WO2013046681A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2013046681A1
WO2013046681A1 PCT/JP2012/006171 JP2012006171W WO2013046681A1 WO 2013046681 A1 WO2013046681 A1 WO 2013046681A1 JP 2012006171 W JP2012006171 W JP 2012006171W WO 2013046681 A1 WO2013046681 A1 WO 2013046681A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
battery cell
node
current
series
Prior art date
Application number
PCT/JP2012/006171
Other languages
French (fr)
Japanese (ja)
Inventor
龍蔵 萩原
久保 守
智子 夛田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013046681A1 publication Critical patent/WO2013046681A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery device including a plurality of secondary battery cells.
  • FIG. 1 shows a configuration example of a secondary battery device 100 according to the prior art.
  • three series circuits in which four secondary battery cells are connected in series are provided, and the three series circuits are connected in parallel.
  • the first series circuit is configured by connecting a first secondary battery cell S11, a second secondary battery cell S12, a third secondary battery cell S13, and a fourth secondary battery cell S14 in series.
  • the second series circuit is configured by connecting a fifth secondary battery cell S21, a sixth secondary battery cell S22, a seventh secondary battery cell S23, and an eighth secondary battery cell S24 in series.
  • the third series circuit includes a ninth secondary battery cell S31, a tenth secondary battery cell S32, an eleventh secondary battery cell S33, and a twelfth secondary battery cell S34 connected in series.
  • the first node N11 between the negative electrode of the first secondary battery cell S11 and the positive electrode of the second secondary battery cell S12, the negative electrode of the fifth secondary battery cell S21, and the positive electrode of the sixth secondary battery cell S22 A fourth node N21 therebetween is connected by wiring. Corresponding nodes of other adjacent series circuits are also connected by wiring. That is, a total of 12 secondary battery cells S11 to S34 having a series number of 4 and a parallel number of 3 are so-called matrix wiring.
  • the entire secondary battery device 100 has an automatic balancing action. Therefore, variations in individual secondary battery cells are absorbed, and variations in voltage output from each series circuit are reduced. In addition, even if a failure occurs in a certain secondary battery cell, current flows so as to bypass the secondary battery cell, so that the influence of the failure can be reduced. When the nodes are not connected, the entire series circuit including the secondary battery cell is affected.
  • the present invention has been made in view of such a situation, and an object thereof is to improve both the stability of output power and the safety of individual secondary battery cells in a secondary battery device in which a plurality of secondary battery cells are combined. To provide technology.
  • the secondary battery device includes a plurality of series circuits in which a plurality of secondary battery cells are connected in series.
  • a plurality of series circuits are connected in parallel, and corresponding nodes of adjacent series circuits are connected via a current limiting element for limiting a transient current.
  • both the stability of output power and the safety of individual secondary battery cells can be improved.
  • FIG. 2 shows a configuration example of the secondary battery device 100 according to Embodiment 1 of the present invention.
  • the secondary battery device 100 shown in FIG. 2 is provided with three series circuits in which four secondary battery cells are connected in series, like the secondary battery device 100 shown in FIG. 1, and the three series circuits are connected in parallel. Is done.
  • the positive electrode of each series circuit (in FIG. 2, the positive electrodes of the first secondary battery cell S11, the fifth secondary battery cell S21, and the ninth secondary battery cell S31) are coupled and connected to the input / output terminal.
  • the negative electrode of each series circuit in FIG. 2, the negative electrodes of the fourth secondary battery cell S14, the eighth secondary battery cell S24, and the twelfth secondary battery cell S34) is connected to the ground.
  • the number of secondary battery cells included in each series circuit and the number of series circuits connected in parallel are arbitrary and are determined by the designer.
  • a lithium ion battery, a nickel metal hydride battery, a lead battery, or the like can be adopted as the secondary battery cell. In this embodiment, an example in which a lithium ion battery is employed will be described.
  • a fourth node N21 therebetween is connected via a current limiting element.
  • Corresponding nodes of other adjacent series circuits are similarly connected through current limiting elements.
  • a node corresponding to an adjacent series circuit is a node having the same number of stages.
  • the current limiting element is an element for limiting the transient current.
  • the transient current is a current generated during a transient phenomenon, and is generated when the secondary battery cell is replaced or when a surge voltage is applied to an insulated terminal. Large currents such as inrush currents and surge currents must be limited, but small currents must flow between adjacent nodes in order to exhibit the above-described automatic balancing action. For example, when the rated voltage is different between adjacent secondary battery cells, the full charge capacity is different due to changes over time, or the SOC (State Of Charge) is different due to replacement of secondary battery cells, A potential difference is generated between adjacent secondary battery cells. Since both positive electrodes and negative electrodes are electrically connected to each other, a current flows between them, and the potential difference is eliminated.
  • a coil also referred to as an inductor
  • the coil does not act as a resistance to a steady DC current, but acts as a resistance when the current changes. That is, since the coil has a current smoothing action, it is a suitable element as the above-described current limiting element.
  • the first node N11 and the fourth node N21 are connected via the first coil L11
  • the second node N12 and the fifth node N22 are connected via the second coil L12
  • the third node N13 and the sixth node N23 are connected via the third coil L13
  • the fourth node N21 and the seventh node N31 are connected via the fourth coil L21
  • the fifth node N22 and the eighth node N32 are connected.
  • the sixth node N23 and the ninth node N33 are connected via the sixth coil L23.
  • FIG. 3 shows a configuration example of the secondary battery device 100 according to Embodiment 2 of the present invention.
  • the secondary battery device 100 shown in FIG. 3 is an example using a PTC (positive temperature coefficient) thermistor instead of a coil as the above-described current limiting element.
  • a PTC thermistor is a thermistor whose resistance value increases with increasing temperature. When a current flows, the resistance value increases due to self-heating, making it difficult for the current to flow. As the amount of self-heat generation due to a large current increases, it becomes difficult for the current to flow. Therefore, the element is suitable as the above-described current limiting element.
  • the first node N11 and the fourth node N21 are connected via the first PTC thermistor T11
  • the second node N12 and the fifth node N22 are connected via the second PTC thermistor T12
  • the third node N13 and the sixth node N23 are connected via the third PTC thermistor T13
  • the fourth node N21 and the seventh node N31 are connected via the fourth PTC thermistor T21
  • the fifth node N22 and the eighth node N32 Are connected via a fifth PTC thermistor T22
  • the sixth node N23 and the ninth node N33 are connected via a sixth PTC thermistor T23.
  • FIG. 4 is a diagram showing an application example of the secondary battery device 100 according to Embodiments 1 and 2 of the present invention.
  • FIG. 4 illustrates an example applied to a power storage system.
  • the power storage system includes the secondary battery device 100 according to the first and second embodiments, the bidirectional AC-DC converter 200, and the charge / discharge circuit 250.
  • the current limiting element is not limited to these elements.
  • a fuse may be used. Any other element having an overcurrent protection function may be used.
  • a PTC thermistor has a higher current limiting capability than a coil but is expensive. Therefore, instead of connecting a PTC thermistor between all adjacent nodes, a PTC thermistor is used between some nodes and a coil is connected between the remaining nodes. May be used. For example, a secondary battery cell close to the input / output terminal is more likely to receive a surge voltage than a secondary battery cell close to the ground, so there is a predetermined number of adjacent nodes from the input / output terminal. Alternatively, a PTC thermistor may be used, and a coil, a fuse, or the like may be used between the remaining nodes.
  • the invention according to the present embodiment may be specified by the items described below.
  • the present invention can be used for in-vehicle secondary batteries and power storage systems.

Abstract

A secondary battery (100) comprises a plurality of serial circuits in which a plurality of secondary cells are serially connected. The plurality of serial circuits are connected in parallel. The intervals between corresponding nodes of adjacent serial circuits are connected with current restricting elements for restricting transient current interposed therebetween. As the current restricting elements, it would be possible to use either coils or positive temperature coefficient (PTC) thermistors.

Description

二次電池装置Secondary battery device
 本発明は、複数の二次電池セルを含む二次電池装置に関する。 The present invention relates to a secondary battery device including a plurality of secondary battery cells.
 近年、大容量の二次電池(蓄電池ともいう)の需要が拡大している。とくに、電気自動車、ハイブリット車(プラグインハイブリッド車を含む)などの自動車用途や、太陽光発電や風力発電などの自然エネルギーにもとづき発電された電力を蓄積する蓄電用途が拡大している。また、事業用だけでなく家庭用の蓄電システムも実用化されている。 In recent years, the demand for large-capacity secondary batteries (also called storage batteries) has been increasing. In particular, automotive applications such as electric vehicles and hybrid vehicles (including plug-in hybrid vehicles) and power storage applications for storing electric power generated based on natural energy such as solar power generation and wind power generation are expanding. In addition, not only businesses but also household power storage systems have been put into practical use.
 二次電池を大容量化するには、複数の二次電池セルを組み合わせて使用する必要がある。多数の二次電池セルをすべて直列接続した場合、出力電圧が高くなりすぎてしまう。そこで、所望の出力電圧に対応する数の二次電池セルを直列接続した直列回路を複数、並列接続する手法が用いられている(たとえば、特許文献1参照)。 In order to increase the capacity of the secondary battery, it is necessary to use a combination of multiple secondary battery cells. When all the secondary battery cells are all connected in series, the output voltage becomes too high. Therefore, a technique is used in which a plurality of series circuits in which a number of secondary battery cells corresponding to a desired output voltage are connected in series are connected in parallel (see, for example, Patent Document 1).
 図1は、従来技術に係る二次電池装置100の構成例を示す。図1に示す例では、二次電池セルを4つ直列接続した直列回路が3つ設けられ、その3つの直列回路が並列接続される。第1直列回路は、第1二次電池セルS11、第2二次電池セルS12、第3二次電池セルS13および第4二次電池セルS14が直列接続されて構成される。第2直列回路は、第5二次電池セルS21、第6二次電池セルS22、第7二次電池セルS23および第8二次電池セルS24が直列接続されて構成される。第3直列回路は、第9二次電池セルS31、第10二次電池セルS32、第11二次電池セルS33および第12二次電池セルS34が直列接続されて構成される。 FIG. 1 shows a configuration example of a secondary battery device 100 according to the prior art. In the example shown in FIG. 1, three series circuits in which four secondary battery cells are connected in series are provided, and the three series circuits are connected in parallel. The first series circuit is configured by connecting a first secondary battery cell S11, a second secondary battery cell S12, a third secondary battery cell S13, and a fourth secondary battery cell S14 in series. The second series circuit is configured by connecting a fifth secondary battery cell S21, a sixth secondary battery cell S22, a seventh secondary battery cell S23, and an eighth secondary battery cell S24 in series. The third series circuit includes a ninth secondary battery cell S31, a tenth secondary battery cell S32, an eleventh secondary battery cell S33, and a twelfth secondary battery cell S34 connected in series.
 第1二次電池セルS11の負極と第2二次電池セルS12の正極との間の第1ノードN11と、第5二次電池セルS21の負極と第6二次電池セルS22の正極との間の第4ノードN21とが配線により接続される。他の隣り合う直列回路の対応するノード間も同様に配線により接続される。すなわち、直列数が4、並列数が3の合計12の二次電池セルS11~S34がいわゆるマトリクス配線されている。 The first node N11 between the negative electrode of the first secondary battery cell S11 and the positive electrode of the second secondary battery cell S12, the negative electrode of the fifth secondary battery cell S21, and the positive electrode of the sixth secondary battery cell S22 A fourth node N21 therebetween is connected by wiring. Corresponding nodes of other adjacent series circuits are also connected by wiring. That is, a total of 12 secondary battery cells S11 to S34 having a series number of 4 and a parallel number of 3 are so-called matrix wiring.
 このように、隣り合うノード間を接続することにより、二次電池装置100全体が自動平衡作用を持つことになる。したがって、個々の二次電池セルのばらつきが吸収され、各直列回路から出力される電圧のばらつきが小さくなる。また、ある二次電池セルに不具合が発生しても、その二次電池セルをバイパスするように電流が流れるため、その不具合の影響を小さくできる。ノード間が接続されていない場合、その二次電池セルを含む直列回路全体が影響を受ける。 Thus, by connecting adjacent nodes, the entire secondary battery device 100 has an automatic balancing action. Therefore, variations in individual secondary battery cells are absorbed, and variations in voltage output from each series circuit are reduced. In addition, even if a failure occurs in a certain secondary battery cell, current flows so as to bypass the secondary battery cell, so that the influence of the failure can be reduced. When the nodes are not connected, the entire series circuit including the secondary battery cell is affected.
特表2002-533042号公報JP-T-2002-530342 gazette
 しかしながら、図1に示す回路構成においてノード間に大電流が流れると、大電流が流入した二次電池セルに不具合が発生する可能性がある。一般に、二次電池セルは過充電されると寿命が短くなる。ある二次電池セルを交換する際、新しく取り付けた二次電池セルと、隣り合う二次電池セルとの間に電位差がある場合、取り付けた瞬間に突入電流が発生する。 However, if a large current flows between the nodes in the circuit configuration shown in FIG. 1, there is a possibility that a problem occurs in the secondary battery cell into which the large current flows. In general, when a secondary battery cell is overcharged, its life is shortened. When replacing a certain secondary battery cell, if there is a potential difference between the newly attached secondary battery cell and the adjacent secondary battery cell, an inrush current is generated at the moment of attachment.
 本発明はこうした状況に鑑みなされたものであり、その目的は、複数の二次電池セルを組み合わせた二次電池装置において、出力電力の安定性および個々の二次電池セルの安全性を共に高める技術を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to improve both the stability of output power and the safety of individual secondary battery cells in a secondary battery device in which a plurality of secondary battery cells are combined. To provide technology.
 本発明のある態様の二次電池装置は、複数の二次電池セルが直列接続された直列回路を複数備える。複数の直列回路が並列接続されるとともに、隣り合う直列回路の対応するノード間が、過渡電流を制限するための電流制限素子を介して接続される。 The secondary battery device according to an aspect of the present invention includes a plurality of series circuits in which a plurality of secondary battery cells are connected in series. A plurality of series circuits are connected in parallel, and corresponding nodes of adjacent series circuits are connected via a current limiting element for limiting a transient current.
 本発明によれば、複数の二次電池セルを組み合わせた二次電池装置において、出力電力の安定性および個々の二次電池セルの安全性を共に高めることができる。 According to the present invention, in a secondary battery device in which a plurality of secondary battery cells are combined, both the stability of output power and the safety of individual secondary battery cells can be improved.
従来技術に係る二次電池装置の構成例を示す図である。It is a figure which shows the structural example of the secondary battery apparatus which concerns on a prior art. 本発明の実施の形態1に係る二次電池装置の構成例を示す図である。It is a figure which shows the structural example of the secondary battery apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る二次電池装置の構成例を示す図である。It is a figure which shows the structural example of the secondary battery apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態1、2に係る二次電池装置の適用例を示す図である。It is a figure which shows the example of application of the secondary battery apparatus which concerns on Embodiment 1, 2 of this invention.
 図2は、本発明の実施の形態1に係る二次電池装置100の構成例を示す。図2に示す二次電池装置100は、図1に示す二次電池装置100と同様に、二次電池セルを4つ直列接続した直列回路が3つ設けられ、その3つの直列回路が並列接続される。各直列回路の正極(図2では、第1二次電池セルS11、第5二次電池セルS21および第9二次電池セルS31の正極)は結合され入出力端子に接続される。また、各直列回路の負極(図2では、第4二次電池セルS14、第8二次電池セルS24および第12二次電池セルS34の負極)はグラウンドに接続される。 FIG. 2 shows a configuration example of the secondary battery device 100 according to Embodiment 1 of the present invention. The secondary battery device 100 shown in FIG. 2 is provided with three series circuits in which four secondary battery cells are connected in series, like the secondary battery device 100 shown in FIG. 1, and the three series circuits are connected in parallel. Is done. The positive electrode of each series circuit (in FIG. 2, the positive electrodes of the first secondary battery cell S11, the fifth secondary battery cell S21, and the ninth secondary battery cell S31) are coupled and connected to the input / output terminal. Further, the negative electrode of each series circuit (in FIG. 2, the negative electrodes of the fourth secondary battery cell S14, the eighth secondary battery cell S24, and the twelfth secondary battery cell S34) is connected to the ground.
 各直列回路に含まれる二次電池セルの数、および並列接続される直列回路の数は任意であり、設計者により決定される。二次電池セルにはリチウムイオン電池、ニッケル水素電池、鉛電池などを採用できる。本実施の形態ではリチウムイオン電池を採用する例を説明する。 The number of secondary battery cells included in each series circuit and the number of series circuits connected in parallel are arbitrary and are determined by the designer. As the secondary battery cell, a lithium ion battery, a nickel metal hydride battery, a lead battery, or the like can be adopted. In this embodiment, an example in which a lithium ion battery is employed will be described.
 第1二次電池セルS11の負極と第2二次電池セルS12の正極との間の第1ノードN11と、第5二次電池セルS21の負極と第6二次電池セルS22の正極との間の第4ノードN21とが電流制限素子を介して接続される。他の隣り合う直列回路の対応するノード間も同様に電流制限素子を介して接続される。隣り合う直列回路の対応するノードとは、段数が同じノードを指す。 The first node N11 between the negative electrode of the first secondary battery cell S11 and the positive electrode of the second secondary battery cell S12, the negative electrode of the fifth secondary battery cell S21, and the positive electrode of the sixth secondary battery cell S22 A fourth node N21 therebetween is connected via a current limiting element. Corresponding nodes of other adjacent series circuits are similarly connected through current limiting elements. A node corresponding to an adjacent series circuit is a node having the same number of stages.
 電流制限素子は過渡電流を制限するための素子である。過渡電流とは過渡現象時に発生する電流であり、上述した二次電池セルの交換時や、絶縁された端子にサージ電圧が印加された場合などに発生する。突入電流やサージ電流などの大電流は制限する必要があるが、上述した自動平衡作用を発揮させるためには、隣り合うノード間で小電流が流れる必要がある。たとえば、隣り合う二次電池セル間で、定格電圧が異なっていたり、経時変化などにより満充電容量が異なっていたり、二次電池セルの交換などによりSOC(State Of Charge)が異なっている場合、隣り合う二次電池セル間に電位差が生じる。両者の正極同士および負極同士が電気的に接続されていることにより、両者間に電流が流れ、その電位差が解消される。 The current limiting element is an element for limiting the transient current. The transient current is a current generated during a transient phenomenon, and is generated when the secondary battery cell is replaced or when a surge voltage is applied to an insulated terminal. Large currents such as inrush currents and surge currents must be limited, but small currents must flow between adjacent nodes in order to exhibit the above-described automatic balancing action. For example, when the rated voltage is different between adjacent secondary battery cells, the full charge capacity is different due to changes over time, or the SOC (State Of Charge) is different due to replacement of secondary battery cells, A potential difference is generated between adjacent secondary battery cells. Since both positive electrodes and negative electrodes are electrically connected to each other, a current flows between them, and the potential difference is eliminated.
 実施の形態1では、上述の電流制限素子としてコイル(インダクタともいう)を使用する。コイルは定常的な直流電流に対しては抵抗として作用しないが、電流が変化したとき抵抗として作用する。すなわち、コイルは電流の平滑化作用を持つため、上述の電流制限素子として好適な素子である。 In the first embodiment, a coil (also referred to as an inductor) is used as the above-described current limiting element. The coil does not act as a resistance to a steady DC current, but acts as a resistance when the current changes. That is, since the coil has a current smoothing action, it is a suitable element as the above-described current limiting element.
 図2に示す例では、第1ノードN11と第4ノードN21とが第1コイルL11を介して接続され、第2ノードN12と第5ノードN22とが第2コイルL12を介して接続され、第3ノードN13と第6ノードN23とが第3コイルL13を介して接続され、第4ノードN21と第7ノードN31とが第4コイルL21を介して接続され、第5ノードN22と第8ノードN32とが第5コイルL22を介して接続され、第6ノードN23と第9ノードN33とが第6コイルL23を介して接続される。 In the example shown in FIG. 2, the first node N11 and the fourth node N21 are connected via the first coil L11, the second node N12 and the fifth node N22 are connected via the second coil L12, The third node N13 and the sixth node N23 are connected via the third coil L13, the fourth node N21 and the seventh node N31 are connected via the fourth coil L21, and the fifth node N22 and the eighth node N32 are connected. Are connected via the fifth coil L22, and the sixth node N23 and the ninth node N33 are connected via the sixth coil L23.
 図3は、本発明の実施の形態2に係る二次電池装置100の構成例を示す。図3に示す二次電池装置100は、上述の電流制限素子としてコイルではなく、PTC(positive temperature coefficient)サーミスタを使用する例である。PTCサーミスタは温度の上昇に対して抵抗値が増大するサーミスタである。電流が流れると自己発熱によって抵抗値が増大し、電流が流れにくくなる。大電流による自己発熱量が大きくなるほど、電流が流れにくくなるため、上述の電流制限素子として好適な素子である。 FIG. 3 shows a configuration example of the secondary battery device 100 according to Embodiment 2 of the present invention. The secondary battery device 100 shown in FIG. 3 is an example using a PTC (positive temperature coefficient) thermistor instead of a coil as the above-described current limiting element. A PTC thermistor is a thermistor whose resistance value increases with increasing temperature. When a current flows, the resistance value increases due to self-heating, making it difficult for the current to flow. As the amount of self-heat generation due to a large current increases, it becomes difficult for the current to flow. Therefore, the element is suitable as the above-described current limiting element.
 図3に示す例では、第1ノードN11と第4ノードN21とが第1PTCサーミスタT11を介して接続され、第2ノードN12と第5ノードN22とが第2PTCサーミスタT12を介して接続され、第3ノードN13と第6ノードN23とが第3PTCサーミスタT13を介して接続され、第4ノードN21と第7ノードN31とが第4PTCサーミスタT21を介して接続され、第5ノードN22と第8ノードN32とが第5PTCサーミスタT22を介して接続され、第6ノードN23と第9ノードN33とが第6PTCサーミスタT23を介して接続される。 In the example shown in FIG. 3, the first node N11 and the fourth node N21 are connected via the first PTC thermistor T11, the second node N12 and the fifth node N22 are connected via the second PTC thermistor T12, The third node N13 and the sixth node N23 are connected via the third PTC thermistor T13, the fourth node N21 and the seventh node N31 are connected via the fourth PTC thermistor T21, and the fifth node N22 and the eighth node N32 Are connected via a fifth PTC thermistor T22, and the sixth node N23 and the ninth node N33 are connected via a sixth PTC thermistor T23.
 図4は、本発明の実施の形態1、2に係る二次電池装置100の適用例を示す図である。図4では蓄電システムに適用する例を説明する。当該蓄電システムは、実施の形態1、2に係る二次電池装置100、双方向AC-DCコンバータ200および充放電回路250を備える。 FIG. 4 is a diagram showing an application example of the secondary battery device 100 according to Embodiments 1 and 2 of the present invention. FIG. 4 illustrates an example applied to a power storage system. The power storage system includes the secondary battery device 100 according to the first and second embodiments, the bidirectional AC-DC converter 200, and the charge / discharge circuit 250.
 双方向AC-DCコンバータ200は、需要家構内の電力線と充放電回路250との間に接続される。双方向AC-DCコンバータ200は、電力系統300から供給される交流電力を直流電力に変換する。充放電回路250はこの直流電力を二次電池装置100に充電する。また、双方向AC-DCコンバータ200は、充放電回路250により二次電池装置100から放電された直流電力を交流電力に変換し、需要家構内の電力線に出力する。この交流電力は、需要家構内の負荷400で消費される。 The bidirectional AC-DC converter 200 is connected between the power line in the customer premises and the charge / discharge circuit 250. Bidirectional AC-DC converter 200 converts AC power supplied from power system 300 into DC power. The charge / discharge circuit 250 charges the secondary battery device 100 with this DC power. Further, the bidirectional AC-DC converter 200 converts the DC power discharged from the secondary battery device 100 by the charge / discharge circuit 250 into AC power and outputs the AC power to the power line in the customer premises. This AC power is consumed by the load 400 in the customer premises.
 以上説明したように実施の形態1、2によれば、複数の二次電池セルを組み合わせた二次電池装置100において、隣り合う直列回路の同じ段数のノード間を電流制限素子を介して接続することにより、出力電力の安定性および個々の二次電池セルの安全性を共に高めることができる。すなわち、同じ段数のノード間を電気的に接続することにより、自動平衡作用が発揮され、個々の二次電池セルのばらつきが吸収され、二次電池装置100全体の出力電力も安定化する。 As described above, according to Embodiments 1 and 2, in secondary battery device 100 in which a plurality of secondary battery cells are combined, nodes having the same number of stages in adjacent series circuits are connected via current limiting elements. Thus, both the stability of output power and the safety of individual secondary battery cells can be improved. That is, by electrically connecting nodes of the same number of stages, an automatic balancing action is exhibited, variations in individual secondary battery cells are absorbed, and the output power of the entire secondary battery device 100 is stabilized.
 また、電流制限素子を介して接続することにより、大電流を制限または抑制することができ、個々の二次電池セルに大電流が流入することを抑制し、個々の二次電池セルを保護することができる。とくに、ある二次電池セルの交換時に発生しやすい突入電流の抑制に効果的である。 Further, by connecting via a current limiting element, a large current can be limited or suppressed, a large current flowing into each secondary battery cell is suppressed, and each secondary battery cell is protected. be able to. In particular, it is effective in suppressing inrush current that is likely to occur when a certain secondary battery cell is replaced.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.
 上述した実施の形態では、電流制限素子としてコイルとPTCサーミスタの例を挙げたが、それらの素子に限るものではない。たとえば、フューズであってもよい。その他、過電流保護作用を持つ素子であれば何でもよい。 In the embodiment described above, examples of the coil and the PTC thermistor are given as the current limiting element, but the current limiting element is not limited to these elements. For example, a fuse may be used. Any other element having an overcurrent protection function may be used.
 PTCサーミスタはコイルより電流制限能力が高いが高価であるため、すべての隣り合うノード間にPTCサーミスタを接続するのではなく、一部のノード間にPTCサーミスタを使用し、残りのノード間にコイルを使用してもよい。たとえば、グラウンドに近い段の二次電池セルより、入出力端子に近い段の二次電池セルのほうがサージ電圧が印加される可能性が高いため、入出力端子から所定の段数の隣り合うノード間にPTCサーミスタを使用し、残りのノード間にコイル、フューズなどを使用してもよい。 A PTC thermistor has a higher current limiting capability than a coil but is expensive. Therefore, instead of connecting a PTC thermistor between all adjacent nodes, a PTC thermistor is used between some nodes and a coil is connected between the remaining nodes. May be used. For example, a secondary battery cell close to the input / output terminal is more likely to receive a surge voltage than a secondary battery cell close to the ground, so there is a predetermined number of adjacent nodes from the input / output terminal. Alternatively, a PTC thermistor may be used, and a coil, a fuse, or the like may be used between the remaining nodes.
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。 The invention according to the present embodiment may be specified by the items described below.
[項目1]
 複数の二次電池セルが直列接続された直列回路を複数備え、
 前記複数の直列回路が並列接続されるとともに、隣り合う直列回路の対応するノード間が、過渡電流を制限するための電流制限素子を介して接続されることを特徴とする二次電池装置。
[Item 1]
A plurality of series circuits in which a plurality of secondary battery cells are connected in series,
The secondary battery device, wherein the plurality of series circuits are connected in parallel, and corresponding nodes of adjacent series circuits are connected via a current limiting element for limiting a transient current.
[項目2]
 前記電流制限素子は、コイルであることを特徴とする項目1に記載の二次電池装置。
[Item 2]
The secondary battery device according to item 1, wherein the current limiting element is a coil.
[項目3]
 前記電流制限素子は、PTC(positive temperature coefficient)サーミスタであることを特徴とする項目1に記載の二次電池装置。
[Item 3]
The secondary battery device according to item 1, wherein the current limiting element is a PTC (positive temperature coefficient) thermistor.
 100 二次電池装置、 S11 第1二次電池セル、 S12 第2二次電池セル、 S13 第3二次電池セル、 S14 第4二次電池セル、 S21 第5二次電池セル、 S22 第6二次電池セル、 S23 第7二次電池セル、 S24 第8二次電池セル、 S31 第9二次電池セル、 S32 第10二次電池セル、 S33 第11二次電池セル、 S34 第12二次電池セル、 N11 第1ノード、 N12 第2ノード、 N13 第3ノード、 N21 第4ノード、 N22 第5ノード、 N23 第6ノード、 N31 第7ノード、 N32 第8ノード、 N33 第9ノード、 L11 第1コイル、 L12 第2コイル、 L13 第3コイル、 L21 第4コイル、 L22 第5コイル、 L23 第6コイル、 T11 第1PTCサーミスタ、 T12 第2PTCサーミスタ、 T13 第3PTCサーミスタ、 T21 第4PTCサーミスタ、 T22 第5PTCサーミスタ、 T23 第6PTCサーミスタ、 200 双方向AC-DCコンバータ、 250 充放電回路、 300 電力系統、 400 負荷。 100 secondary battery device, S11 1st secondary battery cell, S12 2nd secondary battery cell, S13 3rd secondary battery cell, S14 4th secondary battery cell, S21 5th secondary battery cell, S22 6th 2nd Secondary battery cell, S23 7th secondary battery cell, S24 8th secondary battery cell, S31 9th secondary battery cell, S32 10th secondary battery cell, S33 11th secondary battery cell, S34 12th secondary battery Cell, N11 1st node, N12 2nd node, N13 3rd node, N21 4th node, N22 5th node, N23 6th node, N31 7th node, N32 8th node, N33 9th node, L11 1st Coil, L12 second coil, L13 third coil, L21 fourth coil, L22 fifth IL, L23 6th coil, T11 1st PTC thermistor, T12 2nd PTC thermistor, T13 3rd PTC thermistor, T21 4th PTC thermistor, T22 5th PTC thermistor, T23 6th PTC thermistor, 200 bidirectional AC-DC converter, 250 charge / discharge circuit 300 power system, 400 load.
 本発明は、車載用二次電池や蓄電システムに利用可能である。 The present invention can be used for in-vehicle secondary batteries and power storage systems.

Claims (3)

  1.  複数の二次電池セルが直列接続された直列回路を複数備え、
     前記複数の直列回路が並列接続されるとともに、隣り合う直列回路の対応するノード間が、過渡電流を制限するための電流制限素子を介して接続されることを特徴とする二次電池装置。
    A plurality of series circuits in which a plurality of secondary battery cells are connected in series,
    The secondary battery device, wherein the plurality of series circuits are connected in parallel, and corresponding nodes of adjacent series circuits are connected via a current limiting element for limiting a transient current.
  2.  前記電流制限素子は、コイルであることを特徴とする請求項1に記載の二次電池装置。 The secondary battery device according to claim 1, wherein the current limiting element is a coil.
  3.  前記電流制限素子は、PTC(positive temperature coefficient)サーミスタであることを特徴とする請求項1に記載の二次電池装置。 The secondary battery device according to claim 1, wherein the current limiting element is a PTC (positive temperature coefficient) thermistor.
PCT/JP2012/006171 2011-09-30 2012-09-27 Secondary battery WO2013046681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011217610A JP2014239563A (en) 2011-09-30 2011-09-30 Secondary battery device
JP2011-217610 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046681A1 true WO2013046681A1 (en) 2013-04-04

Family

ID=47994757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006171 WO2013046681A1 (en) 2011-09-30 2012-09-27 Secondary battery

Country Status (2)

Country Link
JP (1) JP2014239563A (en)
WO (1) WO2013046681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849260A (en) * 2017-03-15 2017-06-13 中南大学 A kind of battery pack protective circuit and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369372A (en) * 2001-06-04 2002-12-20 Nissan Motor Co Ltd Battery pack
JP2008135342A (en) * 2006-11-29 2008-06-12 Sony Corp Battery pack
JP2011047338A (en) * 2009-08-27 2011-03-10 Nisshinbo Holdings Inc Portable engine starter
JP2012099307A (en) * 2010-11-01 2012-05-24 Sony Corp Battery pack and power consumption equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369372A (en) * 2001-06-04 2002-12-20 Nissan Motor Co Ltd Battery pack
JP2008135342A (en) * 2006-11-29 2008-06-12 Sony Corp Battery pack
JP2011047338A (en) * 2009-08-27 2011-03-10 Nisshinbo Holdings Inc Portable engine starter
JP2012099307A (en) * 2010-11-01 2012-05-24 Sony Corp Battery pack and power consumption equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849260A (en) * 2017-03-15 2017-06-13 中南大学 A kind of battery pack protective circuit and method

Also Published As

Publication number Publication date
JP2014239563A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US9401616B2 (en) Battery pack, energy storage system including battery pack, and method of charging battery pack
CN102468474B (en) Assembled battery and power consumption apparatus
EP3809553A1 (en) Battery system
CN102473888B (en) Low-loss storage battery
JP6821584B2 (en) Power storage system
EP3073604B1 (en) Storage battery unit, overcurrent control method, and program
RU2667014C2 (en) Protection of power supply containing parallely connected batteries against external short circuit
JP6178328B2 (en) DC voltage source including an electrochemical cell
JP2012191679A (en) Balance correction apparatus and power storage system
JP2013078242A (en) Electric power supply device
WO2014181634A1 (en) Power supply apparatus
CN108494041B (en) Balance correction device and power storage system
US11158888B2 (en) Management device and power storage system
WO2016185536A1 (en) Electricity storage device and connection control method
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
WO2013046659A1 (en) Power storage system
US20120274143A1 (en) Power supply device
WO2008041755A1 (en) Ac-dc conversion device
WO2013046681A1 (en) Secondary battery
CN113678337A (en) Battery inverter system
WO2019074018A1 (en) Dc power feeding system
WO2017043109A1 (en) Storage battery device and storage battery system
TWI736202B (en) On-line uninterruptible power system and operation method thereof
JP4653202B2 (en) Charging circuit and charging method
JP6380012B2 (en) Power storage device and method of connecting power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP