WO2013046554A1 - Solar cell array and solar power system - Google Patents

Solar cell array and solar power system Download PDF

Info

Publication number
WO2013046554A1
WO2013046554A1 PCT/JP2012/005661 JP2012005661W WO2013046554A1 WO 2013046554 A1 WO2013046554 A1 WO 2013046554A1 JP 2012005661 W JP2012005661 W JP 2012005661W WO 2013046554 A1 WO2013046554 A1 WO 2013046554A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
cell array
series
parallel
Prior art date
Application number
PCT/JP2012/005661
Other languages
French (fr)
Japanese (ja)
Inventor
大二 兼松
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013046554A1 publication Critical patent/WO2013046554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a solar cell array including a plurality of solar cell modules and a solar power generation system.
  • This invention is made
  • the objective is a power fall when a part of solar cell module stops an electric power generation in a solar cell array provided with the series parallel circuit to which the several solar cell module was connected. It is in providing the technique which suppresses.
  • a solar cell array according to an aspect of the present invention is a solar cell array in which a plurality of solar cell modules are connected in series and parallel, and a voltage source is connected to at least one end of the plurality of solar cell modules. .
  • This solar power generation system includes a solar cell array in which a plurality of solar cell modules are connected in series and parallel, and a voltage source connected to at least one end of the plurality of solar cell modules.
  • a solar cell array including a series-parallel circuit to which a plurality of solar cell modules are connected, it is possible to suppress power reduction when some of the solar cell modules stop generating power.
  • FIG. 5 is a diagram showing a solar cell array according to Comparative Example 1.
  • FIG. 10 is a diagram showing a solar cell array according to Comparative Example 2.
  • FIG. It is a figure which shows the solar cell array for demonstrating the basic principle of this invention. It is a figure which shows the IV characteristic for demonstrating the basic principle of this invention. It is a figure which shows an example of the solar cell array which concerns on embodiment of this invention. It is a figure which shows the structural example of the solar cell array shown in FIG. It is a figure which shows another example of the solar cell array which concerns on embodiment of this invention. It is a figure which shows the structural example of a small-scale photovoltaic power generation system.
  • FIG. 10 is a diagram illustrating an internal configuration example of the AC-DC converter unit illustrated in FIG. 9. It is a figure which shows the structural example of a large-scale photovoltaic power generation system. It is a figure which shows the structural example of the photovoltaic power generation system which concerns on the embodiment which added the voltage source for electric current compensation to the photovoltaic power generation system shown in FIG. It is a figure which shows the structural example of the solar energy power generation system which concerns on the embodiment which added the voltage source for electric current compensation to the solar energy power generation system (one of the solar cell modules has failed) shown in FIG.
  • FIG. 1 is a diagram showing a solar cell array 100a according to Comparative Example 1.
  • the solar cell array 100a according to Comparative Example 1 includes a plurality of series circuits in which a plurality of solar cell modules are connected in series, and the plurality of series circuits are connected in parallel.
  • a first series circuit in which a 1.1 solar cell module 11, a 1.2 solar cell module 12, and a 1.3 solar cell module 13 are connected in series, and a 2.1 solar cell module. 21, 2.2 solar cell module 22 and 2.3 solar cell module 23 are connected in parallel to the second series circuit connected in series.
  • the solar cell module includes a current source I that generates a photocurrent proportional to incident light, a diode D, a parallel resistance Rsh (shunt resistance) caused by a leakage current of a pn junction, and a series resistance Rs of a connection that collects current at a terminal. Approximated.
  • the 1.2 solar cell module 12 when the 1.2 solar cell module 12 is shaded, the 1.2 solar cell module 12 does not generate power. In this case, not only the current of the 1.2 solar cell module 12 becomes invalid, but also the current of the entire first series circuit including the 1.2 solar cell module 12 becomes invalid. Therefore, the output power of the entire solar cell array 100a is about 1 ⁇ 2. In addition, a malfunction may occur in the 1.2 solar cell module 12 due to the electric power generated by the 1.1 solar cell module 11 and the 1.3 solar cell module 13.
  • FIG. 2 is a diagram showing a solar cell array 100b according to Comparative Example 2.
  • the solar cell array 100b according to Comparative Example 2 has a configuration in which the nodes of the corresponding stages of the first series circuit and the second series circuit are connected as compared with the solar cell array 100a according to Comparative Example 1. That is, a node between the 1.1 solar cell module 11 and the 1.2 solar cell module 12 and a node between the 2.1 solar cell module 21 and the 2.2 solar cell module 22 A node between the 1.2 solar cell module 12 and the 1.3 solar cell module 13, a node between the 2.2 solar cell module 22 and the 2.3 solar cell module 23, and Is connected.
  • FIG. 3 is a diagram showing a solar cell array 100c for explaining the basic principle of the present invention.
  • the solar cell array 100c has a configuration in which a second voltage source E2 is added as compared with the solar cell array 100b according to Comparative Example 2.
  • the second voltage source E ⁇ b> 2 is connected to both ends of the 1.2 solar cell module 12 and the 2.2 solar cell module 22. That is, the second voltage source E2 is shaded and functions as an alternative battery for the 1.2th solar cell module 12 that is not generating power.
  • FIG. 4 is a diagram showing IV characteristics for explaining the basic principle of the present invention.
  • the horizontal axis represents voltage and the vertical axis represents current.
  • 4 shows the IV characteristics of the solar cell array 100a (without partial shadow) shown in FIG. 1, the IV characteristics of the solar cell array 100a (with partial shadow) shown in FIG. 1, and the solar cell array 100b shown in FIG.
  • Experimental data of IV characteristics (with partial shadows) and IV characteristics of the solar cell array 100c (with partial shadows) shown in FIG. 3 are shown.
  • each solar cell module was replaced with a solar cell having a small output.
  • the output voltage at the maximum power point of each solar battery cell is about 1 V, and the output current at that time is about 70 mA.
  • the electromotive voltage of the second voltage source E2 is about 1V.
  • the above-mentioned “with partial shadow” refers to a state in which a solar cell corresponding to the first solar cell module 12 is shaded and the solar cell does not generate power.
  • the solar battery cell is referred to as a solar battery module in accordance with the description example in FIGS. 1 to 3.
  • the maximum power point of the solar cell array 100a (without partial shadow) shown in FIG. 1 is 415.4 mW
  • the maximum power point of the solar cell array 100a (with partial shadow) shown in FIG. 1 is 206.9 mW, shown in FIG.
  • the maximum power point of the solar cell array 100b (with partial shadow) was measured as 248.8 mW
  • the maximum power point of the solar cell array 100c (with partial shadow) shown in FIG. 3 was measured as 418.7 mW.
  • the maximum current point of the solar cell array 100c (with partial shadow) shown in FIG. 3 was measured to be 141.4 mA.
  • the electric power that the second voltage source E2 inputs to the solar cell array 100c is assumed to be a half current (141.4 / 2) at the maximum power point of the solar cell array 100c and an electromotive voltage (1V) of the second voltage source E2. did.
  • a series circuit to which a non-power generating solar cell module belongs is basically invalid, but by connecting a voltage source having an electromotive voltage equivalent to that of the solar cell module in parallel with the solar cell module, the solar cell module Can be restored in a pseudo manner. That is, the electromotive force of the voltage source restores the electromotive force of the series circuit, which is a large plus.
  • FIG. 5 is a diagram showing an example of the solar cell array 100d according to the embodiment of the present invention.
  • the solar cell array 100d according to the embodiment includes a series-parallel circuit in which a plurality of solar cell modules are connected in series and parallel in a matrix.
  • a solar cell array 100d shown in FIG. 5 is a series-parallel circuit having a series number of 3 and a parallel number of 2, similar to the solar cell arrays 100b and 100c shown in FIGS.
  • the number of series and the number of parallel are not limited to these numbers. However, the number of series is assumed to be plural. As will be described later, the parallel number may be one.
  • a voltage source other than the solar cell module is connected in parallel to each parallel stage of the series-parallel circuit.
  • the voltage sources connected to the respective parallel stages are connected in series, and the plurality of voltage sources connected in series are connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100d.
  • the first voltage source E1 is connected in parallel with the 1.1st solar cell module 11 and the 2.1st solar cell module 21, and the second voltage source E2 is the 1.2th solar cell module 12.
  • the third voltage source E3 is connected in parallel with the 1.3 solar cell module 13 and the 2.3 solar cell module 23.
  • the first voltage source E1, the second voltage source E2, and the third voltage source E3 are connected in series, and the series circuit is connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100d.
  • the sum of the currents flowing through the parallel stages is all equal according to Kirchhoff's current law. Accordingly, the 1.1 solar cell module 11, the 1.2 solar cell module 12, the 1.3 solar cell module 13, the 2.1 solar cell module 21, the 2.2 solar cell module 22, and the second.
  • the current is compensated by the first voltage source E1, the second voltage source E2, or the third voltage source E3 as an alternative power source for the non-power generating solar cell module. Is done.
  • the amount of decrease in the output power of the solar cell array 100d is less than the state in which the first voltage source E1, the second voltage source E2, and the third voltage source E3 are not connected even if the electromotive force of the voltage source that compensates the current is subtracted. Reduced.
  • the amount of decrease in the output power of the solar cell array 100d becomes substantially equal to the electromotive force of the voltage source that compensates for the current.
  • E1, the second voltage source E2, and the third voltage source E3 are substantially equal to the state where they are not connected.
  • FIG. 6 is a diagram showing a configuration example of the solar cell array 100d shown in FIG.
  • a step-down circuit (more specifically, a step-down DC-DC converter) is used as a voltage source. That is, the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33 are used as the first voltage source E1, the second voltage source E2, and the third voltage source E3.
  • the positive output terminal + Vout of the first DC-DC converter 31 is connected to the positive output terminal of the solar cell array 100e, and the negative output terminal -Vout of the first DC-DC converter 31 is the positive output of the second DC-DC converter 32. Connected to terminal + Vout.
  • the negative output terminal -Vout of the second DC-DC converter 32 is connected to the positive output terminal + Vout of the third DC-DC converter 33, and the negative output terminal -Vout of the third DC-DC converter 33 is the negative electrode of the solar cell array 100e. Connected to the side output terminal.
  • the positive input terminal + Vin of the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33 is connected to the positive output terminal of the solar cell array 100e, and the negative input terminal -Vin is connected to the sun. Connected to the negative output terminal of the battery array 100e.
  • the output voltage of the solar cell array 100e is used as the power supply voltage for the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33.
  • a general switching power supply can be used for the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33.
  • the type of switching power supply is not particularly limited.
  • FIG. 7 is a diagram showing another example of the solar cell array 100f according to the embodiment of the present invention.
  • a solar cell array 100f shown in FIG. 7 includes a series circuit in which a plurality of solar cell modules are connected in series. More specifically, it includes a series circuit in which a 1.1st solar cell module 11, a 1.2th solar cell module 12, and a 1.3th solar cell module 13 are connected in series.
  • a voltage source is connected to both ends of each of the plurality of solar cell modules.
  • the voltage sources connected to the respective solar cell modules are connected in series, and the plurality of voltage sources connected in series are connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100f.
  • the first voltage source E1 is connected in parallel with the 1.1 solar cell module 11
  • the second voltage source E2 is connected in parallel with the 1.2 solar cell module 12
  • the third voltage A source E3 is connected in parallel with the 1.3st solar cell module 13.
  • the first voltage source E1, the second voltage source E2, and the third voltage source E3 are connected in series, and the series circuit is connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100f. That is, as compared with the solar cell array 100d shown in FIG. 5, the 2.1 solar cell module 21, the 2.2 solar cell module 22, and the 2.3 solar cell module 23 are omitted.
  • the first voltage source E1, the second voltage source E2, and the third voltage source E3 are configured by the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33 as shown in FIG. Also good.
  • a self-contained system can be constructed by acquiring the power supply voltage of the voltage source from the output of the solar cell array. In this case, wiring from the power system is not necessary.
  • the circuit configuration for acquiring the operating power source of the voltage source from the output of the solar cell array is shown, but the present invention is not limited to this.
  • the AC voltage supplied from the power system may be rectified and used.
  • a voltage charged in a storage battery from a solar battery or a power system may be used.
  • one voltage source is connected to all the stages of the series-parallel circuit or series circuit, but it is not always necessary to connect the voltage source to all the stages. Absent. For example, it is conceivable that a voltage source is not connected to a stage having a low probability of being a shadow.
  • a plurality of voltage sources may be connected in parallel to one stage within the range of the number of solar cell modules belonging to each stage. As the number of voltage sources increases, the number of solar cell modules that can compensate the current increases, but the cost and circuit scale increase. That is, both are in a trade-off relationship.
  • FIG. 8 is a diagram illustrating a configuration example of a small-scale photovoltaic power generation system 500a.
  • the small-scale photovoltaic power generation system 500a is mainly used for residential use.
  • the photovoltaic power generation system 500 a includes a solar cell array 100 and a power conditioner 40.
  • the solar cell array 100 is installed on the roof of a house.
  • the solar cell array 100 shown in FIG. 8 has the same connection form as the solar cell array 100a shown in FIG. That is, a plurality of series circuits in which a plurality of solar cell modules are connected in series are provided, and the plurality of series circuits are connected in parallel.
  • a first series in which a 1.1 solar cell module 11, a 1.2 solar cell module 12, a 1.3 solar cell module 13 and a 1.4 solar cell module 14 are connected in series.
  • the circuit and the second series circuit in which the 2.1 solar cell module 21, the 2.2 solar cell module 22, the 2.3 solar cell module 23, and the 2.4 solar cell module 24 are connected in series are parallel. It is a configuration to be connected.
  • the output wiring of the first series circuit and the output wiring of the second series circuit are bundled in a connection box (not shown) and connected to the power conditioner 40.
  • the power conditioner 40 converts the DC power generated by the solar cell array 100 into AC power.
  • the power conditioner 40 adjusts the amplitude and frequency of the output voltage to a specified range of amplitude and frequency.
  • the power conditioner 40 supplies the generated AC power to a load in the home. Moreover, it can be made to reverse flow to a commercial system.
  • FIG. 9 is a diagram illustrating a configuration example of the photovoltaic power generation system 500b according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500a illustrated in FIG.
  • a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500a illustrated in FIG.
  • changes between the two will be described.
  • the worker connects the nodes of the corresponding stages of the first series circuit and the second series circuit of the solar cell array 100 by wiring. That is, the worker is between the node between the 1.1 solar cell module 11 and the 1.2 solar cell module 12, and between the 2.1 solar cell module 21 and the 2.2 solar cell module 22. Connect the nodes with wiring. Similarly, a node between the 1.2 solar cell module 12 and the 1.3 solar cell module 13 and a node between the 2.2 solar cell module 22 and the 2.3 solar cell module 23 Connect with wiring. Similarly, a node between the 1.3 solar cell module 13 and the 1.4 solar cell module 14, and a node between the 2.3 solar cell module 23 and the 2.4 solar cell module 24. Connect with wiring. This addition of wiring corresponds to a change from the solar cell array 100a shown in FIG. 1 to the solar cell array 100b shown in FIG.
  • an AC-DC converter unit 30 is installed as a voltage source for current compensation.
  • the input terminal of the AC-DC converter unit 30 is connected to the output wiring of the power conditioner 40.
  • the AC-DC converter unit 30 has two input terminals.
  • the output terminal of the AC-DC converter unit 30 is connected to the wiring added to the solar cell array 100 by the above-described operation, and the positive side output wiring and the negative side output wiring of the solar cell array 100. Since the number of these wires is the number of series stages + 1, the number of output terminals of the AC-DC converter unit 30 is (the number of series stages + 1). In the example shown in FIG.
  • FIG. 10 is a diagram showing an internal configuration example of the AC-DC converter unit 30 shown in FIG.
  • the AC-DC converter unit 30 includes a plurality of isolated AC-DC converters connected in cascade. The number of AC-DC converters corresponds to the number of series stages.
  • the AC-DC converter unit 30 includes a first AC-DC converter 31a, a second AC-DC converter 32a, a third AC-DC converter 33a, and a fourth AC-DC converter 34a.
  • the output AC voltage of the power conditioner 40 is input to each of the AC-DC converters 31a to 34a.
  • Each of the AC-DC converters 31a to 34a converts the AC voltage into a DC voltage corresponding to the electromotive voltage of one solar module while stepping down the AC voltage.
  • the first AC-DC converter 31a applies the generated DC voltage to both ends of the 1.1 solar cell module 11 and both ends of the 2.1 solar cell module 21 in parallel.
  • the second AC-DC converter 32 a applies the generated DC voltage in parallel to both ends of the 1.2 solar cell module 12 and both ends of the 2.2 solar cell module 22.
  • the third AC-DC converter 33 a applies the generated DC voltage to both ends of the 1.3 solar cell module 13 and both ends of the 2.3 solar cell module 23 in parallel.
  • the fourth AC-DC converter 34 a applies the generated DC voltage to both ends of the 1.4 solar cell module 14 and both ends of the 2.4 solar cell module 24 in parallel.
  • the electrical configuration similar to the solar cell arrays 100d and 100e shown in FIGS. 5 and 6 can be created.
  • a DC-DC converter may be used instead of the AC-DC converter.
  • the DC-DC converter uses a DC voltage input to the power conditioner 40 as an input voltage.
  • an input DC voltage is DC-AC converted to generate an AC voltage
  • the generated AC voltage is transformed with a transformer, and the transformed AC voltage is rectified and smoothed.
  • Output DC voltage is generated. Therefore, if the input voltage is an AC voltage, the first DC-AC conversion can be omitted, and the circuit scale and power loss due to the conversion can be reduced.
  • an example in which an AC-DC converter is used is given in the photovoltaic power generation system 500b shown in FIG.
  • the AC-DC converter may be handled in the same way as a general load, and commercial power may be directly supplied to the AC-DC converter.
  • FIG. 11 is a diagram illustrating a configuration example of a large-scale photovoltaic power generation system 500c.
  • the large-scale photovoltaic power generation system 500c is mainly used for industrial use. For example, it is installed in an office building, factory, commercial facility, public facility or the like.
  • the solar cell array 100 shown in FIG. 11 has the same connection form as the solar cell array 100a shown in FIG. That is, a plurality of series circuits in which a plurality of solar cell modules are connected in series are provided, and the plurality of series circuits are connected in parallel. In the example shown in FIG. 11, a series-parallel circuit having 9 serial numbers and 4 parallel numbers is shown.
  • FIG. 12 is a diagram illustrating a configuration example of a photovoltaic power generation system 500d according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG.
  • a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG.
  • changes between the two will be described.
  • the worker reconnects a series circuit in which a plurality of solar cell modules are connected in series to a parallel circuit, and connects the parallel circuits in series.
  • the 1.1-th solar cell modules 11 to 1.9 solar cell modules 19 connected in series are reconnected to a parallel circuit.
  • the 2.1-th solar cell module 21 to the 2.9-th solar cell module 29 connected in series are reconnected to the parallel circuit.
  • the 3.1-th solar cell module 31 to the 3.9-th solar cell module 39 connected in series are reconnected to the parallel circuit.
  • the 4.1-th solar cell module 41 to the 4.9-th solar cell module 49 connected in series are reconnected to the parallel circuit.
  • the reconnected solar cell array 100 is a series-parallel circuit having a parallel number of 9 and a serial number of 4. Before and after reconnection, the values of the output voltage and output current of the solar cell array 100 change, but the value of the output power multiplied by both does not change.
  • an AC-DC converter unit 30 is installed as a voltage source for current compensation.
  • the input terminal of the AC-DC converter unit 30 is connected to the output wiring of the power conditioner 40.
  • the AC-DC converter unit 30 has two input terminals.
  • the output terminal of the AC-DC converter unit 30 is connected to each node of a series circuit formed by the above-described four parallel circuits of the solar cell array 100. Since the number of nodes is the number of series stages + 1, the number of output terminals of the AC-DC converter unit 30 is (the number of series stages + 1). In the example shown in FIG.
  • the AC-DC converter unit 30 shown in FIG. 12 can also be configured as shown in FIG.
  • the number of solar cell modules that one AC-DC converter is in charge of (9 in the example shown in FIG. 12) is large. Therefore, a plurality of AC-DC converters may be installed in parallel for each series stage.
  • two first AC-DC converters 31 a may be connected in parallel to both ends of the 1.1 solar cell module 11 to the 1.9 solar cell module 19. In this case, even if a failure occurs in two of the 1.1 solar cell module 11 to the 1.9 solar cell module 19, the two currents can be compensated by the two first AC-DC converters 31a.
  • the work amount of the worker can be reduced compared to the retrofitting method shown in FIG. Therefore, it is suitable for application to a large-scale photovoltaic power generation system 500.
  • the retrofit method shown in FIG. 10 is not limited to the application to the small-scale photovoltaic power generation system 500
  • the retrofit method shown in FIG. 12 is not limited to the application to the large-scale photovoltaic power generation system 500.
  • the retrofit method can be applied to the solar power generation system 500 of any scale.
  • FIG. 13 is a diagram illustrating a configuration example of the photovoltaic power generation system 500e according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG. 11 (one of the solar battery modules is broken). is there.
  • the solar cell array 100 shown in FIG. 13 the 2.8 solar cell module 28 has failed. When a solar cell module breaks down, it is usually replaced with a new one, but the solar cell module may be difficult to obtain due to the end of production.
  • the AC-DC converter unit 30 is installed.
  • the AC-DC converter unit 30 includes one AC-DC converter.
  • the output terminals of the AC-DC converter are connected to both ends of the failed 2.8 solar cell module 28.
  • the AC-DC converter applies a voltage corresponding to the electromotive voltage to both ends of the 2.8 solar cell module 28.
  • the retrofitting method of the voltage source shown in FIG. 13 can be installed at a lower cost than the retrofitting method shown in FIG. Also, the amount of work can be reduced because less wiring is required.
  • FIG. 14 is a diagram illustrating a configuration example of the photovoltaic power generation system 500f according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG. 11 (shadowed on a part of the solar cell module). It is.
  • the 4.8 solar cell module 28 and the 4.9 solar cell module 29 are incompletely generated due to the shadow of the tree.
  • an AC-DC converter unit 30 including two AC-DC converters is installed.
  • the output terminals of the two AC-DC converters are respectively connected to both ends of the 4.8 solar cell module 48 and both ends of the 4.9 solar cell module 49 where shadows are generated.
  • One AC-DC converter that outputs twice the output voltage is provided, and twice the output voltage is applied to both ends of the 4.8 solar cell module 48 and the 4.9 solar cell module 49 connected in series. May be. The same applies to three or more series.
  • the occurrence of the shadow may change after the solar cell array 100 is installed. For example, if a high building is erected around after installation, a new shadow is generated. Therefore, a method of installing a converter that becomes an alternative power source for the solar cell module in the shadowed area after the fact is very effective.
  • FIG. 15 is a diagram showing a state in which a plurality of solar cell modules have failed in the photovoltaic power generation system 500c shown in FIG.
  • the photovoltaic power generation system 500g shown in FIG. 15 three of the 1.9 solar cell module 19, the 2.2 solar cell module 22, and the 3.5th solar cell module 35 are out of order. It is conceivable to connect an AC-DC converter to each end of each solar cell module in the manner shown in FIGS. Hereinafter, a method capable of simplifying the routing of the wiring will be described.
  • FIG. 16 is a diagram illustrating a configuration example (series type) of a photovoltaic power generation system 500h according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500g illustrated in FIG.
  • three faulty solar cell modules are collected in one place. Specifically, the worker replaces the broken 2.2 solar cell module 22 with the normal 1.7 solar cell module 17. Further, the failed 3.5th solar cell module 35 and the normal 1.8th solar cell module 18 are exchanged. Thus, the failed solar cell modules can be combined into one series circuit formed by the 1.7 solar cell module 17, the 1.8th solar cell module 18, and the 1.9 solar cell module 19. it can.
  • the AC-DC converter unit 30 shown in FIG. 16 includes one AC-DC converter that outputs three times the output voltage.
  • the output terminal of the AC-DC converter is connected to both ends of the series circuit.
  • the AC-DC converter applies a voltage corresponding to the electromotive voltage of three solar cell modules connected in series to both ends of the series circuit.
  • FIG. 17 is a diagram illustrating a configuration example (parallel type) of the photovoltaic power generation system 500i according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500g illustrated in FIG.
  • three faulty solar cell modules are collected in one place. Specifically, the worker replaces the failed 2.2 solar cell module 22 with the normal 2.9 solar cell module 29. Also, the failed 3.5th solar cell module 35 and the normal 3.9 solar cell module 39 are exchanged. Furthermore, both ends of the 1.9 solar cell module 19, the 2.9 solar cell module 29, and the 3.9 solar cell module 39 are connected in parallel by wiring. Thereby, the failed solar cell modules can be combined into one parallel circuit formed by the 1.9 solar cell module 19, the 2.9 solar cell module 29, and the 3.9 solar cell module 39. it can.
  • the AC-DC converter unit 30 shown in FIG. 17 includes three AC-DC converters connected in parallel.
  • the common output terminals of the three AC-DC converters connected in parallel are connected to both ends of the parallel circuit.
  • the three AC-DC converters connected in parallel make up for the power generation current of three solar cell modules connected in parallel.
  • the wiring operation can be simplified by collecting a plurality of faulty solar cell modules in one place.
  • the invention according to the present embodiment may be specified by the items described below.
  • a solar cell array in which a plurality of solar cell modules are connected in series and parallel in a matrix, A solar cell array, wherein a voltage source is connected to both ends of at least one of the plurality of solar cell modules.
  • the voltage source is a step-down circuit;
  • the output terminals of the step-down circuit connected to each parallel stage are connected in series,
  • the input terminals of the plurality of step-down circuits connected in series are connected between the positive output terminal and the negative output terminal of the solar cell array, 3.
  • the solar cell array according to item 2 wherein an output voltage of the solar cell array is used as a power supply voltage for the plurality of step-down circuits.
  • a self-contained system that does not require an external power source can be constructed.
  • a solar cell array in which a plurality of solar cell modules are connected in series and parallel; A voltage source connected to at least one end of each of the plurality of solar cell modules;
  • a photovoltaic power generation system comprising:
  • a solar power generation system with stable output power can be constructed.
  • the voltage source is connected to both ends of a solar cell module in which power generation is incomplete among a plurality of solar cell modules constituting the solar cell array after the solar cell array is installed. 4.
  • a low-cost system can be constructed by connecting a voltage source only to a solar cell module that needs assistance.
  • a power conditioner that converts the DC power generated by the solar cell array into AC power;
  • the voltage source is an AC-DC converter, and the AC-DC converter applies a DC voltage generated using an AC voltage output from the power conditioner as an input voltage to both ends of the solar cell module.
  • Item 6 The photovoltaic power generation system according to item 4 or 5.
  • a self-contained system that does not require an external power source can be constructed.
  • the present invention can be applied to a solar power generation system using a solar cell array in which a plurality of solar cell modules are connected in series and parallel.

Abstract

Provided is a solar cell array (100d) in which a plurality of solar cell modules (11, 12, 13, 21, 22, 23) are connected in serial parallel in a matrix shape. At least one of both ends of the plurality of solar cell modules (11, 12, 13, 21, 22, 23) is connected to voltage sources (E1, E2, E3). For instance, it would be permissible the voltage sources (E1, E2, E3) to be connected in parallel to respective parallel stages of a serial parallel circuit wherein the plurality of solar cell modules (11, 12, 13, 21, 22, 23) are connected in serial parallel.

Description

太陽電池アレイおよび太陽光発電システムSolar cell array and photovoltaic system
 本発明は、複数の太陽電池モジュールを含む太陽電池アレイおよび太陽光発電システムに関する。 The present invention relates to a solar cell array including a plurality of solar cell modules and a solar power generation system.
 地球温暖化問題、原発事故などを受け、自然エネルギーへの注目が高まっている。とくに、太陽光発電は業務用だけでなく家庭用も普及してきている。一つの太陽電池セルが発電する電力は小さいため、複数の太陽電池セルが組み合わされて太陽電池モジュール(太陽電池パネルともいう)が形成され、さらに複数の太陽電池モジュールが組み合わされて太陽電池アレイが形成される。太陽電池アレイを形成する複数の太陽電池モジュールは、所望の電圧を確保するため直列接続され、さらに所望の電流を確保するために並列接続される(たとえば、特許文献1参照)。 】 In response to global warming and nuclear accidents, attention has been focused on natural energy. In particular, solar power generation has become popular not only for business use but also for home use. Since the power generated by one solar cell is small, a plurality of solar cells are combined to form a solar cell module (also referred to as a solar cell panel), and a plurality of solar cell modules are combined to form a solar cell array. It is formed. The plurality of solar cell modules forming the solar cell array are connected in series to ensure a desired voltage, and are further connected in parallel to ensure a desired current (for example, see Patent Document 1).
特開2006-173539号公報JP 2006-173539 A
 太陽電池アレイを構成する複数の太陽電池モジュールの一部の太陽電池モジュールが影になった場合、その一部の太陽電池モジュールは発電しなくなるため、太陽電池アレイの出力電力が大きく低下する。この電力低下の主な原因は出力電流の低下にあり、バイパスダイオードを設けたとしても、電力低下を回避することはできない。 When some solar cell modules of the plurality of solar cell modules constituting the solar cell array are shaded, some of the solar cell modules do not generate power, so the output power of the solar cell array is greatly reduced. The main cause of this power decrease is a decrease in output current, and even if a bypass diode is provided, the power decrease cannot be avoided.
 本発明はこうした状況に鑑みなされたものであり、その目的は、複数の太陽電池モジュールが接続された直並列回路を備える太陽電池アレイにおいて、一部の太陽電池モジュールが発電停止した場合における電力低下を抑制する技術を提供することにある。 This invention is made | formed in view of such a condition, The objective is a power fall when a part of solar cell module stops an electric power generation in a solar cell array provided with the series parallel circuit to which the several solar cell module was connected. It is in providing the technique which suppresses.
 本発明のある態様の太陽電池アレイは、複数の太陽電池モジュールがマトリクス状に直並列接続された太陽電池アレイであって、複数の太陽電池モジュールの少なくとも一つの両端に、電圧源が接続される。 A solar cell array according to an aspect of the present invention is a solar cell array in which a plurality of solar cell modules are connected in series and parallel, and a voltage source is connected to at least one end of the plurality of solar cell modules. .
 本発明の別の態様は、太陽光発電システムである。この太陽光発電システムは、複数の太陽電池モジュールが直並列接続された太陽電池アレイと、複数の太陽電池モジュールの少なくとも一つの両端に接続される電圧源と、を備える。 Another aspect of the present invention is a solar power generation system. This solar power generation system includes a solar cell array in which a plurality of solar cell modules are connected in series and parallel, and a voltage source connected to at least one end of the plurality of solar cell modules.
 本発明によれば、複数の太陽電池モジュールが接続された直並列回路を備える太陽電池アレイにおいて、一部の太陽電池モジュールが発電停止した場合における電力低下を抑制できる。 According to the present invention, in a solar cell array including a series-parallel circuit to which a plurality of solar cell modules are connected, it is possible to suppress power reduction when some of the solar cell modules stop generating power.
比較例1に係る太陽電池アレイを示す図である。5 is a diagram showing a solar cell array according to Comparative Example 1. FIG. 比較例2に係る太陽電池アレイを示す図である。10 is a diagram showing a solar cell array according to Comparative Example 2. FIG. 本発明の基本原理を説明するための太陽電池アレイを示す図である。It is a figure which shows the solar cell array for demonstrating the basic principle of this invention. 本発明の基本原理を説明するためのI-V特性を示す図である。It is a figure which shows the IV characteristic for demonstrating the basic principle of this invention. 本発明の実施の形態に係る太陽電池アレイの一例を示す図である。It is a figure which shows an example of the solar cell array which concerns on embodiment of this invention. 図5に示す太陽電池アレイの構成例を示す図である。It is a figure which shows the structural example of the solar cell array shown in FIG. 本発明の実施の形態に係る太陽電池アレイの別の例を示す図である。It is a figure which shows another example of the solar cell array which concerns on embodiment of this invention. 小規模な太陽光発電システムの構成例を示す図である。It is a figure which shows the structural example of a small-scale photovoltaic power generation system. 図8に示す太陽光発電システムに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システムの構成例を示す図である。It is a figure which shows the structural example of the solar energy power generation system which concerns on the embodiment which added the voltage source for electric current compensation to the solar energy power generation system shown in FIG. 図9に示すAC-DCコンバータユニットの内部構成例を示す図である。FIG. 10 is a diagram illustrating an internal configuration example of the AC-DC converter unit illustrated in FIG. 9. 大規模な太陽光発電システムの構成例を示す図である。It is a figure which shows the structural example of a large-scale photovoltaic power generation system. 図11に示す太陽光発電システムに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システムの構成例を示す図である。It is a figure which shows the structural example of the photovoltaic power generation system which concerns on the embodiment which added the voltage source for electric current compensation to the photovoltaic power generation system shown in FIG. 図11に示す太陽光発電システム(太陽電池モジュールの一つが故障)に電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システムの構成例を示す図である。It is a figure which shows the structural example of the solar energy power generation system which concerns on the embodiment which added the voltage source for electric current compensation to the solar energy power generation system (one of the solar cell modules has failed) shown in FIG. 図11に示す太陽光発電システム(太陽電池モジュールの一部に影)に電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システムの構成例を示す図である。It is a figure which shows the structural example of the solar energy power generation system which concerns on the photovoltaic power generation system (shadow on a part of solar cell module) shown in FIG. 図11に示す太陽光発電システムにおいて複数の太陽電池モジュールが故障した状態を示す図である。It is a figure which shows the state which the some solar cell module failed in the solar power generation system shown in FIG. 図15に示す太陽光発電システムに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システムの構成例(直列型)を示す図である。It is a figure which shows the structural example (series type) of the photovoltaic power generation system which concerns on the photovoltaic power generation system shown in FIG. 図15に示す太陽光発電システムに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システムの構成例(並列型)を示す図である。It is a figure which shows the structural example (parallel type) of the photovoltaic power generation system which concerns on the photovoltaic power generation system shown in FIG.
 まず、本発明の基本原理について説明する。図1は、比較例1に係る太陽電池アレイ100aを示す図である。比較例1に係る太陽電池アレイ100aは、複数の太陽電池モジュールが直列接続された直列回路を複数備え、その複数の直列回路が並列接続される構成である。図1の例では、第1.1太陽電池モジュール11、第1.2太陽電池モジュール12および第1.3太陽電池モジュール13が直列接続された第1直列回路と、第2.1太陽電池モジュール21、第2.2太陽電池モジュール22および第2.3太陽電池モジュール23が直列接続された第2直列回路とが並列接続される構成である。 First, the basic principle of the present invention will be described. FIG. 1 is a diagram showing a solar cell array 100a according to Comparative Example 1. The solar cell array 100a according to Comparative Example 1 includes a plurality of series circuits in which a plurality of solar cell modules are connected in series, and the plurality of series circuits are connected in parallel. In the example of FIG. 1, a first series circuit in which a 1.1 solar cell module 11, a 1.2 solar cell module 12, and a 1.3 solar cell module 13 are connected in series, and a 2.1 solar cell module. 21, 2.2 solar cell module 22 and 2.3 solar cell module 23 are connected in parallel to the second series circuit connected in series.
 太陽電池モジュールは、入射光に比例する光電流を発生させる電流源I、ダイオードD、pn接合部の漏れ電流に起因する並列抵抗Rsh(シャント抵抗)および電流を端子に集める結線の直列抵抗Rsにより近似される。 The solar cell module includes a current source I that generates a photocurrent proportional to incident light, a diode D, a parallel resistance Rsh (shunt resistance) caused by a leakage current of a pn junction, and a series resistance Rs of a connection that collects current at a terminal. Approximated.
 図1に示す回路において、第1.2太陽電池モジュール12が影になった場合、第1.2太陽電池モジュール12が発電しなくなる。この場合、第1.2太陽電池モジュール12の電流が無効になるだけでなく、第1.2太陽電池モジュール12を含む第1直列回路全体の電流が無効となる。したがって、太陽電池アレイ100a全体の出力電力は約1/2となる。また、第1.1太陽電池モジュール11および第1.3太陽電池モジュール13により発電された電力により第1.2太陽電池モジュール12に不具合が発生する可能性もある。 In the circuit shown in FIG. 1, when the 1.2 solar cell module 12 is shaded, the 1.2 solar cell module 12 does not generate power. In this case, not only the current of the 1.2 solar cell module 12 becomes invalid, but also the current of the entire first series circuit including the 1.2 solar cell module 12 becomes invalid. Therefore, the output power of the entire solar cell array 100a is about ½. In addition, a malfunction may occur in the 1.2 solar cell module 12 due to the electric power generated by the 1.1 solar cell module 11 and the 1.3 solar cell module 13.
 図2は、比較例2に係る太陽電池アレイ100bを示す図である。比較例2に係る太陽電池アレイ100bは、比較例1に係る太陽電池アレイ100aと比較し、第1直列回路と第2直列回路の対応する段のノード間が接続された構成である。すなわち、第1.1太陽電池モジュール11と第1.2太陽電池モジュール12との間のノードと、第2.1太陽電池モジュール21と第2.2太陽電池モジュール22との間のノードとが接続され、第1.2太陽電池モジュール12と第1.3太陽電池モジュール13との間のノードと、第2.2太陽電池モジュール22と第2.3太陽電池モジュール23との間のノードとが接続される。 FIG. 2 is a diagram showing a solar cell array 100b according to Comparative Example 2. The solar cell array 100b according to Comparative Example 2 has a configuration in which the nodes of the corresponding stages of the first series circuit and the second series circuit are connected as compared with the solar cell array 100a according to Comparative Example 1. That is, a node between the 1.1 solar cell module 11 and the 1.2 solar cell module 12 and a node between the 2.1 solar cell module 21 and the 2.2 solar cell module 22 A node between the 1.2 solar cell module 12 and the 1.3 solar cell module 13, a node between the 2.2 solar cell module 22 and the 2.3 solar cell module 23, and Is connected.
 これにより、第1.2太陽電池モジュール12が影になった場合でも、第2.2太陽電池モジュール22の起電圧によって第1.2太陽電池モジュール12が順バイアスに保たれる。したがって、第1.2太陽電池モジュール12に不具合が発生することを抑制できる。しかしながら、太陽電池アレイ100b全体の出力電力が約1/2となる点は、比較例1と同様である。 Thereby, even when the 1.2th solar cell module 12 is shaded, the 1.2th solar cell module 12 is kept in forward bias by the electromotive voltage of the 2.2th solar cell module 22. Therefore, it can suppress that a malfunction generate | occur | produces in the 1.2st solar cell module 12. FIG. However, the point that the output power of the entire solar cell array 100b is about ½ is the same as in Comparative Example 1.
 図3は、本発明の基本原理を説明するための太陽電池アレイ100cを示す図である。当該太陽電池アレイ100cは、比較例2に係る太陽電池アレイ100bと比較し、第2電圧源E2が追加された構成である。第2電圧源E2は第1.2太陽電池モジュール12および第2.2太陽電池モジュール22の両端に接続される。すなわち、第2電圧源E2は影になっていて非発電中の第1.2太陽電池モジュール12の代替電池として機能する。 FIG. 3 is a diagram showing a solar cell array 100c for explaining the basic principle of the present invention. The solar cell array 100c has a configuration in which a second voltage source E2 is added as compared with the solar cell array 100b according to Comparative Example 2. The second voltage source E <b> 2 is connected to both ends of the 1.2 solar cell module 12 and the 2.2 solar cell module 22. That is, the second voltage source E2 is shaded and functions as an alternative battery for the 1.2th solar cell module 12 that is not generating power.
