WO2013047000A1 - Microwave radiating mechanism, surface wave plasma source, and surface wave plasma processing device - Google Patents

Microwave radiating mechanism, surface wave plasma source, and surface wave plasma processing device Download PDF

Info

Publication number
WO2013047000A1
WO2013047000A1 PCT/JP2012/070988 JP2012070988W WO2013047000A1 WO 2013047000 A1 WO2013047000 A1 WO 2013047000A1 JP 2012070988 W JP2012070988 W JP 2012070988W WO 2013047000 A1 WO2013047000 A1 WO 2013047000A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface wave
microwave
plasma
wave plasma
sensor
Prior art date
Application number
PCT/JP2012/070988
Other languages
French (fr)
Japanese (ja)
Inventor
池田 太郎
長田 勇輝
大幸 宮下
河西 繁
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013047000A1 publication Critical patent/WO2013047000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32293Microwave generated discharge using particular waveforms, e.g. polarised waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Definitions

  • the present invention relates to a microwave radiation mechanism, a surface wave plasma source, and a surface wave plasma processing apparatus.
  • Plasma processing is an indispensable technology for the manufacture of semiconductor devices. Recently, the design rules of semiconductor elements constituting LSIs have been increasingly miniaturized due to the demand for higher integration and higher speed of LSIs, and semiconductor wafers Along with this, there is a demand for plasma processing apparatuses that can cope with such miniaturization and enlargement.
  • an RLSA Random Line Slot Antenna microwave plasma processing apparatus that can uniformly form high-density, low-electron-temperature surface wave plasma has attracted attention (for example, Patent Document 1).
  • the RLSA microwave plasma processing apparatus is provided with a radial line slot antenna (Radial Line Slot Antenna) having a plurality of slots formed in a predetermined pattern at the top of the chamber as a surface wave plasma generation antenna, and is guided from a microwave generation source.
  • the microwave is radiated from the slot of the antenna and radiated into a chamber held in a vacuum through a microwave transmission plate made of a dielectric material provided under the antenna. Wave plasma is generated, thereby processing an object to be processed such as a semiconductor wafer.
  • microwaves are divided into a plurality of parts, and a plurality of microwave radiating parts having the above-mentioned surface wave plasma generating antennas are provided.
  • Patent Document 2 A plasma processing apparatus for generating plasma has also been proposed (Patent Document 2).
  • the output of the microwave for generating plasma is detected at a position between the power supply unit and the tuner, and the actual plasma state is detected in the chamber. Through small windows.
  • an object of the present invention is to provide a microwave radiation mechanism capable of directly detecting the power output from the surface wave plasma generating antenna and the plasma state immediately below the antenna without disturbing the electric field distribution for generating the plasma, and Another object is to provide a surface wave plasma source and a surface wave plasma processing apparatus using the same.
  • a microwave transmission path for transmitting a microwave output from a microwave output unit in a surface wave plasma source for forming a surface wave plasma in a chamber.
  • a microwave radiation mechanism for radiating a microwave into the chamber, and generating a surface wave plasma by radiating the microwave transmitted through the microwave transmission path into the chamber through a slot
  • An electric field for generating the surface wave plasma is formed by the microwave radiated from the surface wave plasma generating antenna.
  • An electric field sensor that detects an electric field of the dielectric member in order to measure the electric power of the microwave radiated from the electric wave member and the antenna for generating the surface wave plasma, or the surface wave plasma via the dielectric member
  • a plasma emission sensor for detecting luminescence and a sensor insertion hole provided so as to penetrate the slow wave material and the surface wave plasma generating antenna, and into which the electric field sensor or the plasma emission sensor is inserted
  • the sensor insertion hole is formed in a region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna, n times the slot on the same circumference centered on the axis of the microwave transmission path. (Where n is an integer equal to or greater than 1), and the electric field sensor or the plasma emission sensor has a small number of sensor insertion holes. Kutomo one to have been inserted, the microwave radiation mechanism is provided.
  • the electric field sensor is constituted by a coaxial cable having a monopole portion at a tip, and monitors an electric field generated in the dielectric member by bringing the monopole portion into contact with or close to the dielectric member. It is preferable.
  • the electric field sensor has a function of grasping whether or not electromagnetic waves are normally radiated from the surface wave plasma generating antenna, a function of grasping a power value for obtaining an appropriate plasma condition according to a process, and It is possible to have a function of detecting ignition or misfiring of plasma.
  • the plasma light emitting sensor may include a light receiving element that detects light emission of plasma through the dielectric member, and the light receiving element may be in contact with or close to the dielectric member.
  • a plug for preventing electromagnetic wave leakage is inserted into the sensor insertion hole in which the electric field sensor or the plasma emission sensor is not inserted.
  • a microwave generation mechanism for generating a microwave, a microwave transmission path for transmitting the generated microwave, and the microwave transmission path are provided, and the microwave is provided in the chamber.
  • a surface wave plasma source having a plurality of microwave radiation mechanisms for radiating, and radiating microwaves into the chamber to generate surface wave plasma by gas supplied into the chamber, wherein the microwave radiation
  • the mechanism provides a surface wave plasma source having the configuration of the first aspect.
  • a chamber that accommodates a substrate to be processed, a gas supply mechanism that supplies a gas into the chamber, a microwave generation mechanism that generates a microwave, and a generated microwave are transmitted.
  • a microwave transmission path, and a plurality of microwave radiation mechanisms that are provided in the microwave transmission path and radiate microwaves into the chamber, radiate microwaves into the chamber, and are supplied into the chamber.
  • a surface wave plasma source for generating a surface wave plasma from a gas, and processing the substrate to be processed in the chamber with the surface wave plasma, wherein the microwave radiation mechanism Provides a surface wave plasma processing apparatus having the configuration of the first aspect.
  • FIG. 1 shows schematic structure of the surface wave plasma processing apparatus which has a microwave radiation mechanism which concerns on embodiment of this invention.
  • It is a block diagram which shows the structure of the microwave plasma source used for the surface wave plasma processing apparatus of FIG.
  • It is a longitudinal cross-sectional view which shows the microwave radiation mechanism in the surface wave plasma processing apparatus of FIG.
  • It is a cross-sectional view which shows the electric power feeding mechanism of a microwave radiation mechanism.
  • It is a top view which shows the slag and the sliding member in the main body of a tuner.
  • It is a top view which shows an example of the antenna for surface wave plasma generation.
  • It is sectional drawing which shows the structural example of an electric field sensor.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a surface wave plasma processing apparatus having a microwave radiation mechanism according to an embodiment of the present invention
  • FIG. 2 is a microwave plasma source used in the surface wave plasma processing apparatus of FIG. FIG.
  • the surface wave plasma processing apparatus 100 is configured as a plasma etching apparatus that performs, for example, an etching process as a plasma process on a wafer, and is grounded in a substantially cylindrical shape made of an airtight metal material such as aluminum or stainless steel.
  • An opening 1 a is formed in the upper part of the chamber 1, and the microwave plasma source 2 is provided so as to face the inside of the chamber 1 from the opening 1 a.
  • a susceptor 11 for horizontally supporting a semiconductor wafer W (hereinafter, referred to as a wafer W), which is an object to be processed, is erected at the center of the bottom of the chamber 1 via an insulating member 12a. It is provided in a state supported by the support member 12.
  • Examples of the material constituting the susceptor 11 and the support member 12 include aluminum whose surface is anodized (anodized).
  • the susceptor 11 includes an electrostatic chuck for electrostatically attracting the wafer W, a temperature control mechanism, a gas flow path for supplying heat transfer gas to the back surface of the wafer W, and the wafer.
  • a high frequency bias power supply 14 is electrically connected to the susceptor 11 via a matching unit 13. By supplying high frequency power from the high frequency bias power source 14 to the susceptor 11, ions in the plasma are attracted to the wafer W side.
  • An exhaust pipe 15 is connected to the bottom of the chamber 1, and an exhaust device 16 including a vacuum pump is connected to the exhaust pipe 15. Then, by operating the exhaust device 16, the inside of the chamber 1 is exhausted, and the inside of the chamber 1 can be decompressed at a high speed to a predetermined degree of vacuum. Further, on the side wall of the chamber 1, a loading / unloading port 17 for loading / unloading the wafer W and a gate valve 18 for opening / closing the loading / unloading port 17 are provided.
  • a shower plate 20 that discharges a processing gas for plasma etching toward the wafer W is provided horizontally.
  • the shower plate 20 has a gas flow path 21 formed in a lattice shape and a large number of gas discharge holes 22 formed in the gas flow path 21. It is a space part 23.
  • a pipe 24 extending outside the chamber 1 is connected to the gas flow path 21 of the shower plate 20, and a processing gas supply source 25 is connected to the pipe 24.
  • a ring-shaped plasma gas introduction member 26 is provided along the chamber wall above the shower plate 20 of the chamber 1, and the plasma gas introduction member 26 has a number of gas discharge holes on the inner periphery. Is provided.
  • a plasma gas supply source 27 for supplying plasma gas is connected to the plasma gas introduction member 26 via a pipe 28. Ar gas or the like is preferably used as the plasma generating gas.
  • the plasma gas introduced into the chamber 1 from the plasma gas introduction member 26 is turned into plasma by the microwave introduced into the chamber 1 from the microwave plasma source 2, and this plasma passes through the space 23 of the shower plate 20.
  • the processing gas discharged from the gas discharge hole 22 of the shower plate 20 is excited to form plasma of the processing gas.
  • the microwave plasma source 2 is supported by a support ring 29 provided at the upper part of the chamber 1, and the space between them is hermetically sealed. As shown in FIG. 2, the microwave plasma source 2 includes a microwave output unit 30 that distributes the microwaves to a plurality of paths and outputs microwaves, and transmits the microwaves output from the microwave output unit 30 to enter the chamber 1. And a microwave supply unit 40 for radiating.
  • the microwave output unit 30 includes a microwave power source 31, a microwave oscillator 32, an amplifier 33 that amplifies the oscillated microwave, and a distributor 34 that distributes the amplified microwave into a plurality of parts. .
  • the microwave oscillator 32 causes, for example, a PLL oscillation of a microwave having a predetermined frequency (for example, 915 MHz).
  • the distributor 34 distributes the microwave amplified by the amplifier 33 while matching the impedance between the input side and the output side so that the loss of the microwave does not occur as much as possible.
  • the microwave frequency 700 MHz to 3 GHz can be used in addition to 915 MHz.
  • the microwave supply unit 40 includes a plurality of amplifier units 42 that mainly amplify the microwaves distributed by the distributor 34, and a microwave radiation mechanism 41 connected to each of the plurality of amplifier units 42. Yes.
  • the amplifier unit 42 includes a phase shifter 45, a variable gain amplifier 46, a main amplifier 47 constituting a solid state amplifier, and an isolator 48.
  • the phase shifter 45 is configured to be able to change the phase of the microwave, and by adjusting this, the radiation characteristic can be modulated. For example, by adjusting the phase for each antenna module, the directivity is controlled to change the plasma distribution, and the circular polarization is obtained by shifting the phase by 90 ° between adjacent antenna modules as will be described later. be able to.
  • the phase shifter 45 can be used for the purpose of spatial synthesis in the tuner by adjusting the delay characteristics between the components in the amplifier. However, the phase shifter 45 need not be provided when such modulation of radiation characteristics and adjustment of delay characteristics between components in the amplifier are not required.
  • the variable gain amplifier 46 is an amplifier for adjusting the power level of the microwave input to the main amplifier 47, adjusting the variation of individual antenna modules, or adjusting the plasma intensity. By changing the variable gain amplifier 46 for each antenna module, the generated plasma can be distributed.
  • the main amplifier 47 constituting the solid state amplifier can be configured to include, for example, an input matching circuit, a semiconductor amplifying element, an output matching circuit, and a high Q resonance circuit.
  • the isolator 48 separates reflected microwaves reflected by the microwave radiation mechanism 41 and directed to the main amplifier 47, and includes a circulator and a dummy load (coaxial terminator).
  • the circulator guides the microwave reflected by the antenna unit 43 of the microwave radiation mechanism 41 described later to the dummy load, and the dummy load converts the reflected microwave guided by the circulator into heat.
  • the microwave radiation mechanism 41 includes a waveguide 44 having a coaxial structure that transmits microwaves, and the microwave transmitted through the waveguide 44 is transferred to the chamber 1. And an antenna portion 43 that radiates inside. Then, the microwaves radiated from the microwave radiation mechanism 41 into the chamber 1 are combined in the space in the chamber 1, and surface wave plasma is formed in the chamber 1.
  • the waveguide 44 is configured by coaxially arranging a cylindrical outer conductor 52 and a rod-shaped inner conductor 53 provided at the center thereof, and an antenna portion 43 is provided at the tip of the waveguide 44.
  • the inner conductor 53 is a power supply side
  • the outer conductor 52 is a ground side.
  • the upper end of the outer conductor 52 and the inner conductor 53 is a reflection plate 58.
  • a feeding mechanism 54 that feeds microwaves (electromagnetic waves) is provided on the proximal end side of the waveguide 44.
  • the power feeding mechanism 54 has a microwave power introduction port 55 for introducing microwave power provided on a side surface of the waveguide 44 (outer conductor 52).
  • a coaxial line 56 including an inner conductor 56 a and an outer conductor 56 b is connected to the microwave power introduction port 55 as a feed line for supplying the microwave amplified from the amplifier unit 42.
  • a feeding antenna 90 extending horizontally toward the inside of the outer conductor 52 is connected to the tip of the inner conductor 56 a of the coaxial line 56.
  • the feed antenna 90 is formed by, for example, cutting a metal plate such as aluminum and then fitting it into a dielectric member such as Teflon (registered trademark).
  • a slow wave material 59 made of a dielectric material such as Teflon (registered trademark) for shortening the effective wavelength of the reflected wave is provided between the reflector 58 and the feeding antenna 90.
  • the slow wave material 59 may not be provided.
  • the electromagnetic wave radiated from the power feeding antenna 90 is reflected by the reflection plate 58, thereby transmitting the maximum electromagnetic wave into the waveguide 44 having the coaxial structure.
  • the distance from the feeding antenna 90 to the reflector 58 is set to a half wavelength multiple of about ⁇ g / 4.
  • this may not apply to microwaves with low frequencies due to radial constraints.
  • it is preferable to optimize the shape of the feeding antenna so that the antinodes of the electromagnetic waves generated from the feeding antenna 90 are induced below the feeding antenna 90 instead of the feeding antenna 90.
  • the feeding antenna 90 is connected to the inner conductor 56 a of the coaxial line 56 at the microwave power introduction port 55, and the first pole 92 to which the electromagnetic wave is supplied and the second electromagnetic wave to radiate the supplied electromagnetic wave.
  • the antenna main body 91 having the pole 93 and the reflection part 94 extending from both sides of the antenna main body 91 along the outside of the inner conductor 53 to form a ring shape, and the electromagnetic wave incident on the antenna main body 91 and the reflection part A standing wave is formed by the electromagnetic wave reflected at 94.
  • the second pole 93 of the antenna body 91 is in contact with the inner conductor 53.
  • the microwave power is fed into the space between the outer conductor 52 and the inner conductor 53 by the feed antenna 90 radiating microwaves (electromagnetic waves). Then, the microwave power supplied to the power feeding mechanism 54 propagates toward the antenna unit 43.
  • a tuner 60 is provided in the waveguide 44.
  • the tuner 60 matches the impedance of the load (plasma) in the chamber 1 with the characteristic impedance of the microwave power source in the microwave output unit 30, and includes two tuners provided between the outer conductor 52 and the inner conductor 53. It has slag 61a, 61b and the slag drive part 70 provided in the outer side (upper side) of the reflecting plate 58.
  • FIG. 1 A tuner 60 is provided in the waveguide 44.
  • the tuner 60 matches the impedance of the load (plasma) in the chamber 1 with the characteristic impedance of the microwave power source in the microwave output unit 30, and includes two tuners provided between the outer conductor 52 and the inner conductor 53. It has slag 61a, 61b and the slag drive part 70 provided in the outer side (upper side) of the reflecting plate 58.
  • the slag 61a is provided on the slag drive unit 70 side, and the slag 61b is provided on the antenna unit 43 side. Further, in the inner space of the inner conductor 53, two slag moving shafts 64a and 64b for slag movement are provided along a longitudinal direction of the inner conductor 53.
  • the slag moving shafts 64a and 64b are formed by screw rods having trapezoidal screws, for example.
  • the slag 61a has an annular shape made of a dielectric, and a sliding member 63 made of a resin having slipperiness is fitted inside the slag 61a.
  • the sliding member 63 is provided with a screw hole 65a into which the slag moving shaft 64a is screwed and a through hole 65b into which the slag moving shaft 64b is inserted.
  • the slag 61b has a screw hole 65a and a through hole 65b as in the case of the slag 61a.
  • the screw hole 65a is screwed to the slag moving shaft 64b and is connected to the through hole 65b. The slag moving shaft 64a is inserted.
  • the slag 61a moves up and down by rotating the slag movement shaft 64a
  • the slag 61b moves up and down by rotating the slag movement shaft 64b. That is, the slugs 61a and 61b are moved up and down by a screw mechanism including the slug moving shafts 64a and 64b and the sliding member 63.
  • the inner conductor 53 has three slits 53a formed at equal intervals along the longitudinal direction.
  • the sliding member 63 is provided with three protrusions 63a at equal intervals so as to correspond to the slits 53a. Then, the sliding member 63 is fitted into the slags 61a and 61b in a state where the protruding portions 63a are in contact with the inner circumferences of the slags 61a and 61b.
  • the outer peripheral surface of the sliding member 63 comes into contact with the inner peripheral surface of the inner conductor 53 without play, and the sliding member 63 slides up and down the inner conductor 53 by rotating the slug movement shafts 64a and 64b. It is supposed to be.
  • the inner peripheral surface of the inner conductor 53 functions as a sliding guide for the slugs 61a and 61b.
  • the width of the slit 53a is preferably 5 mm or less.
  • a resin material constituting the sliding member 63 a resin having good sliding property and relatively easy to process, for example, a polyphenylene sulfide (PPS) resin can be mentioned as a suitable material.
  • PPS polyphenylene sulfide
  • the slag moving shafts 64 a and 64 b extend through the reflecting plate 58 to the slag driving unit 70.
  • a bearing (not shown) is provided between the slug moving shafts 64a and 64b and the reflection plate 58.
  • a bottom plate 67 made of a conductor is provided at the lower end of the inner conductor 53.
  • the lower ends of the slag moving shafts 64a and 64b are normally open ends to absorb vibration during driving, and a bottom plate 67 is provided at a distance of about 2 to 5 mm from the lower ends of the slag moving shafts 64a and 64b. It has been.
  • the bottom plate 67 may be used as a bearing portion, and the lower ends of the slag moving shafts 64a and 64b may be supported by the bearing portion.
  • the slag drive unit 70 has a casing 71, slag moving shafts 64a and 64b extend into the casing 71, and gears 72a and 72b are attached to the upper ends of the slag moving shafts 64a and 64b, respectively.
  • the slag drive unit 70 is provided with a motor 73a that rotates the slag movement shaft 64a and a motor 73b that rotates the slag movement shaft 64b.
  • a gear 74a is attached to the shaft of the motor 73a, and a gear 74b is attached to the shaft of the motor 73b.
  • the gear 74a meshes with the gear 72a, and the gear 74b meshes with the gear 72b.
  • the slag movement shaft 64a is rotated by the motor 73a via the gears 74a and 72a
  • the slag movement shaft 64b is rotated by the motor 73b via the gears 74b and 72b.
  • the motors 73a and 73b are, for example, stepping motors.
  • the slag moving shaft 64b is longer than the slag moving shaft 64a and reaches the upper side. Therefore, the positions of the gears 72a and 72b are vertically offset, and the motors 73a and 73b are also vertically offset. Thereby, the space of a power transmission mechanism such as a motor and gears can be reduced, and the casing 71 that accommodates them can have the same diameter as the outer conductor 52.
  • increment type encoders 75a and 75b for detecting the positions of the slugs 61a and 61b are provided so as to be directly connected to these output shafts.
  • the positions of the slags 61a and 61b are controlled by the slag controller 68.
  • the slag controller 68 controls the motors 73a and 73b based on the impedance value of the input end detected by an impedance detector (not shown) and the positional information of the slags 61a and 61b detected by the encoders 75a and 75b.
  • the impedance is adjusted by sending a signal and controlling the positions of the slugs 61a and 61b.
  • the slug controller 68 performs impedance matching so that the termination is, for example, 50 ⁇ . When only one of the two slugs is moved, a trajectory passing through the origin of the Smith chart is drawn, and when both are moved simultaneously, only the phase rotates.
  • the antenna unit 43 has a planar surface having a slot for radiating microwaves and a surface wave plasma generating antenna 81 for generating surface wave plasma, and a delay provided on the upper surface of the surface wave plasma generating antenna 81. And a corrugated material 82.
  • a cylindrical member 82 a made of a conductor passes through the center of the slow wave member 82 to connect the bottom plate 67 and the surface wave plasma generating antenna 81. Therefore, the inner conductor 53 is connected to the surface wave plasma generating antenna 81 through the bottom plate 67 and the cylindrical member 82a.
  • the slow wave material 82 and the surface wave plasma generating antenna 81 have a disk shape larger in diameter than the outer conductor 52.
  • the lower end of the outer conductor 52 extends to the surface of the slow wave material 82, and the periphery of the slow wave material 82, the surface wave plasma generating antenna 81, and a top plate 83 to be described later is covered with a covered conductor 84.
  • the slow wave material 82 has a dielectric constant larger than that of vacuum, and is made of, for example, fluorine resin or polyimide resin such as quartz, ceramics, polytetrafluoroethylene, etc. Therefore, the antenna has a function of shortening the wavelength of the microwave to make the antenna smaller.
  • the slow wave material 82 can adjust the phase of the microwave depending on its thickness, and the thickness thereof is adjusted so that the surface wave plasma generating antenna 81 becomes a “wave” of a standing wave. Thereby, reflection can be minimized and the radiation energy of the surface wave plasma generating antenna 81 can be maximized.
  • a top plate 83 made of a dielectric member, for example, quartz or ceramics, for forming an electric field for generating surface wave plasma and vacuum-sealing is disposed on the further tip side of the surface wave plasma generating antenna 81. ing. Then, the microwave amplified by the main amplifier 47 passes between the peripheral walls of the inner conductor 53 and the outer conductor 52, passes through the top plate 83 from the surface wave plasma generating antenna 81, and is radiated to the space in the chamber 1. .
  • a dielectric member for example, quartz or ceramics
  • the surface wave plasma generating antenna 81 is formed in a disc shape (planar shape) as a whole, and six slots 131 are formed in a circumferential shape. Yes. All of these slots 131 have the same shape and are formed in an elongated shape along the circumference.
  • the joint portion between adjacent ones of the slots 131 is configured such that the end of one slot 131 and the end of the other slot 131 overlap each other. That is, the center portion of the slot 131 is in a state where one end portion on the outer side and the other end portion on the inner side are connected, and an annular region 132 indicated by a two-dot chain line including six slots 131 is included.
  • FIG. 7 the surface wave plasma generating antenna 81 is formed in a disc shape (planar shape) as a whole, and six slots 131 are formed in a circumferential shape. Yes. All of these slots 131 have the same shape and are formed in an elongated shape along the circumference.
  • the joint portion between adjacent ones of the slots 131 is
  • the slot 131 has a length of ( ⁇ g / 2) ⁇ .
  • ⁇ g is the effective wavelength of the microwave
  • is a fine adjustment component (including 0) that is finely adjusted so that the uniformity of the electric field strength is increased in the circumferential direction (angular direction).
  • the length of the slot 131 is not limited to about ⁇ g / 2, but may be any length obtained by subtracting a fine adjustment component (including 0) from an integral multiple of ⁇ g / 2.
  • the slot 131 has a substantially equal length at the center, and one end and the other end (overlap portion) on both sides thereof.
  • the central portion has a length of ( ⁇ g / 6) ⁇ 1
  • the end portions on both sides thereof have lengths of ( ⁇ g / 6) ⁇ 2 and ( ⁇ g / 6) ⁇ 3 , respectively.
  • the slot 131 is formed such that its inner circumference is at a position of ( ⁇ g / 4) ⁇ ⁇ ′ from the center of the surface wave plasma generating antenna 81.
  • ⁇ ′ is a fine adjustment component (including 0) for fine adjustment to make the electric field intensity distribution in the radial direction uniform.
  • the length from the center to the inner periphery of the slot is not limited to about ⁇ g / 4, and may be any length obtained by adding a fine adjustment component (including 0) to an integral multiple of ⁇ g / 4.
  • Such a surface wave plasma generating antenna 81 can avoid the electromagnetic wave intensity from being weakened at the slot-to-slot joint, and can improve the plasma uniformity in the circumferential direction (angular direction).
  • the number of slots is not limited to six, and the same effect can be obtained even when, for example, five, four, or seven or more.
  • the slot shape of the surface wave plasma generating antenna 81 is not limited to that shown in FIG. 7.
  • a plurality of arc-shaped slots may be formed uniformly on the circumference.
  • the slow wave member 82 and the surface wave plasma generating antenna 81 have sensor insertion holes that penetrate the slots 131 and reach the surface of the top plate 83 in regions corresponding to the inside of the slots 131. 110 is provided.
  • the electric field sensor 112 or the plasma light emission sensor 113 is inserted into at least one of the sensor insertion holes 110 through the reflective skin 111 made of a cylindrical metal (see FIG. 3).
  • a plug for preventing electromagnetic wave leakage (dummy plug) may be inserted into the sensor insertion hole 110 in which the electric field sensor 112 or the plasma emission sensor 113 is not inserted.
  • the electric field sensor 112 has a coaxial cable shape and has a monopole antenna at the tip.
  • the electric field sensor 112 includes an inner conductor 121, an outer outer conductor 122, and a dielectric 123 such as Teflon (registered trademark) provided therebetween.
  • the tip portion of about 3 mm is a notch 124 where the outer conductor 122 does not exist, and the tip constitutes a monopole antenna having only the inner conductor 121.
  • tip 125 of this electric field sensor 112 contact or adjoin to the back surface of the top plate 83, electromagnetic waves are input from the notch part 124 of a front-end
  • the diameter of the sensor insertion hole 110 for example, about 3 mm can be used.
  • a standard coaxial cable inner conductor: ⁇ 0.51 mm, outer conductor: ⁇ 2.19 mm, dielectric: ⁇ 1.67 mm
  • the standing wave generated in the dielectric body constituting the top plate 83 has the same pattern, and the position of the abdominal node of the standing wave is fixed.
  • the magnitude of the standing wave increases with the antenna output power.
  • the electric field sensor 112 uses this. That is, the output power from the surface wave plasma generating antenna 81 can be directly monitored if the electric field sensor 112 is brought into contact with or close to the back surface of the top plate 83 while avoiding the positions of antinodes and nodes of the standing wave. Become.
  • the monitor power in this case is as shown in FIG. 9, for example.
  • desired monitor power can be extracted by adjusting the length of the monopole portion.
  • the intensity of the detected current can also be adjusted by adjusting the strength of the electric field detected by adjusting the distance between the tip of the electric field sensor 112 and the back surface of the dielectric top plate 83.
  • the monitor current value flowing through the monitor line is proportional to the electric field, but the power passing through the top plate 83 is proportional to the square of the electric field, so the square of the monitor current value is proportional to this passing power.
  • the relationship is obtained. If the power loss from the power source to the top plate 83 is negligibly small until propagation, and almost all energy is absorbed by the plasma, the input power and the passing power at the top plate 83 are almost equal.
  • the signal detected by the electric field sensor 112 is measured by the measuring unit 126 and compared with a predetermined value stored in advance in the measuring unit 126, so that electromagnetic waves are normally emitted from the surface wave plasma generating antenna 81. It is possible to grasp whether or not. Further, since the electric field sensor 112 is in contact with the plasma via the top plate 83, for example, the change in the output electric field value of the surface wave plasma generating antenna 81 when the plasma conditions (gas type, pressure, etc.) are changed. By monitoring, it is possible to grasp a change in plasma impedance. Further, it can be used as means for detecting plasma ignition / misfire.
  • the sensor to be inserted into the sensor insertion hole 110 is the plasma emission sensor 113
  • the plasma emission sensor 113 it is possible to detect whether or not the plasma is actually ignited when the microwave radiation mechanism 41 emits microwaves.
  • the plasma light emission sensor 113 a general optical sensor is used, and light emission of plasma is directly detected through the top plate 83 by a light receiving element. Thereby, sufficient light emission intensity can be obtained and high detection accuracy can be obtained.
  • the signal detected by the plasma emission sensor 113 is taken into the power amplifier control board in the measurement unit 126, and if the detection signal cannot be detected within a predetermined time (for example, 5 seconds) after the power is turned on. It can be considered that the power is turned off because the plasma is not ignited.
  • the main amplifier 47, the tuner 60, and the surface wave plasma generating antenna 81 are arranged close to each other.
  • the tuner 60 and the surface wave plasma generating antenna 81 constitute a lumped constant circuit existing within a half wavelength, and the surface wave plasma generating antenna 81, the slow wave material 82, and the top plate 83 are combined. Since the resistance is set to 50 ⁇ , the tuner 60 is directly tuned with respect to the plasma load, and can efficiently transmit energy to the plasma.
  • the control unit 140 includes a storage unit that stores a process sequence of the surface wave plasma processing apparatus 100 and a process recipe that is a control parameter, an input unit, a display, and the like, and controls the plasma processing apparatus according to the selected process recipe. It has become.
  • the operation in the surface wave plasma processing apparatus 100 configured as described above will be described.
  • the wafer W is loaded into the chamber 1 and placed on the susceptor 11.
  • a plasma gas for example, Ar gas
  • a microwave is introduced into the chamber 1 from the microwave plasma source 2.
  • a surface wave plasma is generated.
  • a processing gas for example, an etching gas such as Cl 2 gas is discharged from the processing gas supply source 25 into the chamber 1 through the pipe 24 and the shower plate 20.
  • the discharged processing gas is excited by plasma that has passed through the space 23 of the shower plate 20 to be converted into plasma, and plasma processing, for example, etching processing is performed on the wafer W by the plasma of the processing gas.
  • the microwave power oscillated from the microwave oscillator 32 of the microwave output unit 30 is amplified by the amplifier 33 and then distributed to a plurality by the distributor 34.
  • the distributed microwave power is guided to the microwave supply unit 40.
  • the microwave power distributed in plural is individually amplified by the main amplifier 47 constituting the solid state amplifier, and is supplied to the waveguide 44 of the microwave radiating mechanism 41.
  • the impedance is automatically matched by 60, and is radiated into the chamber 1 through the surface wave plasma generating antenna 81 and the top plate 83 of the antenna unit 43 in a state where there is substantially no power reflection and is spatially synthesized.
  • the power supply to the waveguide 44 of the microwave radiation mechanism 41 is performed from the side surface because the slag driving unit 70 is provided on the extension line of the axis of the waveguide 44 having the coaxial structure. That is, when the microwave (electromagnetic wave) propagating from the coaxial line 56 reaches the first pole 92 of the power feeding antenna 90 at the microwave power introduction port 55 provided on the side surface of the waveguide 44, it follows the antenna body 91. Then, the microwave (electromagnetic wave) propagates and radiates the microwave (electromagnetic wave) from the second pole 93 at the tip of the antenna body 91.
  • microwave (electromagnetic wave) propagating through the antenna main body 91 is reflected by the reflecting portion 94 and is combined with the incident wave to generate a standing wave.
  • a standing wave is generated at the position where the feed antenna 90 is disposed, an induced magnetic field is generated along the outer wall of the inner conductor 53, and an induced electric field is generated by being induced thereby.
  • the maximum microwave (electromagnetic wave) power can be transmitted to the waveguide 44 having the coaxial structure by reflecting the microwave (electromagnetic wave) radiated from the feeding antenna 90 by the reflection plate 58.
  • the distance from the feed antenna 90 to the reflector 58 is a half wavelength of about ⁇ g / 4.
  • the microwave radiation mechanism 41 is extremely compact because the antenna unit 43 and the tuner 60 are integrated. For this reason, the microwave plasma source 2 itself can be made compact. Further, the main amplifier 47, the tuner 60, and the surface wave plasma generating antenna 81 are provided close to each other. In particular, the tuner 60 and the surface wave plasma generating antenna 81 can be configured as a lumped constant circuit, and the surface wave plasma. By designing the combined resistance of the generating antenna 81, the slow wave member 82, and the top plate 83 to 50 ⁇ , the tuner 60 can tune the plasma load with high accuracy.
  • the tuner 60 since the tuner 60 constitutes a slag tuner that can perform impedance matching by moving the two slags 61a and 61b, the tuner 60 is compact and has low loss. Further, the tuner 60 and the surface wave plasma generating antenna 81 are close to each other, constitute a lumped constant circuit and function as a resonator, and thereby impedance mismatching up to the surface wave plasma generating antenna 81 is achieved. Can be eliminated with high accuracy, and the inconsistent portion can be substantially made into a plasma space. Therefore, the tuner 60 enables high-precision plasma control.
  • the drive transmission part, the drive guide part, and the holding part for driving the slag are provided inside the inner conductor 53, the drive mechanism of the slags 61a and 61b can be reduced in size.
  • the microwave radiation mechanism 41 can be reduced in size.
  • each microwave radiation mechanism 41 is provided with a sensor insertion hole 110, and the electric field sensor 112 or the plasma emission sensor 113 is inserted into the sensor insertion hole 110, so that the surface wave of one microwave radiation mechanism 41 is obtained.
  • the power value of the microwave radiated from the plasma generating antenna 81 or the presence / absence of plasma ignition (lighting) in one microwave radiation mechanism 41 is grasped.
  • the electric field sensor 112 has a monopole antenna structure by providing the notch 124 where the outer conductor 122 does not exist at the tip of the coaxial cable, so that the electromagnetic wave from the top plate 83 can be obtained via the notch 124 at the tip. Is detected, and the output power from the surface wave plasma generating antenna 81 can be directly monitored.
  • the signal detected by the electric field sensor 112 is measured by the measuring unit 126 and compared with a predetermined value stored in advance in the measuring unit 126, so that electromagnetic waves are normally emitted from the surface wave plasma generating antenna 81. It is possible to grasp whether or not. For example, when an appropriate electron density is obtained when supplying 1000 W of power from a power source and an appropriate process result is obtained, the electric field value (for example, peak value or If the effective value) is monitored, it can be determined whether or not normal power is radiated from the surface wave plasma generating antenna 81 by comparing the measured value with the actually measured value.
  • the electric field value for example, peak value or If the effective value
  • the electric field sensor 112 is located on the side irradiated with the microwave and is in contact with the plasma via the top plate 83, for example, surface wave plasma when the plasma conditions (gas type, pressure, etc.) are changed.
  • the electric field value of the generating antenna 81 By monitoring the change in the output electric field value of the generating antenna 81, it is possible to grasp the change in the plasma impedance. If the value of plasma impedance increases, the electric field value increases. Thereby, it becomes possible to grasp
  • the electric field sensor 112 can also be used as means for detecting plasma ignition / misfire. Specifically, ignition / misfire can be determined by comparing a signal from the electric field sensor 112 with a previously measured ignition signal. Accordingly, it is not necessary to install a window on the side surface of the chamber as in the prior art, and it is possible to realize ignition / misfire detection means that is much cheaper than a conventional structure.
  • the plasma light emission sensor 113 directly detects the light emission of the plasma through the top plate 83 by the light receiving element, it is possible to obtain sufficient light emission intensity, and to detect the plasma ignition or misfire directly under each microwave radiation mechanism 41 with high accuracy. be able to.
  • FIG. 11A shows a result of electric field simulation in the case where a surface wave plasma generating antenna having five slots is used and one sensor insertion hole is provided.
  • the electric field distribution is eccentric to the sensor insertion hole side. I understand.
  • the number of sensor insertion holes 110 that is n times the number of the slots 131 of the surface wave plasma generating antenna 81 (n is an integer of 1 or more) is centered on the axis of the waveguide 44 having the coaxial structure.
  • the electric field sensor 112 or the plasma light emitting sensor 113 is inserted into at least one of them on the same circumference.
  • FIG. 12 shows the results of variations in plug rotation angle, radial position, plug diameter, and electric field at that time.
  • FIG. 13 is a diagram for explaining the rotation angle, radial position, and plug diameter of the plug in FIG. Note that circle 1 in FIG. 12 is a variation in electric field in a region having a radius of 65 mm from the center of the antenna, and circle 2 is a variation in electric field in a region having a radius of 37.5 mm from the center of the antenna.
  • FIG. No. 1 when no plug is provided.
  • No. 2 is the case where only one plug is provided.
  • Nos. 3 to 13 are cases where five plugs are provided.
  • Nos. 3 to 7 were obtained by changing the rotation angle.
  • Nos. 8 to 10 were obtained by changing the radial position.
  • Nos. 11 to 13 have different plug diameters.
  • FIG. 12 when there is only one plug, variation in the circumferential direction is large in the circle 2, but when five plugs are provided, the plug is centered on the waveguide center axis. If the same number of slots are provided on the same circumference, the electric field distribution equivalent to that without a plug can be obtained regardless of the rotation angle, radial position, and plug diameter. I understand that.
  • the attenuation constant is 50 dB at a position 4.0 mm away from the contact surface as shown in FIG. A sufficient damping constant is obtained. Therefore, in this case, if the measurement substrate of the electric field sensor 112 or the light receiving element of the plasma light emission sensor 113 is separated from the back surface of the top plate 83 by 4.0 mm or more, the influence of electromagnetic waves from the top plate 83 can be avoided. . Moreover, such an adverse effect can also be avoided by sufficiently reducing the diameter of the sensor insertion hole 110 compared to the wavelength used.
  • the sensor insertion hole 110 is formed in the top plate 83, so that a narrow hole space is formed in the atmosphere and electric power is taken out therefrom.
  • the power to be extracted can be sufficiently attenuated (eg, ⁇ 60 dB) with respect to the power output power by optimizing the diameter of the sensor insertion hole 110 and the monopole antenna of the electric field sensor 112, so that the power loss can be sufficiently reduced. Sufficient power can be taken out while reducing the size.
  • the sensor insertion hole is located on the same circumference around the axis of the microwave transmission path in the region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna. Since the number of slots is equal to n times (where n is an integer equal to or greater than 1), the effects of the sensor insertion holes on the electromagnetic waves cancel each other, and the electric field distribution is not disturbed. It is possible to detect the power and the plasma state directly under the antenna.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the idea of the present invention.
  • the configuration of the microwave output unit 30 and the microwave supply unit 40 is not limited to the above embodiment. Specifically, when it is not necessary to control the directivity of the microwave radiated from the antenna or to make it circularly polarized, the phase shifter is unnecessary.
  • the etching processing apparatus is exemplified as the plasma processing apparatus.
  • the plasma processing apparatus can be used for other plasma processing such as film formation processing, oxynitride film processing, and ashing processing.
  • the substrate to be processed is not limited to the semiconductor wafer W, and may be another substrate such as an FPD (flat panel display) substrate typified by a substrate for LCD (liquid crystal display) or a ceramic substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A microwave radiating mechanism (41) comprises: a surface wave plasma emitting antenna (81); a slow wave material (82) formed from a dielectric; a dielectric member (83) in which an electric field is formed for generating a surface wave plasma by microwaves radiated from the antenna (81); either an electric field sensor (112) or a plasma light emission sensor (113); and sensor via holes (110) which are disposed for the passage of the slow wave material (82) and the surface wave plasma emitting antenna (81). The sensor through holes (110) are formed in a region corresponding to the interior of a slot in a concentric circle with an equivalent one or more integer multiples of one or more slots. Either the electric field sensor (112) or the plasma light emission sensor (113) is inserted into at least one of the sensor through holes (110).

Description

マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置Microwave radiation mechanism, surface wave plasma source and surface wave plasma processing apparatus
 本発明は、マイクロ波放射機構、表面波プラズマ源および表面波プラズマ処理装置に関する。 The present invention relates to a microwave radiation mechanism, a surface wave plasma source, and a surface wave plasma processing apparatus.
 プラズマ処理は、半導体デバイスの製造に不可欠な技術であるが、近時、LSIの高集積化、高速化の要請からLSIを構成する半導体素子のデザインルールが益々微細化され、また、半導体ウエハが大型化されており、それにともなって、プラズマ処理装置においてもこのような微細化および大型化に対応するものが求められている。 Plasma processing is an indispensable technology for the manufacture of semiconductor devices. Recently, the design rules of semiconductor elements constituting LSIs have been increasingly miniaturized due to the demand for higher integration and higher speed of LSIs, and semiconductor wafers Along with this, there is a demand for plasma processing apparatuses that can cope with such miniaturization and enlargement.
 ところが、従来から多用されてきた平行平板型や誘導結合型のプラズマ処理装置では、生成されるプラズマの電子温度が高いため微細素子にプラズマダメージを生じてしまい、また、プラズマ密度の高い領域が限定されるため、大型の半導体ウエハを均一かつ高速にプラズマ処理することは困難である。 However, in parallel plate type and inductively coupled plasma processing apparatuses that have been widely used in the past, the electron temperature of the generated plasma is high, causing plasma damage to fine elements, and limiting the region where the plasma density is high. Therefore, it is difficult to uniformly and rapidly perform plasma processing on a large semiconductor wafer.
 そこで、高密度で低電子温度の表面波プラズマを均一に形成することができるRLSA(Radial Line Slot Antenna)マイクロ波プラズマ処理装置が注目されている(例えば特許文献1)。 Therefore, an RLSA (Radial Line Slot Antenna) microwave plasma processing apparatus that can uniformly form high-density, low-electron-temperature surface wave plasma has attracted attention (for example, Patent Document 1).
 RLSAマイクロ波プラズマ処理装置は、表面波プラズマ発生用アンテナとしてチャンバの上部に所定のパターンで複数のスロットが形成されたラジアルラインスロットアンテナ(Radial Line Slot Antenna)を設け、マイクロ波発生源から導かれたマイクロ波を、アンテナのスロットから放射させるとともに、その下に設けられた誘電体からなるマイクロ波透過板を介して真空に保持されたチャンバ内に放射し、このマイクロ波電界によりチャンバ内で表面波プラズマを生成し、これにより半導体ウエハ等の被処理体を処理するものである。 The RLSA microwave plasma processing apparatus is provided with a radial line slot antenna (Radial Line Slot Antenna) having a plurality of slots formed in a predetermined pattern at the top of the chamber as a surface wave plasma generation antenna, and is guided from a microwave generation source. The microwave is radiated from the slot of the antenna and radiated into a chamber held in a vacuum through a microwave transmission plate made of a dielectric material provided under the antenna. Wave plasma is generated, thereby processing an object to be processed such as a semiconductor wafer.
 また、マイクロ波を複数に分配し、上記のような表面波プラズマ発生用アンテナを有するマイクロ波放射部を複数設け、それらから放射されたマイクロ波をチャンバ内に導きチャンバ内でマイクロ波を空間合成してプラズマを生成するプラズマ処理装置も提案されている(特許文献2)。 In addition, the microwaves are divided into a plurality of parts, and a plurality of microwave radiating parts having the above-mentioned surface wave plasma generating antennas are provided. A plasma processing apparatus for generating plasma has also been proposed (Patent Document 2).
 そして、この種のプラズマ処理装置においては、プラズマを生成するためのマイクロ波の出力の検出を給電部とチューナの間の位置で行っており、また、実際のプラズマ状態の検出は、チャンバに設けられた小型窓を介して行っている。 In this type of plasma processing apparatus, the output of the microwave for generating plasma is detected at a position between the power supply unit and the tuner, and the actual plasma state is detected in the chamber. Through small windows.
特開2000-294550号公報JP 2000-294550 A 国際公開第2008/013112号パンフレットInternational Publication No. 2008/013112 Pamphlet
 マイクロ波の出力の検出を給電部とチューナの間の位置で行う場合には、実際に表面波プラズマ発生用アンテナから設定通りの電力が出力されているか否かを把握することが困難である。また、チャンバに設けられた小型窓を介してプラズマの状態を検出する場合には、複数のアンテナモジュールのうちプラズマが消火していたり、着火不良が生じていたりしても、それを検出することが困難である。 When detecting the microwave output at a position between the power supply unit and the tuner, it is difficult to determine whether or not the set power is actually output from the surface wave plasma generating antenna. In addition, when detecting the plasma state through a small window provided in the chamber, it is possible to detect even if the plasma is extinguished or defective in ignition among multiple antenna modules. Is difficult.
 このような不都合を解消するためには、表面波プラズマ発生用アンテナから出力される電力やアンテナ直下のプラズマ状態を直接検出することが考えられるが、その場合にはプラズマを生成するための電界分布を乱すおそれがある。 In order to eliminate such inconvenience, it is conceivable to directly detect the power output from the surface wave plasma generating antenna and the plasma state directly under the antenna. In this case, the electric field distribution for generating the plasma May be disturbed.
 したがって、本発明の目的は、表面波プラズマ発生用アンテナから出力される電力やアンテナ直下のプラズマ状態を、プラズマ生成するための電界分布を乱すことなく直接検出することができるマイクロ波放射機構、ならびに、それを用いた表面波プラズマ源および表面波プラズマ処理装置を提供することにある。 Accordingly, an object of the present invention is to provide a microwave radiation mechanism capable of directly detecting the power output from the surface wave plasma generating antenna and the plasma state immediately below the antenna without disturbing the electric field distribution for generating the plasma, and Another object is to provide a surface wave plasma source and a surface wave plasma processing apparatus using the same.
 本発明の第1の観点によれば、チャンバ内に表面波プラズマを形成するための表面波プラズマ源におけるマイクロ波出力部から出力されたマイクロ波を伝送するマイクロ波伝送路に設けられ、マイクロ波をチャンバ内に放射するマイクロ波放射機構であって、前記マイクロ波伝送路を伝送されてきたマイクロ波を、スロットを介して前記チャンバ内に放射して表面波プラズマを発生させる表面波プラズマ発生用アンテナと、前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの上流側に設けられた誘電体からなる遅波材と、前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの下流側に設けられ、前記表面波プラズマ発生用アンテナから放射されたマイクロ波により前記表面波プラズマを生成するための電界が形成される誘電体部材と、前記表面波プラズマ発生用アンテナから放射されたマイクロ波の電力を計測するために前記誘電体部材の電界を検出する電界センサ、または、前記誘電体部材を介して表面波プラズマの発光を検出するプラズマ発光センサと、前記遅波材および前記表面波プラズマ発生用アンテナを貫通するように設けられ、前記電界センサまたは前記プラズマ発光センサが挿入されるセンサ挿入孔と、を具備し、前記センサ挿入孔は、前記遅波材および前記表面波プラズマ発生用アンテナの前記スロット内側に対応する領域に、前記マイクロ波伝送路の軸を中心とした同一の円周上に前記スロットのn倍(ただし、nは1以上の整数)の個数が均等に形成されており、前記電界センサまたは前記プラズマ発光センサは、前記センサ挿入孔の少なくとも一つに挿入されている、マイクロ波放射機構が提供される。 According to a first aspect of the present invention, a microwave transmission path for transmitting a microwave output from a microwave output unit in a surface wave plasma source for forming a surface wave plasma in a chamber is provided. A microwave radiation mechanism for radiating a microwave into the chamber, and generating a surface wave plasma by radiating the microwave transmitted through the microwave transmission path into the chamber through a slot An antenna, a slow-wave material made of a dielectric material provided upstream of the surface wave plasma generating antenna of the microwave transmission path, and a downstream side of the surface wave plasma generating antenna of the microwave transmission path An electric field for generating the surface wave plasma is formed by the microwave radiated from the surface wave plasma generating antenna. An electric field sensor that detects an electric field of the dielectric member in order to measure the electric power of the microwave radiated from the electric wave member and the antenna for generating the surface wave plasma, or the surface wave plasma via the dielectric member A plasma emission sensor for detecting luminescence, and a sensor insertion hole provided so as to penetrate the slow wave material and the surface wave plasma generating antenna, and into which the electric field sensor or the plasma emission sensor is inserted, The sensor insertion hole is formed in a region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna, n times the slot on the same circumference centered on the axis of the microwave transmission path. (Where n is an integer equal to or greater than 1), and the electric field sensor or the plasma emission sensor has a small number of sensor insertion holes. Kutomo one to have been inserted, the microwave radiation mechanism is provided.
 前記電界センサは、先端にモノポール部分を有する同軸ケーブルにより構成され、前記誘電体部材に前記モノポール部分を接触または近接させることにより、前記誘電体部材に生じている電界をモニタするものであることが好ましい。また、前記電界センサは、前記表面波プラズマ発生用アンテナから正常に電磁波が放射されているか否かを把握する機能、プロセスに応じて適切なプラズマ条件を得るための電力値を把握する機能、および、プラズマの着火または失火を検出する機能を有するものとすることができる。 The electric field sensor is constituted by a coaxial cable having a monopole portion at a tip, and monitors an electric field generated in the dielectric member by bringing the monopole portion into contact with or close to the dielectric member. It is preferable. The electric field sensor has a function of grasping whether or not electromagnetic waves are normally radiated from the surface wave plasma generating antenna, a function of grasping a power value for obtaining an appropriate plasma condition according to a process, and It is possible to have a function of detecting ignition or misfiring of plasma.
 前記プラズマ発光センサは、前記誘電体部材を介してプラズマの発光を検出する受光素子を有し、受光素子が前記誘電体部材に接触または近接しているものとすることができる。 The plasma light emitting sensor may include a light receiving element that detects light emission of plasma through the dielectric member, and the light receiving element may be in contact with or close to the dielectric member.
 前記センサ挿入孔のうち、前記電界センサまたは前記プラズマ発光センサが挿入されていないものについて、電磁波漏洩防止用のプラグが挿入されていることが好ましい。 It is preferable that a plug for preventing electromagnetic wave leakage is inserted into the sensor insertion hole in which the electric field sensor or the plasma emission sensor is not inserted.
 本発明の第2の観点によれば、マイクロ波を生成するマイクロ波生成機構、生成されたマイクロ波を伝送するマイクロ波伝送路、および前記マイクロ波伝送路に設けられ、マイクロ波をチャンバ内に放射する複数のマイクロ波放射機構を有し、前記チャンバ内にマイクロ波を放射して前記チャンバ内に供給されたガスによる表面波プラズマを生成する表面波プラズマ源であって、前記のマイクロ波放射機構は、上記第1の観点の構成を有する、表面波プラズマ源を提供する。 According to the second aspect of the present invention, a microwave generation mechanism for generating a microwave, a microwave transmission path for transmitting the generated microwave, and the microwave transmission path are provided, and the microwave is provided in the chamber. A surface wave plasma source having a plurality of microwave radiation mechanisms for radiating, and radiating microwaves into the chamber to generate surface wave plasma by gas supplied into the chamber, wherein the microwave radiation The mechanism provides a surface wave plasma source having the configuration of the first aspect.
 本発明の第3の観点よれば、被処理基板を収容するチャンバと、前記チャンバ内にガスを供給するガス供給機構と、マイクロ波を生成するマイクロ波生成機構、生成されたマイクロ波を伝送するマイクロ波伝送路、および前記マイクロ波伝送路に設けられ、マイクロ波を前記チャンバ内に放射する複数のマイクロ波放射機構を有し、前記チャンバ内にマイクロ波を放射して前記チャンバ内に供給されたガスによる表面波プラズマを生成する表面波プラズマ源とを具備し、前記チャンバ内の被処理基板に対して前記表面波プラズマにより処理を施す表面波プラズマ処理装置であって、前記マイクロ波放射機構は、上記第1の観点の構成を有する、表面波プラズマ処理装置を提供する。 According to a third aspect of the present invention, a chamber that accommodates a substrate to be processed, a gas supply mechanism that supplies a gas into the chamber, a microwave generation mechanism that generates a microwave, and a generated microwave are transmitted. A microwave transmission path, and a plurality of microwave radiation mechanisms that are provided in the microwave transmission path and radiate microwaves into the chamber, radiate microwaves into the chamber, and are supplied into the chamber. A surface wave plasma source for generating a surface wave plasma from a gas, and processing the substrate to be processed in the chamber with the surface wave plasma, wherein the microwave radiation mechanism Provides a surface wave plasma processing apparatus having the configuration of the first aspect.
本発明の実施形態に係るマイクロ波放射機構を有する表面波プラズマ処理装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the surface wave plasma processing apparatus which has a microwave radiation mechanism which concerns on embodiment of this invention. 図1の表面波プラズマ処理装置に用いられるマイクロ波プラズマ源の構成を示す構成図である。It is a block diagram which shows the structure of the microwave plasma source used for the surface wave plasma processing apparatus of FIG. 図1の表面波プラズマ処理装置におけるマイクロ波放射機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the microwave radiation mechanism in the surface wave plasma processing apparatus of FIG. マイクロ波放射機構の給電機構を示す横断面図である。It is a cross-sectional view which shows the electric power feeding mechanism of a microwave radiation mechanism. チューナの本体におけるスラグと滑り部材を示す平面図である。It is a top view which shows the slag and the sliding member in the main body of a tuner. チューナの本体における内側導体を示す斜視図である。It is a perspective view which shows the inner side conductor in the main body of a tuner. 表面波プラズマ発生用アンテナの一例を示す平面図である。It is a top view which shows an example of the antenna for surface wave plasma generation. 電界センサの構造例を示す断面図である。It is sectional drawing which shows the structural example of an electric field sensor. 電界センサによるモニタ電力を示す図である。It is a figure which shows the monitor electric power by an electric field sensor. 表面波プラズマ発生用アンテナから放射される電力とモニタ電流の二乗の値との関係を示す図である。It is a figure which shows the relationship between the electric power radiated | emitted from the antenna for surface wave plasma generation, and the square value of monitor current. 5個のスロットを有する表面波プラズマ発生用アンテナにセンサ挿入孔を1箇所設けた場合の電界シミュレーション結果を示す図である。It is a figure which shows the electric field simulation result at the time of providing one sensor insertion hole in the antenna for surface wave plasma generation | occurrence | production which has five slots. 5個のスロットを有する表面波プラズマ発生用アンテナにセンサ挿入孔を同軸構造の導波路44の軸を中心にして同一の円周上に5個均等(等角度)に設けた場合の電界シミュレーション結果を示す図である。Results of electric field simulation in the case where five sensor insertion holes are provided on the same circumference around the axis of the coaxial waveguide 44 in the surface wave plasma generating antenna having five slots (equal angle). FIG. センサ挿入孔を5個均等に設け、センサ挿入孔にプラグを挿入した場合における、プラグ(センサ挿入孔)の回転角度、径方向の位置、プラグ(センサ挿入孔)の直径による電界のばらつきを、プラグ(センサ挿入孔)を設けない場合、およびプラグ(センサ挿入孔)を1個のみ設けた場合と比較して調査した結果を示す図である。When five sensor insertion holes are provided equally and a plug is inserted into the sensor insertion hole, the variation in electric field due to the rotation angle of the plug (sensor insertion hole), the radial position, and the diameter of the plug (sensor insertion hole) It is a figure which shows the result investigated compared with the case where a plug (sensor insertion hole) is not provided, and the case where only one plug (sensor insertion hole) is provided. 図12におけるプラグの回転角度、径方向の位置、プラグの直径を説明するための図である。It is a figure for demonstrating the rotation angle of a plug in FIG. 12, the position of radial direction, and the diameter of a plug. 電磁波(誘電体部材の裏面)からの距離と減衰定数との関係を示す図である。It is a figure which shows the relationship between the distance from electromagnetic waves (the back surface of a dielectric material member), and an attenuation constant.
 以下、添付図面を参照して本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <表面波プラズマ処理装置の構成>
 図1は、本発明の実施形態に係るマイクロ波放射機構を有する表面波プラズマ処理装置の概略構成を示す断面図であり、図2は図1の表面波プラズマ処理装置に用いられるマイクロ波プラズマ源の構成を示す構成図である。
<Configuration of surface wave plasma processing apparatus>
FIG. 1 is a cross-sectional view showing a schematic configuration of a surface wave plasma processing apparatus having a microwave radiation mechanism according to an embodiment of the present invention, and FIG. 2 is a microwave plasma source used in the surface wave plasma processing apparatus of FIG. FIG.
 表面波プラズマ処理装置100は、ウエハに対してプラズマ処理として例えばエッチング処理を施すプラズマエッチング装置として構成されており、気密に構成されたアルミニウムまたはステンレス鋼等の金属材料からなる略円筒状の接地されたチャンバ1と、チャンバ1内にマイクロ波プラズマを形成するためのマイクロ波プラズマ源2とを有している。チャンバ1の上部には開口部1aが形成されており、マイクロ波プラズマ源2はこの開口部1aからチャンバ1の内部に臨むように設けられている。 The surface wave plasma processing apparatus 100 is configured as a plasma etching apparatus that performs, for example, an etching process as a plasma process on a wafer, and is grounded in a substantially cylindrical shape made of an airtight metal material such as aluminum or stainless steel. A chamber 1 and a microwave plasma source 2 for forming microwave plasma in the chamber 1. An opening 1 a is formed in the upper part of the chamber 1, and the microwave plasma source 2 is provided so as to face the inside of the chamber 1 from the opening 1 a.
 チャンバ1内には被処理体である半導体ウエハW(以下ウエハWと記述する)を水平に支持するためのサセプタ11が、チャンバ1の底部中央に絶縁部材12aを介して立設された筒状の支持部材12により支持された状態で設けられている。サセプタ11および支持部材12を構成する材料としては、表面をアルマイト処理(陽極酸化処理)したアルミニウム等が例示される。 In the chamber 1, a susceptor 11 for horizontally supporting a semiconductor wafer W (hereinafter, referred to as a wafer W), which is an object to be processed, is erected at the center of the bottom of the chamber 1 via an insulating member 12a. It is provided in a state supported by the support member 12. Examples of the material constituting the susceptor 11 and the support member 12 include aluminum whose surface is anodized (anodized).
 また、図示はしていないが、サセプタ11には、ウエハWを静電吸着するための静電チャック、温度制御機構、ウエハWの裏面に熱伝達用のガスを供給するガス流路、およびウエハWを搬送するために昇降する昇降ピン等が設けられている。さらに、サセプタ11には、整合器13を介して高周波バイアス電源14が電気的に接続されている。この高周波バイアス電源14からサセプタ11に高周波電力が供給されることにより、ウエハW側にプラズマ中のイオンが引き込まれる。 Although not shown, the susceptor 11 includes an electrostatic chuck for electrostatically attracting the wafer W, a temperature control mechanism, a gas flow path for supplying heat transfer gas to the back surface of the wafer W, and the wafer. In order to convey W, elevating pins and the like that elevate and lower are provided. Furthermore, a high frequency bias power supply 14 is electrically connected to the susceptor 11 via a matching unit 13. By supplying high frequency power from the high frequency bias power source 14 to the susceptor 11, ions in the plasma are attracted to the wafer W side.
 チャンバ1の底部には排気管15が接続されており、この排気管15には真空ポンプを含む排気装置16が接続されている。そしてこの排気装置16を作動させることによりチャンバ1内が排気され、チャンバ1内が所定の真空度まで高速に減圧することが可能となっている。また、チャンバ1の側壁には、ウエハWの搬入出を行うための搬入出口17と、この搬入出口17を開閉するゲートバルブ18とが設けられている。 An exhaust pipe 15 is connected to the bottom of the chamber 1, and an exhaust device 16 including a vacuum pump is connected to the exhaust pipe 15. Then, by operating the exhaust device 16, the inside of the chamber 1 is exhausted, and the inside of the chamber 1 can be decompressed at a high speed to a predetermined degree of vacuum. Further, on the side wall of the chamber 1, a loading / unloading port 17 for loading / unloading the wafer W and a gate valve 18 for opening / closing the loading / unloading port 17 are provided.
 チャンバ1内のサセプタ11の上方位置には、プラズマエッチングのための処理ガスをウエハWに向けて吐出するシャワープレート20が水平に設けられている。このシャワープレート20は、格子状に形成されたガス流路21と、このガス流路21に形成された多数のガス吐出孔22とを有しており、格子状のガス流路21の間は空間部23となっている。このシャワープレート20のガス流路21にはチャンバ1の外側に延びる配管24が接続されており、この配管24には処理ガス供給源25が接続されている。 In the upper position of the susceptor 11 in the chamber 1, a shower plate 20 that discharges a processing gas for plasma etching toward the wafer W is provided horizontally. The shower plate 20 has a gas flow path 21 formed in a lattice shape and a large number of gas discharge holes 22 formed in the gas flow path 21. It is a space part 23. A pipe 24 extending outside the chamber 1 is connected to the gas flow path 21 of the shower plate 20, and a processing gas supply source 25 is connected to the pipe 24.
 一方、チャンバ1のシャワープレート20の上方位置には、リング状のプラズマガス導入部材26がチャンバ壁に沿って設けられており、このプラズマガス導入部材26には内周に多数のガス吐出孔が設けられている。このプラズマガス導入部材26には、プラズマガスを供給するプラズマガス供給源27が配管28を介して接続されている。プラズマ生成ガスとしてはArガスなどが好適に用いられる。 On the other hand, a ring-shaped plasma gas introduction member 26 is provided along the chamber wall above the shower plate 20 of the chamber 1, and the plasma gas introduction member 26 has a number of gas discharge holes on the inner periphery. Is provided. A plasma gas supply source 27 for supplying plasma gas is connected to the plasma gas introduction member 26 via a pipe 28. Ar gas or the like is preferably used as the plasma generating gas.
 プラズマガス導入部材26からチャンバ1内に導入されたプラズマガスは、マイクロ波プラズマ源2からチャンバ1内に導入されたマイクロ波によりプラズマ化され、このプラズマがシャワープレート20の空間部23を通過しシャワープレート20のガス吐出孔22から吐出された処理ガスを励起し、処理ガスのプラズマを形成する。 The plasma gas introduced into the chamber 1 from the plasma gas introduction member 26 is turned into plasma by the microwave introduced into the chamber 1 from the microwave plasma source 2, and this plasma passes through the space 23 of the shower plate 20. The processing gas discharged from the gas discharge hole 22 of the shower plate 20 is excited to form plasma of the processing gas.
 マイクロ波プラズマ源2は、チャンバ1の上部に設けられた支持リング29により支持されており、これらの間は気密にシールされている。図2に示すように、マイクロ波プラズマ源2は、複数経路に分配してマイクロ波を出力するマイクロ波出力部30と、マイクロ波出力部30から出力されたマイクロ波を伝送しチャンバ1内に放射するためのマイクロ波供給部40とを有している。 The microwave plasma source 2 is supported by a support ring 29 provided at the upper part of the chamber 1, and the space between them is hermetically sealed. As shown in FIG. 2, the microwave plasma source 2 includes a microwave output unit 30 that distributes the microwaves to a plurality of paths and outputs microwaves, and transmits the microwaves output from the microwave output unit 30 to enter the chamber 1. And a microwave supply unit 40 for radiating.
 マイクロ波出力部30は、マイクロ波電源31と、マイクロ波発振器32と、発振されたマイクロ波を増幅するアンプ33と、増幅されたマイクロ波を複数に分配する分配器34とを有している。 The microwave output unit 30 includes a microwave power source 31, a microwave oscillator 32, an amplifier 33 that amplifies the oscillated microwave, and a distributor 34 that distributes the amplified microwave into a plurality of parts. .
 マイクロ波発振器32は、所定周波数(例えば、915MHz)のマイクロ波を例えばPLL発振させる。分配器34では、マイクロ波の損失ができるだけ起こらないように、入力側と出力側のインピーダンス整合を取りながらアンプ33で増幅されたマイクロ波を分配する。なお、マイクロ波の周波数としては、915MHzの他に、700MHzから3GHzを用いることができる。 The microwave oscillator 32 causes, for example, a PLL oscillation of a microwave having a predetermined frequency (for example, 915 MHz). The distributor 34 distributes the microwave amplified by the amplifier 33 while matching the impedance between the input side and the output side so that the loss of the microwave does not occur as much as possible. As the microwave frequency, 700 MHz to 3 GHz can be used in addition to 915 MHz.
 マイクロ波供給部40は、分配器34にて分配されたマイクロ波を主に増幅する複数のアンプ部42と、複数のアンプ部42のそれぞれに接続されたマイクロ波放射機構41とを有している。 The microwave supply unit 40 includes a plurality of amplifier units 42 that mainly amplify the microwaves distributed by the distributor 34, and a microwave radiation mechanism 41 connected to each of the plurality of amplifier units 42. Yes.
 アンプ部42は、位相器45と、可変ゲインアンプ46と、ソリッドステートアンプを構成するメインアンプ47と、アイソレータ48とを有している。 The amplifier unit 42 includes a phase shifter 45, a variable gain amplifier 46, a main amplifier 47 constituting a solid state amplifier, and an isolator 48.
 位相器45は、マイクロ波の位相を変化させることができるように構成されており、これを調整することにより放射特性を変調させることができる。例えば、各アンテナモジュール毎に位相を調整することにより指向性を制御してプラズマ分布を変化させることや、後述するように隣り合うアンテナモジュールにおいて90°ずつ位相をずらすようにして円偏波を得ることができる。また、位相器45は、アンプ内の部品間の遅延特性を調整し、チューナ内での空間合成を目的として使用することができる。ただし、このような放射特性の変調やアンプ内の部品間の遅延特性の調整が不要な場合には位相器45は設ける必要はない。 The phase shifter 45 is configured to be able to change the phase of the microwave, and by adjusting this, the radiation characteristic can be modulated. For example, by adjusting the phase for each antenna module, the directivity is controlled to change the plasma distribution, and the circular polarization is obtained by shifting the phase by 90 ° between adjacent antenna modules as will be described later. be able to. The phase shifter 45 can be used for the purpose of spatial synthesis in the tuner by adjusting the delay characteristics between the components in the amplifier. However, the phase shifter 45 need not be provided when such modulation of radiation characteristics and adjustment of delay characteristics between components in the amplifier are not required.
 可変ゲインアンプ46は、メインアンプ47へ入力するマイクロ波の電力レベルを調整し、個々のアンテナモジュールのばらつきを調整またはプラズマ強度調整のためのアンプである。可変ゲインアンプ46を各アンテナモジュール毎に変化させることによって、発生するプラズマに分布を生じさせることもできる。 The variable gain amplifier 46 is an amplifier for adjusting the power level of the microwave input to the main amplifier 47, adjusting the variation of individual antenna modules, or adjusting the plasma intensity. By changing the variable gain amplifier 46 for each antenna module, the generated plasma can be distributed.
 ソリッドステートアンプを構成するメインアンプ47は、例えば、入力整合回路と、半導体増幅素子と、出力整合回路と、高Q共振回路とを有する構成とすることができる。 The main amplifier 47 constituting the solid state amplifier can be configured to include, for example, an input matching circuit, a semiconductor amplifying element, an output matching circuit, and a high Q resonance circuit.
 アイソレータ48は、マイクロ波放射機構41で反射してメインアンプ47に向かう反射マイクロ波を分離するものであり、サーキュレータとダミーロード(同軸終端器)とを有している。サーキュレータは、後述するマイクロ波放射機構41のアンテナ部43で反射したマイクロ波をダミーロードへ導き、ダミーロードはサーキュレータによって導かれた反射マイクロ波を熱に変換する。 The isolator 48 separates reflected microwaves reflected by the microwave radiation mechanism 41 and directed to the main amplifier 47, and includes a circulator and a dummy load (coaxial terminator). The circulator guides the microwave reflected by the antenna unit 43 of the microwave radiation mechanism 41 described later to the dummy load, and the dummy load converts the reflected microwave guided by the circulator into heat.
 マイクロ波放射機構41は、図3の縦断面図、図4の横断面図に示すように、マイクロ波を伝送する同軸構造の導波路44と、導波路44を伝送されたマイクロ波をチャンバ1内に放射するアンテナ部43とを有している。そして、マイクロ波放射機構41からチャンバ1内に放射されたマイクロ波がチャンバ1内の空間で合成され、チャンバ1内で表面波プラズマが形成されるようになっている。 As shown in the longitudinal sectional view of FIG. 3 and the transverse sectional view of FIG. 4, the microwave radiation mechanism 41 includes a waveguide 44 having a coaxial structure that transmits microwaves, and the microwave transmitted through the waveguide 44 is transferred to the chamber 1. And an antenna portion 43 that radiates inside. Then, the microwaves radiated from the microwave radiation mechanism 41 into the chamber 1 are combined in the space in the chamber 1, and surface wave plasma is formed in the chamber 1.
 導波路44は、筒状の外側導体52およびその中心に設けられた棒状の内側導体53が同軸状に配置されて構成されており、導波路44の先端にアンテナ部43が設けられている。導波路44は、内側導体53が給電側、外側導体52が接地側となっている。外側導体52および内側導体53の上端は反射板58となっている。 The waveguide 44 is configured by coaxially arranging a cylindrical outer conductor 52 and a rod-shaped inner conductor 53 provided at the center thereof, and an antenna portion 43 is provided at the tip of the waveguide 44. In the waveguide 44, the inner conductor 53 is a power supply side, and the outer conductor 52 is a ground side. The upper end of the outer conductor 52 and the inner conductor 53 is a reflection plate 58.
 導波路44の基端側にはマイクロ波(電磁波)を給電する給電機構54が設けられている。給電機構54は、導波路44(外側導体52)の側面に設けられたマイクロ波電力を導入するためのマイクロ波電力導入ポート55を有している。マイクロ波電力導入ポート55には、アンプ部42から増幅されたマイクロ波を供給するための給電線として、内側導体56aおよび外側導体56bからなる同軸線路56が接続されている。そして、同軸線路56の内側導体56aの先端には、外側導体52の内部に向けて水平に伸びる給電アンテナ90が接続されている。 A feeding mechanism 54 that feeds microwaves (electromagnetic waves) is provided on the proximal end side of the waveguide 44. The power feeding mechanism 54 has a microwave power introduction port 55 for introducing microwave power provided on a side surface of the waveguide 44 (outer conductor 52). A coaxial line 56 including an inner conductor 56 a and an outer conductor 56 b is connected to the microwave power introduction port 55 as a feed line for supplying the microwave amplified from the amplifier unit 42. A feeding antenna 90 extending horizontally toward the inside of the outer conductor 52 is connected to the tip of the inner conductor 56 a of the coaxial line 56.
 給電アンテナ90は、例えば、アルミニウム等の金属板を削り出し加工した後、テフロン(登録商標)等の誘電体部材の型にはめて形成される。反射板58から給電アンテナ90までの間には、反射波の実効波長を短くするためのテフロン(登録商標)等の誘電体からなる遅波材59が設けられている。 The feed antenna 90 is formed by, for example, cutting a metal plate such as aluminum and then fitting it into a dielectric member such as Teflon (registered trademark). A slow wave material 59 made of a dielectric material such as Teflon (registered trademark) for shortening the effective wavelength of the reflected wave is provided between the reflector 58 and the feeding antenna 90.
 なお、2.45GHz等の周波数の高いマイクロ波を用いた場合には、遅波材59は設けなくてもよい。このとき、給電アンテナ90から放射される電磁波を反射板58により反射させることで、最大の電磁波を同軸構造の導波路44内に伝送させる。その場合、給電アンテナ90から反射板58までの距離を約λg/4の半波長倍に設定する。ただし、周波数の低いマイクロ波では、径方向の制約のため、これに当てはまらない場合もある。その場合には、給電アンテナ90より発生させる電磁波の腹を給電アンテナ90ではなく、給電アンテナ90の下方に誘起させるように、給電アンテナの形状を最適化することが好ましい。 In addition, when a microwave with a high frequency such as 2.45 GHz is used, the slow wave material 59 may not be provided. At this time, the electromagnetic wave radiated from the power feeding antenna 90 is reflected by the reflection plate 58, thereby transmitting the maximum electromagnetic wave into the waveguide 44 having the coaxial structure. In that case, the distance from the feeding antenna 90 to the reflector 58 is set to a half wavelength multiple of about λg / 4. However, this may not apply to microwaves with low frequencies due to radial constraints. In that case, it is preferable to optimize the shape of the feeding antenna so that the antinodes of the electromagnetic waves generated from the feeding antenna 90 are induced below the feeding antenna 90 instead of the feeding antenna 90.
 給電アンテナ90は、図4に示すように、マイクロ波電力導入ポート55において同軸線路56の内側導体56aに接続され、電磁波が供給される第1の極92および供給された電磁波を放射する第2の極93を有するアンテナ本体91と、アンテナ本体91の両側から、内側導体53の外側に沿って延び、リング状をなす反射部94とを有し、アンテナ本体91に入射された電磁波と反射部94で反射された電磁波とで定在波を形成するように構成されている。アンテナ本体91の第2の極93は内側導体53に接触している。 As shown in FIG. 4, the feeding antenna 90 is connected to the inner conductor 56 a of the coaxial line 56 at the microwave power introduction port 55, and the first pole 92 to which the electromagnetic wave is supplied and the second electromagnetic wave to radiate the supplied electromagnetic wave. The antenna main body 91 having the pole 93 and the reflection part 94 extending from both sides of the antenna main body 91 along the outside of the inner conductor 53 to form a ring shape, and the electromagnetic wave incident on the antenna main body 91 and the reflection part A standing wave is formed by the electromagnetic wave reflected at 94. The second pole 93 of the antenna body 91 is in contact with the inner conductor 53.
 給電アンテナ90がマイクロ波(電磁波)を放射することにより、外側導体52と内側導体53との間の空間にマイクロ波電力が給電される。そして、給電機構54に供給されたマイクロ波電力がアンテナ部43に向かって伝播する。 The microwave power is fed into the space between the outer conductor 52 and the inner conductor 53 by the feed antenna 90 radiating microwaves (electromagnetic waves). Then, the microwave power supplied to the power feeding mechanism 54 propagates toward the antenna unit 43.
 導波路44にはチューナ60が設けられている。チューナ60は、チャンバ1内の負荷(プラズマ)のインピーダンスをマイクロ波出力部30におけるマイクロ波電源の特性インピーダンスに整合させるものであり、外側導体52と内側導体53との間に設けられた2つのスラグ61a,61bと、反射板58の外側(上側)に設けられたスラグ駆動部70とを有している。 A tuner 60 is provided in the waveguide 44. The tuner 60 matches the impedance of the load (plasma) in the chamber 1 with the characteristic impedance of the microwave power source in the microwave output unit 30, and includes two tuners provided between the outer conductor 52 and the inner conductor 53. It has slag 61a, 61b and the slag drive part 70 provided in the outer side (upper side) of the reflecting plate 58. FIG.
 これらスラグのうち、スラグ61aはスラグ駆動部70側に設けられ、スラグ61bはアンテナ部43側に設けられている。また、内側導体53の内部空間には、その長手方向に沿って例えば台形ネジが形成された螺棒からなるスラグ移動用の2本のスラグ移動軸64a,64bが設けられている。 Among these slags, the slag 61a is provided on the slag drive unit 70 side, and the slag 61b is provided on the antenna unit 43 side. Further, in the inner space of the inner conductor 53, two slag moving shafts 64a and 64b for slag movement are provided along a longitudinal direction of the inner conductor 53. The slag moving shafts 64a and 64b are formed by screw rods having trapezoidal screws, for example.
 スラグ61aは、図5に示すように、誘電体からなる円環状をなし、その内側に滑り性を有する樹脂からなる滑り部材63が嵌め込まれている。滑り部材63にはスラグ移動軸64aが螺合するねじ穴65aとスラグ移動軸64bが挿通される通し穴65bが設けられている。一方、スラグ61bは、スラグ61aと同様、ねじ穴65aと通し穴65bとを有しているが、スラグ61aとは逆に、ねじ穴65aはスラグ移動軸64bに螺合され、通し穴65bにはスラグ移動軸64aが挿通されるようになっている。これによりスラグ移動軸64aを回転させることによりスラグ61aが昇降移動し、スラグ移動軸64bを回転させることによりスラグ61bが昇降移動する。すなわち、スラグ移動軸64a,64bと滑り部材63とからなるねじ機構によりスラグ61a,61bが昇降移動される。 As shown in FIG. 5, the slag 61a has an annular shape made of a dielectric, and a sliding member 63 made of a resin having slipperiness is fitted inside the slag 61a. The sliding member 63 is provided with a screw hole 65a into which the slag moving shaft 64a is screwed and a through hole 65b into which the slag moving shaft 64b is inserted. On the other hand, the slag 61b has a screw hole 65a and a through hole 65b as in the case of the slag 61a. On the contrary to the slag 61a, the screw hole 65a is screwed to the slag moving shaft 64b and is connected to the through hole 65b. The slag moving shaft 64a is inserted. Thereby, the slag 61a moves up and down by rotating the slag movement shaft 64a, and the slag 61b moves up and down by rotating the slag movement shaft 64b. That is, the slugs 61a and 61b are moved up and down by a screw mechanism including the slug moving shafts 64a and 64b and the sliding member 63.
 図6に示すように、内側導体53には長手方向に沿って等間隔に3つのスリット53aが形成されている。一方、滑り部材63は、これらスリット53aに対応するように3つの突出部63aが等間隔に設けられている。そして、これら突出部63aがスラグ61a,61bの内周に当接した状態で滑り部材63がスラグ61a,61bの内部に嵌め込まれる。滑り部材63の外周面は、内側導体53の内周面と遊びなく接触するようになっており、スラグ移動軸64a,64bが回転されることにより、滑り部材63が内側導体53を滑って昇降するようになっている。すなわち内側導体53の内周面がスラグ61a,61bの滑りガイドとして機能する。なお、スリット53aの幅は5mm以下とすることが好ましい。これにより、後述するように内側導体53の内部へ漏洩するマイクロ波電力を実質的になくすことができ、マイクロ波電力の放射効率を高く維持することができる。 As shown in FIG. 6, the inner conductor 53 has three slits 53a formed at equal intervals along the longitudinal direction. On the other hand, the sliding member 63 is provided with three protrusions 63a at equal intervals so as to correspond to the slits 53a. Then, the sliding member 63 is fitted into the slags 61a and 61b in a state where the protruding portions 63a are in contact with the inner circumferences of the slags 61a and 61b. The outer peripheral surface of the sliding member 63 comes into contact with the inner peripheral surface of the inner conductor 53 without play, and the sliding member 63 slides up and down the inner conductor 53 by rotating the slug movement shafts 64a and 64b. It is supposed to be. That is, the inner peripheral surface of the inner conductor 53 functions as a sliding guide for the slugs 61a and 61b. The width of the slit 53a is preferably 5 mm or less. Thereby, as will be described later, the microwave power leaking into the inner conductor 53 can be substantially eliminated, and the radiation efficiency of the microwave power can be kept high.
 滑り部材63を構成する樹脂材料としては、良好な滑り性を有し、加工が比較的容易な樹脂、例えばポリフェニレンサルファイド(PPS)樹脂を好適なものとして挙げることができる。 As a resin material constituting the sliding member 63, a resin having good sliding property and relatively easy to process, for example, a polyphenylene sulfide (PPS) resin can be mentioned as a suitable material.
 上記スラグ移動軸64a,64bは、反射板58を貫通してスラグ駆動部70に延びている。スラグ移動軸64a,64bと反射板58との間にはベアリング(図示せず)が設けられている。また、内側導体53の下端には、導体からなる底板67が設けられている。スラグ移動軸64a,64bの下端は、駆動時の振動を吸収するために、通常は開放端となっており、これらスラグ移動軸64a,64bの下端から2~5mm程度離隔して底板67が設けられている。なお、この底板67を軸受け部としてスラグ移動軸64a,64bの下端をこの軸受け部にて軸支させてもよい。 The slag moving shafts 64 a and 64 b extend through the reflecting plate 58 to the slag driving unit 70. A bearing (not shown) is provided between the slug moving shafts 64a and 64b and the reflection plate 58. A bottom plate 67 made of a conductor is provided at the lower end of the inner conductor 53. The lower ends of the slag moving shafts 64a and 64b are normally open ends to absorb vibration during driving, and a bottom plate 67 is provided at a distance of about 2 to 5 mm from the lower ends of the slag moving shafts 64a and 64b. It has been. The bottom plate 67 may be used as a bearing portion, and the lower ends of the slag moving shafts 64a and 64b may be supported by the bearing portion.
 スラグ駆動部70は筐体71を有し、スラグ移動軸64aおよび64bは筐体71内に延びており、スラグ移動軸64aおよび64bの上端には、それぞれ歯車72aおよび72bが取り付けられている。また、スラグ駆動部70には、スラグ移動軸64aを回転させるモータ73aと、スラグ移動軸64bを回転させるモータ73bが設けられている。モータ73aの軸には歯車74aが取り付けられ、モータ73bの軸には歯車74bが取り付けられており、歯車74aが歯車72aに噛合し、歯車74bが歯車72bに噛合するようになっている。したがって、モータ73aにより歯車74aおよび72aを介してスラグ移動軸64aが回転され、モータ73bにより歯車74bおよび72bを介してスラグ移動軸64bが回転される。なお、モータ73a,73bは例えばステッピングモータである。 The slag drive unit 70 has a casing 71, slag moving shafts 64a and 64b extend into the casing 71, and gears 72a and 72b are attached to the upper ends of the slag moving shafts 64a and 64b, respectively. The slag drive unit 70 is provided with a motor 73a that rotates the slag movement shaft 64a and a motor 73b that rotates the slag movement shaft 64b. A gear 74a is attached to the shaft of the motor 73a, and a gear 74b is attached to the shaft of the motor 73b. The gear 74a meshes with the gear 72a, and the gear 74b meshes with the gear 72b. Accordingly, the slag movement shaft 64a is rotated by the motor 73a via the gears 74a and 72a, and the slag movement shaft 64b is rotated by the motor 73b via the gears 74b and 72b. The motors 73a and 73b are, for example, stepping motors.
 なお、スラグ移動軸64bはスラグ移動軸64aよりも長く、より上方に達しており、したがって、歯車72aおよび72bの位置が上下にオフセットしており、モータ73aおよび73bも上下にオフセットしている。これにより、モータおよび歯車等の動力伝達機構のスペースを小さくすることができ、これらを収容する筐体71を外側導体52と同じ径にすることが可能となる。 Note that the slag moving shaft 64b is longer than the slag moving shaft 64a and reaches the upper side. Therefore, the positions of the gears 72a and 72b are vertically offset, and the motors 73a and 73b are also vertically offset. Thereby, the space of a power transmission mechanism such as a motor and gears can be reduced, and the casing 71 that accommodates them can have the same diameter as the outer conductor 52.
 モータ73aおよび73bの上には、これらの出力軸に直結するように、それぞれスラグ61aおよび61bの位置を検出するためのインクリメント型のエンコーダ75aおよび75bが設けられている。 On the motors 73a and 73b, increment type encoders 75a and 75b for detecting the positions of the slugs 61a and 61b are provided so as to be directly connected to these output shafts.
 スラグ61aおよび61bの位置は、スラグコントローラ68により制御される。具体的には、図示しないインピーダンス検出器により検出された入力端のインピーダンス値と、エンコーダ75aおよび75bにより検知されたスラグ61aおよび61bの位置情報に基づいて、スラグコントローラ68がモータ73aおよび73bに制御信号を送り、スラグ61aおよび61bの位置を制御することにより、インピーダンスを調整するようになっている。スラグコントローラ68は、終端が例えば50Ωになるようにインピーダンス整合を実行させる。2つのスラグのうち一方のみを動かすと、スミスチャートの原点を通る軌跡を描き、両方同時に動かすと位相のみが回転する。 The positions of the slags 61a and 61b are controlled by the slag controller 68. Specifically, the slag controller 68 controls the motors 73a and 73b based on the impedance value of the input end detected by an impedance detector (not shown) and the positional information of the slags 61a and 61b detected by the encoders 75a and 75b. The impedance is adjusted by sending a signal and controlling the positions of the slugs 61a and 61b. The slug controller 68 performs impedance matching so that the termination is, for example, 50Ω. When only one of the two slugs is moved, a trajectory passing through the origin of the Smith chart is drawn, and when both are moved simultaneously, only the phase rotates.
 アンテナ部43は、マイクロ波を放射するスロットを有し平面状をなす、表面波プラズマを発生するための表面波プラズマ発生用アンテナ81と、表面波プラズマ発生用アンテナ81の上面に設けられた遅波材82とを有している。遅波材82の中心には導体からなる円柱部材82aが貫通して底板67と表面波プラズマ発生用アンテナ81とを接続している。したがって、内側導体53が底板67および円柱部材82aを介して表面波プラズマ発生用アンテナ81に接続されている。遅波材82および表面波プラズマ発生用アンテナ81は、外側導体52よりも大径の円板状をなしている。外側導体52の下端は遅波材82の表面まで延びており、遅波材82および表面波プラズマ発生用アンテナ81および後述する天板83の周囲は被覆導体84により覆われている。 The antenna unit 43 has a planar surface having a slot for radiating microwaves and a surface wave plasma generating antenna 81 for generating surface wave plasma, and a delay provided on the upper surface of the surface wave plasma generating antenna 81. And a corrugated material 82. A cylindrical member 82 a made of a conductor passes through the center of the slow wave member 82 to connect the bottom plate 67 and the surface wave plasma generating antenna 81. Therefore, the inner conductor 53 is connected to the surface wave plasma generating antenna 81 through the bottom plate 67 and the cylindrical member 82a. The slow wave material 82 and the surface wave plasma generating antenna 81 have a disk shape larger in diameter than the outer conductor 52. The lower end of the outer conductor 52 extends to the surface of the slow wave material 82, and the periphery of the slow wave material 82, the surface wave plasma generating antenna 81, and a top plate 83 to be described later is covered with a covered conductor 84.
 遅波材82は、真空よりも大きい誘電率を有しており、例えば、石英、セラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂により構成されており、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてアンテナを小さくする機能を有している。遅波材82は、その厚さによりマイクロ波の位相を調整することができ、表面波プラズマ発生用アンテナ81が定在波の「はら」になるようにその厚さを調整する。これにより、反射が最小で、表面波プラズマ発生用アンテナ81の放射エネルギーが最大となるようにすることができる。 The slow wave material 82 has a dielectric constant larger than that of vacuum, and is made of, for example, fluorine resin or polyimide resin such as quartz, ceramics, polytetrafluoroethylene, etc. Therefore, the antenna has a function of shortening the wavelength of the microwave to make the antenna smaller. The slow wave material 82 can adjust the phase of the microwave depending on its thickness, and the thickness thereof is adjusted so that the surface wave plasma generating antenna 81 becomes a “wave” of a standing wave. Thereby, reflection can be minimized and the radiation energy of the surface wave plasma generating antenna 81 can be maximized.
 表面波プラズマ発生用アンテナ81のさらに先端側には、表面波プラズマを生成するために電界が形成され、かつ真空シールするための誘電体部材、例えば石英やセラミックス等からなる天板83が配置されている。そして、メインアンプ47で増幅されたマイクロ波が内側導体53と外側導体52の周壁の間を通って表面波プラズマ発生用アンテナ81から天板83を透過してチャンバ1内の空間に放射される。 On the further tip side of the surface wave plasma generating antenna 81, a top plate 83 made of a dielectric member, for example, quartz or ceramics, for forming an electric field for generating surface wave plasma and vacuum-sealing is disposed. ing. Then, the microwave amplified by the main amplifier 47 passes between the peripheral walls of the inner conductor 53 and the outer conductor 52, passes through the top plate 83 from the surface wave plasma generating antenna 81, and is radiated to the space in the chamber 1. .
 上記表面波プラズマ発生用アンテナ81は、例えば図7に示すように、全体が円板状(平面状)をなすとともに、6個のスロット131が全体形状が円周状になるように形成されている。これらスロット131は全て同じ形状であり、円周に沿って細長い形状に形成されている。これらスロット131のうち隣接するもの同士の継ぎ目部分は、一方のスロット131の端部と他方のスロット131の端部とが内外で重なるように構成されている。すなわち、スロット131の中央部は、外側にある一方の端部と内側にある他方の端部を繋いだ状態となっており、6個のスロット131を内包する二点鎖線で示す円環領域132において外周と一致する一方の端部と内周と一致する他方の端部の間を斜めに結ぶようになっており、円周方向に隣接するスロットとスロットとの継ぎ目部分が、スロットに覆われるように構成され、周方向にスロットのない部分が存在しないようにしている。 For example, as shown in FIG. 7, the surface wave plasma generating antenna 81 is formed in a disc shape (planar shape) as a whole, and six slots 131 are formed in a circumferential shape. Yes. All of these slots 131 have the same shape and are formed in an elongated shape along the circumference. The joint portion between adjacent ones of the slots 131 is configured such that the end of one slot 131 and the end of the other slot 131 overlap each other. That is, the center portion of the slot 131 is in a state where one end portion on the outer side and the other end portion on the inner side are connected, and an annular region 132 indicated by a two-dot chain line including six slots 131 is included. In FIG. 1, one end portion that coincides with the outer periphery and the other end portion that coincides with the inner periphery are obliquely connected, and the joint portion between the slots adjacent to each other in the circumferential direction is covered with the slot. In this way, there is no portion without slots in the circumferential direction.
 スロット131は、(λg/2)-δの長さを有する。ただし、λgはマイクロ波の実効波長であり、δは円周方向(角度方向)に電界強度の均一性が高くなるように微調整する微調整成分(0を含む)である。なお、スロット131の長さは約λg/2に限らず、λg/2の整数倍から微調整成分(0を含む)を引いたものであればよい。スロット131は、中央部と、その両側の一方の端部および他方の端部(オーバーラップ部分)とがほぼ均等な長さを有している。すなわち、中央部が(λg/6)-δ、その両側の端部がそれぞれ(λg/6)-δおよび(λg/6)-δの長さとなる。ただし、δ,δ、δは円周方向(角度方向)に電界強度の均一性が高くなるように微調整する微調整成分(0を含む)である。隣接するスロットがオーバーラップする部分の長さは等しいほうが好ましいので、δ=δであることが好ましい。本実施形態の場合、一つのスロット131の長さが約λg/2であり、それが6個であるから合計の長さが約3λgであるが、そのうちオーバーラップ部分は(λg/6)×6=λgであり、全体の長さは2λgとなるから、アンテナとしては、長さが約λg/2のスロットを円周状に4つ配置した従来のアンテナとほぼ等価なものとなる。スロット131は、その内周が、表面波プラズマ発生用アンテナ81の中心から(λg/4)±δ′の位置になるように形成される。ただし、δ′は径方向の電界強度分布を均一にするために微調整する微調整成分(0を含む)である。なお、中心からスロット内周までの長さは約λg/4に限らず、λg/4の整数倍に微調整成分(0を含む)を加えたものであればよい。 The slot 131 has a length of (λg / 2) −δ. Here, λg is the effective wavelength of the microwave, and δ is a fine adjustment component (including 0) that is finely adjusted so that the uniformity of the electric field strength is increased in the circumferential direction (angular direction). The length of the slot 131 is not limited to about λg / 2, but may be any length obtained by subtracting a fine adjustment component (including 0) from an integral multiple of λg / 2. The slot 131 has a substantially equal length at the center, and one end and the other end (overlap portion) on both sides thereof. That is, the central portion has a length of (λg / 6) −δ 1 , and the end portions on both sides thereof have lengths of (λg / 6) −δ 2 and (λg / 6) −δ 3 , respectively. However, δ 1 , δ 2 , and δ 3 are fine adjustment components (including 0) for fine adjustment to increase the uniformity of the electric field strength in the circumferential direction (angular direction). Since it is preferable that the lengths of the overlapping portions of adjacent slots are equal, it is preferable that δ 2 = δ 3 . In the present embodiment, the length of one slot 131 is about λg / 2, and since there are six, the total length is about 3λg, of which the overlap portion is (λg / 6) × Since 6 = λg and the total length is 2λg, the antenna is substantially equivalent to a conventional antenna in which four slots having a length of about λg / 2 are arranged circumferentially. The slot 131 is formed such that its inner circumference is at a position of (λg / 4) ± δ ′ from the center of the surface wave plasma generating antenna 81. However, δ ′ is a fine adjustment component (including 0) for fine adjustment to make the electric field intensity distribution in the radial direction uniform. Note that the length from the center to the inner periphery of the slot is not limited to about λg / 4, and may be any length obtained by adding a fine adjustment component (including 0) to an integral multiple of λg / 4.
 このような表面波プラズマ発生用アンテナ81は、スロットとスロットの継ぎ目部分で電磁波強度が弱くなることを回避することができ、周方向(角度方向)のプラズマ均一性を良好にすることができる。 Such a surface wave plasma generating antenna 81 can avoid the electromagnetic wave intensity from being weakened at the slot-to-slot joint, and can improve the plasma uniformity in the circumferential direction (angular direction).
 ただし、スロットの数は6個に限らず、例えば5個や4個、また7個以上であっても同様の効果を得ることができる。また、表面波プラズマ発生用アンテナ81のスロット形状は図7のものに限らず、例えば複数の円弧状のスロットが円周上に均等に形成されたものであってもよい。 However, the number of slots is not limited to six, and the same effect can be obtained even when, for example, five, four, or seven or more. The slot shape of the surface wave plasma generating antenna 81 is not limited to that shown in FIG. 7. For example, a plurality of arc-shaped slots may be formed uniformly on the circumference.
 図3および図7に示すように、遅波材82および表面波プラズマ発生用アンテナ81には、スロット131の内側に対応する領域に、これらを貫通して天板83の表面に達するセンサ挿入孔110が設けられている。このセンサ挿入孔110の個数は、表面波プラズマ発生用アンテナ81のスロット131の数のn倍(nは1以上の整数)であり、同軸構造の導波路44の軸を中心にして同一の円周上に均等(等角度)に設けられている。図7の場合には、スロット131の数が6個であり、センサ挿入孔110の個数は6個(n=1)である。 As shown in FIGS. 3 and 7, the slow wave member 82 and the surface wave plasma generating antenna 81 have sensor insertion holes that penetrate the slots 131 and reach the surface of the top plate 83 in regions corresponding to the inside of the slots 131. 110 is provided. The number of the sensor insertion holes 110 is n times the number of the slots 131 of the surface wave plasma generating antenna 81 (n is an integer of 1 or more), and the same circle around the axis of the waveguide 44 having the coaxial structure. It is provided evenly (equal angle) on the circumference. In the case of FIG. 7, the number of slots 131 is six, and the number of sensor insertion holes 110 is six (n = 1).
 センサ挿入孔110の少なくとも一つには、円筒状の金属からなる反射皮111を介して電界センサ112またはプラズマ発光センサ113が挿入される(図3参照)。電界センサ112またはプラズマ発光センサ113が挿入されないセンサ挿入孔110には、電磁波漏洩防止用のプラグ(ダミープラグ)を挿入してもよい。 The electric field sensor 112 or the plasma light emission sensor 113 is inserted into at least one of the sensor insertion holes 110 through the reflective skin 111 made of a cylindrical metal (see FIG. 3). A plug for preventing electromagnetic wave leakage (dummy plug) may be inserted into the sensor insertion hole 110 in which the electric field sensor 112 or the plasma emission sensor 113 is not inserted.
 電界センサ112は、同軸ケーブル状をなし、先端がモノポールアンテナとなっている。具体的には、電界センサ112は、図8に示すように、内部導体121と、その外側の外部導体122と、これらの間に設けられたテフロン(登録商標)等の誘電体123とからなり、先端の3mm程度が外部導体122が存在しない切欠部124となっており、先端が内部導体121のみのモノポールアンテナを構成している。そして、この電界センサ112の先端125を天板83の裏面に接触または近接させることにより、先端の切欠部124から電磁波が入力され、信号を取り出すことができる。 The electric field sensor 112 has a coaxial cable shape and has a monopole antenna at the tip. Specifically, as shown in FIG. 8, the electric field sensor 112 includes an inner conductor 121, an outer outer conductor 122, and a dielectric 123 such as Teflon (registered trademark) provided therebetween. In addition, the tip portion of about 3 mm is a notch 124 where the outer conductor 122 does not exist, and the tip constitutes a monopole antenna having only the inner conductor 121. And by making the front-end | tip 125 of this electric field sensor 112 contact or adjoin to the back surface of the top plate 83, electromagnetic waves are input from the notch part 124 of a front-end | tip, and a signal can be taken out.
 センサ挿入孔110の径としては、例えば3mm程度を用いることができる。これにより、電界センサ112として規格品の同軸ケーブル(内部導体:φ0.51mm、外部導体:φ2.19mm、誘電体:φ1.67mm)を用いることができる。 As the diameter of the sensor insertion hole 110, for example, about 3 mm can be used. Thereby, a standard coaxial cable (inner conductor: φ0.51 mm, outer conductor: φ2.19 mm, dielectric: φ1.67 mm) can be used as the electric field sensor 112.
 本実施形態の場合、単一モードの表面波プラズマが生成され、そのため、天板83を構成する誘電体内に生成する定在波は同じパターンであり、定在波の腹節の位置は固定され、定在波の大きさはアンテナ出力パワーとともに大きくなる。電界センサ112はこれを利用するものである。つまり、電界センサ112を定在波の腹および節の位置を避けて天板83の裏面に接触または近接させれば、表面波プラズマ発生用アンテナ81からの出力パワーを直接モニタすることができることとなる。 In the case of the present embodiment, single-mode surface wave plasma is generated. Therefore, the standing wave generated in the dielectric body constituting the top plate 83 has the same pattern, and the position of the abdominal node of the standing wave is fixed. The magnitude of the standing wave increases with the antenna output power. The electric field sensor 112 uses this. That is, the output power from the surface wave plasma generating antenna 81 can be directly monitored if the electric field sensor 112 is brought into contact with or close to the back surface of the top plate 83 while avoiding the positions of antinodes and nodes of the standing wave. Become.
 この場合のモニタ電力は、例えば図9に示すようになる。この場合に、モニタ線路に流れるモニタ電流は先端のモノポール部分の長さによって変化するため、モノポール部分の長さを調整することで、所望のモニタ電力を抽出することができる。また、電界センサ112の先端部と誘電体の天板83の裏面との距離を調整することにより検出する電界の強度を調整することでも検出電流の強さを調整することができる。 The monitor power in this case is as shown in FIG. 9, for example. In this case, since the monitor current flowing in the monitor line changes depending on the length of the monopole portion at the tip, desired monitor power can be extracted by adjusting the length of the monopole portion. The intensity of the detected current can also be adjusted by adjusting the strength of the electric field detected by adjusting the distance between the tip of the electric field sensor 112 and the back surface of the dielectric top plate 83.
 モニタ線路を流れるモニタ電流値は電界に比例するが、天板83を通過する電力は電界の2乗に比例するため、モニタ電流値の2乗がこの通過電力に比例することとなり、例えば図10の関係が得られる。なお、電源から天板83まで電力が伝搬までの電力損失が無視できるくらい小さく、ほぼ全てのエネルギーがプラズマへ吸収されるとすると、入力電力と、天板83での通過電力はほぼ等しくなる。 The monitor current value flowing through the monitor line is proportional to the electric field, but the power passing through the top plate 83 is proportional to the square of the electric field, so the square of the monitor current value is proportional to this passing power. The relationship is obtained. If the power loss from the power source to the top plate 83 is negligibly small until propagation, and almost all energy is absorbed by the plasma, the input power and the passing power at the top plate 83 are almost equal.
 電界センサ112により検出された信号は、計測部126により計測され、計測部126に予め記憶された所定の値と比較することにより、表面波プラズマ発生用アンテナ81から正常に電磁波が放射されているか否かを把握することができる。また、電界センサ112は、天板83を介してプラズマと接しているので、例えばプラズマの条件(ガス種、圧力等)を変化したときの表面波プラズマ発生用アンテナ81の出力電界値の変化をモニタすることにより、プラズマのインピーダンスの変化を把握することができる。さらに、プラズマの着火・失火検出手段として用いることもできる。 Whether the signal detected by the electric field sensor 112 is measured by the measuring unit 126 and compared with a predetermined value stored in advance in the measuring unit 126, so that electromagnetic waves are normally emitted from the surface wave plasma generating antenna 81. It is possible to grasp whether or not. Further, since the electric field sensor 112 is in contact with the plasma via the top plate 83, for example, the change in the output electric field value of the surface wave plasma generating antenna 81 when the plasma conditions (gas type, pressure, etc.) are changed. By monitoring, it is possible to grasp a change in plasma impedance. Further, it can be used as means for detecting plasma ignition / misfire.
 センサ挿入孔110に挿入するセンサがプラズマ発光センサ113の場合には、マイクロ波放射機構41がマイクロ波を放射しているときに、実際にプラズマが着火しているか否かを検出することができる。プラズマ発光センサ113としては、一般的な光学的センサが用いられ、受光素子により天板83を通してプラズマの発光を直接検出する。これにより十分な発光強度を得ることができ、高い検出精度を得ることができる。 In the case where the sensor to be inserted into the sensor insertion hole 110 is the plasma emission sensor 113, it is possible to detect whether or not the plasma is actually ignited when the microwave radiation mechanism 41 emits microwaves. . As the plasma light emission sensor 113, a general optical sensor is used, and light emission of plasma is directly detected through the top plate 83 by a light receiving element. Thereby, sufficient light emission intensity can be obtained and high detection accuracy can be obtained.
 プラズマ発光センサ113により検出された信号は、計測部126において電源アンプ制御基板に取り込まれるようになっており、電源がONしてから所定時間(例えば5秒)以内に検出信号が検出できなければ、プラズマが着火していないとして電源をOFFするという制御が考えられる。 The signal detected by the plasma emission sensor 113 is taken into the power amplifier control board in the measurement unit 126, and if the detection signal cannot be detected within a predetermined time (for example, 5 seconds) after the power is turned on. It can be considered that the power is turned off because the plasma is not ignited.
 本実施形態において、メインアンプ47と、チューナ60と、表面波プラズマ発生用アンテナ81とは近接配置している。そして、チューナ60と表面波プラズマ発生用アンテナ81とは1/2波長内に存在する集中定数回路を構成しており、かつ表面波プラズマ発生用アンテナ81、遅波材82、天板83は合成抵抗が50Ωに設定されているので、チューナ60はプラズマ負荷に対して直接チューニングしていることになり、効率良くプラズマへエネルギーを伝達することができる。 In the present embodiment, the main amplifier 47, the tuner 60, and the surface wave plasma generating antenna 81 are arranged close to each other. The tuner 60 and the surface wave plasma generating antenna 81 constitute a lumped constant circuit existing within a half wavelength, and the surface wave plasma generating antenna 81, the slow wave material 82, and the top plate 83 are combined. Since the resistance is set to 50Ω, the tuner 60 is directly tuned with respect to the plasma load, and can efficiently transmit energy to the plasma.
 表面波プラズマ処理装置100における各構成部は、マイクロプロセッサを備えた制御部140により制御されるようになっている。制御部140は表面波プラズマ処理装置100のプロセスシーケンスおよび制御パラメータであるプロセスレシピを記憶した記憶部や、入力手段およびディスプレイ等を備えており、選択されたプロセスレシピに従ってプラズマ処理装置を制御するようになっている。 Each component in the surface wave plasma processing apparatus 100 is controlled by a control unit 140 including a microprocessor. The control unit 140 includes a storage unit that stores a process sequence of the surface wave plasma processing apparatus 100 and a process recipe that is a control parameter, an input unit, a display, and the like, and controls the plasma processing apparatus according to the selected process recipe. It has become.
 <表面波プラズマ処理装置の動作>
 次に、以上のように構成される表面波プラズマ処理装置100における動作について説明する。
 まず、ウエハWをチャンバ1内に搬入し、サセプタ11上に載置する。そして、プラズマガス供給源27から配管28およびプラズマガス導入部材26を介してチャンバ1内にプラズマガス、例えばArガスを導入しつつ、マイクロ波プラズマ源2からマイクロ波をチャンバ1内に導入して表面波プラズマを生成する。
<Operation of surface wave plasma processing apparatus>
Next, the operation in the surface wave plasma processing apparatus 100 configured as described above will be described.
First, the wafer W is loaded into the chamber 1 and placed on the susceptor 11. Then, while introducing a plasma gas, for example, Ar gas, into the chamber 1 from the plasma gas supply source 27 through the pipe 28 and the plasma gas introduction member 26, a microwave is introduced into the chamber 1 from the microwave plasma source 2. A surface wave plasma is generated.
 このようにして表面波プラズマを生成した後、処理ガス、例えばClガス等のエッチングガスが処理ガス供給源25から配管24およびシャワープレート20を介してチャンバ1内に吐出される。吐出された処理ガスは、シャワープレート20の空間部23を通過してきたプラズマにより励起されてプラズマ化し、この処理ガスのプラズマによりウエハWにプラズマ処理、例えばエッチング処理が施される。 After generating the surface wave plasma in this manner, a processing gas, for example, an etching gas such as Cl 2 gas is discharged from the processing gas supply source 25 into the chamber 1 through the pipe 24 and the shower plate 20. The discharged processing gas is excited by plasma that has passed through the space 23 of the shower plate 20 to be converted into plasma, and plasma processing, for example, etching processing is performed on the wafer W by the plasma of the processing gas.
 上記表面波プラズマを生成するに際し、マイクロ波プラズマ源2では、マイクロ波出力部30のマイクロ波発振器32から発振されたマイクロ波電力はアンプ33で増幅された後、分配器34により複数に分配され、分配されたマイクロ波電力はマイクロ波供給部40へ導かれる。マイクロ波供給部40においては、このように複数に分配されたマイクロ波電力は、ソリッドステートアンプを構成するメインアンプ47で個別に増幅され、マイクロ波放射機構41の導波路44に給電され、チューナ60によりインピーダンスが自動整合され、電力反射が実質的にない状態で、アンテナ部43の表面波プラズマ発生用アンテナ81および天板83を介してチャンバ1内に放射されて空間合成される。 When generating the surface wave plasma, in the microwave plasma source 2, the microwave power oscillated from the microwave oscillator 32 of the microwave output unit 30 is amplified by the amplifier 33 and then distributed to a plurality by the distributor 34. The distributed microwave power is guided to the microwave supply unit 40. In the microwave supply unit 40, the microwave power distributed in plural is individually amplified by the main amplifier 47 constituting the solid state amplifier, and is supplied to the waveguide 44 of the microwave radiating mechanism 41. The impedance is automatically matched by 60, and is radiated into the chamber 1 through the surface wave plasma generating antenna 81 and the top plate 83 of the antenna unit 43 in a state where there is substantially no power reflection and is spatially synthesized.
 マイクロ波放射機構41の導波路44への給電は、同軸構造の導波路44の軸の延長線上にスラグ駆動部70が設けられているため、側面から行われる。すなわち、同軸線路56から伝播してきたマイクロ波(電磁波)が、導波路44の側面に設けられたマイクロ波電力導入ポート55において給電アンテナ90の第1の極92に到達すると、アンテナ本体91に沿ってマイクロ波(電磁波)が伝播して行き、アンテナ本体91の先端の第2の極93からマイクロ波(電磁波)を放射する。また、アンテナ本体91を伝播するマイクロ波(電磁波)が反射部94で反射し、それが入射波と合成されることにより定在波を発生させる。給電アンテナ90の配置位置で定在波が発生すると、内側導体53の外壁に沿って誘導磁界が生じ、それに誘導されて誘導電界が発生する。これらの連鎖作用により、マイクロ波(電磁波)が導波路44内を伝播し、アンテナ部43へ導かれる。 The power supply to the waveguide 44 of the microwave radiation mechanism 41 is performed from the side surface because the slag driving unit 70 is provided on the extension line of the axis of the waveguide 44 having the coaxial structure. That is, when the microwave (electromagnetic wave) propagating from the coaxial line 56 reaches the first pole 92 of the power feeding antenna 90 at the microwave power introduction port 55 provided on the side surface of the waveguide 44, it follows the antenna body 91. Then, the microwave (electromagnetic wave) propagates and radiates the microwave (electromagnetic wave) from the second pole 93 at the tip of the antenna body 91. Further, the microwave (electromagnetic wave) propagating through the antenna main body 91 is reflected by the reflecting portion 94 and is combined with the incident wave to generate a standing wave. When a standing wave is generated at the position where the feed antenna 90 is disposed, an induced magnetic field is generated along the outer wall of the inner conductor 53, and an induced electric field is generated by being induced thereby. By these chain actions, microwaves (electromagnetic waves) propagate in the waveguide 44 and are guided to the antenna unit 43.
 このとき、導波路44において、給電アンテナ90から放射されるマイクロ波(電磁波)を反射板58で反射させることで最大のマイクロ波(電磁波)電力を同軸構造の導波路44に伝送することができるが、その場合、反射波との合成を効果的に行うために給電アンテナ90から反射板58までの距離が約λg/4の半波長倍になるようにすることが好ましい。 At this time, in the waveguide 44, the maximum microwave (electromagnetic wave) power can be transmitted to the waveguide 44 having the coaxial structure by reflecting the microwave (electromagnetic wave) radiated from the feeding antenna 90 by the reflection plate 58. However, in that case, in order to effectively combine the reflected wave, it is preferable that the distance from the feed antenna 90 to the reflector 58 is a half wavelength of about λg / 4.
 マイクロ波放射機構41は、アンテナ部43とチューナ60とが一体となっているので、極めてコンパクトである。このため、マイクロ波プラズマ源2自体をコンパクト化することができる。さらに、メインアンプ47、チューナ60および表面波プラズマ発生用アンテナ81が近接して設けられ、特にチューナ60と表面波プラズマ発生用アンテナ81とは集中定数回路として構成することができ、かつ表面波プラズマ発生用アンテナ81、遅波材82、天板83の合成抵抗を50Ωに設計することにより、チューナ60により高精度でプラズマ負荷をチューニングすることができる。また、チューナ60は2つのスラグ61a,61bを移動することによりインピーダンス整合を行うことができるスラグチューナを構成しているのでコンパクトで低損失である。さらに、このようにチューナ60と表面波プラズマ発生用アンテナ81とが近接し、集中定数回路を構成してかつ共振器として機能することにより、表面波プラズマ発生用アンテナ81に至るまでのインピーダンス不整合を高精度で解消することができ、実質的に不整合部分をプラズマ空間とすることができるので、チューナ60により高精度のプラズマ制御が可能となる。 The microwave radiation mechanism 41 is extremely compact because the antenna unit 43 and the tuner 60 are integrated. For this reason, the microwave plasma source 2 itself can be made compact. Further, the main amplifier 47, the tuner 60, and the surface wave plasma generating antenna 81 are provided close to each other. In particular, the tuner 60 and the surface wave plasma generating antenna 81 can be configured as a lumped constant circuit, and the surface wave plasma. By designing the combined resistance of the generating antenna 81, the slow wave member 82, and the top plate 83 to 50Ω, the tuner 60 can tune the plasma load with high accuracy. Further, since the tuner 60 constitutes a slag tuner that can perform impedance matching by moving the two slags 61a and 61b, the tuner 60 is compact and has low loss. Further, the tuner 60 and the surface wave plasma generating antenna 81 are close to each other, constitute a lumped constant circuit and function as a resonator, and thereby impedance mismatching up to the surface wave plasma generating antenna 81 is achieved. Can be eliminated with high accuracy, and the inconsistent portion can be substantially made into a plasma space. Therefore, the tuner 60 enables high-precision plasma control.
 さらにまた、スラグを駆動ささせるための駆動伝達部、駆動ガイド部、保持部に相当するものを内側導体53の内部に設けたので、スラグ61a,61bの駆動機構を小型化することができ、マイクロ波放射機構41を小型化することができる。 Furthermore, since the drive transmission part, the drive guide part, and the holding part for driving the slag are provided inside the inner conductor 53, the drive mechanism of the slags 61a and 61b can be reduced in size. The microwave radiation mechanism 41 can be reduced in size.
 ところで、本実施形態のようにプラズマを生成するために電磁波をアンテナより放射する装置において、実際にアンテナから放射されている実効電力を知ることは極めて重要である。従来は、アンテナから放射する電力ではなく、電源から出力されている電力、または電源とチューナとの間の電力を検出していた。しかしながら、例えば、チューナとアンテナとの間で電力損失や電磁界漏洩が生じたりする場合、電源から例えば1000W出力されている電力が出力されていても、アンテナからは例えば500Wしか放射されていな場合もあり得る。このような場合、部材の変質、変形、焼損などが起こる可能性がある。 By the way, in an apparatus that radiates electromagnetic waves from an antenna to generate plasma as in this embodiment, it is extremely important to know the effective power actually radiated from the antenna. Conventionally, not the power radiated from the antenna but the power output from the power source or the power between the power source and the tuner has been detected. However, for example, when power loss or electromagnetic field leakage occurs between the tuner and the antenna, even when power of 1000 W is output from the power source, for example, only 500 W is radiated from the antenna. There is also a possibility. In such a case, the member may be altered, deformed, or burned out.
 一方、プラズマ源をONした際に、プラズマが実際に着火しているか否かを監視することは極めて重要である。なぜならば、プラズマが着火しなかったり、着火していてもその後失火したりした場合には、そのままプロセスを進行すると、実際には処理が行われていないウエハがプロセスを行ったものとして次のプロセスに移り、不良品となってしまう。またプラズマが点灯していない状態で電力がチャンバへ送られる場合には、ほとんど負荷のない状態で電力が送られている状態になるので、場合によっては過度な反射電力がチャンバから電源に送られ、電源または電源とチャンバを繋ぐ線路に多大なダメージを及ぼす可能性がある。従来は、このようなプラズマの着火不良、失火等を検出する手段としてチャンバ側面などに形成された窓にプラズマ発光センサが用いられていた。しかしながら、このようなプラズマ発光センサの場合、全体のプラズマの着火の有無は把握できても、本実施形態のような複数のマイクロ波放射機構41を用いる場合には、その中の一部にプラズマが着火(点灯)していないものがあってもそれを検出することは困難である。 On the other hand, it is extremely important to monitor whether the plasma is actually ignited when the plasma source is turned on. This is because if the plasma does not ignite or if it is ignited and then misfired, proceeding the process as it is, the wafer that is not actually processed is assumed to have been processed, and the next process It becomes a defective product. In addition, when power is sent to the chamber when the plasma is not lit, power is sent with almost no load, so in some cases excessive reflected power is sent from the chamber to the power supply. The power source or the line connecting the power source and the chamber may cause a great deal of damage. Conventionally, a plasma emission sensor has been used in a window formed on the side of the chamber or the like as means for detecting such poor ignition or misfire of plasma. However, in the case of such a plasma emission sensor, even if it is possible to grasp whether or not the whole plasma is ignited, when using a plurality of microwave radiation mechanisms 41 as in the present embodiment, a part of the plasma emission mechanism 41 is plasma. Even if there is something that is not lit (lit), it is difficult to detect it.
 そこで、本実施形態では、各マイクロ波放射機構41にセンサ挿入孔110を設け、そのセンサ挿入孔110に電界センサ112またはプラズマ発光センサ113を挿入して、一つのマイクロ波放射機構41の表面波プラズマ発生用アンテナ81から放射されるマイクロ波の電力の値、または、一つのマイクロ波放射機構41におけるプラズマの着火(点灯)の有無を把握する。 Therefore, in this embodiment, each microwave radiation mechanism 41 is provided with a sensor insertion hole 110, and the electric field sensor 112 or the plasma emission sensor 113 is inserted into the sensor insertion hole 110, so that the surface wave of one microwave radiation mechanism 41 is obtained. The power value of the microwave radiated from the plasma generating antenna 81 or the presence / absence of plasma ignition (lighting) in one microwave radiation mechanism 41 is grasped.
 電界センサ112は、上述したように、同軸ケーブルの先端に外部導体122が存在しない切欠部124を設けてモノポールアンテナ構造とすることにより、先端の切欠部124を介して天板83からの電磁波を入力することにより、天板83の電界を検出し、これにより、表面波プラズマ発生用アンテナ81からの出力パワーを直接モニタすることができる。 As described above, the electric field sensor 112 has a monopole antenna structure by providing the notch 124 where the outer conductor 122 does not exist at the tip of the coaxial cable, so that the electromagnetic wave from the top plate 83 can be obtained via the notch 124 at the tip. Is detected, and the output power from the surface wave plasma generating antenna 81 can be directly monitored.
 電界センサ112により検出された信号は、計測部126により計測され、計測部126に予め記憶された所定の値と比較することにより、表面波プラズマ発生用アンテナ81から正常に電磁波が放射されているか否かを把握することができる。例えば、電源から電力を1000W供給しているときに適切な電子密度が得られ、適切なプロセス結果が得られているとすると、そのときに電界センサ112が検出した電界値(例えば、ピーク値や実効値)をモニタしておけば、その値と実測値とを比較することにより、正常な電力が表面波プラズマ発生用アンテナ81から放射しているか否かの判断を行うことができる。 Whether the signal detected by the electric field sensor 112 is measured by the measuring unit 126 and compared with a predetermined value stored in advance in the measuring unit 126, so that electromagnetic waves are normally emitted from the surface wave plasma generating antenna 81. It is possible to grasp whether or not. For example, when an appropriate electron density is obtained when supplying 1000 W of power from a power source and an appropriate process result is obtained, the electric field value (for example, peak value or If the effective value) is monitored, it can be determined whether or not normal power is radiated from the surface wave plasma generating antenna 81 by comparing the measured value with the actually measured value.
 また、電界センサ112は、マイクロ波が照射された側に位置し、天板83を介してプラズマと接しているので、例えばプラズマの条件(ガス種、圧力等)を変化したときの表面波プラズマ発生用アンテナ81の出力電界値の変化をモニタすることにより、プラズマのインピーダンスの変化を把握することができる。プラズマインピーダンスの値が高くなれば電界値は高くなる。これにより、プロセスに応じて適切なプラズマ条件を得るための電力値を把握することが可能となる。 Further, since the electric field sensor 112 is located on the side irradiated with the microwave and is in contact with the plasma via the top plate 83, for example, surface wave plasma when the plasma conditions (gas type, pressure, etc.) are changed. By monitoring the change in the output electric field value of the generating antenna 81, it is possible to grasp the change in the plasma impedance. If the value of plasma impedance increases, the electric field value increases. Thereby, it becomes possible to grasp | ascertain the electric power value for obtaining suitable plasma conditions according to a process.
 さらに、電界センサ112をプラズマの着火・失火検出手段として用いることもできる。具体的には、電界センサ112からの信号と予め測定しておいた着火時の信号とを比較することで、着火・失火を判断することができる。これにより、従来のようにチャンバ側面に窓を設置することが不要であり、従来よりも単純な構造で遙かに安価な着火・失火検出手段を実現することができる。 Furthermore, the electric field sensor 112 can also be used as means for detecting plasma ignition / misfire. Specifically, ignition / misfire can be determined by comparing a signal from the electric field sensor 112 with a previously measured ignition signal. Accordingly, it is not necessary to install a window on the side surface of the chamber as in the prior art, and it is possible to realize ignition / misfire detection means that is much cheaper than a conventional structure.
 プラズマ発光センサ113は、受光素子により天板83を通してプラズマの発光を直接検出するので十分な発光強度を得ることができ、各マイクロ波放射機構41の直下のプラズマ着火または失火を高い精度で検出することができる。 Since the plasma light emission sensor 113 directly detects the light emission of the plasma through the top plate 83 by the light receiving element, it is possible to obtain sufficient light emission intensity, and to detect the plasma ignition or misfire directly under each microwave radiation mechanism 41 with high accuracy. be able to.
 この場合に、高精度に電力の値やプラズマの着火の有無を把握するためには、表面波プラズマ発生用アンテナ81のスロットの内側に対応する位置でこれらを検出することが好ましい。そのためには、遅波材82および表面波プラズマ発生用アンテナ81のスロットの内側に対応する位置にセンサ挿入孔を設ける必要があるが、スロットの内側に対応する位置に1箇所のセンサ挿入孔を形成すると、遅波材82内の電磁波を乱し、プラズマ中へ不均一な電磁波を放射してしまい、電界分布が偏心してしまう。 In this case, it is preferable to detect these at a position corresponding to the inside of the slot of the surface wave plasma generating antenna 81 in order to grasp the power value and the presence or absence of plasma ignition with high accuracy. For this purpose, it is necessary to provide a sensor insertion hole at a position corresponding to the inside of the slot of the slow wave member 82 and the surface wave plasma generating antenna 81, but one sensor insertion hole is provided at a position corresponding to the inside of the slot. If formed, the electromagnetic wave in the slow wave material 82 is disturbed, and the non-uniform electromagnetic wave is emitted into the plasma, and the electric field distribution is decentered.
 例えば、図11Aには、スロットが5つの表面波プラズマ発生用アンテナを用い、センサ挿入孔を1箇所設けた場合の電界シミュレーションの結果を示すが、電界分布がセンサ挿入孔側に偏心しているのがわかる。 For example, FIG. 11A shows a result of electric field simulation in the case where a surface wave plasma generating antenna having five slots is used and one sensor insertion hole is provided. The electric field distribution is eccentric to the sensor insertion hole side. I understand.
 そこで、本実施形態では、表面波プラズマ発生用アンテナ81のスロット131の数のn倍(nは1以上の整数)の個数のセンサ挿入孔110を、同軸構造の導波路44の軸を中心にして同一の円周上に均等(等角度)に設け、これらの少なくとも一つに電界センサ112またはプラズマ発光センサ113を挿入することとしている。これにより、センサ挿入孔の電磁波への影響が打ち消し合って、電界分布を乱すことなく、アンテナから出力される電力やアンテナ直下のプラズマ状態を検出することができる。 Therefore, in this embodiment, the number of sensor insertion holes 110 that is n times the number of the slots 131 of the surface wave plasma generating antenna 81 (n is an integer of 1 or more) is centered on the axis of the waveguide 44 having the coaxial structure. The electric field sensor 112 or the plasma light emitting sensor 113 is inserted into at least one of them on the same circumference. As a result, the influence of the sensor insertion hole on the electromagnetic waves cancels out, and the power output from the antenna and the plasma state immediately below the antenna can be detected without disturbing the electric field distribution.
 図11Bは、5個のスロットを有する表面波プラズマ発生用アンテナにおいて、センサ挿入孔を同軸構造の導波路44の軸を中心にして同一の円周上に5個均等(等角度)に設けた場合の電界シミュレーション結果であるが、このように本実施形態に従ってセンサ挿入孔110を形成することにより、電界分布の偏心を防止することができることが確認された。 In FIG. 11B, in a surface wave plasma generating antenna having five slots, five sensor insertion holes are provided equally (at an equal angle) on the same circumference around the axis of the waveguide 44 having a coaxial structure. In this case, it is confirmed that the eccentricity of the electric field distribution can be prevented by forming the sensor insertion hole 110 according to this embodiment.
 センサ挿入孔を5個均等に設け、センサ挿入孔にプラグを挿入した場合における、プラグ(センサ挿入孔)の回転角度、径方向の位置、プラグ(センサ挿入孔)の直径による電界のばらつきを調査した。比較のため、プラグ(センサ挿入孔)を設けない場合、およびプラグ(センサ挿入孔)を1個のみ設けた場合についても同様に電界のばらつきを調査した。その際のプラグの回転角度、径方向の位置、プラグ直径および電界のばらつきの結果を図12に示す。図13は、図12におけるプラグの回転角度、径方向の位置、プラグ直径を説明するための図である。
なお、図12におけるサークル1はアンテナ中心から半径65mmの領域の電界のばらつきであり、サークル2はアンテナ中心から半径37.5mmの領域の電界のばらつきである。
When five sensor insertion holes are evenly provided, and plugs are inserted into the sensor insertion holes, the variation in electric field due to the rotation angle of the plug (sensor insertion hole), the radial position, and the diameter of the plug (sensor insertion hole) is investigated. did. For comparison, the variation in the electric field was similarly investigated when no plug (sensor insertion hole) was provided and when only one plug (sensor insertion hole) was provided. FIG. 12 shows the results of variations in plug rotation angle, radial position, plug diameter, and electric field at that time. FIG. 13 is a diagram for explaining the rotation angle, radial position, and plug diameter of the plug in FIG.
Note that circle 1 in FIG. 12 is a variation in electric field in a region having a radius of 65 mm from the center of the antenna, and circle 2 is a variation in electric field in a region having a radius of 37.5 mm from the center of the antenna.
 図12において、No.1はプラグを設けない場合、No.2はプラグを1個のみ設けた場合、No.3~13はプラグを5個設けた場合であり、No.3~7は回転角度を変化させたもの、No.8~10は径方向位置を変化させたもの、No.11~13はプラグ径を変化させたものである。図12に示すように、プラグが1個のみの場合には、サークル2において円周方向のばらつきが大きくなっているが、プラグを5個設けた場合には、プラグが導波路中心軸を中心とする円の同一円周上にあり、スロットと同じ数均等に設けられていれば、回転角度、径方向の位置、プラグ直径とは関係なく、プラグがない場合と同等の電界分布が得られることがわかる。 In FIG. No. 1 when no plug is provided. No. 2 is the case where only one plug is provided. Nos. 3 to 13 are cases where five plugs are provided. Nos. 3 to 7 were obtained by changing the rotation angle. Nos. 8 to 10 were obtained by changing the radial position. Nos. 11 to 13 have different plug diameters. As shown in FIG. 12, when there is only one plug, variation in the circumferential direction is large in the circle 2, but when five plugs are provided, the plug is centered on the waveguide center axis. If the same number of slots are provided on the same circumference, the electric field distribution equivalent to that without a plug can be obtained regardless of the rotation angle, radial position, and plug diameter. I understand that.
 また、センサ挿入孔110の先端は天板83に接するため、センサ挿入孔110内部から電磁波(マイクロ波)が漏洩し、センサによる計測に悪影響を与えることが懸念される。しかし、電磁波は距離が大きくなると減衰するため、電磁波の影響が懸念される部分、すなわち電界センサ112の場合には計測基板、プラズマ発光センサ113の場合には受光素子を、天板83の裏面からある程度離すことによりそのような悪影響を回避することができる。例えば、マイクロ波の波長が348mm(周波数860MHz)で、センサ挿入孔110の径が3.0mmの場合、図14に示すように、接触面から4.0mm離れた位置で減衰定数が50dBとなり、十分な減衰定数が得られる。したがって、この場合には、電界センサ112の計測基板、またはプラズマ発光センサ113の受光素子を天板83の裏面から4.0mm以上離せば、天板83からの電磁波の影響を回避することができる。また、使用波長に比べて十分にセンサ挿入孔110の径を小さくすることによってもこのような悪影響を回避することができる。 Also, since the tip of the sensor insertion hole 110 is in contact with the top plate 83, there is a concern that electromagnetic waves (microwaves) leak from the sensor insertion hole 110 and adversely affect measurement by the sensor. However, since the electromagnetic wave attenuates as the distance increases, the part where the influence of the electromagnetic wave is a concern, that is, the measurement substrate in the case of the electric field sensor 112, and the light receiving element in the case of the plasma light emission sensor 113 are Such adverse effects can be avoided by separating them to some extent. For example, when the wavelength of the microwave is 348 mm (frequency 860 MHz) and the diameter of the sensor insertion hole 110 is 3.0 mm, the attenuation constant is 50 dB at a position 4.0 mm away from the contact surface as shown in FIG. A sufficient damping constant is obtained. Therefore, in this case, if the measurement substrate of the electric field sensor 112 or the light receiving element of the plasma light emission sensor 113 is separated from the back surface of the top plate 83 by 4.0 mm or more, the influence of electromagnetic waves from the top plate 83 can be avoided. . Moreover, such an adverse effect can also be avoided by sufficiently reducing the diameter of the sensor insertion hole 110 compared to the wavelength used.
 本実施形態では、センサとして電界センサ112を用いる場合、天板83に対してセンサ挿入孔110を形成することにより、大気中へ細穴空間を形成して、そこから電力を取り出すこととなるため、そこでの電力損失が懸念される。しかし、取り出す電力はセンサ挿入孔110の径、電界センサ112のモノポールアンテナを最適化することにより電源出力電力に対して十分に減衰(例えば-60dB)させることができるので、電力損失を十分に小さくしつつ十分な電力を取り出すことができる。 In the present embodiment, when the electric field sensor 112 is used as the sensor, the sensor insertion hole 110 is formed in the top plate 83, so that a narrow hole space is formed in the atmosphere and electric power is taken out therefrom. There is concern about power loss. However, the power to be extracted can be sufficiently attenuated (eg, −60 dB) with respect to the power output power by optimizing the diameter of the sensor insertion hole 110 and the monopole antenna of the electric field sensor 112, so that the power loss can be sufficiently reduced. Sufficient power can be taken out while reducing the size.
 以上のように本実施形態によれば、センサ挿入孔は、遅波材および表面波プラズマ発生用アンテナのスロット内側に対応する領域に、マイクロ波伝送路の軸を中心とした同一の円周上にスロットのn倍(ただし、nは1以上の整数)の個数が均等に形成されているので、センサ挿入孔の電磁波への影響が打ち消し合って、電界分布を乱すことなく、アンテナから出力される電力やアンテナ直下のプラズマ状態を検出することができる。 As described above, according to the present embodiment, the sensor insertion hole is located on the same circumference around the axis of the microwave transmission path in the region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna. Since the number of slots is equal to n times (where n is an integer equal to or greater than 1), the effects of the sensor insertion holes on the electromagnetic waves cancel each other, and the electric field distribution is not disturbed. It is possible to detect the power and the plasma state directly under the antenna.
 <他の適用>
 なお、本発明は上記実施形態に限定されることなく、本発明の思想の範囲内において種々変形可能である。例えば、マイクロ波出力部30やマイクロ波供給部40の構成等は、上記実施形態に限定されるものではない。具体的には、アンテナから放射されるマイクロ波の指向性制御を行ったり円偏波にしたりする必要がない場合には、位相器は不要である。
<Other applications>
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the idea of the present invention. For example, the configuration of the microwave output unit 30 and the microwave supply unit 40 is not limited to the above embodiment. Specifically, when it is not necessary to control the directivity of the microwave radiated from the antenna or to make it circularly polarized, the phase shifter is unnecessary.
 また、上記実施形態においては、プラズマ処理装置としてエッチング処理装置を例示したが、これに限らず、成膜処理、酸窒化膜処理、アッシング処理等の他のプラズマ処理にも用いることができる。さらに、被処理基板は半導体ウエハWに限定されず、LCD(液晶ディスプレイ)用基板に代表されるFPD(フラットパネルディスプレイ)基板や、セラミックス基板等の他の基板であってもよい。 In the above embodiment, the etching processing apparatus is exemplified as the plasma processing apparatus. However, the present invention is not limited to this, and the plasma processing apparatus can be used for other plasma processing such as film formation processing, oxynitride film processing, and ashing processing. Further, the substrate to be processed is not limited to the semiconductor wafer W, and may be another substrate such as an FPD (flat panel display) substrate typified by a substrate for LCD (liquid crystal display) or a ceramic substrate.
 1;チャンバ
 2;マイクロ波プラズマ源
 11;サセプタ
 12;支持部材
 15;排気管
 16;排気装置
 17;搬入出口
 20;シャワープレート
 30;マイクロ波出力部
 31;マイクロ波電源
 32;マイクロ波発振器
 40;マイクロ波供給部
 41;マイクロ波放射機構
 43;アンテナ部
 44;導波路
 52;外側導体
 53;内側導体
 54;給電機構
 55;マイクロ波電力導入ポート
 56;同軸線路
 58;反射板
 60;チューナ
 81;表面波プラズマ発生用アンテナ
 82;遅波材
 83;天板
 100;表面波プラズマ処理装置
 110;センサ挿入孔
 112;電界センサ
 113;プラズマ発光センサ
 140;制御部
 W;半導体ウエハ
DESCRIPTION OF SYMBOLS 1; Chamber 2; Microwave plasma source 11; Susceptor 12; Support member 15; Exhaust pipe 16; Exhaust device 17; Carry-in / out port 20; Shower plate 30; Microwave output part 31; Microwave supply section 41; microwave radiation mechanism 43; antenna section 44; waveguide 52; outer conductor 53; inner conductor 54; feeding mechanism 55; microwave power introduction port 56; coaxial line 58; reflector 60; Surface wave plasma generating antenna 82; Slow wave material 83; Top plate 100; Surface wave plasma processing apparatus 110; Sensor insertion hole 112; Electric field sensor 113; Plasma emission sensor 140;

Claims (7)

  1.  チャンバ内に表面波プラズマを形成するための表面波プラズマ源におけるマイクロ波出力部から出力されたマイクロ波を伝送するマイクロ波伝送路に設けられ、マイクロ波をチャンバ内に放射するマイクロ波放射機構であって、
     前記マイクロ波伝送路を伝送されてきたマイクロ波を、スロットを介して前記チャンバ内に放射して表面波プラズマを発生させる表面波プラズマ発生用アンテナと、
     前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの上流側に設けられた誘電体からなる遅波材と、
     前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの下流側に設けられ、前記表面波プラズマ発生用アンテナから放射されたマイクロ波により前記表面波プラズマを生成するための電界が形成される誘電体部材と、
     前記表面波プラズマ発生用アンテナから放射されたマイクロ波の電力を計測するために前記誘電体部材の電界を検出する電界センサ、または、前記誘電体部材を介して表面波プラズマの発光を検出するプラズマ発光センサと、
     前記遅波材および前記表面波プラズマ発生用アンテナを貫通するように設けられ、前記電界センサまたは前記プラズマ発光センサが挿入されるセンサ挿入孔と、
    を具備し、
     前記センサ挿入孔は、前記遅波材および前記表面波プラズマ発生用アンテナの前記スロット内側に対応する領域に、前記マイクロ波伝送路の軸を中心とした同一の円周上に前記スロットのn倍(ただし、nは1以上の整数)の個数が均等に形成されており、
     前記電界センサまたは前記プラズマ発光センサは、前記センサ挿入孔の少なくとも一つに挿入されている、マイクロ波放射機構。
    A microwave radiation mechanism is provided in a microwave transmission path for transmitting microwaves output from a microwave output unit in a surface wave plasma source for forming surface wave plasma in a chamber, and radiates microwaves into the chamber. There,
    A surface wave plasma generating antenna for generating surface wave plasma by radiating the microwave transmitted through the microwave transmission path into the chamber through a slot;
    A slow wave material made of a dielectric material provided on the upstream side of the surface wave plasma generating antenna of the microwave transmission path;
    A dielectric provided on the downstream side of the surface wave plasma generating antenna of the microwave transmission path, and forming an electric field for generating the surface wave plasma by the microwave radiated from the surface wave plasma generating antenna Members,
    An electric field sensor for detecting the electric field of the dielectric member in order to measure the electric power of the microwave radiated from the surface wave plasma generating antenna, or plasma for detecting light emission of the surface wave plasma through the dielectric member A luminescence sensor;
    A sensor insertion hole provided so as to penetrate the slow wave material and the surface wave plasma generating antenna; and the electric field sensor or the plasma emission sensor is inserted;
    Comprising
    The sensor insertion hole is formed in a region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna, n times the slot on the same circumference centered on the axis of the microwave transmission path. (Where n is an integer equal to or greater than 1) are formed uniformly,
    The microwave radiation mechanism, wherein the electric field sensor or the plasma emission sensor is inserted into at least one of the sensor insertion holes.
  2.  前記電界センサは、先端にモノポール部分を有する同軸ケーブルで構成され、前記誘電体部材に前記モノポール部分を接触または近接させることにより、前記誘電体部材に生じている電界をモニタする、請求項1に記載のマイクロ波放射機構。 The electric field sensor includes a coaxial cable having a monopole portion at a tip, and monitors an electric field generated in the dielectric member by bringing the monopole portion into contact with or in proximity to the dielectric member. The microwave radiation mechanism according to 1.
  3.  前記電界センサは、前記表面波プラズマ発生用アンテナから正常に電磁波が放射されているか否かを把握する機能、プロセスに応じて適切なプラズマ条件を得るための電力値を把握する機能、および、プラズマの着火または失火を検出する機能を有する、請求項1に記載のマイクロ波放射機構。 The electric field sensor has a function of grasping whether or not electromagnetic waves are normally radiated from the surface wave plasma generating antenna, a function of grasping a power value for obtaining an appropriate plasma condition according to a process, and a plasma. The microwave radiation mechanism according to claim 1, which has a function of detecting ignition or misfiring of a gas.
  4.  前記プラズマ発光センサは、前記誘電体部材を介してプラズマの発光を検出する受光素子を有し、受光素子が前記誘電体部材に接触または近接している、請求項1に記載のマイクロ波放射機構。 The microwave radiation mechanism according to claim 1, wherein the plasma light emission sensor includes a light receiving element that detects light emission of plasma through the dielectric member, and the light receiving element is in contact with or close to the dielectric member. .
  5.  前記センサ挿入孔のうち、前記電界センサまたは前記プラズマ発光センサが挿入されていないものについて、電磁波漏洩防止用のプラグが挿入されている、請求項1に記載のマイクロ波放射機構。 The microwave radiation mechanism according to claim 1, wherein a plug for preventing electromagnetic wave leakage is inserted into the sensor insertion hole in which the electric field sensor or the plasma emission sensor is not inserted.
  6.  マイクロ波を生成するマイクロ波生成機構、生成されたマイクロ波を伝送するマイクロ波伝送路、および前記マイクロ波伝送路に設けられ、マイクロ波をチャンバ内に放射する複数のマイクロ波放射機構を有し、前記チャンバ内にマイクロ波を放射して前記チャンバ内に供給されたガスによる表面波プラズマを生成する表面波プラズマ源であって、
     前記マイクロ波放射機構は、
     前記マイクロ波伝送路を伝送されてきたマイクロ波を、スロットを介して前記チャンバ内に放射して表面波プラズマを発生させる表面波プラズマ発生用アンテナと、
     前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの上流側に設けられた誘電体からなる遅波材と、
     前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの下流側に設けられ、前記表面波プラズマ発生用アンテナから放射されたマイクロ波により前記表面波プラズマを生成するための電界が形成される誘電体部材と、
     前記表面波プラズマ発生用アンテナから放射されたマイクロ波の電力を計測するために前記誘電体部材の電界を検出する電界センサ、または、前記誘電体部材を介して表面波プラズマの発光を検出するプラズマ発光センサと、
     前記遅波材および前記表面波プラズマ発生用アンテナを貫通するように設けられ、前記電界センサまたは前記プラズマ発光センサが挿入されるセンサ挿入孔と、
    を有し、
     前記センサ挿入孔は、前記遅波材および前記表面波プラズマ発生用アンテナの前記スロット内側に対応する領域に、前記マイクロ波伝送路の軸を中心とした同一の円周上に前記スロットのn倍(ただし、nは1以上の整数)の個数が均等に形成されており、
     前記電界センサまたは前記プラズマ発光センサは、前記センサ挿入孔の少なくとも一つに挿入されている、表面波プラズマ源。
    A microwave generation mechanism for generating a microwave, a microwave transmission path for transmitting the generated microwave, and a plurality of microwave radiation mechanisms provided in the microwave transmission path for radiating microwaves into the chamber A surface wave plasma source that radiates microwaves into the chamber to generate surface wave plasma by the gas supplied into the chamber,
    The microwave radiation mechanism is
    A surface wave plasma generating antenna for generating surface wave plasma by radiating the microwave transmitted through the microwave transmission path into the chamber through a slot;
    A slow wave material made of a dielectric material provided on the upstream side of the surface wave plasma generating antenna of the microwave transmission path;
    A dielectric provided on the downstream side of the surface wave plasma generating antenna of the microwave transmission path, and forming an electric field for generating the surface wave plasma by the microwave radiated from the surface wave plasma generating antenna Members,
    An electric field sensor for detecting the electric field of the dielectric member in order to measure the electric power of the microwave radiated from the surface wave plasma generating antenna, or plasma for detecting light emission of the surface wave plasma through the dielectric member A luminescence sensor;
    A sensor insertion hole provided so as to penetrate the slow wave material and the surface wave plasma generating antenna; and the electric field sensor or the plasma emission sensor is inserted;
    Have
    The sensor insertion hole is formed in a region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna, n times the slot on the same circumference centered on the axis of the microwave transmission path. (Where n is an integer equal to or greater than 1) are formed uniformly,
    The electric field sensor or the plasma emission sensor is a surface wave plasma source inserted into at least one of the sensor insertion holes.
  7.  被処理基板を収容するチャンバと、
     前記チャンバ内にガスを供給するガス供給機構と、
     マイクロ波を生成するマイクロ波生成機構、生成されたマイクロ波を伝送するマイクロ波伝送路、および前記マイクロ波伝送路に設けられ、マイクロ波を前記チャンバ内に放射する複数のマイクロ波放射機構を有し、前記チャンバ内にマイクロ波を放射して前記チャンバ内に供給されたガスによる表面波プラズマを生成する表面波プラズマ源と
    を具備し、
     前記チャンバ内の被処理基板に対して前記表面波プラズマにより処理を施す表面波プラズマ処理装置であって、
     前記マイクロ波放射機構は、
     前記マイクロ波伝送路を伝送されてきたマイクロ波を、スロットを介して前記チャンバ内に放射して表面波プラズマを発生させる表面波プラズマ発生用アンテナと、
     前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの上流側に設けられた誘電体からなる遅波材と、
     前記マイクロ波伝送路の前記表面波プラズマ発生用アンテナの下流側に設けられ、前記表面波プラズマ発生用アンテナから放射されたマイクロ波により前記表面波プラズマを生成するための電界が形成される誘電体部材と、
     前記表面波プラズマ発生用アンテナから放射されたマイクロ波の電力を計測するために前記誘電体部材の電界を検出する電界センサ、または、前記誘電体部材を介して表面波プラズマの発光を検出するプラズマ発光センサと、
     前記遅波材および前記表面波プラズマ発生用アンテナを貫通するように設けられ、前記電界センサまたは前記プラズマ発光センサが挿入されるセンサ挿入孔と、
    を有し、
     前記センサ挿入孔は、前記遅波材および前記表面波プラズマ発生用アンテナの前記スロット内側に対応する領域に、前記マイクロ波伝送路の軸を中心とした同一の円周上に前記スロットのn倍(ただし、nは1以上の整数)の個数が均等に形成されており、
     前記電界センサまたは前記プラズマ発光センサは、前記センサ挿入孔の少なくとも一つに挿入されている、表面波プラズマ処理装置。
    A chamber for accommodating a substrate to be processed;
    A gas supply mechanism for supplying gas into the chamber;
    A microwave generation mechanism for generating microwaves, a microwave transmission path for transmitting the generated microwaves, and a plurality of microwave radiation mechanisms for radiating microwaves into the chamber are provided in the microwave transmission path. And a surface wave plasma source that radiates microwaves into the chamber and generates surface wave plasma by the gas supplied into the chamber,
    A surface wave plasma processing apparatus for processing a substrate to be processed in the chamber with the surface wave plasma,
    The microwave radiation mechanism is
    A surface wave plasma generating antenna for generating surface wave plasma by radiating the microwave transmitted through the microwave transmission path into the chamber through a slot;
    A slow wave material made of a dielectric material provided on the upstream side of the surface wave plasma generating antenna of the microwave transmission path;
    A dielectric provided on the downstream side of the surface wave plasma generating antenna of the microwave transmission path, and forming an electric field for generating the surface wave plasma by the microwave radiated from the surface wave plasma generating antenna Members,
    An electric field sensor for detecting the electric field of the dielectric member in order to measure the electric power of the microwave radiated from the surface wave plasma generating antenna, or plasma for detecting light emission of the surface wave plasma through the dielectric member A luminescence sensor;
    A sensor insertion hole provided so as to penetrate the slow wave material and the surface wave plasma generating antenna; and the electric field sensor or the plasma emission sensor is inserted;
    Have
    The sensor insertion hole is formed in a region corresponding to the inside of the slot of the slow wave material and the surface wave plasma generating antenna, and n times the slot on the same circumference centered on the axis of the microwave transmission path. (Where n is an integer equal to or greater than 1) are formed uniformly,
    The surface wave plasma processing apparatus, wherein the electric field sensor or the plasma emission sensor is inserted into at least one of the sensor insertion holes.
PCT/JP2012/070988 2011-09-30 2012-08-20 Microwave radiating mechanism, surface wave plasma source, and surface wave plasma processing device WO2013047000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-216540 2011-09-30
JP2011216540A JP2013077441A (en) 2011-09-30 2011-09-30 Microwave radiation mechanism, surface wave plasma source and surface wave plasma processing device

Publications (1)

Publication Number Publication Date
WO2013047000A1 true WO2013047000A1 (en) 2013-04-04

Family

ID=47995051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070988 WO2013047000A1 (en) 2011-09-30 2012-08-20 Microwave radiating mechanism, surface wave plasma source, and surface wave plasma processing device

Country Status (3)

Country Link
JP (1) JP2013077441A (en)
TW (1) TW201332402A (en)
WO (1) WO2013047000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766881A (en) * 2017-04-14 2018-11-06 东京毅力科创株式会社 Plasma processing apparatus and control method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9330889B2 (en) * 2013-07-11 2016-05-03 Agilent Technologies Inc. Plasma generation device with microstrip resonator
JP2015109169A (en) * 2013-12-04 2015-06-11 春日電機株式会社 Discharge detection method in discharge processing
JP6356415B2 (en) * 2013-12-16 2018-07-11 東京エレクトロン株式会社 Microwave plasma source and plasma processing apparatus
JP2016177997A (en) * 2015-03-20 2016-10-06 東京エレクトロン株式会社 Tuner, microwave plasma source, and impedance matching method
US10340124B2 (en) * 2015-10-29 2019-07-02 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide
JP6700128B2 (en) * 2016-07-07 2020-05-27 東京エレクトロン株式会社 Microwave plasma processing equipment
US10707058B2 (en) * 2017-04-11 2020-07-07 Applied Materials, Inc. Symmetric and irregular shaped plasmas using modular microwave sources
JP6899693B2 (en) 2017-04-14 2021-07-07 東京エレクトロン株式会社 Plasma processing equipment and control method
US10679832B2 (en) 2017-07-10 2020-06-09 Verity Instruments, Inc. Microwave plasma source
US10923324B2 (en) 2017-07-10 2021-02-16 Verity Instruments, Inc. Microwave plasma source
TWI721373B (en) * 2018-06-28 2021-03-11 美商梅瑞堤儀器公司 Plasma source, excitation system for excitation of a plasma, and optical monitoring system
JP7175238B2 (en) 2019-05-13 2022-11-18 東京エレクトロン株式会社 Electric field sensor, surface wave plasma source, and surface wave plasma processing device
JP2020194676A (en) 2019-05-27 2020-12-03 東京エレクトロン株式会社 Plasma density monitor, plasma processing apparatus, and plasma processing method
WO2022059533A1 (en) * 2020-09-18 2022-03-24 東京エレクトロン株式会社 Tuner, and impedance matching method
CN112858796B (en) * 2021-01-20 2023-06-02 中国电子科技集团公司第三十三研究所 Electromagnetic leakage time domain signal characteristic identification system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191058A (en) * 1995-01-12 1996-07-23 Sony Corp Plasma treating device
JP2001203097A (en) * 2000-01-17 2001-07-27 Canon Inc Apparatus and method of plasma density measurement and plasma processing apparatus and method by using it
JP2001313285A (en) * 2000-02-21 2001-11-09 Hitachi Ltd Plasma processing apparatus and method of processing specimen
JP2005203709A (en) * 2004-01-19 2005-07-28 Tokyo Electron Ltd Plasma processing apparatus
JP2005534187A (en) * 2002-07-26 2005-11-10 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Method and apparatus for monitoring plasma parameters in a plasma doping apparatus
JP2006024764A (en) * 2004-07-08 2006-01-26 Canon Inc Measuring method of intensity distribution of plasma emission, and plasma processor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191058A (en) * 1995-01-12 1996-07-23 Sony Corp Plasma treating device
JP2001203097A (en) * 2000-01-17 2001-07-27 Canon Inc Apparatus and method of plasma density measurement and plasma processing apparatus and method by using it
JP2001313285A (en) * 2000-02-21 2001-11-09 Hitachi Ltd Plasma processing apparatus and method of processing specimen
JP2005534187A (en) * 2002-07-26 2005-11-10 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Method and apparatus for monitoring plasma parameters in a plasma doping apparatus
JP2005203709A (en) * 2004-01-19 2005-07-28 Tokyo Electron Ltd Plasma processing apparatus
JP2006024764A (en) * 2004-07-08 2006-01-26 Canon Inc Measuring method of intensity distribution of plasma emission, and plasma processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766881A (en) * 2017-04-14 2018-11-06 东京毅力科创株式会社 Plasma processing apparatus and control method
CN108766881B (en) * 2017-04-14 2023-04-07 东京毅力科创株式会社 Plasma processing apparatus and control method

Also Published As

Publication number Publication date
TW201332402A (en) 2013-08-01
JP2013077441A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2013047000A1 (en) Microwave radiating mechanism, surface wave plasma source, and surface wave plasma processing device
JP6010406B2 (en) Microwave radiation mechanism, microwave plasma source, and surface wave plasma processing apparatus
JP5710209B2 (en) Electromagnetic power feeding mechanism and microwave introduction mechanism
JP5836144B2 (en) Microwave radiation mechanism and surface wave plasma processing equipment
JP5698563B2 (en) Surface wave plasma generating antenna and surface wave plasma processing apparatus
JP5502070B2 (en) Tuner and microwave plasma source
JP6144902B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
WO2011040328A1 (en) Antenna for generating surface wave plasma, microwave introducing mechanism, and apparatus for processing surface wave plasma
JP2016177997A (en) Tuner, microwave plasma source, and impedance matching method
US11244810B2 (en) Electric field sensor, surface wave plasma source, and surface wave plasma processing apparatus
WO2013105358A1 (en) Surface wave plasma treatment device
US11410835B2 (en) Plasma density monitor, plasma processing apparatus, and plasma processing method
WO2014010317A1 (en) Plasma treatment device
WO2020250506A1 (en) Microwave supply mechanism, plasma treatment apparatus, and plasma treatment method
JP5916467B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
JP6283438B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
JP2020202052A (en) Plasma electric field monitor, plasma processing apparatus, and plasma processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835911

Country of ref document: EP

Kind code of ref document: A1