WO2013046993A1 - Needle sensor and needle sensor unit - Google Patents

Needle sensor and needle sensor unit Download PDF

Info

Publication number
WO2013046993A1
WO2013046993A1 PCT/JP2012/070881 JP2012070881W WO2013046993A1 WO 2013046993 A1 WO2013046993 A1 WO 2013046993A1 JP 2012070881 W JP2012070881 W JP 2012070881W WO 2013046993 A1 WO2013046993 A1 WO 2013046993A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
sensor
layer
sensor unit
disposed
Prior art date
Application number
PCT/JP2012/070881
Other languages
French (fr)
Japanese (ja)
Inventor
貴平 時本
利夫 深井
Original Assignee
オリンパス株式会社
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, テルモ株式会社 filed Critical オリンパス株式会社
Publication of WO2013046993A1 publication Critical patent/WO2013046993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters

Definitions

  • the present invention relates to a needle-type sensor for measuring the concentration of an analyte in a body and a needle-type sensor unit having the needle-type sensor, and in particular, a short-term indwelling needle-type sensor in which a sensor unit is inserted and indwelled, and the above-mentioned
  • the present invention relates to a needle type sensor unit having a needle type sensor.
  • an analyte of body fluid or blood in the body that is, a sensor unit for measuring the concentration of the substance to be measured is inserted and placed in the body.
  • the short-term indwelling needle sensor continuously measures the concentration of the analyte in the body for a predetermined period, for example, one week.
  • US Pat. No. 7,003336 discloses a needle-type sensor unit 101 in which a needle-type sensor 130 having a sensor portion 110 at the tip is inserted into a slot 150 that is a sheath tube. ing.
  • the needle-type sensor unit 101 includes a sensor of the needle-type sensor 130 by removing the slot 150 from the subject 90 after the slot 150 and the needle-type sensor 130 are punctured into the subject 90. Part 110 is placed in the body.
  • the size D91 of the hole 91 formed in the subject 90 by puncturing the slot 150 is substantially equal to the outer dimension of the slot 150. That is, the size D91 of the hole 91 is larger than the outer dimension D110 of the needle sensor 130. For this reason, at the start of use, that is, immediately after the slot 150 is removed, the sensor unit 110 of the needle sensor 130 is not in contact with the surrounding tissue inside the hole 91. Since the hole 91 gradually contracts due to biological activity, the sensor unit 110 eventually comes into contact with surrounding tissue.
  • the sensor unit 110 detects an analyte by contact with a body fluid or the like that has oozed into the hole 91 even in a non-contact state with the tissue.
  • the non-contact state is more responsive to changes in the analyte concentration than the contact state.
  • the contact state may be temporarily changed from the non-contact state. For this reason, the needle-type sensor 130 may not be easily measured for a while from the start of use.
  • An object of the present invention is to provide a needle type sensor capable of performing stable measurement from the start of use and a needle type sensor unit having the needle type sensor.
  • the needle sensor includes a main body portion, a connector portion provided on a proximal end side of the main body portion, and a sensor portion for measuring an analyte concentration provided on a distal end side of the main body portion.
  • a swelling layer that absorbs and swells the liquid component of the subject is disposed on at least a part of the outer peripheral surface of the tip portion including the measurement surface of the sensor portion. ing.
  • the needle-type sensor unit includes a main body part, a connector part provided on the base end side of the main body part, and an analyte concentration provided on the distal end side of the main body part.
  • a swelling layer that absorbs and swells the liquid component of the subject is disposed on at least a part of the outer peripheral surface of the tip portion including the measurement surface of the sensor portion.
  • a needle-type sensor An outer dimension of the tip including the swollen swelling layer, which is punctured in the subject with the tip housed therein, and is removed while leaving the tip in the body before starting the measurement of the analyte concentration.
  • a sheath tube having a smaller outer dimension than the outer tube.
  • the needle-type sensor unit 1 includes a sensor 30 and a sheath tube 50 for puncturing.
  • the sheath tube 50 is a hollow so-called outer needle having a sharp tip, and is an auxiliary tool for puncturing the subject with the sensor 30. That is, the sheath tube 50 has at least the distal end portion 32 of the sensor 30 in the hollow portion. The subject is punctured in a state in which it is accommodated. And before starting the measurement of the analyte concentration, the sensor tube 30 is left in the body and the sheath tube 50 is removed.
  • the sensor 30 includes a distal end portion 32, a main body portion 33 extending from the distal end portion 32, and a connector portion 35 extending from the main body portion 33.
  • the distal end portion 32, the main body portion 33, and the connector portion 35 are produced, for example, by processing a silicon substrate.
  • the boundary between the distal end portion 32 and the main body portion 33 may not be clear.
  • a region where the sensor unit 10 at the tip of the sensor 30 is disposed is referred to as a tip 32.
  • the elongate sheath tube 50 has a substantially C-shaped cross section in the direction perpendicular to the major axis, and has an elongated slit in the major axis direction.
  • the dimensions d50 and dW50 of the hollow portion of the sheath tube 50 are larger than the outer dimensions D32 and DW32 of the distal end portion 32, respectively.
  • the dimension of the hollow part and the outer dimension of the tip part 32 are cross-sectional dimensions (dimensions in plan view) in the direction perpendicular to the major axis, and the shape in plan view is a diameter in the case of a circle.
  • the lengths are the lengths of the two sides, but for the sake of simplicity, the length of one side will be described as an example.
  • the measurement surface of the light shielding layer 18 (see FIG. 7) of the sensor unit 10 for measuring the analyte concentration is exposed at a part of the front surface 32 of the sensor 30. Further, the outer peripheral surface on the opposite side across the surface of the sensor portion 10 of the tip portion 32 where the light shielding layer 18 is exposed and the central axis in the major axis direction, in other words, the outer peripheral surface on the back side with respect to the measurement surface of the sensor portion 10 A swelling layer 60 is disposed on the surface.
  • the swelling layer 60 should just be arrange
  • the swelling layer 60 swells by absorbing the liquid of the subject, that is, water in the body, but is in a dry and contracted state in a state where it is accommodated in the hollow portion of the sheath tube 50 for puncture. .
  • the sensor 30 is used as the sensor system 2 in combination with the sensor main body 40 and the receiver 45. That is, the sensor system 2 includes a sensor 30, a sensor main body 40, and a receiver 45 that receives and stores a signal from the sensor main body 40.
  • the connector part 35 of the sensor 30 is detachably fitted to the fitting part 41 of the sensor main body part 40.
  • the sensor 30 is electrically connected to the sensor body 40 by mechanically fitting the connector part 35 with the fitting part 41 of the sensor body 40. Transmission / reception of signals between the sensor body 40 and the receiver 45 is performed wirelessly or by wire.
  • the sensor body 40 includes a wireless antenna for wirelessly transmitting and receiving signals to and from the receiver 45, a power source such as a battery, and various circuits for driving and controlling the sensor unit 10.
  • the various circuits include an amplifier circuit that amplifies signals, a circuit reference clock generation circuit, a logic circuit, a data processing circuit, an AD conversion processing circuit, a mode control circuit, a memory circuit, and a communication high-frequency generator circuit. be able to.
  • the sensor main body 40 when transmitting and receiving a signal with the receiver 45 by wire, the sensor main body 40 has a signal line instead of the wireless antenna. Information such as the analyte concentration in the body fluid measured by the sensor unit 10 is stored in the memory of the receiver 45.
  • the sensor 30 is a disposable part that is disposed of after use to prevent infection, but the sensor body 40 and the receiver 45 are reusable parts that are repeatedly reused.
  • the sensor unit 10 includes a silicon substrate as a substrate 11, a photoelectric conversion element (PD element) 12, a silicon oxide layer (not shown), a filter layer 14, and a light emitting element (LED that generates excitation light and transmits fluorescence).
  • PD element photoelectric conversion element
  • LED light emitting element
  • (Element) 15 a transparent intermediate layer 16, an indicator layer 17 containing a fluorescent dye, and a light-shielding layer 18 that is the outermost layer are sequentially laminated from the substrate 11 side. Further, at least a part of each of the PD element 12, the filter layer 14, the LED element 15, and the indicator layer 17 is formed in the same region on the substrate 11.
  • the LED element 15, the transparent intermediate layer 16, and the indicator layer 17 are accommodated inside the sensor frame 20.
  • the surface other than the light shielding layer 18 is covered with a protective layer 19 made of polyparaxylylene or the like having high biocompatibility.
  • a PD element 12 that converts received fluorescence into an electrical signal is formed.
  • the substrate 11 can be thinned to about several tens of ⁇ m in the manufacturing process.
  • the photoelectric conversion element a photodiode or a phototransistor is particularly preferable. This is because the fluorescence detection sensitivity having high sensitivity and excellent stability can be realized, and as a result, the sensor unit 10 having excellent detection sensitivity and detection accuracy can be realized.
  • the filter layer 14 that covers the light receiving surface of the PD element 12 is, for example, an absorption optical filter that blocks the excitation light E generated by the LED element 15 and transmits fluorescence F having a longer wavelength.
  • the filter layer 14 is preferably a silicon layer such as polycrystalline silicon, a silicon carbide layer, or a gallium phosphide layer. All of the above materials have a low transmittance at a wavelength of excitation light shorter than 375 nm and a high transmittance at a wavelength of fluorescence of 460 nm, that is, a transmittance selection of 6 digits or more as a ratio of the transmittance of excitation light to the transmittance of fluorescence. Have sex.
  • the LED element 15 is a light emitting element that emits excitation light and transmits fluorescence.
  • a light-emitting element a sapphire substrate is used from the viewpoints of fluorescence transmittance, light generation efficiency, wide wavelength selectivity of excitation light, and little emission of light having a wavelength other than ultraviolet light serving as excitation light.
  • a gallium nitride based ultraviolet LED is preferable.
  • the indicator layer 17 generates fluorescence with a light amount corresponding to the concentration of the analyte by the interaction with the entering analyte and the excitation light.
  • the thickness of the indicator layer 17 is set to about several tens of ⁇ m.
  • the indicator layer 17 is made of a base material containing a fluorescent dye that generates fluorescence having an intensity corresponding to the amount of the analyte, that is, the concentration of the analyte in the sample.
  • Any fluorescent dye can be used as long as it is selected by the analyte and the amount of fluorescent light reversibly changes in accordance with the amount of the analyte.
  • the residual fluorescence A crown ether derivative having a group can be used.
  • substances that reversibly bind to glucose such as a ruthenium organic complex, a fluorescent phenylboronic acid derivative, or a glucose binding protein modified with fluorescein, can be used as a fluorescent dye.
  • Etc. can be particularly preferably used.
  • organic complexes such as osmium, iridium, rhodium, rhenium and chromium can be used instead of ruthenium in the ruthenium organic complex.