 図4は、本発明の基本原理を説明するためのI-V特性を示す図である。横軸が電圧、縦軸が電流を示す。図4は、図1に示す太陽電池アレイ100a(部分影なし)のI-V特性、図1に示す太陽電池アレイ100a(部分影あり)のI-V特性、図2に示す太陽電池アレイ100b(部分影あり)のI-V特性および図3に示す太陽電池アレイ100c(部分影あり)のI-V特性の実験データを示している。なお便宜上、各太陽電池モジュールを、出力の小さい太陽電池セルに置き換えて実験した。各太陽電池セルの最大パワーポイントにおける出力電圧は約1V、その際の出力電流は約70mAとする。第2電圧源E2の起電圧は約1Vとする。上述の「部分影あり」とは第1.2太陽電池モジュール12に対応する太陽電池セルが影になり、その太陽電池セルが発電しない状態を指す。以下、説明の分かりやすさから図1~図3の説明の表記例にしたがい、太陽電池セルを太陽電池モジュールと表記する。 FIG. 4 is a diagram showing IV characteristics for explaining the basic principle of the present invention. The horizontal axis represents voltage and the vertical axis represents current. 4 shows the IV characteristics of the solar cell array 100a (without partial shadow) shown in FIG. 1, the IV characteristics of the solar cell array 100a (with partial shadow) shown in FIG. 1, and the solar cell array 100b shown in FIG. Experimental data of IV characteristics (with partial shadows) and IV characteristics of the solar cell array 100c (with partial shadows) shown in FIG. 3 are shown. For the sake of convenience, each solar cell module was replaced with a solar cell having a small output. The output voltage at the maximum power point of each solar battery cell is about 1 V, and the output current at that time is about 70 mA. The electromotive voltage of the second voltage source E2 is about 1V. The above-mentioned “with partial shadow” refers to a state in which a solar cell corresponding to the first solar cell module 12 is shaded and the solar cell does not generate power. Hereinafter, for ease of explanation, the solar battery cell is referred to as a solar battery module in accordance with the description example in FIGS. 1 to 3.
 実験の結果、図1に示す太陽電池アレイ100a(部分影なし)の最大パワーポイントは415.4mW、図1に示す太陽電池アレイ100a(部分影あり)の最大パワーポイントは206.9mW、図2に示す太陽電池アレイ100b(部分影あり)の最大パワーポイントは248.8mW、および図3に示す太陽電池アレイ100c(部分影あり)の最大パワーポイントは418.7mWと計測された。また、図3に示す太陽電池アレイ100c(部分影あり)の最大電流ポイントは141.4mAと計測された。 As a result of the experiment, the maximum power point of the solar cell array 100a (without partial shadow) shown in FIG. 1 is 415.4 mW, and the maximum power point of the solar cell array 100a (with partial shadow) shown in FIG. 1 is 206.9 mW, shown in FIG. The maximum power point of the solar cell array 100b (with partial shadow) was measured as 248.8 mW, and the maximum power point of the solar cell array 100c (with partial shadow) shown in FIG. 3 was measured as 418.7 mW. Moreover, the maximum current point of the solar cell array 100c (with partial shadow) shown in FIG. 3 was measured to be 141.4 mA.
 図1に示す太陽電池アレイ100a(部分影あり)と図3に示す太陽電池アレイ100c(部分影あり)の最大パワーポイントを比較すると、前者が206.9mWであり、後者が418.7mWである。すなわち、図3に示す回路構成を採用することにより、418.7-206.9=211.8mWの増分が得られることになる。第2電圧源E2が太陽電池アレイ100cに投入する電力を70.7mWとすると、正味の増分は211.8-70.7=141.1mWとなる。第2電圧源E2が太陽電池アレイ100cに投入する電力は、太陽電池アレイ100cの最大パワーポイントにおける電流の半分(141.4/2)の電流と第2電圧源E2の起電圧(1V)から仮定した。 When comparing the maximum power points of the solar cell array 100a (with partial shadow) shown in FIG. 1 and the solar cell array 100c (with partial shadow) shown in FIG. 3, the former is 206.9 mW and the latter is 418.7 mW. That is, by adopting the circuit configuration shown in FIG. 3, an increment of 418.7-206.9 = 211.8 mW can be obtained. If the power input to the solar cell array 100c by the second voltage source E2 is 70.7 mW, the net increment is 211.8-70.7 = 141.1 mW. The electric power that the second voltage source E2 inputs to the solar cell array 100c is assumed to be a half current (141.4 / 2) at the maximum power point of the solar cell array 100c and an electromotive voltage (1V) of the second voltage source E2. did.
 非発電中の太陽電池モジュールが属する直列回路は基本的に無効となるが、その太陽電池モジュールと並列に、その太陽電池モジュールと同等の起電圧の電圧源を接続することにより、その太陽電池モジュールが属する直列回路を擬似的に復活させることができる。すなわち、その電圧源の起電力により、その直列回路の起電力を復活させることになり、差し引き大きなプラスとなる。 A series circuit to which a non-power generating solar cell module belongs is basically invalid, but by connecting a voltage source having an electromotive voltage equivalent to that of the solar cell module in parallel with the solar cell module, the solar cell module Can be restored in a pseudo manner. That is, the electromotive force of the voltage source restores the electromotive force of the series circuit, which is a large plus.
 図5は、本発明の実施の形態に係る太陽電池アレイ100dの一例を示す図である。実施の形態に係る太陽電池アレイ100dは、複数の太陽電池モジュールがマトリクス状に直並列接続された直並列回路を備える。図5に示す太陽電池アレイ100dは、図3、4に示す太陽電池アレイ100b、100cと同様に、直列数が3、並列数が2の直並列回路である。なお、直列数、並列数はこれらの数に限るものではない。ただし、直列数は複数であることを前提とする。なお、後述するように並列数は1でもよい。 FIG. 5 is a diagram showing an example of the solar cell array 100d according to the embodiment of the present invention. The solar cell array 100d according to the embodiment includes a series-parallel circuit in which a plurality of solar cell modules are connected in series and parallel in a matrix. A solar cell array 100d shown in FIG. 5 is a series-parallel circuit having a series number of 3 and a parallel number of 2, similar to the solar cell arrays 100b and 100c shown in FIGS. The number of series and the number of parallel are not limited to these numbers. However, the number of series is assumed to be plural. As will be described later, the parallel number may be one.
 実施の形態に係る太陽電池アレイ100dでは、当該直並列回路のそれぞれの並列段に、太陽電池モジュール以外の電圧源が並列に接続される。それぞれの並列段に接続される電圧源は直列に接続され、直列に接続された複数の電圧源は、太陽電池アレイ100dの正極側出力端子と負極側出力端子との間に接続される。 In the solar cell array 100d according to the embodiment, a voltage source other than the solar cell module is connected in parallel to each parallel stage of the series-parallel circuit. The voltage sources connected to the respective parallel stages are connected in series, and the plurality of voltage sources connected in series are connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100d.
 図5に示す例では、第1電圧源E1が第1.1太陽電池モジュール11および第2.1太陽電池モジュール21と並列に接続され、第2電圧源E2が第1.2太陽電池モジュール12および第2.2太陽電池モジュール22と並列に接続され、第3電圧源E3が第1.3太陽電池モジュール13および第2.3太陽電池モジュール23と並列に接続される。第1電圧源E1、第2電圧源E2および第3電圧源E3は直列に接続され、その直列回路は太陽電池アレイ100dの正極側出力端子と負極側出力端子との間に接続される。 In the example shown in FIG. 5, the first voltage source E1 is connected in parallel with the 1.1st solar cell module 11 and the 2.1st solar cell module 21, and the second voltage source E2 is the 1.2th solar cell module 12. The third voltage source E3 is connected in parallel with the 1.3 solar cell module 13 and the 2.3 solar cell module 23. The first voltage source E1, the second voltage source E2, and the third voltage source E3 are connected in series, and the series circuit is connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100d.
 図5に示す回路構成において、キルヒホッフの電流則により各並列段に流れる電流の和はすべて等しくなる。したがって、第1.1太陽電池モジュール11、第1.2太陽電池モジュール12、第1.3太陽電池モジュール13、第2.1太陽電池モジュール21、第2.2太陽電池モジュール22および第2.3太陽電池モジュール23のいずれか一つに影が発生した場合、非発電中の太陽電池モジュールの代替電源としての第1電圧源E1、第2電圧源E2または第3電圧源E3により電流が補填される。よって、太陽電池アレイ100dの出力電力の低下量は、電流を補填する電圧源の起電力を差し引いても、第1電圧源E1、第2電圧源E2および第3電圧源E3が接続されない状態より縮小される。 In the circuit configuration shown in FIG. 5, the sum of the currents flowing through the parallel stages is all equal according to Kirchhoff's current law. Accordingly, the 1.1 solar cell module 11, the 1.2 solar cell module 12, the 1.3 solar cell module 13, the 2.1 solar cell module 21, the 2.2 solar cell module 22, and the second. When a shadow occurs in any one of the three solar cell modules 23, the current is compensated by the first voltage source E1, the second voltage source E2, or the third voltage source E3 as an alternative power source for the non-power generating solar cell module. Is done. Therefore, the amount of decrease in the output power of the solar cell array 100d is less than the state in which the first voltage source E1, the second voltage source E2, and the third voltage source E3 are not connected even if the electromotive force of the voltage source that compensates the current is subtracted. Reduced.
 同じ直列回路に属する二つの太陽電池モジュール(たとえば、第1.1太陽電池モジュール11および第1.2太陽電池モジュール12)に影が発生した場合も同様である。ただし、同じ直列回路に属するすべての太陽電池モジュールに部分影が発生した場合、太陽電池アレイ100dの出力電力の低下量が電流を補填する電圧源の起電力とほぼ等しくなるため、第1電圧源E1、第2電圧源E2および第3電圧源E3が接続されない状態とほぼ等しくなる。 The same applies when a shadow is generated in two solar cell modules (for example, the 1.1 solar cell module 11 and the 1.2 solar cell module 12) belonging to the same series circuit. However, when a partial shadow occurs in all the solar cell modules belonging to the same series circuit, the amount of decrease in the output power of the solar cell array 100d becomes substantially equal to the electromotive force of the voltage source that compensates for the current. E1, the second voltage source E2, and the third voltage source E3 are substantially equal to the state where they are not connected.
 同じ並列段に属する二つの太陽電池モジュール(たとえば、第1.1太陽電池モジュール11および第2.1太陽電池モジュール21)に影が発生した場合、非発電中の太陽電池モジュールの代替電源としての第1電圧源E1、第2電圧源E2または第3電圧源E3により太陽電池モジュール一個分の電流が補填される。第1電圧源E1、第2電圧源E2および第3電圧源E3が接続されない状態では、上記直並列回路は無効になってしまうが、それらが接続された状態では一つの直列回路は有効となる。なお、二つの直列回路を有効にするには、各並列段に接続される電圧源も並列に二つ設ければよい。 When a shadow is generated in two solar cell modules belonging to the same parallel stage (for example, the 1.1 solar cell module 11 and the 2.1 solar cell module 21), as an alternative power source for the non-power generating solar cell module The current for one solar cell module is supplemented by the first voltage source E1, the second voltage source E2, or the third voltage source E3. In the state where the first voltage source E1, the second voltage source E2 and the third voltage source E3 are not connected, the series-parallel circuit is invalid, but in the state where they are connected, one series circuit is valid. . In order to enable two series circuits, two voltage sources connected to each parallel stage may be provided in parallel.
 図6は、図5に示す太陽電池アレイ100dの構成例を示す図である。図6に示す太陽電池アレイ100eでは、電圧源として降圧回路(より具体的には降圧型DC-DCコンバータ)が使用される。すなわち、第1電圧源E1、第2電圧源E2および第3電圧源E3として第1DC-DCコンバータ31、第2DC-DCコンバータ32および第3DC-DCコンバータ33が使用される。 FIG. 6 is a diagram showing a configuration example of the solar cell array 100d shown in FIG. In the solar cell array 100e shown in FIG. 6, a step-down circuit (more specifically, a step-down DC-DC converter) is used as a voltage source. That is, the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33 are used as the first voltage source E1, the second voltage source E2, and the third voltage source E3.
 第1DC-DCコンバータ31の正極側出力端子+Voutは太陽電池アレイ100eの正極側出力端子に接続され、第1DC-DCコンバータ31の負極側出力端子-Voutは第2DC-DCコンバータ32の正極側出力端子+Voutに接続される。第2DC-DCコンバータ32の負極側出力端子-Voutは第3DC-DCコンバータ33の正極側出力端子+Voutに接続され、第3DC-DCコンバータ33の負極側出力端子-Voutは太陽電池アレイ100eの負極側出力端子に接続される。第1DC-DCコンバータ31、第2DC-DCコンバータ32および第3DC-DCコンバータ33の正極側入力端子+Vinは太陽電池アレイ100eの正極側出力端子に接続され、それらの負極側入力端子-Vinは太陽電池アレイ100eの負極側出力端子に接続される。第1DC-DCコンバータ31、第2DC-DCコンバータ32および第3DC-DCコンバータ33の電源電圧には、太陽電池アレイ100eの出力電圧が使用される。 The positive output terminal + Vout of the first DC-DC converter 31 is connected to the positive output terminal of the solar cell array 100e, and the negative output terminal -Vout of the first DC-DC converter 31 is the positive output of the second DC-DC converter 32. Connected to terminal + Vout. The negative output terminal -Vout of the second DC-DC converter 32 is connected to the positive output terminal + Vout of the third DC-DC converter 33, and the negative output terminal -Vout of the third DC-DC converter 33 is the negative electrode of the solar cell array 100e. Connected to the side output terminal. The positive input terminal + Vin of the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33 is connected to the positive output terminal of the solar cell array 100e, and the negative input terminal -Vin is connected to the sun. Connected to the negative output terminal of the battery array 100e. The output voltage of the solar cell array 100e is used as the power supply voltage for the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33.
