからはオイルがスムーズに流出するようにすることができる。したがって、第1連通路及び第2連通路の夫々の圧力を適切に調整することが可能となる。 With such a configuration, it is possible to prevent oil from flowing into the accumulator by the check valve and to smoothly flow out of the accumulator by the variable valve. Therefore, it is possible to appropriately adjust the pressures of the first communication path and the second communication path.
 また、前記一対の車輪が、前記車両の幅方向で対向して設けられる左側車輪及び右側車輪であると好適である。 Further, it is preferable that the pair of wheels are a left wheel and a right wheel provided to face each other in the width direction of the vehicle.
 このような構成とすれば、車両の左右で異なる荷重を適切に減衰させることができる。したがって、最適な乗り心地及び走行安定性を実現することが可能となる。 With such a configuration, different loads on the left and right sides of the vehicle can be appropriately attenuated. Therefore, it is possible to realize optimum riding comfort and running stability.
 或いは、前記一対の車輪が、前記車両の前後方向に設けられる前側車輪及び後側車輪であっても良い。 Alternatively, the pair of wheels may be a front wheel and a rear wheel provided in the front-rear direction of the vehicle.
 このような構成とすれば、車両の前後で異なる荷重を適切に減衰させることができる。したがって、最適な乗り心地及び走行安定性を実現することが可能となる。 With such a configuration, different loads before and after the vehicle can be appropriately attenuated. Therefore, it is possible to realize optimum riding comfort and running stability.
 また、前記左側車輪と車体との間に介在された左油圧シリンダ及び前記右側車輪と車体との間に介在された右油圧シリンダの夫々は、前記上側シリンダ室及び前記下側シリンダ室の夫々からオイルを給排するポートを下側の固定部から離間した位置に配設してあると好適である。 Further, the left hydraulic cylinder interposed between the left wheel and the vehicle body and the right hydraulic cylinder interposed between the right wheel and the vehicle body are respectively connected to the upper cylinder chamber and the lower cylinder chamber. It is preferable that the port for supplying and discharging the oil is disposed at a position separated from the lower fixing portion.
 このような構成とすれば、車両の走行に伴う飛び石や泥水の跳ね上げの影響を受け難くすることができる。したがって、耐久性や信頼性を向上することが可能となる。 With such a configuration, it is possible to make it difficult to be affected by jumping stones and muddy water splashes as the vehicle travels. Therefore, durability and reliability can be improved.
 また、前記上側シリンダ室のオイルの給排を行うポートと前記下側シリンダ室のオイルの給排を行うポートとが、上側に設けられたロッドの固定部の側に配設されてあると好適である。 Further, it is preferable that the port for supplying and discharging oil in the upper cylinder chamber and the port for supplying and discharging oil in the lower cylinder chamber are disposed on the side of the fixed portion of the rod provided on the upper side. It is.
 このような構成とすれば、車両の走行に伴う飛び石や泥水の跳ね上げの影響を無くすことができる。したがって、耐久性や信頼性を向上することが可能となる。 With such a configuration, it is possible to eliminate the influence of jumping stones and muddy water splashes associated with the traveling of the vehicle. Therefore, durability and reliability can be improved.
 また、前記上側シリンダ室のオイルの給排を行う上側シリンダ室用油路及び前記下側シリンダ室のオイルの給排を行う下側シリンダ室用油路が、前記ロッドの径方向内側に設けられていると好適である。 An upper cylinder chamber oil passage for supplying and discharging oil in the upper cylinder chamber and a lower cylinder chamber oil passage for supplying and discharging oil in the lower cylinder chamber are provided on the radially inner side of the rod. It is preferable that
 このような構成とすれば、上側シリンダ室用油路及び下側シリンダ室用油路をロッドにより保護することができる。したがって、上側シリンダ室用油路及び下側シリンダ室用油路の耐久性を高める措置を施す必要が無いので、コストアップを避けることができる。 With such a configuration, the upper cylinder chamber oil passage and the lower cylinder chamber oil passage can be protected by the rod. Therefore, it is not necessary to take measures to increase the durability of the upper cylinder chamber oil passage and the lower cylinder chamber oil passage, and thus an increase in cost can be avoided.
 また、前記ロッドの径方向内側に同軸心上に筒状部材を有し、前記筒状部材の径方向内側に前記下側シリンダ室用油路が形成され、前記ロッドの内周面と前記筒状部材の外周面との間に前記上側シリンダ室用油路が形成されると好適である。 In addition, a cylindrical member is coaxially arranged on the radially inner side of the rod, the lower cylinder chamber oil passage is formed on the radially inner side of the tubular member, and the inner peripheral surface of the rod and the cylinder It is preferable that the upper cylinder chamber oil passage is formed between the outer peripheral surface of the cylindrical member.
 このような構成とすれば、異なる径の円筒を同軸心上に配設するだけで、上側シリンダ室用油路及び下側シリンダ室用油路を構成することができる。したがって、簡素な構造で構成することが可能となる。 With such a configuration, it is possible to configure the upper cylinder chamber oil passage and the lower cylinder chamber oil passage simply by arranging cylinders of different diameters on the same axis. Therefore, it can be configured with a simple structure.
第1の実施形態に係るサスペンションシステムを搭載した車両を模式的に示した図である。It is the figure which showed typically the vehicle carrying the suspension system which concerns on 1st Embodiment. アキュムレータによるロール剛性の付加について示した図である。It is the figure shown about addition of roll rigidity by an accumulator. 第1の実施形態に係るサスペンションシステムを搭載した車両のFr単輪が段差をあがった場合の例を示した図である。It is the figure which showed the example when the Fr single wheel of the vehicle carrying the suspension system which concerns on 1st Embodiment goes up the level | step difference. 第1の実施形態に係るサスペンションシステムを搭載した車両のFr単輪が段差をあがった場合の例を示した図である。It is the figure which showed the example when the Fr single wheel of the vehicle carrying the suspension system which concerns on 1st Embodiment goes up the level | step difference. 第1の実施形態に係るサスペンションシステムを搭載した車両が左旋回した場合の例を示した図である。It is the figure which showed the example when the vehicle carrying the suspension system which concerns on 1st Embodiment turns left. 第1の実施形態に係るサスペンションシステムを搭載した車両が左旋回した場合の例を示した図である。It is the figure which showed the example when the vehicle carrying the suspension system which concerns on 1st Embodiment turns left. 第1の実施形態に係るサスペンションシステムを搭載した車両に対して単輪入力があった場合の制御を示すフローチャートである。It is a flowchart which shows the control in case there exists single-wheel input with respect to the vehicle carrying the suspension system which concerns on 1st Embodiment. 第1の実施形態に係るサスペンションシステムを搭載した車両が旋回している時の制御を示すフローチャートである。It is a flowchart which shows control when the vehicle carrying the suspension system which concerns on 1st Embodiment is turning. テスト走行パターンを模式的に示した図である。It is the figure which showed the test running pattern typically. サスペンションシステムの有無による走行特性の違いを示した図である。It is the figure which showed the difference in the running characteristics by the presence or absence of a suspension system. サスペンションシステムの有無による走行特性の違いを示した図である。It is the figure which showed the difference in the running characteristics by the presence or absence of a suspension system. サスペンションシステムの有無による走行特性の違いを示した図である。It is the figure which showed the difference in the running characteristics by the presence or absence of a suspension system. 第2の実施形態に係るサスペンションシステムを搭載した車両を模式的に示した図である。It is the figure which showed typically the vehicle carrying the suspension system which concerns on 2nd Embodiment. 第3の実施形態に係るサスペンションシステムを搭載した車両を模式的に示した図である。It is the figure which showed typically the vehicle carrying the suspension system which concerns on 3rd Embodiment. 第3の実施形態に係るサスペンションシステムを搭載した車両のブレーキング時の例を示した図である。It is the figure which showed the example at the time of braking of the vehicle carrying the suspension system which concerns on 3rd Embodiment. 第3の実施形態に係るサスペンションシステムを搭載した車両のブレーキング時の例を示した図である。It is the figure which showed the example at the time of braking of the vehicle carrying the suspension system which concerns on 3rd Embodiment. 第3の実施形態に係るサスペンションシステムを搭載した車両の発進・加速時の例を示した図である。It is the figure which showed the example at the time of start and acceleration of the vehicle carrying the suspension system which concerns on 3rd Embodiment. 第3の実施形態に係るサスペンションシステムを搭載した車両の発進・加速時の例を示した図である。It is the figure which showed the example at the time of start and acceleration of the vehicle carrying the suspension system which concerns on 3rd Embodiment. 第3の実施形態に係るサスペンションシステムを搭載した車両が右旋回した場合の例を示した図である。It is the figure which showed the example when the vehicle carrying the suspension system which concerns on 3rd Embodiment turns right. 第3の実施形態に係るサスペンションシステムを搭載した車両が右旋回した場合の例を示した図である。It is the figure which showed the example when the vehicle carrying the suspension system which concerns on 3rd Embodiment turns right. 第4の実施形態に係るサスペンションシステムを搭載した車両を模式的に示した図である。It is the figure which showed typically the vehicle carrying the suspension system which concerns on 4th Embodiment. 減衰力バルブの圧力と流量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pressure of a damping force valve | bulb, and flow volume. ピストン速度と減衰力との関係を示す説明図である。It is explanatory drawing which shows the relationship between piston speed and damping force. 第4の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 4th Embodiment. 第4の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 4th Embodiment. 第4の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 4th Embodiment. 第5の実施形態に係るサスペンションシステムを示す模式図である。It is a schematic diagram which shows the suspension system which concerns on 5th Embodiment. 第5の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 5th Embodiment. 第5の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 5th Embodiment. 第5の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 5th Embodiment. 第5の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 5th Embodiment. 第5の実施形態に係るサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system which concerns on 5th Embodiment. 第6の実施形態に係るサスペンションシステムを示す模式図である。It is a schematic diagram which shows the suspension system which concerns on 6th Embodiment. 油圧シリンダを示す模式図である。It is a schematic diagram which shows a hydraulic cylinder. 別実施形態のサスペンションシステムの作用を示す模式図である。It is a schematic diagram which shows the effect | action of the suspension system of another embodiment. 別実施形態の油圧シリンダを示す模式図である。It is a schematic diagram which shows the hydraulic cylinder of another embodiment.
1.サスペンションシステム
 以下、本発明の実施形態について、詳細に説明する。本発明に係るサスペンションシステム100は、車両に搭載され、車両の乗員に対して最適な乗り心地及び走行安定性を実現する機能を備えている。
1. Suspension system Hereinafter, embodiments of the present invention will be described in detail. The suspension system 100 according to the present invention is mounted on a vehicle and has a function of realizing optimal riding comfort and running stability for a vehicle occupant.
1-1.第1の実施形態
 本サスペンションシステム100の第1の実施形態について説明する。図1には車両1に搭載された本実施形態に係るサスペンションシステム100が模式的に示される。サスペンションシステム100は、減衰力制御シリンダ10、第1連通路21、第2連通路22、オイル受部23を備えて構成される。
1-1. First Embodiment A first embodiment of the suspension system 100 will be described. FIG. 1 schematically shows a suspension system 100 according to this embodiment mounted on a vehicle 1. The suspension system 100 includes a damping force control cylinder 10, a first communication path 21, a second communication path 22, and an oil receiving portion 23.
 減衰力制御シリンダ10は、車両1が有する複数の車輪2のうち、一対の車輪2に組み込まれる。複数の車輪2とは、車両1の左側前輪2A、右側前輪2B、左側後輪2C及び右側後輪2Dである。一対の車輪2とは、車両1の幅方向で対向して設けられる左側車輪及び右側車輪である。本実施形態では、減衰力制御シリンダ10は一対からなり、左側後輪2C及び右側後輪2Dに組み込まれている。本実施形態では、以下の説明において特に区別を要する場合には、左側後輪2Cに組み込まれる減衰力制御シリンダ10は符号10Aを付して示し、右側後輪2Dに組み込まれる減衰力制御シリンダ10は符号10Bを付して示す。 The damping force control cylinder 10 is incorporated into a pair of wheels 2 among a plurality of wheels 2 of the vehicle 1. The plurality of wheels 2 are the left front wheel 2A, the right front wheel 2B, the left rear wheel 2C, and the right rear wheel 2D of the vehicle 1. The pair of wheels 2 are a left wheel and a right wheel provided to face each other in the width direction of the vehicle 1. In the present embodiment, the damping force control cylinder 10 is composed of a pair and is incorporated in the left rear wheel 2C and the right rear wheel 2D. In the present embodiment, when it is particularly necessary to distinguish in the following description, the damping force control cylinder 10 incorporated in the left rear wheel 2C is denoted by reference numeral 10A, and the damping force control cylinder 10 incorporated in the right rear wheel 2D. Is shown with reference numeral 10B.
 減衰力制御シリンダ10は、上側シリンダ室10Uと下側シリンダ室10Lと可変バルブ11とを有し、伸縮式のシリンダダンパーで構成される。上側シリンダ室10Uは、シリンダダンパーの伸長時に容積が大きくなると共に、シリンダダンパーの縮短時に容積が小さくなるように構成される。下側シリンダ室10Lは、伸長時に容積が小さくなると共に縮短時に容積が大きくなるように構成される。 The damping force control cylinder 10 has an upper cylinder chamber 10U, a lower cylinder chamber 10L, and a variable valve 11, and is composed of an extendable cylinder damper. The upper cylinder chamber 10U is configured to increase in volume when the cylinder damper extends and to decrease in volume when the cylinder damper contracts. The lower cylinder chamber 10L is configured to have a smaller volume when extended and a larger volume when contracted.
 可変バルブ11は、下側シリンダ室10Lから流出するオイルRの流量を車両の物理量を検出する検出部の検出結果に基づいて調整する。上述のように、減衰力制御シリンダ10は一対からなる。したがって、可変バルブ11も一対の可変バルブ11A、11Bからなる。一対の可変バルブ11A、11Bは、下側シリンダ室10Lから流出するオイルRの流量を独立して調整可能に構成される。つまり、可変バルブ11Aと可変バルブ11Bとは、夫々異なるオイルRの流量となるように調整することが可能である。 The variable valve 11 adjusts the flow rate of the oil R flowing out from the lower cylinder chamber 10L based on the detection result of the detection unit that detects the physical quantity of the vehicle. As described above, the damping force control cylinder 10 includes a pair. Therefore, the variable valve 11 also includes a pair of variable valves 11A and 11B. The pair of variable valves 11A and 11B are configured such that the flow rate of the oil R flowing out from the lower cylinder chamber 10L can be independently adjusted. That is, the variable valve 11A and the variable valve 11B can be adjusted to have different oil R flow rates.
 各下側シリンダ室10Lには、開口部(図示せず)が設けられ、この開口部に可変バルブ11が連通して設けられる。可変バルブ11は、電気制御により開口面積が変更可能に構成される。具体的には、図示しない制御部からの信号により開口面積が変更される。これにより、可変バルブ11は、各下側シリンダ室10Lから流出するオイルRの流量を制限することが可能となる。なお、可変バルブ11は流入方向にもオイルRを流通可能である。 Each lower cylinder chamber 10L is provided with an opening (not shown), and a variable valve 11 is provided in communication with the opening. The variable valve 11 is configured such that the opening area can be changed by electrical control. Specifically, the opening area is changed by a signal from a control unit (not shown). Thereby, the variable valve 11 can restrict | limit the flow volume of the oil R which flows out out of each lower cylinder chamber 10L. The variable valve 11 can circulate oil R also in the inflow direction.
 また、可変バルブ11と並列にチェックバルブ12が設けられる。上述のように、可変バルブ11は、一対の可変バルブ11A、11Bからなる。このため、チェックバルブ12も、可変バルブ11Aに並列に設けられるチェックバルブ12A、及び可変バルブ11Bに並列に設けられるチェックバルブ12Bからなる。チェックバルブ12は、下側シリンダ室10LからはオイルRが流出しないようにし、下側シリンダ室10LにはオイルRがスムーズに流入するように動作する。 Also, a check valve 12 is provided in parallel with the variable valve 11. As described above, the variable valve 11 includes a pair of variable valves 11A and 11B. For this reason, the check valve 12 also includes a check valve 12A provided in parallel to the variable valve 11A and a check valve 12B provided in parallel to the variable valve 11B. The check valve 12 operates so that the oil R does not flow out from the lower cylinder chamber 10L, and the oil R flows smoothly into the lower cylinder chamber 10L.
 各上側シリンダ室10Uには、開口部(図示せず)が設けられ、この開口部にオイルRの流出時(縮短時)に減衰力を発生する減衰力バルブ14(14A,14B)と、流入時(伸長時)にスムーズにオイルRを流入させるチェックバルブ17(17A,17B)が連通して設けられる。チェックバルブ17Aは、バネの付勢力に抗して開弁し、減衰力バルブ14Aとは、互いに異なる方向にのみオイルRが流通するよう構成されている。同様に、チェックバルブ17Bは、バネの付勢力に抗して開弁し、減衰力バルブ14Bとは、互いに異なる方向にのみオイルRが流通するよう構成されている。したがって、各上側シリンダ室10UからオイルRが流出する経路と、各上側シリンダ室に10UにオイルRが流入する経路とが異なる。 Each upper cylinder chamber 10U is provided with an opening (not shown), a damping force valve 14 (14A, 14B) that generates a damping force when oil R flows out (when contracted), and an inflow A check valve 17 (17A, 17B) for smoothly flowing the oil R at the time (extension) is provided in communication. The check valve 17A is opened against the urging force of the spring, and the oil R flows only in directions different from the damping force valve 14A. Similarly, the check valve 17B is opened against the urging force of the spring, and the oil R flows only in directions different from the damping force valve 14B. Therefore, the path through which oil R flows out from each upper cylinder chamber 10U is different from the path through which oil R flows into 10U into each upper cylinder chamber.
 第1連通路21は、一方の減衰力制御シリンダ10Aの上側シリンダ室10Uと他方の減衰力制御シリンダ10Bの下側シリンダ室10Lとを連通する。すなわち、減衰力制御シリンダ10Aの上側シリンダ室10Uはチェックバルブ17A、及び減衰力バルブ14Aを介して第1連通路21に連通し、減衰力制御シリンダ10Bの下側シリンダ室10Lは可変バルブ11B、及びチェックバルブ12Bを介して第1連通路21に連通する。 The first communication path 21 communicates the upper cylinder chamber 10U of one damping force control cylinder 10A and the lower cylinder chamber 10L of the other damping force control cylinder 10B. That is, the upper cylinder chamber 10U of the damping force control cylinder 10A communicates with the first communication passage 21 via the check valve 17A and the damping force valve 14A, and the lower cylinder chamber 10L of the damping force control cylinder 10B includes the variable valve 11B, And it communicates with the first communication path 21 via the check valve 12B.
 第2連通路22は、一方の減衰力制御シリンダ10Aの下側シリンダ室10Lと他方の減衰力制御シリンダ10Bの上側シリンダ室10Uとを連通する。すなわち、減衰力制御シリンダ10Aの下側シリンダ室10Lは可変バルブ11A、及びチェックバルブ12Aを介して第2連通路22に連通し、減衰力制御シリンダ10Bの上側シリンダ室10Uはチェックバルブ17B、及び減衰力バルブ14Bを介して第2連通路22に連通する。 The second communication path 22 communicates the lower cylinder chamber 10L of one damping force control cylinder 10A and the upper cylinder chamber 10U of the other damping force control cylinder 10B. That is, the lower cylinder chamber 10L of the damping force control cylinder 10A communicates with the second communication path 22 via the variable valve 11A and the check valve 12A, and the upper cylinder chamber 10U of the damping force control cylinder 10B includes the check valve 17B and The second communication passage 22 communicates with the damping force valve 14B.
 オイル受部23は、第1連通路21と第2連通路22との夫々に設けられ、減衰力制御シリンダ10の動作に応じて第1連通路21及び第2連通路22のオイルRを貯留及び排出する。したがって、オイル受部23は、第1連通路21に連通するオイル受部23Aと、第2連通路22に連通するオイル受部23Bとの一対からなる。本実施形態では、オイル受部23は、アキュムレータから構成される。アキュムレータにて、車両のロール剛性を付与することができる。アキュムレータの容器の中には気体が充填されており、アキュムレータの容器内のオイルRの体積変化により、気体の体積が変化することで気体のバネとして作用する。すなわち、アキュムレータにオイルRが流入すると、気体が圧縮され、気体のバネ力による反発力がオイルRに付加され、車両のロール剛性(スタビライザー機能)を付与することが可能となる。以下の説明では、オイル受部23(23A、23B)をアキュムレータ23(23A、23B)として説明する。 The oil receiving portion 23 is provided in each of the first communication path 21 and the second communication path 22, and stores oil R in the first communication path 21 and the second communication path 22 according to the operation of the damping force control cylinder 10. And discharge. Therefore, the oil receiving portion 23 includes a pair of an oil receiving portion 23 </ b> A communicating with the first communication passage 21 and an oil receiving portion 23 </ b> B communicating with the second communication passage 22. In this embodiment, the oil receiving part 23 is comprised from an accumulator. The roll rigidity of the vehicle can be imparted by the accumulator. The accumulator container is filled with gas, and acts as a gas spring by changing the volume of the gas due to the volume change of the oil R in the accumulator container. That is, when the oil R flows into the accumulator, the gas is compressed, a repulsive force due to the spring force of the gas is added to the oil R, and the roll rigidity (stabilizer function) of the vehicle can be imparted. In the following description, the oil receiver 23 (23A, 23B) will be described as an accumulator 23 (23A, 23B).
 本サスペンションシステム100には、アキュムレータ23に流入するオイルRの流量を制限する可変バルブ24を備えている。上述のように、アキュムレータ23は一対のアキュムレータ23A、23Bからなる。したがって、可変バルブ24も、一対の可変バルブ24A、24Bからなる。可変バルブ24は、可変バルブ11と同様に、電気制御により開口面積が変更可能に構成される。具体的には、図示しない制御部からの信号により開口面積が変更される。これにより、可変バルブ24は、アキュムレータ23に流入するオイルRの流量を制限することが可能になる。なお、可変バルブ24は流出方向にもオイルRを流通可能である。 The suspension system 100 includes a variable valve 24 that restricts the flow rate of the oil R flowing into the accumulator 23. As described above, the accumulator 23 includes a pair of accumulators 23A and 23B. Therefore, the variable valve 24 also includes a pair of variable valves 24A and 24B. Similar to the variable valve 11, the variable valve 24 is configured such that the opening area can be changed by electrical control. Specifically, the opening area is changed by a signal from a control unit (not shown). Thereby, the variable valve 24 can limit the flow rate of the oil R flowing into the accumulator 23. The variable valve 24 can circulate the oil R also in the outflow direction.
 また、可変バルブ24と並列にチェックバルブ25が設けられる。上述のように、可変バルブ24は、一対の可変バルブ24A、24Bからなる。このため、チェックバルブ25も、可変バルブ24Aに並列に設けられるチェックバルブ25A、及び可変バルブ24Bに並列に設けられるチェックバルブ25Bからなる。チェックバルブ25は、アキュムレータ23にはオイルRが流入しないようにしつつ、アキュムレータ23からはオイルRがスムーズに流出するように動作する。したがって、アキュムレータ23からは、オイルRはチェックバルブ25を介して流出する。一方、アキュムレータ23には、オイルRは可変バルブ24のみを介して流入する。これにより、第1連通路21及び第2連通路22の夫々の圧力を調整することが可能となる。 Further, a check valve 25 is provided in parallel with the variable valve 24. As described above, the variable valve 24 includes a pair of variable valves 24A and 24B. For this reason, the check valve 25 also includes a check valve 25A provided in parallel with the variable valve 24A and a check valve 25B provided in parallel with the variable valve 24B. The check valve 25 operates so that the oil R flows smoothly from the accumulator 23 while preventing the oil R from flowing into the accumulator 23. Therefore, the oil R flows out from the accumulator 23 through the check valve 25. On the other hand, the oil R flows into the accumulator 23 only through the variable valve 24. Thereby, it becomes possible to adjust each pressure of the 1st communicating path 21 and the 2nd communicating path 22.
 このようなアキュムレータ23の効果が図2に示される。図2は、縦軸をバネ反力とし、横軸をストローク量としている。図2において、破線はスプリング40のみによる特性を示し、実線はスプリング40とアキュムレータ23との双方による特性を示す。図2に示されるように、アキュムレータ23を用いることにより、車両のロール時にはスタビライザーと同様な効果を得ることができる。 The effect of such an accumulator 23 is shown in FIG. In FIG. 2, the vertical axis represents the spring reaction force, and the horizontal axis represents the stroke amount. In FIG. 2, the broken line indicates the characteristic due to the spring 40 alone, and the solid line indicates the characteristic due to both the spring 40 and the accumulator 23. As shown in FIG. 2, by using the accumulator 23, the same effect as that of the stabilizer can be obtained when the vehicle is rolled.
 なお、図示はしないが、可変バルブ24及びチェックバルブ25に対して並列配置となるオリフィスレベルの連通路が可変バルブ24内に設けられている。当該連通路により、アキュムレータ23と第1連通路21及び第2連通路22の夫々とを常時連通させると共に、低速でのシリンダストローク時に減衰力特性を付与することも可能である。 Although not shown, an orifice level communication path that is arranged in parallel to the variable valve 24 and the check valve 25 is provided in the variable valve 24. The communication path allows the accumulator 23 to communicate with each of the first communication path 21 and the second communication path 22 at all times, and can also provide a damping force characteristic during a low-speed cylinder stroke.
 図1に戻り、車両1には、当該車両1の車体の鉛直方向の加速度を検出する加速度検出部30が備えられる。加速度検出部30の検出結果は、図示しない制御部に伝達される。制御部は、加速度検出部30の検出結果に基づいて下側シリンダ室10Lから流出するオイルRの流量を調整する。したがって、本実施形態では、上述の「検出部」は「加速度検出部30」に相当する。 Returning to FIG. 1, the vehicle 1 is provided with an acceleration detection unit 30 that detects the acceleration in the vertical direction of the vehicle body of the vehicle 1. The detection result of the acceleration detection unit 30 is transmitted to a control unit (not shown). The control unit adjusts the flow rate of the oil R flowing out from the lower cylinder chamber 10L based on the detection result of the acceleration detection unit 30. Therefore, in the present embodiment, the “detection unit” described above corresponds to the “acceleration detection unit 30”.
 連通機構39は、第1連通路21及び第2連通路22を連通及び非連通にする。この連通機構39はメカ式でも電磁式でも構成可能であり、後述する車両1の走行に基づくサスペンション性能には影響を与えるものではない。連通機構39は、第1連通路21を含む油圧回路及び第2連通路22を含む油圧回路におけるオイルRの内部漏れや、オイルRの温度変化等に伴うオイルRの体積の増減によって生じる車両1の傾き等に対して、2つの油圧回路間でオイルRを微少流量にて漏れさせることにより体積の平衡を保ち、不平衡状態になるのを防止する。 The communication mechanism 39 makes the first communication path 21 and the second communication path 22 in communication and non-communication. The communication mechanism 39 can be configured by a mechanical type or an electromagnetic type, and does not affect suspension performance based on the traveling of the vehicle 1 described later. The communication mechanism 39 is a vehicle 1 that is caused by internal leakage of the oil R in the hydraulic circuit including the first communication path 21 and the hydraulic circuit including the second communication path 22, or by an increase or decrease in the volume of the oil R due to a temperature change of the oil R. For example, the oil R is leaked between the two hydraulic circuits at a very small flow rate to maintain the volume balance and prevent an unbalanced state.
 一方、車両1の左側前輪2A、及び右側前輪2Bには、夫々ショックアブソーバ49が組み込まれる。このショックアブソーバ49は一対からなり、夫々のショックアブソーバ49の上側シリンダ室49Uと下側シリンダ室49Lとが可変バルブ350及びチェックバルブ351を介して連通する構成からなる。このようなショックアブソーバ49は、周知であるので説明は省略する。なお、車両1の左側前輪2A、及び右側前輪2Bに組み込まれる一対のショックアブソーバ49間には公知のスタビライザー352が備えられる。本実施形態では、このような構成のサスペンションシステム100が車両1に備えられる。 On the other hand, shock absorbers 49 are incorporated in the left front wheel 2A and the right front wheel 2B of the vehicle 1, respectively. This shock absorber 49 is composed of a pair, and the upper cylinder chamber 49U and the lower cylinder chamber 49L of each shock absorber 49 communicate with each other via a variable valve 350 and a check valve 351. Such a shock absorber 49 is well known and will not be described. A known stabilizer 352 is provided between the pair of shock absorbers 49 incorporated in the left front wheel 2A and the right front wheel 2B of the vehicle 1. In the present embodiment, the suspension system 100 having such a configuration is provided in the vehicle 1.
 次に、本サスペンションシステム100の動作について説明する。例えば図3のように、車両1の左側前輪2Aが段差を走行した際(乗りあがった後)、車体の動く方向は図3の矢印の如き方向となり、車輪と車体との間に相対動きが生じる。左側後輪2Cの減衰力制御シリンダ10Aは、リバウンド方向へ伸長し、右側後輪2Dの減衰力制御シリンダ10Bはバウンド方向へ縮短する。係る場合、オイルRは、図4に示されるように、一方の減衰力制御シリンダ10Aの下側シリンダ室10Lより可変バルブ11Aを介して流出すると共に、他方の減衰力制御シリンダ10Bの上側シリンダ室10Uからも減衰力バルブ14Bを介して流出し、そのオイルRは可変バルブ24Bを介してアキュムレータ23Bへ合わせて流入し、左右の減衰力制御シリンダ10A、10Bに大きな減衰力を発生させる。この際、一方の減衰力制御シリンダ10Aの上側シリンダ室10U、及び他方の減衰力制御シリンダ10Bの下側シリンダ室10Lへ、アキュムレータ23Aから各ポートのチェックバルブ(チェックバルブ25A、チェックバルブ17A、チェックバルブ12B)を介してスムーズにオイルRが流入する。 Next, the operation of the suspension system 100 will be described. For example, as shown in FIG. 3, when the left front wheel 2 </ b> A of the vehicle 1 travels on a step (after climbing up), the direction of movement of the vehicle body is as indicated by the arrow in FIG. 3, and there is relative movement between the wheel and the vehicle body. Arise. The damping force control cylinder 10A of the left rear wheel 2C extends in the rebound direction, and the damping force control cylinder 10B of the right rear wheel 2D contracts in the bound direction. In this case, as shown in FIG. 4, the oil R flows out from the lower cylinder chamber 10L of one damping force control cylinder 10A via the variable valve 11A, and the upper cylinder chamber of the other damping force control cylinder 10B. 10U also flows out through the damping force valve 14B, and the oil R flows into the accumulator 23B through the variable valve 24B to generate a large damping force in the left and right damping force control cylinders 10A and 10B. At this time, check valves (check valve 25A, check valve 17A, check valve) are connected from the accumulator 23A to the upper cylinder chamber 10U of one damping force control cylinder 10A and the lower cylinder chamber 10L of the other damping force control cylinder 10B. Oil R flows smoothly through the valve 12B).
 更に、例えば図5のように、車両1が左旋回しながら走行している際には、車両1の左側に上側方向の荷重がかかり、車両1の右側に下側方向の荷重がかかる。係る場合、オイルRは、図6に示されるように、一方の減衰力制御シリンダ10Aの下側シリンダ室10Lより可変バルブ11Aを介して流出すると共に、他方の減衰力制御シリンダ10Bの上側シリンダ室10Uからも、減衰力バルブ14Bを介して流出する。これらのオイルRは、可変バルブ24Bを介してアキュムレータ23Bに流入する。 Further, for example, as shown in FIG. 5, when the vehicle 1 is traveling while turning left, an upward load is applied to the left side of the vehicle 1 and a downward load is applied to the right side of the vehicle 1. In this case, as shown in FIG. 6, the oil R flows out from the lower cylinder chamber 10L of one damping force control cylinder 10A via the variable valve 11A, and the upper cylinder chamber of the other damping force control cylinder 10B. Also from 10U, it flows out through the damping force valve 14B. These oils R flow into the accumulator 23B through the variable valve 24B.
 また、一方の減衰力制御シリンダ10Aの上側シリンダ室10Uにはチェックバルブ17Aを介してオイルRがスムーズに流入すると共に、他方の減衰力制御シリンダ10Bの下側シリンダ室10Lにも、チェックバルブ12Bを介してスムーズに流入する。これらのオイルRは、チェックバルブ25Aを介してアキュムレータ23Aから流出したものに相当する。 The oil R smoothly flows into the upper cylinder chamber 10U of one damping force control cylinder 10A via the check valve 17A, and the check valve 12B also enters the lower cylinder chamber 10L of the other damping force control cylinder 10B. Flows smoothly through. These oils R correspond to those that have flowed out of the accumulator 23A through the check valve 25A.
 この時、減衰力制御シリンダ10Aには、減衰力制御シリンダ10Aの下側シリンダ室10Lの可変バルブ11A及びアキュムレータ23Bの可変バルブ24Bにより大きな減衰力が作用する。一方、減衰力制御シリンダ10Bには、減衰力バルブ14B及びアキュムレータ23Bの可変バルブ24Bにより大きな減衰力が作用する。 At this time, a large damping force is applied to the damping force control cylinder 10A by the variable valve 11A of the lower cylinder chamber 10L of the damping force control cylinder 10A and the variable valve 24B of the accumulator 23B. On the other hand, a large damping force acts on the damping force control cylinder 10B by the damping force valve 14B and the variable valve 24B of the accumulator 23B.
 これにより、サスペンションシステム100は、減衰力制御付きサスペンションとして機能する。通常の直進や緩いカーブ等では、車両1に設けられた加速度検出部30によって、路面からのバネ下入力(ばたつき)による車体の動きを推定し、各輪の伸長方向の減衰力を最適に制御することによって、車輪2のばたつきを抑えて接地性を高め、乗り心地及び走行安定性を確保する。 Thus, the suspension system 100 functions as a suspension with damping force control. For normal straight running and gentle curves, the acceleration detection unit 30 provided in the vehicle 1 estimates the movement of the vehicle body due to unsprung input (flapping) from the road surface, and optimally controls the damping force in the extension direction of each wheel. By doing so, the fluttering of the wheel 2 is suppressed, the grounding property is improved, and the riding comfort and the running stability are ensured.
 図7には、前輪の単輪入力により車両1にローリング方向成分力が入力された場合に制御部で行われる処理のフローが示される。例えば、前輪の単輪入力により車両1にローリング方向成分力が入力された場合(ステップ#01)、加速度検出部30の検出結果により路面からの入力による車体側の動きを推定し(ステップ#02)、後輪側の可変バルブ11の減衰力を制御することによって車体の動きを抑制する(ステップ#03)。これにより、乗り心地を向上させることが可能となる。具体的には、右側前輪2Bにバウンド方向の入力が入った場合、反力によって車体の前方右側に鉛直上方向への荷重が入り、上側方向へ移動すると共に、相対的には車体全体がローリング方向へ移動する。その車体の動きを車両1に搭載された加速度検出部30の検出結果によって推定し、後輪側の可変バルブ11をロール減衰力を高める様に制御し、車体の動きを抑制する。 FIG. 7 shows a flow of processing performed in the control unit when a rolling direction component force is input to the vehicle 1 by a single wheel input of the front wheel. For example, when a rolling direction component force is input to the vehicle 1 by a single wheel input of the front wheels (step # 01), the vehicle body side motion due to the input from the road surface is estimated based on the detection result of the acceleration detection unit 30 (step # 02). ), The movement of the vehicle body is suppressed by controlling the damping force of the variable valve 11 on the rear wheel side (step # 03). Thereby, riding comfort can be improved. Specifically, when an input in the bounce direction is input to the right front wheel 2B, a vertical upward load is applied to the front right side of the vehicle body due to the reaction force, and the upper vehicle body moves in an upward direction. Move in the direction. The movement of the vehicle body is estimated based on the detection result of the acceleration detection unit 30 mounted on the vehicle 1, and the variable valve 11 on the rear wheel side is controlled to increase the roll damping force, thereby suppressing the movement of the vehicle body.
 図8には、車両1の旋回時においてローリング方向成分力が入力された場合に制御部で行われる処理のフローが示される。横加速度がある程度以上発生する旋回時には操舵角センサの検出結果(ステップ#01)、及び車速センサの検出結果(ステップ#02)によって車体の動きを推定し(ステップ#03)、ヨーと横Gとが同期したニュートラルステアとなる様に後輪側の可変バルブ11、及び可変バルブ24の減衰力を制御し(ステップ#04)、ロール剛性配分を変えることによって、アジリティーや旋回時の車両安定性が向上する。また、本構成によれば、スプリング40によるロール剛性に加え、アキュムレータ23からの供給圧に基づくロール剛性をロール時だけ付加することが可能で、比較的長い時間旋回を継続する様な場合でも一定以下のロールに抑えることができる。したがって、車両安定性を向上することができる。 FIG. 8 shows a flow of processing performed by the control unit when a rolling direction component force is input when the vehicle 1 is turning. At the time of turning where the lateral acceleration occurs to some extent, the movement of the vehicle body is estimated (step # 03) based on the detection result of the steering angle sensor (step # 01) and the detection result of the vehicle speed sensor (step # 02). By controlling the damping force of the variable valve 11 and the variable valve 24 on the rear wheel side so that the neutral steering is synchronized (step # 04) and changing the roll stiffness distribution, the vehicle stability during turning and turning can be improved. improves. Further, according to this configuration, in addition to the roll rigidity by the spring 40, it is possible to add the roll rigidity based on the supply pressure from the accumulator 23 only at the time of the roll, and it is constant even when the turning is continued for a relatively long time. The following rolls can be suppressed. Therefore, vehicle stability can be improved.
 次に、本サスペンションシステム100を有する車両1が走行して得られたデータを用いてその効果について説明する。車両1の走行パターンが図9に示される。2.25mの間隔を有する一対のパイロンを20m毎に3列並べる。4列目の一対のパイロンは、3列目の走行方向左側のパイロンの左端から2.9mの位置を中心として2.8mの間隔を有し、3列目のパイロンから走行方向に20m離して配置される。5-7列目の一対のパイロンは、1-3列目のパイロンと同心で、2.8mの間隔で、20m毎に配置される。 Next, the effect will be described using data obtained when the vehicle 1 having the suspension system 100 travels. A traveling pattern of the vehicle 1 is shown in FIG. A pair of pylons having a spacing of 2.25 m is arranged in three rows every 20 m. The pair of pylons in the fourth row has a distance of 2.8 m centering on the left end of the pylon on the left side in the third row in the traveling direction, and is 20 m away from the third row pylon in the traveling direction. Be placed. A pair of pylons in the 5th to 7th rows are concentric with the pylons in the 1st to 3rd rows and are arranged every 20 m at intervals of 2.8 m.
 このような走行パターンを車両1が走行した場合のステアリングの舵角とヨーレートとの関係、ステアリングの舵角とロール角との関係、及びステアリングの舵角と横加速度との関係が図10-図12に示される。なお、比較のために、サスペンションシステム100を搭載しない場合の特性が破線で示され、サスペンションシステム100を搭載した場合の特性が実線で示される。図10に示されるように本サスペンションシステム100により、舵角に対するヨーが安定している。また、図11に示されるように本サスペンションシステム100により舵角に対するロール姿勢も安定している。更には、図12に示されるように本サスペンションシステム100により舵角に対する横加速度の立ち上がりが速くなっている。このようにサスペンションシステム100を備えることにより走行安定性、及びアジリティーが向上する。 The relationship between the steering angle and the yaw rate of the steering when the vehicle 1 travels in such a traveling pattern, the relationship between the steering angle and the roll angle, and the relationship between the steering angle and the lateral acceleration are shown in FIG. 12. For comparison, the characteristic when the suspension system 100 is not mounted is indicated by a broken line, and the characteristic when the suspension system 100 is mounted is indicated by a solid line. As shown in FIG. 10, the yaw with respect to the steering angle is stable by the suspension system 100. Further, as shown in FIG. 11, the suspension system 100 also stabilizes the roll posture with respect to the steering angle. Furthermore, as shown in FIG. 12, the suspension system 100 accelerates the rise of the lateral acceleration with respect to the steering angle. By providing the suspension system 100 in this manner, traveling stability and agility are improved.
 このように本サスペンションシステム100によれば、直進や緩いカーブ等の横加速度が小さい状態での通常走行時には、車体に配置した加速度検出部30の検出結果によって車体の状態を検知し、減衰力制御シリンダ10の各輪の伸長側の減衰力を制御して乗り心地を向上することができる。また、前輪側の単輪入力により車両1にローリング方向成分力が入力された場合、後輪側の可変バルブ11、及び可変バルブ24は減衰力可変バルブとして機能し、減衰力を制御して車体の動きを抑制する。更に、横加速度を生じるような旋回時には、舵角センサ、車速センサによってヨーと横加速度が同期したニュートラルステアとなるように後輪側の可変バルブ11、及び可変バルブ24の減衰力を制御し、車両1の前後でロール剛性配分を変えることによって常に理想的な車両1の旋回状態を確保することができる。 As described above, according to the present suspension system 100, during normal traveling in a state where the lateral acceleration such as straight traveling or a gentle curve is small, the state of the vehicle body is detected based on the detection result of the acceleration detection unit 30 disposed on the vehicle body, and damping force control is performed. Riding comfort can be improved by controlling the damping force on the extension side of each wheel of the cylinder 10. In addition, when a rolling direction component force is input to the vehicle 1 by a single wheel input on the front wheel side, the rear wheel side variable valve 11 and the variable valve 24 function as a damping force variable valve, and control the damping force to control the vehicle body. Suppresses movement. Further, when turning such that lateral acceleration occurs, the damping force of the variable valve 11 on the rear wheel side and the variable valve 24 is controlled by the steering angle sensor and the vehicle speed sensor so that the neutral steering in which the yaw and the lateral acceleration are synchronized, By changing the roll rigidity distribution before and after the vehicle 1, an ideal turning state of the vehicle 1 can always be ensured.
1-2.第2の実施形態
 次に、本サスペンションシステム100の第2の実施形態について説明する。上記第1の実施形態では、後輪側にサスペンションシステム100が備えられ、前輪側にスタビライザー352が備えられているとして説明した。本実施形態では、前輪側にもサスペンションシステム100が備えられている点で上記第1の実施形態と異なる。
1-2. Second Embodiment Next, a second embodiment of the suspension system 100 will be described. In the first embodiment, it has been described that the suspension system 100 is provided on the rear wheel side and the stabilizer 352 is provided on the front wheel side. This embodiment is different from the first embodiment in that a suspension system 100 is also provided on the front wheel side.
 本実施形態に係るサスペンションシステム100が備えられた車両1を模式的に示した図が図13に示される。図13に示されるように、後輪側のサスペンションシステム100は上記第1の実施形態と同様である。また、前輪側のサスペンションシステム100は、後輪側のサスペンションシステム100と同様である。したがって、動作及び機能は上記第1の実施形態と同様であるので、以下では簡単に説明する。 FIG. 13 schematically shows the vehicle 1 provided with the suspension system 100 according to the present embodiment. As shown in FIG. 13, the suspension system 100 on the rear wheel side is the same as that of the first embodiment. The suspension system 100 on the front wheel side is the same as the suspension system 100 on the rear wheel side. Accordingly, the operation and function are the same as those in the first embodiment, and will be described briefly below.
 本実施形態のサスペンションシステム100においては、前輪側及び後輪側の減衰力制御シリンダ10は、夫々上側シリンダ室10U及び下側シリンダ室10Lを左右でクロス接続して構成される。このように前輪側及び後輪側の双方にサスペンションシステム100を設けることにより、上記第1の実施形態のサスペンションシステム100に比べ、更に効果を高めることができる。例えば、右側前輪2Bにバウンド方向の入力が入った場合、反力によって車体の前方右側に鉛直上方向への荷重が入り、上方向へ移動すると共に、相対的に車体全体がローリング方向へ移動する。その車体の動きを車両1に搭載された加速度検出部30の検出結果によって推定し、前輪側及び後輪側の双方の可変バルブ11、及び可変バルブ24をロール減衰力を高める様に制御し、更に車体の動きを抑制する。 In the suspension system 100 of the present embodiment, the damping force control cylinders 10 on the front wheel side and the rear wheel side are configured by cross-connecting the upper cylinder chamber 10U and the lower cylinder chamber 10L on the left and right, respectively. By providing the suspension system 100 on both the front wheel side and the rear wheel side as described above, the effect can be further enhanced as compared with the suspension system 100 of the first embodiment. For example, when an input in the bounce direction is input to the right front wheel 2B, a vertical upward load is applied to the front right side of the vehicle body by the reaction force, and the vehicle body moves in the upward direction, and the entire vehicle body relatively moves in the rolling direction. . The movement of the vehicle body is estimated from the detection result of the acceleration detection unit 30 mounted on the vehicle 1, and the variable valves 11 and the variable valves 24 on both the front wheel side and the rear wheel side are controlled to increase the roll damping force, Furthermore, the movement of the vehicle body is suppressed.
 横加速度がある程度以上発生する旋回時には操舵角センサの検出結果、及び車速センサの検出結果によってヨーと横Gが同期したニュートラルステアとなる様に前輪側及び後輪側の双方の可変バルブ11、及び可変バルブ24の減衰力を制御し、ロール剛性配分を変えることによってアジリティーや旋回時の車両安定性を向上する。また、本構成によれば、スプリングによるロール剛性に加え、アキュムレータ23からの供給圧に基づくロール剛性をロール時だけ付加することが可能で、比較的長い時間旋回を継続する様な場合でも前輪側及び後輪側の双方でロールを抑えることができる。したがって、車両安定性を更に向上できる。 The variable valve 11 on both the front wheel side and the rear wheel side so that the neutral steering in which the yaw and the lateral G are synchronized by the detection result of the steering angle sensor and the detection result of the vehicle speed sensor at the time of turning where the lateral acceleration occurs to some extent, and By controlling the damping force of the variable valve 24 and changing the roll stiffness distribution, agility and vehicle stability during turning are improved. Further, according to this configuration, in addition to the roll rigidity by the spring, the roll rigidity based on the supply pressure from the accumulator 23 can be added only at the time of the roll, and even when turning for a relatively long time, the front wheel side And the roll can be suppressed on both the rear wheel side. Therefore, vehicle stability can be further improved.
1-3.第3の実施形態
 次に、本サスペンションシステム100の第3の実施形態について説明する。上記第1及び第2の実施形態では、サスペンションシステム100が車両1の幅方向で対向して設けられる左側車輪及び右側車輪に亘って備えられるとして説明した。本実施形態では、サスペンションシステム100は、車両1の前後方向に設けられる前側車輪及び後側車輪に亘って備えられる点で上記第1及び第2の実施形態と異なる。以下では異なる点を中心に説明する。
1-3. Third Embodiment Next, a third embodiment of the suspension system 100 will be described. In the first and second embodiments, it has been described that the suspension system 100 is provided across the left wheel and the right wheel provided to face each other in the width direction of the vehicle 1. In the present embodiment, the suspension system 100 is different from the first and second embodiments in that the suspension system 100 is provided over front and rear wheels provided in the front-rear direction of the vehicle 1. Below, it demonstrates focusing on a different point.
 図14には車両1に搭載された本実施形態に係るサスペンションシステム100が模式的に示される。本実施形態に係るサスペンションシステム100が有する減衰力制御シリンダ10は、車両1が有する複数の車輪2のうち、一対の車輪2に組み込まれる。複数の車輪2とは、車両1の左側前輪2A、右側前輪2B、左側後輪2C及び右側後輪2Dである。一対の車輪2とは、車両1の前後方向に設けられる前側車輪及び後側車輪である。したがって、減衰力制御シリンダ10は一対からなる。本実施形態では、左側前輪2A及び左側後輪2Cで対をなし、右側前輪2B及び右側後輪2Dで対をなして設けられる。 FIG. 14 schematically shows the suspension system 100 according to this embodiment mounted on the vehicle 1. A damping force control cylinder 10 included in the suspension system 100 according to the present embodiment is incorporated into a pair of wheels 2 among a plurality of wheels 2 included in the vehicle 1. The plurality of wheels 2 are the left front wheel 2A, the right front wheel 2B, the left rear wheel 2C, and the right rear wheel 2D of the vehicle 1. The pair of wheels 2 are a front wheel and a rear wheel provided in the front-rear direction of the vehicle 1. Therefore, the damping force control cylinder 10 consists of a pair. In the present embodiment, the left front wheel 2A and the left rear wheel 2C are paired, and the right front wheel 2B and the right rear wheel 2D are paired.
 以下の説明では、特に区別を要する場合には、左側前輪2A及び右側前輪2Bに組み込まれる減衰力制御シリンダ10は符号10Aを付して示し、左側後輪2C及び右側後輪2Dに組み込まれる減衰力制御シリンダ10は符号10Bを付して示す。車両1の左側に備えられるサスペンションシステム100と、車両1の右側に備えられるサスペンションシステム100とは、動作及び機能は同様であるので、以下では主に車両1の左側に備えられるサスペンションシステム100を用いて説明する。 In the following description, when it is particularly necessary to distinguish, the damping force control cylinder 10 incorporated in the left front wheel 2A and the right front wheel 2B is indicated by reference numeral 10A, and the damping force incorporated in the left rear wheel 2C and the right rear wheel 2D. The force control cylinder 10 is indicated by reference numeral 10B. Since the suspension system 100 provided on the left side of the vehicle 1 and the suspension system 100 provided on the right side of the vehicle 1 are similar in operation and function, the suspension system 100 provided mainly on the left side of the vehicle 1 will be used below. I will explain.
 本実施形態に係る第1連通路21は、一方の減衰力制御シリンダ10Aの上側シリンダ室10Uと他方の減衰力制御シリンダ10Bの下側シリンダ室10Lとを連通する。すなわち、左側前輪2Aに組み込まれた減衰力制御シリンダ10Aの上側シリンダ室10Uは減衰力バルブ14A、及びチェックバルブ17Aを介して第1連通路21に連通し、左側後輪2Cに組み込まれた減衰力制御シリンダ10Bの下側シリンダ室10Lは可変バルブ11B、及びチェックバルブ12Bを介して第1連通路21に連通する。 The first communication path 21 according to the present embodiment communicates the upper cylinder chamber 10U of one damping force control cylinder 10A and the lower cylinder chamber 10L of the other damping force control cylinder 10B. That is, the upper cylinder chamber 10U of the damping force control cylinder 10A incorporated in the left front wheel 2A communicates with the first communication passage 21 via the damping force valve 14A and the check valve 17A, and the damping incorporated in the left rear wheel 2C. The lower cylinder chamber 10L of the force control cylinder 10B communicates with the first communication passage 21 via the variable valve 11B and the check valve 12B.
 また、本実施形態に係る第2連通路22は、一方の減衰力制御シリンダ10Aの下側シリンダ室10Lと他方の減衰力制御シリンダ10Bの上側シリンダ室10Uとを連通する。すなわち、左側前輪2Aに組み込まれた減衰力制御シリンダ10Aの下側シリンダ室10Lは可変バルブ11A、及びチェックバルブ12Aを介して第2連通路22に連通し、左側後輪2Cに組み込まれた減衰力制御シリンダ10Bの上側シリンダ室10Uは減衰力バルブ14B、及びチェックバルブ17Bを介して第2連通路22に連通する。 Further, the second communication path 22 according to the present embodiment communicates the lower cylinder chamber 10L of one damping force control cylinder 10A and the upper cylinder chamber 10U of the other damping force control cylinder 10B. That is, the lower cylinder chamber 10L of the damping force control cylinder 10A incorporated in the left front wheel 2A communicates with the second communication passage 22 via the variable valve 11A and the check valve 12A, and the damping incorporated in the left rear wheel 2C. The upper cylinder chamber 10U of the force control cylinder 10B communicates with the second communication path 22 via the damping force valve 14B and the check valve 17B.
 本実施形態では、このような構成のサスペンションシステム100が車両1の左側部に備えられる。一方、車両1の右側前輪2B及び右側後輪2Dにも上述と同様に構成されたサスペンションシステム100が備えられる。また、本実施形態にかかるサスペンションシステム100では、車両1の前側及び車両1の後側に、幅方向に沿って(車両1の左側部と右側部とに亘って)スタビライザー352が備えられる。 In the present embodiment, the suspension system 100 having such a configuration is provided on the left side of the vehicle 1. On the other hand, the right front wheel 2B and the right rear wheel 2D of the vehicle 1 are also provided with a suspension system 100 configured in the same manner as described above. In the suspension system 100 according to the present embodiment, the stabilizer 352 is provided on the front side of the vehicle 1 and the rear side of the vehicle 1 along the width direction (between the left side portion and the right side portion of the vehicle 1).
 次に、本実施形態に係るサスペンションシステム100の動作について説明する。例えば図15のように、車両1がブレーキをかけた際、車体の前方がしずみ込むのに伴い、前輪側の減衰力制御シリンダ10Aは相対的にバウンド方向へストロークする。同時に車体の後方が持ち上がるのに伴い、後輪側の減衰力制御シリンダ10Bは相対的にリバウンド方向へストロークする。係る場合、オイルRは、図16に示されるように、一方の減衰力制御シリンダ10Aの上側シリンダ室10Uから減衰力バルブ14Aを介して流出すると共に、他方の減衰力制御シリンダ10Bの下側シリンダ室10Lからも、可変バルブ11Bを介して流出する。これらのオイルRは、可変バルブ24Aを介してアキュムレータ23Aに流入する。 Next, the operation of the suspension system 100 according to this embodiment will be described. For example, as shown in FIG. 15, when the vehicle 1 brakes, the front wheel side damping force control cylinder 10A relatively strokes in the bound direction as the front of the vehicle body squeezes. At the same time, as the rear of the vehicle body is lifted, the damping force control cylinder 10B on the rear wheel side relatively strokes in the rebound direction. In this case, as shown in FIG. 16, the oil R flows out from the upper cylinder chamber 10U of one damping force control cylinder 10A via the damping force valve 14A, and the lower cylinder of the other damping force control cylinder 10B. It also flows out from the chamber 10L through the variable valve 11B. These oils R flow into the accumulator 23A through the variable valve 24A.
 また、一方の減衰力制御シリンダ10Aの下側シリンダ室10Lへはチェックバルブ12Aを介してオイルRがスムーズに流入すると共に、他方の減衰力制御シリンダ10Bの上側シリンダ室10Uへは、チェックバルブ17Bを介してスムーズに流入する。これらのオイルRは、チェックバルブ25Bを介してアキュムレータ23Bから流出したものに相当する。 The oil R smoothly flows into the lower cylinder chamber 10L of one damping force control cylinder 10A via the check valve 12A, and the check valve 17B enters the upper cylinder chamber 10U of the other damping force control cylinder 10B. Flows smoothly through. These oils R correspond to those that have flowed out of the accumulator 23B via the check valve 25B.
 この時、減衰力制御シリンダ10Aには、減衰力制御シリンダ10Aの上側シリンダ室10Uの減衰力バルブ14A及びアキュムレータ23Aの可変バルブ24Aにより大きな減衰力が作用する。一方、減衰力制御シリンダ10Bには、減衰力制御シリンダ10Bの下側シリンダ室10Lの可変バルブ11B及びアキュムレータ23Aの可変バルブ24Aにより大きな減衰力が作用する。 At this time, a large damping force acts on the damping force control cylinder 10A by the damping force valve 14A of the upper cylinder chamber 10U of the damping force control cylinder 10A and the variable valve 24A of the accumulator 23A. On the other hand, a large damping force is applied to the damping force control cylinder 10B by the variable valve 11B of the lower cylinder chamber 10L of the damping force control cylinder 10B and the variable valve 24A of the accumulator 23A.
 また、例えば図17のように、車両1が発進・加速時には車両1の前方が持ち上がるのに伴い前輪側の減衰力制御シリンダ10Aは相対的にリバウンド方向へストロークする。同時に車両の後方はしずみ込み、それに伴い後輪側の減衰力制御シリンダ10Bは相対的にバウンド方向へストロークする。係る場合、オイルRは、図18に示されるように、一方の減衰力制御シリンダ10Aの下側シリンダ室10Lより可変バルブ11Aを介して流出すると共に、他方の減衰力制御シリンダ10Bの上側シリンダ室10Uからも、減衰力バルブ14Bを介して流出する。これらのオイルRは、可変バルブ24Bを介してアキュムレータ23Bに流入する。 Further, for example, as shown in FIG. 17, when the vehicle 1 starts and accelerates, the front wheel side damping force control cylinder 10A relatively strokes in the rebound direction as the front of the vehicle 1 is lifted. At the same time, the rear of the vehicle squeezes, and accordingly, the damping force control cylinder 10B on the rear wheel side relatively strokes in the bound direction. In this case, as shown in FIG. 18, the oil R flows out from the lower cylinder chamber 10L of one damping force control cylinder 10A via the variable valve 11A, and the upper cylinder chamber of the other damping force control cylinder 10B. Also from 10U, it flows out through the damping force valve 14B. These oils R flow into the accumulator 23B through the variable valve 24B.
 また、一方の減衰力制御シリンダ10Aの上側シリンダ室10Uにはチェックバルブ17Aを介してオイルRがスムーズに流入すると共に、他方の減衰力制御シリンダ10Bの下側シリンダ室10Lにも、チェックバルブ12Bを介してスムーズに流入する。これらのオイルRは、チェックバルブ25Aを介してアキュムレータ23Aから流出したものに相当する。 The oil R smoothly flows into the upper cylinder chamber 10U of one damping force control cylinder 10A via the check valve 17A, and the check valve 12B also enters the lower cylinder chamber 10L of the other damping force control cylinder 10B. Flows smoothly through. These oils R correspond to those that have flowed out of the accumulator 23A through the check valve 25A.
 この時、減衰力制御シリンダ10Aには、減衰力制御シリンダ10Aの下側シリンダ室10Lの可変バルブ11A及びアキュムレータ23Bの可変バルブ24Bにより大きな減衰力が作用する。一方、減衰力制御シリンダ10Bには、減衰力バルブ14B及びアキュムレータ23Bの可変バルブ24Bにより大きな減衰力が作用する。 At this time, a large damping force is applied to the damping force control cylinder 10A by the variable valve 11A of the lower cylinder chamber 10L of the damping force control cylinder 10A and the variable valve 24B of the accumulator 23B. On the other hand, a large damping force acts on the damping force control cylinder 10B by the damping force valve 14B and the variable valve 24B of the accumulator 23B.
 更に、例えば図19のように、車両1が右旋回しながら走行している際には、車両1の右側に上側方向の荷重がかかり、車両1の左側に下側方向の荷重がかかる。係る場合、オイルRは、図20に示されるように、左側後輪2Cに組み込まれた減衰力制御シリンダ10Bの上側シリンダ室10Uから、減衰力バルブ14Bを介して流出する。このオイルRは、左側前輪2Aに組み込まれた減衰力制御シリンダ10Aの下側シリンダ室10Lにチェックバルブ12Aを介してスムーズに流入すると共に、減衰力制御シリンダ10Aのロッド進入分の少量のオイルRが可変バルブ24Bを介してアキュムレータ23Bに流入する。 Further, for example, as shown in FIG. 19, when the vehicle 1 is traveling while turning right, an upward load is applied to the right side of the vehicle 1 and a downward load is applied to the left side of the vehicle 1. In this case, as shown in FIG. 20, the oil R flows out from the upper cylinder chamber 10U of the damping force control cylinder 10B incorporated in the left rear wheel 2C via the damping force valve 14B. The oil R smoothly flows into the lower cylinder chamber 10L of the damping force control cylinder 10A incorporated in the left front wheel 2A via the check valve 12A, and a small amount of oil R corresponding to the rod entering the damping force control cylinder 10A. Flows into the accumulator 23B through the variable valve 24B.
 また、オイルRは、左側前輪2Aに組み込まれた減衰力制御シリンダ10Aの上側シリンダ室10Uから、減衰力バルブ14Aを介して流出する。このオイルRは、左側後輪2Cに組み込まれた減衰力制御シリンダ10Bの下側シリンダ室10Lにチェックバルブ12Bを介してスムーズに流入すると共に、減衰力制御シリンダ10Bのロッド進入分の少量のオイルRが可変バルブ24Aを介してアキュムレータ23Aに流入する。 Also, the oil R flows out from the upper cylinder chamber 10U of the damping force control cylinder 10A incorporated in the left front wheel 2A through the damping force valve 14A. This oil R flows smoothly into the lower cylinder chamber 10L of the damping force control cylinder 10B incorporated in the left rear wheel 2C via the check valve 12B, and a small amount of oil corresponding to the rod entering the damping force control cylinder 10B. R flows into the accumulator 23A through the variable valve 24A.
 この際、減衰力制御シリンダ10Bには、減衰力バルブ14Bにより減衰力が働くが、アキュムレータ23Bの可変バルブ24Bに流入するオイルRは、減衰力制御シリンダ10Bのロッド進入分に相当する少量であるため減衰力の作用は小さい。一方、減衰力制御シリンダ10Aには、減衰力バルブ14Aにより減衰力が働くが、アキュムレータ23Aの可変バルブ24Aに流入するオイルRは、減衰力制御シリンダ10Bのロッド進入分に相当するが少量であるため減衰力の作用は小さい。 At this time, a damping force is applied to the damping force control cylinder 10B by the damping force valve 14B, but the oil R flowing into the variable valve 24B of the accumulator 23B is a small amount corresponding to the amount of the rod entering the damping force control cylinder 10B. Therefore, the effect of the damping force is small. On the other hand, a damping force is applied to the damping force control cylinder 10A by the damping force valve 14A, but the oil R flowing into the variable valve 24A of the accumulator 23A corresponds to the amount of the rod entering the damping force control cylinder 10B, but a small amount. Therefore, the effect of the damping force is small.
 一方、オイルRは、右側前輪2Bに組み込まれた減衰力制御シリンダ10Aの下側シリンダ室10Lから、可変バルブ11Aを介して流出する。このオイルRは、右側後輪2Dに組み込まれた減衰力制御シリンダ10Bの上側シリンダ室10Uにチェックバルブ17Bを介してスムーズに流入する。また、アキュムレータ23Bから下側シリンダ室10Lから排出されたロッド容積分に対応するオイルRがチェックバルブ25Bを介して上側シリンダ室10Uに流入する。この際、主として下側シリンダ室10Lの可変バルブ11Aにより減衰力制御シリンダ10Aの伸長方向の減衰力が発生する。 Meanwhile, the oil R flows out from the lower cylinder chamber 10L of the damping force control cylinder 10A incorporated in the right front wheel 2B through the variable valve 11A. The oil R smoothly flows into the upper cylinder chamber 10U of the damping force control cylinder 10B incorporated in the right rear wheel 2D via the check valve 17B. Further, the oil R corresponding to the rod volume discharged from the lower cylinder chamber 10L from the accumulator 23B flows into the upper cylinder chamber 10U via the check valve 25B. At this time, the damping force in the extending direction of the damping force control cylinder 10A is mainly generated by the variable valve 11A in the lower cylinder chamber 10L.
 また、オイルRは、右側後輪2Dに組み込まれた減衰力制御シリンダ10Bの下側シリンダ室10Lから、可変バルブ11Bを介して流出する。このオイルRは、右側前輪2Bに組み込まれた減衰力制御シリンダ10Aの上側シリンダ室10Uにチェックバルブ17Aを介してスムーズに流入する。また、アキュムレータ23Aから下側シリンダ室10Lから排出されたロッド容積分に対応するオイルRが、チェックバルブ25A、及びチェックバルブ17Aを介して上側シリンダ室10Uに流入する。この際、主として下側シリンダ室10Lの可変バルブ11Bにより減衰力制御シリンダ10Bの伸長方向の減衰力が発生する。 Further, the oil R flows out from the lower cylinder chamber 10L of the damping force control cylinder 10B incorporated in the right rear wheel 2D through the variable valve 11B. The oil R smoothly flows into the upper cylinder chamber 10U of the damping force control cylinder 10A incorporated in the right front wheel 2B via the check valve 17A. Further, the oil R corresponding to the rod volume discharged from the lower cylinder chamber 10L from the accumulator 23A flows into the upper cylinder chamber 10U via the check valve 25A and the check valve 17A. At this time, the damping force in the extending direction of the damping force control cylinder 10B is generated mainly by the variable valve 11B of the lower cylinder chamber 10L.
 これにより、サスペンションシステム100は、減衰力制御付きサスペンションとして機能する。これにより、サスペンションシステム100は、減衰力制御付きサスペンションとして機能する。車両1に設けられた加速度検出部30によって、路面からのバネ下入力(ばたつき)による車体の動きを推定し、各輪の伸長方向の減衰力を最適に制御することによって、車輪2のばたつきを抑えて接地性を高め、乗り心地及び走行安定性を確保する。また、車両1にピッチングの力が入力された場合は加速度検出部30により前後方向、及びピッチ速度を検知し、油圧回路中のピッチを減衰する効果を発揮するアキュムレータ23に設けられる可変バルブ24を制御部により制御して、ピッチを減衰する。また、ロール方向の力が入力された場合は、左右の前輪及び後輪に組み付けられた減衰力制御シリンダ10の上側シリンダ室10Uと下側シリンダ室10Lとの間でオイルRが移動し、ロールの抑制力が十分でないため、スタビライザー352にてロールを抑制する。したがって、車両安定性を更に向上できる。 Thus, the suspension system 100 functions as a suspension with damping force control. Thereby, the suspension system 100 functions as a suspension with damping force control. The acceleration detection unit 30 provided in the vehicle 1 estimates the movement of the vehicle body due to unsprung input (flapping) from the road surface, and optimally controls the damping force in the extending direction of each wheel, thereby varying the fluttering of the wheels 2. Suppressing and improving the ground contact, ensuring ride comfort and running stability. In addition, when a pitching force is input to the vehicle 1, a variable valve 24 provided in the accumulator 23 that exhibits an effect of attenuating the pitch in the hydraulic circuit by detecting the longitudinal direction and the pitch speed by the acceleration detection unit 30. It is controlled by the control unit to attenuate the pitch. When a force in the roll direction is input, the oil R moves between the upper cylinder chamber 10U and the lower cylinder chamber 10L of the damping force control cylinder 10 assembled to the left and right front wheels and the rear wheel, and the roll Therefore, the stabilizer 352 suppresses the roll. Therefore, vehicle stability can be further improved.
1-4.第4の実施形態
 図21は、第4の実施形態に係るサスペンションシステム100を示すもので、一対の前輪(又は後輪)部分を示す模式図である。本実施形態のサスペンションシステム100は、前輪及び後輪の少なくとも一方の左右一対の車輪2に適用することが可能である。左側車輪32A、右側車輪32Bは、夫々回転軸芯XA,XB周りに回転自在な状態で、車体9に取り付けられている。車体9への車輪2の取り付けは、左油圧シリンダ4、及び、右油圧シリンダ5を介して上下に移動可能な状態に取り付けられている。具体的には、車輪2は、車体9の下端部1Aから側方に延びた上下揺動自在なリンク部材3を介して車体9に取り付けられている。また、左油圧シリンダ4、及び、右油圧シリンダ5は、その上端部が車体9の支持部1Bに取り付けられ、下端部がリンク部材3の中間部3Aに取り付けられ、車体9と車輪2との上下相対移動に対して伸縮して減衰を図れるように構成されている。
1-4. Fourth Embodiment FIG. 21 shows a suspension system 100 according to a fourth embodiment, and is a schematic diagram showing a pair of front wheels (or rear wheels). The suspension system 100 of the present embodiment can be applied to a pair of left and right wheels 2 of at least one of a front wheel and a rear wheel. The left wheel 32A and the right wheel 32B are attached to the vehicle body 9 so as to be rotatable around the rotation axes XA and XB, respectively. The wheel 2 is attached to the vehicle body 9 so as to be movable up and down via the left hydraulic cylinder 4 and the right hydraulic cylinder 5. Specifically, the wheel 2 is attached to the vehicle body 9 via a link member 3 that can swing up and down from the lower end 1 </ b> A of the vehicle body 9. The left hydraulic cylinder 4 and the right hydraulic cylinder 5 have upper ends attached to the support portion 1B of the vehicle body 9, and lower ends attached to the intermediate portion 3A of the link member 3, so that the vehicle body 9 and the wheel 2 It is configured so that it can be attenuated by expanding and contracting with respect to the vertical relative movement.
 本実施形態に係るサスペンションシステム100は、車体9の左右の各支持部1Bと左右の各リンク部材3の中間部3Aとにわたって取り付けられた左油圧シリンダ4、及び、右油圧シリンダ5を設けると共に、左油圧シリンダ4の上側シリンダ室4Uと右油圧シリンダ5の下側シリンダ室5Lとを連通接続する第1油路6と、右油圧シリンダ5の上側シリンダ室5Uと左油圧シリンダ4の下側シリンダ室4Lとを連通接続する第2油路7と、各シリンダ室4U,4L,5U,5Lのポート110,111に各別に対応させて設けられると共に、前記各ポート110,111毎にオイルRの入出圧力に差をつける差圧機構8と、第1油路6と第2油路7とに連通状態に夫々設けられたアキュムレータ23A,23Bを有して構成してある。すなわち、アキュムレータ23A,23Bは一対からなる。 The suspension system 100 according to the present embodiment includes a left hydraulic cylinder 4 and a right hydraulic cylinder 5 that are attached across the left and right support portions 1B of the vehicle body 9 and the intermediate portion 3A of the left and right link members 3, The first oil passage 6 that connects the upper cylinder chamber 4U of the left hydraulic cylinder 4 and the lower cylinder chamber 5L of the right hydraulic cylinder 5 in communication, the upper cylinder chamber 5U of the right hydraulic cylinder 5 and the lower cylinder of the left hydraulic cylinder 4 The second oil passage 7 that communicates with the chamber 4L and the ports 110 and 111 of the cylinder chambers 4U, 4L, 5U, and 5L are provided corresponding to the ports 110 and 111, respectively. A differential pressure mechanism 8 for making a difference in the input / output pressure, and accumulators 23A and 23B provided in communication with the first oil passage 6 and the second oil passage 7 are provided. That is, the accumulators 23A and 23B are a pair.
 なお、アキュムレータ23A,23Bはシステム圧を発生させ、シリンダ室4U、4L、5U、5LからのオイルRの流入、逆にシリンダ室4U、4L、5U、5LへのオイルRの供給を行う。また、車両のロール剛性を付与するために設けられている。アキュムレータ23A,23Bの容器の中には気体が充填されており、オイルRの体積により、その気体の体積が変化することで気体のバネとして作用する。すなわち、アキュムレータ23A,23BにオイルRが流入すると、気体が圧縮され、気体のバネ力による反発力がオイルRに付加され、車両のロール剛性(スタビライザー機能)を付与することが可能となる。 Note that the accumulators 23A and 23B generate system pressure and supply oil R from the cylinder chambers 4U, 4L, 5U, and 5L, and conversely supply oil R to the cylinder chambers 4U, 4L, 5U, and 5L. Moreover, it is provided in order to provide the roll rigidity of the vehicle. The containers of the accumulators 23A and 23B are filled with gas, and act as a gas spring by changing the volume of the gas according to the volume of the oil R. That is, when the oil R flows into the accumulators 23A and 23B, the gas is compressed, a repulsive force due to the spring force of the gas is added to the oil R, and the roll rigidity (stabilizer function) of the vehicle can be imparted.
 第1油路6とアキュムレータ23Aとは、第3油路311によって連通接続してある一方、第2油路7とアキュムレータ23Bとは、第4油路312によって連通接続してある。第3油路311、及び、第4油路312には、アキュムレータ23A,23BにオイルRが進入する際に負荷を与える負荷機構13が夫々設けてある。また、第3油路311と第4油路312とにわたっては、互いの油路どうしのオイル体積が増減し、差が生じることによる車両傾き等に対してオイルRの移動を許容してバランスをとる連通機構39が設けられている。 The first oil passage 6 and the accumulator 23A are connected in communication by a third oil passage 311, while the second oil passage 7 and the accumulator 23B are connected in communication by a fourth oil passage 312. The third oil passage 311 and the fourth oil passage 312 are respectively provided with load mechanisms 13 that apply a load when the oil R enters the accumulators 23A and 23B. Further, between the third oil passage 311 and the fourth oil passage 312, the oil volume between the oil passages increases and decreases, and the balance of the oil R is allowed with respect to the vehicle inclination or the like due to the difference. A communication mechanism 39 is provided.
 両油圧シリンダ4,5は、夫々ピストンPによって各上下側シリンダ室が分割されており、ピストンロッドPRは、下側シリンダ室4L,5Lを夫々貫通する状態に設けられている。 The upper and lower cylinder chambers of the hydraulic cylinders 4 and 5 are divided by pistons P, respectively, and the piston rod PR is provided so as to penetrate the lower cylinder chambers 4L and 5L.
 差圧機構8は、シリンダ室へのオイルRの進入のみを許容するチェックバルブ8Aと、シリンダ室からのオイルRの排出のみを許容すると共に差圧が所定の圧力値以上で開弁しつつ差圧に基づいて流量を調整する減衰力バルブ8Bと、排出の時に抵抗を付与するためのオリフィス8Cとを設けて構成してある。減衰力バルブ8Bの差圧と流量との関係は、図22に示すとおりである。 The differential pressure mechanism 8 includes a check valve 8A that allows only the entry of the oil R into the cylinder chamber, and allows only the discharge of the oil R from the cylinder chamber and is opened while the differential pressure exceeds a predetermined pressure value. A damping force valve 8B for adjusting the flow rate based on the pressure and an orifice 8C for providing resistance at the time of discharge are provided. The relationship between the differential pressure of the damping force valve 8B and the flow rate is as shown in FIG.
 チェックバルブ8A、減衰力バルブ8Bには、弁体に閉じ付勢力を与えるスプリング15が備えられている。このスプリング15の付勢力が大きいと、オイルRの流動抵抗も大きくなり、逆に、付勢力が小さいと、オイルRの流動抵抗も小さくなるように構成されていても良く、リーフ弁構造でもよい。但し、このチェックバルブ8Aは、流入時はオイルRが流入し易いようにするために、高い流動抵抗には設定しない。減衰力バルブ8Bは、流量、差圧に応じて開弁量が変わり、相応した減衰力を発生させるため、例えば、板バネ等による弾性付勢力を流路閉弁方向に作用させるように構成されたものを採用することができる。 The check valve 8A and the damping force valve 8B are provided with a spring 15 that applies a closing force to the valve body. When the urging force of the spring 15 is large, the flow resistance of the oil R is increased, and conversely, when the urging force is small, the flow resistance of the oil R may be decreased, or a leaf valve structure may be used. . However, the check valve 8A is not set to a high flow resistance so that the oil R can easily flow in at the time of inflow. The damping force valve 8B changes the valve opening amount in accordance with the flow rate and the differential pressure, and generates a corresponding damping force. For example, the damping force valve 8B is configured to apply an elastic biasing force by a leaf spring or the like in the valve closing direction. Can be used.
 本実施形態では、差圧機構8は、シリンダ室4U,4L,5U,5LからオイルRが排出される際の流動抵抗が各シリンダ室4U,4L,5U,5LにオイルRが進入する際の流動抵抗よりも大きく設定されている。すなわち、チェックバルブ8Aを介してオイルRが各シリンダ室4U,4L,5U,5Lに進入する際の減衰力よりも、減衰力バルブ8Bを介してオイルRが各シリンダ室4U,4L,5U,5Lから排出される際の減衰力の方が大きく設定されている。 In the present embodiment, the differential pressure mechanism 8 is configured such that the flow resistance when the oil R is discharged from the cylinder chambers 4U, 4L, 5U, and 5L causes the oil R to enter the cylinder chambers 4U, 4L, 5U, and 5L. It is set larger than the flow resistance. That is, rather than the damping force when the oil R enters the cylinder chambers 4U, 4L, 5U, and 5L via the check valve 8A, the oil R passes through the cylinder chambers 4U, 4L, 5U, and the damping force valve 8B. The damping force when discharged from 5L is set larger.
 また、減衰力バルブ8Bと、オリフィス8Cによって、ピストン速度と流動抵抗(減衰力に相当)との関係は、図23に示すように、ピストン速度の小さい時には、オリフィス8Cによる流動抵抗に支配され、ピストン速度が大きくなると、減衰力バルブ8Bが開弁後はその流動抵抗の変化がプラスされる。この図から見られるように、ピストン速度に対して所望する適切な減衰を得ることができる。 Further, the relationship between the piston speed and the flow resistance (corresponding to the damping force) is controlled by the flow resistance by the orifice 8C when the piston speed is low, as shown in FIG. 23, by the damping force valve 8B and the orifice 8C. When the piston speed increases, the flow resistance changes after the damping force valve 8B is opened. As can be seen from this figure, the appropriate damping desired for the piston speed can be obtained.
 負荷機構13は、図21に示すように、減衰力バルブ13A(本発明に係る「アキュムレータ用第2バルブ」に相当)と、チェックバルブ13B(本発明に係る「アキュムレータ用第1バルブ」に相当)と、オリフィス13Cとを有して構成される。チェックバルブ13Bは、夫々のアキュムレータ23A,23BからオイルRを排出するように各アキュムレータ23A,23Bに設けられる。したがって、チェックバルブ13Bはアキュムレータ23A,23BからのオイルRの排出のみを許容する。減衰力バルブ13Aは、夫々のアキュムレータ23A,23Bに進入するオイルRの流量を調整する様にアキュムレータ23A,10に設けられる。したがって、減衰力バルブ13Aはアキュムレータ23A,23BへのオイルRの進入のみを許容すると共にその圧力が所定の圧力値以上で開弁しつつ圧力値に基づいて流量を調整する。 As shown in FIG. 21, the load mechanism 13 corresponds to a damping force valve 13A (corresponding to “second valve for accumulator” according to the present invention) and a check valve 13B (corresponding to “first valve for accumulator” according to the present invention). ) And an orifice 13C. The check valve 13B is provided in each accumulator 23A, 23B so as to discharge the oil R from each accumulator 23A, 23B. Therefore, the check valve 13B only allows the oil R to be discharged from the accumulators 23A and 23B. The damping force valve 13A is provided in the accumulators 23A and 10 so as to adjust the flow rate of the oil R entering the respective accumulators 23A and 23B. Therefore, the damping force valve 13A allows only the oil R to enter the accumulators 23A and 23B, and adjusts the flow rate based on the pressure value while the pressure is opened at a predetermined pressure value or more.
 減衰力バルブ13Aとチェックバルブ13Bには、弁体に閉じ付勢力を与えるスプリングが備えられている。このスプリングの付勢力が大きいと、オイルRの流動抵抗も大きくなり、逆に、付勢力が小さいと、オイルRの流動抵抗も小さくなるように構成されていても良く、リーフ弁構造でもよい。また、減衰力バルブ13AはオイルRにチェックバルブ13Bの負荷よりも大きな負荷を与えるように構成されている。すなわち、チェックバルブ13Bは、アキュムレータ23A,23BからオイルRがスムーズに流出するように低い流動抵抗に設定され、減衰力バルブ13Aは、適切な減衰力が発生するように構成されている。 The damping force valve 13A and the check valve 13B are provided with springs that apply a closing force to the valve body. When the urging force of the spring is large, the flow resistance of the oil R is increased. Conversely, when the urging force is small, the flow resistance of the oil R may be decreased, or a leaf valve structure may be used. Further, the damping force valve 13A is configured to give a larger load to the oil R than the load of the check valve 13B. That is, the check valve 13B is set to a low flow resistance so that the oil R flows smoothly from the accumulators 23A and 23B, and the damping force valve 13A is configured to generate an appropriate damping force.
 ここで、アキュムレータ23Aの側の減衰力バルブ13Aはアキュムレータ23Aの側のチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成すると共に、アキュムレータ23Bの側の減衰力バルブ13Aはアキュムレータ23Bの側のチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成するものに限定されるものではない。アキュムレータ23Aに設けられた減衰力バルブ13Aは、当該減衰力バルブ13Aが設けられたアキュムレータ23Aとは異なる側のアキュムレータ23Bに設けられたチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成することも可能である。また、アキュムレータ23Bに設けられた減衰力バルブ13Aは、当該減衰力バルブ13Aが設けられたアキュムレータ23Aとは異なる側のアキュムレータ23Aに設けられたチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成することも可能である。 Here, the damping force valve 13A on the accumulator 23A side is configured to apply a load larger than the load applied to the oil R by the check valve 13B on the accumulator 23A side, and the damping force valve 13A on the accumulator 23B side is configured to be an accumulator. The check valve 13B on the 23B side is not limited to the one configured to apply a load larger than the load applied to the oil R. The damping force valve 13A provided in the accumulator 23A applies a larger load than the load applied to the oil R by the check valve 13B provided in the accumulator 23B on the side different from the accumulator 23A provided with the damping force valve 13A. It is also possible to configure. Further, the damping force valve 13A provided in the accumulator 23B has a load larger than the load applied to the oil R by the check valve 13B provided in the accumulator 23A on the side different from the accumulator 23A provided with the damping force valve 13A. It can also be configured to provide.
 更には、アキュムレータ23Aの側の減衰力バルブ13Aはアキュムレータ23Aの側のチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成すると共に、アキュムレータ23Bの側の減衰力バルブ13Aはアキュムレータ23Bの側のチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成し、アキュムレータ23Aに設けられた減衰力バルブ13Aはアキュムレータ23Bに設けられたチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成すると共に、アキュムレータ23Bに設けられた減衰力バルブ13Aはアキュムレータ23Aに設けられたチェックバルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成することも当然に可能である。 Further, the damping force valve 13A on the accumulator 23A side is configured to apply a load larger than the load applied to the oil R by the check valve 13B on the accumulator 23A side, and the damping force valve 13A on the accumulator 23B side is configured to be an accumulator. The check valve 13B on the 23B side is configured to apply a load larger than the load applied to the oil R, and the damping force valve 13A provided in the accumulator 23A is a load applied to the oil R by the check valve 13B provided in the accumulator 23B. The damping force valve 13A provided in the accumulator 23B may be configured to apply a load larger than the load applied to the oil R by the check valve 13B provided in the accumulator 23A. This It is possible to.
 また、オリフィス13Cは、オリフィス8Cと同様、ピストン速度が小さい領域での減衰力を調整できる。なお、このオリフィス13Cは必ずしも必要ではなく、サスペンションシステム100に要求される性能によっては無くてもよい。 Further, similarly to the orifice 8C, the orifice 13C can adjust the damping force in a region where the piston speed is low. The orifice 13C is not necessarily required, and may be omitted depending on the performance required for the suspension system 100.
 次に、車輪2の動きに対するサスペンションシステム100の作動状況について説明する。車輪2の動きとしては、図24に示すような、左油圧シリンダ4,右油圧シリンダ5が共に伸びる「伸びバウンス」と、図25に示すような、左油圧シリンダ4,右油圧シリンダ5が共に縮む「縮みバウンス」と、図26に示すような、左油圧シリンダ4,右油圧シリンダ5の一方が伸び他方が縮む「ロール」とについて説明する。 Next, the operation status of the suspension system 100 with respect to the movement of the wheel 2 will be described. As for the movement of the wheel 2, as shown in FIG. 24, both the left hydraulic cylinder 4 and the right hydraulic cylinder 5 extend, and the left hydraulic cylinder 4 and the right hydraulic cylinder 5 as shown in FIG. A “shrink bounce” that shrinks and a “roll” that stretches one of the left hydraulic cylinder 4 and the right hydraulic cylinder 5 as shown in FIG.
 「伸びバウンス」は、両車輪2がリバウンドした場合に生じ、オイルRは、図24に示すように、両下側シリンダ室4L,5Lから排出されて、対応する差圧機構8を経由して、反対側シリンダの上側シリンダ室5U,4Uに流入する。この時、一方の下側シリンダ室4L(5L)と他方の上側シリンダ室5U(4U)との間においては、伸び縮みの量の絶対値は等しいから、下側シリンダ室4L(5L)から排出されるピストンロッドPRの容積分のオイルRが、アキュムレータ23B(23A)からチェックバルブ13Bを経由して上側シリンダ室5U(4U)にスムーズに流れる。 “Elongation bounce” occurs when both wheels 2 rebound, and the oil R is discharged from the lower cylinder chambers 4L and 5L and passes through the corresponding differential pressure mechanisms 8 as shown in FIG. , Flows into the upper cylinder chambers 5U, 4U of the opposite cylinder. At this time, since the absolute value of the amount of expansion / contraction is equal between the one lower cylinder chamber 4L (5L) and the other upper cylinder chamber 5U (4U), it is discharged from the lower cylinder chamber 4L (5L). The oil R corresponding to the volume of the piston rod PR is smoothly flowed from the accumulator 23B (23A) to the upper cylinder chamber 5U (4U) via the check valve 13B.
 以上のオイルRの流れにおいては、主に、下側シリンダ室4L,5Lに対応した差圧機構8を経由してオイルRが排出されることで、減衰力が発生する。また、この時、上側シリンダ室4U,5Uに対応した差圧機構8は、シリンダ室の液圧を充分に確保するため、スムーズにオイルRが流入するような特性にチェックバルブ8Aが設定されている。 In the flow of the oil R described above, a damping force is generated mainly by discharging the oil R via the differential pressure mechanism 8 corresponding to the lower cylinder chambers 4L and 5L. At this time, the differential pressure mechanism 8 corresponding to the upper cylinder chambers 4U and 5U has the check valve 8A set so that the oil R flows smoothly in order to ensure a sufficient fluid pressure in the cylinder chamber. Yes.
 「縮みバウンス」は、両車輪2がバウンドした場合に生じ、オイルRは、図25に示すように、両上側シリンダ室4U,5Uから排出されて、対応する差圧機構8を経由して、反対側シリンダの下側シリンダ室5L,4Lに流入する。この時、一方の上側シリンダ室4U(5U)と他方の下側シリンダ室5L(4L)との間においては、伸び縮みの量の絶対値は等しいから、上側シリンダ室4U(5U)に進入するピストンロッドPRの容積分のオイルRが、負荷機構13を経由してアキュムレータ23A(23B)に流入する。 “Shrink bounce” occurs when both wheels 2 bounce, and the oil R is discharged from the upper cylinder chambers 4U and 5U as shown in FIG. 25, via the corresponding differential pressure mechanism 8, It flows into the lower cylinder chambers 5L, 4L of the opposite cylinder. At this time, since the absolute value of the amount of expansion / contraction is equal between one upper cylinder chamber 4U (5U) and the other lower cylinder chamber 5L (4L), the upper cylinder chamber 4U (5U) enters. Oil R corresponding to the volume of the piston rod PR flows into the accumulator 23A (23B) via the load mechanism 13.
 以上のオイルRの流れにおいては、上側シリンダ室4U,5Uに対応した差圧機構8を経由してオイルRが排出されることで、減衰力が発生する。なお、この時、負荷機構13を通過するロッド容積分のオイルRの流量は小さく、負荷機構13により発生する減衰力は小さい。また、下側シリンダ室4L,5Lに対応した差圧機構8は、シリンダ室の液圧を充分確保するため、スムーズにオイルRが流入するような特性にチェックバルブ8Aが設定されている。 In the oil R flow described above, a damping force is generated by discharging the oil R through the differential pressure mechanism 8 corresponding to the upper cylinder chambers 4U and 5U. At this time, the flow rate of the oil R corresponding to the volume of the rod passing through the load mechanism 13 is small, and the damping force generated by the load mechanism 13 is small. In addition, the differential pressure mechanism 8 corresponding to the lower cylinder chambers 4L and 5L has a check valve 8A set to a characteristic that allows the oil R to flow smoothly in order to ensure a sufficient fluid pressure in the cylinder chamber.
 「ロール」は、車両が右又は左に旋回した時に生じ、ここでは、左旋回した場合を説明する。左側車輪32A(旋回内輪)は、相対的にリバウンド方向に動き、オイルRは、図26に示すように、下側シリンダ室4Lから排出されて、対応する差圧機構8、及び、負荷機構13を経由して、アキュムレータ23Bに流入する。右側車輪32B(旋回外輪)は、相対的にバウンド方向に動き、オイルRは、図26に示すように、上側シリンダ室5Uから排出されて、対応する差圧機構8、及び、負荷機構13を経由して、アキュムレータ23Bに流入する。この時、左油圧シリンダ4の下側シリンダ室4Lに対応した差圧機構8と、右油圧シリンダ5の上側シリンダ室5Uに対応した差圧機構8と、アキュムレータ23Bに対応した負荷機構13とによって、大きな減衰効果を発揮できる。 “Roll” occurs when the vehicle turns to the right or left, and here, the case of turning left will be described. The left wheel 32A (turning inner ring) moves relatively in the rebound direction, and the oil R is discharged from the lower cylinder chamber 4L as shown in FIG. 26, and the corresponding differential pressure mechanism 8 and load mechanism 13 are discharged. And flows into the accumulator 23B. The right wheel 32B (turning outer wheel) moves in the relative bounce direction, and the oil R is discharged from the upper cylinder chamber 5U as shown in FIG. 26, and the corresponding differential pressure mechanism 8 and load mechanism 13 are moved. Via, it flows into the accumulator 23B. At this time, the differential pressure mechanism 8 corresponding to the lower cylinder chamber 4L of the left hydraulic cylinder 4, the differential pressure mechanism 8 corresponding to the upper cylinder chamber 5U of the right hydraulic cylinder 5, and the load mechanism 13 corresponding to the accumulator 23B. Can exhibit a great damping effect.
 また、左油圧シリンダ4の上側シリンダ室4U、及び、右油圧シリンダ5の下側シリンダ室5Lには、アキュムレータ23AからオイルRが供給されるが、夫々に対応した差圧機構8は、下側シリンダ室4L,及び上側シリンダ室5Uの液圧を充分確保するため、スムーズにオイルRが流入するように上側シリンダ室4Uと下側シリンダ室5Lのチェックバルブ8Aは設定されている。 Oil R is supplied from the accumulator 23A to the upper cylinder chamber 4U of the left hydraulic cylinder 4 and the lower cylinder chamber 5L of the right hydraulic cylinder 5, but the corresponding differential pressure mechanisms 8 are provided on the lower side. In order to ensure sufficient fluid pressure in the cylinder chamber 4L and the upper cylinder chamber 5U, the check valves 8A for the upper cylinder chamber 4U and the lower cylinder chamber 5L are set so that the oil R flows smoothly.
 以上の「伸びバウンス」、「縮みバウンス」、「ロール」に対する衝撃減衰力の特性は、上述の図23のように表すことができる。破線は、「伸びバウンス」、「縮みバウンス」を示し、実線は「ロール」を示しており、横軸がピストン速度であり、縦軸は減衰力を示している。ピストン速度の変化に伴って、線形が屈曲しており、初期の急勾配のエリアは、差圧機構8のオリフィス8Cによる減衰効果が現れている。緩やかな勾配のエリアは、各差圧機構8、負荷機構13による減衰効果が現れている。 The above-described characteristics of the impact damping force with respect to “elongation bounce”, “shrink bounce”, and “roll” can be expressed as shown in FIG. The broken line indicates “elongation bounce” and “shrink bounce”, the solid line indicates “roll”, the horizontal axis indicates the piston speed, and the vertical axis indicates the damping force. As the piston speed changes, the linearity is bent, and the damping effect by the orifice 8C of the differential pressure mechanism 8 appears in the initial steep area. In the area of gentle gradient, the damping effect by each differential pressure mechanism 8 and load mechanism 13 appears.
 本実施形態のサスペンションシステム100によれば、車輪2の上下の動きに応じた差圧機構8や負荷機構13の作用によって、複雑な機械機構や制御機構を設けなくても、「バウンス」や「ロール」に対して良好な減衰を図ることができ、走行安定性の確保と、良好な乗り心地の確保とを両立することが可能となる。また、本実施形態のサスペンションシステム100によれば、アブソーバー機能とスタビライザー機能を兼ねることができ、スタビライザーバーを省略することも可能となって、車輪2まわりの構造の簡単化を図ることができる。 According to the suspension system 100 of the present embodiment, “bounce” or “bounce” or “bounce” can be achieved by providing the differential pressure mechanism 8 or the load mechanism 13 according to the vertical movement of the wheel 2 without providing a complicated mechanical mechanism or control mechanism. Good attenuation can be achieved with respect to the “roll”, and it is possible to ensure both running stability and good riding comfort. Further, according to the suspension system 100 of the present embodiment, the absorber function and the stabilizer function can be combined, the stabilizer bar can be omitted, and the structure around the wheel 2 can be simplified.
1-5.第5の実施形態
 次に、本発明に係る第5の実施形態について説明する。図27は、本実施形態のサスペンションシステム100を組み込んだ車体9を示すものである。上記第4の実施形態のサスペンションシステム100では差圧機構8を備えていたが、第5の実施形態のサスペンションシステム100では差圧機構8に代えてサスペンション機構50を備えている点で第4の実施形態と異なる。以下では、主に異なる点について説明する。
1-5. Fifth Embodiment Next, a fifth embodiment according to the present invention will be described. FIG. 27 shows the vehicle body 9 incorporating the suspension system 100 of the present embodiment. The suspension system 100 according to the fourth embodiment includes the differential pressure mechanism 8, but the suspension system 100 according to the fifth embodiment includes a suspension mechanism 50 instead of the differential pressure mechanism 8. Different from the embodiment. Below, a different point is mainly demonstrated.
 本実施形態のサスペンションシステム100にあっても、車体9の左右の各支持部1Bと左右の各リンク部材3の中間部3Aとにわたって左油圧シリンダ4、及び、右油圧シリンダ5が取り付けられる。したがって、左油圧シリンダ4、及び、右油圧シリンダ5は、夫々、水平方向に見て車体9の支持部1Bが接続される位置からサスペンション機構50までの間に設けられる。また、左油圧シリンダ4の上側シリンダ室4Uと右油圧シリンダ5の下側シリンダ室5Lとが第1油路6により連通接続され、右油圧シリンダ5の上側シリンダ室5Uと左油圧シリンダ4の下側シリンダ室4Lとが第2油路7により連通接続される。第1油路6と第2油路7とには、夫々アキュムレータ23A,23Bが連通状態で設けられる。 Even in the suspension system 100 of the present embodiment, the left hydraulic cylinder 4 and the right hydraulic cylinder 5 are attached across the left and right support portions 1B of the vehicle body 9 and the intermediate portion 3A of the left and right link members 3. Accordingly, the left hydraulic cylinder 4 and the right hydraulic cylinder 5 are respectively provided between the position where the support portion 1B of the vehicle body 9 is connected and the suspension mechanism 50 when viewed in the horizontal direction. In addition, the upper cylinder chamber 4U of the left hydraulic cylinder 4 and the lower cylinder chamber 5L of the right hydraulic cylinder 5 are connected in communication by the first oil passage 6 so that the upper cylinder chamber 5U of the right hydraulic cylinder 5 and the lower hydraulic cylinder 4 The side cylinder chamber 4 </ b> L is connected in communication with the second oil passage 7. The first oil passage 6 and the second oil passage 7 are respectively provided with accumulators 23A and 23B in communication.
 第1油路6とアキュムレータ23Aとは、第3油路311によって連通接続され、第2油路7とアキュムレータ23Bとは、第4油路312によって連通接続される。第3油路311及び第4油路312には、夫々負荷機構13が設けられる。また、第3油路311と第4油路312とに亘って、連通機構39も設けられる。 The first oil passage 6 and the accumulator 23A are connected in communication by a third oil passage 311, and the second oil passage 7 and the accumulator 23B are connected in communication by a fourth oil passage 312. The load mechanism 13 is provided in each of the third oil passage 311 and the fourth oil passage 312. A communication mechanism 39 is also provided across the third oil passage 311 and the fourth oil passage 312.
 負荷機構13は、本実施形態でも、減衰力バルブ13Aと、チェックバルブ13Bと、オリフィス13Cとを有し、減衰力バルブ13AはオイルRにチェックバルブ13Bの負荷よりも大きな負荷を与えるように構成されている。これにより、車体9のロールを抑制するスタビライザーの機能を実現している。 Also in this embodiment, the load mechanism 13 includes a damping force valve 13A, a check valve 13B, and an orifice 13C, and the damping force valve 13A is configured to apply a larger load to the oil R than the load of the check valve 13B. Has been. Thereby, the function of the stabilizer which suppresses the roll of the vehicle body 9 is realized.
 ここで、上述のように本実施形態では、車体9のバウンスを減衰させる差圧機構8を備えていない。そこで、本実施形態のサスペンションシステム100では、アブソーバー機能を補強するためにサスペンション機構50が備えられる。サスペンション機構50は、左油圧シリンダ4及び右油圧シリンダ5の夫々に並列して設けられ、車輪2を懸架する。サスペンション機構50は、油圧ダンパー51とスプリング52とを備えた所謂「ショックアブソーバ」から構成される。ショックアブソーバは公知のものを用いることができるので、その構成についての説明は省略する。本実施形態では、複筒式の油圧ダンパー51が用いられ、チェック弁VA1及び減衰力バルブVA2を有するピストンバルブ60と、チェック弁VA3及び減衰力バルブVA4を有するベースバルブ70とが備えられる。減衰力バルブVA4により生じる減衰力は減衰力バルブVA2により生じる減衰力よりも大きくなるように設定され、チェック弁VA1及びチェック弁VA3により生じる減衰力は減衰力バルブVA2により生じる減衰力よりも極めて小さくなるように設定される。 Here, as described above, in this embodiment, the differential pressure mechanism 8 that attenuates the bounce of the vehicle body 9 is not provided. Therefore, in the suspension system 100 of the present embodiment, the suspension mechanism 50 is provided to reinforce the absorber function. The suspension mechanism 50 is provided in parallel with each of the left hydraulic cylinder 4 and the right hydraulic cylinder 5 and suspends the wheel 2. The suspension mechanism 50 includes a so-called “shock absorber” including a hydraulic damper 51 and a spring 52. Since a well-known shock absorber can be used, a description of its configuration is omitted. In the present embodiment, a double cylinder type hydraulic damper 51 is used, and a piston valve 60 having a check valve VA1 and a damping force valve VA2 and a base valve 70 having a check valve VA3 and a damping force valve VA4 are provided. The damping force generated by the damping force valve VA4 is set to be larger than the damping force generated by the damping force valve VA2, and the damping force generated by the check valve VA1 and the check valve VA3 is extremely smaller than the damping force generated by the damping force valve VA2. Is set to be
 次に、車輪2の動きに対するサスペンションシステム100の作動状況について説明する。車輪2の動きとしては、図28に示すような、左油圧シリンダ4,右油圧シリンダ5が共に伸びる「伸びバウンス」と、図29に示すような、左油圧シリンダ4,右油圧シリンダ5が共に縮む「縮みバウンス」と、図30に示すような、左油圧シリンダ4,右油圧シリンダ5の一方が伸び他方が縮む「ロール」と、図31に示すような、単輪入力による「縮みバウンス」と、図32に示すような、単輪入力による「伸びバウンス」とについて説明する。 Next, the operation status of the suspension system 100 with respect to the movement of the wheel 2 will be described. As for the movement of the wheel 2, as shown in FIG. 28, both the left hydraulic cylinder 4 and the right hydraulic cylinder 5 extend together, and the left hydraulic cylinder 4 and the right hydraulic cylinder 5 as shown in FIG. The “shrink bounce” that shrinks, the “roll” that one of the left hydraulic cylinder 4 and the right hydraulic cylinder 5 stretches as shown in FIG. 30, and the “shrink bounce” by single wheel input as shown in FIG. Then, “elongation bounce” by single wheel input as shown in FIG. 32 will be described.
 「伸びバウンス」は、両車輪2がリバウンドした場合に生じ、オイルRは、図28に示すように、両下側シリンダ室4L,5Lから排出されて、反対側シリンダの上側シリンダ室5U,4Uに流入する。この時、一方の下側シリンダ室4L(5L)と他方の上側シリンダ室5U(4U)との間においては、伸び縮みの量の絶対値は等しいから、下側シリンダ室4L(5L)から排出されるピストンロッドPRの容積分のオイルRが、アキュムレータ23B(23A)からチェックバルブ13Bを経由して上側シリンダ室5U(4U)にスムーズに流れる。また、この時、サスペンション機構50の油圧ダンパー51も左右共に伸びようとする。このため、減衰力バルブVA2により減衰力が発生する。 “Elongation bounce” occurs when both wheels 2 rebound, and as shown in FIG. 28, oil R is discharged from both lower cylinder chambers 4L and 5L, and upper cylinder chambers 5U and 4U of the opposite cylinder. Flow into. At this time, since the absolute value of the amount of expansion / contraction is equal between the one lower cylinder chamber 4L (5L) and the other upper cylinder chamber 5U (4U), it is discharged from the lower cylinder chamber 4L (5L). The oil R corresponding to the volume of the piston rod PR is smoothly flowed from the accumulator 23B (23A) to the upper cylinder chamber 5U (4U) via the check valve 13B. At this time, the hydraulic damper 51 of the suspension mechanism 50 also tends to extend both left and right. For this reason, a damping force is generated by the damping force valve VA2.
 以上のように、「伸びバウンス」では左油圧シリンダ4及び右油圧シリンダ5による減衰力はほとんど発生せず、サスペンション機構50の油圧ダンパー51による減衰力のみが発生する。このようにして伸び側の適正な減衰力を発生し、車両の接地性を確保し、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 As described above, in the “elongation bounce”, almost no damping force is generated by the left hydraulic cylinder 4 and the right hydraulic cylinder 5, but only the damping force by the hydraulic damper 51 of the suspension mechanism 50 is generated. In this way, it is possible to generate an appropriate damping force on the extension side, to secure the grounding property of the vehicle, and to ensure both running stability and good riding comfort.
 「縮みバウンス」は、両車輪2がバウンドした場合に生じ、オイルRは、図29に示すように、両上側シリンダ室4U,5Uから排出されて、反対側シリンダの下側シリンダ室5L,4Lに流入する。この時、一方の上側シリンダ室4U(5U)と他方の下側シリンダ室5L(4L)との間においては、伸び縮みの量の絶対値は等しいから、上側シリンダ室4U(5U)に進入するピストンロッドPRの容積分のオイルRが、負荷機構13を経由してアキュムレータ23A(23B)に流入する。なお、この時、負荷機構13を通過するロッド容積分のオイルRの流量は小さく、負荷機構13により発生する減衰力は小さい。また、この時、サスペンション機構50の油圧ダンパー51も左右共に縮もうとする。このため、減衰力バルブVA4により減衰力が発生する。 “Shrink bounce” occurs when both wheels 2 bounce, and the oil R is discharged from the upper cylinder chambers 4U and 5U and the lower cylinder chambers 5L and 4L of the opposite cylinder as shown in FIG. Flow into. At this time, since the absolute value of the amount of expansion / contraction is equal between one upper cylinder chamber 4U (5U) and the other lower cylinder chamber 5L (4L), the upper cylinder chamber 4U (5U) enters. Oil R corresponding to the volume of the piston rod PR flows into the accumulator 23A (23B) via the load mechanism 13. At this time, the flow rate of the oil R corresponding to the volume of the rod passing through the load mechanism 13 is small, and the damping force generated by the load mechanism 13 is small. At this time, the hydraulic damper 51 of the suspension mechanism 50 also tries to contract both left and right. For this reason, a damping force is generated by the damping force valve VA4.
 以上のように、「縮みバウンス」では左油圧シリンダ4及び右油圧シリンダ5による減衰力はほとんど発生せず、サスペンション機構50の油圧ダンパー51による減衰力のみが発生する。このようにして縮み側の適正な減衰力を発生し、車両の接地性を確保し、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 As described above, in the “shrink bounce”, almost no damping force is generated by the left hydraulic cylinder 4 and the right hydraulic cylinder 5, but only the damping force by the hydraulic damper 51 of the suspension mechanism 50 is generated. In this way, it is possible to generate an appropriate damping force on the contraction side, to ensure the grounding property of the vehicle, and to ensure both running stability and good riding comfort.
 「ロール」は、車両が右又は左に旋回した時に生じ、ここでは、右旋回した場合を説明する。左側車輪32A(旋回外輪)は、相対的にバウンド方向に動き、オイルRは、図30に示すように、上側シリンダ室4Uから排出されて、負荷機構13を経由して、アキュムレータ23Aに流入する。右側車輪32B(旋回内輪)は、相対的にリバウンド方向に動き、オイルRは、図30に示すように、下側シリンダ室5Lから排出されて、負荷機構13を経由して、アキュムレータ23Aに流入する。この時、負荷機構13の減衰力バルブ13Aによって、大きな減衰効果を発揮できる。 “Roll” occurs when the vehicle turns to the right or left, and here, the case of turning right will be described. The left wheel 32A (turning outer wheel) moves relatively in the bounce direction, and the oil R is discharged from the upper cylinder chamber 4U and flows into the accumulator 23A via the load mechanism 13, as shown in FIG. . The right wheel 32B (turning inner ring) moves relatively in the rebound direction, and the oil R is discharged from the lower cylinder chamber 5L and flows into the accumulator 23A via the load mechanism 13, as shown in FIG. To do. At this time, the damping force valve 13A of the load mechanism 13 can exert a great damping effect.
 また、左油圧シリンダ4の下側シリンダ室4L、及び、右油圧シリンダ5の上側シリンダ室5Uには、アキュムレータ23BからオイルRがスムーズに供給される。 Also, the oil R is smoothly supplied from the accumulator 23B to the lower cylinder chamber 4L of the left hydraulic cylinder 4 and the upper cylinder chamber 5U of the right hydraulic cylinder 5.
 また、この時、左側車輪32Aの側の油圧ダンパー51は縮み方向に、右側車輪32Bの側の油圧ダンパー51は伸び方向にストロークする。このため、左側車輪32Aの側の油圧ダンパー51では減衰力バルブVA4により減衰力が発生し、右側車輪32Bの側の油圧ダンパー51では減衰力バルブVA2により減衰力が発生する。 At this time, the hydraulic damper 51 on the left wheel 32A side strokes in the contracting direction, and the hydraulic damper 51 on the right wheel 32B side strokes in the extending direction. Therefore, a damping force is generated by the damping force valve VA4 in the hydraulic damper 51 on the left wheel 32A side, and a damping force is generated by the damping force valve VA2 in the hydraulic damper 51 on the right wheel 32B side.
 以上のように、「ロール」では左油圧シリンダ4及び右油圧シリンダ5による減衰力に、サスペンション機構50の油圧ダンパー51による減衰力が付加されるように作用する。このようにしてロールに対する減衰力を高めてロールを抑制し、車両の接地性を確保して、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 As described above, the “roll” acts so that the damping force by the hydraulic damper 51 of the suspension mechanism 50 is added to the damping force by the left hydraulic cylinder 4 and the right hydraulic cylinder 5. In this way, it is possible to increase the damping force on the roll to suppress the roll, to ensure the grounding property of the vehicle, and to ensure both running stability and good riding comfort.
 単輪入力の「縮みバウンス」は、左右いずれかの車輪2で突起などを乗り越える際に左右いずれかの車輪2がバウンドした場合に生じる。ここでは、左側車輪32Aで突起などを乗り越えた場合を説明する。左側車輪32Aはバウンド方向に動き、この場合、図31に示すように、右側車輪32Bは殆どストロークしない。右油圧シリンダ5の下側シリンダ室5Lには、コイルを押し縮める程の圧力が必要なため、左油圧シリンダ4の上側シリンダ室4Uから排出されたオイルRは殆ど流れず、負荷機構13を経由して、アキュムレータ23Aに流入する。この時、負荷機構13の減衰力バルブ13Aによって、ストローク量、ストローク速度に応じた減衰力が発生する。 “Single-wheel input“ shrink bounce ”occurs when one of the left and right wheels 2 bounces when the left or right wheel 2 gets over a protrusion. Here, a case will be described in which the left wheel 32A gets over a protrusion or the like. The left wheel 32A moves in the bound direction, and in this case, as shown in FIG. 31, the right wheel 32B hardly strokes. Since the lower cylinder chamber 5L of the right hydraulic cylinder 5 needs to have enough pressure to compress and retract the coil, the oil R discharged from the upper cylinder chamber 4U of the left hydraulic cylinder 4 hardly flows and passes through the load mechanism 13. Then, it flows into the accumulator 23A. At this time, a damping force corresponding to the stroke amount and the stroke speed is generated by the damping force valve 13A of the load mechanism 13.
 また、左油圧シリンダ4の下側シリンダ室4Lには、アキュムレータ23BからオイルRがスムーズに供給される。なお、本例では、下側シリンダ室5LへのオイルRの流入及び上側シリンダ室5UからのオイルRの流出は殆どないので、理解を容易にするために図31ではこれらのオイルRの流れを破線で示している。 Further, the oil R is smoothly supplied from the accumulator 23B to the lower cylinder chamber 4L of the left hydraulic cylinder 4. In this example, since there is almost no inflow of oil R into the lower cylinder chamber 5L and outflow of oil R from the upper cylinder chamber 5U, the flow of these oil R is shown in FIG. 31 for easy understanding. It is indicated by a broken line.
 また、この時、左側車輪32Aの側の油圧ダンパー51は縮み方向にストロークするが、右側車輪32Bの側の油圧ダンパー51はほとんど動かない。このため、左側車輪32Aの側の油圧ダンパー51では減衰力バルブVA4によりストローク量、ストローク速度に応じた減衰力が発生する。 At this time, the hydraulic damper 51 on the left wheel 32A side strokes in the contraction direction, but the hydraulic damper 51 on the right wheel 32B side hardly moves. For this reason, in the hydraulic damper 51 on the left wheel 32A side, a damping force corresponding to the stroke amount and the stroke speed is generated by the damping force valve VA4.
 以上のように、単輪入力の「縮みバウンス」ではアキュムレータ23Aの側の負荷機構13の減衰力バルブ13Aによる減衰力と、左側車輪32Aの側の油圧ダンパー51の減衰力バルブVA4による減衰力とが発生する。このように減衰力を発生し、車両の接地性を確保し、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 As described above, in the “shrink bounce” of the single wheel input, the damping force by the damping force valve 13A of the load mechanism 13 on the accumulator 23A side, the damping force by the damping force valve VA4 of the hydraulic damper 51 on the left wheel 32A side, and Will occur. Thus, the damping force is generated, the grounding property of the vehicle is ensured, and both the running stability and the good riding comfort can be achieved.
 単輪入力の「伸びバウンス」は、左右いずれかの車輪2で窪みなどを通過する際に左右いずれかの車輪2がリバウンドした場合に生じる。ここでは、左側車輪32Aで窪みなどを通過した場合を説明する。左側車輪32Aはリバウンド方向に動き、この場合、図32に示すように、右側車輪32Bは殆どストロークしない。右油圧シリンダ5の上側シリンダ室5Uには車体9を持ち上げる程の圧力が必要なため、左油圧シリンダ4の下側シリンダ室4Lから排出されたオイルRは殆ど流れず、負荷機構13を経由して、アキュムレータ23Bに流入する。この時、負荷機構13の減衰力バルブ13Aによって、ストローク量、ストローク速度に応じた減衰力が発生する。 “Elongation bounce” for single wheel input occurs when either the left or right wheel 2 rebounds when passing through a depression or the like with either of the left or right wheel 2. Here, a case where the left wheel 32A passes through a depression or the like will be described. The left wheel 32A moves in the rebound direction. In this case, as shown in FIG. 32, the right wheel 32B hardly strokes. Since the upper cylinder chamber 5U of the right hydraulic cylinder 5 needs pressure to lift the vehicle body 9, the oil R discharged from the lower cylinder chamber 4L of the left hydraulic cylinder 4 hardly flows and passes through the load mechanism 13. Flows into the accumulator 23B. At this time, a damping force corresponding to the stroke amount and the stroke speed is generated by the damping force valve 13A of the load mechanism 13.
 また、左油圧シリンダ4の上側シリンダ室4Uには、アキュムレータ23AからオイルRがスムーズに供給される。なお、本例では、下側シリンダ室5LからのオイルRの流出及び上側シリンダ室5UへのオイルRの流入は殆どないので、理解を容易にするために図32ではこれらのオイルRの流れを破線で示している。 Further, the oil R is smoothly supplied from the accumulator 23A to the upper cylinder chamber 4U of the left hydraulic cylinder 4. In this example, since there is almost no outflow of oil R from the lower cylinder chamber 5L and inflow of oil R into the upper cylinder chamber 5U, the flow of these oil R is shown in FIG. 32 for easy understanding. It is indicated by a broken line.
 また、この時、左側車輪32Aの側の油圧ダンパー51は伸び方向にストロークするが、右側車輪32Bの側の油圧ダンパー51はほとんど動かない。このため、左側車輪32Aの側の油圧ダンパー51では減衰力バルブVA2によりストローク量、ストローク速度に応じた減衰力が発生する。 At this time, the hydraulic damper 51 on the left wheel 32A side strokes in the extending direction, but the hydraulic damper 51 on the right wheel 32B side hardly moves. For this reason, in the hydraulic damper 51 on the left wheel 32A side, a damping force corresponding to the stroke amount and the stroke speed is generated by the damping force valve VA2.
 以上のように、単輪入力の「伸びバウンス」ではアキュムレータ23Bの側の負荷機構13の減衰力バルブ13Aによる減衰力と、左側車輪32Aの側の油圧ダンパー51の減衰力バルブVA2による減衰力とが発生する。このように減衰力を発生し、車両の接地性を確保し、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 As described above, in the “elongation bounce” of the single-wheel input, the damping force by the damping force valve 13A of the load mechanism 13 on the accumulator 23B side and the damping force by the damping force valve VA2 of the hydraulic damper 51 on the left wheel 32A side are Will occur. Thus, the damping force is generated, the grounding property of the vehicle is ensured, and both the running stability and the good riding comfort can be achieved.
1-6.第6の実施形態
 次に、本発明に係る第6の実施形態について説明する。図33は、本実施形態のサスペンションシステム100を組み込んだ車体9を示すものである。上記第4の実施形態のサスペンションシステム100では差圧機構8を備えているとして説明した。また、第5の実施形態のサスペンションシステム100では差圧機構8に代えてサスペンション機構50を備えているとして説明した。第6の実施形態のサスペンションシステム100では差圧機構8及びサスペンション機構50の双方を備えている点で上記第4の実施形態及び第5の実施形態と異なる。構成については、上記第4の実施形態及び第5の実施形態と同様であるので説明は省略する。
1-6. Sixth Embodiment Next, a sixth embodiment according to the present invention will be described. FIG. 33 shows a vehicle body 9 incorporating the suspension system 100 of the present embodiment. The suspension system 100 of the fourth embodiment has been described as including the differential pressure mechanism 8. The suspension system 100 according to the fifth embodiment has been described as including the suspension mechanism 50 instead of the differential pressure mechanism 8. The suspension system 100 according to the sixth embodiment differs from the fourth and fifth embodiments in that both the differential pressure mechanism 8 and the suspension mechanism 50 are provided. Since the configuration is the same as in the fourth and fifth embodiments, description thereof is omitted.
 このような構成であっても、第4の実施形態及び第5の実施形態と同様に、車両の状態に応じて適切に減衰力を発生させることが可能である。したがって、車両の接地性を確保し、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 Even with such a configuration, it is possible to appropriately generate a damping force in accordance with the state of the vehicle, as in the fourth and fifth embodiments. Therefore, it is possible to ensure the grounding property of the vehicle, and to ensure both running stability and good riding comfort.
2.油圧シリンダ
 次に、左油圧シリンダ4及び右油圧シリンダ5に使用される油圧シリンダの構成について説明する。左油圧シリンダ4及び右油圧シリンダ5は同じものを使用することができる。よって、以下では、左油圧シリンダ4の例を挙げて説明する。左油圧シリンダ4の構成を模式的に示した断面図が図34に示される。なお、第1-第3の実施形態にあっては、減衰力制御シリンダ10A及び減衰力制御シリンダ10Bに以下に説明する構成の油圧シリンダを適用することは当然に可能である。
2. Next, the structure of the hydraulic cylinder used for the left hydraulic cylinder 4 and the right hydraulic cylinder 5 will be described. The left hydraulic cylinder 4 and the right hydraulic cylinder 5 can be the same. Therefore, in the following, an example of the left hydraulic cylinder 4 will be described. A cross-sectional view schematically showing the configuration of the left hydraulic cylinder 4 is shown in FIG. In the first to third embodiments, it is naturally possible to apply a hydraulic cylinder having a configuration described below to the damping force control cylinder 10A and the damping force control cylinder 10B.
 左油圧シリンダ4は、外筒41、内筒42、ピストンP、ピストンロッドPRを備えて構成される。外筒41及び内筒42は円筒状で構成され、外筒41の内径よりも内筒42の外径の方が小さくなるように形成される。外筒41及び内筒42は同軸状に配設される。したがって、外筒41の内周面と内筒42の外周面との間に円環状空間90が形成される。 The left hydraulic cylinder 4 includes an outer cylinder 41, an inner cylinder 42, a piston P, and a piston rod PR. The outer cylinder 41 and the inner cylinder 42 are formed in a cylindrical shape, and are formed so that the outer diameter of the inner cylinder 42 is smaller than the inner diameter of the outer cylinder 41. The outer cylinder 41 and the inner cylinder 42 are arranged coaxially. Therefore, an annular space 90 is formed between the inner peripheral surface of the outer cylinder 41 and the outer peripheral surface of the inner cylinder 42.
 外筒41の軸方向一方の側は、閉口するように蓋部80が溶接される。蓋部80の内側には、外筒41の軸方向中央側に向けて延在する円筒状の軸方向延在部81が形成され、当該軸方向延在部81に内筒42を嵌め込んで位置決めされる。軸方向延在部81の内周面において、内筒42の外周面と接触する部位には、シール部材85が設けられる。これにより、円環状空間90の軸方向一方の側を液密的に構成することが可能となる。ここで、蓋部80の外側(軸方向外側)には、左油圧シリンダ4をリンク部材3に取り付ける固定部101が溶接されている。 The lid 80 is welded so that one side in the axial direction of the outer cylinder 41 is closed. A cylindrical axially extending part 81 extending toward the axially central side of the outer cylinder 41 is formed inside the lid part 80, and the inner cylinder 42 is fitted into the axially extending part 81. Positioned. On the inner peripheral surface of the axially extending portion 81, a seal member 85 is provided at a portion that contacts the outer peripheral surface of the inner cylinder 42. As a result, it is possible to liquid-tightly configure one side of the annular space 90 in the axial direction. Here, a fixing portion 101 for attaching the left hydraulic cylinder 4 to the link member 3 is welded to the outside (axially outside) of the lid portion 80.
 また、内筒42の軸方向他方の側には、外周面が外筒41の内周面に当接するように第1のキャップ部材82が嵌め込まれ、外筒41の内周面に対して位置決めされる。第1のキャップ部材82は、軸方向外側(固定部101とは反対側)から第2のキャップ部材83で支持される。第2のキャップ部材83の外周面は、外筒41の内周面に当接して設けられる。第2のキャップ部材83の径方向内側には、Oリング131を介してテフロン(登録商標)製のロッドシール84が配設される。これにより、ピストンロッドPRが摺動する際の摺動抵抗を低減しつつ、シール性を高めることができる。また、第2のキャップ部材83の外周面にはシール部材86が配設される。これにより、第2のキャップ部材83と外筒41との間を液密的に構成することが可能となる。 A first cap member 82 is fitted on the other side in the axial direction of the inner cylinder 42 so that the outer peripheral surface is in contact with the inner peripheral surface of the outer cylinder 41, and is positioned with respect to the inner peripheral surface of the outer cylinder 41. Is done. The first cap member 82 is supported by the second cap member 83 from the outside in the axial direction (the side opposite to the fixed portion 101). The outer peripheral surface of the second cap member 83 is provided in contact with the inner peripheral surface of the outer cylinder 41. A Teflon (registered trademark) rod seal 84 is disposed on the radially inner side of the second cap member 83 via an O-ring 131. Thereby, the sealing performance can be enhanced while reducing the sliding resistance when the piston rod PR slides. A seal member 86 is disposed on the outer peripheral surface of the second cap member 83. Thereby, it becomes possible to form between the 2nd cap member 83 and the outer cylinder 41 liquid-tightly.
 以上のように構成することにより、円環状空間90を液密的に構成することができる。なお、円環状空間90には、オイル又は空気が液密的に封入される。これにより、左油圧シリンダ4の断熱性を向上することが可能となる。また、外部からの飛び石等によってやピストンPの摺動面(外周面)のひずみを防ぐことが可能となる。 By configuring as described above, the annular space 90 can be configured in a liquid-tight manner. In the annular space 90, oil or air is sealed in a liquid-tight manner. Thereby, the heat insulation of the left hydraulic cylinder 4 can be improved. It is also possible to prevent distortion of the sliding surface (outer peripheral surface) of the piston P due to a stepping stone from the outside.
 内筒42の径方向内側には、同軸状にピストンP及び当該ピストンPに軸方向一方の側が固定されたピストンロッドPRが設けられる。ピストンロッドPRは、その外径が内筒42の内径よりも小さく形成され、外周面が第1のキャップ部材82及び第2のキャップ部材83の内周面を摺動可能に設けられる。内筒42の内周面、ピストンP、蓋部80により囲まれた領域が、下側シリンダ室4Lに相当する。 The inner side of the inner cylinder 42 is provided with a piston P coaxially and a piston rod PR that is fixed to the piston P on one side in the axial direction. The piston rod PR is formed so that its outer diameter is smaller than the inner diameter of the inner cylinder 42 and its outer peripheral surface is slidable on the inner peripheral surfaces of the first cap member 82 and the second cap member 83. A region surrounded by the inner peripheral surface of the inner cylinder 42, the piston P, and the lid 80 corresponds to the lower cylinder chamber 4L.
 ピストンロッドPRは径方向内側に円筒状の管93(本発明の「筒状部材」に相当)が同軸心上に配設される。ピストンロッドPRの他方の側には、キャップ94がネジにより締結固定される。キャップ94には、上側シリンダ室4UからオイルRを給排するポート111、及び下側シリンダ室4LからオイルRを給排するポート110が形成される。また、キャップ94には左油圧シリンダ4を、車体9の支持部1Bに取り付ける固定部102が溶接される。したがって、ポート110,111を、下側の固定部101から離間した位置に配設することが可能となる。 In the piston rod PR, a cylindrical tube 93 (corresponding to the “tubular member” of the present invention) is disposed coaxially on the radially inner side. A cap 94 is fastened and fixed to the other side of the piston rod PR with a screw. The cap 94 is formed with a port 111 for supplying and discharging oil R from the upper cylinder chamber 4U and a port 110 for supplying and discharging oil R from the lower cylinder chamber 4L. The cap 94 is welded with a fixing portion 102 for attaching the left hydraulic cylinder 4 to the support portion 1B of the vehicle body 9. Therefore, the ports 110 and 111 can be disposed at positions separated from the lower fixing portion 101.
 上述のように、ピストンロッドPRはキャップ94により締結固定される。このため、固定部102は、上側に設けられたピストンロッドPRの固定部に相当する。したがって、本実施形態では、ポート110,111を、ピストンロッドPRの固定部102の側に配設することができる。 As described above, the piston rod PR is fastened and fixed by the cap 94. For this reason, the fixing | fixed part 102 is corresponded to the fixing | fixed part of piston rod PR provided in the upper side. Therefore, in this embodiment, the ports 110 and 111 can be disposed on the fixed portion 102 side of the piston rod PR.
 管93の軸方向一方の側はピストンPに貫通挿入され、管93の径方向内側の空間を介して下側シリンダ室4Lと連通状態とされる。管93の径方向内側の空間は、下側シリンダ室4LのオイルRの給排を行う下側シリンダ室用油路171となる。管93の軸方向他方の側、すなわち、下側シリンダ室用油路171の軸方向他方の側は、径方向油路181を介してポート110に連通される。管93の外周面、内筒42の内周面、ピストンP、第1のキャップ部材82により囲まれた空間が、上側シリンダ室4Uに相当する。 One side of the pipe 93 in the axial direction is inserted through the piston P, and is communicated with the lower cylinder chamber 4L through a space inside the pipe 93 in the radial direction. The space on the radially inner side of the pipe 93 serves as a lower cylinder chamber oil passage 171 for supplying and discharging the oil R in the lower cylinder chamber 4L. The other axial side of the pipe 93, that is, the other axial side of the lower cylinder chamber oil passage 171 is communicated with the port 110 via the radial oil passage 181. The space surrounded by the outer peripheral surface of the pipe 93, the inner peripheral surface of the inner cylinder 42, the piston P, and the first cap member 82 corresponds to the upper cylinder chamber 4U.
 管93の外周面とピストンロッドPRの内周面との間には、円環状の空間が形成される。この円環状の空間は、一方の側が径方向油路182を介して上側シリンダ室4Uと連通し、他方の側がポート111に連通される。したがって、この円環状の空間は、オイルRの給排を行う上側シリンダ室用油路170となる。以上のように、本実施形態では、ピストンロッドPRの径方向内側に、上側シリンダ室用油路170と下側シリンダ室用油路171とが設けられる。 An annular space is formed between the outer peripheral surface of the pipe 93 and the inner peripheral surface of the piston rod PR. One side of this annular space communicates with the upper cylinder chamber 4 </ b> U via the radial oil passage 182, and the other side communicates with the port 111. Therefore, this annular space becomes the upper cylinder chamber oil passage 170 for supplying and discharging the oil R. As described above, in the present embodiment, the upper cylinder chamber oil passage 170 and the lower cylinder chamber oil passage 171 are provided on the radially inner side of the piston rod PR.
 上側シリンダ室4U及び下側シリンダ室4Lは、オイルRが充填され、ピストンPが内筒42内を動くことで、上側シリンダ室4U及び下側シリンダ室4Lの容積が変化する。この変化に応じて、ポート110,111からオイルRの給排が行われる。このようなピストンPの動きに合わせて、ピストンロッドPRも軸方向に沿って動く。このため、第1のキャップ部材82のピストンロッドPRの外周面と対向する位置に、ブッシュ120が配設される。 The upper cylinder chamber 4U and the lower cylinder chamber 4L are filled with oil R, and the volumes of the upper cylinder chamber 4U and the lower cylinder chamber 4L change as the piston P moves in the inner cylinder 42. In response to this change, oil R is supplied and discharged from the ports 110 and 111. In accordance with the movement of the piston P, the piston rod PR also moves along the axial direction. For this reason, the bush 120 is disposed at a position facing the outer peripheral surface of the piston rod PR of the first cap member 82.
 外筒41の軸方向端部には、内径を小さくする小径部41Aが形成されている。この小径部41Aの軸方向位置側(第2のキャップ部材83の側)には、円板状の鉄板150が配設される。鉄板150は、その外周面が外筒41の内周面に当接して位置決めされる。小径部41Aの径方向内側には、鉄板150に付設されるゴム部材151が配設され、当該ゴム部材151の外周面にはゴム部材151を径方向内側に付勢する金属バネ152が配設されている。これにより、小径部41Aの径方向内側を介した外部からのダストの侵入を防止することができる。 A small-diameter portion 41A that reduces the inner diameter is formed at the axial end of the outer cylinder 41. A disk-shaped iron plate 150 is disposed on the axial position side (the second cap member 83 side) of the small diameter portion 41A. The iron plate 150 is positioned with its outer peripheral surface in contact with the inner peripheral surface of the outer cylinder 41. A rubber member 151 attached to the iron plate 150 is disposed on the radially inner side of the small diameter portion 41A, and a metal spring 152 that biases the rubber member 151 radially inward is disposed on the outer peripheral surface of the rubber member 151. Has been. Thereby, the penetration | invasion of the dust from the outside through the radial inside of the small diameter part 41A can be prevented.
 鉄板150の第2のキャップ部材83の側の軸方向端面には円板状の鉄板140が配設される。鉄板140の外周面は外筒41の内周面に当接して位置決めされる。鉄板140の内周面及び第2のキャップ部材83の側の軸方向端面には、ゴム製のシール部材121が配設される。シール部材121は、ピストンロッドPRに沿って軸方向に延在する。この延在する部位は、径方向外側から金属バネ142により径方向内側に付勢される。また、径方向外側に鉄板140が配設されるシール部材121の径方向内側には樹脂製のブッシュ191が配設される。これにより、特に低圧時でのシール性を高め、左油圧シリンダ4内のオイルRがピストンロッドPRの外周面を介した漏れを防止することができる。したがって、オイルRを外部に漏らさないようにすることができる。以上の構成により、ピストンPと共にピストンロッドPRも同軸上に動くことが可能となる。 A disc-shaped iron plate 140 is disposed on the axial end surface of the iron plate 150 on the second cap member 83 side. The outer peripheral surface of the iron plate 140 is positioned in contact with the inner peripheral surface of the outer cylinder 41. A rubber seal member 121 is disposed on the inner peripheral surface of the iron plate 140 and the axial end surface on the second cap member 83 side. The seal member 121 extends in the axial direction along the piston rod PR. This extending portion is urged radially inward by the metal spring 142 from the radially outer side. In addition, a resin bush 191 is disposed on the radially inner side of the seal member 121 on which the iron plate 140 is disposed on the radially outer side. Thereby, the sealing performance especially at the time of low pressure can be enhanced, and the oil R in the left hydraulic cylinder 4 can be prevented from leaking through the outer peripheral surface of the piston rod PR. Therefore, the oil R can be prevented from leaking outside. With the above configuration, the piston rod PR can move coaxially with the piston P.
 キャップ94には、ピストンロッドPR及び外筒41の外周面の少なくとも一部を覆うように、カバー部材160が配設される。これにより、粉塵等からピストンロッドPRの外周面を保護することが可能となる。 A cover member 160 is disposed on the cap 94 so as to cover at least part of the outer peripheral surface of the piston rod PR and the outer cylinder 41. Thereby, it becomes possible to protect the outer peripheral surface of the piston rod PR from dust or the like.
3.その他の実施形態
 上記第1-第3の実施形態では、車両1の車体の鉛直方向の加速度を検出する加速度検出部30が備えられ、可変バルブ11は、加速度検出部30の検出結果に基づいて開口面積が調整されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。加速度検出部30以外の方法、例えばホイールのストローク量を検出し、当該検出した結果に基づき可変バルブ11の開口面積を調整する構成とすることも可能である。もちろん、他の方法を用いて行うことも当然に可能である。
3. Other Embodiments In the first to third embodiments, the acceleration detection unit 30 that detects the vertical acceleration of the vehicle body of the vehicle 1 is provided, and the variable valve 11 is based on the detection result of the acceleration detection unit 30. It has been described that the opening area is adjusted. However, the scope of application of the present invention is not limited to this. A method other than the acceleration detection unit 30, for example, a configuration in which the stroke amount of the wheel is detected and the opening area of the variable valve 11 is adjusted based on the detected result may be employed. Of course, it is naturally possible to use other methods.
 上記第1-第3の実施形態では、減衰力バルブ14がメカ式のバルブとして図示した。しかしながら、本発明の適用範囲はこれに限定されるものではない。上側シリンダ室10Uにも、下側シリンダ室10Lと同様に電磁式の可変バルブを設けることも当然に可能である。 In the first to third embodiments, the damping force valve 14 is illustrated as a mechanical valve. However, the scope of application of the present invention is not limited to this. It is naturally possible to provide an electromagnetic variable valve in the upper cylinder chamber 10U as well as the lower cylinder chamber 10L.
 上記第1-第3の実施形態では、アキュムレータ23の流入側の弁が可変バルブ24であるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。アキュムレータ23の流入側の弁をメカ式のバルブ(減衰力バルブ)で構成することも当然に可能である。係る場合、第1連通路21及び第2連通路22の夫々が負圧にならないように、当該メカ式のバルブ(減衰力バルブ)及びチェックバルブ25と並列にオリフィスが設けられる。これにより、アキュムレータ23と第1連通路21及び第2連通路22の夫々とを連通させることが可能となる。 In the first to third embodiments, the inflow side valve of the accumulator 23 is described as the variable valve 24. However, the scope of application of the present invention is not limited to this. Naturally, the valve on the inflow side of the accumulator 23 can be constituted by a mechanical valve (damping force valve). In such a case, an orifice is provided in parallel with the mechanical valve (damping force valve) and the check valve 25 so that each of the first communication path 21 and the second communication path 22 does not become negative pressure. As a result, the accumulator 23 can communicate with each of the first communication path 21 and the second communication path 22.
 上記第4の実施形態における前記差圧機構8と前記負荷機構13とは、個別に形成してあるものに限らず、例えば、図35に示すように、夫々まとめて一体化したユニットYで構成してあってもよい。ユニットYには、各ポートに対応した油路接続部16を設け、各油路をその油路接続部16に接続するだけで簡単に設置することができる。このように、差圧機構8と負荷機構13とをユニット化することで、各バルブ等のパーツの暴露を防止して部品耐久性の向上を図れると共に、ユニットYの車体9への取付性を向上させることができ、且つ、省スペース化を叶えることが可能となる。 The differential pressure mechanism 8 and the load mechanism 13 in the fourth embodiment are not limited to being individually formed, and for example, as shown in FIG. It may be. The unit Y can be installed simply by providing the oil passage connection portions 16 corresponding to the respective ports and connecting each oil passage to the oil passage connection portion 16. In this way, by integrating the differential pressure mechanism 8 and the load mechanism 13 as a unit, exposure of parts such as valves can be prevented to improve the durability of the parts, and the attachment of the unit Y to the vehicle body 9 can be improved. It can be improved and space saving can be realized.
 前記差圧機構8や、負荷機構13は、先の実施形態で説明した具体構成に限るものではなく、開弁状態を電気的に制御する構成を組み込むものであってもよい。 The differential pressure mechanism 8 and the load mechanism 13 are not limited to the specific configuration described in the previous embodiment, and may include a configuration for electrically controlling the valve opening state.
 上記実施形態では、図34に左油圧シリンダ4(右油圧シリンダ5)の構成を模式的に示した。しかしながら、本発明の適用範囲はこれに限定されるものではない。例えば、図36に示されるように、マクファーソン-ストラット形式のサスペンション機構50が有する油圧シリンダに適用することも当然に可能である。係る場合、固定部102に代えて、ブラケット202を用いて車体9に締結固定すると好適である。また、キャップ94と管93とを、ナット203で締結固定することも可能である。 In the above embodiment, the configuration of the left hydraulic cylinder 4 (right hydraulic cylinder 5) is schematically shown in FIG. However, the scope of application of the present invention is not limited to this. For example, as shown in FIG. 36, the present invention can naturally be applied to a hydraulic cylinder included in the McPherson-Strut type suspension mechanism 50. In such a case, it is preferable that the bracket 202 is used instead of the fixing portion 102 to fasten and fix to the vehicle body 9. It is also possible to fasten and fix the cap 94 and the pipe 93 with the nut 203.
 上記第4及び第5の実施形態では、サスペンションシステム100が、前輪に備えられている場合の例を挙げて説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。後輪に適用することも可能であるし、前輪及び後輪の双方に適用することも当然に可能である。 In the fourth and fifth embodiments, an example in which the suspension system 100 is provided on a front wheel has been described. However, the scope of application of the present invention is not limited to this. The present invention can be applied to the rear wheel, and naturally can be applied to both the front wheel and the rear wheel.
 上記第4-第6の実施形態では、アキュムレータ用第1バルブ13Bがチェックバルブであり、アキュムレータ用第2バルブ13Aが減衰力バルブであるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。すなわち、アキュムレータ用第1バルブ13Bがチェックバルブでなく、アキュムレータ用第2バルブ13Aとしての減衰力バルブの負荷よりも小さい負荷を与える減衰力バルブで構成することも当然に可能である。 In the fourth to sixth embodiments, it has been described that the accumulator first valve 13B is a check valve and the accumulator second valve 13A is a damping force valve. However, the scope of application of the present invention is not limited to this. In other words, the first valve 13B for the accumulator is not a check valve, and can naturally be constituted by a damping force valve that applies a load smaller than the load of the damping force valve as the second valve 13A for the accumulator.
 ここで、上記第4-第6の実施形態に係るサスペンションシステム100は、前輪及び後輪の少なくとも一方の左右一対の車輪2において、左側車輪32Aと車体9との間に介在された左油圧シリンダ4と、右側車輪32Bと車体9との間に介在された右油圧シリンダ5と、左油圧シリンダ4の上側シリンダ室4Uと右油圧シリンダ5の下側シリンダ室5Lとを連通接続する第1油路6と、右油圧シリンダ5の上側シリンダ室5Uと左油圧シリンダ4の下側シリンダ室4Lとを連通接続する第2油路7と、第1油路6と第2油路7とに連通状態に夫々設けられたアキュムレータ23A,23Bと、夫々のアキュムレータ23A,23BからオイルRを排出するように各アキュムレータ23A,23Bに設けられたアキュムレータ用第1バルブ13Bと、夫々のアキュムレータ23A,23Bに進入するオイルRの流量を調整して、アキュムレータ用第1バルブ13BがオイルRに与える負荷よりも大きな負荷をオイルRに与えるように各アキュムレータ23A,23Bに設けられたアキュムレータ用第2バルブ13Aと、を備えて構成されると記載することができる。 Here, the suspension system 100 according to the fourth to sixth embodiments includes a left hydraulic cylinder interposed between the left wheel 32A and the vehicle body 9 in the pair of left and right wheels 2 of at least one of the front wheel and the rear wheel. 4, a right hydraulic cylinder 5 interposed between the right wheel 32 </ b> B and the vehicle body 9, a first oil that communicates and connects the upper cylinder chamber 4 </ b> U of the left hydraulic cylinder 4 and the lower cylinder chamber 5 </ b> L of the right hydraulic cylinder 5. The passage 6 communicates with a second oil passage 7 communicatively connecting the upper cylinder chamber 5U of the right hydraulic cylinder 5 and the lower cylinder chamber 4L of the left hydraulic cylinder 4, and the first oil passage 6 and the second oil passage 7. Accumulators 23A, 23B respectively provided in the state, and first accumulator valves provided in the accumulators 23A, 23B so as to discharge the oil R from the respective accumulators 23A, 23B. 13B and the flow rate of the oil R entering the respective accumulators 23A and 23B is adjusted to each of the accumulators 23A and 23B so that the load applied to the oil R is greater than the load applied to the oil R by the first accumulator valve 13B. It can be described that the second valve 13A for the accumulator is provided.
 このような構成とすれば、車体9にロールが生じるような場合には、左右シリンダ室から流出するオイルRが合わせてアキュムレータ用第2バルブ13Aを通過することによって大きな抵抗圧力が作用する。その結果、油圧シリンダ4,5に大きなダンパー効果が働き、車体9のロールを抑えることができ、走行安定性を確保し易くなる。この構成によるスタビライザー機能によって、従来のスタビライザーバーを省略することが可能となる。 With such a configuration, when a roll is generated in the vehicle body 9, the oil R flowing out from the left and right cylinder chambers passes through the accumulator second valve 13A, and a large resistance pressure acts. As a result, a large damper effect acts on the hydraulic cylinders 4 and 5, the roll of the vehicle body 9 can be suppressed, and traveling stability can be easily ensured. The stabilizer function by this structure makes it possible to omit the conventional stabilizer bar.
 また、各シリンダ室のポート110,111に各別に対応させて設けられると共に、各ポート110,111毎にオイルRの入出圧力に差をつける差圧機構8を備えて構成することも可能である。 In addition, each of the ports 110 and 111 in each cylinder chamber may be provided corresponding to each of the ports, and each port 110 and 111 may be configured to include a differential pressure mechanism 8 that makes a difference in the input / output pressure of the oil R. .
 このような構成とすれば、車体9にバウンスが生じるような場合には、各ポート110,111を所定の方向で通過するオイルRに対して、ロール時に比べて小さな抵抗圧力が作用するように差圧機構8を作用させることが可能で、その結果、油圧シリンダ4,5のダンパー効果によって車体9のバウンスを減衰させることができ、良好な乗り心地を得ることが可能となる。この構成によれば、アブソーバー機能を持たせることが可能で、従来のアブソーバーを省略する、或いは小型化することが可能となり、前出のスタビライザー機能も有することにより、従来のスタビライザーバーを省略することも合わせて車輪2まわりの構造の簡単化を図ることができる。 With such a configuration, when bounce occurs in the vehicle body 9, a smaller resistance pressure acts on the oil R passing through the ports 110 and 111 in a predetermined direction than when rolling. The differential pressure mechanism 8 can be actuated. As a result, the bounce of the vehicle body 9 can be attenuated by the damper effect of the hydraulic cylinders 4 and 5, and a good riding comfort can be obtained. According to this configuration, it is possible to provide an absorber function, so that the conventional absorber can be omitted or downsized, and the conventional stabilizer bar can be omitted by having the above-described stabilizer function. In addition, the structure around the wheel 2 can be simplified.
 また、車体9がロールする場合には、一方の油圧シリンダ4(5)の下側シリンダ室4L(5L)と、これに連通する他方の油圧シリンダ5(4)の上側シリンダ室5U(4U)とが共に収縮して容積減少を起こすから、オイルRが両シリンダ室から押し出されて一方のアキュムレータ23B(23A)に移動する。本発明では、アキュムレータ23B(23A)にオイルRが進入する際に負荷を与えるアキュムレータ用第2バルブ13Aが設けられているので、このようなオイルRの移動時に、アキュムレータ用第2バルブ13Aと共にシリンダの各ポート110,111に対応する差圧機構8でも流動抵抗を発生させることができ、その結果、車体9のロールに対する減衰効果をより強く発揮することができる。以上の結果、複雑な機械機構や制御機構を設けなくても、受動的なシステムにて、車体9のロール、バウンスに適した減衰力を発揮させることが可能で、走行安定性の確保と、良好な乗り心地の確保とを共に叶えることができる。 When the vehicle body 9 rolls, the lower cylinder chamber 4L (5L) of one hydraulic cylinder 4 (5) and the upper cylinder chamber 5U (4U) of the other hydraulic cylinder 5 (4) communicating therewith. Since both of them contract and cause a volume reduction, the oil R is pushed out from both cylinder chambers and moves to one accumulator 23B (23A). In the present invention, since the second valve 13A for accumulator is provided to apply a load when the oil R enters the accumulator 23B (23A), the cylinder together with the second valve 13A for accumulator at the time of such movement of the oil R is provided. The differential pressure mechanism 8 corresponding to each of the ports 110 and 111 can also generate a flow resistance, and as a result, the damping effect on the roll of the vehicle body 9 can be exerted more strongly. As a result of the above, it is possible to exert a damping force suitable for rolling and bounce of the vehicle body 9 in a passive system without providing a complicated mechanical mechanism and control mechanism, ensuring traveling stability, It is possible to achieve a good ride comfort together.
 また、差圧機構8は、シリンダ室からオイルRが排出される際の設定圧力がシリンダ室にオイルRが進入する際の設定圧力よりも大きく設定されるように構成することも可能である。 Further, the differential pressure mechanism 8 can be configured such that the set pressure when the oil R is discharged from the cylinder chamber is set to be larger than the set pressure when the oil R enters the cylinder chamber.
 このような構成とすれば、シリンダ室からオイルRが排出される際に減衰力を大きくすることができる一方で、シリンダ室へオイルRが進入する際にはスムーズに進入できるため、車体9のロール、バウンスの抑制に適した減衰力を有効に発生させることが可能となる。 With this configuration, the damping force can be increased when the oil R is discharged from the cylinder chamber, while the oil R can enter smoothly when the oil R enters the cylinder chamber. It is possible to effectively generate a damping force suitable for suppressing rolls and bounces.
 また、差圧機構8に、オリフィス8Cとチェックバルブ8Aとシリンダ室からオイルRが排出される際にオイルRに負荷を与えて減衰力を発生させる減衰力バルブ8Bとを備えても良い。 Further, the differential pressure mechanism 8 may be provided with an orifice 8C, a check valve 8A, and a damping force valve 8B that generates a damping force by applying a load to the oil R when the oil R is discharged from the cylinder chamber.
 このような構成によれば、オリフィス8Cと減衰力バルブ8Bとの夫々の抵抗特性を有効に利用して、路面からの入力に対して適切な減衰力特性を発生させることができる。したがって、例えば、油圧シリンダに作用する入力の速度が遅い時には、オリフィス8Cが主となって減衰を図り、入力の速度が速い時には、オリフィス8Cに加え、減衰力バルブ8Bによって衝撃減衰を図ることが可能となる。これによって、車輪2に作用する路面入力の大小に拘わらず適切な減衰を叶えることが可能となり、走行安定性と乗り心地の向上を両立させることができる。 According to such a configuration, it is possible to generate appropriate damping force characteristics with respect to the input from the road surface by effectively using the resistance characteristics of the orifice 8C and the damping force valve 8B. Therefore, for example, when the input speed acting on the hydraulic cylinder is slow, the orifice 8C mainly performs the damping, and when the input speed is fast, the shock is attenuated by the damping force valve 8B in addition to the orifice 8C. It becomes possible. As a result, it is possible to achieve appropriate attenuation regardless of the magnitude of the road surface input acting on the wheel 2, and it is possible to achieve both running stability and improved riding comfort.
 また、差圧機構8と、アキュムレータ用第1バルブ13B及びアキュムレータ用第2バルブ13Aを有する負荷機構13とをユニット化することも可能である。 It is also possible to unitize the differential pressure mechanism 8 and the load mechanism 13 having the first accumulator valve 13B and the second accumulator valve 13A.
 このような特徴構成によれば、差圧機構8と負荷機構13とをユニット化することで、配管等の部品点数の削減、車体9への取付性を向上させることができると共に、省スペース化を叶えることが可能となる。また、差圧機構8や負荷機構13を構成する各バルブ等のパーツが露出したままになるのを防止し易くなり、部品耐久性の向上を図ることができる。 According to such a characteristic configuration, the differential pressure mechanism 8 and the load mechanism 13 are unitized, so that the number of parts such as pipes can be reduced, the attachment to the vehicle body 9 can be improved, and the space can be saved. Can be realized. Moreover, it becomes easy to prevent parts, such as each valve which comprises the differential pressure mechanism 8 and the load mechanism 13, from being exposed, and it can aim at the improvement of component durability.
 また、アキュムレータ用第2バルブ13Aは、当該アキュムレータ用第2バルブ13A設けられたアキュムレータ23A(23B)とは異なる側のアキュムレータ23B(23A)に設けられたアキュムレータ用第1バルブ13BがオイルRに与える負荷よりも大きな負荷を与えるように構成することも可能である。 The second valve 13A for accumulator is supplied to the oil R by the first valve 13B for accumulator provided in the accumulator 23B (23A) on the side different from the accumulator 23A (23B) provided for the second valve 13A for accumulator. It is also possible to provide a load that is greater than the load.
 このような構成とすれば、油圧シリンダに働くダンパー効果を大きくすることができるので、車体9のロールを抑えることができ、走行安定性を確保し易くなる。 With such a configuration, the damper effect acting on the hydraulic cylinder can be increased, so that the roll of the vehicle body 9 can be suppressed and the running stability can be easily ensured.
 また、更に、車輪2を懸架するサスペンション機構50が備えることも可能である。 Further, a suspension mechanism 50 for suspending the wheel 2 may be provided.
 このような構成とすれば、車両1のロール減衰、剛性等のレベルアップを行うことが可能で、且つ、ロール、バウンス等の減衰力チューニングの幅も広がり、アブソーバーと並用、機能分担によりサスペンションシステム100の小型化、搭載自由度も向上する。 With such a configuration, it is possible to increase the level of roll damping, rigidity, etc. of the vehicle 1, and the range of damping force tuning such as rolls, bounces, etc. is widened. Miniaturization of 100 and mounting flexibility are also improved.
 以上、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。 As mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.
 本発明は、車両の乗り心地及び操縦安定性を改善するサスペンションシステムに用いることが可能である。 The present invention can be used for a suspension system that improves the ride comfort and handling stability of a vehicle.
 1:車両
 2:車輪
 9:車体
 4:左油圧シリンダ
 4L:下側シリンダ室
 4U:上側シリンダ室
 5:右油圧シリンダ
 5L:下側シリンダ室
 5U:上側シリンダ室
 10:減衰力制御シリンダ
 10A:一方の減衰力制御シリンダ
 10B:他方の減衰力制御シリンダ
 10U:上側シリンダ室
 10L:下側シリンダ室
 11:可変バルブ
 21:第1連通路
 22:第2連通路
 23:アキュムレータ(オイル受部)
 24:可変バルブ
 25:チェックバルブ
 30:加速度検出部
 32A:左側車輪
 32B:右側車輪
 93:管(筒状部材)
 100:サスペンションシステム
 101:固定部
 102:固定部
 110:ポート
 111:ポート
 170:上側シリンダ室用油路
 171:下側シリンダ室用油路
 PR:ロッド
 R:オイル
1: Vehicle 2: Wheel 9: Vehicle body 4: Left hydraulic cylinder 4L: Lower cylinder chamber 4U: Upper cylinder chamber 5: Right hydraulic cylinder 5L: Lower cylinder chamber 5U: Upper cylinder chamber 10: Damping force control cylinder 10A: One Damping force control cylinder 10B: the other damping force control cylinder 10U: upper cylinder chamber 10L: lower cylinder chamber 11: variable valve 21: first communication path 22: second communication path 23: accumulator (oil receiving portion)
24: Variable valve 25: Check valve 30: Acceleration detector 32A: Left wheel 32B: Right wheel 93: Tube (tubular member)
DESCRIPTION OF SYMBOLS 100: Suspension system 101: Fixed part 102: Fixed part 110: Port 111: Port 170: Oil path for upper cylinder chamber 171: Oil path for lower cylinder chamber PR: Rod R: Oil

Claims (11)

  1.  伸長時に容積が大きくなると共に縮短時に容積が小さくなる上側シリンダ室と、伸長時に容積が小さくなると共に縮短時に容積が大きくなる下側シリンダ室と、前記下側シリンダ室から流出するオイルの流量を車両の物理量を検出する検出部の検出結果に基づいて調整する可変バルブと、を有し、前記車両が有する複数の車輪のうち、一対の車輪に組み込まれた減衰力制御シリンダと、
     一方の減衰力制御シリンダの上側シリンダ室と他方の減衰力制御シリンダの下側シリンダ室とを連通する第1連通路と、
     前記一方の減衰力制御シリンダの下側シリンダ室と前記他方の減衰力制御シリンダの上側シリンダ室とを連通する第2連通路と、
     前記第1連通路と前記第2連通路との夫々に設けられ、前記減衰力制御シリンダの動作に応じて前記第1連通路及び前記第2連通路のオイルを貯留及び排出する一対のオイル受部と、
    を備えるサスペンションシステム。
    The upper cylinder chamber that increases in volume when expanded and decreases in volume when contracted, the lower cylinder chamber that decreases in volume when expanded and increases in volume when contracted, and the flow rate of oil flowing out of the lower cylinder chamber A variable valve that adjusts based on the detection result of the detection unit that detects the physical quantity of, a damping force control cylinder incorporated in a pair of wheels among a plurality of wheels of the vehicle,
    A first communication passage communicating the upper cylinder chamber of one damping force control cylinder and the lower cylinder chamber of the other damping force control cylinder;
    A second communication passage communicating the lower cylinder chamber of the one damping force control cylinder and the upper cylinder chamber of the other damping force control cylinder;
    A pair of oil receivers that are provided in each of the first communication path and the second communication path and store and discharge oil in the first communication path and the second communication path according to the operation of the damping force control cylinder. And
    Suspension system comprising.
  2.  前記車両の車体の鉛直方向の加速度を検出する加速度検出部が備えられ、
     前記可変バルブは、前記加速度検出部の検出結果に基づいて前記オイルの流量を調整する請求項1に記載のサスペンションシステム。
    An acceleration detection unit for detecting acceleration in a vertical direction of the vehicle body;
    The suspension system according to claim 1, wherein the variable valve adjusts a flow rate of the oil based on a detection result of the acceleration detection unit.
  3.  前記オイル受部は、アキュムレータである請求項1又は2に記載のサスペンションシステム。 The suspension system according to claim 1 or 2, wherein the oil receiving portion is an accumulator.
  4.  前記アキュムレータに流入するオイルの流量を制限する可変バルブが備えられている請求項3に記載のサスペンションシステム。 The suspension system according to claim 3, further comprising a variable valve that restricts a flow rate of the oil flowing into the accumulator.
  5.  前記アキュムレータに流入するオイルの流量を制限する可変バルブと並列にチェックバルブが設けられている請求項4に記載のサスペンションシステム。 The suspension system according to claim 4, wherein a check valve is provided in parallel with a variable valve that restricts a flow rate of oil flowing into the accumulator.
  6.  前記一対の車輪が、前記車両の幅方向で対向して設けられる左側車輪及び右側車輪である請求項1から5のいずれか一項に記載のサスペンションシステム。 The suspension system according to any one of claims 1 to 5, wherein the pair of wheels are a left wheel and a right wheel provided to face each other in the width direction of the vehicle.
  7.  前記一対の車輪が、前記車両の前後方向に設けられる前側車輪及び後側車輪である請求項1から5のいずれか一項に記載のサスペンションシステム。 The suspension system according to any one of claims 1 to 5, wherein the pair of wheels are a front wheel and a rear wheel provided in a front-rear direction of the vehicle.
  8.  前記左側車輪と車体との間に介在された左油圧シリンダ及び前記右側車輪と車体との間に介在された右油圧シリンダの夫々は、前記上側シリンダ室及び前記下側シリンダ室の夫々からオイルを給排するポートを下側の固定部から離間した位置に配設してある請求項6に記載のサスペンションシステム。 The left hydraulic cylinder interposed between the left wheel and the vehicle body and the right hydraulic cylinder interposed between the right wheel and the vehicle body each receive oil from the upper cylinder chamber and the lower cylinder chamber. The suspension system according to claim 6, wherein the supply / exhaust port is disposed at a position separated from the lower fixing portion.
  9.  前記上側シリンダ室のオイルの給排を行うポートと前記下側シリンダ室のオイルの給排を行うポートとが、上側に設けられたロッドの固定部の側に配設されてある請求項1から8のいずれか一項に記載のサスペンションシステム。 The port for supplying and discharging oil in the upper cylinder chamber and the port for supplying and discharging oil in the lower cylinder chamber are disposed on the side of the fixed portion of the rod provided on the upper side. The suspension system according to claim 8.
  10.  前記上側シリンダ室のオイルの給排を行う上側シリンダ室用油路及び前記下側シリンダ室のオイルの給排を行う下側シリンダ室用油路が、前記ロッドの径方向内側に設けられている請求項9に記載のサスペンションシステム。 An upper cylinder chamber oil passage for supplying and discharging oil in the upper cylinder chamber and a lower cylinder chamber oil passage for supplying and discharging oil in the lower cylinder chamber are provided on the radially inner side of the rod. The suspension system according to claim 9.
  11.  前記ロッドの径方向内側に同軸心上に筒状部材を有し、前記筒状部材の径方向内側に前記下側シリンダ室用油路が形成され、前記ロッドの内周面と前記筒状部材の外周面との間に前記上側シリンダ室用油路が形成される請求項10に記載のサスペンションシステム。 The rod has a cylindrical member coaxially on the radially inner side, the lower cylinder chamber oil passage is formed on the radially inner side of the cylindrical member, and the inner circumferential surface of the rod and the cylindrical member The suspension system according to claim 10, wherein the upper cylinder chamber oil passage is formed between the outer peripheral surface of the upper cylinder chamber.
PCT/JP2012/072745 2011-09-27 2012-09-06 Suspension system WO2013047143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/347,829 US20140232082A1 (en) 2011-09-27 2012-09-06 Suspension system
CN201280047095.1A CN103826887A (en) 2011-09-27 2012-09-06 Suspension system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011210703 2011-09-27
JP2011210702A JP2013071523A (en) 2011-09-27 2011-09-27 Suspension system
JP2011-210702 2011-09-27
JP2011-210703 2011-09-27
JP2012-174319 2012-08-06
JP2012174319A JP5761578B2 (en) 2011-09-27 2012-08-06 Vehicle suspension system

Publications (1)

Publication Number Publication Date
WO2013047143A1 true WO2013047143A1 (en) 2013-04-04

Family

ID=47995183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072745 WO2013047143A1 (en) 2011-09-27 2012-09-06 Suspension system

Country Status (1)

Country Link
WO (1) WO2013047143A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062664A1 (en) * 2015-10-06 2017-04-13 Thomas-Dempsey Motors, Inc. Active vehicle suspension system
CN109808435A (en) * 2019-03-19 2019-05-28 徐工集团工程机械股份有限公司科技分公司 Suspension system and vehicle
CN110370879A (en) * 2019-08-23 2019-10-25 杨成 Automobile anti-tipping system
CN110722955A (en) * 2018-07-16 2020-01-24 郑州宇通客车股份有限公司 Vehicle and stabilizer bar system thereof
US11267310B2 (en) * 2018-05-29 2022-03-08 Hitachi Astemo, Ltd. Suspension apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193331A (en) * 1992-01-16 1993-08-03 Nissan Motor Co Ltd Oscillation damping device for vehicle
JPH08210418A (en) * 1995-02-02 1996-08-20 Toyota Central Res & Dev Lab Inc Vibration attenuator of suspension
JP2002070809A (en) * 2000-08-30 2002-03-08 Komatsu Ltd Double-acting multistage cylinder
JP2005081913A (en) * 2003-09-05 2005-03-31 Toyota Motor Corp Suspension system
JP2008168747A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Articulation permitting type suspension system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193331A (en) * 1992-01-16 1993-08-03 Nissan Motor Co Ltd Oscillation damping device for vehicle
JPH08210418A (en) * 1995-02-02 1996-08-20 Toyota Central Res & Dev Lab Inc Vibration attenuator of suspension
JP2002070809A (en) * 2000-08-30 2002-03-08 Komatsu Ltd Double-acting multistage cylinder
JP2005081913A (en) * 2003-09-05 2005-03-31 Toyota Motor Corp Suspension system
JP2008168747A (en) * 2007-01-10 2008-07-24 Toyota Motor Corp Articulation permitting type suspension system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017062664A1 (en) * 2015-10-06 2017-04-13 Thomas-Dempsey Motors, Inc. Active vehicle suspension system
US11267310B2 (en) * 2018-05-29 2022-03-08 Hitachi Astemo, Ltd. Suspension apparatus
CN110722955A (en) * 2018-07-16 2020-01-24 郑州宇通客车股份有限公司 Vehicle and stabilizer bar system thereof
CN109808435A (en) * 2019-03-19 2019-05-28 徐工集团工程机械股份有限公司科技分公司 Suspension system and vehicle
CN109808435B (en) * 2019-03-19 2024-03-15 徐工集团工程机械股份有限公司科技分公司 Suspension system and vehicle
CN110370879A (en) * 2019-08-23 2019-10-25 杨成 Automobile anti-tipping system

Similar Documents

Publication Publication Date Title
US20140232082A1 (en) Suspension system
JP5519502B2 (en) shock absorber
AU2005221449C1 (en) Vehicular suspension system
WO2013069469A1 (en) Suspension device for vehicle
RU2408475C2 (en) Hydraulic suspension for transport facility
US7686309B2 (en) Hydraulic system for a vehicle suspension
KR101673641B1 (en) Shock absorber for vehicle
CA2657851C (en) System to control the trim of motorcycles with three or four wheels
JP5761578B2 (en) Vehicle suspension system
EP1880880B1 (en) Vehicle
WO2013047143A1 (en) Suspension system
JP2012516983A (en) Triple tube shock absorber with shortened intermediate tube
CN113195932A (en) Damper with single external control valve
US20120119454A1 (en) Active suspension system and hydraulic ram therefor
EP1989072A1 (en) Hydraulic system for a vehicle suspension
CN104245372A (en) Suspension device
JP2016032990A (en) Vehicle with buffer
CN112203879A (en) Suspension device
JP5672502B2 (en) Vehicle suspension system
JP2013071523A (en) Suspension system
JP5549889B2 (en) Vehicle suspension system
AU2005266861B2 (en) Hydraulic vehicle suspension system
KR102406146B1 (en) Active roll control system
JP2009293664A (en) Vehicular suspension device
KR100243761B1 (en) Vehicle suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14347829

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12837377

Country of ref document: EP

Kind code of ref document: A1