  • a fluorescent phenylboronic acid derivative containing two phenylboronic acids and anthracene as a fluorescent residue has high detection sensitivity.
  • the sensor unit 10 can correspond to various uses such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor by selecting a fluorescent dye.
  • the indicator layer 17 preferably includes a hydrogel containing or binding the fluorescent dye.
  • a hydrogel containing or binding the fluorescent dye For example, it is easy to contain water such as polysaccharides such as methylcellulose or dextran, acrylic hydrogel prepared by polymerizing monomers such as acrylamide, methylolacrylamide, and hydroxyethyl acrylate, or urethane hydrogel prepared from polyethylene glycol and diisocyanate.
  • the indicator layer 17 is formed by including a fluorescent dye in the material.
  • the characteristics of the indicator layer 17 made of hydrogel may change with time before use in a water-containing state. For this reason, it is preferable that the indicator is in a dry state before use and in a water-containing state at the start of use.
  • the dried hydrogel constituting the indicator layer 17 When the dried hydrogel constituting the indicator layer 17 is inserted into the body at the start of use, it absorbs a body fluid such as blood, that is, water, through the light shielding layer 18, and swells.
  • the light shielding layer 18 made of, for example, hydrogel containing carbon black or the like is disposed on the indicator layer 17, that is, as the outermost layer constituting the measurement surface of the sensor unit 10.
  • the light shielding layer 18 has the property of blocking external light and excitation light, and the property of allowing analyte and water to pass through.
  • tip part 32 consists of the same hydrogel as the indicator layer 17, and is a dry state before use start.
  • Hydrogel swells when it absorbs water, that is, its volume increases. In other words, the hydrous hydrogel shrinks when dried.
  • a water-containing hydrogel having a polymer component of about 10% will have a volume of 50% to 10% of the water content when dried.
  • the swelling layer 60 comes into contact with a body fluid that is a liquid component of the specimen, and the swelling layer 60 absorbs the body fluid and swells. .
  • the outer dimensions D50 and DW50 of the sheath tube 50 are larger than the outer dimensions D32 and DW32 of the distal end portion 32 of the sensor 30 in the needle type sensor unit 1. .
  • the size of the hole 91 formed inside the subject by the sheath tube 50 is equal to the outer dimension of the sheath tube 50. For this reason, the sensor unit 10 is not in contact with the surrounding tissue inside the hole 91 and is in an unstable state.
  • the swelling layer 60 absorbs water and swells in a short time, the sensor unit 10 comes into contact with the tissue and becomes stable. That is, the sensor unit 10 including the swelling layer 60 can be accommodated in a hollow portion that is narrower than the outer dimension of the sheath tube 50 in a dry and contracted state. It becomes larger than the size.
  • the amount of change in the thickness of the swelling layer 60 before and after swelling is larger than the difference between the outer dimension of the sheath tube 50 and the outer dimension of the sensor unit 10.
  • the time required for the swelling layer 60 to swell to a predetermined size is much shorter than the time required for the pores 91 to contract due to biological activity. For this reason, for example, at the start of use after several minutes from the removal of the sheath tube 50, the sensor unit 10 comes into stable contact with the surrounding tissue.
  • the sensor unit 10 Since the sensor unit 10 is in stable contact with surrounding tissue from the start of use, the sensor 30 can perform stable measurement. Further, the needle-type sensor unit 1 including the sensor 30 can perform stable measurement from the start of use.
  • tip part 32 is the distance of the surface where the light shielding layer 18 of the sensor part 10 was exposed, and the surface of the swelling layer 60, and the outer dimension of the sheath tube 50 is the longest outer dimension.
  • the outer dimension is the length of the long side.
  • the outer dimension when the cross section is circular is the outer diameter.
  • the dry state of the hydrogel constituting the swelling layer 60 does not mean that the moisture content is 0 wt%. If there is a change due to swelling sufficient to close the gap between the hole 91 and the sensor unit 10, a small amount of water is required. Or a plasticizer such as glycerin.
  • the water content is the weight of hydrogel (water content 100%) which has been immersed in water for 1 hour and swollen, and the hydrogel (water content 0%) heated at 100 ° C. for 12 hours in dry air or nitrogen. %) And the weight of the hydrogel to be measured (moisture content X%).
  • the correction is performed so that the hydrogel has the same weight.
  • the water content is 30 wt% when the weight difference between the hydrogel to be measured and the hydrogel having a water content of 0% is 30 mg.
  • the swelling layer 60 and the indicator layer 17 of the sensor 30 before use preferably have a moisture content of 1 wt% to 25 wt%, and particularly preferably 5 wt% to 10 wt%. If it is more than the said range, the water absorption speed of the swelling layer 60 will not fall, and if it is less than the said range, while being able to perform the stable measurement from the start of use, the characteristic deterioration by the time-dependent change of an indicator can be prevented.
  • the indicator layer 17 when the indicator layer 17 is also inserted into the body at the start of use, it absorbs water and swells. For this reason, as shown in FIG. 10, since the surface of the sensor part 10 becomes convex shape, the stable measurement can be performed in a shorter time. In addition, when the light shielding layer 18 consists of hydrogel, the light shielding layer 18 will also swell.
  • a sensor 30A according to a second embodiment of the present invention will be described with reference to FIG. Since the sensor 30A of this embodiment is similar to the sensor 30 of the first embodiment, the same components are denoted by the same reference numerals, and description thereof is omitted.
  • the swelling layer 60 ⁇ / b> A through which the analyte can pass is disposed on the entire outer peripheral surface of the tip portion 32 ⁇ / b> A including the surface of the light shielding layer 18. .
  • the swelling layer 60A can be so-called dip-coated by, for example, immersing and pulling up the tip 32A of the sensor 30A in a heated hydrogel solution. Since the coated swelling layer 60A is in a water-containing state, it is dried until a desired water content is obtained.
  • the thickness of the swelling layer 60A is half the thickness of the swelling layer 60 of the sensor 30 of the first embodiment, and has the same level of effect. For this reason, the swelling layer 60A is not only easy to form, but also rapidly expands due to water absorption. Furthermore, since the swelling layer 60A disposed on the sensor unit 10 and the swelling layer 60A disposed on the opposite side of the sensor unit 10 swell at the same time, the sensor unit 10 becomes stable. The time required for the sensor 30 ⁇ / b> A is half that of the sensor 30.
  • the sensor 30A has the effect of the sensor 30 and can perform stable measurement in a shorter time.
  • the sensor 30A is easy to manufacture because the swelling layer 60A can be formed by dip coating.
  • the sensor 30B of the needle sensor unit 1B has a sensor unit 10B having a vertical structure.
  • a concave portion having a rectangular opening in plan view is formed in a substrate 11 made of a semiconductor such as silicon.
  • the PD element 12B is formed on the wall surface (side surface) of the recess, and the LED element 15B is disposed on the bottom surface of the recess. That is, in the sensor unit having the vertical structure, the PD element 12B is formed in the vertical direction with respect to the main surface.
  • transmits fluorescence is arrange
  • the opening surface of the recess is wider than the bottom surface, and the side surface is not perpendicular to the bottom surface but is inclined at a predetermined angle ⁇ .
  • substrate 11 which has a recessed part may be produced by joining the frame-shaped sensor frame board
  • a dried indicator layer 17B is disposed on the transparent intermediate layer 16B covering the LED element 15B.
  • the light shielding layer 18B which interrupts external light is arrange
  • the surface of the light shielding layer 18B is a measurement surface.
  • the swelling layer 60B is arrange
  • the sensor unit 10B has a recess having a bottom surface parallel to the main surface, and the light receiving surfaces of the PD element 12B and the PD element 12B that convert fluorescence into an electric signal are formed on the inner wall of the recess.
  • the light When the light is received, it has an indicator layer 17B that emits fluorescence with a light amount corresponding to the analyte concentration, and a light shielding layer 18B through which the analyte that prevents the entry of external light can pass.
  • the sensor 30B When the sensor 30B is inserted into the body, the body fluid containing the analyte is absorbed by the swelling layer 60B and the indicator layer 17B. For this reason, the sensor 30B has the same effect as the sensor 30 shown in FIG. Further, the sensor 30B is easier to miniaturize than the sensor 30 and is more sensitive.
  • the senor 30B Next, a method for manufacturing the sensor 30B will be briefly described. In addition, although it may manufacture for every sensor 30B, it is preferable to manufacture many sensors collectively as a wafer process.
  • a mask layer having a plurality of rectangular mask patterns in plan view is manufactured on the first main surface of a silicon wafer to be a substrate 11 having an area where a plurality of needle sensors can be manufactured. Then, a plurality of recesses having a bottom surface parallel to the first main surface is formed by an etching method.
  • the etching method is preferably a wet etching method using a tetramethylammonium hydroxide aqueous solution or a potassium hydroxide aqueous solution, but a dry etching method such as reactive ion etching or chemical dry etching may also be used.
  • the etching speed of the (111) plane is anisotropic etching compared to the (100) plane.
  • the angle with the (100) plane (bottom plane) is 54.7 degrees.
  • the PD element 12B is formed on the four side surfaces of each recess by a known semiconductor process.
  • the concave portion whose side surface is inclined has a larger area in which the PD element 12 can be formed than the concave portion whose vertical side surface is vertical, and the PD element 12B can be easily formed on the side surface. If the inclination angle of the side surface is 30 to 70 degrees, the above effect is remarkable.
  • the filter layer 14B is disposed on the side PD element 12B.
  • the LED elements 15B are disposed on the bottom surfaces of the plurality of recesses. Further, after forming the transparent intermediate layer 16B so as to cover the LED element 15B, a buffer solution that becomes the indicator layer 17B is filled in the recess. Further, a light shielding layer 18B is disposed so as to cover the opening of the recess. Then, the silicon wafer on which a plurality of sensors are formed is singulated. Furthermore, the swelling layer 60B is disposed on the tip portion 32B by the dip coating method, and the sensor portion 10B is completed through a hydrogel drying process.
  • the substrate 11 may be a main constituent member of the tip portion 32B, the main body portion 33, and the connector portion 35. That is, not only the tip portion 32B having the sensor portion 10B but also the main body portion 33 and the connector portion 35 may be manufactured by processing a silicon wafer.
  • the sensor 30B is easy to manufacture because the sensor unit 10B is formed in the recess formed in the substrate 11.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The sensor (30) comprises: a main body (33); a connector (35), which is provided on the base end of the main body; and a tip (32), which is provided on the tip of the main body (33) and on which a sensor part (10) for measuring the concentration of an analyte is disposed. On at least one portion of the outer surface of the tip (32), which includes the measuring surface of the sensor part (10), a swelling layer (60) that absorbs a body fluid and swells, is provided.