 第1DC-DCコンバータ31、第2DC-DCコンバータ32および第3DC-DCコンバータ33には、一般的なスイッチング電源を使用可能である。スイッチング電源の種類はとくに限定しない。 A general switching power supply can be used for the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33. The type of switching power supply is not particularly limited.
 図7は、本発明の実施の形態に係る太陽電池アレイ100fの別の例を示す図である。図7に示す太陽電池アレイ100fは、複数の太陽電池モジュールが直列接続された直列回路を備える。より具体的には、第1.1太陽電池モジュール11、第1.2太陽電池モジュール12および第1.3太陽電池モジュール13が直列接続された直列回路を備える。 FIG. 7 is a diagram showing another example of the solar cell array 100f according to the embodiment of the present invention. A solar cell array 100f shown in FIG. 7 includes a series circuit in which a plurality of solar cell modules are connected in series. More specifically, it includes a series circuit in which a 1.1st solar cell module 11, a 1.2th solar cell module 12, and a 1.3th solar cell module 13 are connected in series.
 図7に示す太陽電池アレイ100fでは、複数の太陽電池モジュールのそれぞれの両端に、電圧源が接続される。それぞれの太陽電池モジュールに接続される電圧源は直列に接続され、直列に接続された複数の電圧源は、太陽電池アレイ100fの正極側出力端子と負極側出力端子との間に接続される。 In the solar cell array 100f shown in FIG. 7, a voltage source is connected to both ends of each of the plurality of solar cell modules. The voltage sources connected to the respective solar cell modules are connected in series, and the plurality of voltage sources connected in series are connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100f.
 図7に示す例では、第1電圧源E1が第1.1太陽電池モジュール11と並列に接続され、第2電圧源E2が第1.2太陽電池モジュール12と並列に接続され、第3電圧源E3が第1.3太陽電池モジュール13と並列に接続される。第1電圧源E1、第2電圧源E2および第3電圧源E3は直列に接続され、その直列回路は太陽電池アレイ100fの正極側出力端子と負極側出力端子との間に接続される。すなわち、図5に示す太陽電池アレイ100dと比較し、第2.1太陽電池モジュール21、第2.2太陽電池モジュール22および第2.3太陽電池モジュール23が省略された構成である。第1電圧源E1、第2電圧源E2および第3電圧源E3は、図6に示したように第1DC-DCコンバータ31、第2DC-DCコンバータ32および第3DC-DCコンバータ33により構成されてもよい。 In the example shown in FIG. 7, the first voltage source E1 is connected in parallel with the 1.1 solar cell module 11, the second voltage source E2 is connected in parallel with the 1.2 solar cell module 12, and the third voltage A source E3 is connected in parallel with the 1.3st solar cell module 13. The first voltage source E1, the second voltage source E2, and the third voltage source E3 are connected in series, and the series circuit is connected between the positive electrode side output terminal and the negative electrode side output terminal of the solar cell array 100f. That is, as compared with the solar cell array 100d shown in FIG. 5, the 2.1 solar cell module 21, the 2.2 solar cell module 22, and the 2.3 solar cell module 23 are omitted. The first voltage source E1, the second voltage source E2, and the third voltage source E3 are configured by the first DC-DC converter 31, the second DC-DC converter 32, and the third DC-DC converter 33 as shown in FIG. Also good.
 以上説明したように本実施の形態によれば、複数の太陽電池モジュールが接続された直並列回路を備える太陽電池アレイにおいて、太陽電池モジュールと並列に電流補填用の電圧源を接続したことにより、一部の太陽電池モジュールが発電停止した場合における電力低下を抑制できる。また、その電圧源の電源電圧を太陽電池アレイの出力から取得することにより、自己完結型のシステムを構築できる。この場合、電力系統からの配線は不要である。 As described above, according to the present embodiment, in a solar cell array including a series-parallel circuit to which a plurality of solar cell modules are connected, by connecting a voltage source for current compensation in parallel with the solar cell module, It is possible to suppress power reduction when some of the solar cell modules stop generating power. Moreover, a self-contained system can be constructed by acquiring the power supply voltage of the voltage source from the output of the solar cell array. In this case, wiring from the power system is not necessary.
 上述した実施の形態では電圧源の動作電源を太陽電池アレイの出力から取得する回路構成を示したが、それに限るものではない。電力系統から供給される交流電圧を整流して使用してもよい。また、太陽光発電システムと蓄電システムとが連携したシステムでは、太陽電池または電力系統から蓄電池に充電された電圧を使用してもよい。 In the above-described embodiment, the circuit configuration for acquiring the operating power source of the voltage source from the output of the solar cell array is shown, but the present invention is not limited to this. The AC voltage supplied from the power system may be rectified and used. Further, in a system in which a solar power generation system and a power storage system cooperate, a voltage charged in a storage battery from a solar battery or a power system may be used.
 図5、6、7に示す太陽電池アレイ100d、100e、100fでは、直並列回路または直列回路のすべての段に一つの電圧源を接続したが、必ずしもすべての段に電圧源を接続する必要はない。たとえば、影になる確率が低い段には、電圧源を接続しないことも考えられる。 In the solar cell arrays 100d, 100e, and 100f shown in FIGS. 5, 6, and 7, one voltage source is connected to all the stages of the series-parallel circuit or series circuit, but it is not always necessary to connect the voltage source to all the stages. Absent. For example, it is conceivable that a voltage source is not connected to a stage having a low probability of being a shadow.
 また、各段に属する太陽電池モジュール数の範囲内で一つの段に複数の電圧源を並列に接続してもよい。電圧源の数が多いほど電流を補填できる太陽電池モジュールの数は多くなるが、コストや回路規模が増大する。すなわち、両者はトレードオフの関係にある。 Moreover, a plurality of voltage sources may be connected in parallel to one stage within the range of the number of solar cell modules belonging to each stage. As the number of voltage sources increases, the number of solar cell modules that can compensate the current increases, but the cost and circuit scale increase. That is, both are in a trade-off relationship.
 次に既存の太陽光発電システムに、上述の電流補填用の電圧源を後付けする例を説明する。図8は、小規模な太陽光発電システム500aの構成例を示す図である。小規模な太陽光発電システム500aは主に住宅用として用いられる。太陽光発電システム500aは太陽電池アレイ100およびパワーコンディショナ40を備える。太陽電池アレイ100は家屋の屋根に設置される。 Next, an example of retrofitting the above-mentioned voltage source for current compensation to an existing photovoltaic power generation system will be described. FIG. 8 is a diagram illustrating a configuration example of a small-scale photovoltaic power generation system 500a. The small-scale photovoltaic power generation system 500a is mainly used for residential use. The photovoltaic power generation system 500 a includes a solar cell array 100 and a power conditioner 40. The solar cell array 100 is installed on the roof of a house.
 図8に示す太陽電池アレイ100は図1に示した太陽電池アレイ100aと同様の接続形態である。すなわち、複数の太陽電池モジュールが直列接続された直列回路を複数備え、その複数の直列回路が並列接続される構成である。図8に示す例では、第1.1太陽電池モジュール11、第1.2太陽電池モジュール12、第1.3太陽電池モジュール13および第1.4太陽電池モジュール14が直列接続された第1直列回路と、第2.1太陽電池モジュール21、第2.2太陽電池モジュール22、第2.3太陽電池モジュール23および第2.4太陽電池モジュール24が直列接続された第2直列回路とが並列接続される構成である。 The solar cell array 100 shown in FIG. 8 has the same connection form as the solar cell array 100a shown in FIG. That is, a plurality of series circuits in which a plurality of solar cell modules are connected in series are provided, and the plurality of series circuits are connected in parallel. In the example shown in FIG. 8, a first series in which a 1.1 solar cell module 11, a 1.2 solar cell module 12, a 1.3 solar cell module 13 and a 1.4 solar cell module 14 are connected in series. The circuit and the second series circuit in which the 2.1 solar cell module 21, the 2.2 solar cell module 22, the 2.3 solar cell module 23, and the 2.4 solar cell module 24 are connected in series are parallel. It is a configuration to be connected.
 第1直列回路の出力配線および第2直列回路の出力配線は、図示しない接続箱で束ねられ、パワーコンディショナ40に接続される。パワーコンディショナ40は、太陽電池アレイ100により発電された直流電力を交流電力に変換する。またパワーコンディショナ40は出力電圧の振幅および周波数を、規定された範囲の振幅および周波数に調整する。パワーコンディショナ40は、生成した交流電力を家庭内の負荷に供給する。また商用系統に逆潮流させることもできる。 The output wiring of the first series circuit and the output wiring of the second series circuit are bundled in a connection box (not shown) and connected to the power conditioner 40. The power conditioner 40 converts the DC power generated by the solar cell array 100 into AC power. The power conditioner 40 adjusts the amplitude and frequency of the output voltage to a specified range of amplitude and frequency. The power conditioner 40 supplies the generated AC power to a load in the home. Moreover, it can be made to reverse flow to a commercial system.
 図9は、図8に示す太陽光発電システム500aに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システム500bの構成例を示す図である。以下、両者の間の変更点を説明する。 FIG. 9 is a diagram illustrating a configuration example of the photovoltaic power generation system 500b according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500a illustrated in FIG. Hereinafter, changes between the two will be described.
 まず作業員は、太陽電池アレイ100の第1直列回路と第2直列回路の対応する段のノード間をそれぞれ配線で接続する。すなわち、作業員は第1.1太陽電池モジュール11と第1.2太陽電池モジュール12との間のノードと、第2.1太陽電池モジュール21と第2.2太陽電池モジュール22との間のノードを配線で接続する。同様に第1.2太陽電池モジュール12と第1.3太陽電池モジュール13との間のノードと、第2.2太陽電池モジュール22と第2.3太陽電池モジュール23との間のノードとを配線で接続する。同様に第1.3太陽電池モジュール13と第1.4太陽電池モジュール14との間のノードと、第2.3太陽電池モジュール23と第2.4太陽電池モジュール24との間のノードとを配線で接続する。この配線の追加は、図1に示した太陽電池アレイ100aから図2に示した太陽電池アレイ100bへの変更に相当する。 First, the worker connects the nodes of the corresponding stages of the first series circuit and the second series circuit of the solar cell array 100 by wiring. That is, the worker is between the node between the 1.1 solar cell module 11 and the 1.2 solar cell module 12, and between the 2.1 solar cell module 21 and the 2.2 solar cell module 22. Connect the nodes with wiring. Similarly, a node between the 1.2 solar cell module 12 and the 1.3 solar cell module 13 and a node between the 2.2 solar cell module 22 and the 2.3 solar cell module 23 Connect with wiring. Similarly, a node between the 1.3 solar cell module 13 and the 1.4 solar cell module 14, and a node between the 2.3 solar cell module 23 and the 2.4 solar cell module 24. Connect with wiring. This addition of wiring corresponds to a change from the solar cell array 100a shown in FIG. 1 to the solar cell array 100b shown in FIG.
 次に電流補填用の電圧源として、AC-DCコンバータユニット30を設置する。AC-DCコンバータユニット30の入力端子は、パワーコンディショナ40の出力配線に接続される。AC-DCコンバータユニット30の入力端子は2本である。AC-DCコンバータユニット30の出力端子は、上述の作業により太陽電池アレイ100に追加された配線、ならびに太陽電池アレイ100の正極側出力配線および負極側出力配線に接続される。これらの配線数は直列段数+1であるため、AC-DCコンバータユニット30の出力端子は、(直列段数+1)本である。図9に示す例では5本である。 Next, an AC-DC converter unit 30 is installed as a voltage source for current compensation. The input terminal of the AC-DC converter unit 30 is connected to the output wiring of the power conditioner 40. The AC-DC converter unit 30 has two input terminals. The output terminal of the AC-DC converter unit 30 is connected to the wiring added to the solar cell array 100 by the above-described operation, and the positive side output wiring and the negative side output wiring of the solar cell array 100. Since the number of these wires is the number of series stages + 1, the number of output terminals of the AC-DC converter unit 30 is (the number of series stages + 1). In the example shown in FIG.
 図10は、図9に示すAC-DCコンバータユニット30の内部構成例を示す図である。AC-DCコンバータユニット30は、カスケード接続された絶縁型の複数のAC-DCコンバータを含む。AC-DCコンバータの数は直列段数に対応する。図10に示す例ではAC-DCコンバータユニット30は、第1AC-DCコンバータ31a、第2AC-DCコンバータ32a、第3AC-DCコンバータ33a、第4AC-DCコンバータ34aを含む。 FIG. 10 is a diagram showing an internal configuration example of the AC-DC converter unit 30 shown in FIG. The AC-DC converter unit 30 includes a plurality of isolated AC-DC converters connected in cascade. The number of AC-DC converters corresponds to the number of series stages. In the example shown in FIG. 10, the AC-DC converter unit 30 includes a first AC-DC converter 31a, a second AC-DC converter 32a, a third AC-DC converter 33a, and a fourth AC-DC converter 34a.
 各AC-DCコンバータ31a~34aには、パワーコンディショナ40の出力交流電圧が入力される。各AC-DCコンバータ31a~34aは、その交流電圧を降圧しつつ、一つの太陽光モジュールの起電圧相当の直流電圧に変換する。第1AC-DCコンバータ31aは生成した直流電圧を、第1.1太陽電池モジュール11の両端および第2.1太陽電池モジュール21の両端に並列に印加する。同様に第2AC-DCコンバータ32aは生成した直流電圧を、第1.2太陽電池モジュール12の両端および第2.2太陽電池モジュール22の両端に並列に印加する。同様に第3AC-DCコンバータ33aは生成した直流電圧を、第1.3太陽電池モジュール13の両端および第2.3太陽電池モジュール23の両端に並列に印加する。同様に第4AC-DCコンバータ34aは生成した直流電圧を、第1.4太陽電池モジュール14の両端および第2.4太陽電池モジュール24の両端に並列に印加する。これにより、図5および図6に示した太陽電池アレイ100d、100eと同様の電気的構成を作り出すことができる。 The output AC voltage of the power conditioner 40 is input to each of the AC-DC converters 31a to 34a. Each of the AC-DC converters 31a to 34a converts the AC voltage into a DC voltage corresponding to the electromotive voltage of one solar module while stepping down the AC voltage. The first AC-DC converter 31a applies the generated DC voltage to both ends of the 1.1 solar cell module 11 and both ends of the 2.1 solar cell module 21 in parallel. Similarly, the second AC-DC converter 32 a applies the generated DC voltage in parallel to both ends of the 1.2 solar cell module 12 and both ends of the 2.2 solar cell module 22. Similarly, the third AC-DC converter 33 a applies the generated DC voltage to both ends of the 1.3 solar cell module 13 and both ends of the 2.3 solar cell module 23 in parallel. Similarly, the fourth AC-DC converter 34 a applies the generated DC voltage to both ends of the 1.4 solar cell module 14 and both ends of the 2.4 solar cell module 24 in parallel. Thereby, the electrical configuration similar to the solar cell arrays 100d and 100e shown in FIGS. 5 and 6 can be created.
 なお図6に示した太陽電池アレイ100eではDC-DCコンバータを使用する例を挙げた。図9に示す太陽光発電システム500bでもAC-DCコンバータの代わりに、DC-DCコンバータを用いてもよい。その場合、DC-DCコンバータは入力電圧として、パワーコンディショナ40に入力される直流電圧を使用する。 Note that an example in which a DC-DC converter is used in the solar cell array 100e shown in FIG. In the photovoltaic power generation system 500b shown in FIG. 9, a DC-DC converter may be used instead of the AC-DC converter. In that case, the DC-DC converter uses a DC voltage input to the power conditioner 40 as an input voltage.
 一般的な高電圧のDC-DCコンバータでは、入力直流電圧をDC-AC変換して交流電圧を生成し、生成された交流電圧をトランスで変圧し、変圧された交流電圧を整流および平滑化して出力直流電圧を生成する。したがって入力電圧を交流電圧とすれば、最初のDC-AC変換を省略でき、回路規模およびその変換による電力損失を低減できる。この点に鑑み、図9に示す太陽光発電システム500bではAC-DCコンバータを使用する例を挙げている。なお、AC-DCコンバータを一般の負荷と同様に扱い、AC-DCコンバータに商用電源を直接、供給してもよい。 In a general high voltage DC-DC converter, an input DC voltage is DC-AC converted to generate an AC voltage, the generated AC voltage is transformed with a transformer, and the transformed AC voltage is rectified and smoothed. Output DC voltage is generated. Therefore, if the input voltage is an AC voltage, the first DC-AC conversion can be omitted, and the circuit scale and power loss due to the conversion can be reduced. In view of this point, an example in which an AC-DC converter is used is given in the photovoltaic power generation system 500b shown in FIG. The AC-DC converter may be handled in the same way as a general load, and commercial power may be directly supplied to the AC-DC converter.
 図11は、大規模な太陽光発電システム500cの構成例を示す図である。大規模な太陽光発電システム500cは主に産業用として用いられる。例えば、オフィスビル、工場、商業施設、公共施設などに設置される。 FIG. 11 is a diagram illustrating a configuration example of a large-scale photovoltaic power generation system 500c. The large-scale photovoltaic power generation system 500c is mainly used for industrial use. For example, it is installed in an office building, factory, commercial facility, public facility or the like.
 図11に示す太陽電池アレイ100も図1に示した太陽電池アレイ100aと同様の接続形態である。すなわち、複数の太陽電池モジュールが直列接続された直列回路を複数備え、その複数の直列回路が並列接続される構成である。図11に示す例では、直列数が9、並列数が4の直並列回路である。 The solar cell array 100 shown in FIG. 11 has the same connection form as the solar cell array 100a shown in FIG. That is, a plurality of series circuits in which a plurality of solar cell modules are connected in series are provided, and the plurality of series circuits are connected in parallel. In the example shown in FIG. 11, a series-parallel circuit having 9 serial numbers and 4 parallel numbers is shown.
 図12は、図11に示す太陽光発電システム500cに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システム500dの構成例を示す図である。以下、両者の間の変更点を説明する。 FIG. 12 is a diagram illustrating a configuration example of a photovoltaic power generation system 500d according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG. Hereinafter, changes between the two will be described.
 図11に示す太陽光発電システム500cを、図9に示したような電気的構成に変更することも可能である。ただし、太陽電池アレイ100が大規模になると各直列段間のノードを横断的に繋ぐ配線を設置する作業が大規模なものとなる。そこで図12に示す太陽光発電システム500cでは、太陽電池アレイ100の接続形態を変更する。 It is also possible to change the photovoltaic power generation system 500c shown in FIG. 11 to an electrical configuration as shown in FIG. However, when the solar cell array 100 becomes large-scale, the work of installing wirings that cross-connect the nodes between the respective series stages becomes large-scale. Therefore, in the photovoltaic power generation system 500c shown in FIG. 12, the connection form of the solar cell array 100 is changed.
 作業員は、複数の太陽電池モジュールが直列接続された直列回路を並列回路に繋ぎ直し、それら並列回路を直列接続する。図11および図12に示す例では、直列接続された第1.1太陽電池モジュール11~第1.9太陽電池モジュール19を並列回路に繋ぎ直す。同様に、直列接続された第2.1太陽電池モジュール21~第2.9太陽電池モジュール29を並列回路に繋ぎ直す。同様に、直列接続された第3.1太陽電池モジュール31~第3.9太陽電池モジュール39を並列回路に繋ぎ直す。同様に、直列接続された第4.1太陽電池モジュール41~第4.9太陽電池モジュール49を並列回路に繋ぎ直す。作業員は新たに生成した4つの並列回路を直列接続する。したがって、繋ぎ直された太陽電池アレイ100は、並列数が9、直列数が4の直並列回路となる。繋ぎ直しの前後で、太陽電池アレイ100の出力電圧および出力電流の値は変わるが、両者を乗算した出力電力の値は変わらない。 The worker reconnects a series circuit in which a plurality of solar cell modules are connected in series to a parallel circuit, and connects the parallel circuits in series. In the example shown in FIGS. 11 and 12, the 1.1-th solar cell modules 11 to 1.9 solar cell modules 19 connected in series are reconnected to a parallel circuit. Similarly, the 2.1-th solar cell module 21 to the 2.9-th solar cell module 29 connected in series are reconnected to the parallel circuit. Similarly, the 3.1-th solar cell module 31 to the 3.9-th solar cell module 39 connected in series are reconnected to the parallel circuit. Similarly, the 4.1-th solar cell module 41 to the 4.9-th solar cell module 49 connected in series are reconnected to the parallel circuit. The worker connects four newly generated parallel circuits in series. Therefore, the reconnected solar cell array 100 is a series-parallel circuit having a parallel number of 9 and a serial number of 4. Before and after reconnection, the values of the output voltage and output current of the solar cell array 100 change, but the value of the output power multiplied by both does not change.
 次に電流補填用の電圧源として、AC-DCコンバータユニット30を設置する。AC-DCコンバータユニット30の入力端子は、パワーコンディショナ40の出力配線に接続される。AC-DCコンバータユニット30の入力端子は2本である。AC-DCコンバータユニット30の出力端子は、太陽電池アレイ100の上述の四つの並列回路により形成される直列回路の各ノードに接続される。これらのノード数は直列段数+1であるため、AC-DCコンバータユニット30の出力端子は、(直列段数+1)本である。図12に示す例では5本である。 Next, an AC-DC converter unit 30 is installed as a voltage source for current compensation. The input terminal of the AC-DC converter unit 30 is connected to the output wiring of the power conditioner 40. The AC-DC converter unit 30 has two input terminals. The output terminal of the AC-DC converter unit 30 is connected to each node of a series circuit formed by the above-described four parallel circuits of the solar cell array 100. Since the number of nodes is the number of series stages + 1, the number of output terminals of the AC-DC converter unit 30 is (the number of series stages + 1). In the example shown in FIG.
 図12に示すAC-DCコンバータユニット30も、図10に示すように構成できる。なお図12に示すAC-DCコンバータユニット30では、一つのAC-DCコンバータが担当する太陽電池モジュールの数(図12に示す例では9)が多い。そこで各直列段について複数のAC-DCコンバータを並列に設置してもよい。例えば、第1.1太陽電池モジュール11~第1.9太陽電池モジュール19の両端に、二つ並列に第1AC-DCコンバータ31aを接続してもよい。この場合、第1.1太陽電池モジュール11~第1.9太陽電池モジュール19の二つに不具合が発生しても、その二つ分の電流を二つの第1AC-DCコンバータ31aで補填できる。 The AC-DC converter unit 30 shown in FIG. 12 can also be configured as shown in FIG. In the AC-DC converter unit 30 shown in FIG. 12, the number of solar cell modules that one AC-DC converter is in charge of (9 in the example shown in FIG. 12) is large. Therefore, a plurality of AC-DC converters may be installed in parallel for each series stage. For example, two first AC-DC converters 31 a may be connected in parallel to both ends of the 1.1 solar cell module 11 to the 1.9 solar cell module 19. In this case, even if a failure occurs in two of the 1.1 solar cell module 11 to the 1.9 solar cell module 19, the two currents can be compensated by the two first AC-DC converters 31a.
 図12に示す電圧源の後付方法によれば、図10に示す後付方法より作業員の作業量を軽減できる。したがって大規模な太陽光発電システム500への適用に適している。なお図10に示す後付方法が小規模な太陽光発電システム500への適用、図12に示す後付方法が大規模な太陽光発電システム500への適用にそれぞれ限定されるものではなく、両者の後付方法とも、いずれの規模の太陽光発電システム500にも適用可能である。 According to the retrofitting method of the voltage source shown in FIG. 12, the work amount of the worker can be reduced compared to the retrofitting method shown in FIG. Therefore, it is suitable for application to a large-scale photovoltaic power generation system 500. The retrofit method shown in FIG. 10 is not limited to the application to the small-scale photovoltaic power generation system 500, and the retrofit method shown in FIG. 12 is not limited to the application to the large-scale photovoltaic power generation system 500. The retrofit method can be applied to the solar power generation system 500 of any scale.
 ここまで、太陽電池アレイ100に含まれる全ての太陽電池モジュールを対象に、電流補填用の電圧源を後付けする例を説明した。以下、発電が不完全な太陽電池モジュールのみを対象に当該電圧源を後付けする例を説明する。 Heretofore, an example in which a voltage source for current compensation is retrofitted to all the solar cell modules included in the solar cell array 100 has been described. Hereinafter, an example in which the voltage source is retrofitted only for a solar cell module in which power generation is incomplete will be described.
 図13は、図11に示す太陽光発電システム500c(太陽電池モジュールの一つが故障)に電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システム500eの構成例を示す図である。図13に示す太陽電池アレイ100では第2.8太陽電池モジュール28が故障している。太陽電池モジュールが故障した場合、新しいものに交換することが通常であるが、その太陽電池モジュールが生産終了などにより手に入りにくい場合がある。 FIG. 13 is a diagram illustrating a configuration example of the photovoltaic power generation system 500e according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG. 11 (one of the solar battery modules is broken). is there. In the solar cell array 100 shown in FIG. 13, the 2.8 solar cell module 28 has failed. When a solar cell module breaks down, it is usually replaced with a new one, but the solar cell module may be difficult to obtain due to the end of production.
 そこでAC-DCコンバータユニット30を設置する。当該AC-DCコンバータユニット30は一つのAC-DCコンバータを含む。当該AC-DCコンバータの出力端子は、故障した第2.8太陽電池モジュール28の両端に接続される。当該AC-DCコンバータは第2.8太陽電池モジュール28の両端に、その起電圧相当の電圧を印加する。 Therefore, the AC-DC converter unit 30 is installed. The AC-DC converter unit 30 includes one AC-DC converter. The output terminals of the AC-DC converter are connected to both ends of the failed 2.8 solar cell module 28. The AC-DC converter applies a voltage corresponding to the electromotive voltage to both ends of the 2.8 solar cell module 28.
 このように図13に示す電圧源の後付方法によれば、必要な箇所だけに設置するため、図12に示す後付方法より低コストで設置できる。また必要な配線も少なくなるため作業量を軽減できる。 As described above, according to the retrofitting method of the voltage source shown in FIG. 13, the retrofitting method can be installed at a lower cost than the retrofitting method shown in FIG. Also, the amount of work can be reduced because less wiring is required.
 図14は、図11に示す太陽光発電システム500c(太陽電池モジュールの一部に影)に電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システム500fの構成例を示す図である。図14に示す太陽電池アレイ100では第4.8太陽電池モジュール28および第4.9太陽電池モジュール29が木の影により、発電が不完全になっている。 FIG. 14 is a diagram illustrating a configuration example of the photovoltaic power generation system 500f according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500c illustrated in FIG. 11 (shadowed on a part of the solar cell module). It is. In the solar cell array 100 shown in FIG. 14, the 4.8 solar cell module 28 and the 4.9 solar cell module 29 are incompletely generated due to the shadow of the tree.
 この場合、二つのAC-DCコンバータを含むAC-DCコンバータユニット30を設置する。二つのAC-DCコンバータのそれぞれの出力端子は、影が発生している第4.8太陽電池モジュール48の両端および第4.9太陽電池モジュール49の両端にそれぞれ接続される。なお2倍の出力電圧を出力するAC-DCコンバータを一つ設け、直列接続された第4.8太陽電池モジュール48および第4.9太陽電池モジュール49の両端に、2倍の出力電圧を印加してもよい。3直列以上の場合も同様である。 In this case, an AC-DC converter unit 30 including two AC-DC converters is installed. The output terminals of the two AC-DC converters are respectively connected to both ends of the 4.8 solar cell module 48 and both ends of the 4.9 solar cell module 49 where shadows are generated. One AC-DC converter that outputs twice the output voltage is provided, and twice the output voltage is applied to both ends of the 4.8 solar cell module 48 and the 4.9 solar cell module 49 connected in series. May be. The same applies to three or more series.
 影の発生状況は、太陽電池アレイ100の設置後に変わる場合もある。例えば設置後に、周囲に高い建造物が立てられた場合、新たな影が発生する。したがって事後的に、その影になる箇所の太陽電池モジュールの代替電源となる、コンバータを設置する方法は非常に有効である。 The occurrence of the shadow may change after the solar cell array 100 is installed. For example, if a high building is erected around after installation, a new shadow is generated. Therefore, a method of installing a converter that becomes an alternative power source for the solar cell module in the shadowed area after the fact is very effective.
 図15は、図11に示す太陽光発電システム500cにおいて複数の太陽電池モジュールが故障した状態を示す図である。図15に示す太陽光発電システム500gでは、第1.9太陽電池モジュール19、第2.2太陽電池モジュール22および第3.5太陽電池モジュール35の三つが故障している。図13および図14に示した要領でそれぞれの太陽電池モジュールの両端にそれぞれ、AC-DCコンバータを接続することが考えられる。以下、その方法より配線の取り回しを簡素化できる方法を説明する。 FIG. 15 is a diagram showing a state in which a plurality of solar cell modules have failed in the photovoltaic power generation system 500c shown in FIG. In the photovoltaic power generation system 500g shown in FIG. 15, three of the 1.9 solar cell module 19, the 2.2 solar cell module 22, and the 3.5th solar cell module 35 are out of order. It is conceivable to connect an AC-DC converter to each end of each solar cell module in the manner shown in FIGS. Hereinafter, a method capable of simplifying the routing of the wiring will be described.
 図16は、図15に示す太陽光発電システム500gに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システム500hの構成例(直列型)を示す図である。図16に示す太陽光発電システム500hでは、故障している三つの太陽電池モジュールを一箇所にまとめる。具体的には作業員は、故障している第2.2太陽電池モジュール22と正常な第1.7太陽電池モジュール17を交換する。また故障している第3.5太陽電池モジュール35と正常な第1.8太陽電池モジュール18を交換する。これにより、故障している太陽電池モジュールを、第1.7太陽電池モジュール17、第1.8太陽電池モジュール18および第1.9太陽電池モジュール19で形成される一つの直列回路にまとめることができる。 FIG. 16 is a diagram illustrating a configuration example (series type) of a photovoltaic power generation system 500h according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500g illustrated in FIG. In the photovoltaic power generation system 500h shown in FIG. 16, three faulty solar cell modules are collected in one place. Specifically, the worker replaces the broken 2.2 solar cell module 22 with the normal 1.7 solar cell module 17. Further, the failed 3.5th solar cell module 35 and the normal 1.8th solar cell module 18 are exchanged. Thus, the failed solar cell modules can be combined into one series circuit formed by the 1.7 solar cell module 17, the 1.8th solar cell module 18, and the 1.9 solar cell module 19. it can.
 図16に示すAC-DCコンバータユニット30は、3倍の出力電圧を出力するAC-DCコンバータを一つ含む。当該AC-DCコンバータの出力端子は、当該直列回路の両端に接続される。当該AC-DCコンバータは、直列接続された太陽電池モジュール三つ分の起電圧に相当する電圧を、当該直列回路の両端に印加する。 The AC-DC converter unit 30 shown in FIG. 16 includes one AC-DC converter that outputs three times the output voltage. The output terminal of the AC-DC converter is connected to both ends of the series circuit. The AC-DC converter applies a voltage corresponding to the electromotive voltage of three solar cell modules connected in series to both ends of the series circuit.
 図17は、図15に示す太陽光発電システム500gに電流補填用の電圧源を後付けした、実施の形態に係る太陽光発電システム500iの構成例(並列型)を示す図である。図17に示す太陽光発電システム500iでも、故障している三つの太陽電池モジュールを一箇所にまとめる。具体的には作業員は、故障している第2.2太陽電池モジュール22と正常な第2.9太陽電池モジュール29を交換する。また故障している第3.5太陽電池モジュール35と正常な第3.9太陽電池モジュール39を交換する。さらに第1.9太陽電池モジュール19、第2.9太陽電池モジュール29および第3.9太陽電池モジュール39の両端を並列に配線で接続する。これにより、故障している太陽電池モジュールを、第1.9太陽電池モジュール19、第2.9太陽電池モジュール29および第3.9太陽電池モジュール39で形成される一つの並列回路にまとめることができる。 FIG. 17 is a diagram illustrating a configuration example (parallel type) of the photovoltaic power generation system 500i according to the embodiment in which a voltage source for current compensation is retrofitted to the photovoltaic power generation system 500g illustrated in FIG. Also in the photovoltaic power generation system 500i shown in FIG. 17, three faulty solar cell modules are collected in one place. Specifically, the worker replaces the failed 2.2 solar cell module 22 with the normal 2.9 solar cell module 29. Also, the failed 3.5th solar cell module 35 and the normal 3.9 solar cell module 39 are exchanged. Furthermore, both ends of the 1.9 solar cell module 19, the 2.9 solar cell module 29, and the 3.9 solar cell module 39 are connected in parallel by wiring. Thereby, the failed solar cell modules can be combined into one parallel circuit formed by the 1.9 solar cell module 19, the 2.9 solar cell module 29, and the 3.9 solar cell module 39. it can.
 図17に示すAC-DCコンバータユニット30は、並列接続された三つのAC-DCコンバータを含む。当該並列接続された三つのAC-DCコンバータの共通出力端子は、当該並列回路の両端に接続される。当該並列接続された三つのAC-DCコンバータは、並列接続された太陽電池モジュール三つ分の発電電流を補填する。 The AC-DC converter unit 30 shown in FIG. 17 includes three AC-DC converters connected in parallel. The common output terminals of the three AC-DC converters connected in parallel are connected to both ends of the parallel circuit. The three AC-DC converters connected in parallel make up for the power generation current of three solar cell modules connected in parallel.
 このように図16および図17に示す後付方法によれば、故障している複数の太陽電池モジュールを一箇所にまとめることにより、配線の取り回しを簡素化できる。 As described above, according to the retrofitting method shown in FIGS. 16 and 17, the wiring operation can be simplified by collecting a plurality of faulty solar cell modules in one place.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。 The invention according to the present embodiment may be specified by the items described below.
[項目1]
 複数の太陽電池モジュールがマトリクス状に直並列接続された太陽電池アレイであって、
 前記複数の太陽電池モジュールの少なくとも一つの両端に、電圧源が接続されることを特徴とする太陽電池アレイ。
[Item 1]
A solar cell array in which a plurality of solar cell modules are connected in series and parallel in a matrix,
A solar cell array, wherein a voltage source is connected to both ends of at least one of the plurality of solar cell modules.
 この態様によれば、少なくとも一つの太陽電池モジュールが影などにより発電停止した場合における太陽電池アレイの出力電力の低下を抑制できる。 According to this aspect, it is possible to suppress a decrease in the output power of the solar cell array when at least one solar cell module stops power generation due to a shadow or the like.
[項目2]
 前記複数の太陽電池モジュールが直並列接続された直並列回路のそれぞれの並列段に、前記電圧源が並列に接続されることを特徴とする項目1に記載の太陽電池アレイ。
[Item 2]
2. The solar cell array according to item 1, wherein the voltage source is connected in parallel to each parallel stage of a series-parallel circuit in which the plurality of solar cell modules are connected in series and parallel.
 この態様によれば、太陽電池アレイを構成するいずれの太陽電池モジュールが発電停止した場合でも、その発電停止による電力低下を補填できる。 According to this aspect, even when any of the solar cell modules constituting the solar cell array stops generating power, it is possible to compensate for the power reduction due to the stop of power generation.
[項目3]
 前記電圧源は降圧回路であり、
 それぞれの並列段に接続される降圧回路の出力端子は直列に接続され、
 直列に接続された複数の降圧回路の入力端子は、前記太陽電池アレイの正極側出力端子と負極側出力端子との間に接続され、
 前記複数の降圧回路の電源電圧に、前記太陽電池アレイの出力電圧が使用されることを特徴とする項目2に記載の太陽電池アレイ。
[Item 3]
The voltage source is a step-down circuit;
The output terminals of the step-down circuit connected to each parallel stage are connected in series,
The input terminals of the plurality of step-down circuits connected in series are connected between the positive output terminal and the negative output terminal of the solar cell array,
3. The solar cell array according to item 2, wherein an output voltage of the solar cell array is used as a power supply voltage for the plurality of step-down circuits.
 この態様によれば、外部電源を必要としない自己完結型のシステムを構築できる。 According to this aspect, a self-contained system that does not require an external power source can be constructed.
[項目4]
 複数の太陽電池モジュールが直並列接続された太陽電池アレイと、
 前記複数の太陽電池モジュールの少なくとも一つの両端に接続される電圧源と、
 を備えることを特徴とする太陽光発電システム。
[Item 4]
A solar cell array in which a plurality of solar cell modules are connected in series and parallel;
A voltage source connected to at least one end of each of the plurality of solar cell modules;
A photovoltaic power generation system comprising:
 この態様によれば、出力電力が安定した太陽光発電システムを構築できる。 According to this aspect, a solar power generation system with stable output power can be constructed.
[項目5]
 前記電圧源は、前記太陽電池アレイが設置された後、当該太陽電池アレイを構成する複数の太陽電池モジュールのうち発電が不完全な太陽電池モジュールの両端に、接続されることを特徴とする項目4に記載の太陽光発電システム。
[Item 5]
The voltage source is connected to both ends of a solar cell module in which power generation is incomplete among a plurality of solar cell modules constituting the solar cell array after the solar cell array is installed. 4. The photovoltaic power generation system according to 4.
 この態様によれば、補助が必要な太陽電池モジュールにのみ電圧源を接続することにより、低コストなシステムを構築できる。 According to this aspect, a low-cost system can be constructed by connecting a voltage source only to a solar cell module that needs assistance.
[項目5]
 前記太陽電池アレイにより発電された直流電力を交流電力に変換するパワーコンディショナを、さらに備え、
 前記電圧源はAC-DCコンバータであり、当該AC-DCコンバータは前記パワーコンディショナから出力される交流電圧を入力電圧として生成した直流電圧を、前記太陽電池モジュールの両端に印加することを特徴とする項目4または5に記載の太陽光発電システム。
[Item 5]
A power conditioner that converts the DC power generated by the solar cell array into AC power;
The voltage source is an AC-DC converter, and the AC-DC converter applies a DC voltage generated using an AC voltage output from the power conditioner as an input voltage to both ends of the solar cell module. Item 6. The photovoltaic power generation system according to item 4 or 5.
 この態様によれば、外部電源を必要としない自己完結型のシステムを構築できる。 According to this aspect, a self-contained system that does not require an external power source can be constructed.
 100a,100b,100c,100d,100e,100f 太陽電池アレイ、 11 第1.1太陽電池モジュール、 12 第1.2太陽電池モジュール、 21 第2.1太陽電池モジュール、 49 第4.9太陽電池モジュール、 I 電流源、 D ダイオード、 Rs 直列抵抗、 Rsh 並列抵抗、 E1 第1電圧源、 E2 第2電圧源、 E3 第3電圧源、 31 第1DC-DCコンバータ、 32 第2DC-DCコンバータ、 33 第3DC-DCコンバータ、 30 AC-DCコンバータユニット、 31a 第1AC-DCコンバータ、 32a 第2AC-DCコンバータ、 33a 第3AC-DCコンバータ、 34a 第4AC-DCコンバータ、 500a,500b,500c,500d,500e,500f,500g,500h,500i 太陽光発電システム。 100a, 100b, 100c, 100d, 100e, 100f solar cell array, 11th 1.1 solar cell module, 12th 1.2 solar cell module, 21st 2.1 solar cell module, 49th 4.9 solar cell module , I current source, D diode, Rs series resistance, Rsh parallel resistance, E1 first voltage source, E2 second voltage source, E3 third voltage source, 31 first DC-DC converter, 32 second DC-DC converter, 33 th 3DC-DC converter, 30 AC-DC converter unit, 31a 1st AC-DC converter, 32a 2nd AC-DC converter, 33a 3rd AC-DC converter, 34a 4th AC-DC converter, 500a, 500b, 500c 500d, 500e, 500f, 500g, 500h, 500i solar power system.
 本発明は、複数の太陽電池モジュールを直並列接続した太陽電池アレイを用いた太陽光発電システムに適用できる。 The present invention can be applied to a solar power generation system using a solar cell array in which a plurality of solar cell modules are connected in series and parallel.

Claims (6)

  1.  複数の太陽電池モジュールがマトリクス状に直並列接続された太陽電池アレイであって、
     前記複数の太陽電池モジュールの少なくとも一つの両端に、電圧源が接続されることを特徴とする太陽電池アレイ。
    A solar cell array in which a plurality of solar cell modules are connected in series and parallel in a matrix,
    A solar cell array, wherein a voltage source is connected to both ends of at least one of the plurality of solar cell modules.
  2.  前記複数の太陽電池モジュールが直並列接続された直並列回路のそれぞれの並列段に、前記電圧源が並列に接続されることを特徴とする請求項1に記載の太陽電池アレイ。 The solar cell array according to claim 1, wherein the voltage source is connected in parallel to each parallel stage of a series-parallel circuit in which the plurality of solar cell modules are connected in series and parallel.
  3.  前記電圧源は降圧回路であり、
     それぞれの並列段に接続される降圧回路の出力端子は直列に接続され、
     直列に接続された複数の降圧回路の入力端子は、前記太陽電池アレイの正極側出力端子と負極側出力端子との間に接続され、
     前記複数の降圧回路の電源電圧に、前記太陽電池アレイの出力電圧が使用されることを特徴とする請求項2に記載の太陽電池アレイ。
    The voltage source is a step-down circuit;
    The output terminals of the step-down circuit connected to each parallel stage are connected in series,
    The input terminals of the plurality of step-down circuits connected in series are connected between the positive output terminal and the negative output terminal of the solar cell array,
    The solar cell array according to claim 2, wherein an output voltage of the solar cell array is used as a power supply voltage for the plurality of step-down circuits.
  4.  複数の太陽電池モジュールが直並列接続された太陽電池アレイと、
     前記複数の太陽電池モジュールの少なくとも一つの両端に接続される電圧源と、
     を備えることを特徴とする太陽光発電システム。
    A solar cell array in which a plurality of solar cell modules are connected in series and parallel;
    A voltage source connected to at least one end of each of the plurality of solar cell modules;
    A photovoltaic power generation system comprising:
  5.  前記電圧源は、前記太陽電池アレイが設置された後、当該太陽電池アレイを構成する複数の太陽電池モジュールのうち発電が不完全な太陽電池モジュールの両端に、接続されることを特徴とする請求項4に記載の太陽光発電システム。 The voltage source is connected to both ends of a solar cell module incompletely generating power among a plurality of solar cell modules constituting the solar cell array after the solar cell array is installed. Item 5. A photovoltaic power generation system according to item 4.
  6.  前記太陽電池アレイにより発電された直流電力を交流電力に変換するパワーコンディショナを、さらに備え、
     前記電圧源はAC-DCコンバータであり、当該AC-DCコンバータは前記パワーコンディショナから出力される交流電圧を入力電圧として生成した直流電圧を、前記太陽電池モジュールの両端に印加することを特徴とする請求項4または5に記載の太陽光発電システム。
    A power conditioner that converts the DC power generated by the solar cell array into AC power;
    The voltage source is an AC-DC converter, and the AC-DC converter applies a DC voltage generated using an AC voltage output from the power conditioner as an input voltage to both ends of the solar cell module. The photovoltaic power generation system according to claim 4 or 5.
PCT/JP2012/005661 2011-09-29 2012-09-06 Solar cell array and solar power system WO2013046554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-214690 2011-09-29
JP2011214690A JP2014239083A (en) 2011-09-29 2011-09-29 Solar cell array

Publications (1)

Publication Number Publication Date
WO2013046554A1 true WO2013046554A1 (en) 2013-04-04

Family

ID=47994645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005661 WO2013046554A1 (en) 2011-09-29 2012-09-06 Solar cell array and solar power system

Country Status (2)

Country Link
JP (1) JP2014239083A (en)
WO (1) WO2013046554A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530656A (en) * 1990-12-14 1993-02-05 Nec Corp Satellite loading power supply system
JP2002292381A (en) * 2001-03-30 2002-10-08 Tokico Ltd Drive device utilizing electric power of solar cell and water cleaning apparatus
JP2003092418A (en) * 2001-09-17 2003-03-28 Nissan Motor Co Ltd Solar cell panel and connection direction switching control method of solar cell module
JP2004078950A (en) * 2002-08-09 2004-03-11 Alcatel Circuit for regulating power source to maximum power point
JP2007088195A (en) * 2005-09-22 2007-04-05 National Institute Of Advanced Industrial & Technology Solar power generation control unit
JP2010284075A (en) * 2006-07-05 2010-12-16 Ricoh Elemex Corp Electric double-layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530656A (en) * 1990-12-14 1993-02-05 Nec Corp Satellite loading power supply system
JP2002292381A (en) * 2001-03-30 2002-10-08 Tokico Ltd Drive device utilizing electric power of solar cell and water cleaning apparatus
JP2003092418A (en) * 2001-09-17 2003-03-28 Nissan Motor Co Ltd Solar cell panel and connection direction switching control method of solar cell module
JP2004078950A (en) * 2002-08-09 2004-03-11 Alcatel Circuit for regulating power source to maximum power point
JP2007088195A (en) * 2005-09-22 2007-04-05 National Institute Of Advanced Industrial & Technology Solar power generation control unit
JP2010284075A (en) * 2006-07-05 2010-12-16 Ricoh Elemex Corp Electric double-layer capacitor

Also Published As

Publication number Publication date
JP2014239083A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US20180233919A1 (en) Photovoltaic inverter system and operation method thereof
WO2014121826A1 (en) Solar power plant, method of controlling a solar power plant and a dc/dc conversion system
Brenna et al. Dynamic analysis of a new network topology for high power grid connected PV systems
Stallon et al. Simulation of High step-up DC-DC converter for photovoltaic module application using MATLAB/SIMULINK
CN102545709B (en) Energy optimizing device suitable for solar power generation device
CN104953945A (en) High-efficiency photovoltaic power generation system and method
Sayed et al. Design and analysis of high-gain medium-voltage DC-DC converters for high-power PV applications
KR20210121588A (en) Differential power conditioning system for improving performance of photovoltaic power generation system
CN104170202A (en) Renewable energy unit having simplified connector technology
Shenoy et al. Differential power processing for efficiency and performance leaps in utility-scale photovoltaics
Wang et al. Analysis and comparison of FPP and DPP structure based DMPPT PV system
JPH06311651A (en) Photovoltaic power generation system
CN102237690A (en) Method for improving overall efficiency of photovoltaic inverter system
WO2013046554A1 (en) Solar cell array and solar power system
CN112636383B (en) Wind-solar integrated high-power grid-connected system and control method thereof
Elfeqy et al. Design of a low voltage DC grid interfacing PV and energy storage systems
Chaudhary et al. Distribution system augmented by DC links for increasing the hosting capacity of PV generation
CN115136325A (en) Architecture for photovoltaic installations
Balal et al. Design a multiport DC-DC converter for hybrid renewable nano-grid system
Komilov Power of network photoelectric power stations
Kumar et al. Modeling and simulation of neutral point clamped multilevel inverter for solar photovoltaic system
Kumar et al. Modeling and Simulation of Solar Photovoltaic System and Interfacing with Neutral Point clamped Multilevel Inverter
CN106505945B (en) Method for operating a photovoltaic system
JP2012252464A (en) Photovoltaic power generation system
JP2014033120A (en) Power distribution circuit for solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP