WO2013046999A1 - Sun-tracking solar power generation system - Google Patents

Sun-tracking solar power generation system Download PDF

Info

Publication number
WO2013046999A1
WO2013046999A1 PCT/JP2012/070958 JP2012070958W WO2013046999A1 WO 2013046999 A1 WO2013046999 A1 WO 2013046999A1 JP 2012070958 W JP2012070958 W JP 2012070958W WO 2013046999 A1 WO2013046999 A1 WO 2013046999A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
base
solar
sun
solar power
Prior art date
Application number
PCT/JP2012/070958
Other languages
French (fr)
Japanese (ja)
Inventor
宮原 隆和
Original Assignee
株式会社エルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルム filed Critical 株式会社エルム
Publication of WO2013046999A1 publication Critical patent/WO2013046999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/70Arrangement of stationary mountings or supports for solar heat collector modules with means for adjusting the final position or orientation of supporting elements in relation to each other or to a mounting surface; with means for compensating mounting tolerances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/14Movement guiding means
    • F24S2030/145Tracks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic power generation system.
  • Photovoltaic power generation converts the energy of solar light incident on the solar power generation panel into electrical energy, and the efficiency thereof is the solar light vertically incident on the solar power generation panel 10 as shown in FIG. It is indicated by the ratio of the energy of light 20 and the electrical energy that can be extracted from the panel 10.
  • the power generation efficiency of the photovoltaic power generation panel used for photovoltaic power generation is EF
  • the average energy of sunlight incident on the panel is ES
  • the time during which the sunlight is incident is T
  • the same energy can be obtained at the very moment when the solar panel and the solar power generation panel face each other.
  • the incident angle of sunlight changes every moment, so the output actually obtained is Less than half.
  • various solar tracking power generation systems have been devised that move the solar power generation panel to face the sun, but the cost of the tracking mechanism is high, and multiple solar power generation panels are used.
  • the panel near the sun will block the sunlight that reaches the next panel, so it is necessary to keep it away from the influence, so the number of panels that can be installed in the unit area will be reduced, As a result, the amount of power generation per unit installation area does not increase significantly.
  • a solar tracking type power generation apparatus configured to rotate the solar power generation panel.
  • the incident angle of sunlight 20 becomes 45 degrees as shown in FIG. 14B
  • the photovoltaic power generation panel 10 is rotated 45 degrees so as to face the sun as shown in FIG. 15A.
  • sunlight 20 is incident on the panel 100% and the amount of power generation increases.
  • FIG. 15B even when the incident angle reaches 60 degrees, when the photovoltaic power generation panel 10 is rotated 60 degrees, 100% of the energy of the sunlight 20 is incident on the photovoltaic power generation panel 10 to generate power. Can be increased.
  • a solar tracking type power generation apparatus configured to solve the problem of output reduction by rotating the solar power generation panel 10 has been proposed. (See, for example, Patent Document 1)
  • the solar tracking solar power generation system for example, a plurality of solar power generation panels are loaded on a base having a diameter of 10 m in the same manner as a general installation state, and the base is By rotating, it becomes possible to eliminate the shadow problem that occurs when tracking by individual photovoltaic power generation panels, so that the photovoltaic power generation panels that can be installed per unit area can be loaded closely. Since the area of the area does not decrease, the amount of power generation per unit area increases, and furthermore, since it faces the sun moving from east to south to west as a horizontal plane, the power generation efficiency can be greatly improved. In addition, since the base on which a large number of photovoltaic power generation panels are mounted is rotated, the drive mechanism of the tracking device required for each one or several conventional photovoltaic power generation panels can be reduced, reducing costs. Great effect.
  • the invention according to claim 1 of the present invention includes: Solar tracking solar light configured to automatically rotate a platform loaded with a plurality of photovoltaic power generation panels close to each other so that the photovoltaic power generation panel faces the sun in a horizontal plane by rotating means.
  • the rotating means includes A plurality of rails laid concentrically on the base; A plurality of wheels for supporting the base so as to roll on the rail; It is characterized by having.
  • the plurality of rails laid concentrically Two types of rails are provided: a load support rail configured to support the weight of the base and a derailment prevention rail for preventing the base from being removed or detached due to a typhoon or an earthquake.
  • the rotating means includes Elevation angle interlocking mechanism configured to change the elevation angle of the photovoltaic power generation panel to be loaded according to the altitude of the sun that changes every hour from sunrise to sunset in conjunction with the rotation of the base. Yes.
  • the elevation angle interlocking mechanism is It is equipped with an elevation angle correction mechanism that corrects the elevation angle of the solar photovoltaic panel to be loaded every season or every month according to the position of the sun where the south-middle altitude changes every season or every month.
  • a plurality of rails laid concentrically on the base A plurality of wheels for supporting the base so as to roll on the rail; Since the entire base can be rotated by one rotating means to track the sun, it is possible to prevent a decrease in the efficiency of solar power generation due to a change in the direction of the sun.
  • the plurality of rails laid concentrically By providing two types of rails, a load supporting rail configured to support the weight of the base and a derailment prevention rail for preventing the base from being derailed or detached due to a typhoon or an earthquake. It can be supported stably and reliably.
  • the photovoltaic power generation panel can be adapted to changes in solar altitude from sunrise to sunset. Further, by providing the elevation angle correction mechanism, it is possible to correct the elevation angle of the solar power generation panel to be loaded in accordance with the solar position where the south-central altitude changes every season or every month.
  • FIG. 1 is a perspective view of an embodiment of a solar tracking solar power generation system according to the present invention. It is a top view of the board
  • the solar tracking solar power generation system is configured to move a base on which a plurality of solar power generation panels 10 are closely loaded so as to face the sun.
  • the surface of the photovoltaic power generation panel 10 is irradiated by moving the plurality of photovoltaic power generation panels 10 so as to face the sun. Since all of the energy of the sunlight 20 enters the photovoltaic power generation panel 10 and the photovoltaic power generation panel 10 can be loaded closely, the power generation amount per unit area can be greatly improved.
  • FIG. 3 an embodiment of the solar tracking solar power generation system according to the present invention is shown in FIG.
  • a plurality of (for example, 20 sets) of photovoltaic power generation panels 10 are disposed on a base 30 in a state of being inclined at a predetermined elevation angle and in close contact with each other.
  • the base 30 is configured to be rotationally driven in a horizontal plane as indicated by an arrow by a rotating means described later.
  • the predetermined elevation angle is set to an angle with good power generation efficiency according to the latitude of the installation location.
  • the base 30 loaded with 20 sets of photovoltaic power generation panels 10 on one base to rotate so as to follow the azimuth angle of the sun by one rotating means, Even with 20 sets of solar power generation panels 10, the sun can be tracked by a single rotating means, so that the effect of easily improving the cost effectiveness of the solar tracking type solar power generation system can be obtained.
  • Fig. 4 shows an example of a large-scale solar power plant in which a plurality of substrates having a diameter of 10 m, for example, are used.
  • a considerable vacant space is generated between them.
  • FIG. 4 for example, in a gap between a plurality of bases 31 having a diameter of 10 m.
  • FIG. 5 shows a plan view of a specific configuration example of the base 30 and the rails 40 to 44 that support and hold the base 30.
  • the base 30 is constructed by connecting metal L angles and the like in a grid pattern, and a solar power generation panel is loaded on the base 30.
  • the rails 40 to 44 are disposed and fixed concentrically on a base under the base 30.
  • the first purpose of the rails 40 to 44 is to load a considerable number of photovoltaic power generation panels and to distort the base 30 made of a strong and heavy material such as a metal L angle.
  • the second purpose is to support the base 30 so that it can rotate smoothly.
  • the third purpose is that the base is lifted by strong winds such as typhoons and earthquakes. This is to prevent the wheel 44 from coming off.
  • FIG. 5 An example in which two types of rail shapes are used as described later is shown.
  • the shape need not be limited as long as the above three objects can be achieved.
  • FIG. 5 rails 41 and 43 indicated by broken lines are rails 51 using an L-angle metal shown in FIG. 6A, and are described in the claims together with a first guide wheel 53 described later. It corresponds to the load support rail made.
  • the rails 40, 42, and 44 shown by the concentric solid lines are rails 52 using a C-channel metal shown in FIG. 6B, and are described in the claims together with the second guide wheel 54 described later. It corresponds to the anti-derailing rail.
  • foundations and pavements made of concrete, asphalt, or the like are constructed in a target area to form a base, and rails 40 to 44 formed in an arc shape on the surface of the base are anchor bolts. Fix with etc.
  • the base loaded on the rails 40 to 44 may be distorted and cannot be rotated smoothly.
  • Specified value within 1000 is desirable.
  • it is desirable to adjust the undulation on each rail by inserting a spacer or the like between the surface of the base and each rail.
  • FIG. 6A shows a first guide wheel 53 and an L-angle rail 51.
  • the first guide wheel 53 is fixed at a position facing the L-angled rail 51 on the lower surface of the base 30, supports the load of the base 30, and moves in a direction rotating around the center of the base 30.
  • the flanges 531 and 532 provided so as to sandwich the L-angle rail 51 support the stress against the force other than the rotation direction. There is no easy derailment.
  • the first guide wheel 53 is attached to the position of the mark marked on the base 30 in FIG.
  • the rail 51 is fixed to the base with an anchor bolt 50 or the like.
  • FIG. 6B shows a second guide wheel 54 and a C-channel rail 52.
  • the second guide wheel 54 is fixed at a position facing the C-channel rail 52 on the lower surface of the base 30 and does not have a function of preventing the wheel from being removed from the rail because there is no flange, but holds the C-channel.
  • the floating prevention body 55 that extends so as to go around to the lower side of the rail 52 can prevent a problem that the base 30 is lifted from the rail 52 and peeled off due to a strong wind or an earthquake.
  • the second guide wheel 54 is attached to the position of the mark ⁇ marked on the base 30 in FIG.
  • the rail 52 is fixed to the base with an anchor bolt 50 or the like.
  • a rotating means for tracking the sun will be described as a second embodiment.
  • a ring having an L angle formed on an arc as shown in FIG. 7A is fixed as a passive wheel 60 at a position indicated by an alternate long and short dash line inscribed in the base 30 shown in FIG.
  • the tracking drive motor 63 and the moving wheel 61 made of a non-slip material such as rubber attached to the shaft of the motor have rigidity in the radial direction and the vertical direction freely in the radial direction of the passive wheel 60.
  • the base 30 is rotated by holding the moving wheel 61 against the passive wheel 60 with an appropriate force by an urging means such as a spring and rotating the motor 63.
  • the structure corresponding to the rotation means described in the claim is implement
  • the rotating means for rotating the base 30 there are various configurations such as a configuration using a belt drive and a gear drive in addition to the configuration using the friction between the moving wheel 61 and the passive wheel 60 as in the present embodiment, and any configuration is included in the present invention. Naturally, it is included in the technical scope of the rotating means described in the claims.
  • the elevation angle of the photovoltaic power generation panel 10 is configured to change according to the altitude of the sun that changes every hour from sunrise to sunset.
  • the depression angle interlocking mechanism will be described.
  • FIG. 9 (A) shows the solar power generation panel 10 in a state of facing the altitude at the midsummer of the solar summer solstice at a point of 35 degrees north latitude.
  • the sun that appears with the sunrise gradually increases in altitude.
  • the sun rises and reaches the highest altitude at approximately midday at noon.
  • the earth's earth axis is tilted approximately 23.4 degrees
  • the south-central altitude of the summer solstice at the latitude of 35 degrees north latitude is 78.4 degrees
  • the elevation angle of the photovoltaic power generation panel 10 facing it is 11.6 degrees. .
  • the elevation angle of the photovoltaic power generation panel 10 needs to be greatly changed to 90 degrees at sunrise, 21.6 degrees at south-south, and 90 degrees at sunset.
  • the change of the elevation angle of the photovoltaic power generation panel 10 with time can be realized by using an actuator such as a motor, in the present invention, it is realized by using the rotation of the base 30 that rotates following the sun.
  • the lower end portion of the photovoltaic power generation panel 10 is A link member 11 that is connected to the base 30 so as to be rotatable in the direction and is connected to a part of the back surface of the photovoltaic power generation panel 10 such as an intermediate portion so as to be rotatable in the elevation angle direction, and a lower end portion of the link member 11 is provided.
  • the slide beam 32 is rotatably connected to the elevation angle direction.
  • the slide beam 32 is fixed to a slide body 33 that slides along the upper surface of the base 30.
  • the slide body 33 is slid in the arrow direction shown in FIGS. 9A and 9B, so that the slide beam 32 is slid in the arrow direction, and the link member 11 is interlocked with FIG. Since the state of A) rises to the state of FIG. 9B and pushes the back surface of the photovoltaic panel 10, the photovoltaic panel 10 rises from the state of FIG. 9A to the state of FIG. 9B.
  • the elevation angle changes.
  • the elevation angle of the photovoltaic power generation panel 10 can be changed, so that the slide body 33 is slid by a predetermined slide amount in the direction of the arrow in accordance with the altitude of the sun that changes every hour from sunrise to sunset. By doing so, the direction of the photovoltaic power generation panel 10 can be tracked to the altitude of the sun.
  • the plurality of slide beams 32 are fixed to a plurality of slide bodies 33 that slide along a structure in which the sun of the base 30 runs in the north-south direction when the sun is in the middle.
  • a base 30 that rotatably holds the lower end of the solar power generation panel 10 and a link member 11 that is on the base 30 and changes the elevation angle of the solar power generation panel 10.
  • a plurality of slide beams 32 that support and slide and a slide body 33 that connects the plurality of slide beams 32 constitute an elevation / elevation angle interlocking mechanism that can simultaneously change the elevation angle of the plurality of photovoltaic panels 10. ing.
  • a single slide body 331 passing through the center point of the rotating base 30 rotates the base 30 in order to change the elevation angle of the photovoltaic power generation panel 10 in accordance with the change in solar altitude from sunrise to sunset.
  • the link mechanism 5 (refer FIG. 11) which slides the slide body 33 and the slide beam 32 using is provided.
  • the link mechanism 5 includes a link body 34 that extends downward from the slide body 331, a fixed body 36 that is separated from the rotation center of the base 30 by a distance a to the north side, and the link body 34 and the fixed body 36 that are rotatably connected.
  • a fixed base 37 provided with a plurality of attachment mechanisms 371 so that the fixing position of the fixed body 36 can be changed every season or every month.
  • a plurality of attachment mechanisms 351 that are rotatably attached to the fixed body 36 are provided on the fixed body 36 side of the link bar 35 in order to change the effective length for each season or every month.
  • the link mechanism 5 including the mounting mechanism 371 for the fixed base 37 and the mounting mechanism 351 for the fixed body 36 has a configuration corresponding to the elevation angle correcting mechanism described in the claims.
  • FIGS. 12 is a side view seen from the west side with the photovoltaic power generation panel 10 and the slide 33 as the center
  • FIG. 13 is a plan view of FIG.
  • the center point of the rotating base 30 is O
  • the length of the photovoltaic panel 10 is 2f
  • the connection point of the link material 11 is the center of the back surface of the photovoltaic panel 10
  • the length of the link material 11 is f
  • R is the position of the rotatable connecting portion at the lower end of the photovoltaic power generation panel 10
  • d is the distance from the center point O to R
  • P is the connection between the link material 11 and the slide beam 32
  • the fixed body 36 is fixed.
  • the position is A
  • the distance from the center point O to the fixed position A is a
  • the distance from the fixed body 36 of the link bar 35 to the link body 34 (effective length) is c
  • a and c are obtained by the following calculation. .
  • the solar south solar altitude and sunrise time of each season, month or day are obtained from the latitude and longitude of the installation location of the photovoltaic power generation panel 10, and the elevation angle ⁇ of the solar cell panel directly facing the same mid south altitude is obtained.
  • the azimuth angle ⁇ of sunrise into the equations (6) and (7), the distance a from the center point O to the fixed body 36 and the length c of the link bar 35 can be obtained.
  • the photovoltaic power generation panel can be generally directly opposed to the azimuth and altitude of the sun.
  • the above calculation and the above mechanism are simplified, and are not intended to strictly face the sun. To construct a solar tracking power generation system with a simple structure, that is, at low cost. It is effective enough.
  • the solar tracking solar power generation system By rotating means, following the change in the direction of the sun from sunrise to sunset, By the elevation angle correction mechanism provided with the link mechanism 5 and the elevation angle interlock mechanism provided with the link member 11, the slide beam 32, and the slide body 33, not only follows the change in solar altitude from sunrise to sunset, Since it can follow the changes in the altitude of the sun in every four seasons or every month, it is possible to prevent a decrease in power generation efficiency throughout the year.
  • the elevation angle correction mechanism nor the elevation angle interlocking mechanism uses an actuator such as a motor, a control device, or the like, a solar tracking power generation system can be realized at low cost.
  • Photovoltaic panel 30 Base 40 to 44 Rail 40, 42, 44 C channel shaped anti-derailing rail 41, 43 L-angle load support rail 11
  • Link material elevation angle interlocking mechanism 32 Slide beam, elevation angle interlocking mechanism 33 Slide body, elevation angle interlocking mechanism 351 attachment mechanism, link mechanism 36 fixed body, link mechanism 37 fixed base, link mechanism 371 attachment mechanism, link mechanism 5 link mechanism, elevation angle correction mechanism

Abstract

The purpose of the present invention is to prevent a decrease in power generation efficiency of solar power generation panels by providing a mechanism that tracks changes in the azimuth angle and height of the sun. In this sun-tracking solar power generation system, a plurality of solar power generation panels are installed on a base and the base is caused to rotate using a single rotation means. It thereby becomes possible to eliminate the problem of shadows of individual solar power generation panels being generated during tracking, install the solar power generation panels in a packed manner, and increase the amount of power generated per unit area. This, in addition to the fact that the system tracks changes in the height of the sun, makes it possible to significantly enhance power generation efficiency. Since the base is caused to rotate using a single rotation means, there is also a significant cost-reducing effect.

Description

太陽追尾型太陽光発電システムSolar tracking solar power generation system
 本発明は、太陽光発電システムに関するものである。 The present invention relates to a photovoltaic power generation system.
 近年CO2排出削減及び原子力発電を削減するために、再生可能エネルギーを使った電力の必要性が高まり、中でもその発電効率の向上と低価格化により太陽光発電に注目が集まっている。
 太陽光発電は、太陽光発電パネルに入射する太陽光のエネルギーを電気エネルギーに変換するもので、その効率は、図14(A)に示す様に、太陽光発電パネル10に垂直に入射する太陽光20のエネルギーと、同パネル10から取り出せる電気エネルギーの割合で示される。
In recent years, in order to reduce CO 2 emissions and nuclear power generation, the need for electric power using renewable energy has increased, and in particular, solar power generation has attracted attention due to improvement in power generation efficiency and price reduction.
Photovoltaic power generation converts the energy of solar light incident on the solar power generation panel into electrical energy, and the efficiency thereof is the solar light vertically incident on the solar power generation panel 10 as shown in FIG. It is indicated by the ratio of the energy of light 20 and the electrical energy that can be extracted from the panel 10.
 太陽光発電に使用する太陽光発電パネルの発電効率をEF、同パネルに入射する太陽光の平均エネルギーをES、同太陽光の入射する時間をTとすると、その計算上の出力PoはPo=ES×EF×Tとなるが、同エネルギーを得られるのは太陽と太陽光発電パネルが正対した極一瞬で実際は太陽光の入射角が刻一刻と変化する為、実際に得られる出力はその半分以下になる。
 この効率低下を避けるために、太陽光発電パネルを太陽に正対するように動かす太陽追尾型発電システムも各種考案されているが、追尾機構のコストが高く、また、複数の太陽光発電パネルを使用する場合、太陽に近い側のパネルが次のパネルに届く太陽光を遮蔽する事から、その影響を受けない距離に離す必要があるため、単位面積に設置できるパネルの数が減る事になり、結果として単位設置面積当たりの発電量は大して増えないことになる。
Assuming that the power generation efficiency of the photovoltaic power generation panel used for photovoltaic power generation is EF, the average energy of sunlight incident on the panel is ES, and the time during which the sunlight is incident is T, the calculated output Po is Po = ES × EF × T, but the same energy can be obtained at the very moment when the solar panel and the solar power generation panel face each other. In fact, the incident angle of sunlight changes every moment, so the output actually obtained is Less than half.
In order to avoid this decrease in efficiency, various solar tracking power generation systems have been devised that move the solar power generation panel to face the sun, but the cost of the tracking mechanism is high, and multiple solar power generation panels are used. If you do, the panel near the sun will block the sunlight that reaches the next panel, so it is necessary to keep it away from the influence, so the number of panels that can be installed in the unit area will be reduced, As a result, the amount of power generation per unit installation area does not increase significantly.
 太陽光20が太陽光発電パネル10に入射する角度を正確に表すには、方位角と仰俯角の二つの角度を必要とするが、図14から図17の説明では、説明を容易にする為に、その中の方位角のみを使って説明する。 To accurately represent the angle at which the sunlight 20 is incident on the photovoltaic power generation panel 10, two angles, an azimuth angle and an elevation angle, are required. In the description of FIGS. The explanation will be made using only the azimuth angle.
 一般的な太陽光発電パネルの設置例である固定型の場合は、パネルに入射する太陽光の入射角は季節や時間により大きく変動し、例えば図14(B)に示す様に、入射角が45度になると、実際にパネルに入射する太陽光エネルギー20は正対時のcos45°=0.707になり、更に図14(C)のように入射角が60度になると正対時のcos60°=0.5と半分に低下する。
 更に、時刻により高度の変化する太陽により仰俯角の変化が加わる事と、ガラス等に斜めに光が入ると、反射される光の割合が増えるなどの阻害要因が重なるため、その出力は大幅に低下することになる。
In the case of a fixed type, which is a typical installation example of a photovoltaic power generation panel, the incident angle of sunlight incident on the panel varies greatly depending on the season and time. For example, as shown in FIG. When the angle is 45 degrees, the solar energy 20 actually incident on the panel is cos 45 ° = 0.707 when facing directly, and when the incident angle is 60 degrees as shown in FIG. 14C, cos 60 ° when facing directly = It drops to 0.5 and half.
Furthermore, since the elevation angle changes due to the sun changing altitude according to the time, and when light enters the glass etc. at an angle, obstruction factors such as an increase in the ratio of reflected light overlap, so the output is greatly increased Will be reduced.
特開2007-258357号公報JP 2007-258357 A
 以上のような出力低下の問題を解決するために、太陽光発電パネルを回転させるように構成された太陽追尾型の発電装置も提案されている。
 例えば、図14(B)のように、太陽光20の入射角が45度になった際に、図15(A)のように太陽光発電パネル10を45度回転して太陽と正対させると、太陽光20は100%パネルに入射して発電量が増える。同様に図15(B)のように入射角が60度になっても太陽光発電パネル10を60度回転すると太陽光20の持つエネルギーの100%を太陽光発電パネル10に入射して発電量を増やすことができる。このようにして、太陽光発電パネル10を回転させることによって出力低下の問題を解決するように構成された太陽追尾型の発電装置が提案されている。(例えば、特許文献1等を参照。)
In order to solve the problem of the output reduction as described above, a solar tracking type power generation apparatus configured to rotate the solar power generation panel has also been proposed.
For example, when the incident angle of sunlight 20 becomes 45 degrees as shown in FIG. 14B, the photovoltaic power generation panel 10 is rotated 45 degrees so as to face the sun as shown in FIG. 15A. Then, sunlight 20 is incident on the panel 100% and the amount of power generation increases. Similarly, as shown in FIG. 15B, even when the incident angle reaches 60 degrees, when the photovoltaic power generation panel 10 is rotated 60 degrees, 100% of the energy of the sunlight 20 is incident on the photovoltaic power generation panel 10 to generate power. Can be increased. In this way, a solar tracking type power generation apparatus configured to solve the problem of output reduction by rotating the solar power generation panel 10 has been proposed. (See, for example, Patent Document 1)
 しかし、個々あるいは小数枚の太陽光発電パネルを動かして太陽を追尾する方法の場合は、それぞれの発電量は増えるが、図16に示す様に回転した際に太陽に近い側の太陽光発電パネルが隣のパネルに影を作るため、それを避けるには図17のように、太陽光発電パネルを相当な距離を離して設置する必要がある。そのため、固定型に比べ同一面積に設置できる太陽光発電パネルの数が減り、同面積当たりの発電量を増やす事は難しくなる。 However, in the method of tracking the sun by moving individual or a small number of photovoltaic panels, the amount of each power generation increases, but the photovoltaic panel closer to the sun when rotated as shown in FIG. However, in order to avoid this, it is necessary to install a photovoltaic power generation panel at a considerable distance as shown in FIG. Therefore, the number of photovoltaic power generation panels that can be installed in the same area is reduced as compared with the fixed type, and it is difficult to increase the amount of power generation per area.
 更に、追尾装置が太陽光発電パネル毎あるいは、例えば数枚毎に必要になるため、その費用がかさみ、経済効果も得にくいため、ビルの屋上の様な設置面積が限られたごく小規模な発電にしか使われていない。
Furthermore, since tracking devices are required for each photovoltaic power generation panel or every few panels, for example, the cost is high and it is difficult to obtain an economic effect, so the installation area such as the rooftop of a building is very small. It is only used for power generation.
 以上の課題を解決する為に、本発明による太陽追尾型太陽光発電システムでは、例えば直径10mの基盤上に、複数の太陽光発電パネルを一般的な設置状態と同様に装荷し、同基盤を回転させる事により、個々の太陽光発電パネルによる追尾時に生じる影の問題を無くする事が可能になるため、密接して太陽光発電パネルを装荷できることにより、単位面積当たりに設置できる太陽光発電パネルの面積も減る事が無いので単位面積当たりの発電量が高くなり、更に、東→南→西に移動する太陽に水平面として正対する為、大幅な発電効率向上が可能になる。
 また、多数の太陽光発電パネルを実装した基盤を回転運動させる事から、旧来の1枚ないし数枚の太陽光発電パネル毎に必要とした追尾装置の駆動機構が一つで済むため、コストダウン効果も大きい。
In order to solve the above problems, in the solar tracking solar power generation system according to the present invention, for example, a plurality of solar power generation panels are loaded on a base having a diameter of 10 m in the same manner as a general installation state, and the base is By rotating, it becomes possible to eliminate the shadow problem that occurs when tracking by individual photovoltaic power generation panels, so that the photovoltaic power generation panels that can be installed per unit area can be loaded closely. Since the area of the area does not decrease, the amount of power generation per unit area increases, and furthermore, since it faces the sun moving from east to south to west as a horizontal plane, the power generation efficiency can be greatly improved.
In addition, since the base on which a large number of photovoltaic power generation panels are mounted is rotated, the drive mechanism of the tracking device required for each one or several conventional photovoltaic power generation panels can be reduced, reducing costs. Great effect.
 本発明の係る請求項1に係る発明は、
複数枚の太陽光発電パネルを互いに近接させて装荷した基盤を、回転手段によって、前記太陽光発電パネルが水平面において太陽と正対するように自動的に回転させるように構成された太陽追尾型太陽光発電システムにおいて、
前記回転手段は、
基台上に同心円状に敷設された複数のレールと、
前記基盤を、前記レール上において転動可能に支持する複数の車輪と、
を備えていることを特徴としている。
 請求項2では、
前記同心円状に敷設された複数のレールは、
前記基盤の重量を支えるように構成された荷重支持レールと、前記基盤が台風や地震等により脱輪あるいは離脱する事を防ぐための脱輪防止レールの2種類のレールを備えている。
 請求項3では、
前記回転手段は、
前記基盤の回転に連動して、装荷する太陽光発電パネルの仰俯角を、日の出から日没まで時間毎に変化する太陽の高度に合わせて変化させるように構成された仰俯角連動機構を備えている。
 請求項4では、
前記仰俯角連動機構は、
季節毎もしくは月毎に南中高度が変化する太陽位置に合わせて、装荷する太陽光発電パネルの仰俯角を、季節毎もしくは月毎に補正する仰俯角補正機構を備えている。
The invention according to claim 1 of the present invention includes:
Solar tracking solar light configured to automatically rotate a platform loaded with a plurality of photovoltaic power generation panels close to each other so that the photovoltaic power generation panel faces the sun in a horizontal plane by rotating means. In the power generation system,
The rotating means includes
A plurality of rails laid concentrically on the base;
A plurality of wheels for supporting the base so as to roll on the rail;
It is characterized by having.
In claim 2,
The plurality of rails laid concentrically,
Two types of rails are provided: a load support rail configured to support the weight of the base and a derailment prevention rail for preventing the base from being removed or detached due to a typhoon or an earthquake.
In claim 3,
The rotating means includes
Elevation angle interlocking mechanism configured to change the elevation angle of the photovoltaic power generation panel to be loaded according to the altitude of the sun that changes every hour from sunrise to sunset in conjunction with the rotation of the base. Yes.
In claim 4,
The elevation angle interlocking mechanism is
It is equipped with an elevation angle correction mechanism that corrects the elevation angle of the solar photovoltaic panel to be loaded every season or every month according to the position of the sun where the south-middle altitude changes every season or every month.
 以上説明したように、本発明に係る太陽追尾型太陽光発電システムよれば、
基台上に同心円状に敷設された複数のレールと、
前記基盤を、前記レール上において転動可能に支持する複数の車輪と、
を備えた回転手段を備えることにより、基盤全体を1つの回転手段で回転させて太陽を追尾することができるので、太陽の方向の変化による太陽光発電の効率の低下を防止することができる。
 また、前記同心円状に敷設された複数のレールは、
前記基盤の重量を支えるように構成された荷重支持レールと、前記基盤が台風や地震等により脱輪あるいは離脱する事を防ぐための脱輪防止レールの2種類のレールを備えることにより、基盤を安定して確実に支持することができる。
 さらにまた、仰俯角連動機構を備えることによって、太陽光発電パネルを日の出から日没までの太陽高度の変化に合わせることができる。
 また、仰俯角補正機構を備えることによって、季節毎もしくは月毎に南中高度が変化する太陽位置に合わせて、装荷する太陽光発電パネルの仰俯角を補正することができる。
As explained above, according to the solar tracking solar power generation system according to the present invention,
A plurality of rails laid concentrically on the base;
A plurality of wheels for supporting the base so as to roll on the rail;
Since the entire base can be rotated by one rotating means to track the sun, it is possible to prevent a decrease in the efficiency of solar power generation due to a change in the direction of the sun.
Further, the plurality of rails laid concentrically,
By providing two types of rails, a load supporting rail configured to support the weight of the base and a derailment prevention rail for preventing the base from being derailed or detached due to a typhoon or an earthquake. It can be supported stably and reliably.
Furthermore, by providing an elevation / elevation angle interlocking mechanism, the photovoltaic power generation panel can be adapted to changes in solar altitude from sunrise to sunset.
Further, by providing the elevation angle correction mechanism, it is possible to correct the elevation angle of the solar power generation panel to be loaded in accordance with the solar position where the south-central altitude changes every season or every month.
本発明に係る太陽追尾型太陽光発電システムに用いる複数の太陽光発電パネルを装荷した基盤の模式図である。It is a schematic diagram of the board | substrate loaded with the several solar power generation panel used for the solar tracking type solar power generation system which concerns on this invention. 前記太陽光発電パネルを装荷した基盤を回転させた状態の模式図である。It is a schematic diagram of the state which rotated the base | substrate loaded with the said photovoltaic power generation panel. 本発明に係る太陽追尾型太陽光発電システムの実施形態の斜視図である。1 is a perspective view of an embodiment of a solar tracking solar power generation system according to the present invention. 異なる大きさの太陽光発電パネルを装荷した基盤の平面図である。It is a top view of the board | substrate which loaded the photovoltaic power generation panel of a different magnitude | size. 本発明に係る太陽追尾型太陽光発電システムに用いる太陽光発電パネルを装荷した基盤の平面図である。It is a top view of the board | substrate loaded with the solar power generation panel used for the solar tracking type solar power generation system which concerns on this invention. 前記基盤の要部の側面図である。It is a side view of the principal part of the said base | substrate. 本発明に係る太陽追尾型太陽光発電システムに用いる太陽光発電パネルを装荷した基盤の別の実施例の要部の側面図である。It is a side view of the principal part of another Example of the board | substrate loaded with the solar power generation panel used for the solar tracking type solar power generation system which concerns on this invention. 本発明に係る太陽追尾型太陽光発電システムに用いる太陽光発電パネルを装荷した基盤の回転手段の模式図である。It is a schematic diagram of the rotation means of the board | substrate loaded with the solar power generation panel used for the solar tracking type solar power generation system which concerns on this invention. 本発明に係る太陽追尾型太陽光発電システムにおける太陽光発電パネルの追尾機構を説明する模式図である。It is a schematic diagram explaining the tracking mechanism of the photovoltaic power generation panel in the solar tracking type photovoltaic power generation system according to the present invention. 本発明に係る太陽追尾型太陽光発電システムに用いる太陽光発電パネルを装荷した基盤の平面図である。It is a top view of the board | substrate loaded with the solar power generation panel used for the solar tracking type solar power generation system which concerns on this invention. 前記基盤の要部の側面図である。It is a side view of the principal part of the said base | substrate. 本発明に係る太陽追尾型太陽光発電システムに用いる太陽光発電パネルの仰俯角連動機構と仰俯角補正機構を説明する説明図である。It is explanatory drawing explaining the elevation angle interlocking mechanism and elevation angle correction mechanism of the photovoltaic power generation panel used for the solar tracking type photovoltaic power generation system according to the present invention. 前記仰俯角連動機構と仰俯角補正機構の説明図である。It is explanatory drawing of the said elevation angle interlocking mechanism and an elevation angle correction mechanism. 従来例の太陽光発電パネルと、入射する太陽光の方向による問題を説明するための説明図である。It is explanatory drawing for demonstrating the problem by the direction of the sunlight power generation panel of a prior art example, and the incident sunlight. 従来例の太陽光発電パネルと、入射する太陽光の方向による問題を説明するための説明図である。It is explanatory drawing for demonstrating the problem by the direction of the sunlight power generation panel of a prior art example, and the incident sunlight. 従来例の太陽光発電パネルと、入射する太陽光の方向による問題を説明するための説明図である。It is explanatory drawing for demonstrating the problem by the direction of the sunlight power generation panel of a prior art example, and the incident sunlight. 従来例の太陽光発電パネルと、入射する太陽光の方向による問題を説明するための説明図である。It is explanatory drawing for demonstrating the problem by the direction of the sunlight power generation panel of a prior art example, and the incident sunlight.
 本発明に係る太陽追尾型太陽光発電システムは、図1に示すように、複数枚の太陽光発電パネル10を密接して装荷した基盤を、太陽に正対するように動かすように構成されたものであり、図2に示す様に、太陽の方位が変化しても、複数枚の太陽光発電パネル10を太陽に正対するように追尾させて動かすことにより、太陽光発電パネル10面に照射される太陽光20の持つエネルギーの全てが太陽光発電パネル10に入射し、更に、太陽光発電パネル10を密接して装荷できるため、単位面積当たりの発電量を大きく向上できる。 As shown in FIG. 1, the solar tracking solar power generation system according to the present invention is configured to move a base on which a plurality of solar power generation panels 10 are closely loaded so as to face the sun. As shown in FIG. 2, even if the orientation of the sun changes, the surface of the photovoltaic power generation panel 10 is irradiated by moving the plurality of photovoltaic power generation panels 10 so as to face the sun. Since all of the energy of the sunlight 20 enters the photovoltaic power generation panel 10 and the photovoltaic power generation panel 10 can be loaded closely, the power generation amount per unit area can be greatly improved.
 以下においては、本発明に係る太陽追尾型太陽光発電システムの実施形態を図3に示して、その構成と作用効果を説明する。
 図3に示したように、複数枚(例えば20組)の太陽光発電パネル10は、それぞれ基盤30の上に所定の仰角で傾斜させ、互いに密接させた状態で配設されている。基盤30は、後述する回転手段によって、矢印で示したように、水平面内で回転駆動されるように構成されている。前記所定の仰角は、設置場所の緯度に応じて発電効率のよい角度に設定されている。
In the following, an embodiment of the solar tracking solar power generation system according to the present invention is shown in FIG.
As shown in FIG. 3, a plurality of (for example, 20 sets) of photovoltaic power generation panels 10 are disposed on a base 30 in a state of being inclined at a predetermined elevation angle and in close contact with each other. The base 30 is configured to be rotationally driven in a horizontal plane as indicated by an arrow by a rotating means described later. The predetermined elevation angle is set to an angle with good power generation efficiency according to the latitude of the installation location.
 このように、一つの基盤上に20組の太陽光発電パネル10を装荷した基盤30を、1つの回転手段によって、太陽の方位角に合わせて追尾するように回転させるように構成することにより、20組の太陽光発電パネル10であっても1台の回転手段で太陽を追尾できるため、太陽追尾型太陽光発電システムの費用対効果も高めやすいという効果が得られる。 In this way, by configuring the base 30 loaded with 20 sets of photovoltaic power generation panels 10 on one base to rotate so as to follow the azimuth angle of the sun by one rotating means, Even with 20 sets of solar power generation panels 10, the sun can be tracked by a single rotating means, so that the effect of easily improving the cost effectiveness of the solar tracking type solar power generation system can be obtained.
 1つの基盤の直径が、例えば直径10mのものを複数枚使用するような大規模な太陽光発電所の例を図4に示す。1種類の直径の基盤のみを複数枚使用すると、それらの間に相当な空き空間を生じるが、図4に示したように、直径10mの複数の基盤31の間の隙間に、例えば直径4mの基盤32を配設するようにして、直径の異なる基盤を組み合わせて使用する事により、基盤の間の空き空間を大幅に低減することが可能となり、限られた設置面積に効率良く多数の基盤を配設することができる。なお、直径10mの複数の基盤31と直径4mの基盤32との間の隙間に、さらに小さな直径の基盤を配設してもよい。 Fig. 4 shows an example of a large-scale solar power plant in which a plurality of substrates having a diameter of 10 m, for example, are used. When only a plurality of bases having one type of diameter are used, a considerable vacant space is generated between them. As shown in FIG. 4, for example, in a gap between a plurality of bases 31 having a diameter of 10 m, By arranging the bases 32 and using the bases with different diameters, it becomes possible to greatly reduce the free space between the bases, and efficiently install a large number of bases on a limited installation area. It can be arranged. In addition, you may arrange | position a board | substrate with a smaller diameter in the clearance gap between the several base | substrate 31 with a diameter of 10 m, and the base | substrate 32 with a diameter of 4 m.
 次に、本発明に係る太陽追尾型太陽光発電システムの実施例1として、実際の基盤の構造と同敷設例を、図5と図6を用いて説明する。
 図5は、基盤30とそれを支え保持するレール40~レール44の具体的な構成例の平面図を示したものである。
 基盤30は、金属製のLアングル等を連結して碁盤の目状に構築したものであり、この基盤30の上に太陽光発電パネルを装荷する。
 レール40~レール44は、基盤30の下の基台上に同心円に配設され固定されている。 レール40~レール44の第一の目的は、相当数の太陽光発電パネルを装荷し、且つ金属製のLアングルのように丈夫で重量のある素材で構成された基盤30を、歪を生じる事無く支えることであり、第二の目的は、基盤30をスムーズに回転できるように支持することであり、第三の目的は、台風などの強風や地震により基盤が持ちあげられてレール40~レール44から脱輪するのを防ぐ事である。
Next, as Example 1 of the solar tracking type solar power generation system according to the present invention, an actual base structure and an example of laying the same will be described with reference to FIGS. 5 and 6.
FIG. 5 shows a plan view of a specific configuration example of the base 30 and the rails 40 to 44 that support and hold the base 30.
The base 30 is constructed by connecting metal L angles and the like in a grid pattern, and a solar power generation panel is loaded on the base 30.
The rails 40 to 44 are disposed and fixed concentrically on a base under the base 30. The first purpose of the rails 40 to 44 is to load a considerable number of photovoltaic power generation panels and to distort the base 30 made of a strong and heavy material such as a metal L angle. The second purpose is to support the base 30 so that it can rotate smoothly. The third purpose is that the base is lifted by strong winds such as typhoons and earthquakes. This is to prevent the wheel 44 from coming off.
 本実施例では、後述するように2種類のレール形状を使用する例を示すが、上記3つの目的を達成できれば形状は限定する必要は無く、例えば、図7に示す様に、1種類のレールで二つの目的を達成可能な構成とすることもできる。
 図5において、破線で示すレール41、43は、図6(A)に示すLアングル状の金属を使ったレール51であり、後述する第一の導輪53と合わせて特許請求の範囲に記載された荷重支持レールに対応している。
 同心円の実線で示すレール40、42、44は、図6(B)に示すCチャンネル状の金属を使ったレール52であり、後述する第二の導輪54と合わせて特許請求の範囲に記載された脱輪防止レールに対応している。
In this embodiment, an example in which two types of rail shapes are used as described later is shown. However, the shape need not be limited as long as the above three objects can be achieved. For example, as shown in FIG. It is also possible to adopt a configuration that can achieve two purposes.
In FIG. 5, rails 41 and 43 indicated by broken lines are rails 51 using an L-angle metal shown in FIG. 6A, and are described in the claims together with a first guide wheel 53 described later. It corresponds to the load support rail made.
The rails 40, 42, and 44 shown by the concentric solid lines are rails 52 using a C-channel metal shown in FIG. 6B, and are described in the claims together with the second guide wheel 54 described later. It corresponds to the anti-derailing rail.
 本発明を実施する場合、まず、対象とするエリアにコンクリートやアスファルト等による基礎・舗装を施工して基台とし、その基台の表面上に円弧状に成形したレール40~レール44をアンカーボルト等で固定する。この施工に際し、基台の表面に凸凹があると、レール40~レール44に装荷した基盤に歪が生じたり、スムーズに回転できない要因になるため、基台の表面の凸凹を基盤の直径の1/1000以内の規定値にするのが望ましい。前記凸凹が前記規定値より大きい場合は、基台の表面と各レールの間にスペーサ等を入れ、各レール上のうねりを調整することが望ましい。
 このようにして、レール40~レール44を施工後、その上に基盤30を組み立て、その基盤30と、レール40~レール44とが対向する位置に、それぞれ導輪を取り付ける。
 本実施例は2種類のレールを使用する例であるので、2種類の導輪を使用した例を図6に示して説明する。
In carrying out the present invention, first, foundations and pavements made of concrete, asphalt, or the like are constructed in a target area to form a base, and rails 40 to 44 formed in an arc shape on the surface of the base are anchor bolts. Fix with etc. In this construction, if the surface of the base has unevenness, the base loaded on the rails 40 to 44 may be distorted and cannot be rotated smoothly. / Specified value within 1000 is desirable. When the unevenness is larger than the specified value, it is desirable to adjust the undulation on each rail by inserting a spacer or the like between the surface of the base and each rail.
In this way, after the rails 40 to 44 are constructed, the base 30 is assembled thereon, and the guide wheels are attached to the positions where the base 30 and the rails 40 to 44 face each other.
Since this embodiment is an example in which two types of rails are used, an example in which two types of guide wheels are used will be described with reference to FIG.
 図6(A)に、第一の導輪53と、Lアングル状のレール51とを示す。
 第一の導輪53は、基盤30の下面においてLアングル状のレール51に対向する位置に固定されており、基盤30の荷重を支えるとともに、基盤30のセンターを中心に回転する方向の動きに対しては、車輪として抵抗が少なく軽く回転するが、そのような回転方向以外の力に対してはLアングル状のレール51を挟むように設けたフランジ531、532が応力を支えるため、レール51から容易に脱輪する事は無い。この第一の導輪53は図5の基盤30上にマークした○印の位置に取り付けられている。レール51は基台に対してアンカーボルト50等で固定されている。
FIG. 6A shows a first guide wheel 53 and an L-angle rail 51.
The first guide wheel 53 is fixed at a position facing the L-angled rail 51 on the lower surface of the base 30, supports the load of the base 30, and moves in a direction rotating around the center of the base 30. On the other hand, although the wheel rotates with little resistance as a wheel, the flanges 531 and 532 provided so as to sandwich the L-angle rail 51 support the stress against the force other than the rotation direction. There is no easy derailment. The first guide wheel 53 is attached to the position of the mark marked on the base 30 in FIG. The rail 51 is fixed to the base with an anchor bolt 50 or the like.
 図6(B)に、第二の導輪54と、Cチャンネル状のレール52とを示す。
 第二の導輪54は、基盤30の下面においてCチャンネル状のレール52に対向する位置に固定されており、フランジが無いためレールから脱輪する事を防ぐ機能は無いが、Cチャンネルを抱くように、レール52の下側まで回り込むように延設された浮き防止体55により、強風や地震等で基盤30がレール52から浮き上がって引き剥がされる不具合を防ぐ事が出来る。この第二の導輪54は図5の基盤30上にマークした●印の位置に取り付けられている。レール52は基台に対してアンカーボルト50等で固定されている。
FIG. 6B shows a second guide wheel 54 and a C-channel rail 52.
The second guide wheel 54 is fixed at a position facing the C-channel rail 52 on the lower surface of the base 30 and does not have a function of preventing the wheel from being removed from the rail because there is no flange, but holds the C-channel. As described above, the floating prevention body 55 that extends so as to go around to the lower side of the rail 52 can prevent a problem that the base 30 is lifted from the rail 52 and peeled off due to a strong wind or an earthquake. The second guide wheel 54 is attached to the position of the mark ● marked on the base 30 in FIG. The rail 52 is fixed to the base with an anchor bolt 50 or the like.
 この様に、多数の導輪と基台に固定されたレールで基盤を支える事により、相当な重量になる太陽電池を装荷した基盤でも容易に支え、少ない抵抗で回転させる事ができ、また、台風等の強風や地震によりレールから脱輪する不具合も防ぐ事ができ、更に、基盤自体を剛性の高い金属材で作らなくともよいため、面積の広い基盤でも安価に構築できる事になる。 In this way, by supporting the base with a large number of guide wheels and rails fixed to the base, it can be easily supported by a base loaded with a considerable weight of solar cells and rotated with little resistance, It is possible to prevent problems such as a strong wind such as a typhoon or an earthquake that causes the wheel to be removed from the rail. Furthermore, since the base itself does not have to be made of a rigid metal material, a base with a large area can be constructed at low cost.
 次に、本発明に係る太陽追尾型太陽光発電システムにおいて、太陽を追尾する為の回転手段の1例を、実施例2として説明する。
 本実施例は、図5に示す基盤30に内接する一点鎖線で示す位置に、図7(A)に示すようにLアングルを円弧上に成形した輪を受動輪60として固定する。次に、追尾駆動モータ63と同モータの軸に取り付けたゴムなどの滑り難い材質でできた動輪61を、受動輪60の径方向には自在に、円周方向と上下方向には剛性のあるように軸64で支えたフレーム62で保持し、動輪61を受動輪60に、バネ等の付勢手段による適当な力で押し付け、モータ63を回転させる事により、基盤30を回転させるように構成して、特許請求の範囲に記載された回転手段に対応する構成を実現している。
Next, in the solar tracking type solar power generation system according to the present invention, one example of a rotating means for tracking the sun will be described as a second embodiment.
In the present embodiment, a ring having an L angle formed on an arc as shown in FIG. 7A is fixed as a passive wheel 60 at a position indicated by an alternate long and short dash line inscribed in the base 30 shown in FIG. Next, the tracking drive motor 63 and the moving wheel 61 made of a non-slip material such as rubber attached to the shaft of the motor have rigidity in the radial direction and the vertical direction freely in the radial direction of the passive wheel 60. In this way, the base 30 is rotated by holding the moving wheel 61 against the passive wheel 60 with an appropriate force by an urging means such as a spring and rotating the motor 63. And the structure corresponding to the rotation means described in the claim is implement | achieved.
 ここで、受動輪60の直径をDm1、動輪61の直径をDm2とすると、減速比がDm1/Dm2という、大きな減速比の減速機を構成できることになり、逆に、モータ63のトルクはDm2/Dm1となるため、小さなモータでも大きな基盤を回転する事ができる。
 基盤30を回転させる回転手段としては、当実施例のように動輪61と受動輪60の摩擦を利用した構成以外に、ベルト駆動やギア駆動を用いた構成など多種あり、何れの構成も本発明の特許請求の範囲に記載された回転手段の技術的範囲に含まれることは当然である。
Here, assuming that the diameter of the passive wheel 60 is Dm1 and the diameter of the moving wheel 61 is Dm2, a reduction gear having a large reduction ratio with a reduction ratio of Dm1 / Dm2 can be configured. Conversely, the torque of the motor 63 is Dm2 / Since it becomes Dm1, even a small motor can rotate a large base.
As the rotating means for rotating the base 30, there are various configurations such as a configuration using a belt drive and a gear drive in addition to the configuration using the friction between the moving wheel 61 and the passive wheel 60 as in the present embodiment, and any configuration is included in the present invention. Naturally, it is included in the technical scope of the rotating means described in the claims.
 次に、本発明に係る太陽追尾型太陽光発電システムにおいて、太陽光発電パネル10の仰俯角を、日の出から日没まで時間毎に変化する太陽の高度に合わせて変化させるように構成された仰俯角連動機構について説明する。 Next, in the solar tracking solar photovoltaic power generation system according to the present invention, the elevation angle of the photovoltaic power generation panel 10 is configured to change according to the altitude of the sun that changes every hour from sunrise to sunset. The depression angle interlocking mechanism will be described.
 図9(A)は、北緯35度の地点における太陽の夏至の南中時の高度と、正対した状態の太陽光発電パネル10を示す。日の出とともに現れた太陽は徐々に高度が高まり、径度によるが概ね正午に南中し最高高度に達し、その後徐々に高度を下げ日没する。
 地球の地軸は概ね23.4度傾いているため、北緯35度地点の夏至の南中高度は78.4度になり、それに正対する太陽光発電パネル10の仰俯角は11.6度になる。
 このため、太陽光発電パネル10の仰俯角は、日の出時に90度、南中時に21.6度、日没時に90度と大きく変化させる必要がある。
FIG. 9 (A) shows the solar power generation panel 10 in a state of facing the altitude at the midsummer of the solar summer solstice at a point of 35 degrees north latitude. The sun that appears with the sunrise gradually increases in altitude. Depending on the radii, the sun rises and reaches the highest altitude at approximately midday at noon.
Since the earth's earth axis is tilted approximately 23.4 degrees, the south-central altitude of the summer solstice at the latitude of 35 degrees north latitude is 78.4 degrees, and the elevation angle of the photovoltaic power generation panel 10 facing it is 11.6 degrees. .
For this reason, the elevation angle of the photovoltaic power generation panel 10 needs to be greatly changed to 90 degrees at sunrise, 21.6 degrees at south-south, and 90 degrees at sunset.
 太陽光発電パネル10の仰俯角の時間による変化を、モータ等のアクチェータを用いて実現する事も出来るが、本発明においては、太陽を追いかけて回転する基盤30の回転を利用して実現した。 Although the change of the elevation angle of the photovoltaic power generation panel 10 with time can be realized by using an actuator such as a motor, in the present invention, it is realized by using the rotation of the base 30 that rotates following the sun.
 太陽光発電パネル10の仰俯角を変えるための仰俯角連動機構として、本実施例では、図9(A)、(B)に示したように、太陽光発電パネル10の下端部を、仰俯角方向に回転自在に基盤30に連結し、太陽光発電パネル10の裏面の一部、例えば中間部に、仰俯角方向に回転自在に連結したリンク材11を設け、同リンク材11の下端部を、スライド梁32に対して、仰俯角方向に回転自在に連結してある。スライド梁32は基盤30の上面に沿ってスライドするスライド体33に固定されている。 As an elevation angle interlocking mechanism for changing the elevation angle of the photovoltaic power generation panel 10, in this embodiment, as shown in FIGS. 9A and 9B, the lower end portion of the photovoltaic power generation panel 10 is A link member 11 that is connected to the base 30 so as to be rotatable in the direction and is connected to a part of the back surface of the photovoltaic power generation panel 10 such as an intermediate portion so as to be rotatable in the elevation angle direction, and a lower end portion of the link member 11 is provided. The slide beam 32 is rotatably connected to the elevation angle direction. The slide beam 32 is fixed to a slide body 33 that slides along the upper surface of the base 30.
 以上の構成によって、スライド体33を図9(A)、(B)に示した矢印方向にスライドさせることにより、スライド梁32が前記矢印方向にスライドし、連動してリンク材11が図9(A)の状態から図9(B)の状態に立ち上がって太陽光発電パネル10の背面を押すので、太陽光発電パネル10は図9(A)の状態から図9(B)の状態に立ち上って仰俯角が変わるのである。
 以上の構成によって、太陽光発電パネル10の仰俯角を変えることができるので、日の出から日没まで時間毎に変化する太陽の高度に合わせて、スライド体33を矢印方向に所定のスライド量だけスライドさせることによって、太陽光発電パネル10の向きを太陽の高度に追尾させることができるのである。
With the above configuration, the slide body 33 is slid in the arrow direction shown in FIGS. 9A and 9B, so that the slide beam 32 is slid in the arrow direction, and the link member 11 is interlocked with FIG. Since the state of A) rises to the state of FIG. 9B and pushes the back surface of the photovoltaic panel 10, the photovoltaic panel 10 rises from the state of FIG. 9A to the state of FIG. 9B. The elevation angle changes.
With the above configuration, the elevation angle of the photovoltaic power generation panel 10 can be changed, so that the slide body 33 is slid by a predetermined slide amount in the direction of the arrow in accordance with the altitude of the sun that changes every hour from sunrise to sunset. By doing so, the direction of the photovoltaic power generation panel 10 can be tracked to the altitude of the sun.
 更に、図10及び図11に示す様に、複数のスライド梁32は、基盤30の太陽が南中時に南北方向に走る構造体に沿ってスライドする複数のスライド体33に固定されている。この全体的な構造を図10で説明すると、太陽光発電パネル10の下端を回転自在に保持する基盤30と、同基盤30上にあって太陽光発電パネル10の仰俯角を変えるリンク材11を支持し、スライドする複数のスライド梁32と、同複数のスライド梁32を連接するスライド体33により、複数枚の太陽光発電パネル10の仰俯角を同時に変える事ができる仰俯角連動機構が構成されている。 Furthermore, as shown in FIG. 10 and FIG. 11, the plurality of slide beams 32 are fixed to a plurality of slide bodies 33 that slide along a structure in which the sun of the base 30 runs in the north-south direction when the sun is in the middle. This overall structure will be described with reference to FIG. 10. A base 30 that rotatably holds the lower end of the solar power generation panel 10 and a link member 11 that is on the base 30 and changes the elevation angle of the solar power generation panel 10. A plurality of slide beams 32 that support and slide and a slide body 33 that connects the plurality of slide beams 32 constitute an elevation / elevation angle interlocking mechanism that can simultaneously change the elevation angle of the plurality of photovoltaic panels 10. ing.
 回転する基盤30の中心点を通る一本のスライド体331には、日の出から日没に至る太陽高度の変化に追従させて太陽光発電パネル10の仰俯角を変えるために、同基盤30の回転を利用してスライド体33及びスライド梁32をスライドさせるリンク機構5(図11参照。)が設けてある。
 同リンク機構5は、スライド体331から下方に伸びるリンク体34と、基盤30の回転中心から、北側に距離aだけ離れた固定体36と、同リンク体34と固定体36を回転自在に接続するリンク棒35と、固定体36の固定位置を季節毎または月毎に変える事ができるように複数の取付機構371が設けられた固定ベース37により構成されている。
A single slide body 331 passing through the center point of the rotating base 30 rotates the base 30 in order to change the elevation angle of the photovoltaic power generation panel 10 in accordance with the change in solar altitude from sunrise to sunset. The link mechanism 5 (refer FIG. 11) which slides the slide body 33 and the slide beam 32 using is provided.
The link mechanism 5 includes a link body 34 that extends downward from the slide body 331, a fixed body 36 that is separated from the rotation center of the base 30 by a distance a to the north side, and the link body 34 and the fixed body 36 that are rotatably connected. And a fixed base 37 provided with a plurality of attachment mechanisms 371 so that the fixing position of the fixed body 36 can be changed every season or every month.
 リンク棒35の固定体36側には、季節毎または月毎にその有効長を変える為に、固定体36に回転自在に取り付ける複数の取付機構351が設けてある。
 前記固定ベース37の取付機構371と前記固定体36の取付機構351とを備えたリンク機構5は、特許請求の範囲に記載された仰俯角補正機構に対応する構成である。
A plurality of attachment mechanisms 351 that are rotatably attached to the fixed body 36 are provided on the fixed body 36 side of the link bar 35 in order to change the effective length for each season or every month.
The link mechanism 5 including the mounting mechanism 371 for the fixed base 37 and the mounting mechanism 351 for the fixed body 36 has a configuration corresponding to the elevation angle correcting mechanism described in the claims.
 このリンク機構5について、図12、13を参照して説明する。図12は、太陽光発電パネル10とスライド33を中心として図示した西側から見た側面図であり、図13は、図12の平面図である。
 回転する基盤30の中心点をOとし、太陽光発電パネル10の長さを2f、そのリンク材11の接続点を太陽光発電パネル10の裏面の中央部とし、同リンク材11の長さをfとし、太陽光発電パネル10の下端部の回転自在連結部の位置をRとし、中心点OからRまでの距離をd、リンク材11とスライド梁32の連結をP、固定体36の固定位置をAとし、中心点Oから同固定位置Aまでの距離をa、リンク棒35の固定体36からリンク体34までの距離(有効長)をcとし、以下の計算によりaとcを求める。
The link mechanism 5 will be described with reference to FIGS. 12 is a side view seen from the west side with the photovoltaic power generation panel 10 and the slide 33 as the center, and FIG. 13 is a plan view of FIG.
The center point of the rotating base 30 is O, the length of the photovoltaic panel 10 is 2f, the connection point of the link material 11 is the center of the back surface of the photovoltaic panel 10, and the length of the link material 11 is f, R is the position of the rotatable connecting portion at the lower end of the photovoltaic power generation panel 10, d is the distance from the center point O to R, P is the connection between the link material 11 and the slide beam 32, and the fixed body 36 is fixed. The position is A, the distance from the center point O to the fixed position A is a, the distance from the fixed body 36 of the link bar 35 to the link body 34 (effective length) is c, and a and c are obtained by the following calculation. .
 図12、図13より
Figure JPOXMLDOC01-appb-M000001
  
とすると
余弦定理より各辺の長さに関する式は
Figure JPOXMLDOC01-appb-M000002
となる。
日の出時の太陽高度を0度とすると、太陽光発電パネル10は垂直になるので、b=0になり、
Figure JPOXMLDOC01-appb-M000003
であるから式(1)は
Figure JPOXMLDOC01-appb-M000004
  
となる。
次に、南中時の各線分の関係を求めると
Figure JPOXMLDOC01-appb-M000005
ここで式を簡単にする為にd-b=eとすると
Figure JPOXMLDOC01-appb-M000006
となるから、式(2)に代入して整理すると
Figure JPOXMLDOC01-appb-M000007
更に整理すると
Figure JPOXMLDOC01-appb-M000008
  
次に、式(5)にe=d-bを代入してcについて解くと
Figure JPOXMLDOC01-appb-M000009
  
このcを式(3)に代入すると
Figure JPOXMLDOC01-appb-M000010
となる。
From FIG. 12 and FIG.
Figure JPOXMLDOC01-appb-M000001

From the cosine theorem, the equation for the length of each side is
Figure JPOXMLDOC01-appb-M000002
It becomes.
If the solar altitude at sunrise is 0 degree, the photovoltaic panel 10 is vertical, so b = 0.
Figure JPOXMLDOC01-appb-M000003
Therefore, equation (1) is
Figure JPOXMLDOC01-appb-M000004

It becomes.
Next, the relationship between each line segment during the South-Central time
Figure JPOXMLDOC01-appb-M000005
Here, to simplify the formula, if db−e = e
Figure JPOXMLDOC01-appb-M000006
Therefore, when substituting into equation (2) and rearranging
Figure JPOXMLDOC01-appb-M000007
To further organize
Figure JPOXMLDOC01-appb-M000008

Next, substituting e = db into equation (5) and solving for c
Figure JPOXMLDOC01-appb-M000009

Substituting this c into equation (3)
Figure JPOXMLDOC01-appb-M000010
It becomes.
 以上の式により、太陽光発電パネル10の設置場所の緯経度から季節毎あるいは月毎あるいは日毎の太陽の南中高度と日の出時刻を求め、同南中高度に正対する太陽電池パネルの仰俯角φと日の出の方位角θを式(6)及び式(7)に代入する事により、中心点Oから固定体36までの距離aと、リンク棒35の長さcを求める事ができるので、基盤30の回転に連動させて、太陽の方位及び高度に対し、太陽光発電パネルを概ね正対することができる。
 なお、以上の計算及び以上の機構は簡略化したものであって、厳密に太陽に対し正対することを目的としたものではなく、簡易な構造即ち安価に太陽光追尾型発電システムを構築する為には十分に有効である。
From the above formula, the solar south solar altitude and sunrise time of each season, month or day are obtained from the latitude and longitude of the installation location of the photovoltaic power generation panel 10, and the elevation angle φ of the solar cell panel directly facing the same mid south altitude is obtained. And by substituting the azimuth angle θ of sunrise into the equations (6) and (7), the distance a from the center point O to the fixed body 36 and the length c of the link bar 35 can be obtained. By interlocking with the rotation of 30, the photovoltaic power generation panel can be generally directly opposed to the azimuth and altitude of the sun.
In addition, the above calculation and the above mechanism are simplified, and are not intended to strictly face the sun. To construct a solar tracking power generation system with a simple structure, that is, at low cost. It is effective enough.
 設置場所の緯度を北緯35度、東経135度とし、図12においてf=1、d=4とし、図13における方位角θを基盤の方位角即ち時刻を基準に計算すると、春分、夏至、秋分、冬至における線分aとcの値は次の表1に示した様になる。 When the latitude of the installation location is 35 degrees north latitude and 135 degrees east longitude, f = 1 and d = 4 in FIG. 12, and the azimuth angle θ in FIG. The values of line segments a and c at the winter solstice are as shown in Table 1 below.


Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以上説明したように、本発明に係る太陽追尾型太陽光発電システムよれば、
回転手段により、日の出から日没までの太陽の方向の変化に追従するとともに、
リンク機構5を備えた仰俯角補正機構と、リンク材11とスライド梁32とスライド体33を備えた仰俯角連動機構とによって、日の出から日没までの太陽高度の変化に追従するだけでなく、四季毎あるいは月毎の太陽の南中高度の変化にも追従することができるので、一年間を通して発電効率の低下を防止することができる。
 また、前記仰俯角補正機構も前記仰俯角連動機構も、モータ等のアクチェータや制御装置等を使用していないので、安価に太陽光追尾型発電システムを実現することができる。
As explained above, according to the solar tracking solar power generation system according to the present invention,
By rotating means, following the change in the direction of the sun from sunrise to sunset,
By the elevation angle correction mechanism provided with the link mechanism 5 and the elevation angle interlock mechanism provided with the link member 11, the slide beam 32, and the slide body 33, not only follows the change in solar altitude from sunrise to sunset, Since it can follow the changes in the altitude of the sun in every four seasons or every month, it is possible to prevent a decrease in power generation efficiency throughout the year.
In addition, since neither the elevation angle correction mechanism nor the elevation angle interlocking mechanism uses an actuator such as a motor, a control device, or the like, a solar tracking power generation system can be realized at low cost.
10 太陽光発電パネル
30 基盤
40~44 レール
40、42、44 Cチャンネル状の脱輪防止レール
41、43 Lアングル状荷重支持レール
11 リンク材、仰俯角連動機構
32 スライド梁、仰俯角連動機構
33 スライド体、仰俯角連動機構
351 取付機構、リンク機構
36 固定体、リンク機構
37 固定ベース、リンク機構
371 取付機構、リンク機構
5 リンク機構、仰俯角補正機構
10 Photovoltaic panel 30 Base 40 to 44 Rail 40, 42, 44 C channel shaped anti-derailing rail 41, 43 L-angle load support rail 11 Link material, elevation angle interlocking mechanism 32 Slide beam, elevation angle interlocking mechanism 33 Slide body, elevation angle interlocking mechanism 351 attachment mechanism, link mechanism 36 fixed body, link mechanism 37 fixed base, link mechanism 371 attachment mechanism, link mechanism 5 link mechanism, elevation angle correction mechanism

Claims (4)

  1. 複数枚の太陽光発電パネルを互いに近接させて装荷した基盤を、回転手段によって、前記太陽光発電パネルが水平面において太陽と正対するように自動的に回転させるように構成された太陽追尾型太陽光発電システムにおいて、
    前記回転手段は、
    基台上に同心円状に敷設された複数のレールと、
    前記基盤を、前記レール上において転動可能に支持する複数の車輪と、
    を備えていることを特徴とする太陽追尾型太陽光発電システム。
    Solar tracking solar light configured to automatically rotate a platform loaded with a plurality of photovoltaic power generation panels close to each other so that the photovoltaic power generation panel faces the sun in a horizontal plane by rotating means. In the power generation system,
    The rotating means includes
    A plurality of rails laid concentrically on the base;
    A plurality of wheels for supporting the base so as to roll on the rail;
    A solar tracking solar power generation system characterized by comprising:
  2. 前記同心円状に敷設された複数のレールは、
    前記基盤の重量を支えるように構成された荷重支持レールと、前記基盤が台風や地震等により脱輪あるいは離脱する事を防ぐための脱輪防止レールの2種類のレールを備えていることを特徴とする請求項1に記載の太陽追尾型太陽光発電システム。
    The plurality of rails laid concentrically,
    Two types of rails are provided: a load support rail configured to support the weight of the base, and a derailment prevention rail for preventing the base from being derailed or detached due to a typhoon or an earthquake. The solar tracking solar power generation system according to claim 1.
  3. 前記回転手段は、
    前記基盤の回転に連動して、装荷する太陽光発電パネルの仰俯角を、日の出から日没まで時間毎に変化する太陽の高度に合わせて変化させるように構成された仰俯角連動機構を備えていることを特徴とする請求項1または2の何れか1項に記載の太陽追尾型太陽光発電システム。
    The rotating means includes
    Elevation angle interlocking mechanism configured to change the elevation angle of the photovoltaic power panel to be loaded according to the altitude of the sun that changes every hour from sunrise to sunset in conjunction with the rotation of the base. The solar tracking type solar power generation system according to claim 1, wherein the solar tracking type solar power generation system is provided.
  4. 前記仰俯角連動機構は、
    季節毎もしくは月毎に南中高度が変化する太陽位置に合わせて、装荷する太陽光発電パネルの仰俯角を、季節毎もしくは月毎に補正する仰俯角補正機構を備えていることを特徴とする請求項3に記載された太陽追尾型太陽光発電システム。
    The elevation angle interlocking mechanism is
    Equipped with an elevation angle correction mechanism that corrects the elevation angle of the photovoltaic panel to be loaded every season or every month according to the position of the sun where the altitude changes from season to month or from month to month. The solar tracking type solar power generation system according to claim 3.
PCT/JP2012/070958 2011-09-27 2012-08-20 Sun-tracking solar power generation system WO2013046999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011211010A JP5634369B2 (en) 2011-09-27 2011-09-27 Solar tracking solar power generation system
JP2011-211010 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013046999A1 true WO2013046999A1 (en) 2013-04-04

Family

ID=47995050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070958 WO2013046999A1 (en) 2011-09-27 2012-08-20 Sun-tracking solar power generation system

Country Status (2)

Country Link
JP (1) JP5634369B2 (en)
WO (1) WO2013046999A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163180A1 (en) * 2013-04-04 2014-10-09 株式会社エルム Sun-tracking solar power generating system
WO2015155792A1 (en) * 2014-04-09 2015-10-15 Claudio Ornella Supporting structure for solar panels
WO2019147149A1 (en) * 2018-01-25 2019-08-01 Bierzynski Grzegorz Kazimierz Rack, especially for photovoltaic modules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262419B (en) * 2015-11-10 2018-01-12 嘉兴市瑞诚电子科技有限公司 A kind of unilateral positioningly day tracing system of photovoltaic
KR102315011B1 (en) * 2019-05-24 2021-10-20 주식회사 에코리더 Rotary Type Floating Solar Power Plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145168A (en) * 1989-10-31 1991-06-20 Canon Inc Tracking frame of solar photovoltaic device
JP3093695U (en) * 2002-10-28 2003-05-16 悌二郎 山本 Differential voltage driven solar tracking solar power generator
JP2004527723A (en) * 2001-05-29 2004-09-09 ザ サン トラスト エルエルシー Solar energy conversion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200021A (en) * 2005-04-27 2005-07-28 Yuji Nishimura Wheel fitted with flange for prevention of derailment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145168A (en) * 1989-10-31 1991-06-20 Canon Inc Tracking frame of solar photovoltaic device
JP2004527723A (en) * 2001-05-29 2004-09-09 ザ サン トラスト エルエルシー Solar energy conversion
JP3093695U (en) * 2002-10-28 2003-05-16 悌二郎 山本 Differential voltage driven solar tracking solar power generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163180A1 (en) * 2013-04-04 2014-10-09 株式会社エルム Sun-tracking solar power generating system
CN105075108A (en) * 2013-04-04 2015-11-18 株式会社Elm Sun-tracking solar power generating system
JPWO2014163180A1 (en) * 2013-04-04 2017-02-16 株式会社エルム Solar tracking solar power generation system
WO2015155792A1 (en) * 2014-04-09 2015-10-15 Claudio Ornella Supporting structure for solar panels
US10168076B2 (en) 2014-04-09 2019-01-01 Claudio Ornella Supporting structure for solar panels
WO2019147149A1 (en) * 2018-01-25 2019-08-01 Bierzynski Grzegorz Kazimierz Rack, especially for photovoltaic modules
US11626831B2 (en) 2018-01-25 2023-04-11 Grzegorz Kazimierz Bierzyński Rack, especially for photovoltaic modules

Also Published As

Publication number Publication date
JP5634369B2 (en) 2014-12-03
JP2013074037A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
US20160020725A1 (en) Sun-tracking photovoltaic power generation system
AU2007330684B2 (en) Biaxial solar tracker
US7705277B2 (en) Sun tracking solar panels
CN101755342B (en) Rolling motion tracking solar assembly
US20170331416A1 (en) Grid assembly intelligent photovoltaic power generation system
US8844515B2 (en) Carousel heliostat having louvered horizontal mirrors for solar tower systems
WO2013046999A1 (en) Sun-tracking solar power generation system
KR20100015814A (en) Tracking solar collector assembly
RU2377474C1 (en) Plant for orientation of solar-voltaic array to sun
WO2010054831A2 (en) A solar panel support apparatus
WO2012046134A1 (en) Tracker apparatus for capturing solar energy and relative axis movement mechanism
US8242424B2 (en) Single axis solar tracker
WO2011044356A1 (en) Method and system for concentration of solar thermal energy
US20090025775A1 (en) Dynamic solar tracking system
KR101182832B1 (en) Solar Power Plant Having Solar Tracking Apparatus
US20210135618A1 (en) Photovoltaic plant, in particular a ground photovoltaic plant
KR102079713B1 (en) A hybrid apparatus for generating wind power and sola power established to arable land
US20220149774A1 (en) Rocking solar panel sun tracking mounting system
KR20100115652A (en) Solar cell module assembly
CN201181912Y (en) Photovoltaic power generation apparatus and sunlight tracking apparatus
KR200457360Y1 (en) Solar Tracker Installation Based on Concrete
EP2109151A1 (en) Sun-tracking photovoltaic apparatus
EP4002685B1 (en) Single axis solar tracker and operating method thereof
US20240007044A1 (en) Bifacial photovoltaic module, single axis solar tracker and operating method thereof
CN216772268U (en) Photovoltaic tracker system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837300

Country of ref document: EP

Kind code of ref document: A1