Description

針型センサおよび針型センサユニットNeedle-type sensor and needle-type sensor unit
 本発明は、体中のアナライトの濃度を計測する針型センサおよび前記針型センサを有する針型センサユニットに関し、特にセンサ部が体内に挿入され留置される短期留置型の針型センサおよび前記針型センサを有する針型センサユニットに関する。 The present invention relates to a needle-type sensor for measuring the concentration of an analyte in a body and a needle-type sensor unit having the needle-type sensor, and in particular, a short-term indwelling needle-type sensor in which a sensor unit is inserted and indwelled, and the above-mentioned The present invention relates to a needle type sensor unit having a needle type sensor.
 針型センサは、針先端部が被検体に穿刺されることにより、体液または体内の血液のアナライトすなわち被計測物質の濃度を測定するセンサ部が、体内に挿入され留置される。そして短期留置型の針型センサは、所定の期間、例えば一週間、体内のアナライトの濃度を継続して測定する。 In the needle-type sensor, when the tip of the needle is punctured into the subject, an analyte of body fluid or blood in the body, that is, a sensor unit for measuring the concentration of the substance to be measured is inserted and placed in the body. The short-term indwelling needle sensor continuously measures the concentration of the analyte in the body for a predetermined period, for example, one week.
 図1に示すように、米国特許第7003336号明細書には、先端にセンサ部110を有する針型センサ130が、鞘管であるスロット150の内部に挿入された針型センサユニット101が開示されている。 As shown in FIG. 1, US Pat. No. 7,003336 discloses a needle-type sensor unit 101 in which a needle-type sensor 130 having a sensor portion 110 at the tip is inserted into a slot 150 that is a sheath tube. ing.
 図2に示すように、針型センサユニット101は、スロット150と針型センサ130が被検体90に穿刺された後、スロット150が被検体90から抜去されることにより、針型センサ130のセンサ部110が体内に留置される。 As shown in FIG. 2, the needle-type sensor unit 101 includes a sensor of the needle-type sensor 130 by removing the slot 150 from the subject 90 after the slot 150 and the needle-type sensor 130 are punctured into the subject 90. Part 110 is placed in the body.
 スロット150の穿刺により被検体90に形成される孔91の大きさD91は、スロット150の外寸にほぼ等しい。すなわち、孔91の大きさD91は針型センサ130の外寸D110よりも大きい。このため、使用開始時、すなわち、スロット150を抜去した直後は、針型センサ130のセンサ部110は孔91の内部で周囲の組織と、接触していない。孔91は生体活動により次第に収縮するため、やがてセンサ部110は周囲の組織と接触する。 The size D91 of the hole 91 formed in the subject 90 by puncturing the slot 150 is substantially equal to the outer dimension of the slot 150. That is, the size D91 of the hole 91 is larger than the outer dimension D110 of the needle sensor 130. For this reason, at the start of use, that is, immediately after the slot 150 is removed, the sensor unit 110 of the needle sensor 130 is not in contact with the surrounding tissue inside the hole 91. Since the hole 91 gradually contracts due to biological activity, the sensor unit 110 eventually comes into contact with surrounding tissue.
 センサ部110は、組織と非接触状態でも、孔91の内部に染み出てきた体液などとの接触によりアナライトを検出する。しかし、非接触状態では接触状態と比べると、アナライト濃度変化に対する応答性はよいとは言えない。また孔91の内部におけるセンサ部110の位置が変化すると、一時的に非接触状態から接触状態になることもある。このため、針型センサ130は使用開始時からしばらくの間は安定な測定が容易ではないおそれがあった。 The sensor unit 110 detects an analyte by contact with a body fluid or the like that has oozed into the hole 91 even in a non-contact state with the tissue. However, it cannot be said that the non-contact state is more responsive to changes in the analyte concentration than the contact state. Further, when the position of the sensor unit 110 inside the hole 91 changes, the contact state may be temporarily changed from the non-contact state. For this reason, the needle-type sensor 130 may not be easily measured for a while from the start of use.
 使用開始時から安定した測定が行える針型センサおよび前記針型センサを有する針型センサユニットを提供することを目的とする。 An object of the present invention is to provide a needle type sensor capable of performing stable measurement from the start of use and a needle type sensor unit having the needle type sensor.
 本発明の一態様の針型センサは、本体部と、前記本体部の基端側に設けられたコネクタ部と、前記本体部の先端側に設けられたアナライト濃度を測定するセンサ部が配設されている先端部と、を有し、前記センサ部の測定面を含む前記先端部の外周面の少なくとも一部に、被検体の液性成分を吸収して膨潤する膨潤層が配設されている。 The needle sensor according to one aspect of the present invention includes a main body portion, a connector portion provided on a proximal end side of the main body portion, and a sensor portion for measuring an analyte concentration provided on a distal end side of the main body portion. A swelling layer that absorbs and swells the liquid component of the subject is disposed on at least a part of the outer peripheral surface of the tip portion including the measurement surface of the sensor portion. ing.
 また、本発明の別の一態様の針型センサユニットは、本体部と、前記本体部の基端側に設けられたコネクタ部と、前記本体部の先端側に設けられたアナライト濃度を測定するセンサ部のある先端部と、を有し、前記センサ部の測定面を含む前記先端部の外周面の少なくとも一部に、被検体の液性成分を吸収して膨潤する膨潤層が配設されている針型センサと、
 前記先端部を内部に収容した状態で被検体に穿刺され、前記アナライト濃度の測定開始前に前記先端部を体内に残して抜去される、膨潤した前記膨潤層を含む前記先端部の外寸よりも外寸が小さい鞘管と、を具備する。
Further, the needle-type sensor unit according to another aspect of the present invention includes a main body part, a connector part provided on the base end side of the main body part, and an analyte concentration provided on the distal end side of the main body part. A swelling layer that absorbs and swells the liquid component of the subject is disposed on at least a part of the outer peripheral surface of the tip portion including the measurement surface of the sensor portion. A needle-type sensor,
An outer dimension of the tip including the swollen swelling layer, which is punctured in the subject with the tip housed therein, and is removed while leaving the tip in the body before starting the measurement of the analyte concentration. A sheath tube having a smaller outer dimension than the outer tube.
従来の針型センサユニットの断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of the conventional needle type sensor unit. 従来の針型センサユニットによる穿刺を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the puncture by the conventional needle type sensor unit. 第1実施形態の針型センサを有する針型センサユニットの模式図である。It is a mimetic diagram of a needle type sensor unit which has a needle type sensor of a 1st embodiment. 第1実施形態の針型センサを有する針型センサユニットの図3のIV-IV線に沿った断面模式図である。It is a cross-sectional schematic diagram along the IV-IV line of FIG. 3 of the needle type sensor unit having the needle type sensor of the first embodiment. 第1実施形態の針型センサユニットを有するセンサシステムの模式図である。It is a mimetic diagram of a sensor system which has a needle type sensor unit of a 1st embodiment. 第1実施形態の針型センサユニットによる穿刺を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the puncture by the needle type sensor unit of 1st Embodiment. 第1実施形態の針型センサユニットによる穿刺を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the puncture by the needle type sensor unit of 1st Embodiment. 第1実施形態の針型センサのセンサ部の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the sensor part of the needle type sensor of 1st Embodiment. 第1実施形態の針型センサの先端部の状態を説明するための図7のVIII-VIII線に沿った断面模式図である。It is a cross-sectional schematic diagram along the VIII-VIII line of FIG. 7 for demonstrating the state of the front-end | tip part of the needle type sensor of 1st Embodiment. 第1実施形態の針型センサの先端部の状態を説明するための図7のVIII-VIII線に沿った断面模式図である。It is a cross-sectional schematic diagram along the VIII-VIII line of FIG. 7 for demonstrating the state of the front-end | tip part of the needle type sensor of 1st Embodiment. 第1実施形態の針型センサの先端部の状態を説明するための図7のVIII-VIII線に沿った断面模式図である。It is a cross-sectional schematic diagram along the VIII-VIII line of FIG. 7 for demonstrating the state of the front-end | tip part of the needle type sensor of 1st Embodiment. 第2実施形態の針型センサの先端部の状態を説明するための図7のVIII-VIII線に沿った断面模式図である。It is a cross-sectional schematic diagram along the VIII-VIII line of FIG. 7 for demonstrating the state of the front-end | tip part of the needle type sensor of 2nd Embodiment. 第2実施形態の変形例の針型センサのセンサ部の構成を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the sensor part of the needle type sensor of the modification of 2nd Embodiment.
<第1実施形態>
 以下、図面を用いて、本発明の第1実施形態の針型センサ(以下「センサ」という)30および針型センサユニット1について説明する。図3に示すように、針型センサユニット1は、センサ30と穿刺のための鞘管50とを具備する。鞘管50は、先端が尖った中空の、いわゆるアウターニードルであり、センサ30を被検体に穿刺するための補助具である、すなわち、鞘管50は、中空部にセンサ30の少なくとも先端部32を収容した状態で被検体に穿刺される。そして、アナライト濃度の測定開始前にセンサ30を体内に残し鞘管50は抜去される。
<First Embodiment>
Hereinafter, a needle type sensor (hereinafter referred to as “sensor”) 30 and a needle type sensor unit 1 according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 3, the needle-type sensor unit 1 includes a sensor 30 and a sheath tube 50 for puncturing. The sheath tube 50 is a hollow so-called outer needle having a sharp tip, and is an auxiliary tool for puncturing the subject with the sensor 30. That is, the sheath tube 50 has at least the distal end portion 32 of the sensor 30 in the hollow portion. The subject is punctured in a state in which it is accommodated. And before starting the measurement of the analyte concentration, the sensor tube 30 is left in the body and the sheath tube 50 is removed.
 センサ30は、先端部32と、先端部32から延設された本体部33と、本体部33から延設されたコネクタ部35と、を具備する。先端部32と本体部33とコネクタ部35とは、例えばシリコン基板の加工により作製され、特に先端部32と本体部33との境界等は明確ではない場合もある。しかし、便宜上、センサ30の先端のセンサ部10が配設されている領域を先端部32という。 The sensor 30 includes a distal end portion 32, a main body portion 33 extending from the distal end portion 32, and a connector portion 35 extending from the main body portion 33. The distal end portion 32, the main body portion 33, and the connector portion 35 are produced, for example, by processing a silicon substrate. In particular, the boundary between the distal end portion 32 and the main body portion 33 may not be clear. However, for convenience, a region where the sensor unit 10 at the tip of the sensor 30 is disposed is referred to as a tip 32.
 図4に示すように、細長い鞘管50は、長軸直交方向の断面形状が略C字形状であり、長軸方向に細長いスリットを有する。そして、センサ30を収容するために、鞘管50の中空部の寸法d50、dW50は、それぞれ先端部32の外寸D32、DW32より大きい。 As shown in FIG. 4, the elongate sheath tube 50 has a substantially C-shaped cross section in the direction perpendicular to the major axis, and has an elongated slit in the major axis direction. In order to accommodate the sensor 30, the dimensions d50 and dW50 of the hollow portion of the sheath tube 50 are larger than the outer dimensions D32 and DW32 of the distal end portion 32, respectively.
 なお、中空部の寸法および先端部32の外寸は長軸直交方向の断面寸法(平面視寸法)であり平面視形状が、円の場合には直径である。平面視形状が、略矩形の場合には2辺のそれぞれの長さであるが、説明を簡単にするため、1辺の長さを例に説明する。 The dimension of the hollow part and the outer dimension of the tip part 32 are cross-sectional dimensions (dimensions in plan view) in the direction perpendicular to the major axis, and the shape in plan view is a diameter in the case of a circle. When the planar view shape is substantially rectangular, the lengths are the lengths of the two sides, but for the sake of simplicity, the length of one side will be described as an example.
 センサ30の先端部32には、アナライト濃度を測定するためのセンサ部10の遮光層18(図7参照)の測定面が表面の一部に露出している。また、先端部32のセンサ部10の遮光層18が露出した表面と長軸方向の中心軸をはさんで反対側の外周面、言い換えればセンサ部10の測定面に対して背面側の外周面には、膨潤層60が配設されている。なお、膨潤層60は少なくとも前記位置に配設されていればよく、センサ部10の測定面を除く、先端部32の側面および裏面の全体の外周面に配設されていてもよい。 The measurement surface of the light shielding layer 18 (see FIG. 7) of the sensor unit 10 for measuring the analyte concentration is exposed at a part of the front surface 32 of the sensor 30. Further, the outer peripheral surface on the opposite side across the surface of the sensor portion 10 of the tip portion 32 where the light shielding layer 18 is exposed and the central axis in the major axis direction, in other words, the outer peripheral surface on the back side with respect to the measurement surface of the sensor portion 10 A swelling layer 60 is disposed on the surface. In addition, the swelling layer 60 should just be arrange | positioned at least in the said position, and may be arrange | positioned in the outer peripheral surface of the whole side surface of the front-end | tip part 32 except the measurement surface of the sensor part 10, and a back surface.
 後述するように膨潤層60は被検体の液体、すなわち、体内の水を吸収して膨潤するが、穿刺のために鞘管50の中空部に収容されている状態では乾燥し収縮した状態である。 As will be described later, the swelling layer 60 swells by absorbing the liquid of the subject, that is, water in the body, but is in a dry and contracted state in a state where it is accommodated in the hollow portion of the sheath tube 50 for puncture. .
 図5に示すように、センサ30はセンサ本体部40およびレシーバー45と組み合わせてセンサシステム2として使用される。すなわち、センサシステム2はセンサ30と、センサ本体部40と、センサ本体部40からの信号を受信し記憶するレシーバー45とを有する。センサ30のコネクタ部35はセンサ本体部40の嵌合部41と着脱自在に嵌合する。センサ30はコネクタ部35がセンサ本体部40の嵌合部41と機械的に嵌合することにより、センサ本体部40と電気的に接続される。センサ本体部40とレシーバー45との間の信号の送受信は無線または有線で行われる。 As shown in FIG. 5, the sensor 30 is used as the sensor system 2 in combination with the sensor main body 40 and the receiver 45. That is, the sensor system 2 includes a sensor 30, a sensor main body 40, and a receiver 45 that receives and stores a signal from the sensor main body 40. The connector part 35 of the sensor 30 is detachably fitted to the fitting part 41 of the sensor main body part 40. The sensor 30 is electrically connected to the sensor body 40 by mechanically fitting the connector part 35 with the fitting part 41 of the sensor body 40. Transmission / reception of signals between the sensor body 40 and the receiver 45 is performed wirelessly or by wire.
 図示しないが、センサ本体部40は、レシーバー45と無線で信号を送受信するための無線アンテナと、電池などの電源と、センサ部10の駆動および制御などを行う各種回路を有する。各種回路としては、信号を増幅する増幅回路、回路用基準クロック発生回路、ロジック回路、データ処理回路、AD変換処理用回路、モード制御回路、メモリ回路、および通信用高周波発生器回路などを例示することができる。なお、レシーバー45と有線で信号の送受信をする場合には、センサ本体部40は、無線アンテナに代えて信号線を有する。センサ部10により測定される体液中のアナライト濃度などの情報は、レシーバー45のメモリに記憶される。 Although not shown, the sensor body 40 includes a wireless antenna for wirelessly transmitting and receiving signals to and from the receiver 45, a power source such as a battery, and various circuits for driving and controlling the sensor unit 10. Examples of the various circuits include an amplifier circuit that amplifies signals, a circuit reference clock generation circuit, a logic circuit, a data processing circuit, an AD conversion processing circuit, a mode control circuit, a memory circuit, and a communication high-frequency generator circuit. be able to. In addition, when transmitting and receiving a signal with the receiver 45 by wire, the sensor main body 40 has a signal line instead of the wireless antenna. Information such as the analyte concentration in the body fluid measured by the sensor unit 10 is stored in the memory of the receiver 45.
 センサ30は感染防止などのために使用後は処分される使い捨て(ディスポ)部であるが、センサ本体部40およびレシーバー45は繰り返し再使用されるリユース部である。 The sensor 30 is a disposable part that is disposed of after use to prevent infection, but the sensor body 40 and the receiver 45 are reusable parts that are repeatedly reused.
 図6Aに示すように、センサ30は鞘管50の中空部に収容された状態で、被検者自身が体表面から穿刺して、例えば真皮層に挿入される。そして、図6Bに示すように、アナライト濃度の測定開始前に、先端部32を体内に残して、鞘管50だけが抜去される。すなわち、先端部32が体内に留置される。 As shown in FIG. 6A, in a state where the sensor 30 is housed in the hollow portion of the sheath tube 50, the subject himself punctures from the body surface and is inserted into, for example, the dermis layer. Then, as shown in FIG. 6B, before starting the measurement of the analyte concentration, only the sheath tube 50 is removed leaving the tip 32 in the body. That is, the distal end portion 32 is left in the body.
 ここで、図7を用いて、センサ30のセンサ部10の構造について説明する。センサ部10は、基板11であるシリコン基板と、光電変換素子(PD素子)12と、酸化シリコン層(不図示)と、フィルタ層14と、励起光を発生し蛍光を透過する発光素子(LED素子)15と、透明中間層16と、蛍光色素を含有するインジケータ層17と、最外層である遮光層18とが、基板11側から順に積層された構造を有する。さらに、PD素子12、フィルタ層14、LED素子15、およびインジケータ層17の、それぞれ少なくとも一部が、基板11上の同一領域内に形成されている。LED素子15と透明中間層16とインジケータ層17とは、センサ枠20の内部に収容されている。 Here, the structure of the sensor unit 10 of the sensor 30 will be described with reference to FIG. The sensor unit 10 includes a silicon substrate as a substrate 11, a photoelectric conversion element (PD element) 12, a silicon oxide layer (not shown), a filter layer 14, and a light emitting element (LED that generates excitation light and transmits fluorescence). (Element) 15, a transparent intermediate layer 16, an indicator layer 17 containing a fluorescent dye, and a light-shielding layer 18 that is the outermost layer are sequentially laminated from the substrate 11 side. Further, at least a part of each of the PD element 12, the filter layer 14, the LED element 15, and the indicator layer 17 is formed in the same region on the substrate 11. The LED element 15, the transparent intermediate layer 16, and the indicator layer 17 are accommodated inside the sensor frame 20.
 なお、図7に示すセンサ30では、生体適合性の高いポリパラキシリレン等からなる保護層19で遮光層18以外の表面が覆われている。 In the sensor 30 shown in FIG. 7, the surface other than the light shielding layer 18 is covered with a protective layer 19 made of polyparaxylylene or the like having high biocompatibility.
 基板11の表面には受光した蛍光を電気信号に変換するPD素子12が形成されている。基板11は製造工程において数十μm程度までの薄層化が可能である。 On the surface of the substrate 11, a PD element 12 that converts received fluorescence into an electrical signal is formed. The substrate 11 can be thinned to about several tens of μm in the manufacturing process.
 光電変換素子としては、フォトダイオードまたはフォトトランジスタが特に好ましい。高感度でかつ安定性に優れた蛍光検出感度が実現でき、その結果、検出感度および検出精度に優れるセンサ部10が実現できるためである。 As the photoelectric conversion element, a photodiode or a phototransistor is particularly preferable. This is because the fluorescence detection sensitivity having high sensitivity and excellent stability can be realized, and as a result, the sensor unit 10 having excellent detection sensitivity and detection accuracy can be realized.
 PD素子12の受光面を覆うフィルタ層14はLED素子15が発生する励起光Eを遮断し、それよりも長波長の蛍光Fは透過する、例えば吸収型光学フィルタである。フィルタ層14としては、多結晶シリコンなどのシリコン層、炭化シリコン層、またはガリウムリン層などが好ましい。前記材料はいずれも375nmより短い励起光の波長では透過率が小さく460nmの蛍光の波長では透過率が大きい、すなわち励起光の透過率と、蛍光の透過率の比として6桁以上の透過率選択性を有する。 The filter layer 14 that covers the light receiving surface of the PD element 12 is, for example, an absorption optical filter that blocks the excitation light E generated by the LED element 15 and transmits fluorescence F having a longer wavelength. The filter layer 14 is preferably a silicon layer such as polycrystalline silicon, a silicon carbide layer, or a gallium phosphide layer. All of the above materials have a low transmittance at a wavelength of excitation light shorter than 375 nm and a high transmittance at a wavelength of fluorescence of 460 nm, that is, a transmittance selection of 6 digits or more as a ratio of the transmittance of excitation light to the transmittance of fluorescence. Have sex.
 LED素子15は、励起光を発光し、かつ、蛍光を透過する発光素子である。発光素子としては、蛍光透過率、光発生効率、励起光の波長選択性の広さ、および励起光となる紫外線以外の波長の光を僅かしか発しないことなどの観点からは、サファイア基板を用いた窒化ガリウム系の紫外光LEDが好ましい。 The LED element 15 is a light emitting element that emits excitation light and transmits fluorescence. As a light-emitting element, a sapphire substrate is used from the viewpoints of fluorescence transmittance, light generation efficiency, wide wavelength selectivity of excitation light, and little emission of light having a wavelength other than ultraviolet light serving as excitation light. A gallium nitride based ultraviolet LED is preferable.
 インジケータ層17は、進入してきたアナライトとの相互作用および励起光により、アナライトの濃度に応じた光量の蛍光を発生する。インジケータ層17の層厚は数十μm程度に設定されている。インジケータ層17は、アナライトの量、すなわち試料中のアナライト濃度に応じた強度の蛍光を発生する蛍光色素が含まれたベース材料から構成されている。 The indicator layer 17 generates fluorescence with a light amount corresponding to the concentration of the analyte by the interaction with the entering analyte and the excitation light. The thickness of the indicator layer 17 is set to about several tens of μm. The indicator layer 17 is made of a base material containing a fluorescent dye that generates fluorescence having an intensity corresponding to the amount of the analyte, that is, the concentration of the analyte in the sample.
 蛍光色素は、アナライトによって選択され、アナライトの量に応じて蛍光光量が可逆的に変化する蛍光色素ならば、どのようなものでも使用できる。例えば体内の水素イオン濃度または二酸化炭素を測定する場合には、ヒドロキシピレントリスルホン酸誘導体、糖類を測定する場合には蛍光残基を有するフェニルボロン酸誘導体、カリウムイオンを測定する場合には蛍光残基を有するクラウンエーテル誘導体などを用いることができる。 Any fluorescent dye can be used as long as it is selected by the analyte and the amount of fluorescent light reversibly changes in accordance with the amount of the analyte. For example, when measuring the concentration of hydrogen ions or carbon dioxide in the body, hydroxypyrenetrisulfonic acid derivatives, when measuring saccharides, phenylboronic acid derivatives having a fluorescent residue, and when measuring potassium ions, the residual fluorescence A crown ether derivative having a group can be used.
 そして、グルコースのような糖類を測定する場合には、蛍光色素として、ルテニウム有機錯体、蛍光フェニルボロン酸誘導体、またはフルオレセインで修飾したグルコース結合蛋白質などのグルコースと可逆結合する物質を用いることができる。ルテニウム有機錯体としてはルテニウムと2,2'-ビピリジン、1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、4,7-ジメチル-1,10-フェナントロリン、4,7-ジスルホン化ジフェニル-1,10-フェナントロリン、2,2'-ビ-2-チアゾリン、2,2'-ビチアゾール、5-ブロモ-1,10-フェナントロリン、および5-クロロ-1,10-フェナントロリンなどとの錯体などを特に好ましく用いることができる。さらに、ルテニウム有機錯体のルテニウムに代えてオスミウム、イリジウム、ロジウム、レニウムおよびクロムなどの有機錯体を用いることができる。特に2つのフェニルボロン酸と蛍光残基としてアントラセンを含む蛍光フェニルボロン酸誘導体は、検出感度が高い。 When measuring sugars such as glucose, substances that reversibly bind to glucose, such as a ruthenium organic complex, a fluorescent phenylboronic acid derivative, or a glucose binding protein modified with fluorescein, can be used as a fluorescent dye. Ruthenium and 2,2'-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 4,7-disulfonate Complexes with diphenyl-1,10-phenanthroline, 2,2'-bi-2-thiazoline, 2,2'-bithiazole, 5-bromo-1,10-phenanthroline, 5-chloro-1,10-phenanthroline, etc. Etc. can be particularly preferably used. Furthermore, organic complexes such as osmium, iridium, rhodium, rhenium and chromium can be used instead of ruthenium in the ruthenium organic complex. In particular, a fluorescent phenylboronic acid derivative containing two phenylboronic acids and anthracene as a fluorescent residue has high detection sensitivity.
 以上の説明のように、センサ部10は、蛍光色素の選択によって、酸素センサ、グルコースセンサ、pHセンサ、免疫センサ、または微生物センサなど、多様な用途に対応できる。 As described above, the sensor unit 10 can correspond to various uses such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor by selecting a fluorescent dye.
 インジケータ層17は、ハイドロゲルに上記蛍光色素を包含または結合させたものが好ましい。例えば、メチルセルロースもしくはデキストランなどの多糖類、アクリルアミド、メチロールアクリルアミド、ヒドロキシエチルアクリレートなどのモノマーを重合して作製するアクリル系ハイドロゲル、またはポリエチレングリコールとジイソシアネートから作製するウレタン系ハイドロゲルなどの水を含みやすい材料に蛍光色素を内包することによりインジケータ層17は、形成されている。 The indicator layer 17 preferably includes a hydrogel containing or binding the fluorescent dye. For example, it is easy to contain water such as polysaccharides such as methylcellulose or dextran, acrylic hydrogel prepared by polymerizing monomers such as acrylamide, methylolacrylamide, and hydroxyethyl acrylate, or urethane hydrogel prepared from polyethylene glycol and diisocyanate. The indicator layer 17 is formed by including a fluorescent dye in the material.
 なお、ハイドロゲルからなるインジケータ層17は、含水状態では使用前に特性が経時変化することがある。このため、インジケータは、使用前は乾燥状態とし、使用開始時に含水状態とすることが好ましい。インジケータ層17を構成する乾燥状態のハイドロゲルは、使用開始時に体内に挿入されると、遮光層18を介して、血液などの体液、すなわち水を吸収し膨潤する。 The characteristics of the indicator layer 17 made of hydrogel may change with time before use in a water-containing state. For this reason, it is preferable that the indicator is in a dry state before use and in a water-containing state at the start of use. When the dried hydrogel constituting the indicator layer 17 is inserted into the body at the start of use, it absorbs a body fluid such as blood, that is, water, through the light shielding layer 18, and swells.
 インジケータ層17の上部、つまりセンサ部10の測定面を構成する最外層として、例えばカーボンブラックなどを含むハイドロゲル等からなる遮光層18が配設されている。遮光層18は外光および励起光を遮断する特性および、ならびにアナライトおよび水を通過させる特性を有している。 The light shielding layer 18 made of, for example, hydrogel containing carbon black or the like is disposed on the indicator layer 17, that is, as the outermost layer constituting the measurement surface of the sensor unit 10. The light shielding layer 18 has the property of blocking external light and excitation light, and the property of allowing analyte and water to pass through.
 そして、先端部32の、センサ部10と反対側の表面に配設されている膨潤層60は、インジケータ層17と同様のハイドロゲルからなり、使用開始前は乾燥状態である。 And the swelling layer 60 arrange | positioned by the surface on the opposite side to the sensor part 10 of the front-end | tip part 32 consists of the same hydrogel as the indicator layer 17, and is a dry state before use start.
 ハイドロゲルは、水を吸収すると膨潤、すなわち体積が増加する。言い換えれば、含水ハイドロゲルは乾燥すると収縮する。例えば、ポリマー成分が10%程度の含水ハイドロゲルは、乾燥すると体積が含水時の50%~10%になる。 Hydrogel swells when it absorbs water, that is, its volume increases. In other words, the hydrous hydrogel shrinks when dried. For example, a water-containing hydrogel having a polymer component of about 10% will have a volume of 50% to 10% of the water content when dried.
 そして、乾燥状態のセンサ30が、使用のために、検体内に挿入されると、膨潤層60が被検体の液性成分である体液などと接触し、膨潤層60は体液を吸水し膨潤する。 When the sensor 30 in a dry state is inserted into the specimen for use, the swelling layer 60 comes into contact with a body fluid that is a liquid component of the specimen, and the swelling layer 60 absorbs the body fluid and swells. .
 図8に示すように、従来の針型センサユニット101と同様に、針型センサユニット1でも鞘管50の外寸D50、DW50が、センサ30の先端部32の外寸D32、DW32よりも大きい。そして鞘管50を抜去した直後は、鞘管50により被検体の内部に形成された孔91の大きさは鞘管50の外寸に等しい。このため、センサ部10は孔91の内部で周囲の組織と、接触しておらず、不安定な状態にある。 As shown in FIG. 8, similarly to the conventional needle type sensor unit 101, the outer dimensions D50 and DW50 of the sheath tube 50 are larger than the outer dimensions D32 and DW32 of the distal end portion 32 of the sensor 30 in the needle type sensor unit 1. . Immediately after the sheath tube 50 is removed, the size of the hole 91 formed inside the subject by the sheath tube 50 is equal to the outer dimension of the sheath tube 50. For this reason, the sensor unit 10 is not in contact with the surrounding tissue inside the hole 91 and is in an unstable state.
 しかし、図9に示すように、短時間で膨潤層60が水を吸収し膨潤するため、センサ部10は組織と接触し安定な状態となる。すなわち、膨潤層60を含むセンサ部10は、乾燥して収縮した状態では、鞘管50の外寸よりも狭い中空部にも収容可能であるが、膨潤層60が膨潤すると鞘管50の外寸よりも大きくなる。 However, as shown in FIG. 9, since the swelling layer 60 absorbs water and swells in a short time, the sensor unit 10 comes into contact with the tissue and becomes stable. That is, the sensor unit 10 including the swelling layer 60 can be accommodated in a hollow portion that is narrower than the outer dimension of the sheath tube 50 in a dry and contracted state. It becomes larger than the size.
 言い換えれば、膨潤前後の膨潤層60の厚さの変化量が、鞘管50の外寸とセンサ部10の外寸の差よりも、大きい。 In other words, the amount of change in the thickness of the swelling layer 60 before and after swelling is larger than the difference between the outer dimension of the sheath tube 50 and the outer dimension of the sensor unit 10.
 そして、膨潤層60が所定の大きさにまで膨潤するのに要する時間は、生体活動により孔91が収縮するのに要する時間に比べると遙かに短い。このため、鞘管50の抜去から、例えば数分後の使用開始時にはセンサ部10は周囲の組織と安定に接触する。 The time required for the swelling layer 60 to swell to a predetermined size is much shorter than the time required for the pores 91 to contract due to biological activity. For this reason, for example, at the start of use after several minutes from the removal of the sheath tube 50, the sensor unit 10 comes into stable contact with the surrounding tissue.
 使用開始時からセンサ部10はセンサ部10が周囲の組織と安定に接触するため、センサ30は、安定した測定が行える。また、センサ30を具備する針型センサユニット1は使用開始時から安定した測定が行える。 Since the sensor unit 10 is in stable contact with surrounding tissue from the start of use, the sensor 30 can perform stable measurement. Further, the needle-type sensor unit 1 including the sensor 30 can perform stable measurement from the start of use.
 なお、先端部32の外寸とは、センサ部10の遮光層18が露出した表面と膨潤層60の表面との距離であり、鞘管50の外寸とは最も長い外寸である。例えば、鞘管50の中空部、先端部32および先端部32の断面が長方形の場合には、外寸とは長辺の長さである。また例えば、断面が、円形の場合の外寸とは、外径である。 In addition, the outer dimension of the front-end | tip part 32 is the distance of the surface where the light shielding layer 18 of the sensor part 10 was exposed, and the surface of the swelling layer 60, and the outer dimension of the sheath tube 50 is the longest outer dimension. For example, when the hollow portion of the sheath tube 50, the distal end portion 32, and the distal end portion 32 have a rectangular cross section, the outer dimension is the length of the long side. Further, for example, the outer dimension when the cross section is circular is the outer diameter.
 なお、膨潤層60を構成するハイドロゲルが乾燥状態とは含水率0wt%を意味するものではなく、孔91とセンサ部10との隙間を塞ぐために十分な膨潤による変化が、あれば少量の水やグリセリンのような可塑剤を含有していてもよい。ここで、含水量は、水中に1時間浸積し膨潤したハイドロゲル(含水率100%)の重量と、100℃で12時間、乾燥空気中または窒素中で加熱処理したハイドロゲル(含水率0%)の重量と、測定するハイドロゲルの重量(含水率X%)と、から算出される。もちろん、水を除くハイドロゲルの重量が異なる場合には同じ重量となるように補正を行う。 The dry state of the hydrogel constituting the swelling layer 60 does not mean that the moisture content is 0 wt%. If there is a change due to swelling sufficient to close the gap between the hole 91 and the sensor unit 10, a small amount of water is required. Or a plasticizer such as glycerin. Here, the water content is the weight of hydrogel (water content 100%) which has been immersed in water for 1 hour and swollen, and the hydrogel (water content 0%) heated at 100 ° C. for 12 hours in dry air or nitrogen. %) And the weight of the hydrogel to be measured (moisture content X%). Of course, when the weight of the hydrogel excluding water is different, the correction is performed so that the hydrogel has the same weight.
 例えば含水率0%と含水率100%のハイドロゲルの重量差が100mgの場合、測定するハイドロゲルと含水率0%のハイドロゲルとの重量差が30mgのとき、含水率は30wt%となる。 For example, when the weight difference between the hydrogel having a water content of 0% and the water content of 100% is 100 mg, the water content is 30 wt% when the weight difference between the hydrogel to be measured and the hydrogel having a water content of 0% is 30 mg.
 使用前のセンサ30の膨潤層60およびインジケータ層17は、含水率1wt%~25wt%が好ましく、特に好ましくは、5wt%~10wt%である。前記範囲以上であれば、膨潤層60の吸水速度が低下することがなく、前記範囲以下であれば、使用開始時から安定した測定が行えるとともに、インジケータの経時変化による特性劣化を防止できる。 The swelling layer 60 and the indicator layer 17 of the sensor 30 before use preferably have a moisture content of 1 wt% to 25 wt%, and particularly preferably 5 wt% to 10 wt%. If it is more than the said range, the water absorption speed of the swelling layer 60 will not fall, and if it is less than the said range, while being able to perform the stable measurement from the start of use, the characteristic deterioration by the time-dependent change of an indicator can be prevented.
 なお、センサ30では、インジケータ層17も使用開始時に体内に挿入されると、水を吸収し膨潤する。このため図10に示すように、センサ部10の表面は凸形状となるため、より短時間で安定した測定が行える。なお、遮光層18がハイドロゲルからなる場合には、遮光層18も膨潤する。 In the sensor 30, when the indicator layer 17 is also inserted into the body at the start of use, it absorbs water and swells. For this reason, as shown in FIG. 10, since the surface of the sensor part 10 becomes convex shape, the stable measurement can be performed in a shorter time. In addition, when the light shielding layer 18 consists of hydrogel, the light shielding layer 18 will also swell.
<第2実施形態>
 次に、図11を用いて、本発明の第2実施形態のセンサ30Aについて説明する。本実施形態のセンサ30Aは第1実施形態のセンサ30と類似しているため同じ構成要素には同じ符号を付し説明は省略する。
<Second Embodiment>
Next, a sensor 30A according to a second embodiment of the present invention will be described with reference to FIG. Since the sensor 30A of this embodiment is similar to the sensor 30 of the first embodiment, the same components are denoted by the same reference numerals, and description thereof is omitted.
 図11に示すように、針型センサユニット1Aのセンサ30Aは、アナライトが通過可能な膨潤層60Aが、遮光層18の表面を含む先端部32Aの全外周面の表面に配設されている。 As shown in FIG. 11, in the sensor 30 </ b> A of the needle-type sensor unit 1 </ b> A, the swelling layer 60 </ b> A through which the analyte can pass is disposed on the entire outer peripheral surface of the tip portion 32 </ b> A including the surface of the light shielding layer 18. .
 膨潤層60Aは、例えば、加温してゲル状となったハイドロゲル溶液に、センサ30Aの先端部32Aを浸漬し、引き上げることで、いわゆるディップコートすることができる。なお、コーティングされた膨潤層60Aは、含水状態であるため、所望の含水率になるまで乾燥される。 The swelling layer 60A can be so-called dip-coated by, for example, immersing and pulling up the tip 32A of the sensor 30A in a heated hydrogel solution. Since the coated swelling layer 60A is in a water-containing state, it is dried until a desired water content is obtained.
 本実施形態のセンサ30Aでは膨潤層60Aの厚さは、第1実施形態のセンサ30の膨潤層60の厚さの半分で同じレベルの効果を有する。このため、膨潤層60Aは形成が容易なだけでなく、水の吸収による膨張が早い。さらに、センサ部10の上に配設された膨潤層60Aと、センサ部10の反対側に配設された膨潤層60Aと、が同時に膨潤するため、センサ部10が安定した状態になるのに要する時間が、センサ30Aはセンサ30の半分となる。 In the sensor 30A of this embodiment, the thickness of the swelling layer 60A is half the thickness of the swelling layer 60 of the sensor 30 of the first embodiment, and has the same level of effect. For this reason, the swelling layer 60A is not only easy to form, but also rapidly expands due to water absorption. Furthermore, since the swelling layer 60A disposed on the sensor unit 10 and the swelling layer 60A disposed on the opposite side of the sensor unit 10 swell at the same time, the sensor unit 10 becomes stable. The time required for the sensor 30 </ b> A is half that of the sensor 30.
 センサ30Aは、センサ30が有する効果を有し、さらにより短時間で安定した測定が行える。またセンサ30Aは、膨潤層60Aをディップコートにより形成できるため製造が容易である。 The sensor 30A has the effect of the sensor 30 and can perform stable measurement in a shorter time. The sensor 30A is easy to manufacture because the swelling layer 60A can be formed by dip coating.
<第2実施形態の変形例>
 次に、図12を用いて、第2実施形態の変形例のセンサ30Bについて説明する。本変形例のセンサ30Bはセンサ30と類似しているため同じ構成要素には同じ数字から始まる符号を付し説明は省略する。
<Modification of Second Embodiment>
Next, a sensor 30B according to a modification of the second embodiment will be described with reference to FIG. Since the sensor 30B of this modification is similar to the sensor 30, the same components are given the same reference numerals beginning with the same numerals, and the description thereof is omitted.
 図12に示すように、針型センサユニット1Bのセンサ30Bは、縦型構造のセンサ部10Bを有する。センサ部10Bでは、シリコンなどの半導体からなる基板11に平面視矩形の開口部のある凹部が形成されている。そして、凹部の壁面(側面)にPD素子12Bが形成され、凹部の底面にLED素子15Bが配設されている。すなわち、縦型構造のセンサ部ではPD素子12Bは主面に対して縦方向に形成される。そして、側面に形成されたPD素子12Bの受光面を覆うように、励起光を遮断し蛍光を透過するフィルタ層14Bが配設されている。 As shown in FIG. 12, the sensor 30B of the needle sensor unit 1B has a sensor unit 10B having a vertical structure. In the sensor unit 10B, a concave portion having a rectangular opening in plan view is formed in a substrate 11 made of a semiconductor such as silicon. The PD element 12B is formed on the wall surface (side surface) of the recess, and the LED element 15B is disposed on the bottom surface of the recess. That is, in the sensor unit having the vertical structure, the PD element 12B is formed in the vertical direction with respect to the main surface. And the filter layer 14B which interrupts | emits excitation light and permeate | transmits fluorescence is arrange | positioned so that the light-receiving surface of PD element 12B formed in the side surface may be covered.
 なお、凹部の開口面は底面よりも広く、側面は、底面に対して垂直ではなく所定の角度θで傾斜している。なお、凹部となる額縁形状のセンサ枠基板と平面基板とを接合することにより、凹部を有する基板11が作製されていてもよい。 The opening surface of the recess is wider than the bottom surface, and the side surface is not perpendicular to the bottom surface but is inclined at a predetermined angle θ. In addition, the board | substrate 11 which has a recessed part may be produced by joining the frame-shaped sensor frame board | substrate used as a recessed part, and a plane board | substrate.
 LED素子15Bを覆う透明中間層16Bの上部に、乾燥したインジケータ層17Bが配設されている。そして、凹部の開口を覆うように外光を遮断する遮光層18Bが配設されている。遮光層18Bの表面が測定面である。そして、基板11のセンサ部10Bの測定面を含む先端部の外周面の全面に、例えばディップコートにより膨潤層60Bが配設されている。 A dried indicator layer 17B is disposed on the transparent intermediate layer 16B covering the LED element 15B. And the light shielding layer 18B which interrupts external light is arrange | positioned so that the opening of a recessed part may be covered. The surface of the light shielding layer 18B is a measurement surface. And the swelling layer 60B is arrange | positioned by the dip coating, for example in the whole surface of the outer peripheral surface of the front-end | tip part including the measurement surface of the sensor part 10B of the board | substrate 11. FIG.
 以上の説明のように、センサ30Bは、センサ部10Bが、主面と平行な底面を有する凹部があり、凹部の内壁に蛍光を電気信号に変換するPD素子12BとPD素子12Bの受光面を覆うフィルタ層14Bとが配設された基板11と、凹部の内部に配設された、励起光を発生するLED素子15Bと、凹部の内部のLED素子15Bの上側に配設された、励起光を受光するとアナライト濃度に応じた光量の蛍光を発生するインジケータ層17Bと、外光の進入を防止するアナライトが通過可能な遮光層18Bと、を有する。 As described above, in the sensor 30B, the sensor unit 10B has a recess having a bottom surface parallel to the main surface, and the light receiving surfaces of the PD element 12B and the PD element 12B that convert fluorescence into an electric signal are formed on the inner wall of the recess. The substrate 11 on which the covering filter layer 14B is disposed, the LED element 15B that generates excitation light disposed inside the recess, and the excitation light disposed above the LED element 15B inside the recess. When the light is received, it has an indicator layer 17B that emits fluorescence with a light amount corresponding to the analyte concentration, and a light shielding layer 18B through which the analyte that prevents the entry of external light can pass.
 センサ30Bは体内に挿入されると、アナライトを含む体液が、膨潤層60Bおよびインジケータ層17Bに吸収される。このため、センサ30Bは、図10に示したセンサ30と同様の効果を有する。また、センサ30Bはセンサ30よりも小型化が容易で、より高感度である。 When the sensor 30B is inserted into the body, the body fluid containing the analyte is absorbed by the swelling layer 60B and the indicator layer 17B. For this reason, the sensor 30B has the same effect as the sensor 30 shown in FIG. Further, the sensor 30B is easier to miniaturize than the sensor 30 and is more sensitive.
 次に、センサ30Bの製造方法について簡単に説明する。なお、1個のセンサ30B毎に製造してもよいが、ウエハプロセスとして一括して多数のセンサを製造することが好ましい。 Next, a method for manufacturing the sensor 30B will be briefly described. In addition, although it may manufacture for every sensor 30B, it is preferable to manufacture many sensors collectively as a wafer process.
 最初に、複数の針型センサが作製可能な面積を有する基板11となるシリコンウエハの第1の主面に複数の平面視矩形のマスクパターンを有するマスク層が作製される。そして、エッチング法により、第1の主面と平行な底面のある複数の凹部が形成される。 First, a mask layer having a plurality of rectangular mask patterns in plan view is manufactured on the first main surface of a silicon wafer to be a substrate 11 having an area where a plurality of needle sensors can be manufactured. Then, a plurality of recesses having a bottom surface parallel to the first main surface is formed by an etching method.
 エッチング法としては、水酸化テトラメチルアンモニウム水溶液または水酸化カリウム水溶液などを用いるウエットエッチング法が好ましいが、反応性イオンエッチングまたはケミカルドライエッチングなどのドライエッチング法も用いてもよい。 The etching method is preferably a wet etching method using a tetramethylammonium hydroxide aqueous solution or a potassium hydroxide aqueous solution, but a dry etching method such as reactive ion etching or chemical dry etching may also be used.
 ウエットエッチング法では、シリコンウエハとしてシリコン(100)面を用いた場合には、(111)面のエッチング速度が(100)面に比べて遅い異方性エッチングとなるため、凹部の側面は(111)面となり、(100)面(底面)との角度は、54.7度となる。 In the wet etching method, when the silicon (100) plane is used as the silicon wafer, the etching speed of the (111) plane is anisotropic etching compared to the (100) plane. ) Plane and the angle with the (100) plane (bottom plane) is 54.7 degrees.
 次に、それぞれの凹部の4側面にPD素子12Bが公知の半導体プロセスにより形成される。側面が傾斜している凹部は、側面が垂直な凹部に比べてPD素子12を形成できる面積が広いだけでなく、側面へのPD素子12Bの形成が容易である。なお側面の傾斜角度が30~70度であれば、上記効果が顕著である。 Next, the PD element 12B is formed on the four side surfaces of each recess by a known semiconductor process. The concave portion whose side surface is inclined has a larger area in which the PD element 12 can be formed than the concave portion whose vertical side surface is vertical, and the PD element 12B can be easily formed on the side surface. If the inclination angle of the side surface is 30 to 70 degrees, the above effect is remarkable.
 次に、側面のPD素子12B上にフィルタ層14Bが配設される。次に、複数の凹部の底面に、それぞれLED素子15Bが配設される。さらにLED素子15Bを覆うように透明中間層16Bを形成後に、凹部内にインジケータ層17Bとなる緩衝溶液が充填される。さらに、凹部の開口を覆うように、遮光層18Bが配設される。そして複数のセンサが形成されたシリコンウエハが個片化される。さらに、先端部32Bに膨潤層60Bがディップコート法により配設され、ハイドロゲル乾燥工程を経て、センサ部10Bが完成する。 Next, the filter layer 14B is disposed on the side PD element 12B. Next, the LED elements 15B are disposed on the bottom surfaces of the plurality of recesses. Further, after forming the transparent intermediate layer 16B so as to cover the LED element 15B, a buffer solution that becomes the indicator layer 17B is filled in the recess. Further, a light shielding layer 18B is disposed so as to cover the opening of the recess. Then, the silicon wafer on which a plurality of sensors are formed is singulated. Furthermore, the swelling layer 60B is disposed on the tip portion 32B by the dip coating method, and the sensor portion 10B is completed through a hydrogel drying process.
 なお、センサ30Bでは、基板11を、先端部32B、本体部33およびコネクタ部35の主要構成部材としてもよい。すなわち、シリコンウエハの加工により、センサ部10Bを有する先端部32Bだけでなく、本体部33およびコネクタ部35を作製してもよい。 In the sensor 30B, the substrate 11 may be a main constituent member of the tip portion 32B, the main body portion 33, and the connector portion 35. That is, not only the tip portion 32B having the sensor portion 10B but also the main body portion 33 and the connector portion 35 may be manufactured by processing a silicon wafer.
 以上の説明のように、センサ30Bは、基板11に形成した凹部内にセンサ部10Bを作製するために製造が容易である。 As described above, the sensor 30B is easy to manufacture because the sensor unit 10B is formed in the recess formed in the substrate 11.
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 本出願は、2011年9月30日に日本国に出願された特願2011-215815号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2011-215815 filed in Japan on September 30, 2011, and the above disclosed contents include the present specification, claims, It shall be cited in the drawing.

Claims (13)

  1.  本体部と、前記本体部の基端側に設けられたコネクタ部と、前記本体部の先端側に設けられたアナライト濃度を測定するセンサ部が配設されている先端部と、を有し、
     前記センサ部の測定面を含む前記先端部の外周面の少なくとも一部に、被検体の液性成分を吸収して膨潤する膨潤層が配設されていることを特徴とする針型センサ。
    A main body, a connector provided on the base end side of the main body, and a tip provided with a sensor unit for measuring an analyte concentration provided on the front end of the main body. ,
    A needle-type sensor, wherein a swelling layer that swells by absorbing a liquid component of a subject is disposed on at least a part of the outer peripheral surface of the tip including the measurement surface of the sensor unit.
  2.  前記先端部を内部に収容した状態で前記被検体に穿刺され前記アナライト濃度の測定開始前に前記先端部を体内に残し抜去される、鞘管の外寸よりも、膨潤した前記膨潤層を含む前記先端部の外寸が大きいことを特徴とする請求項1に記載の針型センサ。 The swelling layer swollen more than the outer dimension of the sheath tube, which is punctured into the subject in a state in which the distal end portion is accommodated and is removed before leaving the analyte concentration measurement. The needle type sensor according to claim 1, wherein an outer dimension of the tip portion including the needle sensor is large.
  3.  前記膨潤層は、前記測定面に対して背面側の前記外周面に配設されていることを特徴とする請求項2に記載の針型センサ。 3. The needle sensor according to claim 2, wherein the swelling layer is disposed on the outer peripheral surface on the back side with respect to the measurement surface.
  4.  前記膨潤層が、前記アナライトが通過可能であり、前記測定面を含む前記先端部の全周の表面に配設されていることを特徴とする請求項3に記載の針型センサ。 The needle type sensor according to claim 3, wherein the swelling layer allows the analyte to pass therethrough and is disposed on the entire surface of the tip including the measurement surface.
  5.  前記膨潤層が、ハイドロゲルからなることを特徴とする請求項4に記載の針型センサ。 The needle sensor according to claim 4, wherein the swelling layer is made of hydrogel.
  6.  前記センサ部が、前記体内の水を吸収して膨潤するハイドロゲルからなり、前記アナライト濃度に応じた蛍光を発生するインジケータ層を有することを特徴とする請求項5に記載の針型センサ。 The needle sensor according to claim 5, wherein the sensor unit is made of a hydrogel that swells by absorbing water in the body, and has an indicator layer that generates fluorescence according to the analyte concentration.
  7.  前記センサ部が、
     主面と平行な底面を有する凹部があり、前記凹部の内壁に蛍光を電気信号に変換する光電変換素子が形成された基板と、
     前記光電変換素子の受光面を覆う、励起光を遮断し蛍光を透過するフィルタ層と、
     前記凹部の内部の前記フィルタ層の上側に配設された、励起光を発生する発光素子と、
     前記凹部の内部の前記発光素子の上側に配設された、前記励起光を受光すると前記アナライト濃度に応じた光量の蛍光を発生する前記インジケータ層と、
     外光を遮断する最外層と、を有することを特徴とする請求項6に記載の針型センサ。
    The sensor unit is
    There is a recess having a bottom surface parallel to the main surface, and a substrate on which a photoelectric conversion element for converting fluorescence into an electric signal is formed on the inner wall of the recess,
    A filter layer that covers the light receiving surface of the photoelectric conversion element and blocks excitation light and transmits fluorescence;
    A light emitting element that emits excitation light, disposed above the filter layer inside the recess;
    The indicator layer disposed on the upper side of the light emitting element inside the recess and receiving the excitation light to generate a light amount of fluorescence corresponding to the analyte concentration;
    The needle sensor according to claim 6, further comprising an outermost layer that blocks external light.
  8.  本体部と、前記本体部の基端側に設けられたコネクタ部と、前記本体部の先端側に設けられたアナライト濃度を測定するセンサ部のある先端部と、を有し、前記センサ部の測定面を含む前記先端部の外周面の少なくとも一部に、被検体の液性成分を吸収して膨潤する膨潤層が配設されている針型センサと、
     前記先端部を内部に収容した状態で被検体に穿刺され、前記アナライト濃度の測定開始前に前記先端部を体内に残して抜去される、膨潤した前記膨潤層を含む前記先端部の外寸よりも外寸が小さい鞘管と、を具備することを特徴とする針型センサユニット。
    A main body part, a connector part provided on the base end side of the main body part, and a front end part having a sensor part for measuring an analyte concentration provided on the front end side of the main body part, and the sensor part A needle-type sensor in which a swelling layer that swells by absorbing the liquid component of the subject is disposed on at least a part of the outer peripheral surface of the tip including the measurement surface;
    An outer dimension of the tip including the swollen swelling layer, which is punctured in the subject with the tip housed therein, and is removed while leaving the tip in the body before starting the measurement of the analyte concentration. A needle-type sensor unit comprising: a sheath tube having a smaller outer dimension than the outer diameter.
  9.  前記膨潤層は、前記測定面に対して背面側の外周面に配設されていることを特徴とする請求項8に記載の針型センサユニット。 The needle-type sensor unit according to claim 8, wherein the swelling layer is disposed on the outer peripheral surface on the back side with respect to the measurement surface.
  10.  前記膨潤層が、前記アナライトが通過可能であり、前記測定面を含む前記先端部の全周の表面に配設されていることを特徴とする請求項9に記載の針型センサユニット。 The needle-type sensor unit according to claim 9, wherein the swelling layer allows the analyte to pass therethrough and is disposed on the entire surface of the tip including the measurement surface.
  11.  前記膨潤層が、ハイドロゲルからなることを特徴とする請求項10に記載の針型センサユニット。 The needle-type sensor unit according to claim 10, wherein the swelling layer is made of hydrogel.
  12.  前記体内の水を吸収して膨潤するハイドロゲルからなり、前記アナライト濃度に応じた蛍光を発生するインジケータ層を、前記センサ部が有することを特徴とする請求項11に記載の針型センサユニット。 The needle-type sensor unit according to claim 11, wherein the sensor unit includes an indicator layer that is made of a hydrogel that swells by absorbing water in the body and generates fluorescence according to the analyte concentration. .
  13.  前記センサ部が、
     前記主面と平行な底面を有する凹部があり、前記凹部の内壁に蛍光を電気信号に変換する光電変換素子と、前記光電変換素子の受光面を覆う、励起光を遮断し蛍光を透過するフィルタ層が配設された基板と、
     前記凹部の内部に配設された、励起光を発生する発光素子と、
     前記凹部の内部の前記発光素子の上側に配設された、励起光を受光するとアナライト濃度に応じた光量の蛍光を発生する前記インジケータ層と、
     外光を遮断する最外層と、を有することを特徴とする請求項12に記載の針型センサユニット。
    The sensor unit is
    There is a recess having a bottom surface parallel to the main surface, a photoelectric conversion element that converts fluorescence into an electric signal on the inner wall of the recess, and a filter that covers the light receiving surface of the photoelectric conversion element and blocks excitation light and transmits fluorescence A substrate on which a layer is disposed;
    A light emitting element that generates excitation light, disposed inside the recess;
    The indicator layer disposed on the upper side of the light emitting element inside the recess and receiving the excitation light generates fluorescence having a light amount corresponding to the analyte concentration;
    The needle-type sensor unit according to claim 12, further comprising an outermost layer that blocks external light.
PCT/JP2012/070881 2011-09-30 2012-08-17 Needle sensor and needle sensor unit WO2013046993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-215815 2011-09-30
JP2011215815 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046993A1 true WO2013046993A1 (en) 2013-04-04

Family

ID=47995044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070881 WO2013046993A1 (en) 2011-09-30 2012-08-17 Needle sensor and needle sensor unit

Country Status (1)

Country Link
WO (1) WO2013046993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028544A1 (en) * 2019-08-13 2021-02-18 B. Braun Melsungen Ag Medical sampling container having a test field and an absorber unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279285A (en) * 2000-02-10 2005-10-13 Medtronic Minimed Inc Improved analyte sensor
JP2009544409A (en) * 2006-07-26 2009-12-17 メドトロニック ミニメド インコーポレイテッド Methods and materials for stabilizing an analyte sensor
WO2010119916A1 (en) * 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279285A (en) * 2000-02-10 2005-10-13 Medtronic Minimed Inc Improved analyte sensor
JP2009544409A (en) * 2006-07-26 2009-12-17 メドトロニック ミニメド インコーポレイテッド Methods and materials for stabilizing an analyte sensor
WO2010119916A1 (en) * 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028544A1 (en) * 2019-08-13 2021-02-18 B. Braun Melsungen Ag Medical sampling container having a test field and an absorber unit

Similar Documents

Publication Publication Date Title
JP5307901B2 (en) Fluorescence sensor, needle-type fluorescence sensor, and analyte measurement method
US10631766B2 (en) Devices and systems for optically determining a concentration of an analyte in a living subject using hydrogel-based, fluorescent microneedles and methods of manufacture thereof
US9693714B2 (en) Digital ASIC sensor platform
US7450980B2 (en) Intracorporeal substance measuring assembly
US20160345872A1 (en) Optical sensor for bandage type monitoring device
AU2014308844B2 (en) Drug elution for in vivo protection of bio-sensing analytes
EP3495804B1 (en) Implantable multimodal optoelectronic analyte sensor
Elsherif et al. Real-time optical fiber sensors based on light diffusing microlens arrays
US8853649B2 (en) Fluorescence sensor
US10098574B1 (en) Porous microneedles through sacrificial sugar incorporation, analyte detection system, and method for intradermal optode nanosensor implantation
Peng et al. Blood glucose sensors and recent advances: A review
JPS63196853A (en) Sensor system
US20090124875A1 (en) Implantable Creatinine Sensor and Related Methods
CN109864746B (en) Multimode analyte sensor for medical devices
EP3492014B1 (en) Multimodal analyte sensors for medical devices
US20220133178A1 (en) Fibrous cover layer for medical devices
JP6087337B2 (en) Fluorescence sensor and sensor system
ES2630755T3 (en) In vitro sensor for the point of care and use procedure
WO2013046993A1 (en) Needle sensor and needle sensor unit
US20100130839A1 (en) Implantable devices and method for determining a concentration of a substance and/or molecule in blood or tissue of a patient
US11331018B2 (en) System and single-channel biosensor for and method of determining analyte value
US20220133177A1 (en) Rolled multilayer chemical sensing elements and devices and system including the same
JP2013076592A (en) Needle type sensor and method for manufacturing needle type sensor
JP2014236758A (en) Sensor
WO2014045384A1 (en) Fluorescent sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP