WO2013047067A1 - Non-aqueous electrolyte secondary cell - Google Patents

Non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
WO2013047067A1
WO2013047067A1 PCT/JP2012/071877 JP2012071877W WO2013047067A1 WO 2013047067 A1 WO2013047067 A1 WO 2013047067A1 JP 2012071877 W JP2012071877 W JP 2012071877W WO 2013047067 A1 WO2013047067 A1 WO 2013047067A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
conjugated diene
aqueous electrolyte
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2012/071877
Other languages
French (fr)
Japanese (ja)
Inventor
緑 志村
須黒 雅博
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013536097A priority Critical patent/JP6032205B2/en
Publication of WO2013047067A1 publication Critical patent/WO2013047067A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Lithium secondary batteries have already been put into practical use as batteries for electronic devices such as laptop computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability.
  • electronic devices have been enhanced in functionality and used in electric vehicles, and development of lithium secondary batteries with higher energy density has been demanded. Therefore, the secondary battery using the graphite-based negative electrode material cannot satisfy the required characteristics.
  • metals capable of being alloyed with lithium such as silicon (Si) and tin (Sn), and oxides capable of inserting and extracting lithium ions have been studied as negative electrode materials.
  • Patent Document 1 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is described.
  • Patent Document 2 describes that a silicon oxide (particularly silicate) is used in a non-aqueous electrolyte secondary battery.
  • Patent Document 3 describes a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
  • Patent Document 4 an active material layer containing active material particles containing silicon and / or a silicon alloy and a binder is disposed on a current collector made of a conductive metal foil, and then sintered in a non-oxidizing atmosphere.
  • the negative electrode for lithium secondary batteries obtained is described. And in the secondary battery using this negative electrode, it is described that a film having high lithium ion conductivity is formed on the surface of the active material particles by adding vinylene carbonate as a solvent component of the nonaqueous electrolyte. Yes.
  • a secondary battery using a negative electrode active material containing a metal that can be alloyed with lithium has a problem in that the capacity is significantly reduced due to a charge / discharge cycle, and the storage stability is inferior. Cracking (miniaturization) occurs due to the volume change of the negative electrode active material due to insertion and removal of lithium ions, gas generation due to separation from the current collector and decomposition of the electrolyte on the active surface that appears newly due to the volume change, A decrease in Li ion conductivity occurs.
  • An object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics and storage stability.
  • a non-aqueous electrolyte solution including a positive electrode, a separator, a negative electrode disposed to face the positive electrode with the separator interposed therebetween, a non-aqueous electrolyte solution, and an exterior body that includes them.
  • a secondary battery, The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
  • the non-aqueous electrolyte solution includes a non-aqueous electrolyte secondary battery containing vinylene carbonate and a polyfunctional conjugated diene compound having two or more conjugated diene groups.
  • a non-aqueous electrolysis comprising a positive electrode, a separator, a negative electrode disposed opposite to the positive electrode via the separator, a non-aqueous electrolyte, and an exterior body that contains them.
  • a liquid secondary battery The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
  • a non-aqueous electrolyte secondary battery in which a coating derived from a polyfunctional conjugated diene compound having two or more vinylene carbonates and conjugated diene groups is formed on the negative electrode surface.
  • the negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
  • the non-aqueous electrolyte contains vinylene carbonate and a polyfunctional conjugated diene compound, and a method for producing a non-aqueous electrolyte secondary battery is provided.
  • a non-aqueous electrolyte secondary battery excellent in cycle characteristics and storage stability can be provided.
  • FIG. 1 is a schematic cross-sectional view for explaining the structure of a laminated laminate type secondary battery according to an embodiment of the present invention.
  • a secondary battery includes a positive electrode, a separator, a negative electrode disposed to face the positive electrode with the separator interposed therebetween, a non-aqueous electrolyte, and an exterior body that contains them.
  • This negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium and a binder.
  • a metal (a) that can be alloyed with lithium
  • a binder As the negative electrode active material, for example, an active material containing silicon as the metal (a) can be used.
  • a laminate film can be used as the exterior body.
  • One container including the outer package can include one or two or more pairs of positive and negative electrodes, and can have a stacked structure in which a plurality of these electrodes are stacked.
  • the nonaqueous electrolytic solution contains vinylene carbonate and a compound having two or more conjugated diene groups (hereinafter, appropriately referred to as “polyfunctional conjugated diene compound”).
  • the polyfunctional conjugated diene compound can react with a film formed by the decomposition of vinylene carbonate to reinforce the film. Thereby, cycle characteristics and storage stability can be improved.
  • a solution in which a supporting salt is dissolved in a mixed solution containing vinylene carbonate, a polyfunctional conjugated diene compound, and a non-aqueous solvent can be used.
  • vinylene carbonate decomposition reaction occurs on the negative electrode surface at a base potential, and a vinylene carbonate decomposition product film is formed on the negative electrode surface.
  • a double bond derived from vinylene carbonate remains, and this double bond can undergo Diels-Alder reaction with a conjugated diene group. Therefore, when a polyfunctional conjugated diene compound is used in combination with vinylene carbonate, a double bond derived from vinylene carbonate and a Diels-Alder reaction of the conjugated diene group occur, and the decomposition product film forms a crosslinked structure.
  • the film is stronger than the film formed from the above, and the reaction between the active species on the surface of the lithium alloy negative electrode and the electrolytic solution can be suppressed. Furthermore, since this film is a three-dimensional crosslinked body, it is excellent in stretchability and strength. Accordingly, it is possible to follow the volume change of the lithium alloy negative electrode, and it is possible to prevent the negative electrode active material from being miniaturized. Since the thickness of the film can be controlled by the amount of vinylene carbonate and polyfunctional conjugated diene compound added, it is possible to form a very thin film having high lithium ion conductivity.
  • a coating is formed by the decomposition reaction of the non-aqueous solvent on the negative electrode surface.
  • the coated film is brittle because it is a decomposition product of vinylene carbonate, an inorganic compound such as lithium carbonate or alkyl lithium, or a low molecular organic compound, and it is difficult to follow the volume change of the lithium alloy negative electrode.
  • new active species appear due to the refinement of the active material that accompanies the insertion / extraction of lithium ions, and thus the reaction of the electrolytic solution cannot be sufficiently suppressed.
  • the coating on the negative electrode surface increases as the number of cycle tests increases. It becomes too thick and resistance increases.
  • the Diels-Alder reaction between the vinylene carbonate coating and the polyfunctional conjugated diene compound can occur under heating or in a high temperature environment.
  • the temperature at that time is preferably 30 ° C. or higher, and more preferably 50 ° C. or higher. Further, this temperature is preferably 80 ° C. or less, and more preferably 70 ° C. or less, in order to suppress decomposition of the electrolytic solution and electrode deterioration.
  • heating can be performed to cause Diels-Alder reaction of polyfunctional conjugated diene groups.
  • heating while applying an electric potential that is, the decomposition reaction of vinylene carbonate and the Diels-Alder reaction of the conjugated diene group of the polyfunctional conjugated diene compound can proceed simultaneously.
  • the Diels-Alder reaction of the conjugated diene group is caused by heating to form a sufficient crosslinked structure in advance.
  • the temperature under the environment is not required even if heating is not performed in advance. In this way, a Diels-Alder reaction of a polyfunctional conjugated diene group can be caused to form a crosslinked structure.
  • the polyfunctional conjugated diene compound preferably has a structure represented by the formula (1A), (1B) or (1C).
  • D 1 , D 2 , D 3 and D 4 each independently represent a conjugated diene group
  • X 1 represents a linking group to which the conjugated diene group is bonded.
  • the conjugated diene group is not particularly limited, and a chain conjugated diene group and a cyclic conjugated diene group can be used, but a cyclic conjugated diene group is preferable because of excellent stability against heat and the like.
  • the conjugated diene group include a furan ring group, a thiophene ring group, a pyrrole ring group, a cyclopentadiene ring group, a 1,3-butadienyl group, a thiophene-1-oxide ring group, and a thiophene-1,1-dioxide ring group.
  • Cyclopenta-2,4-dienone ring group 2H pyran ring group, cyclohexa-1,3-diene ring group, 2H pyran 1-oxide ring group, 1,2-dihydropyridine ring group, 2H thiopyran-1,1-di
  • Examples thereof include an oxide ring group, a cyclohexa-2,4-dienone ring group, a pyran-2-one ring group, and substituents thereof.
  • a group having a cyclic conjugated diene structure is preferable, and a group having a heterocyclic cyclic conjugated diene structure is more preferable.
  • conjugated diene group for example, a furan ring group can be preferably used, and as a compound having such a conjugated diene group, for example, a polyfunctional furan compound can be preferably used.
  • the combination of conjugated diene groups may be the same or different, but polyfunctional conjugated diene compounds having the same conjugated diene group are preferable because the Diels-Alder reaction easily proceeds uniformly and a more uniform film can be formed. .
  • the linking group X1 linking the conjugated diene group is a polyvalent group of a saturated hydrocarbon (for example, having 1 to 12 carbon atoms) such as an acyclic alkyl group or cycloalkyl; a polyvalent group including an alkylene oxide unit such as an ethylene oxide unit or a methylene oxide unit.
  • a saturated hydrocarbon for example, having 1 to 12 carbon atoms
  • a polyvalent group including an alkylene oxide unit such as an ethylene oxide unit or a methylene oxide unit.
  • Polyvalent group containing an ether chain Multivalent group of fluorinated chain saturated hydrocarbon such as a fluoroalkyl group
  • Multivalent group containing an amide bond Multivalent group derived from an aromatic ring
  • Multivalent group containing a carbonate group Group an ester group-containing polyvalent group
  • a siloxane chain-containing polyvalent group for example, having 1 to 12 carbon atoms
  • a polyfunctional conjugated diene compound containing a polyether chain is preferable because lithium ion conductivity is increased.
  • a polyfunctional conjugated diene compound having an ether bond or an amide bond is preferable because lithium ion conductivity is increased by coordination with lithium ions.
  • the polyfunctional conjugated diene compound containing a saturated hydrocarbon structure such as an alkylene group or a fluorinated hydrocarbon structure such as an aromatic ring or a fluoroalkylene group is provided with hydrophobicity on the coating film formed on the negative electrode surface. This is preferable because the effect of suppressing the reaction with the electrolytic solution is improved.
  • a polyfunctional conjugated diene compound containing a carbonate group or an ester group is preferable because compatibility with the electrolytic solution is improved.
  • a polyfunctional conjugated diene compound containing an ether bond, an alkyl chain, or a siloxane chain is preferable because a highly stretchable film is formed.
  • Polyfunctional conjugated diene compounds include difurfuryl ether, difurfuryl sulfide, difurfuryl sulfone, acetaldehyde difurfuryl mercaptal, difurfuryl persulfide, 1,2-bis (2-furyl) ethane-1,2-dione, 2 , 2 '-[(E) -1,2-ethenediyl] bisfuran, 2-hydroxy-1,2-bis (2-furanyl) ethane-1-one, cycloocta [1,2-c: 5,6-c '] Difuran, benzo [1,2-b: 5,4-b'] difuran, 1,7-dioxa-s-indacene, dimethyldiflufuryloxysilane, ethylmethyldiflufuroxysilane, diethyldiflufuroxysilane, etc.
  • Difurans Dimethyldifurfurylthiosilane, Ethylmethyldifurfurylthiosilane, Diethyldifurfurti Dithiosilanes such as silane; 2,5-bis [(2-furanyl) methyl] furan, methyltrifurfuryloxysilane, methyltri (3-furylmethoxy) silane, methyltri (2-furylethoxy) silane, methyltri (3-furyl) Trifurans such as ethoxy) silane, ethyltrifurfuryloxysilane, ethyltri (3-furylmethoxy) silane, ethyltri (2-furylethoxy) silane, ethyltri (3-furylethoxy) silane; tetrafurfuryloxysilane, tetra (3- Tetrasilanes such as furylmethoxy) silane, tetra (2-furylethoxy) silane,
  • the polyfunctional conjugated diene compound is preferably a compound having an electron donating functional group in the conjugated diene part because of the ease of Diels-Alder reaction.
  • the polyfunctional conjugated diene compound can be obtained by a known synthesis method.
  • a polyfunctional conjugated diene compound can be obtained by a reaction between a chloride containing a conjugated diene group and a polyol having two or more hydroxyl groups.
  • polyols having two or more hydroxyl groups examples include dihydric alcohols such as ethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol; glycerin, Trihydric alcohols such as trimethylolpropane, trimethylolethane, hexanetriol, castor oil; tetrahydric alcohols such as pentaerythritol, methylglycoside, diglycerin; polyglycerins such as triglycerin, tetraglycerin; dipentaerythritol, tripentaerythritol, etc.
  • dihydric alcohols such as ethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol
  • sugar alcohols such as adonitol, arabitol, xylitol, sorbitol, mannitol, iditol, tallitol, dulcitol; and sugars such as glucose, mannose glucose, mannose, fructose, sorbose, sucrose, lactose, raffinose, and cellulose.
  • polyhydric phenols are mentioned.
  • polyhydric phenols examples include monocyclic polyhydric phenols such as pyrogallol, hydroquinone, and phloroglucin; bisphenols such as bisphenol A and bisphenol sulfone; and phenol and formaldehyde condensates (novolac). .
  • a polyfunctional conjugated diene compound can be obtained by reacting an alcohol containing a diene group such as furfuryl alcohol or 2,4-cyclopentadien-1-ol with a polyfunctional isocyanate.
  • the polyfunctional isocyanate has at least two isocyanate groups. Specific examples include carbodiimide-modified MDI, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, tolylene diisocyanate, naphthylene diisocyanate, lysine diisocyanate, and lysine triisocyanate.
  • a polyfunctional conjugated diene compound can be obtained by an esterification reaction between an alcohol containing a diene group and a polycarboxylic acid.
  • Polycarboxylic acids are those having at least two carboxylic acid groups, such as oxalic acid, malonic acid, succinic acid, ⁇ -methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, dimerization Saturated aliphatic dicarboxylic acids such as linoleic acid; unsaturated aliphatic dicarboxylic acids such as maleic acid, mesaconic acid (methyl fumaric acid), citraconic acid (methyl maleic acid), itaconic acid (methylene succinic acid); hexahydrophthalic acid, hexa Hydroisophthalic acid, hexahydroterephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid,
  • ⁇ / RTI> By using such a polyfunctional conjugated diene compound and vinylene carbonate in combination, a three-dimensional crosslinked film can be formed on the negative electrode surface by an electropolymerization reaction, and this film is excellent in stretchability and strength.
  • the content of vinylene carbonate and the polyfunctional conjugated diene compound in the non-aqueous electrolyte is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and more preferably 0.5% by mass or more. More preferably, 5 mass% or less is preferable, 3 mass% or less is more preferable, and 1 mass% or less is more preferable.
  • the total content of vinylene carbonate and polyfunctional conjugated diene compound is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and preferably 10% by mass or less. More preferably, it is more preferably 3% by weight or less.
  • the blending ratio (mass ratio) of vinylene carbonate and polyfunctional conjugated diene can be set, for example, within a range of 10/1 to 1/10, and further within a range of 5/1 to 1/5. If this blending ratio is too high (the ratio of the polyfunctional conjugated diene compound is too low), crosslinking may be insufficient. If this blending ratio is too low (the ratio of the polyfunctional conjugated diene compound is too high) In addition, the polyfunctional conjugated diene compound may be excessive and increase the cost.
  • the reaction consumption rates of vinylene carbonate and polyfunctional conjugated diene compound in the nonaqueous electrolytic solution are each preferably 50% by mass or more, more preferably 70% by mass or more, and further more preferably 80% by mass or more. Preferably, 90 mass% or more is particularly preferable. As the reaction consumption rate is higher, a desired film excellent in stretchability and strength tends to be sufficiently formed on the electrode surface.
  • non-aqueous solvent those usually used as the solvent for the non-aqueous electrolyte can be used. Specific examples thereof include carbonates, chlorinated hydrocarbons, ethers, ketones, esters, and nitriles.
  • non-aqueous solvents having a high dielectric constant such as ethylene carbonate (EC), propylene carbonate (PC), ⁇ -butyrolactone (GBL), and those obtained by fluorine substitution thereof, diethyl carbonate (DEC),
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) A lithium salt such as 2 .
  • the supporting salt can be used alone or in combination of two or more.
  • the non-aqueous electrolyte is effective when a metal (a) that can be alloyed with lithium is used as a specific negative electrode, that is, a negative electrode active material, and in particular, occludes the metal (a) and lithium ions. It is more effective when the metal oxide (b) that can be released and the carbon material (c) that can occlude and release lithium ions are used.
  • the shape of the non-aqueous electrolyte secondary battery according to the present embodiment includes a cylindrical shape, a flat wound rectangular shape, a laminated rectangular shape, a coin shape, a flat wound laminated shape, and a laminated laminated shape. From the viewpoint described later, a laminated laminate type is preferable.
  • FIG. 1 is a schematic cross-sectional view showing an example of an electrode laminate of a laminated laminate type nonaqueous electrolyte secondary battery.
  • the exterior body is omitted.
  • the positive electrode 3 and the negative electrode 1 are alternately stacked via the separator 2.
  • the positive electrode current collector 5 of each positive electrode 3 is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode terminal 6 is welded to the welded portion.
  • a negative electrode current collector 4 included in each negative electrode 1 is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal 7 is welded to the welded portion.
  • This electrode laminate is housed in a container formed of a laminate film as an exterior body, and an electrolyte is injected and sealed.
  • a laminated battery (laminated laminated battery) having such a planar laminated structure has a smaller R portion (for example, a wound core with a wound structure) than a battery having a wound structure (winded battery). Therefore, there is an advantage that it is difficult to be adversely affected by the volume change of the electrode accompanying charging / discharging.
  • the electrode since the electrode is curved in the wound type battery, the structure is easily distorted when a volume change occurs in the electrode. This is particularly noticeable when a negative electrode active material having a large volume change accompanying charge / discharge, such as a silicon-based active material, is used.
  • a laminated laminate battery is suitable when an active material having a large volume change associated with charge / discharge is used.
  • planar laminated structure means that each laminated electrode is a sheet-like material, and each electrode is laminated while being planar (laminated with the outer peripheral edge of the sheet-like material being the peripheral edge). It is distinguished from the structure in which the electrode laminate is bent or the structure in which the electrode laminate is wound.
  • such a laminated laminate type battery has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because in the wound battery, the distance between the electrodes is difficult to increase because tension is applied to the electrodes, whereas in the laminated laminate battery, the distance between the electrodes is likely to increase. This problem is particularly noticeable when the outer package is an aluminum laminate film. Further, when the electrolytic solution contains a carbonate ester solvent or a carboxylic acid ester solvent, this problem becomes even more remarkable.
  • a long-life drive can be performed even in a laminated non-aqueous electrolyte secondary battery using a high energy negative electrode that easily generates gas.
  • the negative electrode in the present embodiment includes a current collector and an active material layer on the current collector, and the active material layer includes a binder and a negative electrode active material.
  • the binder binds between the active material particles and between the active material particles and the current collector.
  • the negative electrode active material in the present embodiment includes a metal (a) that can be alloyed with lithium, and further preferably includes a metal oxide (b) that can occlude and release lithium ions, and further occludes and releases lithium ions. It is more preferable that the carbon material (c) which can be obtained is included.
  • the metal (a) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these is used. it can.
  • silicon (Si) or a silicon-containing metal is preferable as the metal (a), and silicon is more preferable.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite oxide containing two or more of these can be used.
  • silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and does not easily react with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
  • the metal oxide (b) preferably has an amorphous structure in whole or in part.
  • the metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), which are other negative electrode active material components, and can suppress the decomposition of the nonaqueous electrolytic solution. Although this mechanism is not clear, it is presumed that the metal oxide (b) has an amorphous structure, so that it has some influence on the film formation at the interface between the carbon material (c) and the non-aqueous electrolyte.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal (a) is entirely or partially dispersed in the metal oxide (b).
  • the metal oxide (b) By dispersing at least a part of the metal (a) in the metal oxide (b), the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the non-aqueous electrolyte can also be suppressed.
  • all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (a) is observed, the oxygen concentration of the particles dispersed in the metal oxide (b) is measured, and the metal (a) constituting the particles is It can be confirmed that it is not an oxide.
  • the metal oxide (b) is preferably an oxide of a metal constituting the metal (a). More preferably, the metal (a) is simple silicon and the metal oxide (b) is silicon oxide.
  • the negative electrode active material containing metal (a) and metal oxide (b) can be obtained, for example, by sintering metal (a) and metal oxide (b) under high temperature and reduced pressure. Or it can obtain by mixing a metal (a) and a metal oxide (b) by mechanical milling.
  • the active material thus formed can be coated with carbon. For example, there are a method of mixing and baking this active material and an organic compound, and a method of introducing this active material into a gas atmosphere of an organic compound such as methane and performing thermal CVD.
  • the carbon material (c) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite containing two or more of these can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. Therefore, it is advantageous in designing a secondary battery with high output and high energy.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs. Therefore, it is advantageous in designing a secondary battery having a long life and high robustness.
  • the negative electrode active material that is a composite of the metal (a), the metal oxide (b), and the carbon material (c), all or part of the metal oxide (b) has an amorphous structure, and the metal (a) What disperse
  • a negative electrode active material can be produced, for example, by the method described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-47404).
  • the metal oxide (b) is disproportionated at 900 to 1400 ° C. in an atmosphere containing an organic compound gas such as methane gas and a thermal CVD process is performed. Thereby, the metal element in metal oxide (b) can be clustered as a metal (a), and the composite body by which the surface was coat
  • This composite can be used as a negative electrode active material.
  • the negative electrode active material containing the metal (a), the metal oxide (b), and the carbon material (c) can also be produced by mixing by mechanical milling.
  • the content of the metal (a) in the negative electrode active material is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more from the viewpoint of obtaining a sufficient addition effect (such as charge / discharge capacity). From the viewpoint of sufficiently obtaining the effect of adding other components, etc., it is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 80% by mass or less, and can also be 50% by mass or less.
  • the content of the metal oxide (b) in the negative electrode active material is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 40% by mass or more from the viewpoint of charge / discharge cycle characteristics and the like. , 50% by mass or more. 90 mass% or less is preferable from the point which fully obtains the addition effect of another component, etc., 80 mass% or less is more preferable, and 70 mass% or less is further more preferable.
  • the mass ratio (a / b) of the metal (a) and the metal oxide (b) in the negative electrode active material is not particularly limited. Can be set in the range of 5/95 to 90/10, can be set in the range of 10/90 to 80/20, and can be set in the range of 30/70 to 60/40. it can.
  • the content of the carbon material (c) in the negative electrode active material is preferably 1% by mass or more, more preferably 2% by mass or more from the viewpoint of obtaining a sufficient addition effect, and sufficient effects of addition of other components, etc. are obtained. From the point, 50 mass% or less is preferable and 30 mass% or less is more preferable.
  • the ratio of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited. Although not, it can be set according to the above range of the content.
  • the content ratio of the metal (a) is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, and 20% by mass with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). % Or more is more preferable, 90 mass% or less is preferable, 80 mass% or less is more preferable, and it can also be set to 50 mass% or less.
  • the content ratio of the metal oxide (b) is preferably, for example, 5% by mass or more, more preferably 15% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). It can also be set to 40% by mass or more, preferably 90% by mass or less, more preferably 80% by mass or less, and can also be set to 70% by mass or less.
  • the content ratio of the carbon material (c) is, for example, preferably 1% by mass or more, more preferably 2% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). 50 mass% or less is preferable and 30 mass% or less is more preferable.
  • the shape of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited, but may be particulate.
  • the specific surface area of the negative electrode active material is preferably 0.2 m 2 / g or more, more preferably 1.0 m 2 / g or more, still more preferably 2.0 m 2 / g or more, while 9.0 m 2 / g or less.
  • 8.0 m 2 / g or less is more preferable, and 7.0 m 2 / g or less is more preferable.
  • the specific surface area is obtained by an ordinary BET specific surface area measurement method.
  • the average particle diameter of the negative electrode active material is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.2 ⁇ m or more, and on the other hand, 30 ⁇ m or less is more preferable, and 20 ⁇ m or less is more preferable.
  • the average particle diameter is 50% cumulative diameter D 50 (median diameter), and is obtained by particle size distribution measurement by a laser diffraction scattering method.
  • binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used. Of these, polyimide or polyamideimide is preferred because of its high binding properties.
  • the content of the binder for the negative electrode in the negative electrode is preferably 5 to 25 parts by mass, and 7 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material, from the viewpoints of binding force and energy density that are in a trade-off relationship. Is more preferable.
  • the negative electrode current collector copper, nickel, and silver are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • the negative electrode active material layer can be formed by a general slurry coating method. Specifically, a negative electrode is prepared by preparing a slurry containing a negative electrode active material, a binder, and a solvent, applying the slurry onto a negative electrode current collector, drying, compressing and molding as necessary. can do.
  • the negative electrode slurry can be obtained by dispersing and kneading the negative electrode active material in a solvent such as N-methyl-2-pyrrolidone (NMP) together with the negative electrode binder.
  • NMP N-methyl-2-pyrrolidone
  • Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method.
  • a metal thin film may be formed by a method such as vapor deposition or sputtering, and this metal thin film may be used as a negative electrode current collector.
  • Positive electrode for example, a positive electrode having a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector can be used.
  • lithium manganate having a layered structure or spinel structure such as LiMnO 2 or Li x Mn 2 O 4 (0 ⁇ x ⁇ 2); a part of Mn of lithium manganate was replaced with another metal Lithium metal oxide; LiCoO 2 , LiNiO 2 , lithium metal oxide in which a part of these transition metals (Co, Ni) is replaced with another metal; LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc.
  • Lithium transition metal oxides whose specific transition metals do not exceed half of the total number of transition metals (atomic ratio); in these lithium transition metal oxides, lithium metal oxides containing Li in excess of the stoichiometric composition, etc. Can be mentioned.
  • ⁇ ⁇ 0.1 and ⁇ ⁇ 0.01 can be set.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder the same negative electrode binder as that used for normal negative electrodes can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • the positive electrode current collector for example, aluminum, nickel, silver, SUS, valve metal, or an alloy thereof can be used from the viewpoint of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • an aluminum foil can be preferably used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode is prepared by, for example, preparing a slurry containing a positive electrode active material, a binder, and a solvent (and optionally a conductive auxiliary material), applying the slurry onto the positive electrode current collector, and drying the slurry.
  • a slurry containing a positive electrode active material, a binder, and a solvent (and optionally a conductive auxiliary material)
  • applying the slurry onto the positive electrode current collector and drying the slurry.
  • separator As the separator, a polyolefin such as polypropylene or polyethylene, a porous film or a nonwoven fabric made of a fluororesin, or the like can be used. Moreover, what laminated
  • Electrode pair examples include a cylindrical wound structure, a flat wound structure, a zigzag folded structure, and a laminated laminate structure, and a laminated laminate structure is particularly preferable.
  • the electrodes and the separator are laminated in a planar shape, and there is no portion with a small R (a region close to the winding core of the wound structure or a region corresponding to the folded portion). Therefore, when an active material having a large volume change associated with charging / discharging is used, it is less likely to be adversely affected by the volume change of the electrode associated with charging / discharging than a battery having a wound structure.
  • Exterior Body As the exterior body, a laminate film that is stable in a non-aqueous electrolyte and has a sufficient water vapor barrier property can be used.
  • a laminate film such as polypropylene or polyethylene coated with aluminum or silica can be used.
  • aluminum laminate film it is preferable to use an aluminum laminate film from the viewpoints of versatility and cost.
  • the volume change of the battery or the distortion of the electrode due to gas generation compared to the non-aqueous electrolyte secondary battery that uses a metal can as the outer package. Is likely to occur. This is because the laminate film is more easily deformed by the internal pressure of the nonaqueous electrolyte secondary battery than the metal can. Furthermore, when sealing a non-aqueous electrolyte secondary battery using a laminate film as an outer package, the internal pressure of the battery is usually lower than atmospheric pressure and there is no extra space inside. When this occurs, it tends to immediately lead to battery volume changes and electrode deformation.
  • the nonaqueous electrolyte secondary battery according to the present embodiment can suppress the occurrence of such a problem. Thereby, a laminated laminate type non-aqueous electrolyte secondary battery having excellent long-term reliability can be provided.
  • an assembled battery in which a plurality of the secondary batteries (single cells) described above are electrically connected and packed with a tube or a case.
  • the cells in the assembled battery can be connected in series, in parallel, or both.
  • the capacity and voltage can be adjusted according to the number of cells and the connection method.
  • a plurality of the assembled batteries can be connected in series or in parallel.
  • the above-mentioned secondary battery or assembled battery can be used as a power source for driving a vehicle, and can provide a vehicle with a long life and high reliability.
  • the vehicle can be applied to a hybrid vehicle, an electric vehicle, an electric motorcycle, an electric assist bicycle, and the like. It is not limited to a four-wheel vehicle or a two-wheel vehicle, and a three-wheel vehicle is also included, and the number of wheels is not limited. Furthermore, it can be applied to various power sources for moving / transporting media such as trains.
  • Example 1 ⁇ Synthesis of polyfunctional conjugated diene> After 40.0 g of furfuryl alcohol and 0.2 mL of dilaurate dibutyltin were dissolved in 150 mL of dioxane, 24.2 g of lysine triisocyanate was added dropwise. After 6 hours of reaction at 60 ° C., the solvent was distilled off under reduced pressure, and the residue was dissolved in 200 mL of chloroform. After washing with 200 mL of water three times and drying with magnesium sulfate, the solvent was distilled off under reduced pressure. The resulting crude product was recrystallized from ethyl acetate to obtain a trifunctional furan compound (2) represented by the following formula (2).
  • Silicon oxide powder (mixture of silicon oxide and silicon) is subjected to CVD treatment at 1150 ° C. for 6 hours in an atmosphere containing methane gas, so that silicon in silicon oxide is nanoclustered and silicon is coated with carbon.
  • a silicon oxide-carbon composite (negative electrode active material) was obtained.
  • the mass ratio of silicon / silicon oxide / carbon was adjusted to be 29/61/10.
  • Name: U Varnish A was weighed and mixed with n-methylpyrrolidone to prepare a negative electrode slurry.
  • This negative electrode slurry was applied on the surface of a copper foil having a thickness of 10 ⁇ m so as to be 2.5 mg per 1 cm 2 and dried.
  • the negative electrode slurry was applied to the back surface of the copper foil and dried. Thereafter, heat treatment was performed at 350 ° C. in a nitrogen atmosphere, and cut into 26 mm ⁇ 65 mm to obtain a negative electrode.
  • a positive electrode slurry was prepared by weighing at a mass ratio of 5: 5 (active material: conductive auxiliary agent: binder) and mixing them with n-methylpyrrolidone.
  • This positive electrode slurry was applied to the surface of an aluminum foil having a thickness of 20 ⁇ m so as to have an amount of 20 mg per cm 2 , dried and pressed.
  • the positive electrode slurry was applied to the back surface of the aluminum foil, dried, and pressed. Then, it cut
  • the positive electrode terminal made of aluminum is welded to the end portion of the positive electrode current collector not covered with the positive electrode active material, the end portions of the negative electrode current collector not covered with the negative electrode active material are welded to each other, and the welded portion is nickel.
  • the manufactured negative electrode terminal was welded to obtain a planar electrode laminate.
  • the electrode laminate is wrapped with an aluminum laminate film as an outer package so that tabs (terminals) come out, and after injecting a nonaqueous electrolyte, it is sealed under reduced pressure to obtain a nonaqueous electrolyte secondary battery. It was.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 1 wt% of difurfuryl ether was dissolved in place of the trifunctional furan compound (2).
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that vinylene carbonate and the trifunctional furan compound (2) were not dissolved in the nonaqueous solvent.
  • Example 2 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 2 wt% of vinylene carbonate was dissolved in the non-aqueous solvent without dissolving the trifunctional furan compound (2).
  • Example 3 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that no heat treatment was performed after the initial charge.
  • Volume increase rate (%) 100 x (Volume after standing for 1 week-Initial volume) / Initial volume
  • Capacity retention rate (%) 100 ⁇ (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle)
  • Capacity maintenance rate exceeds 85%
  • B Capacity maintenance rate is over 80% and 85% or less
  • C Capacity maintenance rate is over 70% and 80% or less
  • D Capacity maintenance rate is 70% or less.
  • the nonaqueous electrolyte secondary batteries of Examples 1 to 3 in which both vinylene carbonate (Additive 1) and the polyfunctional conjugated diene compound (Additive 2) were added to the electrolytic solution were 60 ° C.
  • Excellent results (low volume increase rate and high capacity retention rate) were shown in the storage test and cycle test.
  • This is a film formed by decomposing vinylene carbonate by heating at 60 ° C. after the initial charge (Examples 1 and 2) or in an environment at 60 ° C. during storage or cycling (Example 3). This is because the double bond and the conjugated diene group of the polyfunctional conjugated diene compound were subjected to Diels-Alder reaction, and the coating was strengthened to have a three-dimensional crosslinked structure.
  • Comparative Example 2 in which vinylene carbonate was added to the electrolytic solution and no polyfunctional conjugated diene compound was added had a lower volume increase rate than Comparative Example 1 in which none was added, but this volume increase rate. Is larger than Examples 1 to 3. It turns out that decomposition
  • Example 3 showed the result (low volume increase rate and high capacity
  • vinylene carbonate and a polyfunctional conjugated diene compound are used in combination, since heating after the initial charge is not performed, a double bond derived from vinylene carbonate and a conjugated diene of the polyfunctional conjugated diene compound are used. This is because the electrolytic solution was decomposed before the three-dimensional crosslinked structure was sufficiently formed by the Diels-Alder reaction with the group.
  • a non-aqueous electrolyte secondary battery having high energy density and excellent long-term stability can be provided.
  • the present embodiment can be used in all industrial fields that require a power source and industrial fields related to the transport, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and laptop computers
  • power sources for electric vehicles such as electric cars, hybrid cars, electric motorcycles, electric assist bicycles, and trains
  • power sources for mobile and transport media such as satellites and submarines
  • a backup power source such as a UPS (uninterruptible power supply); a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
  • UPS uninterruptible power supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a non-aqueous electrolyte secondary cell having excellent cycle characteristics and storage stability. The non-aqueous electrolyte secondary cell comprises a positive electrode, a separator, a negative electrode disposed opposite the positive electrode with the separator interposed therebetween, a non-aqueous electrolyte, and a casing for housing the foregoing, wherein the negative electrode comprises a negative electrode active substance containing a metal (a) capable of forming an alloy with lithium, and a binder, and the non-aqueous electrolyte contains vinylene carbonate and a polyfunctional conjugated diene compound having two or more conjugated diene groups.

Description

非水電解液二次電池Non-aqueous electrolyte secondary battery
 本発明は、非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.
 リチウム二次電池は、エネルギー密度が高く、自己放電が小さく、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話などの電子機器用の電池としてすでに実用化されている。しかし、近年では電子機器の高機能化や電気自動車への利用が進み、よりエネルギー密度の高いリチウム二次電池の開発が求められている。そのため、黒鉛系負極材料を用いた二次電池では要求特性を満たすことができなくなっている。 Lithium secondary batteries have already been put into practical use as batteries for electronic devices such as laptop computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability. However, in recent years, electronic devices have been enhanced in functionality and used in electric vehicles, and development of lithium secondary batteries with higher energy density has been demanded. Therefore, the secondary battery using the graphite-based negative electrode material cannot satisfy the required characteristics.
 そこで、エネルギー密度を向上する観点から、負極材料として、シリコン(Si)、スズ(Sn)などのリチウムと合金可能な金属や、リチウムイオンを吸蔵、放出し得る酸化物が検討されている。 Therefore, from the viewpoint of improving energy density, metals capable of being alloyed with lithium, such as silicon (Si) and tin (Sn), and oxides capable of inserting and extracting lithium ions have been studied as negative electrode materials.
 特許文献1には、リチウムイオンを吸蔵、放出し得る炭素材料粒子、リチウムと合金可能な金属粒子、リチウムイオンを吸蔵、放出し得る酸化物粒子を含む活物質層を備えた二次電池用負極が記載されている。 Patent Document 1 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is described.
 特許文献2には、非水電解質二次電池において、ケイ素の酸化物(特にケイ酸塩)を利用することが記載されている。 Patent Document 2 describes that a silicon oxide (particularly silicate) is used in a non-aqueous electrolyte secondary battery.
 特許文献3には、ケイ素の微結晶がケイ素系化合物に分散した構造を有する粒子の表面を炭素でコーティングした二次電池用負極材料が記載されている。 Patent Document 3 describes a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
 また、充放電サイクル特性等を向上する観点から、負極あるいは負極活物質粒子を重合性化合物を用いて被覆する技術が検討されている。 Also, from the viewpoint of improving charge / discharge cycle characteristics and the like, a technique for coating the negative electrode or the negative electrode active material particles with a polymerizable compound has been studied.
 特許文献4には、ケイ素及び/またはケイ素合金を含む活物質粒子とバインダーとを含む活物質層を導電性金属箔からなる集電体上に配置した後、非酸化性雰囲気下で焼結して得られるリチウム二次電池用負極が記載されている。そして、この負極を用いた二次電池において、非水電解質の溶媒成分としてビニレンカーボネートを添加することで、活物質粒子の表面に、リチウムイオン伝導性の高い被膜が形成されることが記載されている。 In Patent Document 4, an active material layer containing active material particles containing silicon and / or a silicon alloy and a binder is disposed on a current collector made of a conductive metal foil, and then sintered in a non-oxidizing atmosphere. The negative electrode for lithium secondary batteries obtained is described. And in the secondary battery using this negative electrode, it is described that a film having high lithium ion conductivity is formed on the surface of the active material particles by adding vinylene carbonate as a solvent component of the nonaqueous electrolyte. Yes.
特許3982230号公報Japanese Patent No. 3982230 特許2997741号公報Japanese Patent No. 2,997,741 特許3952180号公報Japanese Patent No. 3952180 特許4033720号公報Japanese Patent No. 4033720
 リチウムと合金可能な金属を含む負極活物質を用いた二次電池は、充放電サイクルに伴う容量低下が著しく、また保存安定性に劣るという問題があった。リチウムイオンの挿入脱離による負極活物質の体積変化によりヒビ割れ(微細化)が発生し、集電体からの剥離や、その体積変化により新たに現れる活性表面での電解液分解によるガス発生、Liイオン伝導性の低下が起きる。 A secondary battery using a negative electrode active material containing a metal that can be alloyed with lithium has a problem in that the capacity is significantly reduced due to a charge / discharge cycle, and the storage stability is inferior. Cracking (miniaturization) occurs due to the volume change of the negative electrode active material due to insertion and removal of lithium ions, gas generation due to separation from the current collector and decomposition of the electrolyte on the active surface that appears newly due to the volume change, A decrease in Li ion conductivity occurs.
 本発明の目的は、サイクル特性および保存安定性に優れた非水電解液二次電池を提供することにある。 An object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in cycle characteristics and storage stability.
 本発明の一態様によれば、正極と、セパレータと、該セパレータを介して該正極と対向配置された負極と、非水電解液と、これらを内包する外装体とを含む、非水電解液二次電池であって、
 前記負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤とを含み、
 前記非水電解液は、ビニレンカーボネートと、共役ジエン基を2つ以上有する多官能共役ジエン化合物とを含有する、非水電解液二次電池が提供される。
According to one embodiment of the present invention, a non-aqueous electrolyte solution including a positive electrode, a separator, a negative electrode disposed to face the positive electrode with the separator interposed therebetween, a non-aqueous electrolyte solution, and an exterior body that includes them. A secondary battery,
The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
The non-aqueous electrolyte solution includes a non-aqueous electrolyte secondary battery containing vinylene carbonate and a polyfunctional conjugated diene compound having two or more conjugated diene groups.
 本発明の他の態様によれば、正極と、セパレータと、該セパレータを介して該正極と対向配置された負極と、非水電解液と、これらを内包する外装体とを含む、非水電解液二次電池であって、
 前記負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤とを含み、
 前記負極表面に、ビニレンカーボネート及び共役ジエン基を2つ以上有する多官能共役ジエン化合物に由来の被膜が形成されている、非水電解液二次電池が提供される。
According to another aspect of the present invention, a non-aqueous electrolysis comprising a positive electrode, a separator, a negative electrode disposed opposite to the positive electrode via the separator, a non-aqueous electrolyte, and an exterior body that contains them. A liquid secondary battery,
The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
Provided is a non-aqueous electrolyte secondary battery in which a coating derived from a polyfunctional conjugated diene compound having two or more vinylene carbonates and conjugated diene groups is formed on the negative electrode surface.
 本発明の他の態様によれば、正極と、セパレータと、該セパレータを介して該正極と対向配置された負極を含む電極積層体を形成する工程と、
 前記電極積層体を外装体で包む工程と、
 非水電解液を注入する工程とを有し、
 前記負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤とを含み、
 前記非水電解液は、ビニレンカーボネートおよび多官能共役ジエン化合物を含有することを特徴とする、非水電解液二次電池の製造方法が提供される。
According to another aspect of the present invention, a step of forming an electrode laminate including a positive electrode, a separator, and a negative electrode disposed to face the positive electrode through the separator;
Wrapping the electrode laminate with an outer package;
A step of injecting a non-aqueous electrolyte,
The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
The non-aqueous electrolyte contains vinylene carbonate and a polyfunctional conjugated diene compound, and a method for producing a non-aqueous electrolyte secondary battery is provided.
 本発明の実施形態によれば、サイクル特性および保存安定性に優れた非水電解液二次電池を提供できる。 According to the embodiment of the present invention, a non-aqueous electrolyte secondary battery excellent in cycle characteristics and storage stability can be provided.
本発明の実施形態による積層ラミネート型の二次電池の構造を説明するための模式的断面図である。1 is a schematic cross-sectional view for explaining the structure of a laminated laminate type secondary battery according to an embodiment of the present invention.
 以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の実施形態による二次電池は、正極、セパレータ及びこのセパレータを介して正極と対向配置された負極と、非水電解液と、これらを内包する外装体とを含む。この負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤を含み、この負極活物質としては、金属(a)として例えばシリコンを含む活物質を用いることができる。この外装体としては、例えばラミネートフィルムを用いることができる。この外装体からなる一つの容器内において、正極と負極の電極対を一つ又は二つ以上を含むことができ、これらの電極が複数積層配置された積層型構造を有することができる。 A secondary battery according to an embodiment of the present invention includes a positive electrode, a separator, a negative electrode disposed to face the positive electrode with the separator interposed therebetween, a non-aqueous electrolyte, and an exterior body that contains them. This negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium and a binder. As the negative electrode active material, for example, an active material containing silicon as the metal (a) can be used. For example, a laminate film can be used as the exterior body. One container including the outer package can include one or two or more pairs of positive and negative electrodes, and can have a stacked structure in which a plurality of these electrodes are stacked.
 本実施形態による二次電池において、非水電解液は、ビニレンカーボネートと、共役ジエン基を2つ以上有する化合物(以下、適宜「多官能共役ジエン化合物」という)を含有する。多官能共役ジエン化合物は、ビニレンカーボネートの分解により形成した被膜と反応し、被膜を強化することができる。これにより、サイクル特性および保存安定性を向上することができる。 In the secondary battery according to the present embodiment, the nonaqueous electrolytic solution contains vinylene carbonate and a compound having two or more conjugated diene groups (hereinafter, appropriately referred to as “polyfunctional conjugated diene compound”). The polyfunctional conjugated diene compound can react with a film formed by the decomposition of vinylene carbonate to reinforce the film. Thereby, cycle characteristics and storage stability can be improved.
 このような非水電解液としては、ビニレンカーボネート、多官能共役ジエン化合物、非水系溶媒を含む混合溶液に、支持塩を溶解したものを用いることができる。 As such a non-aqueous electrolyte, a solution in which a supporting salt is dissolved in a mixed solution containing vinylene carbonate, a polyfunctional conjugated diene compound, and a non-aqueous solvent can be used.
 この非水電解液を用いた二次電池では、卑な電位にて負極表面でビニレンカーボネートの分解反応が起こり、負極表面にビニレンカーボネート分解物の膜が形成される。この膜には、ビニレンカーボネート由来の二重結合が残存し、この二重結合は共役ジエン基とDiels-Alder反応することができる。従って、多官能共役ジエン化合物をビニレンカーボネートと併用することによって、ビニレンカーボネート由来の二重結合と共役ジエン基のDiels-Alder反応が起こり、分解物の膜は架橋構造を形成するため、ビニレンカーボネート単独から形成される膜よりも強固な膜となり、リチウム合金負極表面の活性種と電解液の反応を抑制することができる。さらに、この膜は三次元架橋体であるため、伸縮性、強度に優れる。従って、リチウム合金負極の体積変化に追従可能となり、負極活物質の微細化を防ぐことができる。膜の厚さはビニレンカーボネートおよび多官能共役ジエン化合物の添加量で制御できるため、リチウムイオン伝導性の高い非常に薄い膜を形成可能である。ビニレンカーボネートのみを含む非水電解液や、ビニレンカーボネートおよび多官能共役ジエン化合物の両方を含まない非水電解液では、負極表面での非水系溶媒の分解反応により被膜は形成されるものの、得られた被膜はビニレンカーボネート分解物、炭酸リチウムやアルキルリチウムなどの無機化合物、低分子有機化合物などであるため脆く、リチウム合金負極の体積変化に追従することが困難である。さらに、リチウムイオンの挿入脱離に伴う活物質の微細化により新たな活性種が出現するため、電解液の反応を十分に抑制することができない。従って、ビニレンカーボネートのみを含む非水電解液や、ビニレンカーボネートおよび多官能共役ジエン化合物の両方を含まない非水電解液を用いた二次電池では、サイクル試験回数が増えるにつれ、負極表面の被膜は厚くなりすぎて抵抗上昇が生じる。 In the secondary battery using this non-aqueous electrolyte, vinylene carbonate decomposition reaction occurs on the negative electrode surface at a base potential, and a vinylene carbonate decomposition product film is formed on the negative electrode surface. In this film, a double bond derived from vinylene carbonate remains, and this double bond can undergo Diels-Alder reaction with a conjugated diene group. Therefore, when a polyfunctional conjugated diene compound is used in combination with vinylene carbonate, a double bond derived from vinylene carbonate and a Diels-Alder reaction of the conjugated diene group occur, and the decomposition product film forms a crosslinked structure. Thus, the film is stronger than the film formed from the above, and the reaction between the active species on the surface of the lithium alloy negative electrode and the electrolytic solution can be suppressed. Furthermore, since this film is a three-dimensional crosslinked body, it is excellent in stretchability and strength. Accordingly, it is possible to follow the volume change of the lithium alloy negative electrode, and it is possible to prevent the negative electrode active material from being miniaturized. Since the thickness of the film can be controlled by the amount of vinylene carbonate and polyfunctional conjugated diene compound added, it is possible to form a very thin film having high lithium ion conductivity. With a non-aqueous electrolyte containing only vinylene carbonate or a non-aqueous electrolyte containing neither vinylene carbonate nor a polyfunctional conjugated diene compound, a coating is formed by the decomposition reaction of the non-aqueous solvent on the negative electrode surface. The coated film is brittle because it is a decomposition product of vinylene carbonate, an inorganic compound such as lithium carbonate or alkyl lithium, or a low molecular organic compound, and it is difficult to follow the volume change of the lithium alloy negative electrode. Furthermore, new active species appear due to the refinement of the active material that accompanies the insertion / extraction of lithium ions, and thus the reaction of the electrolytic solution cannot be sufficiently suppressed. Therefore, in a secondary battery using a non-aqueous electrolyte containing only vinylene carbonate or a non-aqueous electrolyte containing neither vinylene carbonate nor a polyfunctional conjugated diene compound, the coating on the negative electrode surface increases as the number of cycle tests increases. It becomes too thick and resistance increases.
 ビニレンカーボネート被膜と多官能共役ジエン化合物とのDiels-Alder反応は加熱下あるいは高温環境下で起こすことができる。その際の温度は、30℃以上が好ましく、50℃以上がより好ましい。また、この温度は、電解液の分解や電極の劣化を抑制するため、80℃以下が好ましく、70℃以下がさらに好ましい。卑な電位にて負極表面でビニレンカーボネートの分解反応を起こした後に、加熱を行って多官能共役ジエン基のDiels-Alder反応を起こすことができる。または、電位をかけながら加熱、つまり、ビニレンカーボネートの分解反応と多官能共役ジエン化合物の共役ジエン基のDiels-Alder反応を同時に進行させることもできる。加熱を行って共役ジエン基のDiels-Alder反応を起こし、予め十分な架橋構造を形成することが好ましいが、高温環境下で電池を使用する場合は、予め加熱を行わなくても環境下の温度で多官能共役ジエン基のDiels-Alder反応を起こし、架橋構造を形成することができる。 The Diels-Alder reaction between the vinylene carbonate coating and the polyfunctional conjugated diene compound can occur under heating or in a high temperature environment. The temperature at that time is preferably 30 ° C. or higher, and more preferably 50 ° C. or higher. Further, this temperature is preferably 80 ° C. or less, and more preferably 70 ° C. or less, in order to suppress decomposition of the electrolytic solution and electrode deterioration. After causing the decomposition reaction of vinylene carbonate on the negative electrode surface at a base potential, heating can be performed to cause Diels-Alder reaction of polyfunctional conjugated diene groups. Alternatively, heating while applying an electric potential, that is, the decomposition reaction of vinylene carbonate and the Diels-Alder reaction of the conjugated diene group of the polyfunctional conjugated diene compound can proceed simultaneously. It is preferable that the Diels-Alder reaction of the conjugated diene group is caused by heating to form a sufficient crosslinked structure in advance. However, when a battery is used in a high temperature environment, the temperature under the environment is not required even if heating is not performed in advance. In this way, a Diels-Alder reaction of a polyfunctional conjugated diene group can be caused to form a crosslinked structure.
 多官能共役ジエン化合物は、式(1A)、(1B)または(1C)で示される構造を有することが好ましい。式中のD、D、D及びDはそれぞれ独立に共役ジエン基を示し、X1は共役ジエン基が結合する連結基を示す。 The polyfunctional conjugated diene compound preferably has a structure represented by the formula (1A), (1B) or (1C). In the formula, D 1 , D 2 , D 3 and D 4 each independently represent a conjugated diene group, and X 1 represents a linking group to which the conjugated diene group is bonded.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 共役ジエン基としては、特に限定されず、鎖状共役ジエン基および環状共役ジエン基を用いることができるが、熱等に対する安定性が優れるため、環状共役ジエン基が好ましい。共役ジエン基としては、例えば、フラン環基、チオフェン環基、ピロール環基、シクロペンタジエン環基、1,3-ブタジエニル基、チオフェン-1-オキサイド環基、チオフェン-1,1-ジオキサイド環基、シクロペンタ-2,4-ジエノン環基、2Hピラン環基、シクロヘキサ-1,3-ジエン環基、2Hピラン1-オキサイド環基、1,2-ジヒドロピリジン環基、2Hチオピラン-1,1-ジオキサイド環基、シクロヘキサ-2,4-ジエノン環基、ピラン-2-オン環基、およびこれらの置換体などの基が挙げられる。これらの中でも環状共役ジエン構造を有する基が好ましく、複素環式の環状共役ジエン構造を有する基がより好ましい。このような共役ジエン基としては、例えばフラン環基を好適に用いることができ、このような共役ジエン基をもつ化合物としては、例えば多官能フラン化合物を好適に用いることができる。共役ジエン基の組み合わせは同じであっても異なっていても良いが、全て同じ共役ジエン基を有する多官能共役ジエン化合物はDiels-Alder反応が均一に進みやすく、より均質な被膜を形成できるため好ましい。 The conjugated diene group is not particularly limited, and a chain conjugated diene group and a cyclic conjugated diene group can be used, but a cyclic conjugated diene group is preferable because of excellent stability against heat and the like. Examples of the conjugated diene group include a furan ring group, a thiophene ring group, a pyrrole ring group, a cyclopentadiene ring group, a 1,3-butadienyl group, a thiophene-1-oxide ring group, and a thiophene-1,1-dioxide ring group. , Cyclopenta-2,4-dienone ring group, 2H pyran ring group, cyclohexa-1,3-diene ring group, 2H pyran 1-oxide ring group, 1,2-dihydropyridine ring group, 2H thiopyran-1,1-di Examples thereof include an oxide ring group, a cyclohexa-2,4-dienone ring group, a pyran-2-one ring group, and substituents thereof. Among these, a group having a cyclic conjugated diene structure is preferable, and a group having a heterocyclic cyclic conjugated diene structure is more preferable. As such a conjugated diene group, for example, a furan ring group can be preferably used, and as a compound having such a conjugated diene group, for example, a polyfunctional furan compound can be preferably used. The combination of conjugated diene groups may be the same or different, but polyfunctional conjugated diene compounds having the same conjugated diene group are preferable because the Diels-Alder reaction easily proceeds uniformly and a more uniform film can be formed. .
 共役ジエン基を連結する連結基X1は、非環状アルキル基やシクロアルキル等の飽和炭化水素(例えば炭素数1~12)の多価基;エチレンオキシド単位やメチレンオキシド単位などのアルキレンオキシド単位を含むポリエーテル鎖を含む多価基;フルオロアルキル基等のフッ素化鎖式飽和炭化水素の多価基;アミド結合を含む多価基;芳香族環から誘導される多価基;カーボネート基を含む多価基;エステル基を含む多価基;シロキサン鎖を含む多価基などが挙げられる。 The linking group X1 linking the conjugated diene group is a polyvalent group of a saturated hydrocarbon (for example, having 1 to 12 carbon atoms) such as an acyclic alkyl group or cycloalkyl; a polyvalent group including an alkylene oxide unit such as an ethylene oxide unit or a methylene oxide unit. Polyvalent group containing an ether chain; Multivalent group of fluorinated chain saturated hydrocarbon such as a fluoroalkyl group; Multivalent group containing an amide bond; Multivalent group derived from an aromatic ring; Multivalent group containing a carbonate group Group; an ester group-containing polyvalent group; a siloxane chain-containing polyvalent group.
 ポリエーテル鎖を含む多官能共役ジエン化合物は、リチウムイオン伝導性が高まるため好ましい。エーテル結合やアミド結合を持つ多官能共役ジエン化合物は、リチウムイオンとの配位によりリチウムイオン伝導性が高まるため好ましい。アルキレン基等の飽和炭化水素構造や、芳香族環、フルオロアルキレン基等のフッ素化炭化水素構造を含む多官能共役ジエン化合物は、負極表面に形成される被膜に疎水性が付与され、負極表面と電解液との反応を抑制する効果が上がるため好ましい。カーボネート基、エステル基を含む多官能共役ジエン化合物は、電解液との相溶性が向上するため好ましい。エーテル結合やアルキル鎖、シロキサン鎖を含む多官能共役ジエン化合物は、伸縮性の高い被膜が形成されるため好ましい。 A polyfunctional conjugated diene compound containing a polyether chain is preferable because lithium ion conductivity is increased. A polyfunctional conjugated diene compound having an ether bond or an amide bond is preferable because lithium ion conductivity is increased by coordination with lithium ions. The polyfunctional conjugated diene compound containing a saturated hydrocarbon structure such as an alkylene group or a fluorinated hydrocarbon structure such as an aromatic ring or a fluoroalkylene group is provided with hydrophobicity on the coating film formed on the negative electrode surface. This is preferable because the effect of suppressing the reaction with the electrolytic solution is improved. A polyfunctional conjugated diene compound containing a carbonate group or an ester group is preferable because compatibility with the electrolytic solution is improved. A polyfunctional conjugated diene compound containing an ether bond, an alkyl chain, or a siloxane chain is preferable because a highly stretchable film is formed.
 多官能共役ジエン化合物は、ジフルフリルエーテル、ジフルフリルスルフィド、ジフルフリルスルホン、アセトアルデヒドジフルフリルメルカプタール、ジフルフリルペルスルフィド、1,2-ビス(2-フリル)エタン-1,2-ジオン、2,2’-[(E)-1,2-エテンジイル]ビスフラン、2-ヒドロキシ-1,2-ビス(2-フラニル)エタン-1-オン、シクロオクタ[1,2-c:5,6-c’]ジフラン、ベンゾ[1,2-b:5,4-b’]ジフラン、1,7-ジオキサ-s-インダセン、ジメチルジフルフリロキシシラン、エチルメチルジフルフリロキシシラン、ジエチルジフルフリロキシシランなどのジフラン類;ジメチルジフルフリルチオシラン、エチルメチルジフルフリルチオシラン、ジエチルジフルフルチオシランなどのジチオシラン類;2,5-ビス[(2-フラニル)メチル]フラン、メチルトリフルフリロキシシラン、メチルトリ(3-フリルメトキシ)シラン、メチルトリ(2-フリルエトキシ)シラン、メチルトリ(3-フリルエトキシ)シラン、エチルトリフルフリロキシシラン、エチルトリ(3-フリルメトキシ)シラン、エチルトリ(2-フリルエトキシ)シラン、エチルトリ(3-フリルエトキシ)シランなどのトリフラン類;テトラフルフリロキシシラン、テトラ(3-フリルメトキシ)シラン、テトラ(2-フリルエトキシ)シラン、テトラ(3-フリルエトキシ)などのテトラシラン類;テトラフルフリルチオシラン、テトラ(3-フリルメチルチオ)シラン、テトラ(2-フリルエチルチオ)シラン、テトラ(3-フリルエチルチオ)シランなどのテトラチオシラン類;1,1’-ビス(2,4-シクロペンタジエン)、フルバレン、1,4‐ビス(2,4-シクロペンタジエン-1-イリデン)シクロヘキサン、2,5‐ビス(2,4-シクロペンタジエン-1-イリデン)ヘキサン、1-(2,5-ヘキサジエニル)-1,3-シクロペンタジエンなどのシクロジエン類などが挙げられる。 Polyfunctional conjugated diene compounds include difurfuryl ether, difurfuryl sulfide, difurfuryl sulfone, acetaldehyde difurfuryl mercaptal, difurfuryl persulfide, 1,2-bis (2-furyl) ethane-1,2-dione, 2 , 2 '-[(E) -1,2-ethenediyl] bisfuran, 2-hydroxy-1,2-bis (2-furanyl) ethane-1-one, cycloocta [1,2-c: 5,6-c '] Difuran, benzo [1,2-b: 5,4-b'] difuran, 1,7-dioxa-s-indacene, dimethyldiflufuryloxysilane, ethylmethyldiflufuroxysilane, diethyldiflufuroxysilane, etc. Difurans: Dimethyldifurfurylthiosilane, Ethylmethyldifurfurylthiosilane, Diethyldifurfurti Dithiosilanes such as silane; 2,5-bis [(2-furanyl) methyl] furan, methyltrifurfuryloxysilane, methyltri (3-furylmethoxy) silane, methyltri (2-furylethoxy) silane, methyltri (3-furyl) Trifurans such as ethoxy) silane, ethyltrifurfuryloxysilane, ethyltri (3-furylmethoxy) silane, ethyltri (2-furylethoxy) silane, ethyltri (3-furylethoxy) silane; tetrafurfuryloxysilane, tetra (3- Tetrasilanes such as furylmethoxy) silane, tetra (2-furylethoxy) silane, tetra (3-furylethoxy); tetrafurfurylthiosilane, tetra (3-furylmethylthio) silane, tetra (2-furylethylthio) silane, Tetra (3-F Tetrathiosilanes such as (ruethylthio) silane; 1,1′-bis (2,4-cyclopentadiene), fulvalene, 1,4-bis (2,4-cyclopentadiene-1-ylidene) cyclohexane, 2,5- And cyclodienes such as bis (2,4-cyclopentadiene-1-ylidene) hexane and 1- (2,5-hexadienyl) -1,3-cyclopentadiene.
 多官能共役ジエン化合物は、Diels-Alder反応のしやすさから、共役ジエン部に電子供与性の官能基を有するものが好ましい。 The polyfunctional conjugated diene compound is preferably a compound having an electron donating functional group in the conjugated diene part because of the ease of Diels-Alder reaction.
 多官能共役ジエン化合物は、既知の合成方法によって得ることができる。例えば、共役ジエン基を含む塩化物と2つ以上の水酸基を有するポリオールとの反応により、多官能共役ジエン化合物を得ることができる。2つ以上の水酸基を有するポリオールとして、例えば、エチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオールなどの2価アルコール;グリセリン、トリメチロールプロパン、トリメチロールエタン、ヘキサントリオール、ひまし油などの3価アルコール;ペンタエリスリトール、メチルグリコシド、ジグリセリンなどの4価アルコール;トリグリセリン、テトラグリセリンなどのポリグリセリン;ジペンタエリスリトール、トリペンタエリスリトールなどのポリペンタエリスリトール;テトラキス(ヒドロキシメチル)シクロヘキサノールなどのシクロアルカンポリオール;ポリビニルアルコールが挙げられる。また、アドニトール、アラビトール、キシリトール、ソルビトール、マンニトール、イジトール、タリトール、ズルシトールなどの糖アルコール;グルコース、マンノースグルコース、マンノース、フラクトース、ソルボース、スクロース、ラクトース、ラフィノース、セルロースなどの糖類が挙げられる。さらに多価フェノールが挙げられ、多価フェノールとしては、ピロガロール、ハイドロキノン、フロログルシンなどの単環多価フェノール;ビスフェノールA、ビスフェノールスルフォンなどのビスフェノール類;フェノールとホルムアルデヒドの縮合物(ノボラック)などが挙げられる。 The polyfunctional conjugated diene compound can be obtained by a known synthesis method. For example, a polyfunctional conjugated diene compound can be obtained by a reaction between a chloride containing a conjugated diene group and a polyol having two or more hydroxyl groups. Examples of polyols having two or more hydroxyl groups include dihydric alcohols such as ethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, and 1,6-hexanediol; glycerin, Trihydric alcohols such as trimethylolpropane, trimethylolethane, hexanetriol, castor oil; tetrahydric alcohols such as pentaerythritol, methylglycoside, diglycerin; polyglycerins such as triglycerin, tetraglycerin; dipentaerythritol, tripentaerythritol, etc. Polypentaerythritol; cycloalkane polyols such as tetrakis (hydroxymethyl) cyclohexanol; and polyvinyl alcohol. In addition, sugar alcohols such as adonitol, arabitol, xylitol, sorbitol, mannitol, iditol, tallitol, dulcitol; and sugars such as glucose, mannose glucose, mannose, fructose, sorbose, sucrose, lactose, raffinose, and cellulose. Furthermore, polyhydric phenols are mentioned. Examples of polyhydric phenols include monocyclic polyhydric phenols such as pyrogallol, hydroquinone, and phloroglucin; bisphenols such as bisphenol A and bisphenol sulfone; and phenol and formaldehyde condensates (novolac). .
 また、例えば、フルフリルアルコールや2,4-シクロペンタジエン-1-オールなどジエン基を含むアルコールと多官能イソシアネートとの反応により、多官能共役ジエン化合物を得ることができる。多官能イソシアネートは、少なくとも2つのイソシアネート基を有するものである。具体的には、カルボジイミド変性MDI、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、トリレンジイソシアネート、ナフチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等を挙げることができる。 Also, for example, a polyfunctional conjugated diene compound can be obtained by reacting an alcohol containing a diene group such as furfuryl alcohol or 2,4-cyclopentadien-1-ol with a polyfunctional isocyanate. The polyfunctional isocyanate has at least two isocyanate groups. Specific examples include carbodiimide-modified MDI, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, tolylene diisocyanate, naphthylene diisocyanate, lysine diisocyanate, and lysine triisocyanate.
 また、例えば、ジエン基を含むアルコールとポリカルボン酸とのエステル化反応により、多官能共役ジエン化合物を得ることができる。ポリカルボン酸は、少なくとも2つのカルボン酸基を有するものであり、例えば、シュウ酸、マロン酸、コハク酸、α-メチルコハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、二量化リノール酸等の飽和脂肪族ジカルボン酸;マレイン酸、メサコン酸(メチルフマル酸)、シトラコン酸(メチルマレイン酸)、イタコン酸(メチレンコハク酸)等の不飽和脂肪族ジカルボン酸;ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、テトラヒドロフタル酸、テトラヒドロイソフタル酸、テトラヒドロテレフタル酸、4-メチルテトラヒドロフタル酸、4-メチルヘキサヒドロフタル酸、ナジック酸(ビシクロ〔2.2.1〕ヘプテ-5-エン-2,3-ジカルボン酸)、メチルナジック酸等の環状脂肪族ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸を挙げることができる。 Also, for example, a polyfunctional conjugated diene compound can be obtained by an esterification reaction between an alcohol containing a diene group and a polycarboxylic acid. Polycarboxylic acids are those having at least two carboxylic acid groups, such as oxalic acid, malonic acid, succinic acid, α-methylsuccinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, dimerization Saturated aliphatic dicarboxylic acids such as linoleic acid; unsaturated aliphatic dicarboxylic acids such as maleic acid, mesaconic acid (methyl fumaric acid), citraconic acid (methyl maleic acid), itaconic acid (methylene succinic acid); hexahydrophthalic acid, hexa Hydroisophthalic acid, hexahydroterephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid, tetrahydroterephthalic acid, 4-methyltetrahydrophthalic acid, 4-methylhexahydrophthalic acid, nadic acid (bicyclo [2.2.1] hepte-5 -Ene-2,3-dicarboxylic acid), methyl nadi Cycloaliphatic dicarboxylic acids such as acid; phthalic acid, isophthalic acid, and aromatic dicarboxylic acids such as terephthalic acid.
 このような多官能共役ジエン化合物とビニレンカーボネートを併用することで、負極表面上に、電解重合反応により3次元架橋体の被膜が形成でき、この被膜は伸縮性や強度に優れる。 </ RTI> By using such a polyfunctional conjugated diene compound and vinylene carbonate in combination, a three-dimensional crosslinked film can be formed on the negative electrode surface by an electropolymerization reaction, and this film is excellent in stretchability and strength.
 非水電解液におけるビニレンカーボネートおよび多官能共役ジエン化合物の含有量は、多いほど、電極表面に十分に厚い被膜を形成でき、負極表面での非水系電解液の分解反応を抑制することができる。これは、ガス発生抑制効果で検証される。一方、その含有量が少ないほど、電極表面に形成される被膜が薄くなるため抵抗上昇を抑えることができ、出力特性の向上や低コスト化が可能となる。上記の観点から、非水電解液におけるビニレンカーボネートおよび多官能共役ジエン化合物の含有率は、それぞれ0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましい。ビニレンカーボネートおよび多官能共役ジエン化合物をあわせた含有率は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。 As the content of vinylene carbonate and polyfunctional conjugated diene compound in the non-aqueous electrolyte increases, a sufficiently thick film can be formed on the electrode surface, and the decomposition reaction of the non-aqueous electrolyte on the negative electrode surface can be suppressed. This is verified by the gas generation suppression effect. On the other hand, the lower the content, the thinner the film formed on the electrode surface, so that the resistance rise can be suppressed, and the output characteristics can be improved and the cost can be reduced. From the above viewpoint, the content of vinylene carbonate and the polyfunctional conjugated diene compound in the non-aqueous electrolyte is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and more preferably 0.5% by mass or more. More preferably, 5 mass% or less is preferable, 3 mass% or less is more preferable, and 1 mass% or less is more preferable. The total content of vinylene carbonate and polyfunctional conjugated diene compound is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and preferably 10% by mass or less. More preferably, it is more preferably 3% by weight or less.
 ビニレンカーボネートと多官能共役ジエンの配合比率(質量比)は、例えば10/1~1/10の範囲内に設定でき、さらに5/1~1/5の範囲内に設定できる。この配合比率が高すぎる(多官能共役ジエン化合物の比率が低すぎる)と、架橋が不十分になる虞があり、この配合比率が低すぎると(多官能共役ジエン化合物の比率が高すぎる)と、多官能共役ジエン化合物が過剰になりコスト増を招く虞がある。 The blending ratio (mass ratio) of vinylene carbonate and polyfunctional conjugated diene can be set, for example, within a range of 10/1 to 1/10, and further within a range of 5/1 to 1/5. If this blending ratio is too high (the ratio of the polyfunctional conjugated diene compound is too low), crosslinking may be insufficient. If this blending ratio is too low (the ratio of the polyfunctional conjugated diene compound is too high) In addition, the polyfunctional conjugated diene compound may be excessive and increase the cost.
 被膜形成における、非水電解液中のビニレンカーボネート及び多官能共役ジエン化合物の反応消費率は、それぞれ、50質量%以上であることが好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。この反応消費率が高いほど、伸縮性や強度に優れた所望の被膜が電極表面に十分に形成される傾向にある。 In the film formation, the reaction consumption rates of vinylene carbonate and polyfunctional conjugated diene compound in the nonaqueous electrolytic solution are each preferably 50% by mass or more, more preferably 70% by mass or more, and further more preferably 80% by mass or more. Preferably, 90 mass% or more is particularly preferable. As the reaction consumption rate is higher, a desired film excellent in stretchability and strength tends to be sufficiently formed on the electrode surface.
 非水系溶媒は、非水電解液の溶媒として通常使用されるものを用いることができる。その具体例としては、カーボネート類、塩素化炭化水素、エーテル類、ケトン類、エステル類、ニトリル類等が挙げられる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)、およびそれらをフッ素置換したもの等の高誘電率の非水系溶媒から選ばれる少なくとも一種と、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン以外のエステル類、エーテル類、およびそれらをフッ素置換したもの等の低誘電率の非水系溶媒から選ばれる少なくとも一種とを混合して用いることができる。 As the non-aqueous solvent, those usually used as the solvent for the non-aqueous electrolyte can be used. Specific examples thereof include carbonates, chlorinated hydrocarbons, ethers, ketones, esters, and nitriles. For example, at least one selected from non-aqueous solvents having a high dielectric constant such as ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), and those obtained by fluorine substitution thereof, diethyl carbonate (DEC), Mixing at least one selected from non-aqueous solvents having a low dielectric constant such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), esters other than γ-butyrolactone, ethers, and those obtained by fluorine substitution thereof Can be used.
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。 Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) A lithium salt such as 2 . The supporting salt can be used alone or in combination of two or more.
 上記の非水電解液は、特定の負極、すなわち、負極活物質として、リチウムと合金可能な金属(a)を用いた場合に効果的であり、特に、金属(a)と、リチウムイオンを吸蔵放出し得る金属酸化物(b)と、リチウムイオンを吸蔵放出し得る炭素材料(c)とを用いた場合にさらに効果的である。 The non-aqueous electrolyte is effective when a metal (a) that can be alloyed with lithium is used as a specific negative electrode, that is, a negative electrode active material, and in particular, occludes the metal (a) and lithium ions. It is more effective when the metal oxide (b) that can be released and the carbon material (c) that can occlude and release lithium ions are used.
 本実施形態による非水電解液二次電池の形状は、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、および積層ラミネート型が挙げられる。後述の観点から、積層ラミネート型が好ましい。 The shape of the non-aqueous electrolyte secondary battery according to the present embodiment includes a cylindrical shape, a flat wound rectangular shape, a laminated rectangular shape, a coin shape, a flat wound laminated shape, and a laminated laminated shape. From the viewpoint described later, a laminated laminate type is preferable.
 図1は、積層ラミネート型の非水電解液二次電池の電極積層体の一例を示す模式的断面図である。図1においては、外装体を省略している。正極3と負極1は、セパレータ2を介して交互に積み重ねられている。各正極3が有する正極集電体5は、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子6が溶接されている。各負極1が有する負極集電体4は、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子7が溶接されている。この電極積層体は、外装体としてラミネートフィルムで形成した容器内に収容され、電解液が注入され、シールされる。 FIG. 1 is a schematic cross-sectional view showing an example of an electrode laminate of a laminated laminate type nonaqueous electrolyte secondary battery. In FIG. 1, the exterior body is omitted. The positive electrode 3 and the negative electrode 1 are alternately stacked via the separator 2. The positive electrode current collector 5 of each positive electrode 3 is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode terminal 6 is welded to the welded portion. A negative electrode current collector 4 included in each negative electrode 1 is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal 7 is welded to the welded portion. This electrode laminate is housed in a container formed of a laminate film as an exterior body, and an electrolyte is injected and sealed.
 このような平面的な積層構造を有する積層型の電池(積層ラミネート型電池)は、捲回構造を有する電池(捲回型電池)に対して、Rの小さい部分(例えば捲回構造の巻き芯に近い領域や、扁平捲回構造の折り返し領域)が存在しないため、充放電に伴う電極の体積変化による悪影響を受けにくいという利点がある。一方、捲回型電池では電極が湾曲しているため、電極に体積変化が生じた場合にその構造が歪みやすい。特に、ケイ素系活物質のように充放電に伴う体積変化が大きい負極活物質を用いた場合に顕著である。このように、捲回型電池と比較して、積層ラミネート型電池は、充放電に伴う体積変化が大きい活物質を用いる場合に適している。なお、「平面的な積層構造」とは、積層された各電極がシート状物であり、各電極が平面状のまま積層配置(シート状物の外周縁が周端部であるまま積層)されていることを意味し、電極積層体が折り曲げられた構造や、電極積層体が捲き回された構造と区別される。 A laminated battery (laminated laminated battery) having such a planar laminated structure has a smaller R portion (for example, a wound core with a wound structure) than a battery having a wound structure (winded battery). Therefore, there is an advantage that it is difficult to be adversely affected by the volume change of the electrode accompanying charging / discharging. On the other hand, since the electrode is curved in the wound type battery, the structure is easily distorted when a volume change occurs in the electrode. This is particularly noticeable when a negative electrode active material having a large volume change accompanying charge / discharge, such as a silicon-based active material, is used. Thus, as compared with a wound battery, a laminated laminate battery is suitable when an active material having a large volume change associated with charge / discharge is used. In addition, “planar laminated structure” means that each laminated electrode is a sheet-like material, and each electrode is laminated while being planar (laminated with the outer peripheral edge of the sheet-like material being the peripheral edge). It is distinguished from the structure in which the electrode laminate is bent or the structure in which the electrode laminate is wound.
 しかしながら、このような積層ラミネート型電池は、電極間にガスが発生した際に、その発生したガスが電極間に滞留しやすい問題がある。これは、捲回型電池では電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層ラミネート型電池では電極間の間隔が広がりやすいためである。外装体がアルミニウムラミネートフィルムである場合、この問題は特に顕著となる。さらに、電解液が炭酸エステル溶媒やカルボン酸エステル溶媒を含む場合、この問題がより一層顕著となる。 However, such a laminated laminate type battery has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because in the wound battery, the distance between the electrodes is difficult to increase because tension is applied to the electrodes, whereas in the laminated laminate battery, the distance between the electrodes is likely to increase. This problem is particularly noticeable when the outer package is an aluminum laminate film. Further, when the electrolytic solution contains a carbonate ester solvent or a carboxylic acid ester solvent, this problem becomes even more remarkable.
 本実施形態によれば、ガスを発生させやすい高エネルギー型の負極を用いた積層ラミネート型の非水電解液二次電池においても、長寿命駆動を行うことができる。 According to the present embodiment, a long-life drive can be performed even in a laminated non-aqueous electrolyte secondary battery using a high energy negative electrode that easily generates gas.
 以下、本実施形態による非水電解液二次電池の構成要素についてさらに説明する。 Hereinafter, the components of the non-aqueous electrolyte secondary battery according to the present embodiment will be further described.
 [1]負極
 本実施形態における負極は、集電体と、この集電上の活物質層とを含み、この活物質層は、結着剤と負極活物質を含む。結着剤によって、活物質粒子間、活物質粒子と集電体間が結着される。
[1] Negative Electrode The negative electrode in the present embodiment includes a current collector and an active material layer on the current collector, and the active material layer includes a binder and a negative electrode active material. The binder binds between the active material particles and between the active material particles and the current collector.
 本実施形態における負極活物質は、リチウムと合金可能な金属(a)を含み、さらに、リチウムイオンを吸蔵放出し得る金属酸化物(b)を含んでいることが好ましく、さらにリチウムイオンを吸蔵放出し得る炭素材料(c)を含んでいることがより好ましい。 The negative electrode active material in the present embodiment includes a metal (a) that can be alloyed with lithium, and further preferably includes a metal oxide (b) that can occlude and release lithium ions, and further occludes and releases lithium ions. It is more preferable that the carbon material (c) which can be obtained is included.
 金属(a)としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上を含む合金を用いることができる。特に、金属(a)としてシリコン(Si)又はシリコン含有金属が好ましく、シリコンがより好ましい。 As the metal (a), Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these is used. it can. In particular, silicon (Si) or a silicon-containing metal is preferable as the metal (a), and silicon is more preferable.
 金属酸化物(b)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの二種以上を含む複合酸化物を用いることができる。特に、金属酸化物(b)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を起こしにくいからである。また、金属酸化物(b)に、窒素、ホウ素およびイオウから選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(b)の電気伝導性を向上させることができる。 As the metal oxide (b), silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite oxide containing two or more of these can be used. In particular, silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and does not easily react with other compounds. In addition, one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
 金属酸化物(b)は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(b)は、他の負極活物質成分である炭素材料(c)や金属(a)の体積膨張を抑制でき、また非水電解液の分解を抑制できる。このメカニズムは明確ではないが、金属酸化物(b)がアモルファス構造であることにより、炭素材料(c)と非水電解液の界面への被膜形成に何らかの影響があるものと推測される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(b)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(b)がアモルファス構造を有しない場合には、金属酸化物(b)に固有のピークが観測されるが、金属酸化物(b)の全部または一部がアモルファス構造を有する場合は、金属酸化物(b)に固有のピークがブロードとなって観測される。 The metal oxide (b) preferably has an amorphous structure in whole or in part. The metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), which are other negative electrode active material components, and can suppress the decomposition of the nonaqueous electrolytic solution. Although this mechanism is not clear, it is presumed that the metal oxide (b) has an amorphous structure, so that it has some influence on the film formation at the interface between the carbon material (c) and the non-aqueous electrolyte. The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (b) has an amorphous structure. Specifically, when the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. When it has a structure, a peak specific to the metal oxide (b) is observed as a broad.
 負極活物質が金属(a)および金属酸化物(b)を含む場合、金属(a)は、その全部または一部が金属酸化物(b)中に分散していることが好ましい。金属(a)の少なくとも一部を金属酸化物(b)中に分散させることで、負極全体としての体積膨張をより抑制することができ、非水電解液の分解も抑制することができる。なお、金属(a)の全部または一部が金属酸化物(b)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(a)を含むサンプルの断面を観察し、金属酸化物(b)中に分散している粒子の酸素濃度を測定し、その粒子を構成している金属(a)が酸化物となっていないことを確認することができる。 When the negative electrode active material contains a metal (a) and a metal oxide (b), it is preferable that the metal (a) is entirely or partially dispersed in the metal oxide (b). By dispersing at least a part of the metal (a) in the metal oxide (b), the volume expansion of the whole negative electrode can be further suppressed, and the decomposition of the non-aqueous electrolyte can also be suppressed. Note that all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (a) is observed, the oxygen concentration of the particles dispersed in the metal oxide (b) is measured, and the metal (a) constituting the particles is It can be confirmed that it is not an oxide.
 負極活物質が金属(a)および金属酸化物(b)を含む場合、金属酸化物(b)は、金属(a)を構成する金属の酸化物であることが好ましい。金属(a)が単体シリコンであり、金属酸化物(b)が酸化シリコンであることがより好ましい。 When the negative electrode active material contains a metal (a) and a metal oxide (b), the metal oxide (b) is preferably an oxide of a metal constituting the metal (a). More preferably, the metal (a) is simple silicon and the metal oxide (b) is silicon oxide.
 金属(a)と金属酸化物(b)を含む負極活物質は、例えば、金属(a)と金属酸化物(b)を高温減圧下で焼結させることにより得ることができる。あるいは、金属(a)と金属酸化物(b)をメカニカルミリングで混合することで得ることができる。このようにして形成された活物質は、炭素で被覆することができる。例えば、この活物質と有機化合物とを混合し焼成する方法や、メタン等の有機化合物のガス雰囲気下にこの活物質を導入し、熱CVDを行う方法がある。 The negative electrode active material containing metal (a) and metal oxide (b) can be obtained, for example, by sintering metal (a) and metal oxide (b) under high temperature and reduced pressure. Or it can obtain by mixing a metal (a) and a metal oxide (b) by mechanical milling. The active material thus formed can be coated with carbon. For example, there are a method of mixing and baking this active material and an organic compound, and a method of introducing this active material into a gas atmosphere of an organic compound such as methane and performing thermal CVD.
 炭素材料(c)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの二種以上を含む複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。そのため、高出力・高エネルギーの二次電池を設計する点で有利である。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。そのため、長寿命・高ロバスト性の二次電池を設計する点で有利である。 As the carbon material (c), graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite containing two or more of these can be used. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. Therefore, it is advantageous in designing a secondary battery with high output and high energy. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs. Therefore, it is advantageous in designing a secondary battery having a long life and high robustness.
 金属(a)と金属酸化物(b)、炭素材料(c)の複合体である負極活物質としては、金属酸化物(b)の全部または一部がアモルファス構造であり、金属(a)の全部または一部が金属酸化物(b)中に分散しているものを用いることができる。このような負極活物質は、例えば、特許文献3(特開2004-47404号公報)に記載されている方法で作製することができる。例えば、金属酸化物(b)をメタンガスなどの有機化合物のガスを含む雰囲気下、900~1400℃で不均化するとともに熱CVD処理を行う。これにより、金属酸化物(b)中の金属元素が金属(a)としてナノクラスター化し、かつ表面が炭素材料(c)で被覆された複合体を得ることができる。この複合体を負極活物質として用いることができる。 As the negative electrode active material that is a composite of the metal (a), the metal oxide (b), and the carbon material (c), all or part of the metal oxide (b) has an amorphous structure, and the metal (a) What disperse | distributes all or one part in a metal oxide (b) can be used. Such a negative electrode active material can be produced, for example, by the method described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-47404). For example, the metal oxide (b) is disproportionated at 900 to 1400 ° C. in an atmosphere containing an organic compound gas such as methane gas and a thermal CVD process is performed. Thereby, the metal element in metal oxide (b) can be clustered as a metal (a), and the composite body by which the surface was coat | covered with the carbon material (c) can be obtained. This composite can be used as a negative electrode active material.
 金属(a)と金属酸化物(b)と炭素材料(c)とを含む負極活物質は、メカニカルミリングで混合することでも、作製することができる。 The negative electrode active material containing the metal (a), the metal oxide (b), and the carbon material (c) can also be produced by mixing by mechanical milling.
 負極活物質中の金属(a)の含有率は、十分な添加効果(充放電容量等)を得る点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、他の成分の添加効果等を十分に得る点から、95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましく、50質量%以下とすることもできる。 The content of the metal (a) in the negative electrode active material is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more from the viewpoint of obtaining a sufficient addition effect (such as charge / discharge capacity). From the viewpoint of sufficiently obtaining the effect of adding other components, etc., it is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 80% by mass or less, and can also be 50% by mass or less.
 負極活物質中の金属酸化物(b)の含有率は、充放電サイクル特性等の点から、5質量%以上が好ましく、15質量%以上がより好ましく、40質量%以上にすることがさらに好ましく、50質量%以上にすることもできる。他の成分の添加効果等を十分に得る点から、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the metal oxide (b) in the negative electrode active material is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 40% by mass or more from the viewpoint of charge / discharge cycle characteristics and the like. , 50% by mass or more. 90 mass% or less is preferable from the point which fully obtains the addition effect of another component, etc., 80 mass% or less is more preferable, and 70 mass% or less is further more preferable.
 負極活物質が金属(a)と金属酸化物(b)とを含む場合、負極活物質中の金属(a)と金属酸化物(b)の質量比率(a/b)は、特に制限はないが、5/95~90/10の範囲に設定することができ、また10/90~80/20の範囲に設定することができ、さらに30/70~60/40の範囲に設定することができる。 When the negative electrode active material contains a metal (a) and a metal oxide (b), the mass ratio (a / b) of the metal (a) and the metal oxide (b) in the negative electrode active material is not particularly limited. Can be set in the range of 5/95 to 90/10, can be set in the range of 10/90 to 80/20, and can be set in the range of 30/70 to 60/40. it can.
 負極活物質中の炭素材料(c)の含有率は、十分な添加効果を得る点から、1質量%以上が好ましく、2質量%以上がより好ましく、他の成分の添加効果等を十分に得る点から、50質量%以下が好ましく、30質量%以下がより好ましい。 The content of the carbon material (c) in the negative electrode active material is preferably 1% by mass or more, more preferably 2% by mass or more from the viewpoint of obtaining a sufficient addition effect, and sufficient effects of addition of other components, etc. are obtained. From the point, 50 mass% or less is preferable and 30 mass% or less is more preferable.
 負極活物質が金属(a)と金属酸化物(b)と炭素材料(c)とを含む場合、金属(a)、金属酸化物(b)及び炭素材料(c)の割合は、特に制限はないが、上記の含有率の範囲に従って設定することができる。金属(a)の含有割合は、金属(a)、金属酸化物(b)及び炭素材料(c)の合計に対し、例えば、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、また、90質量%以下が好ましく、80質量%以下がより好ましく、50質量%以下に設定することもできる。金属酸化物(b)の含有割合は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、例えば、5質量%以上が好ましく、15質量%以上がより好ましく、40質量%以上に設定することもでき、また、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下に設定することもできる。炭素材料(c)の含有割合は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、例えば、1質量%以上が好ましく、2質量%以上がより好ましく、また、50質量%以下が好ましく、30質量%以下がより好ましい。 When the negative electrode active material includes a metal (a), a metal oxide (b), and a carbon material (c), the ratio of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited. Although not, it can be set according to the above range of the content. The content ratio of the metal (a) is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, and 20% by mass with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). % Or more is more preferable, 90 mass% or less is preferable, 80 mass% or less is more preferable, and it can also be set to 50 mass% or less. The content ratio of the metal oxide (b) is preferably, for example, 5% by mass or more, more preferably 15% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). It can also be set to 40% by mass or more, preferably 90% by mass or less, more preferably 80% by mass or less, and can also be set to 70% by mass or less. The content ratio of the carbon material (c) is, for example, preferably 1% by mass or more, more preferably 2% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). 50 mass% or less is preferable and 30 mass% or less is more preferable.
 金属(a)、金属酸化物(b)および炭素材料(c)の形状は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。 The shape of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited, but may be particulate.
 負極活物質の比表面積は、0.2m/g以上が好ましく、1.0m/g以上がより好ましく、2.0m/g以上がさらに好ましく、一方、9.0m/g以下が好ましく、8.0m/g以下がより好ましく、7.0m/g以下がさらに好ましい。ここで、比表面積は、通常のBET比表面積測定法により得られる。 The specific surface area of the negative electrode active material is preferably 0.2 m 2 / g or more, more preferably 1.0 m 2 / g or more, still more preferably 2.0 m 2 / g or more, while 9.0 m 2 / g or less. Preferably, 8.0 m 2 / g or less is more preferable, and 7.0 m 2 / g or less is more preferable. Here, the specific surface area is obtained by an ordinary BET specific surface area measurement method.
 負極活物質の平均粒径は、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、一方、30μm以下が好ましく、20μm以下がより好ましい。ここで、平均粒径は、50%累積径D50(メジアン径)であり、レーザー回折散乱法による粒度分布測定により得られる。 The average particle diameter of the negative electrode active material is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and on the other hand, 30 μm or less is more preferable, and 20 μm or less is more preferable. Here, the average particle diameter is 50% cumulative diameter D 50 (median diameter), and is obtained by particle size distribution measurement by a laser diffraction scattering method.
 負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。中でも、結着性が強いことから、ポリイミドまたはポリアミドイミドが好ましい。負極における負極用結着剤の含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質100質量部に対して、5~25質量部が好ましく、7~20質量部がより好ましい。 Examples of the binder for the negative electrode include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used. Of these, polyimide or polyamideimide is preferred because of its high binding properties. The content of the binder for the negative electrode in the negative electrode is preferably 5 to 25 parts by mass, and 7 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material, from the viewpoints of binding force and energy density that are in a trade-off relationship. Is more preferable.
 負極集電体としては、電気化学的な安定性から、銅、ニッケル、銀が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。 As the negative electrode current collector, copper, nickel, and silver are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.
 負極は、例えば、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することにより作製できる。負極活物質層は、一般的なスラリー塗布法で形成することができる。具体的には、負極活物質、結着剤及び溶媒を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥し、必要に応じて圧縮し、成形することで、負極を作製することができる。負極スラリーは、負極活物質を、負極結着剤とともに、N-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練することで得ることができる。負極スラリーの塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法が挙げられる。あらかじめ負極活物質層を形成した後に、蒸着、スパッタ等の方法で金属薄膜を形成して、この金属薄膜を負極集電体としてもよい。 The negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. The negative electrode active material layer can be formed by a general slurry coating method. Specifically, a negative electrode is prepared by preparing a slurry containing a negative electrode active material, a binder, and a solvent, applying the slurry onto a negative electrode current collector, drying, compressing and molding as necessary. can do. The negative electrode slurry can be obtained by dispersing and kneading the negative electrode active material in a solvent such as N-methyl-2-pyrrolidone (NMP) together with the negative electrode binder. Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method. After forming a negative electrode active material layer in advance, a metal thin film may be formed by a method such as vapor deposition or sputtering, and this metal thin film may be used as a negative electrode current collector.
 [2]正極
 正極は、例えば、正極活物質と正極用結着剤を含む正極活物質層が正極集電体上に設けられたものを用いることができる。
[2] Positive electrode As the positive electrode, for example, a positive electrode having a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector can be used.
 正極活物質としては、LiMnO、LiMn(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;マンガン酸リチウムのMnの一部を他の金属で置き換えたリチウム金属酸化物;LiCoO、LiNiO、これらの遷移金属(Co、Ni)の一部を他の金属で置き換えたリチウム金属酸化物;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が遷移金属全体の半数(原子数比)を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰に含むリチウム金属酸化物等が挙げられる。具体的には、LiαNiβCoγAlδ(0.8≦α≦1.2、β+γ+δ=1、0.5<β、0<γ、0<δ)、又はLiαNiβCoγMnδ(0.8≦α≦1.2、β+γ+δ=1、0.5<β、0<γ、0<δ)が挙げられる。これらのリチウム金属酸化物において、γ≧0.1、δ≧0.01に設定できる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。また、LiαNiβCoγMnδAlεMgζ(1≦α≦1.2、β+γ+δ+ε+ζ=1、β≧0.5、0≦γ≦0.2、0.01≦δ≦0.49、0≦ε≦0.3)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 As a positive electrode active material, lithium manganate having a layered structure or spinel structure such as LiMnO 2 or Li x Mn 2 O 4 (0 <x <2); a part of Mn of lithium manganate was replaced with another metal Lithium metal oxide; LiCoO 2 , LiNiO 2 , lithium metal oxide in which a part of these transition metals (Co, Ni) is replaced with another metal; LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc. Lithium transition metal oxides whose specific transition metals do not exceed half of the total number of transition metals (atomic ratio); in these lithium transition metal oxides, lithium metal oxides containing Li in excess of the stoichiometric composition, etc. Can be mentioned. Specifically, Li α Ni β Co γ Al δ O 2 (0.8 ≦ α ≦ 1.2, β + γ + δ = 1, 0.5 <β, 0 <γ, 0 <δ), or Li α Ni β Co γ Mn δ O 2 (0.8 ≦ α ≦ 1.2, β + γ + δ = 1, 0.5 <β, 0 <γ, 0 <δ). In these lithium metal oxides, γ ≧ 0.1 and δ ≧ 0.01 can be set. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2), or Li α Ni β Co γ Mn δ O 2 ( 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2) are preferable. Li α Ni β Co γ Mn δ Al ε Mg ζ O 2 (1 ≦ α ≦ 1.2, β + γ + δ + ε + ζ = 1, β ≧ 0.5, 0 ≦ γ ≦ 0.2, 0.01 ≦ δ ≦ 0 .49, 0 ≦ ε ≦ 0.3). A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 正極用結着剤としては、通常の負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。 As the positive electrode binder, the same negative electrode binder as that used for normal negative electrodes can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoints of binding force and energy density which are in a trade-off relationship.
 正極集電体としては、電気化学的な安定性の観点から、例えば、アルミニウム、ニッケル、銀、SUS、バルブメタル、又はそれらの合金を使用することができる。その形状としては、箔、平板状、メッシュ状のものが挙げられる。特に、アルミニウム箔を好適に用いることができる。 As the positive electrode current collector, for example, aluminum, nickel, silver, SUS, valve metal, or an alloy thereof can be used from the viewpoint of electrochemical stability. Examples of the shape include foil, flat plate, and mesh. In particular, an aluminum foil can be preferably used.
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 正極は、例えば、正極活物質、結着剤及び溶媒(さらに必要により導電補助材)を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥することにより、正極集電体上に正極活物質層を形成することにより作製できる。 The positive electrode is prepared by, for example, preparing a slurry containing a positive electrode active material, a binder, and a solvent (and optionally a conductive auxiliary material), applying the slurry onto the positive electrode current collector, and drying the slurry. Can be produced by forming a positive electrode active material layer.
 [3]セパレータ
 セパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィンや、フッ素樹脂等からなる多孔質フィルムや不織布を用いることができる。また、セパレータとして、それらを積層したものを用いることもできる。
[3] Separator As the separator, a polyolefin such as polypropylene or polyethylene, a porous film or a nonwoven fabric made of a fluororesin, or the like can be used. Moreover, what laminated | stacked them can also be used as a separator.
 [4]電極対の構造
 電極対の構造としては、円筒型捲回構造、偏平型捲回構造、つづら折構造、積層ラミネート型構造などが挙げられるが、特に、積層ラミネート型構造が好ましい。積層ラミネート型構造では、電極及びセパレータが平面形状のまま積層されており、Rの小さい部分(捲回構造の巻き芯に近い領域または折り返す部位にあたる領域)が存在しない。そのため、充放電に伴う体積変化が大きい活物質を用いた場合、捲回構造を持つ電池に比べて、充放電に伴う電極の体積変化による悪影響を受けにくい。
[4] Structure of electrode pair Examples of the structure of the electrode pair include a cylindrical wound structure, a flat wound structure, a zigzag folded structure, and a laminated laminate structure, and a laminated laminate structure is particularly preferable. In the laminated laminate type structure, the electrodes and the separator are laminated in a planar shape, and there is no portion with a small R (a region close to the winding core of the wound structure or a region corresponding to the folded portion). Therefore, when an active material having a large volume change associated with charging / discharging is used, it is less likely to be adversely affected by the volume change of the electrode associated with charging / discharging than a battery having a wound structure.
 [5]外装体
 外装体としては、非水電解液に安定で、かつ十分な水蒸気バリア性を持つラミネートフィルムを用いることができる。例えば、このような外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、汎用性やコスト等の観点から、アルミニウムラミネートフィルムを用いることが好ましい。
[5] Exterior Body As the exterior body, a laminate film that is stable in a non-aqueous electrolyte and has a sufficient water vapor barrier property can be used. For example, as such an outer package, a laminate film such as polypropylene or polyethylene coated with aluminum or silica can be used. In particular, it is preferable to use an aluminum laminate film from the viewpoints of versatility and cost.
 外装体としてラミネートフィルムを用いた非水電解液二次電池の場合、外装体として金属缶を用いた非水電解液二次電池に比べて、ガス発生に起因する電池の体積変化や電極の歪みが生じやすい。これは、ラミネートフィルムが金属缶に比べて非水電解液二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた非水電解液二次電池を封止する際には、通常、電池内圧を大気圧より低くし、内部に余分な空間がないため、電池内でガスが発生した場合に直ちに電池の体積変化や電極の変形につながりやすい。本実施形態による非水電解液二次電池は、このような問題の発生を抑えることができる。それにより、長期信頼性に優れた、積層ラミネート型の非水電解液二次電池を提供することができる。 In the case of a non-aqueous electrolyte secondary battery that uses a laminate film as the outer package, the volume change of the battery or the distortion of the electrode due to gas generation compared to the non-aqueous electrolyte secondary battery that uses a metal can as the outer package. Is likely to occur. This is because the laminate film is more easily deformed by the internal pressure of the nonaqueous electrolyte secondary battery than the metal can. Furthermore, when sealing a non-aqueous electrolyte secondary battery using a laminate film as an outer package, the internal pressure of the battery is usually lower than atmospheric pressure and there is no extra space inside. When this occurs, it tends to immediately lead to battery volume changes and electrode deformation. The nonaqueous electrolyte secondary battery according to the present embodiment can suppress the occurrence of such a problem. Thereby, a laminated laminate type non-aqueous electrolyte secondary battery having excellent long-term reliability can be provided.
 以上に説明した二次電池(単電池)が複数個電気的に接続されチューブやケース等によりパックされた組電池を提供することができる。組電池内の単電池の接続は、直列、並列、その両方で行うことできる。単電池の個数や接続方法により容量や電圧を調節することができる。この組電池をさらに複数、直列または並列に接続することができる。 It is possible to provide an assembled battery in which a plurality of the secondary batteries (single cells) described above are electrically connected and packed with a tube or a case. The cells in the assembled battery can be connected in series, in parallel, or both. The capacity and voltage can be adjusted according to the number of cells and the connection method. A plurality of the assembled batteries can be connected in series or in parallel.
 上記の二次電池や組電池は、車両の駆動用電源として用いることができ、高寿命で信頼性の高い車両を提供することができる。車両としては、ハイブリッド自動車、電気自動車電動バイク、電動アシスト自転車等に適用できる。4輪車や2輪車に限定されず、3輪車も含まれ、車輪の数は限定されない。さらに電車などの移動/輸送媒体の各種電源にも適用できる。 The above-mentioned secondary battery or assembled battery can be used as a power source for driving a vehicle, and can provide a vehicle with a long life and high reliability. The vehicle can be applied to a hybrid vehicle, an electric vehicle, an electric motorcycle, an electric assist bicycle, and the like. It is not limited to a four-wheel vehicle or a two-wheel vehicle, and a three-wheel vehicle is also included, and the number of wheels is not limited. Furthermore, it can be applied to various power sources for moving / transporting media such as trains.
 以下、本発明の実施形態について実施例を挙げてさらに具体的に説明する。 Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples.
 (実施例1)
 <多官能共役ジエンの合成>
 フルフリルアルコール40.0gとジラウレートジブチルスズ0.2mLをジオキサン150mLに溶解した後、リジントリイソシアネート24.2gを滴下した。60℃で6時間反応後、溶媒を減圧留去し、残留物をクロロホルム200mLに溶解した。水200mLで3回洗浄し硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた粗生成物を酢酸エチルで再結晶することにより、下記式(2)で示される3官能フラン化合物(2)を得た。
Example 1
<Synthesis of polyfunctional conjugated diene>
After 40.0 g of furfuryl alcohol and 0.2 mL of dilaurate dibutyltin were dissolved in 150 mL of dioxane, 24.2 g of lysine triisocyanate was added dropwise. After 6 hours of reaction at 60 ° C., the solvent was distilled off under reduced pressure, and the residue was dissolved in 200 mL of chloroform. After washing with 200 mL of water three times and drying with magnesium sulfate, the solvent was distilled off under reduced pressure. The resulting crude product was recrystallized from ethyl acetate to obtain a trifunctional furan compound (2) represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 <電極の作製>
 酸化ケイ素粉末(酸化ケイ素とケイ素との混合物)を、メタンガスを含む雰囲気下1150℃で6時間CVD処理を行うことで、酸化ケイ素中のケイ素がナノクラスター化し、かつ表面がカーボンで被覆されたケイ素-酸化ケイ素-カーボン複合体(負極活物質)を得た。ケイ素/酸化ケイ素/カーボンの質量比=29/61/10となるように調整した。
<Production of electrode>
Silicon oxide powder (mixture of silicon oxide and silicon) is subjected to CVD treatment at 1150 ° C. for 6 hours in an atmosphere containing methane gas, so that silicon in silicon oxide is nanoclustered and silicon is coated with carbon. A silicon oxide-carbon composite (negative electrode active material) was obtained. The mass ratio of silicon / silicon oxide / carbon was adjusted to be 29/61/10.
 上記負極活物質(平均粒径D50=5μm)と、負極用結着剤としてのポリイミドとの質量比が85:15となるように、負極活物質とポリアミック酸(宇部興産株式会社製、商品名:UワニスA)とを計量し、それらをn-メチルピロリドンと混合して、負極スラリーを調製した。この負極スラリーを厚さ10μmの銅箔の表面に1cm当たり2.5mgの量となるように塗布し、乾燥した。同様に、銅箔の裏面にも負極スラリーを塗布し、乾燥した。その後、窒素雰囲気350℃の熱処理を行い、26mm×65mmに切断し、負極を得た。 The negative electrode active material and the polyamic acid (manufactured by Ube Industries, Ltd., product) so that the mass ratio of the negative electrode active material (average particle size D 50 = 5 μm) to the polyimide as the negative electrode binder is 85:15. Name: U Varnish A) was weighed and mixed with n-methylpyrrolidone to prepare a negative electrode slurry. This negative electrode slurry was applied on the surface of a copper foil having a thickness of 10 μm so as to be 2.5 mg per 1 cm 2 and dried. Similarly, the negative electrode slurry was applied to the back surface of the copper foil and dried. Thereafter, heat treatment was performed at 350 ° C. in a nitrogen atmosphere, and cut into 26 mm × 65 mm to obtain a negative electrode.
 正極活物質としてのニッケル酸リチウム(LiNi0.80Co0.15Al0.15)と、導電補助材としてのカーボンブラックと、正極用結着剤としてのポリフッ化ビニリデンとを、90:5:5(活物質:導電補助剤:結着剤)の質量比で計量し、それらをn-メチルピロリドンと混合して、正極スラリーを調製した。この正極スラリーを厚さ20μmのアルミニウム箔の表面に1cm当たり20mgの量となるように塗布、乾燥し、プレスを行った。同様に、アルミニウム箔の裏面にも正極スラリーを塗布、乾燥し、プレスを行った。その後、23mm×64mmに切断し、正極を得た。 Lithium nickelate (LiNi 0.80 Co 0.15 Al 0.15 O 2 ) as a positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a binder for the positive electrode, 90: A positive electrode slurry was prepared by weighing at a mass ratio of 5: 5 (active material: conductive auxiliary agent: binder) and mixing them with n-methylpyrrolidone. This positive electrode slurry was applied to the surface of an aluminum foil having a thickness of 20 μm so as to have an amount of 20 mg per cm 2 , dried and pressed. Similarly, the positive electrode slurry was applied to the back surface of the aluminum foil, dried, and pressed. Then, it cut | disconnected to 23 mm x 64 mm, and the positive electrode was obtained.
 得られた正極の1層と負極の2層を、セパレータとしてのポリプロピレン多孔質フィルム(Celgard LLC製、商品名:セルガード#2500)を介して交互に重ねた。 1 layer of the obtained positive electrode and 2 layers of the negative electrode were alternately stacked via a polypropylene porous film (manufactured by Celgard LLC, trade name: Celgard # 2500) as a separator.
 正極活物質に覆われていない正極集電体の端部にアルミニウム製の正極端子を溶接し、負極活物質に覆われていない負極集電体の端部同士を溶接し、その溶接箇所にニッケル製の負極端子を溶接して、平面状の電極積層体を得た。 The positive electrode terminal made of aluminum is welded to the end portion of the positive electrode current collector not covered with the positive electrode active material, the end portions of the negative electrode current collector not covered with the negative electrode active material are welded to each other, and the welded portion is nickel. The manufactured negative electrode terminal was welded to obtain a planar electrode laminate.
 <電解液の作製>
 EC/DECを3/7(体積比)で混合した非水系溶媒に、LiPFを1モル/Lの濃度になるように溶解させ、さらに添加剤1としてビニレンカーボネートを1wt%、添加剤2(多官能共役ジエン化合物)として3官能フラン化合物(2)を1wt%の濃度になるように溶解させ、非水電解液を得た。
<Preparation of electrolyte>
In a non-aqueous solvent in which EC / DEC is mixed at 3/7 (volume ratio), LiPF 6 is dissolved so as to have a concentration of 1 mol / L. Further, vinylene carbonate as additive 1 is 1 wt%, additive 2 ( As the polyfunctional conjugated diene compound), the trifunctional furan compound (2) was dissolved to a concentration of 1 wt% to obtain a nonaqueous electrolytic solution.
 <セルの作製>
 上記電極積層体を、外装体としてのアルミニウムラミネートフィルムでタブ(端子)が出るように包み、非水電解液を注入した後、減圧しつつ封止して、非水電解液二次電池を得た。
<Production of cell>
The electrode laminate is wrapped with an aluminum laminate film as an outer package so that tabs (terminals) come out, and after injecting a nonaqueous electrolyte, it is sealed under reduced pressure to obtain a nonaqueous electrolyte secondary battery. It was.
 <初充電>
 初充電は、20℃に保った恒温槽内で、4.2VまでC/10レートで充電後、順次1C,0.5C,0.2C,0.1Cレートで2.5Vまで放電し、1Cレートで4.2Vまで再度充電した。
<First charge>
In the first charge, in a thermostatic chamber maintained at 20 ° C., after charging at a C / 10 rate up to 4.2 V, discharge to 2.5 V at 1 C, 0.5 C, 0.2 C, and 0.1 C rates in sequence. Recharged to 4.2V at the rate.
 <加熱処理>
 初充電した電池を60℃に保った恒温槽内で24時間放置した。この後、後述の60℃保存試験および60℃サイクル試験を行った。
<Heat treatment>
The initially charged battery was left for 24 hours in a constant temperature bath maintained at 60 ° C. Then, the below-mentioned 60 degreeC storage test and 60 degreeC cycle test were done.
 (実施例2)
 3官能フラン化合物(2)に代えて、ジフルフリルエーテルを1wt%溶解したこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Example 2)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 1 wt% of difurfuryl ether was dissolved in place of the trifunctional furan compound (2).
 (比較例1)
 非水系溶媒にビニレンカーボネートおよび3官能フラン化合物(2)を溶解しなかったこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that vinylene carbonate and the trifunctional furan compound (2) were not dissolved in the nonaqueous solvent.
 (比較例2)
 非水系溶媒に、3官能フラン化合物(2)を溶解せずビニレンカーボネートを2wt%溶解したこと以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 2)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that 2 wt% of vinylene carbonate was dissolved in the non-aqueous solvent without dissolving the trifunctional furan compound (2).
 (実施例3)
 初充電後、加熱処理を行わなかった以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Example 3)
A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that no heat treatment was performed after the initial charge.
 <60℃保存試験>
 作製した電池を60℃に保った恒温槽中に入れて一週間放置し、アルキメデス法によって体積を測定し、下記式に従って体積増加率を算出し、評価を行った。試験結果を表1に示す。
<60 ° C storage test>
The produced battery was placed in a thermostat kept at 60 ° C. and allowed to stand for one week, the volume was measured by the Archimedes method, and the volume increase rate was calculated according to the following formula and evaluated. The test results are shown in Table 1.
 体積増加率(%)=100×(1週間放置時の体積-初期の体積)/初期の体積 Volume increase rate (%) = 100 x (Volume after standing for 1 week-Initial volume) / Initial volume
 評価の判定は下記の基準に従って行った。
  A:体積増加率が30%以下、
  B:体積増加率が30%を超える。
Evaluation was determined according to the following criteria.
A: Volume increase rate is 30% or less,
B: Volume increase rate exceeds 30%.
 <60℃サイクル試験>
 作製した電池を、60℃に保った恒温槽中で、4.2Vまでの充電と2.5Vまでの放電を1Cレートで繰り返すサイクル試験を行い、下記式に従って容量維持率を算出し、評価を行った。試験結果を表1に示す。
<60 ° C cycle test>
The manufactured battery was subjected to a cycle test in which a charge of up to 4.2 V and a discharge of up to 2.5 V were repeated at a 1 C rate in a thermostatic chamber maintained at 60 ° C., and the capacity maintenance rate was calculated according to the following formula to evaluate went. The test results are shown in Table 1.
 容量維持率(%)=100×(100サイクル目の放電容量)/(1サイクル目の放電容量) Capacity retention rate (%) = 100 × (discharge capacity at the 100th cycle) / (discharge capacity at the first cycle)
 評価の判定は下記の基準に従って行った。
  A:容量維持率が85%を超える、
  B:容量維持率が80%を超え85%以下、
  C:容量維持率が70%を超え80%以下、
  D:容量維持率が70%以下。
Evaluation was determined according to the following criteria.
A: Capacity maintenance rate exceeds 85%,
B: Capacity maintenance rate is over 80% and 85% or less,
C: Capacity maintenance rate is over 70% and 80% or less,
D: Capacity maintenance rate is 70% or less.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、電解液にビニレンカーボネート(添加剤1)と多官能共役ジエン化合物(添加剤2)の両方を添加した実施例1~3の非水電解液二次電池は、60℃での保存試験およびサイクル試験において優れた結果(低い体積増加率と高い容量維持率)を示した。これは、初充電後に、60℃で加熱することで(実施例1及び2)、あるいは保存時やサイクル動作時の60℃の環境下で(実施例3)、ビニレンカーボネートの分解により形成した被膜の二重結合と多官能共役ジエン化合物の共役ジエン基がDiels-Alder反応し、被膜が三次元架橋構造となり強化されたためである。 As shown in Table 1, the nonaqueous electrolyte secondary batteries of Examples 1 to 3 in which both vinylene carbonate (Additive 1) and the polyfunctional conjugated diene compound (Additive 2) were added to the electrolytic solution were 60 ° C. Excellent results (low volume increase rate and high capacity retention rate) were shown in the storage test and cycle test. This is a film formed by decomposing vinylene carbonate by heating at 60 ° C. after the initial charge (Examples 1 and 2) or in an environment at 60 ° C. during storage or cycling (Example 3). This is because the double bond and the conjugated diene group of the polyfunctional conjugated diene compound were subjected to Diels-Alder reaction, and the coating was strengthened to have a three-dimensional crosslinked structure.
 一方、電解液にビニレンカーボネートを添加し、多官能共役ジエン化合物を添加していない比較例2は、いずれも添加していない比較例1と比較して体積増加率は低いが、この体積増加率は実施例1~3と比較すると大きい。ビニレンカーボネートのみでは、電解液の分解を十分に抑制できていないことがわかる。 On the other hand, Comparative Example 2 in which vinylene carbonate was added to the electrolytic solution and no polyfunctional conjugated diene compound was added had a lower volume increase rate than Comparative Example 1 in which none was added, but this volume increase rate. Is larger than Examples 1 to 3. It turns out that decomposition | disassembly of electrolyte solution cannot fully be suppressed only with vinylene carbonate.
 なお、実施例3は、比較例1及び2と比べて優れた結果(低い体積増加率と高い容量維持率)を示しているが、実施例1及び2に比べると体積増加率は高く容量維持率は低い。これは、実施例3は、ビニレンカーボネートと多官能共役ジエン化合物を併用しているものの、初充電後の加熱を行っていないため、ビニレンカーボネート由来の二重結合と多官能共役ジエン化合物の共役ジエン基とのDiels-Alder反応による三次元架橋構造が十分に形成される前に、電解液の分解が起きたためである。 In addition, although Example 3 showed the result (low volume increase rate and high capacity | capacitance maintenance rate) excellent compared with Comparative Example 1 and 2, volume increase rate is high compared with Example 1 and 2, and capacity maintenance. The rate is low. In Example 3, although vinylene carbonate and a polyfunctional conjugated diene compound are used in combination, since heating after the initial charge is not performed, a double bond derived from vinylene carbonate and a conjugated diene of the polyfunctional conjugated diene compound are used. This is because the electrolytic solution was decomposed before the three-dimensional crosslinked structure was sufficiently formed by the Diels-Alder reaction with the group.
 以上の結果から、本実施形態によれば、エネルギー密度が高く、且つ長期安定性に優れた非水電解液二次電池を提供できることがわかる。 From the above results, it can be seen that according to the present embodiment, a non-aqueous electrolyte secondary battery having high energy density and excellent long-term stability can be provided.
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2011年9月26日に出願された日本出願特願2011-208803を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-208803 filed on September 26, 2011, the entire disclosure of which is incorporated herein.
 本実施形態は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車、電車などの電動車両の電源;衛星や潜水艦などの移動・輸送用媒体の電源;UPS(無停電電源装置)などのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに利用することができる。 The present embodiment can be used in all industrial fields that require a power source and industrial fields related to the transport, storage, and supply of electrical energy. Specifically, power sources for mobile devices such as mobile phones and laptop computers; power sources for electric vehicles such as electric cars, hybrid cars, electric motorcycles, electric assist bicycles, and trains; power sources for mobile and transport media such as satellites and submarines A backup power source such as a UPS (uninterruptible power supply); a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
 1 負極
 2 セパレータ
 3 正極
 4 負極集電体
 5 正極集電体
 6 正極端子
 7 負極端子
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Separator 3 Positive electrode 4 Negative electrode collector 5 Positive electrode collector 6 Positive electrode terminal 7 Negative electrode terminal

Claims (10)

  1.  正極と、セパレータと、該セパレータを介して該正極と対向配置された負極と、非水電解液と、これらを内包する外装体とを含む、非水電解液二次電池であって、
     前記負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤とを含み、
     前記非水電解液は、ビニレンカーボネートと、共役ジエン基を2つ以上有する多官能共役ジエン化合物とを含有する、非水電解液二次電池。
    A non-aqueous electrolyte secondary battery comprising a positive electrode, a separator, a negative electrode disposed opposite to the positive electrode via the separator, a non-aqueous electrolyte, and an outer package containing them,
    The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
    The non-aqueous electrolyte solution is a non-aqueous electrolyte secondary battery containing vinylene carbonate and a polyfunctional conjugated diene compound having two or more conjugated diene groups.
  2.  前記非水電解液は、ビニレンカーボネートの含有率が0.01~5質量%であり、前記多官能共役ジエン化合物の含有率が0.01~5質量%である、請求項1に記載の非水電解液二次電池。 The non-aqueous electrolyte according to claim 1, wherein the content of vinylene carbonate is 0.01 to 5% by mass, and the content of the polyfunctional conjugated diene compound is 0.01 to 5% by mass. Water electrolyte secondary battery.
  3.  前記負極表面に、前記ビニレンカーボネート及び前記多官能共役ジエン化合物に由来の被膜が形成される、請求項1又は2に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein a coating derived from the vinylene carbonate and the polyfunctional conjugated diene compound is formed on the negative electrode surface.
  4.  正極と、セパレータと、該セパレータを介して該正極と対向配置された負極と、非水電解液と、これらを内包する外装体とを含む、非水電解液二次電池であって、
     前記負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤とを含み、
     前記負極表面に、ビニレンカーボネート及び共役ジエン基を2つ以上有する多官能共役ジエン化合物に由来の被膜が形成されている、非水電解液二次電池。
    A non-aqueous electrolyte secondary battery comprising a positive electrode, a separator, a negative electrode disposed opposite to the positive electrode via the separator, a non-aqueous electrolyte, and an outer package containing them,
    The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
    A non-aqueous electrolyte secondary battery in which a coating derived from a polyfunctional conjugated diene compound having two or more vinylene carbonates and conjugated diene groups is formed on the negative electrode surface.
  5.  前記被膜は、前記ビニレンカーボネートに由来の二重結合と、前記多官能共役ジエン化合物の共役ジエン基との付加反応により形成される構造を有する、請求項4に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 4, wherein the coating has a structure formed by an addition reaction between a double bond derived from the vinylene carbonate and a conjugated diene group of the polyfunctional conjugated diene compound. .
  6.  前記ビニレンカーボネートの含有率が0.01~5質量%であり、前記多官能共役ジエン化合物の含有率が0.01~5質量%であり、前記ビニレンカーボネートと前記多官能共役ジエン化合物との合計の含有率が0.1~10質量%である非水電解液を用いて製造された、請求項1から5のいずれか一項に記載の非水電解液二次電池。 The vinylene carbonate content is 0.01 to 5% by mass, the polyfunctional conjugated diene compound content is 0.01 to 5% by mass, and the total of the vinylene carbonate and the polyfunctional conjugated diene compound The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, which is produced using a nonaqueous electrolyte solution having a content of 0.1 to 10% by mass.
  7.  前記共役ジエン基は、それぞれ、フラン環基、チオフェン環基、ピロール環基、シクロペンタジエン環基、1,3-ブタジエニル基、チオフェン-1-オキサイド環基、チオフェン-1,1-ジオキサイド環基、シクロペンタ-2,4-ジエノン環基、2Hピラン環基、シクロヘキサ-1,3-ジエン環基、2Hピラン1-オキサイド環基、1,2-ジヒドロピリジン環基、2Hチオピラン-1,1-ジオキサイド環基、シクロヘキサ-2,4-ジエノン環基、ピラン-2-オン環基からなる群から選ばれる基を含む、請求項1から6のいずれか一項に記載の非水電解液二次電池。 The conjugated diene groups are respectively a furan ring group, a thiophene ring group, a pyrrole ring group, a cyclopentadiene ring group, a 1,3-butadienyl group, a thiophene-1-oxide ring group, and a thiophene-1,1-dioxide ring group. , Cyclopenta-2,4-dienone ring group, 2H pyran ring group, cyclohexa-1,3-diene ring group, 2H pyran 1-oxide ring group, 1,2-dihydropyridine ring group, 2H thiopyran-1,1-di The nonaqueous electrolyte secondary solution according to any one of claims 1 to 6, comprising a group selected from the group consisting of an oxide ring group, a cyclohexa-2,4-dienone ring group, and a pyran-2-one ring group. battery.
  8.  前記負極活物質は、前記金属(a)としてシリコンを含む、請求項1から7のいずれか一項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, wherein the negative electrode active material contains silicon as the metal (a).
  9.  正極と、セパレータと、該セパレータを介して該正極と対向配置された負極を含む電極積層体を形成する工程と、
     前記電極積層体を外装体で包む工程と、
     非水電解液を注入する工程とを有し、
     前記負極は、リチウムと合金可能な金属(a)を含む負極活物質と、結着剤とを含み、
     前記非水電解液は、ビニレンカーボネートおよび多官能共役ジエン化合物を含有することを特徴とする、非水電解液二次電池の製造方法。
    Forming an electrode laminate including a positive electrode, a separator, and a negative electrode disposed opposite to the positive electrode via the separator;
    Wrapping the electrode laminate with an outer package;
    A step of injecting a non-aqueous electrolyte,
    The negative electrode includes a negative electrode active material containing a metal (a) that can be alloyed with lithium, and a binder.
    The method for producing a non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte contains vinylene carbonate and a polyfunctional conjugated diene compound.
  10.  前記二次電池を、初充電後に又は初充電時に30℃以上80℃以下で加熱して、前記負極の表面に、前記ビニレンカーボネート及び前記多官能共役ジエン化合物に由来の被膜を形成する、請求項9に記載の非水電解液二次電池の製造方法。 The secondary battery is heated at 30 ° C. or higher and 80 ° C. or lower after initial charging or during initial charging to form a coating derived from the vinylene carbonate and the polyfunctional conjugated diene compound on the surface of the negative electrode. A method for producing the nonaqueous electrolyte secondary battery according to claim 9.
PCT/JP2012/071877 2011-09-26 2012-08-29 Non-aqueous electrolyte secondary cell WO2013047067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536097A JP6032205B2 (en) 2011-09-26 2012-08-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-208803 2011-09-26
JP2011208803 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013047067A1 true WO2013047067A1 (en) 2013-04-04

Family

ID=47995115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071877 WO2013047067A1 (en) 2011-09-26 2012-08-29 Non-aqueous electrolyte secondary cell

Country Status (2)

Country Link
JP (1) JP6032205B2 (en)
WO (1) WO2013047067A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037054A (en) * 2013-08-14 2015-02-23 新神戸電機株式会社 Lithium ion secondary battery
JP2015131958A (en) * 2013-12-31 2015-07-23 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymers and underlayer compositions
WO2016063875A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Maleimide resin compound having excellent storage stability
CN110400969A (en) * 2018-04-25 2019-11-01 比亚迪股份有限公司 A kind of nonaqueous electrolytic solution and the battery containing the nonaqueous electrolytic solution
CN110797573A (en) * 2018-08-02 2020-02-14 Sk新技术株式会社 Lithium secondary battery
CN111342130A (en) * 2020-03-04 2020-06-26 多氟多新能源科技有限公司 High-voltage-resistant lithium ion battery electrolyte matched with silicon-carbon cathode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158362A (en) * 2002-11-08 2004-06-03 Hitachi Maxell Ltd Organic electrolyte liquid battery
WO2010150513A1 (en) * 2009-06-23 2010-12-29 キヤノン株式会社 Electrode structure and electricity storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080204A1 (en) * 2005-01-26 2006-08-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte and secondary battery containing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158362A (en) * 2002-11-08 2004-06-03 Hitachi Maxell Ltd Organic electrolyte liquid battery
WO2010150513A1 (en) * 2009-06-23 2010-12-29 キヤノン株式会社 Electrode structure and electricity storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037054A (en) * 2013-08-14 2015-02-23 新神戸電機株式会社 Lithium ion secondary battery
JP2015131958A (en) * 2013-12-31 2015-07-23 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymers and underlayer compositions
WO2016063875A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Maleimide resin compound having excellent storage stability
CN110400969A (en) * 2018-04-25 2019-11-01 比亚迪股份有限公司 A kind of nonaqueous electrolytic solution and the battery containing the nonaqueous electrolytic solution
CN110400969B (en) * 2018-04-25 2022-06-10 比亚迪股份有限公司 Non-aqueous electrolyte and battery containing same
CN110797573A (en) * 2018-08-02 2020-02-14 Sk新技术株式会社 Lithium secondary battery
US11600847B2 (en) 2018-08-02 2023-03-07 Sk On Co., Ltd. Lithium secondary battery
US11728508B2 (en) 2018-08-02 2023-08-15 Sk On Co., Ltd. Lithium secondary battery
CN110797573B (en) * 2018-08-02 2024-04-16 Sk新能源株式会社 Lithium secondary battery
CN111342130A (en) * 2020-03-04 2020-06-26 多氟多新能源科技有限公司 High-voltage-resistant lithium ion battery electrolyte matched with silicon-carbon cathode

Also Published As

Publication number Publication date
JPWO2013047067A1 (en) 2015-03-26
JP6032205B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6900904B2 (en) Lithium ion secondary battery
TWI697148B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
TWI473320B (en) Anode protector of lithium-ion battery and method for fabricating the same
JP6123682B2 (en) Lithium secondary battery
JP6032205B2 (en) Non-aqueous electrolyte secondary battery
US20150125740A1 (en) Lithium ion secondary battery
WO2011040443A1 (en) Secondary battery
WO2014119375A1 (en) Negative electrode for rechargeable battery, method for producing same, and rechargeable battery using same
JP6445956B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JPWO2012132976A1 (en) Secondary battery and electrolyte
JPWO2016088837A1 (en) Lithium secondary battery
JP6269475B2 (en) Secondary battery
JP2011096638A (en) Secondary battery
WO2012029653A1 (en) Secondary battery
JP6032204B2 (en) Lithium ion secondary battery
JPWO2012029551A1 (en) Secondary battery and electrolyte for secondary battery used therefor
TW201635621A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery material
US20190181494A1 (en) Nonaqueous electrolytic solution and lithium ion secondary battery
CN109155426B (en) Lithium ion secondary battery
JP2011187169A (en) Secondary battery and manufacturing method therefor
WO2013024639A1 (en) Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
KR20170079942A (en) Composite cathode active material, cathode and lithium battery containing composite cathode active material and preparation method thereof
JP2017097955A (en) Negative electrode active substance, mixed negative electrode active substance material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active material, and manufacturing method of lithium ion secondary battery
WO2016021596A1 (en) Lithium secondary battery and production method for same
JP2015115268A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835480

Country of ref document: EP

Kind code of ref document: A1