WO2013046326A1 - Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material - Google Patents

Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material Download PDF

Info

Publication number
WO2013046326A1
WO2013046326A1 PCT/JP2011/072025 JP2011072025W WO2013046326A1 WO 2013046326 A1 WO2013046326 A1 WO 2013046326A1 JP 2011072025 W JP2011072025 W JP 2011072025W WO 2013046326 A1 WO2013046326 A1 WO 2013046326A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated
gear
processing
gears
corrugating
Prior art date
Application number
PCT/JP2011/072025
Other languages
French (fr)
Japanese (ja)
Inventor
秋本 一世
Original Assignee
三和パッキング工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三和パッキング工業株式会社 filed Critical 三和パッキング工業株式会社
Priority to PCT/JP2011/072025 priority Critical patent/WO2013046326A1/en
Priority to JP2011554320A priority patent/JP5039233B1/en
Publication of WO2013046326A1 publication Critical patent/WO2013046326A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/04Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by rolling

Definitions

  • the present invention relates to a multi-directional corrugated material subjected to, for example, multi-directional corrugation, a manufacturing method thereof, and a corrugated material manufacturing apparatus.
  • corrugated materials with various corrugated shapes have been proposed as performance has increased and diversified.
  • the manufacturing method of the corrugated material described in Patent Document 1 performs the corrugation process twice on the metal sheet, and the direction of the second corrugation process is the direction of the first corrugation process. It is said that a corrugated material having an inner bent side wall in one direction can be formed by inclining at an angle of at least 10 °.
  • the manufacturing method of the corrugated material of patent document 2 performs a corrugation process twice with respect to a metal sheet
  • the tooth profile and the roll gap are the same
  • the cross-sectional shapes in the direction of the first corrugation and the direction of the second corrugation are both sinusoidal.
  • the corrugated material in which the ridge line of the first wavy protrusion along the first direction and the ridge line of the second wavy protrusion along the second direction are perpendicular to each other can be manufactured. ing.
  • the multidirectional corrugating material manufacturing method proposed in Patent Documents 1 and 2 can manufacture corrugated multidirectional corrugating materials, but each corrugated material has a set shape. However, it was not possible to easily produce multidirectional corrugated materials having various corrugated shapes.
  • the present invention provides a corrugation process in a direction intersecting the corrugation direction at the time of the previous corrugation process on the corrugated thin sheet sandwiched between a pair of corrugated gears and corrugated into the thin plate material.
  • An object of the present invention is to provide a manufacturing method, a corrugating material manufacturing apparatus, and a manufactured multidirectional corrugating material that are applied a plurality of times to manufacture multidirectional corrugating materials of various corrugated shapes.
  • the present invention comprises a plurality of types of corrugated gears that sandwich and corrugate a thin plate material and have a plurality of different gear tooth shapes, a rotational drive means that rotationally drives the pair of corrugated gears, and the plurality of types of corrugated gears.
  • a corrugated material manufacturing apparatus having a gear switching means for switching corrugated gears, the corrugated thin plate sandwiched between the pair of corrugated gears and corrugated to the thin plate material, at the time of the previous corrugating process And producing a multi-directional corrugating material in which the corrugating gear can be switched by the gear switching means for each corrugating process. It is a manufacturing method and a corrugated material manufacturing apparatus of a multi-directional corrugated material.
  • the corrugation processing is corrugation, embossing, corrugation processing such as corrugations, and the like.
  • the corrugated gear not only has meshing gears that mesh with each other, but may also be a gear having an uneven shape that meshes with each other or a roller.
  • a plurality of corrugating processes in a direction intersecting with the corrugating direction at the time of the last corrugating process are applied to the corrugated thin sheet sandwiched between plural types of corrugated gears and corrugated into the thin sheet material. It can be applied to produce multi-directional corrugated materials with various corrugated shapes.
  • a pair of corrugated gears that sandwich and corrugate a thin plate material are provided with a plurality of types having different gear tooth shapes, a rotational driving means that rotationally drives the pair of corrugated gears, and the plurality of types of waves.
  • a corrugated material manufacturing apparatus comprising a gear switching means for switching a corrugated gear, and a corrugated thin plate sandwiched between the pair of corrugated gears and corrugated to the thin plate material, at the time of the previous corrugating process
  • a multi-directional corrugating material can be manufactured by performing corrugation processing in a direction intersecting with the corrugation processing direction a plurality of times. Further, each time the corrugation is performed, the corrugation pattern processed by the corrugation can be adjusted by switching to the other pair of the corrugated gears by the gear switching means. Therefore, multidirectional corrugated materials with various corrugated shapes can be manufactured.
  • the corrugated shape is in the continuous direction.
  • a changing multidirectional corrugation material can be produced.
  • the plurality of types of corrugated gears are arranged coaxially with a pair of corrugated gears, and the gear switching means is constituted by a gear slide means for sliding the pair of corrugated gears in the axial direction. It can be.
  • a plurality of types of corrugated gears can be switched by sliding in the axial direction with a simple structure to produce a multi-directional corrugated material having a plurality of types of shapes.
  • the rotation driving means is configured to repeatedly rotate and drive the pair of corrugated gears at a predetermined angle, respectively, and the plurality of types of corrugated gears can be used in a pair of corrugated gears. It is possible to adopt a configuration in which different gear tooth shapes are arranged for each circumferential angle, and the gear switching means is switched by rotating a corresponding circumferential angle in a pair of corrugated gears.
  • the rotation driving means for repeatedly rotating the pair of corrugated gears at a predetermined angle can be constituted by a servo motor that is repeatedly rotated at a predetermined angle by a rotation control means.
  • a plurality of types of corrugated gears can be switched by rotating the corresponding circumferential direction angles with a compact structure, and a multi-directional corrugated material of a plurality of types can be manufactured.
  • the rotation driving means is configured to repeatedly rotate and drive the pair of corrugated gears by a predetermined angle, respectively, and a pair of corrugated gears in which different gear tooth shapes are arranged for each corresponding circumferential angle. Then, the gear can be switched to another pair of corrugated gears by rotating the corresponding circumferential angle by the gear switching means. Therefore, a multi-directional corrugated material having a plurality of types of shapes can be manufactured with a compact structure.
  • the corrugated material manufacturing apparatus includes a torque detecting means for detecting the detected rotational torque of each of the rotational drive means as a detected rotational torque, and a wave applied to the thin plate material sandwiched between the corrugated gears.
  • a detection torque output means for outputting the detected rotational torque at the time of staking processing, and measuring a waveform shape by the corrugation processing based on a change with time of the detected rotational torque output by the detected torque output means can do.
  • Measure the shape of the waveform described above includes measurement of the shape obtained by converting the shape of the waveform from the temporal change data of the rotational torque.
  • the present invention it is possible to measure the corrugated shape of the entire multi-directional corrugated material formed by corrugating and processing a thin plate material with plural kinds of corrugated gears. Specifically, when a thin plate material is bent in the corrugating process by detecting the rotational torque of the rotational drive means that rotationally drives a pair of corrugated gears sandwiching the thin plate material as a detected rotational torque by the torque detection means Can be detected.
  • the rotational torque varies depending on the bending angle in the V-bending. Specifically, when the bending angle in the V-bending is large under the constant plate thickness condition, the rotational torque Conversely, when the bending angle in V-bending is small, the rotational torque is low.
  • the thin plate material is bent at the convex portion of one of the corrugated gears among a plurality of types of corrugated gears, and the thin plate material bent at the convex portion of the other corrugated gear is received at the concave portion. Therefore, from the detected rotational torque in the rotational driving means for rotationally driving a plurality of types of corrugated gears, only a portion bent by the corrugated gear, that is, a waveform bent in a convex direction with respect to the corrugated gear. It can be measured.
  • each of the plurality of types of corrugated gears is bent in a convex direction with respect to one of the corrugated gears by outputting each detected rotational torque in the rotational driving means that rotationally drives each of the plurality of corrugated gears Not only the waveform but also the portion bent by the other corrugated gear, that is, the shape of the waveform bent in the concave direction with respect to the one corrugated gear can be measured.
  • the present invention is characterized in that it is a multidirectional corrugated material manufactured by the above-described manufacturing method. According to the present invention, multidirectional corrugated materials having various corrugated shapes can be manufactured.
  • a plurality of corrugating processes in a direction intersecting with the corrugating direction at the time of the last corrugating process are applied to the corrugated thin sheet sandwiched between plural types of corrugated gears and corrugated into the thin sheet material. It is possible to provide a manufacturing method, a corrugated material manufacturing apparatus, and a manufactured multidirectional corrugating material that are applied and manufactured to produce multi-directional corrugating materials having various corrugated shapes.
  • the block diagram of an axial direction slide-type corrugated material manufacturing apparatus The perspective view of an axial direction slide-type corrugating apparatus. Explanatory drawing about the 1st corrugating. Explanatory drawing about the 2nd corrugating process. Explanatory drawing about the corrugation process in a wide space
  • the perspective view of a 4th pattern bi-directional corrugated material The perspective view of a 5th pattern bidirectional corrugated material.
  • the perspective view of a 6th pattern bi-directional corrugated material The perspective view of the 7th pattern bidirectional corrugated material.
  • the manufacturing flowchart of a two-way corrugated material Explanatory drawing about the measurement result in the first corrugating process.
  • the partial expansion block diagram of a rotary corrugated material manufacturing apparatus The perspective view of a rotary corrugating apparatus.
  • FIG. 1 is a block diagram of an axial slide type corrugated material manufacturing apparatus 1
  • FIG. 2 is a perspective view of a corrugated portion 10
  • FIG. 3 is an explanatory view of the first corrugated portion, and FIG. The explanatory view about corrugating is shown.
  • FIG. 3 is a perspective view illustrating a state in which the corrugated material 130 is manufactured by subjecting the aluminum sheet material 120 to the first corrugation processing at the standard interval gear portion 12 of the processing gear roller 11, and
  • FIG. 4 is an explanatory diagram showing a perspective view of a situation in which the corrugated material 130 is manufactured by subjecting the corrugated material 130 to the second corrugating process at the standard interval gear portion 12 of the processing gear roller 11 to manufacture the two-way corrugated material 100.
  • FIG. 5 shows an explanatory diagram for corrugating in the wide gap gear section 13
  • FIG. 6 shows an explanatory diagram for corrugating in the narrow gap gear section 14
  • FIG. 7 is an explanatory diagram showing the interval between the processing gear rollers 11.
  • FIG. 7 is an enlarged front view of a portion surrounded by a square in FIG. 1, and FIG. 7A shows an enlarged front view of corrugating in the servo motor 16 having a clearance K of a standard interval H.
  • 7 (b) shows an enlarged front view of corrugating in the wide gap gear portion 13 where the clearance K is a wide gap H1
  • FIG. 7 (c) is a narrow gap gear portion 14 where the clearance K is a narrow gap H2.
  • the enlarged front view about the corrugating in is shown.
  • FIG. 8 shows a perspective view of the first pattern bi-directional corrugated material 100a
  • FIG. 9 shows an enlarged end surface explanatory view of the first pattern bi-directional corrugated material 100a.
  • FIG. 9A shows an end view of the AA cut portion in FIG. 8
  • FIG. 9B shows an end view of the BB cut portion
  • FIG. 9C shows an end face of the CC cut portion. The figure is shown.
  • FIG. 10 shows a perspective view of the second pattern bi-directional corrugated material 100b
  • FIG. 11 shows a perspective view of the third patterned bi-directional corrugated material 100c
  • FIG. 12 shows a perspective view of the fourth patterned bi-directional corrugated material 100d
  • 13 is a perspective view of the fifth pattern bi-directional corrugated material 100e
  • FIG. 14 is a perspective view of the sixth pattern bi-directional corrugated material 100f
  • FIG. 15 is a perspective view of the seventh pattern bi-directional corrugated material 100g. Show.
  • the axial sliding corrugated material manufacturing apparatus 1 includes a corrugated portion 10 that manufactures a corrugated corrugated material 130 (bidirectional corrugated material 100) by corrugating the aluminum sheet material 120 (the corrugated corrugated material 130).
  • the corrugated portion 10 is composed of a corrugated shape measuring portion 20 that measures the corrugated shape of the corrugated corrugated material 130 (two-way corrugated material 100) based on the rotational torque during corrugating in the corrugated portion 10.
  • the corrugating unit 10 includes processing gear rollers 11 (11a, 11b) for corrugating, and servo motors 16 (16a, 16b) for rotating and driving the processing gear rollers 11, respectively.
  • a processing gear roller slide mechanism 17 that slides the processing gear roller 11 in the axial direction (longitudinal direction X) and a box 19 that includes the processing gear roller 11, the servo motor 16, and the processing gear roller slide mechanism 17.
  • the axial direction (longitudinal direction X) described above coincides with the width direction W described later, and the corrugating direction L is orthogonal to the axial direction (longitudinal direction X).
  • the processing gear roller 11 has a gear tooth 11c in a direction orthogonal to the corrugating direction L (FIG. 3) according to the corrugated shape applied to the aluminum sheet material 120 or the like, and has a width of the aluminum sheet material 120 or the like.
  • the upper processing gear roller 11a is formed so as to be about three times as long as the gear teeth 11c mesh with each other with a clearance K (FIG. 7) corresponding to the thickness of the aluminum sheet 120 to be corrugated.
  • the lower processing gear roller 11b is formed so as to be about three times as long as the gear teeth 11c mesh with each other with a clearance K (FIG. 7) corresponding to the thickness of the aluminum sheet 120 to be corrugated.
  • the narrow gap gear portion 14, the standard gap gear portion 12, and the wide gap gear portion 13 that are each slightly longer than the width of the aluminum sheet 120 are arranged concentrically in this order in the longitudinal direction X.
  • the narrow gap gear portion 14, the standard gap gear portion 12, and the wide gap gear portion 13 are formed so that their diameters are gradually reduced in this order, and gear teeth 11c having the same shape are provided on the outer peripheral surface.
  • processing gear roller 11 is formed to be about five times as long as the width of the aluminum thin plate material 120, and is supported so as to be slidable in the longitudinal direction X with respect to the rotation support shaft 15 connected to the servo motor 16. Has been.
  • the gear teeth 11c of the processing gear roller 11 of the present embodiment in which the corrugated shape is applied to the aluminum sheet material 120 of about 0.04 mm the height of the gear teeth 11c is about 0.5 mm, the apex angle is about 32 degrees, The pitch is about 1 mm and R is about 0.25 mm.
  • the upper processing gear roller 11a and the lower processing gear roller 11b of the processing gear roller 11 configured in this way correspond to the thickness of the aluminum sheet 120 or the like on which the convex portions and concave portions of the gear teeth 11c are subjected to corrugation. It arrange
  • the clearance K in the standard interval gear portion 12 of the processing gear roller 11 is the standard interval H
  • the clearance K in the wide interval gear portion 13 is the wide interval H1
  • the clearance K in the narrow interval gear portion 14 is the narrow interval H2.
  • the standard interval H is the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b, and the thickness of the aluminum sheet 120 and the height of the gear teeth 11c of the processing gear roller 11. It is the interval set according to.
  • the wide interval H1 is an interval larger than the standard interval H, and is an interval in which the aluminum thin plate member 120 is interposed between the gear teeth 11c of the processing gear roller 11.
  • the narrow interval H2 is an interval narrower than the standard interval H, and is slightly larger than the thickness of the aluminum sheet 120.
  • the axially sliding corrugated material manufacturing apparatus 1 of this embodiment that applies a corrugated shape to an aluminum thin plate material 120 having a thickness of about 0.04 mm has a standard interval H of about 0.32 mm and a wide interval H1 of about 0. .45 mm and the narrow interval H2 is about 0.28 mm.
  • the servo motor 16 is a servo motor that independently drives the pair of machining gear rollers 11 to rotate.
  • the upper servo motor 16a that rotationally drives the upper machining gear roller 11a and the lower servo motor that rotates the lower machining gear roller 11b.
  • the servo motor 16b is connected to a control device 21 in the finished shape measuring unit 20 described later.
  • the upper servomotor 16a and the lower servomotor 16b that independently rotate the processing gear roller 11 rotate so that the rotation of the upper processing gear roller 11a and the lower processing gear roller 11b is synchronized.
  • the rotation is controlled by the control device 21 of the unit 20.
  • the processing gear roller slide mechanism 17 is a mechanism that slides the processing gear roller 11 supported to be slidable in the longitudinal direction X with respect to the rotation support shaft 15 in the longitudinal direction X.
  • the control device 21 controls the slide position of the processing gear roller 11.
  • the standard interval gear portion 12 when corrugating is performed with the standard interval gear portion 12 with the clearance K being the standard interval H, the standard interval gear portion 12 is located at the center position of the rotation support shaft 15 that is the front face of the insertion port 19a.
  • the processing gear roller 11 is slid by the processing gear roller slide mechanism 17. Further, when corrugating is performed with the wide gap gear portion 13 having the clearance K of the wide gap H1, the machining gear roller 11 is moved so that the wide gap gear portion 13 is at the center position of the rotation support shaft 15 as shown in FIG.
  • the narrow gear portion 14 having the clearance K having the narrow interval H2 the narrow gear portion 14 is rotated by the rotation support shaft 15 as shown in FIG.
  • the processing gear roller 11 is slid by the processing gear roller slide mechanism 17 so as to be in the center position.
  • the finished shape measuring unit 20 includes a control device 21, a display device 22, a storage device 23, a torque detection sensor 24, an operation device that is an input device such as a mouse and a keyboard, and a storage medium reading device that reads various storage media such as a DVD-RAM. Or a storage medium read / write device and a transmission / reception device configured by a communication device such as a LAN board connectable to a network.
  • the control device 21 includes a CPU, a ROM, and a RAM, and executes various control processes according to a program stored in the storage device 23.
  • the display device 22 is a device configured by a liquid crystal monitor, a CRT display, or the like to display various information.
  • the storage device 23 is composed of a hard disk or the like, and includes various data including detected rotational torque data detected by the torque detection sensor 24 and reference rotational torque temporal change data BL (see FIGS. 17A and 18A).
  • various programs including a temporal change data calculation program for calculating temporal change data of the detected rotational torque and a control program or a determination program for controlling various devices are stored.
  • the torque detection sensor 24 (24a, 24b) is a sensor that is connected to the control device 21 and detects the rotational torque of the servo motor 16 during corrugating, and is connected to the control device 21.
  • the upper torque detection sensor 24a is connected to the upper servomotor 16a
  • the lower torque detection sensor 24b is connected to the lower servomotor 16b to detect the respective rotational torques and detect detected rotational torque data. Is transmitted to the control device 21.
  • the rotation angle of the servo motor 12 is detected by an encoder (not shown), and the rotation torque detected by the torque detection sensor 24 and the rotation angle are associated with each other and transmitted to the control device 21.
  • the manufacturing method of the two-way corrugated material 100 using the axial direction slide-type corrugated material manufacturing apparatus 1 having such a configuration and the measurement of the corrugated shape will be described.
  • the two-way corrugated material 100 performs the first corrugating process on the aluminum sheet material 120 to produce the corrugated corrugated material 130.
  • it is manufactured by applying a second corrugating process.
  • the measurement of the corrugated shape is performed based on the detected rotational torque of the servomotor 16 during each corrugation process.
  • the corrugated shape of the corrugated corrugated material 130 applied by the processing gear roller 11 is an upward convex shape and a downward convex shape corresponding to the shape of the gear teeth 11c of the processing gear roller 11 (12, 13, 14), as shown in FIG.
  • the shape is a waveform shape that is alternately continuous in the corrugating direction L, but the processing gear roller 11 is slid by the processing gear roller slide mechanism 17 so that the clearance K has different standard interval gear portion 12, wide interval gear portion 13 and narrow
  • Various corrugated shapes can be formed on the two-way corrugated material 100 manufactured by the above-described manufacturing method by corrugating with one of the spacing gear portions 14.
  • the corrugation is performed by any one of the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 having different clearances K during the first corrugation processing for processing the corrugated corrugated material 130 from the aluminum sheet material 120.
  • the corrugation is performed by any one of the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 having different clearances K in the second corrugation processing for processing the bi-directional corrugated material 100 from the corrugated corrugated material 130
  • the corrugated bi-directional corrugated material 100 having various patterns shown in FIGS. 8 and 10 to 15 has a width direction W (lower right to upper left in the drawing) as a processing direction at the time of the first corrugating process.
  • the processing direction at the time of the second corrugating process orthogonal to the processing direction at the time of the first corrugating process is defined as the depth direction V (lower left to upper right in the figure), and further the thickness direction D of the two-way corrugated material 100 is illustrated in the figure. It is shown in the vertical direction.
  • the first pattern bi-directional corrugated material 100a has a wavy shape having ridges 101 that protrude in a mountain shape when seen from the side in the width direction W at regular intervals.
  • the raised portion 101 has a narrow first convex portion 102 and a narrower first concave portion 103 in the width direction W repeatedly (see FIG. 9B).
  • the low part between the said protruding parts 101 it is the shape which repeats the wide 2nd convex part 107 and the narrower 2nd recessed part 108 in the width direction W (refer FIG.9 (c)).
  • the first convex portion 102 has a shape in which the top surface 104 is slightly curved downward and both sides 105 are inverted, and the first concave portion 103 has a flat bottom portion 106.
  • the second convex portion 107 has a flat top surface 109
  • the second concave portion 108 has a shape in which the bottom surface 110 is slightly curved upward and both sides 111 have a square shape.
  • the raised portion 101, the first convex portion 102, the first concave portion 103, the second convex portion 107, and the second concave portion 108 constitute a corrugated shape of the first pattern bi-directional corrugated material 100a.
  • the waveform of the corrugated corrugated material 130 formed by the standard interval gear portion 12 with the clearance K being the standard interval H at the time of the first corrugation is the standard interval at which the clearance K is the standard interval H at the time of the second corrugation.
  • the top surface 104 is slightly curved downward, and both sides 105 are formed in a reverse letter C shape.
  • a corrugated shape having a certain first protrusion 102 is formed.
  • the first pattern bi-directional corrugated material 100a formed when corrugated with the standard interval gear portion 12 with the clearance K being the standard interval H in both the first corrugating process and the second corrugating process.
  • the second pattern bi-directional corrugated material 100b shown in FIG. 10 can be formed.
  • the second pattern two-way corrugated material 100b has a waveform having a low height of the corrugated corrugated material 130 formed by the wide interval gear portion 13 having a clearance K having a wide interval H1 during the first corrugation process.
  • the wide gap gear portion 13 having the clearance K of the wide gap H1 is crushed when forming a low waveform, the substantially dome-shaped convex portions 116a and concave portions 116b are alternately arranged in a lattice shape in plan view.
  • a corrugated shape that is, a corrugated shape arranged in a sine wave shape in the width direction W and the depth direction V is obtained.
  • the low-profile waveform formed by the wide-gap gear portion 13 with the clearance K having the wide interval H1 is higher than the waveform formed by the standard-distance gear portion 12 with the clearance K having the standard interval H. It shows that the waveform is low.
  • the third pattern bi-directional corrugated material 100c crushes the low corrugation of the corrugated corrugated material 130 formed by the wide gap gear portion 13 having a clearance K having a wide gap H1 during the first corrugation process.
  • the narrow gap gear portion 14 with the clearance K being the narrow gap H2 forms a high waveform
  • the high transverse wave 113 having the concave portions 113a spaced at a predetermined interval on the top is predetermined in the depth direction V.
  • the corrugated shape is arranged at intervals.
  • the high waveform formed by the narrow gap gear portion 14 with the clearance K being the narrow interval H2 is higher than the waveform formed by the standard interval gear portion 12 having the clearance K being the standard interval H. It shows a high waveform.
  • corrugating is performed with the wide interval gear portion 13 having the clearance K at the first corrugation processing with the wide interval H1
  • corrugating processing is performed with the standard interval gear portion 12 with the clearance K at the second corrugation processing being the standard interval H.
  • the third pattern bi-directional corrugated material 100c having the same shape can be formed although the height of the transverse wave 113 is reduced.
  • the third pattern bi-directional corrugated material 100c is corrugated by the narrow gap gear portion 14 having a clearance K of a narrow interval H2 in the first corrugating process, and the clearance K in the second corrugating process is a wide gap H1 having a wide interval H1.
  • a fourth pattern bi-directional corrugated material 100d shown in FIG. 16 can be formed.
  • the fourth pattern bi-directional corrugated material 100d is a second corrugated corrugated top portion of the corrugated material 130 formed by the narrow gap gear portion 14 having a clearance K of a narrow gap H2 during the first corrugation process.
  • the wide gap gear portion 13 with the clearance K having a wide gap H1 is crushed into a wave shape with a low height, so that a high vertical wave 114 having a concave portion 114a with a predetermined gap at the top is formed in the width direction W.
  • the corrugated shape is arranged at predetermined intervals.
  • the fourth pattern bi-directional corrugated material 100d having the same shape can be formed although the height of the longitudinal wave 114 is reduced.
  • the first corrugating process and the second corrugating process with respect to the first pattern two-way corrugated material 100a when the corrugating process is performed with the standard interval gear portion 12 having the clearance K of the standard interval H, the first corrugating process and When corrugation is performed by the narrow gap gear portion 14 having a clearance K of the narrow gap H2 during the second corrugation, as shown in FIG. 13, the width direction W and depth are larger than those of the first pattern bi-directional corrugated material 100a.
  • a fifth pattern bi-directional corrugated material 100e having a corrugated shape having a large direction V and thickness direction D can be formed.
  • the sixth pattern bi-directional corrugated material having a corrugated shape in which the depth direction V is the same as that of the first pattern bi-directional corrugated material 100a but the width direction W and the thickness direction D are large. 100f can be formed.
  • the corrugation is performed with the standard interval gear portion 12 having the clearance K at the first corrugation processing with the standard interval H, and the corrugation is processed with the narrow interval gear portion 14 with the clearance K being the narrow interval H2 at the second corrugation processing.
  • the seventh pattern bi-directional corrugate having a corrugated shape in which the width direction W is the same as that of the first pattern bi-directional corrugated material 100 a but the depth direction V and the thickness direction D are large. 100 g of material can be formed.
  • the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b is made of aluminum during the first corrugating process and the second corrugating process.
  • the corrugation is performed by any one of the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 so that the standard interval H, the wide interval H1, and the narrow interval H2 according to the thickness of the thin plate material 120 are obtained.
  • various corrugated bi-directional corrugated materials 100 can be configured as shown in Table 1 below.
  • the bi-directional corrugated material 100 configured as described above has improved workability according to the corrugated shape, in particular, an LDR (Limiting Drawing Ratio) or a limiting drawing ratio is high, drawing property is good, and complicated. Even fine processing is possible.
  • LDR Liting Drawing Ratio
  • the airflow flowing along the surface of the two-way corrugated material 100 can be adjusted according to the corrugated shape of the two-way corrugated material 100 and the depth in the thickness direction D, as described above, By adjusting the clearance K, the two-way corrugated material 100 having a desired heat shielding effect can be manufactured.
  • the two-way corrugated material 100 is composed of the aluminum thin plate material 120, but may be composed of a paper plate or a resin plate.
  • FIGS. 16 to 18 shows a manufacturing flow chart of the bi-directional corrugated material 100
  • FIG. 17 shows an explanatory diagram of the measurement result of the first corrugation
  • FIG. 18 explains the measurement result of the second corrugation. The figure is shown.
  • FIGS. 17 (a) and 18 (a) show graphs of measurement results of each corrugation
  • FIG. 17 (b) shows a result of the corrugated corrugated material 130 from the perspective direction in the first corrugation.
  • An image is shown and FIG.18 (b) has shown the completed image from the perspective direction of the two-way corrugated material 100 in a 2nd corrugation process.
  • the temporal change data of the rotational torque when a predetermined corrugated shape is processed is stored in the storage device 23 as the reference rotational torque temporal change data BL that is a reference for pass / fail judgment (step s1). .
  • the storage device 23 stores reference rotational torque temporal change data (comparison reference information BL1, BL2) in the first corrugating process and the second corrugating process corresponding to the standard interval H, the wide interval H1, and the narrow interval H2. To do.
  • the reference rotational torque temporal change data BL in step s1 is not stored every time the bi-directional corrugated material 100 is manufactured, and the reference rotational torque temporal change data BL already stored in the storage device 23 is called. Good.
  • a plurality of reference rotational torque temporal change data BL is stored in the storage device 23 in accordance with the corrugated shape, the number of corrugating processes, or the material strength and thickness of the aluminum sheet 120, and is selected before processing. May be.
  • the clearance K at the time of the first corrugating process corresponding to the corrugated shape is suitable among the standard interval H, the wide interval H1, and the narrow interval H2.
  • the machining gear roller slide mechanism 17 is controlled and driven so that the gap gear portion is located at the center position of the rotation support shaft 15 (step s2).
  • the aluminum sheet material 120 is introduced from the inlet 19 a (FIG. 2) of the corrugating part 10, and the first corrugation process is performed on the aluminum sheet material 120.
  • the rotational torque of the servo motor 16 at the time of the first corrugating process is detected by the torque detection sensor 24 of the finished shape measuring unit 20 and stored in the storage device 23 (step s3).
  • the aluminum sheet material 120 introduced from the insertion port 19 a passes between the upper processing gear roller 11 a and the lower processing gear roller 11 b, thereby forming the gear teeth 11 c of the processing gear roller 11. It is carried out from the back side of the box 19 as a corrugated corrugated material 130 that has been bent according to its shape.
  • the control device 21 that has received the rotational torque of the servo motor 16 at the time of the first corrugating process detected by the torque detection sensor 24 in step s3 as the detected rotational torque is obtained by the temporal change data calculation program stored in the storage device 23. Calculation of the detected rotational torque is performed, and the graph is displayed on the display device 22 as shown in FIG. 17 (step s4).
  • the calculated temporal change data includes both the upper servomotor 16a that rotationally drives the upper processing gear roller 11a and the lower servomotor 16b that rotationally drives the lower processing gear roller 11b.
  • the graph is displayed as the time-dependent change data of the detected rotational torque.
  • the upward convex portion of the calculated temporal change data in the upper servomotor 16a indicates the corrugated shape on the upper surface side of the corrugated corrugated material 130, and conversely, the downward convex portion of the calculated temporal change data in the lower servomotor 16b. Shows the corrugated shape on the lower surface side of the corrugated corrugated material 130.
  • the control device 21 compares the calculated temporal change data with the first corrugating reference rotational torque temporal change data BL1 stored in the storage device 23 (step s5), and makes a pass / fail determination by the determination program. At this time, when the calculated temporal change data exceeds the range of the first corrugating reference rotational torque temporal change data BL1 (step s6: No, including the defect determination area shown in FIG. 15A), this wavy The corrugated material 130 is determined to be unacceptable (step s16), and the process ends. Conversely, when the calculated temporal change data is within the range of the first corrugation reference rotational torque temporal change data BL1 (step s6: Yes, only in the good judgment region shown in FIG. 15A), this corrugated corrugated material 130 is determined to be acceptable.
  • the clearance K at the time of the 2nd corrugation process according to the corrugate shape to manufacture is the standard space
  • the processing gear roller 11 is slid by controlling the processing gear roller slide mechanism 17 so that the gear portion having an appropriate interval in the narrow interval H2 is at the center position of the rotation support shaft 15 (step s7).
  • the processing gear roller 11 After the processing gear roller 11 is completely slid by the processing gear roller slide mechanism 17, the direction in which the continuous direction of the waveform formed by the first corrugating process is orthogonal to the corrugating process direction L as shown in FIG. Then, the corrugated corrugated material 130 is introduced from the introduction port 19a.
  • the rotational torque of the servo motor 16 at the time of the second corrugating process is detected by the torque detection sensor 24 of the finished shape measuring unit 20 and stored in the storage device 23 (step s8).
  • the control device 21 that has received the rotational torque of the servo motor 16 at the time of the second corrugating process detected by the torque detection sensor 24 in step s8 as the detected rotational torque is detected by the time-dependent change data calculation program stored in the storage device 23.
  • Torque calculation time-varying data is calculated and displayed on the display device 22 as a graph as shown in FIG. 18 (step s9).
  • the calculated temporal change data is similar to the calculated temporal change data at the time of the first corrugating process.
  • the lower convex portion of the calculated time-dependent change data in the lower servo motor 16b shows the corrugated shape on the lower surface side of the two-way corrugated material 100. That is, the two-way corrugation shown in FIG. 9A is obtained by combining the upward convex portion of the calculated temporal change data in the upper servomotor 16a and the downward convex portion of the calculated temporal change data in the lower servomotor 16b.
  • the corrugated shape of the two-way corrugated material 100 shown in the end view of the AA cut portion of the material 100 is shown.
  • the control device 21 compares the calculated temporal change data with the second corrugating reference rotational torque temporal change data BL2 stored in the storage device 23 (step s10), and makes a pass / fail determination by the determination program. At this time, when the calculated temporal change data exceeds the range of the second corrugation reference rotational torque temporal change data BL2 (step s11: No), the two-way corrugated material 100 is determined to be rejected (step s16). . Conversely, when the calculated temporal change data is within the range of the second corrugating reference rotational torque temporal change data BL2 (step s11: Yes, only the good judgment region shown in FIG. 16A), these two directions The corrugated material 100 is determined to be acceptable.
  • the processing gear roller 11 that sandwiches the aluminum thin plate material 120 and corrugates it, the standard interval gear portion 12, the wide interval gear portion 13, and Servo motor 16 that includes narrow gap gear portion 14 and rotationally drives machining gear roller 11, and machining gear roller slide that switches standard gap gear portion 12, wide gap gear portion 13, and narrow gap gear portion 14 in machining gear roller 11.
  • corrugation in the direction intersecting the corrugated material can be switched between the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 by the processing gear roller slide mechanism 17, so that various corrugated bi-directional corrugated materials are provided. 100 can be manufactured.
  • the processing gear roller 11 that corrugates by sandwiching the aluminum sheet material 120 includes the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 having different diameters of the gear body, and the processing gear roller 11 Using the axially slidable corrugated material manufacturing apparatus 1 provided with a servo motor 16 that rotates and a processing gear roller slide mechanism 17 that switches between the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14, respectively. Two-way corrugation is performed by applying a second corrugating process in a direction intersecting the corrugating process direction to the corrugated corrugated material 130 sandwiched between the processing gear rollers 11 and corrugated into the aluminum sheet 120.
  • the material 100 can be manufactured.
  • corrugation pattern processed by corrugation can be adjusted by enabling the processing gear roller slide mechanism 17 to switch to another processing gear roller 11 for each corrugation processing. Therefore, various corrugated two-way corrugated materials 100 can be manufactured.
  • the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 are arranged on the same axis of the processing gear roller 11, and the standard interval gear portion 12 and the wide interval gear portion 13 are arranged by the processing gear roller slide mechanism 17.
  • the narrow gap gear part 14 can be switched by sliding in the longitudinal direction X with a simple structure, and the bi-directional corrugated material 100 having a plurality of types of corrugated shapes can be manufactured.
  • the axial slide type corrugated material manufacturing apparatus 1 performs corrugation processing on the aluminum sheet material 120 sandwiched between the torque detection sensor 24 that detects the detected rotational torque of each servo motor 16 as the detected rotational torque and the processing gear roller 11. And a display device 22 for outputting the detected rotational torque at the time, and measuring the waveform shape by corrugation based on the change over time of the detected rotational torque output by the display device 22, thereby providing a standard interval in the processing gear roller 11. Measuring the overall shape of the corrugated shape of the bi-directional corrugated material 100 formed by corrugating with the aluminum sheet 120 sandwiched between the gear portion 12, the wide gear portion 13 and the narrow gear portion 14 while corrugating. Can do.
  • the aluminum sheet material 120 is used in corrugating by detecting the rotational torque of the servo motor 16 that rotationally drives the processing gear roller 11 that sandwiches the aluminum sheet material 120 and corrugating it as the detected rotational torque.
  • the load when bending can be detected.
  • the rotational torque varies depending on the bending angle in V-bending. Under a constant plate thickness, when the bending angle in V bending is large, the rotational torque increases. Conversely, when the bending angle in V bending is small, the rotational torque decreases.
  • the corrugated aluminum sheet material 120 and the corrugated corrugated material are obtained by grasping the change over time of the detected rotational torque in which the bending angle increases when the rotational torque is high and the bending angle decreases when the rotational torque is low. It is possible to measure the overall shape of 130 corrugated shapes.
  • the aluminum thin plate material 120 is a convex portion of the gear teeth 11c of the upper processing gear roller 11a (lower processing gear roller 11b).
  • the aluminum sheet material 120 bent by the convex portion of the gear teeth 11c of the lower processing gear roller 11b (upper processing gear roller 11a) is received.
  • the upper side Not only the waveform bent in the convex direction with respect to the processing gear roller 11a (lower processing gear roller 11b), but also the portion bent by the lower processing gear roller 11b (upper processing gear roller 11a), that is, the upper processing gear roller 11a (lower side).
  • the shape of the waveform bent in the concave direction with respect to the processing gear roller 11b) can also be measured.
  • the above-mentioned axial direction slide type corrugated material manufacturing apparatus 1 was an apparatus in which the corrugated portion 10 and the finished shape measuring portion 20 were integrated, the corrugated portion 10 and the finished shape measuring portion 20 were independent. A configuration may be sufficient and the shape measurement part 20 may be mounted with respect to the existing corrugating part 10.
  • the corrugating process is performed twice on the aluminum sheet material 120.
  • the corrugated corrugated material 130 obtained by performing the corrugating process once on the aluminum sheet material 120 may be used as a product. And you may give corrugation processing 3 times or more.
  • the machining direction of the multiple corrugating operations may be not only the direction orthogonal to the immediately preceding corrugating machining direction, but also the direction intersecting at other angles. Corrugating may be applied in the same direction.
  • processing gear roller 11 is slid by the processing gear roller slide mechanism 17 to switch the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14, and the clearance K is set as a desired interval during the first corrugation processing and Although the second corrugating process was performed, the processing gear roller slide mechanism 17 is controlled and driven in the middle of the first corrugating process and the second corrugating process, and the standard interval gear part 12, the wide interval gear part 13, and the narrow interval gear are driven.
  • the interval of the clearance K may be set as a desired interval by switching the part 14.
  • the width direction W and depth of the two-way corrugated material 100 are changed.
  • a two-way corrugated material 100 whose corrugated shape changes midway in the direction V can be manufactured. Accordingly, when the corrugated bi-directional corrugated material 100 is three-dimensionally deformed, a corrugated shape capable of exhibiting desired performance for each part can be set, and a corrugated material having a desired shape can be manufactured.
  • the machining gear roller 11 is slid by the machining gear roller slide mechanism 17 to switch the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 so that the clearance K becomes a desired interval.
  • the corrugation processing is performed, but the processing gear roller slide mechanism 17 slides the insertion port 19a without sliding the processing gear roller 11, and the aluminum thin plate material 120 introduced from the insertion port 19a has a desired interval.
  • Corrugating may be performed in any one of the portion 12, the wide gap gear portion 13, and the narrow gap gear portion 14.
  • the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 in the processing gear roller 11 use the same gear teeth 11c to make the diameter of the gear body of the processing gear roller 11 different so that the clearance K is standardized.
  • the interval H, the wide interval H1, and the narrow interval H2 are used, in the processing gear roller 11 having the same diameter, the gear teeth 11c having different gear tooth heights are used, and the standard interval gear portion 12, the wide interval gear portion 13, and the like.
  • the narrow gap gear portion 14 may be configured.
  • the processing gear roller 11 is supported by the rotation support shaft 15 connected to the servo motor 16 and formed to have a length about five times that of the aluminum thin plate material 120.
  • the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 are switched by sliding with the roller slide mechanism 17, but the rotation support shaft 15 is formed to have the same length as the processing gear roller 11 and processed.
  • the gear roller 11 and the servo motor 16 may be slid by the machining gear roller slide mechanism 17 to switch the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14.
  • FIG. It demonstrates with thru
  • FIG. 19 is a partially enlarged block diagram of the rotary corrugated material manufacturing apparatus 4
  • FIG. 20 is a perspective view of the rotary corrugating apparatus 40
  • FIGS. 21 and 22 illustrate corrugating in the corrugating section 40.
  • FIG. 23 shows an explanatory diagram of rotation switching of the processing gear roller.
  • FIG. 19 shows a partially enlarged schematic view of the corrugated portion 40 in the rotary corrugated material manufacturing apparatus 4.
  • FIG. 21A shows a schematic view of a state in which corrugation is performed by the standard interval gear portion 12a of the processing gear roller 11, and
  • FIG. 21B shows a state after corrugation processing by the standard interval gear portion 12a of the processing gear roller 11 is performed.
  • FIG. 21 (c) shows a schematic diagram of a state in which the machining gear roller 11 is moved up and down
  • FIG. 21 (c) shows a schematic diagram of a state in which the machining gear roller 11 is reversely rotated for corrugating again at the standard interval gear portion 12a of the machining gear roller 11 moved up and down.
  • FIG. 22 (a) is a schematic diagram showing a state in which the standard interval gear portion 12a of the reversely rotated processing gear roller 11 is moved up and down to corrugate again
  • FIG. 22 (b) is a diagram of the standard interval gear portion 12a of the processing gear roller 11.
  • FIG. 22 (c) shows a schematic view of the state of corrugating again
  • FIG. 22 (c) shows a state after corrugating at the standard interval gear portion 12a of the processing gear roller 11. It shows a schematic view of a state in which vertically moving the Engineering Giarora 11.
  • FIG. 23B shows a schematic diagram of the state of corrugating
  • the left diagram of FIG. 23B shows a schematic diagram of switching rotation for switching from the narrow gap gear portion 14a to the wide gap gear portion 13a
  • FIG. The right figure has shown the schematic of the state which corrugates by the switched wide space
  • the narrow gap gear portion 14, the standard gap gear portion 12 and the wide gap gear portion 13 having different gear main body diameters are arranged in the longitudinal direction X, and the machining gear roller 11 is slid with respect to the rotation support shaft 15, and the clearance K is selected from the standard interval H, the wide interval H1, and the narrow interval H2, thereby forming a desired corrugated shape.
  • the corrugation processing unit 40 of the rotary corrugated material manufacturing apparatus 4 assigns the outer peripheral surface of the processing gear roller 11 having a length slightly longer than the width of the aluminum sheet material 120 into three equal parts, and gear teeth in each range. 11c is adjusted to obtain a standard interval gear portion 12a, a wide interval gear portion 13a, and a narrow interval gear portion 14a, and a standard interval gear portion 12a, a wide interval gear portion 13a, and an upper processing gear roller 11a and a lower processing gear roller 11b.
  • the processing gear roller 11 is rotated so that each of the narrow gap gear portions 14a faces each other, and corrugation processing is performed by the gear portions, thereby forming various corrugated shapes.
  • a separation servomotor 18 that moves the processing gear roller 11 and the standard interval gear unit 12 integrally in the separation direction is provided.
  • the gear teeth 11c of the processing gear roller 11 of the present embodiment in which the corrugated shape is applied to the thin aluminum plate material 120 of about 0.04 mm has a height of about 0.48 mm, an apex angle of about 32 degrees, and R in the standard interval gear portion 12a.
  • the height is about 0.25 mm
  • the height of the wide gap gear portion 13a is about 0.14 mm
  • the apex angle is about 71 degrees
  • the radius R is about 0.25 mm
  • the height of the narrow gap gear portion 14a is about 0.60 mm and the apex angle is about 21 degrees.
  • R is about 0.25 mm.
  • the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b is a standard interval H when the standard interval gear portions 12a face each other, and a wide interval H1 when the wide interval gear portions 13a face each other.
  • interval H2 is the case where the narrow space
  • the standard interval H, the wide interval H1, and the narrow interval H2 are intervals in the above-described axially sliding corrugated material manufacturing apparatus 1, and thus detailed description thereof is omitted.
  • the processing gear roller 11 of the corrugating section 40 is divided into three equal parts in the circumferential direction, when the processing gear roller 11 is simply rotated, the gear tooth height after corrugating at the gear section at a desired interval is obtained. Corrugation is performed with different gear parts.
  • the processing gear roller 11 is rotated and corrugated by any one of the standard gap gear part 12a, the wide gap gear part 13a, and the narrow gap gear part 14a (see FIG. 21 (a)). )),
  • the upper processing gear roller 11a and the standard interval gear portion 12a are moved upward by the upper processing gear roller separation servomotor 18a, and the lower processing gear roller
  • the processing gear roller 11 is separated from the aluminum thin plate material 120 (the corrugated corrugated material 130) by moving the lower processing gear roller 11b and the standard interval gear portion 12b downward by the separation servo motor 18b (FIG. 21). (C)).
  • the processing gear roller 11 separated from the aluminum sheet material 120 (the corrugated corrugated material 130) is rotated so that the upper processing gear roller 11a and the lower processing gear roller 11b face the start positions of the gear portions that have been corrugated so far.
  • the processing gear roller 11 is moved to a predetermined position by the separation servo motor 18, that is, the clearance K is moved to a predetermined interval (FIG. 22 (b)), and the gear The corrugating process at the part is resumed (FIG. 22C).
  • the processing gear roller 11 is rotated by the servo motor 16 to perform corrugation, and when the range of the gear section is finished, the processing is performed by the separating servo motor 18 and rotating to the start position. Resume machining. That is, the processing gear roller 11 is repeatedly rotated to form a desired corrugated shape.
  • the processing gear roller 11 is separated by the separation servo motor 18 in order to repeat the corrugation processing in the range of the gear portion after the end.
  • the processing gear roller 11 is once separated from the predetermined position where the gear teeth 11c are engaged with each other by the separating servo motor 18, and the processing gear roller 11 is rotated until the start position of the desired gear portion opposes.
  • the machining gear roller 11 is moved by the separation servomotor 18 to a predetermined position where the meshing gears are engaged with each other and switched.
  • the processing gear roller 11 in a state in which the standard interval gear portion 12a is engaged is separated by the separation servo motor 18 (FIG. 23 (a) left figure).
  • the machining gear roller 11 is rotated by the servomotor 16 until the start position of the narrow gap gear portion 14a faces.
  • the processing gear roller 11 is brought close to the separation servo motor 18 to engage the gear teeth 11c of the narrow gap gear portion 14a (FIG. 23 (a) right) Figure). In this way, the standard interval gear portion 12a can be switched to the narrow interval gear portion 14a.
  • the machining gear roller 11 in a state where the narrow gap gear portion 14a is engaged is separated by the separation servo motor 18 (FIG. 23 (b) left figure).
  • the machining gear roller 11 is rotated by the servo motor 16 until the start position of the wide gap gear portion 13a faces.
  • the processing gear roller 11 is brought close to the separation servomotor 18 to engage the gear teeth 11c of the wide gap gear portion 13a (FIG. 23 (b) right) Figure). In this way, the narrow gap gear portion 14a can be switched to the wide gap gear portion 13a.
  • the operation of switching from the standard interval gear portion 12a to the narrow interval gear portion 14a and the narrow interval gear portion 14a to the wide interval gear portion 13a has been described. It is possible to switch to the part 13a, and even if the reverse switching pattern is used, it is possible to switch to the desired gear part by the same switching operation. Accordingly, the two-way corrugated material 100 having various corrugated shapes can be manufactured by easily switching to the gear portion having the desired clearance K.
  • the standard interval gear portion 12a, the wide interval gear portion 13a, and the narrow interval gear portion 14a having the gear teeth 11c having different shapes are arranged for each corresponding circumferential angle in the processing gear roller 11, and processed by the servo motor 16.
  • Each of the gear rollers 11 is repeatedly rotated by a predetermined angle, and the standard interval gear portion 12 and the separation servo motor 18 cooperate with each other, so that the standard interval gear portion 12a, the wide interval gear portion 13a, and the narrow interval gear portion in the processing gear roller 11 are obtained.
  • 14a can be switched by rotating the corresponding circumferential angle with a compact structure to switch between the standard interval gear portion 12a, the wide interval gear portion 13a, and the narrow interval gear portion 14a. Can be manufactured.
  • the thin plate material of the present invention corresponds to the aluminum thin plate material 120 and the corrugated corrugated material 130
  • the pair of corrugated gears correspond to the processing gear roller 11, the upper processing gear roller 11a, and the lower processing gear roller 11b
  • a plurality of types with different gear tooth shapes correspond to the standard interval gear portions 12, 12a, the wide interval gear portions 13, 13a, and the narrow interval gear portions 14, 14a
  • the rotation driving means corresponds to the servo motor 16, the upper servo motor 16a, and the lower servo motor 16b.
  • the gear switching means corresponds to the processing gear roller slide mechanism 17 and the separating servo motor 18,
  • the gear slide means corresponds to the processing gear roller slide mechanism 17,
  • the gear switching means for switching by rotating the angle in the circumferential direction corresponds to the separating servo motor 18,
  • the corrugated material manufacturing apparatus corresponds to the corrugated material manufacturing apparatuses 1 and 4
  • Corrugation processing corresponds to corrugation processing
  • Corrugation processing direction corresponds to corrugation processing direction L
  • At the time of the last corrugation processing it corresponds to the first corrugation processing shown in step s3
  • the multi-directional corrugating material includes a bi-directional corrugated material 100, a first patterned bi-directional corrugated material 100a, a second patterned bi-directional corrugated material 100b, a third patterned bi-directional corrugated material 100c, a fourth patterned bi-directional corrugated material 100d, Corresponding to 5 pattern bi-directional corrugated material 100e, 6th pattern bi-directional cor
  • control device 21, the storage device 23, and the corrugated processing units 10, 40 constitute the axial slide type corrugated material manufacturing devices 1, 4, that is, without the torque detection sensor 24, the rotational torque of the servo motor 16. Without detecting this, the clearance K may be adjusted by the processing gear roller slide mechanism 17 to produce the desired corrugated bi-directional corrugated material 100.
  • step s5 and s9 only the corrugated corrugated material 130 (two-way corrugated material 100) is determined to be rejected, but it is determined to be rejected in comparison with the reference rotational torque temporal change data BL.
  • the log data for identifying the part may be accumulated, or marking may be performed, and the part that has passed the other pass determination may be used as the product.
  • the detected rotational torque detected by the torque detection sensor 24 is stored in the storage device 23, but may be stored in the RAM of the control device 21 that temporarily stores it.
  • the change with time of the detected rotational torque when corrugated is displayed on the display device 22, not only the display device 22 but also a print output or a numerical value may be displayed.
  • the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 in the corrugated portion 10, and the standard interval gear portion 12a, the wide interval gear portion 13a and the narrow interval gear portion 14a in the corrugated portion 40 are opposed to each other.
  • the corrugation processing is performed by selecting the clearance K.
  • the upper processing gear roller 11a is configured such that the upper processing gear roller 11a is the standard interval gear portion 12 and the lower processing gear roller 11b is the narrow interval gear portion 14.
  • the lower processing gear roller 11b may be corrugated by changing the facing gear portions.
  • the corrugating process is performed by changing the gear portions facing each other between the upper processing gear roller 11a and the lower processing gear roller 11b, so that the two-way corrugated material 100 having different corrugated shapes can be formed.
  • the processing gear roller 11 of the corrugating section 10 includes a standard interval gear section 12, a wide interval gear section 13, and a narrow interval gear section 14, and the processing gear roller 11 of the rotary corrugating apparatus 40 includes a standard interval gear section. 12a, wide gap gear part 13a, and narrow gap gear part 14a are provided, but the invention is not limited to this, and it is sufficient that at least two kinds of gear parts are provided. For example, four or more kinds of gear parts may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a manufacturing method that carries out waving processing with different processing directions a plurality of times on thin sheet material sandwiched between a plurality of types of waving gears and manufactures multidirectional waved material with various wave shapes, a device for manufacturing waved material, and multidirectional waved material that is manufactured. On a pair of processing gear rollers (11) that sandwich and waving process an aluminum thin sheet material (120) are provided standard gap gear parts (12), wide gap gear parts (13), and narrow gap gear parts (14) for which the diameter of a gear main body differs. To manufacture a bidirectional corrugated material (100) from aluminum thin sheet material (120) using an axial direction slide type corrugated material manufacturing device (1) provided with servomotors (16) that rotatably drive each of the processing gear rollers (11) and processing gear roller slide mechanisms (17) that switch processing gear rollers (11), the standard gap gear parts (12), wide gap gear parts (13), and narrow gap gear parts (14) can be switched by the processing gear roller slide mechanism (17).

Description

多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置Multi-directional corrugated material manufacturing method, multi-directional corrugated material, and corrugated material manufacturing apparatus
 この発明は、例えば複数方向のコルゲート加工が施された多方向波付け材、その製造方法、及び波付け材製造装置に関する。 The present invention relates to a multi-directional corrugated material subjected to, for example, multi-directional corrugation, a manufacturing method thereof, and a corrugated material manufacturing apparatus.
 薄板材に波付け加工された波付け材について、高性能化や多様化に伴って、様々な波付け形状の波付け材が提案されている。 
 例えば、特許文献1に記載の波付け材の製造方法は、金属シートに対して二回の波付け加工を施すが、第2回目の波付け加工の方向を第1回目の波付け加工の方向に対して少なくとも10°の角度で傾斜させることにより、一方向に内曲げ側壁を有する波付け材を形成することができるとされている。
With regard to the corrugated material that has been corrugated into a thin plate material, corrugated materials with various corrugated shapes have been proposed as performance has increased and diversified.
For example, the manufacturing method of the corrugated material described in Patent Document 1 performs the corrugation process twice on the metal sheet, and the direction of the second corrugation process is the direction of the first corrugation process. It is said that a corrugated material having an inner bent side wall in one direction can be formed by inclining at an angle of at least 10 °.
 また、特許文献2に記載の波付け材の製造方法は、金属シートに対して二回の波付け加工を施すが、第1回目の波付け加工及び第2回目の波付け加工の波形付けロールを、歯形及びロール隙間(ロールとロールとの隙間)が同一のものとし、第1回目の波付け加工の方向及び第2回目の波付け加工の方向における断面形状が共に正弦波状に連続するとともに、平面形状が第1の方向に沿う第1の波形突起の稜線と第2の方向に沿う第2の波形突起の稜線とが直交した凹凸面である波付け材を製造することができるとされている。 Moreover, although the manufacturing method of the corrugated material of patent document 2 performs a corrugation process twice with respect to a metal sheet, the corrugating roll of the 1st corrugation process and the 2nd corrugation process And the tooth profile and the roll gap (the gap between the roll and the roll) are the same, and the cross-sectional shapes in the direction of the first corrugation and the direction of the second corrugation are both sinusoidal. The corrugated material in which the ridge line of the first wavy protrusion along the first direction and the ridge line of the second wavy protrusion along the second direction are perpendicular to each other can be manufactured. ing.
 しかしながら、上記特許文献1及び2で提案された多方向波付け材の製造方法では、複雑な形状の波付け加工された多方向波付け材を製造できるものの、それぞれ設定された形状の波付け加工しか施すことができず、容易に様々な波付け形状の多方向波付け材を製造することはできなかった。 However, the multidirectional corrugating material manufacturing method proposed in Patent Documents 1 and 2 can manufacture corrugated multidirectional corrugating materials, but each corrugated material has a set shape. However, it was not possible to easily produce multidirectional corrugated materials having various corrugated shapes.
特表2001-504393号公報JP-T-2001-504393 特開2009-184001号公報JP 2009-184001 A
 そこで、この発明は、一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施し、様々な波付け形状の多方向波付け材を製造する製造方法、波付け材製造装置及び製造された多方向波付け材を提供することを目的とする。 Therefore, the present invention provides a corrugation process in a direction intersecting the corrugation direction at the time of the previous corrugation process on the corrugated thin sheet sandwiched between a pair of corrugated gears and corrugated into the thin plate material. An object of the present invention is to provide a manufacturing method, a corrugating material manufacturing apparatus, and a manufactured multidirectional corrugating material that are applied a plurality of times to manufacture multidirectional corrugating materials of various corrugated shapes.
 この発明は、薄板材を挟み込んで波付け加工する一対の波付け歯車を、ギア歯形状の異なる複数種類備えるとともに、前記一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、前記複数種類の波付け歯車を切り替える歯車切換え手段とを備えた波付け材製造装置を用い、前記一対の波付け歯車で挟み込んで前記薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施すとともに、前記波付け加工ごとに、前記歯車切換え手段で前記波付け歯車を切替え可能とした多方向波付け材を製造する多方向波付け材の製造方法及び波付け材製造装置であることを特徴とする。 The present invention comprises a plurality of types of corrugated gears that sandwich and corrugate a thin plate material and have a plurality of different gear tooth shapes, a rotational drive means that rotationally drives the pair of corrugated gears, and the plurality of types of corrugated gears. Using a corrugated material manufacturing apparatus having a gear switching means for switching corrugated gears, the corrugated thin plate sandwiched between the pair of corrugated gears and corrugated to the thin plate material, at the time of the previous corrugating process And producing a multi-directional corrugating material in which the corrugating gear can be switched by the gear switching means for each corrugating process. It is a manufacturing method and a corrugated material manufacturing apparatus of a multi-directional corrugated material.
 上記波付け加工は、コルゲート、エンボス、凹凸などの様々な波付け形状の波付けの加工とする。 
 上記波付け歯車は、互いに噛合する噛合ギアを有するのみならず、互いに噛合する凹凸形状を有する歯車であってもよいし、ローラであってもよい。
The corrugation processing is corrugation, embossing, corrugation processing such as corrugations, and the like.
The corrugated gear not only has meshing gears that mesh with each other, but may also be a gear having an uneven shape that meshes with each other or a roller.
 この発明により、複数種類の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施し、様々な波付け形状の多方向波付け材を製造することができる。 According to the present invention, a plurality of corrugating processes in a direction intersecting with the corrugating direction at the time of the last corrugating process are applied to the corrugated thin sheet sandwiched between plural types of corrugated gears and corrugated into the thin sheet material. It can be applied to produce multi-directional corrugated materials with various corrugated shapes.
 詳しくは、薄板材を挟み込んで波付け加工する一対の波付け歯車を、ギア歯形状の異なる複数種類備えるとともに、前記一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、前記複数種類の波付け歯車を切り替える歯車切換え手段とを備えた波付け材製造装置を用い、前記一対の波付け歯車で挟み込んで前記薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施すことにより多方向波付け材を製造することができる。また、前記波付け加工ごとに、前記歯車切換え手段で他の前記一対の前記波付け歯車に切替えることにより、波付け加工で加工される波付けパターンを調整することができる。したがって、様々な波付け形状の多方向波付け材を製造することができる。 Specifically, a pair of corrugated gears that sandwich and corrugate a thin plate material are provided with a plurality of types having different gear tooth shapes, a rotational driving means that rotationally drives the pair of corrugated gears, and the plurality of types of waves. A corrugated material manufacturing apparatus comprising a gear switching means for switching a corrugated gear, and a corrugated thin plate sandwiched between the pair of corrugated gears and corrugated to the thin plate material, at the time of the previous corrugating process A multi-directional corrugating material can be manufactured by performing corrugation processing in a direction intersecting with the corrugation processing direction a plurality of times. Further, each time the corrugation is performed, the corrugation pattern processed by the corrugation can be adjusted by switching to the other pair of the corrugated gears by the gear switching means. Therefore, multidirectional corrugated materials with various corrugated shapes can be manufactured.
 また、例えば、一回の連続する波付け加工の途中で、前記歯車切換え手段により他の波付け歯車に切り替えた場合、一枚の連続する薄板材であっても、波付け形状が連続方向に変化する多方向波付け材を製造することができる。 Further, for example, when switching to another corrugated gear by the gear switching means during one continuous corrugating process, even if it is a single continuous thin plate material, the corrugated shape is in the continuous direction. A changing multidirectional corrugation material can be produced.
 この発明の態様として、前記複数種類の波付け歯車を、一対の波付け歯車と同軸上に配置し、前記歯車切換え手段を、前記一対の波付け歯車を軸線方向にスライドする歯車スライド手段で構成とすることができる。 As an aspect of the present invention, the plurality of types of corrugated gears are arranged coaxially with a pair of corrugated gears, and the gear switching means is constituted by a gear slide means for sliding the pair of corrugated gears in the axial direction. It can be.
 この発明により、複数種類の波付け歯車を、簡易な構造で軸線方向にスライドさせて切り替え、複数種類の形状の多方向波付け材を製造することができる。 According to the present invention, a plurality of types of corrugated gears can be switched by sliding in the axial direction with a simple structure to produce a multi-directional corrugated material having a plurality of types of shapes.
 またこの発明の態様として、前記回転駆動手段を、前記一対の波付け歯車を、それぞれ所定角度の反復回転駆動する構成とするとともに、前記複数種類の波付け歯車を、一対の波付け歯車における対応する周方向角度ごとに配置した異なるギア歯形状で構成し、前記歯車切換え手段を、一対の波付け歯車における対応する周方向角度回転させて切替える構成とすることができる。 Further, as an aspect of the present invention, the rotation driving means is configured to repeatedly rotate and drive the pair of corrugated gears at a predetermined angle, respectively, and the plurality of types of corrugated gears can be used in a pair of corrugated gears. It is possible to adopt a configuration in which different gear tooth shapes are arranged for each circumferential angle, and the gear switching means is switched by rotating a corresponding circumferential angle in a pair of corrugated gears.
 上記前記一対の波付け歯車を、それぞれ所定角度の反復回転駆動する回転駆動手段は、回転制御手段により所定角度の反復回転駆動するサーボモータで構成することができる。 The rotation driving means for repeatedly rotating the pair of corrugated gears at a predetermined angle can be constituted by a servo motor that is repeatedly rotated at a predetermined angle by a rotation control means.
 この発明により、複数種類の波付け歯車を、コンパクトな構造で対応する周方向角度回転させて切り替え、複数種類の形状の多方向波付け材を製造することができる。 According to the present invention, a plurality of types of corrugated gears can be switched by rotating the corresponding circumferential direction angles with a compact structure, and a multi-directional corrugated material of a plurality of types can be manufactured.
 詳しくは、前記回転駆動手段を、前記一対の波付け歯車を、それぞれ所定角度の反復回転駆動する構成とするとともに、対応する周方向角度ごとに異なるギア歯形状を配置した一対の波付け歯車を、歯車切換え手段で対応する周方向角度回転させて他の一対の波付け歯車に切替えることができる。したがって、コンパクトな構造で、複数種類の形状の多方向波付け材を製造することができる。 Specifically, the rotation driving means is configured to repeatedly rotate and drive the pair of corrugated gears by a predetermined angle, respectively, and a pair of corrugated gears in which different gear tooth shapes are arranged for each corresponding circumferential angle. Then, the gear can be switched to another pair of corrugated gears by rotating the corresponding circumferential angle by the gear switching means. Therefore, a multi-directional corrugated material having a plurality of types of shapes can be manufactured with a compact structure.
 またこの発明の態様として、前記波付け材製造装置に、それぞれの前記回転駆動手段における前記検出回転トルクを検出回転トルクとして検出するトルク検出手段と、前記波付け歯車で挟み込んだ前記薄板材に波付け加工する際における前記検出回転トルクを出力する検出トルク出力手段とを備え、該検出トルク出力手段によって出力された前記検出回転トルクの経時変化に基づいて前記波付け加工による波形の出来形を計測することができる。 Further, as an aspect of the present invention, the corrugated material manufacturing apparatus includes a torque detecting means for detecting the detected rotational torque of each of the rotational drive means as a detected rotational torque, and a wave applied to the thin plate material sandwiched between the corrugated gears. A detection torque output means for outputting the detected rotational torque at the time of staking processing, and measuring a waveform shape by the corrugation processing based on a change with time of the detected rotational torque output by the detected torque output means can do.
 上述の波形の出来形を計測するは、波形の出来形寸法を回転トルクの経時変化データから換算して求める出来形計測を含むものとする。 Measure the shape of the waveform described above includes measurement of the shape obtained by converting the shape of the waveform from the temporal change data of the rotational torque.
 この発明により、薄板材を複数種類の波付け歯車で挟み込んで波付け加工して形成する多方向波付け材の波形全体の出来形を波付け加工しながら計測することができる。 
 詳しくは、薄板材を挟み込んで波付け加工する一対の波付け歯車を回転駆動する回転駆動手段の回転トルクを検出回転トルクとしてトルク検出手段で検出することにより、波付け加工において薄板材を曲げるときの負荷を検出することができる。
According to the present invention, it is possible to measure the corrugated shape of the entire multi-directional corrugated material formed by corrugating and processing a thin plate material with plural kinds of corrugated gears.
Specifically, when a thin plate material is bent in the corrugating process by detecting the rotational torque of the rotational drive means that rotationally drives a pair of corrugated gears sandwiching the thin plate material as a detected rotational torque by the torque detection means Can be detected.
 なお、板厚一定及びギア歯形状同一であれば、V曲げにおける曲げ角度に応じて回転トルクが変動する、詳しくは、板厚一定の条件下において、V曲げにおける曲げ角度が大きい場合、回転トルクが高くなり、逆に、V曲げにおける曲げ角度が小さい場合、回転トルクが低くなる。 If the plate thickness is constant and the gear tooth shape is the same, the rotational torque varies depending on the bending angle in the V-bending. Specifically, when the bending angle in the V-bending is large under the constant plate thickness condition, the rotational torque Conversely, when the bending angle in V-bending is small, the rotational torque is low.
 このため、回転トルクが高い場合は曲げ角度が大きくなり、回転トルクが低い場合は曲げ角度が小さくなるという検出回転トルクの経時変化を捉えることにより、波付け加工した薄板材の波形全体の出来形を計測することができる。 For this reason, when the rotational torque is high, the bending angle becomes large, and when the rotational torque is low, the bending angle becomes small. Can be measured.
 また、複数種類の波付け歯車のうち一方の波付け歯車の凸部分で薄板材を曲げ、凹部分では、他方の波付け歯車の凸部分で曲げられた薄板材を受けることとなる。したがって、複数種類の波付け歯車を回転駆動する回転駆動手段における検出回転トルクからはその波付け歯車によって曲げられた部分、つまり、その波付け歯車に対して凸方向に曲げ加工された波形だけを計測することができる。 Also, the thin plate material is bent at the convex portion of one of the corrugated gears among a plurality of types of corrugated gears, and the thin plate material bent at the convex portion of the other corrugated gear is received at the concave portion. Therefore, from the detected rotational torque in the rotational driving means for rotationally driving a plurality of types of corrugated gears, only a portion bent by the corrugated gear, that is, a waveform bent in a convex direction with respect to the corrugated gear. It can be measured.
 しかしながら、前記複数種類の波付け歯車の両方のそれぞれに対して回転駆動する回転駆動手段におけるそれぞれの前記検出回転トルクを出力することにより、一方の波付け歯車に対して凸方向に曲げ加工された波形だけでなく、他方の波付け歯車によって曲げられた部分、つまり一方の波付け歯車に対して凹方向に曲げ加工された波形の形状も計測することができる。 However, each of the plurality of types of corrugated gears is bent in a convex direction with respect to one of the corrugated gears by outputting each detected rotational torque in the rotational driving means that rotationally drives each of the plurality of corrugated gears Not only the waveform but also the portion bent by the other corrugated gear, that is, the shape of the waveform bent in the concave direction with respect to the one corrugated gear can be measured.
 したがって、薄板材の表面に対して両方向に波付けされた波形全体の出来形を波付け加工しながら計測することができ、波付け加工完了と同時に形成された波形の全体の計測を完了することができる。よって、不適正な波形が形成された波付け材を早期に発見することができる。 Therefore, it is possible to measure while corrugating the entire waveform corrugated in both directions with respect to the surface of the thin plate material, and complete the measurement of the entire waveform formed simultaneously with the completion of the corrugation. Can do. Therefore, the corrugated material in which an inappropriate waveform is formed can be found early.
 またこの発明は、上述の製造方法で製造した多方向波付け材であることを特徴とする。 
 この発明により、様々な波付け形状の多方向波付け材を製造することができる。
Further, the present invention is characterized in that it is a multidirectional corrugated material manufactured by the above-described manufacturing method.
According to the present invention, multidirectional corrugated materials having various corrugated shapes can be manufactured.
 この発明により、複数種類の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施し、様々な波付け形状の多方向波付け材を製造する製造方法、波付け材製造装置及び製造された多方向波付け材を提供することができる。 According to the present invention, a plurality of corrugating processes in a direction intersecting with the corrugating direction at the time of the last corrugating process are applied to the corrugated thin sheet sandwiched between plural types of corrugated gears and corrugated into the thin sheet material. It is possible to provide a manufacturing method, a corrugated material manufacturing apparatus, and a manufactured multidirectional corrugating material that are applied and manufactured to produce multi-directional corrugating materials having various corrugated shapes.
軸方向スライド式コルゲート材製造装置のブロック図。The block diagram of an axial direction slide-type corrugated material manufacturing apparatus. 軸方向スライド式コルゲート加工装置の斜視図。The perspective view of an axial direction slide-type corrugating apparatus. 第一コルゲート加工についての説明図。Explanatory drawing about the 1st corrugating. 第二コルゲート加工についての説明図。Explanatory drawing about the 2nd corrugating process. 広間隔ギア部におけるコルゲート加工についての説明図。Explanatory drawing about the corrugation process in a wide space | interval gear part. 狭間隔ギア部におけるコルゲート加工についての説明図。Explanatory drawing about corrugating in a narrow space | interval gear part. 加工ギアローラの間隔についての説明図。Explanatory drawing about the space | interval of a process gear roller. 第1パターン二方向コルゲート材の斜視図。The perspective view of a 1st pattern bi-directional corrugated material. 第1パターン二方向コルゲート材の拡大断面説明図。Explanatory sectional drawing of a 1st pattern bi-directional corrugated material. 第2パターン二方向コルゲート材の斜視図。The perspective view of a 2nd pattern bi-directional corrugated material. 第3パターン二方向コルゲート材の斜視図。The perspective view of a 3rd pattern bi-directional corrugated material. 第4パターン二方向コルゲート材の斜視図。The perspective view of a 4th pattern bi-directional corrugated material. 第5パターン二方向コルゲート材の斜視図。The perspective view of a 5th pattern bidirectional corrugated material. 第6パターン二方向コルゲート材の斜視図。The perspective view of a 6th pattern bi-directional corrugated material. 第7パターン二方向コルゲート材の斜視図。The perspective view of the 7th pattern bidirectional corrugated material. 二方向コルゲート材の製造フローチャート。The manufacturing flowchart of a two-way corrugated material. 第一コルゲート加工における出来形計測結果についての説明図。Explanatory drawing about the measurement result in the first corrugating process. 第二コルゲート加工における出来形計測結果についての説明図。Explanatory drawing about the measurement result in the second corrugating process. 回転式コルゲート材製造装置の一部拡大ブロック図。The partial expansion block diagram of a rotary corrugated material manufacturing apparatus. 回転式コルゲート加工装置の斜視図。The perspective view of a rotary corrugating apparatus. コルゲート加工についての説明図。Explanatory drawing about corrugating. コルゲート加工についての説明図。Explanatory drawing about corrugating. 加工ギアローラの回転切換えについての説明図。Explanatory drawing about rotation switching of a process gear roller.
 この発明を実施するための一形態を、以下図面を用いて説明する。 
 図1は軸方向スライド式コルゲート材製造装置1のブロック図を示し、図2はコルゲート加工部10の斜視図を示し、図3は第一コルゲート加工についての説明図を示し、図4は第二コルゲート加工についての説明図を示している。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of an axial slide type corrugated material manufacturing apparatus 1, FIG. 2 is a perspective view of a corrugated portion 10, FIG. 3 is an explanatory view of the first corrugated portion, and FIG. The explanatory view about corrugating is shown.
 詳しくは、図3はアルミニウム製薄板材120に対して加工ギアローラ11の標準間隔ギア部12で第一コルゲート加工を施して波状コルゲート材130を製造する状況の斜視図による説明図を示し、図4は波状コルゲート材130に対して加工ギアローラ11の標準間隔ギア部12で第二コルゲート加工を施して二方向コルゲート材100を製造する状況の斜視図による説明図を示している。 Specifically, FIG. 3 is a perspective view illustrating a state in which the corrugated material 130 is manufactured by subjecting the aluminum sheet material 120 to the first corrugation processing at the standard interval gear portion 12 of the processing gear roller 11, and FIG. FIG. 4 is an explanatory diagram showing a perspective view of a situation in which the corrugated material 130 is manufactured by subjecting the corrugated material 130 to the second corrugating process at the standard interval gear portion 12 of the processing gear roller 11 to manufacture the two-way corrugated material 100.
 また、図5は広間隔ギア部13におけるコルゲート加工についての説明図を示し、図6は狭間隔ギア部14におけるコルゲート加工についての説明図を示し、
図7は、加工ギアローラ11の間隔についての説明図を示している。
FIG. 5 shows an explanatory diagram for corrugating in the wide gap gear section 13, FIG. 6 shows an explanatory diagram for corrugating in the narrow gap gear section 14,
FIG. 7 is an explanatory diagram showing the interval between the processing gear rollers 11.
 詳しくは、図7は図1において四角で囲むa部の拡大正面図であり、図7(a)はクリアランスKが標準間隔Hであるサーボモータ16におけるコルゲート加工についての拡大正面図を示し、図7(b)は上記クリアランスKが広間隔H1である広間隔ギア部13におけるコルゲート加工についての拡大正面図を示し、図7(c)は上記クリアランスKが狭間隔H2である狭間隔ギア部14におけるコルゲート加工についての拡大正面図を示している。 Specifically, FIG. 7 is an enlarged front view of a portion surrounded by a square in FIG. 1, and FIG. 7A shows an enlarged front view of corrugating in the servo motor 16 having a clearance K of a standard interval H. 7 (b) shows an enlarged front view of corrugating in the wide gap gear portion 13 where the clearance K is a wide gap H1, and FIG. 7 (c) is a narrow gap gear portion 14 where the clearance K is a narrow gap H2. The enlarged front view about the corrugating in is shown.
 図8は第1パターン二方向コルゲート材100aの斜視図を示し、図9は第1パターン二方向コルゲート材100aの拡大端面説明図を示している。詳しくは、図9(a)は図8におけるA-A切断部端面図を示し、図9(b)はB-B切断部端面図を示し、図9(c)はC-C切断部端面図を示している。 FIG. 8 shows a perspective view of the first pattern bi-directional corrugated material 100a, and FIG. 9 shows an enlarged end surface explanatory view of the first pattern bi-directional corrugated material 100a. Specifically, FIG. 9A shows an end view of the AA cut portion in FIG. 8, FIG. 9B shows an end view of the BB cut portion, and FIG. 9C shows an end face of the CC cut portion. The figure is shown.
 図10は第2パターン二方向コルゲート材100bの斜視図を示し、図11は第3パターン二方向コルゲート材100cの斜視図を示し、図12は第4パターン二方向コルゲート材100dの斜視図を示し、図13は第5パターン二方向コルゲート材100eの斜視図を示し、図14は第6パターン二方向コルゲート材100fの斜視図を示し、図15は第7パターン二方向コルゲート材100gの斜視図を示している。 10 shows a perspective view of the second pattern bi-directional corrugated material 100b, FIG. 11 shows a perspective view of the third patterned bi-directional corrugated material 100c, and FIG. 12 shows a perspective view of the fourth patterned bi-directional corrugated material 100d. 13 is a perspective view of the fifth pattern bi-directional corrugated material 100e, FIG. 14 is a perspective view of the sixth pattern bi-directional corrugated material 100f, and FIG. 15 is a perspective view of the seventh pattern bi-directional corrugated material 100g. Show.
 軸方向スライド式コルゲート材製造装置1は、アルミニウム製薄板材120(波状コルゲート材130)に対してコルゲート加工を施して波状コルゲート材130(二方向コルゲート材100)を製造するコルゲート加工部10と、コルゲート加工部10におけるコルゲート加工時の回転トルクに基づいて波状コルゲート材130(二方向コルゲート材100)のコルゲート形状の出来形を計測する出来形計測部20とで構成している。 The axial sliding corrugated material manufacturing apparatus 1 includes a corrugated portion 10 that manufactures a corrugated corrugated material 130 (bidirectional corrugated material 100) by corrugating the aluminum sheet material 120 (the corrugated corrugated material 130). The corrugated portion 10 is composed of a corrugated shape measuring portion 20 that measures the corrugated shape of the corrugated corrugated material 130 (two-way corrugated material 100) based on the rotational torque during corrugating in the corrugated portion 10.
 コルゲート加工部10は、図1及び図2に示すように、コルゲート加工するための加工ギアローラ11(11a,11b)と、各加工ギアローラ11をそれぞれ回転駆動するサーボモータ16(16a,16b)と、加工ギアローラ11を軸方向(長手方向X)にスライドさせる加工ギアローラスライド機構17と、加工ギアローラ11、サーボモータ16及び加工ギアローラスライド機構17を内在する函体19とで構成し、函体19の前面に、コルゲート加工を施すアルミニウム製薄板材120(波状コルゲート材130)を投入する投入口19aを備えている。 
 なお、上述の軸方向(長手方向X)は、後述する幅方向Wと一致し、コルゲート加工方向Lは軸方向(長手方向X)に対して直交している。
As shown in FIGS. 1 and 2, the corrugating unit 10 includes processing gear rollers 11 (11a, 11b) for corrugating, and servo motors 16 (16a, 16b) for rotating and driving the processing gear rollers 11, respectively. A processing gear roller slide mechanism 17 that slides the processing gear roller 11 in the axial direction (longitudinal direction X) and a box 19 that includes the processing gear roller 11, the servo motor 16, and the processing gear roller slide mechanism 17. Is provided with an inlet 19a through which an aluminum thin plate material 120 (corrugated corrugated material 130) to be corrugated is placed.
The axial direction (longitudinal direction X) described above coincides with the width direction W described later, and the corrugating direction L is orthogonal to the axial direction (longitudinal direction X).
 加工ギアローラ11は、アルミニウム製薄板材120等に施すコルゲート形状に応じるとともに、コルゲート加工方向L(図3)に対して直交する方向のギア歯11cを有し、アルミニウム製薄板材120等の幅に対して3倍程度の長さに形成され、コルゲート加工するアルミニウム製薄板材120の厚みに応じたクリアランスK(図7)を隔て、ギア歯11c同士が噛合するように配置された上側加工ギアローラ11aと下側加工ギアローラ11bとで構成している。 The processing gear roller 11 has a gear tooth 11c in a direction orthogonal to the corrugating direction L (FIG. 3) according to the corrugated shape applied to the aluminum sheet material 120 or the like, and has a width of the aluminum sheet material 120 or the like. The upper processing gear roller 11a is formed so as to be about three times as long as the gear teeth 11c mesh with each other with a clearance K (FIG. 7) corresponding to the thickness of the aluminum sheet 120 to be corrugated. And the lower processing gear roller 11b.
 詳しくは、それぞれがアルミニウム製薄板材120の幅よりひとまわり長い狭間隔ギア部14、標準間隔ギア部12及び広間隔ギア部13が同心上で長手方向Xにこの順で並んで配置されるとともに、狭間隔ギア部14、標準間隔ギア部12、及び広間隔ギア部13は、この順でわずかに径が徐々に小さく形成され、同じ形状のギア歯11cを外周面に備えている。 Specifically, the narrow gap gear portion 14, the standard gap gear portion 12, and the wide gap gear portion 13 that are each slightly longer than the width of the aluminum sheet 120 are arranged concentrically in this order in the longitudinal direction X. The narrow gap gear portion 14, the standard gap gear portion 12, and the wide gap gear portion 13 are formed so that their diameters are gradually reduced in this order, and gear teeth 11c having the same shape are provided on the outer peripheral surface.
 また、加工ギアローラ11は、アルミニウム製薄板材120の幅に対して5倍程度の長さに形成され、サーボモータ16に接続された回転支持軸15に対して、長手方向Xにスライド可能に支持されている。 Further, the processing gear roller 11 is formed to be about five times as long as the width of the aluminum thin plate material 120, and is supported so as to be slidable in the longitudinal direction X with respect to the rotation support shaft 15 connected to the servo motor 16. Has been.
 なお、約0.04mmのアルミニウム製薄板材120にコルゲート形状を施す本実施例の加工ギアローラ11のギア歯11cは、一例として、ギア歯11cの高さ約0.5mm、頂角約32度、ピッチ約1mm、R約0.25mmとしている。 As an example, the gear teeth 11c of the processing gear roller 11 of the present embodiment in which the corrugated shape is applied to the aluminum sheet material 120 of about 0.04 mm, the height of the gear teeth 11c is about 0.5 mm, the apex angle is about 32 degrees, The pitch is about 1 mm and R is about 0.25 mm.
 このように構成された加工ギアローラ11の上側加工ギアローラ11aと下側加工ギアローラ11bとは、ギア歯11cの凸状部と凹状部とがコルゲート加工を施すアルミニウム製薄板材120等の厚みに応じたクリアランスKを隔てて噛合するよう配置されている。その結果、加工ギアローラ11の標準間隔ギア部12におけるクリアランスKは標準間隔H、広間隔ギア部13におけるクリアランスKは広間隔H1、及び狭間隔ギア部14におけるクリアランスKは狭間隔H2となる。 The upper processing gear roller 11a and the lower processing gear roller 11b of the processing gear roller 11 configured in this way correspond to the thickness of the aluminum sheet 120 or the like on which the convex portions and concave portions of the gear teeth 11c are subjected to corrugation. It arrange | positions so that the clearance K may be spaced apart. As a result, the clearance K in the standard interval gear portion 12 of the processing gear roller 11 is the standard interval H, the clearance K in the wide interval gear portion 13 is the wide interval H1, and the clearance K in the narrow interval gear portion 14 is the narrow interval H2.
 なお、標準間隔Hは、図7(a)に示すように、上側加工ギアローラ11aと下側加工ギアローラ11bとのクリアランスKをアルミニウム製薄板材120の厚み及び加工ギアローラ11のギア歯11cの高さに応じて設定された間隔である。広間隔H1は、標準間隔Hより広い間隔であるとともに、加工ギアローラ11のギア歯11c同士の間にアルミニウム製薄板材120が介在する状態で噛合する間隔となる。狭間隔H2は、標準間隔Hより狭い間隔であり、アルミニウム製薄板材120の厚みよりわずかに厚い間隔となる。 As shown in FIG. 7A, the standard interval H is the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b, and the thickness of the aluminum sheet 120 and the height of the gear teeth 11c of the processing gear roller 11. It is the interval set according to. The wide interval H1 is an interval larger than the standard interval H, and is an interval in which the aluminum thin plate member 120 is interposed between the gear teeth 11c of the processing gear roller 11. The narrow interval H2 is an interval narrower than the standard interval H, and is slightly larger than the thickness of the aluminum sheet 120.
 なお、約0.04mmのアルミニウム製薄板材120にコルゲート形状を施す本実施例の軸方向スライド式コルゲート材製造装置1は、一例として、標準間隔Hを約0.32mm、広間隔H1を約0.45mm、狭間隔H2を約0.28mmとしている。 As an example, the axially sliding corrugated material manufacturing apparatus 1 of this embodiment that applies a corrugated shape to an aluminum thin plate material 120 having a thickness of about 0.04 mm has a standard interval H of about 0.32 mm and a wide interval H1 of about 0. .45 mm and the narrow interval H2 is about 0.28 mm.
 サーボモータ16は、一対の加工ギアローラ11をそれぞれ独立して回転駆動するサーボモータであり、上側加工ギアローラ11aを回転駆動する上側用サーボモータ16aと、下側加工ギアローラ11bを回転駆動する下側用サーボモータ16bとは後述する出来形計測部20における制御装置21に接続している。 The servo motor 16 is a servo motor that independently drives the pair of machining gear rollers 11 to rotate. The upper servo motor 16a that rotationally drives the upper machining gear roller 11a and the lower servo motor that rotates the lower machining gear roller 11b. The servo motor 16b is connected to a control device 21 in the finished shape measuring unit 20 described later.
 そのため、それぞれ独立して加工ギアローラ11を回転駆動する上側用サーボモータ16aと下側用サーボモータ16bは、上側加工ギアローラ11aと下側加工ギアローラ11bの回転が同期するように、後述する出来形計測部20の制御装置21によって回転制御されている。 For this reason, the upper servomotor 16a and the lower servomotor 16b that independently rotate the processing gear roller 11 rotate so that the rotation of the upper processing gear roller 11a and the lower processing gear roller 11b is synchronized. The rotation is controlled by the control device 21 of the unit 20.
 加工ギアローラスライド機構17は、上述したように、回転支持軸15に対して長手方向Xにスライド可能に支持された加工ギアローラ11を長手方向Xにスライドさせる機構であり、後述する出来形計測部20における制御装置21に接続されており、制御装置21によって、加工ギアローラ11のスライド位置を制御している。 As described above, the processing gear roller slide mechanism 17 is a mechanism that slides the processing gear roller 11 supported to be slidable in the longitudinal direction X with respect to the rotation support shaft 15 in the longitudinal direction X. The control device 21 controls the slide position of the processing gear roller 11.
 詳しくは、クリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工を施す場合、標準間隔ギア部12が投入口19aの正面となる位置である回転支持軸15の中央位置となるように加工ギアローラ11を加工ギアローラスライド機構17でスライドする。また、クリアランスKが広間隔H1である広間隔ギア部13でコルゲート加工を施す場合、図5に示すように、広間隔ギア部13が回転支持軸15の中央位置となるように加工ギアローラ11を加工ギアローラスライド機構17でスライドし、逆に、クリアランスKが狭間隔H2である狭間隔ギア部14でコルゲート加工を施す場合、図6に示すように、狭間隔ギア部14が回転支持軸15の中央位置となるように加工ギアローラ11を加工ギアローラスライド機構17でスライドする。 Specifically, when corrugating is performed with the standard interval gear portion 12 with the clearance K being the standard interval H, the standard interval gear portion 12 is located at the center position of the rotation support shaft 15 that is the front face of the insertion port 19a. The processing gear roller 11 is slid by the processing gear roller slide mechanism 17. Further, when corrugating is performed with the wide gap gear portion 13 having the clearance K of the wide gap H1, the machining gear roller 11 is moved so that the wide gap gear portion 13 is at the center position of the rotation support shaft 15 as shown in FIG. When the corrugation processing is performed by the narrow gear portion 14 having the clearance K having the narrow interval H2, the narrow gear portion 14 is rotated by the rotation support shaft 15 as shown in FIG. The processing gear roller 11 is slid by the processing gear roller slide mechanism 17 so as to be in the center position.
 出来形計測部20は、制御装置21、表示装置22、記憶装置23、トルク検出センサ24及びマウスやキーボード等の入力装置である操作装置、DVD-RAM等の各種記憶媒体を読取る記憶媒体読取装置、または記憶媒体読書き装置、及びネットワーク接続可能なLANボード等の通信装置で構成する送受信装置等を備えている。 The finished shape measuring unit 20 includes a control device 21, a display device 22, a storage device 23, a torque detection sensor 24, an operation device that is an input device such as a mouse and a keyboard, and a storage medium reading device that reads various storage media such as a DVD-RAM. Or a storage medium read / write device and a transmission / reception device configured by a communication device such as a LAN board connectable to a network.
 制御装置21は、CPU、ROM、及びRAMで構成し、記憶装置23に格納したプログラムに従って各種制御処理を実行する装置である。 
 表示装置22は、液晶モニタ又はCRTディスプレイ等で構成して各種情報を表示する装置である。
The control device 21 includes a CPU, a ROM, and a RAM, and executes various control processes according to a program stored in the storage device 23.
The display device 22 is a device configured by a liquid crystal monitor, a CRT display, or the like to display various information.
 記憶装置23は、ハードディスク等で構成し、トルク検出センサ24で検出した検出回転トルクデータや基準回転トルク経時変化データBL(図17(a)、図18(a)参照)等を含む各種データ、並びに、検出回転トルクの経時変化データを算出する経時変化データ算出プログラム、各種装置を制御する制御プログラムあるいは判定プログラム、を含む各種プログラムを格納している。 The storage device 23 is composed of a hard disk or the like, and includes various data including detected rotational torque data detected by the torque detection sensor 24 and reference rotational torque temporal change data BL (see FIGS. 17A and 18A). In addition, various programs including a temporal change data calculation program for calculating temporal change data of the detected rotational torque and a control program or a determination program for controlling various devices are stored.
 トルク検出センサ24(24a,24b)は、制御装置21に接続され、コルゲート加工時におけるサーボモータ16の回転トルクを検出するセンサであり、制御装置21に接続されている。なお、上側用トルク検出センサ24aは上側用サーボモータ16aに接続され、下側用トルク検出センサ24bは下側用サーボモータ16bに接続され、それぞれの回転トルクを検出し、検出した検出回転トルクデータを制御装置21に送信する構成である。また、図示省略するエンコーダにより、サーボモータ12の回転角度を検出しており、トルク検出センサ24によって検出された回転トルクと回転角度を関連付けて制御装置21に送信している。 The torque detection sensor 24 (24a, 24b) is a sensor that is connected to the control device 21 and detects the rotational torque of the servo motor 16 during corrugating, and is connected to the control device 21. The upper torque detection sensor 24a is connected to the upper servomotor 16a, and the lower torque detection sensor 24b is connected to the lower servomotor 16b to detect the respective rotational torques and detect detected rotational torque data. Is transmitted to the control device 21. In addition, the rotation angle of the servo motor 12 is detected by an encoder (not shown), and the rotation torque detected by the torque detection sensor 24 and the rotation angle are associated with each other and transmitted to the control device 21.
 続いて、このような構成の軸方向スライド式コルゲート材製造装置1を用いた二方向コルゲート材100の製造方法及びコルゲート形状の出来形計測について説明する。 
 概略的に説明すると、二方向コルゲート材100は、図3に示すように、アルミニウム製薄板材120に対して第一コルゲート加工を施して波状コルゲート材130を製造し、波状コルゲート材130に対して、図4に示すように、第二コルゲート加工を施して製造される。そして、コルゲートの出来形計測は、各コルゲート加工時におけるサーボモータ16の検出回転トルクに基づいて行われる。
Then, the manufacturing method of the two-way corrugated material 100 using the axial direction slide-type corrugated material manufacturing apparatus 1 having such a configuration and the measurement of the corrugated shape will be described.
Briefly, as shown in FIG. 3, the two-way corrugated material 100 performs the first corrugating process on the aluminum sheet material 120 to produce the corrugated corrugated material 130. As shown in FIG. 4, it is manufactured by applying a second corrugating process. The measurement of the corrugated shape is performed based on the detected rotational torque of the servomotor 16 during each corrugation process.
 なお、加工ギアローラ11によって施された波状コルゲート材130のコルゲート形状は、図3に示すように、加工ギアローラ11(12,13,14)のギア歯11cの形状に応じた上向き凸形状と下向き凸形状とがコルゲート加工方向Lに交互に連続した波形形状であるが、加工ギアローラ11を加工ギアローラスライド機構17によってスライドさせて、クリアランスKが異なる標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14のいずれかでコルゲート加工することにより、上述の製造方法で製造する二方向コルゲート材100を、様々なコルゲート形状を形成することができる。 The corrugated shape of the corrugated corrugated material 130 applied by the processing gear roller 11 is an upward convex shape and a downward convex shape corresponding to the shape of the gear teeth 11c of the processing gear roller 11 (12, 13, 14), as shown in FIG. The shape is a waveform shape that is alternately continuous in the corrugating direction L, but the processing gear roller 11 is slid by the processing gear roller slide mechanism 17 so that the clearance K has different standard interval gear portion 12, wide interval gear portion 13 and narrow Various corrugated shapes can be formed on the two-way corrugated material 100 manufactured by the above-described manufacturing method by corrugating with one of the spacing gear portions 14.
 詳しくは、アルミニウム製薄板材120から波状コルゲート材130を加工する第一コルゲート加工時においてクリアランスKの異なる標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14のいずれかでコルゲート加工するか、波状コルゲート材130から二方向コルゲート材100を加工する第二コルゲート加工時においてクリアランスKの異なる標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14のいずれかでコルゲート加工するかを選択することにより、図8、図10乃至図15に示す様々なパターンのコルゲート形状を形成することができる。 Specifically, the corrugation is performed by any one of the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 having different clearances K during the first corrugation processing for processing the corrugated corrugated material 130 from the aluminum sheet material 120. Or whether the corrugation is performed by any one of the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 having different clearances K in the second corrugation processing for processing the bi-directional corrugated material 100 from the corrugated corrugated material 130 By selecting this, it is possible to form corrugated shapes of various patterns shown in FIGS. 8 and 10 to 15.
 第一コルゲート加工時及び第二コルゲート加工時ともに、クリアランスKが標準間隔Hである標準間隔ギア部12で加工する場合の第1パターン二方向コルゲート材100aについて説明する。 A description will be given of the first pattern bi-directional corrugated material 100a in the case of processing with the standard interval gear portion 12 with the clearance K being the standard interval H in both the first corrugation processing and the second corrugation processing.
 なお、図8、図10乃至図15に示す様々なパターンのコルゲート形状の二方向コルゲート材100は、斜視図における幅方向W(図中右下から左上)を第一コルゲート加工時の加工方向とし、第一コルゲート加工時の加工方向に対して直交する第二コルゲート加工時の加工方向を奥行き方向V(図中左下から右上)として、さらには二方向コルゲート材100の厚み方向Dを図中の上下方向に図示している。 The corrugated bi-directional corrugated material 100 having various patterns shown in FIGS. 8 and 10 to 15 has a width direction W (lower right to upper left in the drawing) as a processing direction at the time of the first corrugating process. The processing direction at the time of the second corrugating process orthogonal to the processing direction at the time of the first corrugating process is defined as the depth direction V (lower left to upper right in the figure), and further the thickness direction D of the two-way corrugated material 100 is illustrated in the figure. It is shown in the vertical direction.
 第1パターン二方向コルゲート材100aは、図9(a)の断面図に示したように、幅方向Wの側方から見て山形に隆起する隆起部101を一定間隔おきに有する波状であり、前記隆起部101において、幅狭の第一凸部102と、それよりも幅狭の第一凹部103を幅方向Wに繰り返し有している(図9(b)参照)。一方、前記隆起部101間の低い部位において、幅広の第二凸部107と、それより幅狭の第二凹部108を幅方向Wに繰り返す(図9(c)参照)形状である。 As shown in the cross-sectional view of FIG. 9A, the first pattern bi-directional corrugated material 100a has a wavy shape having ridges 101 that protrude in a mountain shape when seen from the side in the width direction W at regular intervals. The raised portion 101 has a narrow first convex portion 102 and a narrower first concave portion 103 in the width direction W repeatedly (see FIG. 9B). On the other hand, in the low part between the said protruding parts 101, it is the shape which repeats the wide 2nd convex part 107 and the narrower 2nd recessed part 108 in the width direction W (refer FIG.9 (c)).
 前記第一凸部102は、頂面104が下へ若干湾曲し両側105が逆ハの字になる形状であり、第一凹部103は、平坦な底部106を有している。これとは逆に、前記第二凸部107は、頂面109が平坦で、第二凹部108は、底面110が上へ若干湾曲し両側111がハの字になる形状である。これら隆起部101、第一凸部102、第一凹部103、第二凸部107及び第二凹部108により第1パターン二方向コルゲート材100aのコルゲート形状を構成している。 The first convex portion 102 has a shape in which the top surface 104 is slightly curved downward and both sides 105 are inverted, and the first concave portion 103 has a flat bottom portion 106. On the other hand, the second convex portion 107 has a flat top surface 109, and the second concave portion 108 has a shape in which the bottom surface 110 is slightly curved upward and both sides 111 have a square shape. The raised portion 101, the first convex portion 102, the first concave portion 103, the second convex portion 107, and the second concave portion 108 constitute a corrugated shape of the first pattern bi-directional corrugated material 100a.
 これは、第一コルゲート加工時に、クリアランスKが標準間隔Hである標準間隔ギア部12によって形成された波状コルゲート材130の波形を、第二コルゲート加工時に、クリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工した上側加工ギアローラ11aと下側加工ギアローラ11bとが、波形を形成する際に押しつぶすことにより、頂面104が下へ若干湾曲し両側105が逆ハの字になる形状である第一凸部102を有するコルゲート形状を形成している。 This is because the waveform of the corrugated corrugated material 130 formed by the standard interval gear portion 12 with the clearance K being the standard interval H at the time of the first corrugation is the standard interval at which the clearance K is the standard interval H at the time of the second corrugation. When the upper processing gear roller 11a and the lower processing gear roller 11b corrugated by the gear portion 12 are crushed when forming a waveform, the top surface 104 is slightly curved downward, and both sides 105 are formed in a reverse letter C shape. A corrugated shape having a certain first protrusion 102 is formed.
 このように、第一コルゲート加工時及び第二コルゲート加工時ともにクリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工した場合に形成される第1パターン二方向コルゲート材100aに対し、第一コルゲート加工時及び第二コルゲート加工時ともにクリアランスKが広間隔H1である広間隔ギア部13でコルゲート加工した場合、図10に示す第2パターン二方向コルゲート材100bを形成することができる。 As described above, the first pattern bi-directional corrugated material 100a formed when corrugated with the standard interval gear portion 12 with the clearance K being the standard interval H in both the first corrugating process and the second corrugating process. When corrugating is performed by the wide gap gear portion 13 having the clearance K of the wide gap H1 during both the first corrugating process and the second corrugating process, the second pattern bi-directional corrugated material 100b shown in FIG. 10 can be formed.
 第2パターン二方向コルゲート材100bは、第一コルゲート加工時に、クリアランスKが広間隔H1である広間隔ギア部13によって形成された波状コルゲート材130の高さの低い波形を、第二コルゲート加工時に、クリアランスKが広間隔H1である広間隔ギア部13が高さの低い波形を形成する際に押しつぶすことにより、略ドーム状の凸部116aと凹部116bとが平面視格子状に交互に並んだコルゲート形状、つまり、幅方向Wと奥行き方向Vに正弦波状に並んだコルゲート形状となる。 The second pattern two-way corrugated material 100b has a waveform having a low height of the corrugated corrugated material 130 formed by the wide interval gear portion 13 having a clearance K having a wide interval H1 during the first corrugation process. When the wide gap gear portion 13 having the clearance K of the wide gap H1 is crushed when forming a low waveform, the substantially dome-shaped convex portions 116a and concave portions 116b are alternately arranged in a lattice shape in plan view. A corrugated shape, that is, a corrugated shape arranged in a sine wave shape in the width direction W and the depth direction V is obtained.
 なお、クリアランスKが広間隔H1である広間隔ギア部13で形成される高さの低い波形とは、クリアランスKが標準間隔Hである標準間隔ギア部12によって形成された波形に比べて高さの低い波形であることを示している。 The low-profile waveform formed by the wide-gap gear portion 13 with the clearance K having the wide interval H1 is higher than the waveform formed by the standard-distance gear portion 12 with the clearance K having the standard interval H. It shows that the waveform is low.
 第一コルゲート加工時においてクリアランスKが広間隔H1である広間隔ギア部13でコルゲート加工し、第二コルゲート加工時におけるクリアランスKが狭間隔H2である狭間隔ギア部14でコルゲート加工した場合には、図11に示す第3パターン二方向コルゲート材100cを形成することができる。 When corrugating is performed with the wide-interval gear portion 13 with the clearance K being the wide interval H1 during the first corrugating, and corrugating is being performed with the narrow-interval gear portion 14 with the clearance K being the narrow interval H2 during the second corrugating operation The 3rd pattern bi-directional corrugated material 100c shown in FIG. 11 can be formed.
 第3パターン二方向コルゲート材100cは、第一コルゲート加工時に、クリアランスKが広間隔H1である広間隔ギア部13によって形成された波状コルゲート材130の高さの低い波形を押しつぶして、第二コルゲート加工時に、クリアランスKが狭間隔H2である狭間隔ギア部14が高さの高い波形を形成するため、頂部に所定間隔を隔てた凹部113aを有する高さの高い横波113が奥行き方向Vに所定間隔を隔てて並んだコルゲート形状となる。 The third pattern bi-directional corrugated material 100c crushes the low corrugation of the corrugated corrugated material 130 formed by the wide gap gear portion 13 having a clearance K having a wide gap H1 during the first corrugation process. At the time of processing, since the narrow gap gear portion 14 with the clearance K being the narrow gap H2 forms a high waveform, the high transverse wave 113 having the concave portions 113a spaced at a predetermined interval on the top is predetermined in the depth direction V. The corrugated shape is arranged at intervals.
 なお、クリアランスKが狭間隔H2である狭間隔ギア部14で形成する高さの高い波形とは、クリアランスKが標準間隔Hである標準間隔ギア部12によって形成された波形に比べて高さの高い波形であることを示している。 The high waveform formed by the narrow gap gear portion 14 with the clearance K being the narrow interval H2 is higher than the waveform formed by the standard interval gear portion 12 having the clearance K being the standard interval H. It shows a high waveform.
 また、第一コルゲート加工時におけるクリアランスKが広間隔H1である広間隔ギア部13でコルゲート加工し、第二コルゲート加工時におけるクリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工した場合には、横波113の高さが低くなるが同様の形状の第3パターン二方向コルゲート材100cを形成することができる。 Further, when corrugating is performed with the wide interval gear portion 13 having the clearance K at the first corrugation processing with the wide interval H1, and corrugating processing is performed with the standard interval gear portion 12 with the clearance K at the second corrugation processing being the standard interval H. The third pattern bi-directional corrugated material 100c having the same shape can be formed although the height of the transverse wave 113 is reduced.
 第3パターン二方向コルゲート材100cに対し、第一コルゲート加工時においてクリアランスKが狭間隔H2である狭間隔ギア部14でコルゲート加工し、第二コルゲート加工時におけるクリアランスKが広間隔H1である広間隔ギア部13でコルゲート加工した場合には、図16に示す第4パターン二方向コルゲート材100dを形成することができる。 The third pattern bi-directional corrugated material 100c is corrugated by the narrow gap gear portion 14 having a clearance K of a narrow interval H2 in the first corrugating process, and the clearance K in the second corrugating process is a wide gap H1 having a wide interval H1. When corrugation processing is performed by the spacing gear portion 13, a fourth pattern bi-directional corrugated material 100d shown in FIG. 16 can be formed.
 第4パターン二方向コルゲート材100dは、第一コルゲート加工時に、クリアランスKが狭間隔H2である狭間隔ギア部14によって形成された波状コルゲート材130の高さの高い波形の頂部を、第二コルゲート加工時において、クリアランスKが広間隔H1である広間隔ギア部13が高さの低い波形状に押しつぶすため、頂部に所定間隔を隔てた凹部114aを有する高さの高い縦波114が幅方向Wに所定間隔を隔てて並んだコルゲート形状となる。 The fourth pattern bi-directional corrugated material 100d is a second corrugated corrugated top portion of the corrugated material 130 formed by the narrow gap gear portion 14 having a clearance K of a narrow gap H2 during the first corrugation process. At the time of processing, the wide gap gear portion 13 with the clearance K having a wide gap H1 is crushed into a wave shape with a low height, so that a high vertical wave 114 having a concave portion 114a with a predetermined gap at the top is formed in the width direction W. The corrugated shape is arranged at predetermined intervals.
 なお、第一コルゲート加工時においてクリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工し、第二コルゲート加工時におけるクリアランスKが広間隔H1である広間隔ギア部13でコルゲート加工した場合には、縦波114の高さが低くなるが同様の形状の第4パターン二方向コルゲート材100dを形成することができる。 In addition, when corrugating is performed with the standard interval gear portion 12 with the clearance K being the standard interval H during the first corrugation, and corrugating is performed with the wide interval gear portion 13 with the clearance K being the wide interval H1 during the second corrugation processing. In this case, the fourth pattern bi-directional corrugated material 100d having the same shape can be formed although the height of the longitudinal wave 114 is reduced.
 また、第一コルゲート加工時及び第二コルゲート加工時においてクリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工した場合の第1パターン二方向コルゲート材100aに対し、第一コルゲート加工時及び第二コルゲート加工時におけるクリアランスKが狭間隔H2である狭間隔ギア部14でコルゲート加工した場合には、図13に示すように、第1パターン二方向コルゲート材100aに比べて幅方向W、奥行き方向V及び厚み方向Dが大きなコルゲート形状を有する第5パターン二方向コルゲート材100eを形成することができる。 Further, in the first corrugating process and the second corrugating process, with respect to the first pattern two-way corrugated material 100a when the corrugating process is performed with the standard interval gear portion 12 having the clearance K of the standard interval H, the first corrugating process and When corrugation is performed by the narrow gap gear portion 14 having a clearance K of the narrow gap H2 during the second corrugation, as shown in FIG. 13, the width direction W and depth are larger than those of the first pattern bi-directional corrugated material 100a. A fifth pattern bi-directional corrugated material 100e having a corrugated shape having a large direction V and thickness direction D can be formed.
 さらに、第一コルゲート加工時におけるクリアランスKが狭間隔H2である狭間隔ギア部14でコルゲート加工し、第二コルゲート加工時におけるクリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工した場合には、図14に示すように、第1パターン二方向コルゲート材100aに比べて奥行き方向Vは同じであるが、幅方向W及び厚み方向Dが大きなコルゲート形状を有する第6パターン二方向コルゲート材100fを形成することができる。 Furthermore, when corrugating is performed with the narrow gap gear portion 14 having the clearance K at the first interval of the first corrugation, and corrugating is performed with the standard interval gear portion 12 having the clearance K of the second corrugation, which is the standard interval H. As shown in FIG. 14, the sixth pattern bi-directional corrugated material having a corrugated shape in which the depth direction V is the same as that of the first pattern bi-directional corrugated material 100a but the width direction W and the thickness direction D are large. 100f can be formed.
 逆に、第一コルゲート加工時におけるクリアランスKが標準間隔Hである標準間隔ギア部12でコルゲート加工し、第二コルゲート加工時におけるクリアランスKが狭間隔H2である狭間隔ギア部14でコルゲート加工した場合には、図15に示すように、第1パターン二方向コルゲート材100aに比べて幅方向Wは同じであるが、奥行き方向V及び厚み方向Dが大きなコルゲート形状を有する第7パターン二方向コルゲート材100gを形成することができる。 On the contrary, the corrugation is performed with the standard interval gear portion 12 having the clearance K at the first corrugation processing with the standard interval H, and the corrugation is processed with the narrow interval gear portion 14 with the clearance K being the narrow interval H2 at the second corrugation processing. In this case, as shown in FIG. 15, the seventh pattern bi-directional corrugate having a corrugated shape in which the width direction W is the same as that of the first pattern bi-directional corrugated material 100 a but the depth direction V and the thickness direction D are large. 100 g of material can be formed.
 このように、軸方向スライド式コルゲート材製造装置1のコルゲート加工部10では、第一コルゲート加工時及び第二コルゲート加工時において、上側加工ギアローラ11aと下側加工ギアローラ11bのクリアランスKが、アルミニウム製薄板材120の厚みに応じた標準間隔H、広間隔H1及び狭間隔H2となるように、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14のいずれでコルゲート加工するか加工ギアローラスライド機構17でスライドして選択することにより、下記表1に示すように、様々なコルゲート形状の二方向コルゲート材100を構成することができる。 Thus, in the corrugating part 10 of the axial direction sliding corrugated material manufacturing apparatus 1, the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b is made of aluminum during the first corrugating process and the second corrugating process. The corrugation is performed by any one of the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 so that the standard interval H, the wide interval H1, and the narrow interval H2 according to the thickness of the thin plate material 120 are obtained. By selecting by sliding with the roller slide mechanism 17, various corrugated bi-directional corrugated materials 100 can be configured as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 また、このような構成された二方向コルゲート材100は、コルゲート形状に応じて加工性が向上し、特にLDR(Limiting Drawing Ratio)あるいは限界絞り比が高くなり、絞り性が良好であって、複雑で微細な加工でも可能となる。
Figure JPOXMLDOC01-appb-T000001
In addition, the bi-directional corrugated material 100 configured as described above has improved workability according to the corrugated shape, in particular, an LDR (Limiting Drawing Ratio) or a limiting drawing ratio is high, drawing property is good, and complicated. Even fine processing is possible.
 さらには、二方向コルゲート材100のコルゲート形状の形状や厚み方向Dの深さに応じて、二方向コルゲート材100の表面に沿って流れる気流が調整できるため、上述のように、コルゲート加工時におけるクリアランスKを調整することによって、所望の遮熱効果を備えた二方向コルゲート材100を製造することができる。 Furthermore, since the airflow flowing along the surface of the two-way corrugated material 100 can be adjusted according to the corrugated shape of the two-way corrugated material 100 and the depth in the thickness direction D, as described above, By adjusting the clearance K, the two-way corrugated material 100 having a desired heat shielding effect can be manufactured.
 さらにまた、二方向コルゲート材100のコルゲート形状の形状や厚み方向Dの深さに応じて、二方向コルゲート材100の表面における電磁波による反射作用が調整できるため、上述のように、コルゲート加工時におけるクリアランスKを調整することによって、所望のシールド効果を備えた二方向コルゲート材100を製造することができる。 
 なお、上述の説明では、二方向コルゲート材100をアルミニウム製薄板材120で構成したが、紙製板や樹脂板で構成してもよい。
Furthermore, since the reflection action by electromagnetic waves on the surface of the two-way corrugated material 100 can be adjusted according to the corrugated shape of the two-way corrugated material 100 and the depth in the thickness direction D, as described above, By adjusting the clearance K, the two-way corrugated material 100 having a desired shielding effect can be manufactured.
In the above description, the two-way corrugated material 100 is composed of the aluminum thin plate material 120, but may be composed of a paper plate or a resin plate.
 続いて、上述のような軸方向スライド式コルゲート材製造装置1における二方向コルゲート材100の製造工程において、出来形計測部20を用いたコルゲートの出来形計測について、図16乃至図18とともに説明する。 
 なお、図16は二方向コルゲート材100の製造フローチャートを示し、図17は第一コルゲート加工における出来形計測結果についての説明図を示し、図18は第二コルゲート加工における出来形計測結果についての説明図を示している。
Subsequently, in the manufacturing process of the two-way corrugated material 100 in the axial sliding corrugated material manufacturing apparatus 1 as described above, the measurement of the corrugated shape using the measured shape measuring unit 20 will be described with reference to FIGS. 16 to 18. .
16 shows a manufacturing flow chart of the bi-directional corrugated material 100, FIG. 17 shows an explanatory diagram of the measurement result of the first corrugation, and FIG. 18 explains the measurement result of the second corrugation. The figure is shown.
 詳しくは、図17(a)、図18(a)は各コルゲート加工時における出来形計測結果グラフを示し、図17(b)は第一コルゲート加工における波状コルゲート材130の斜視方向からの出来形画像を示し、図18(b)は第二コルゲート加工における二方向コルゲート材100の斜視方向からの出来形画像を示している。 Specifically, FIGS. 17 (a) and 18 (a) show graphs of measurement results of each corrugation, and FIG. 17 (b) shows a result of the corrugated corrugated material 130 from the perspective direction in the first corrugation. An image is shown and FIG.18 (b) has shown the completed image from the perspective direction of the two-way corrugated material 100 in a 2nd corrugation process.
 二方向コルゲート材100を製造するに当たり、合否判定の基準となる基準回転トルク経時変化データBLとして所定のコルゲート形状を加工した際の回転トルクの経時変化データを記憶装置23に記憶する(ステップs1)。 In manufacturing the bi-directional corrugated material 100, the temporal change data of the rotational torque when a predetermined corrugated shape is processed is stored in the storage device 23 as the reference rotational torque temporal change data BL that is a reference for pass / fail judgment (step s1). .
 この際、記憶装置23には、標準間隔H、広間隔H1及び狭間隔H2に応じた第一コルゲート加工及び第二コルゲート加工における基準回転トルク経時変化データ(比較基準情報 BL1,BL2)をそれぞれ記憶する。 At this time, the storage device 23 stores reference rotational torque temporal change data (comparison reference information BL1, BL2) in the first corrugating process and the second corrugating process corresponding to the standard interval H, the wide interval H1, and the narrow interval H2. To do.
 なお、このステップs1における基準回転トルク経時変化データBLの記憶は、二方向コルゲート材100を製造する度に行うことなく、既に記憶装置23に格納された基準回転トルク経時変化データBLを呼び出してもよい。また、コルゲート形状、コルゲート加工回数、あるいはアルミニウム製薄板材120の素材強度や厚みに応じて複数の基準回転トルク経時変化データBLを記憶装置23に格納しておき、加工前に選択する構成であってもよい。 The reference rotational torque temporal change data BL in step s1 is not stored every time the bi-directional corrugated material 100 is manufactured, and the reference rotational torque temporal change data BL already stored in the storage device 23 is called. Good. In addition, a plurality of reference rotational torque temporal change data BL is stored in the storage device 23 in accordance with the corrugated shape, the number of corrugating processes, or the material strength and thickness of the aluminum sheet 120, and is selected before processing. May be.
 ステップs1完了後、所望のコルゲート形状を有する二方向コルゲート材100を製造するため、コルゲート形状に応じた第一コルゲート加工時におけるクリアランスKが標準間隔H、広間隔H1及び狭間隔H2のうち適した間隔となるギア部が回転支持軸15の中央位置となるように加工ギアローラスライド機構17を制御駆動させて加工ギアローラ11をスライドする(ステップs2)。 After step s1 is completed, in order to manufacture the bi-directional corrugated material 100 having a desired corrugated shape, the clearance K at the time of the first corrugating process corresponding to the corrugated shape is suitable among the standard interval H, the wide interval H1, and the narrow interval H2. The machining gear roller slide mechanism 17 is controlled and driven so that the gap gear portion is located at the center position of the rotation support shaft 15 (step s2).
 加工ギアローラスライド機構17による加工ギアローラ11のスライドが完了した後、コルゲート加工部10の投入口19a(図2)よりアルミニウム製薄板材120を投入し、アルミニウム製薄板材120に第一コルゲート加工を施すとともに、第一コルゲート加工時におけるサーボモータ16の回転トルクを出来形計測部20のトルク検出センサ24で検出し、記憶装置23に記憶する(ステップs3)。 After the machining gear roller 11 is completely slid by the machining gear roller slide mechanism 17, the aluminum sheet material 120 is introduced from the inlet 19 a (FIG. 2) of the corrugating part 10, and the first corrugation process is performed on the aluminum sheet material 120. In addition, the rotational torque of the servo motor 16 at the time of the first corrugating process is detected by the torque detection sensor 24 of the finished shape measuring unit 20 and stored in the storage device 23 (step s3).
 詳しくは、投入口19aより投入されたアルミニウム製薄板材120は、図3に示すように、上側加工ギアローラ11aと下側加工ギアローラ11bの間を通過することによって、加工ギアローラ11のギア歯11cの形状に応じた曲げ加工が施された波状コルゲート材130として函体19の背面側から搬出される。 Specifically, as shown in FIG. 3, the aluminum sheet material 120 introduced from the insertion port 19 a passes between the upper processing gear roller 11 a and the lower processing gear roller 11 b, thereby forming the gear teeth 11 c of the processing gear roller 11. It is carried out from the back side of the box 19 as a corrugated corrugated material 130 that has been bent according to its shape.
 なお、このステップs3においてトルク検出センサ24で検出した第一コルゲート加工時におけるサーボモータ16の回転トルクを検出回転トルクとして受け取った制御装置21は、記憶装置23に格納した経時変化データ算出プログラムによって、検出回転トルクの算出経時変化データを算出するとともに、図17に示すように、表示装置22にグラフ表示する(ステップs4)。 The control device 21 that has received the rotational torque of the servo motor 16 at the time of the first corrugating process detected by the torque detection sensor 24 in step s3 as the detected rotational torque is obtained by the temporal change data calculation program stored in the storage device 23. Calculation of the detected rotational torque is performed, and the graph is displayed on the display device 22 as shown in FIG. 17 (step s4).
 図17(a)に示すように、算出経時変化データは、上側加工ギアローラ11aを回転駆動する上側用サーボモータ16aと、下側加工ギアローラ11bを回転駆動する下側用サーボモータ16bとの両方の検出回転トルクの経時変化データとしてグラフ表示している。そして、上側用サーボモータ16aにおける算出経時変化データの上向き凸部が波状コルゲート材130の上面側のコルゲート形状を示しており、逆に、下側用サーボモータ16bにおける算出経時変化データの下向き凸部が波状コルゲート材130の下面側のコルゲート形状を示している。 As shown in FIG. 17 (a), the calculated temporal change data includes both the upper servomotor 16a that rotationally drives the upper processing gear roller 11a and the lower servomotor 16b that rotationally drives the lower processing gear roller 11b. The graph is displayed as the time-dependent change data of the detected rotational torque. The upward convex portion of the calculated temporal change data in the upper servomotor 16a indicates the corrugated shape on the upper surface side of the corrugated corrugated material 130, and conversely, the downward convex portion of the calculated temporal change data in the lower servomotor 16b. Shows the corrugated shape on the lower surface side of the corrugated corrugated material 130.
 その結果、図17(b)に示す波状コルゲート材130のコルゲート加工方向Lにおける手前側のように十分なコルゲートが形成されていない場合、図17(a)の左側に示すように、右側の良判定の場合における経時変化データに比べ、検出トルクが小さくなることがわかる。 As a result, when the corrugated corrugated material 130 shown in FIG. 17B is not formed with a sufficient corrugated side as in the front side in the corrugating direction L, as shown on the left side of FIG. It can be seen that the detected torque is smaller than the temporal change data in the determination.
 制御装置21は、算出経時変化データと、記憶装置23に格納した第一コルゲート加工用基準回転トルク経時変化データBL1とを比較し(ステップs5)、判定プログラムによって合否判定する。このとき、算出経時変化データが第一コルゲート加工用基準回転トルク経時変化データBL1の範囲を超えている場合(ステップs6:No,図15(a)に示す不良判定領域を含む場合)、この波状コルゲート材130を不合格と判定し(ステップs16)、終了する。逆に、算出経時変化データが第一コルゲート加工用基準回転トルク経時変化データBL1の範囲内である場合(ステップs6:Yes図15(a)に示す良判定領域のみの場合)、この波状コルゲート材130を合格と判定する。 The control device 21 compares the calculated temporal change data with the first corrugating reference rotational torque temporal change data BL1 stored in the storage device 23 (step s5), and makes a pass / fail determination by the determination program. At this time, when the calculated temporal change data exceeds the range of the first corrugating reference rotational torque temporal change data BL1 (step s6: No, including the defect determination area shown in FIG. 15A), this wavy The corrugated material 130 is determined to be unacceptable (step s16), and the process ends. Conversely, when the calculated temporal change data is within the range of the first corrugation reference rotational torque temporal change data BL1 (step s6: Yes, only in the good judgment region shown in FIG. 15A), this corrugated corrugated material 130 is determined to be acceptable.
 そして、ステップs6で合格と判定された波状コルゲート材130に対して、第二コルゲート加工を施すために、製造するコルゲート形状に応じた第二コルゲート加工時におけるクリアランスKが標準間隔H、広間隔H1及び狭間隔H2のうち適した間隔となるギア部が回転支持軸15の中央位置となるように加工ギアローラスライド機構17を制御駆動させて加工ギアローラ11をスライドする(ステップs7)。 And in order to perform a 2nd corrugation process with respect to the corrugated corrugated material 130 determined to pass at step s6, the clearance K at the time of the 2nd corrugation process according to the corrugate shape to manufacture is the standard space | interval H and the wide space | interval H1. Then, the processing gear roller 11 is slid by controlling the processing gear roller slide mechanism 17 so that the gear portion having an appropriate interval in the narrow interval H2 is at the center position of the rotation support shaft 15 (step s7).
 加工ギアローラスライド機構17による加工ギアローラ11のスライドが完了した後、図4に示すように、第一コルゲート加工によって形成された波形の連続方向がコルゲート加工方向Lに対して直交する方向となる向きで波状コルゲート材130を投入口19aから投入する。 After the processing gear roller 11 is completely slid by the processing gear roller slide mechanism 17, the direction in which the continuous direction of the waveform formed by the first corrugating process is orthogonal to the corrugating process direction L as shown in FIG. Then, the corrugated corrugated material 130 is introduced from the introduction port 19a.
 投入口19aより投入された波状コルゲート材130は、図4に示すように、上側加工ギアローラ11aと下側加工ギアローラ11bの間を通過することによって、加工ギアローラ11のギア歯11cの形状に応じた曲げ加工が施された二方向コルゲート材100として函体19の背面側から搬出される。 As shown in FIG. 4, the corrugated corrugated material 130 introduced from the introduction port 19 a passes between the upper machining gear roller 11 a and the lower machining gear roller 11 b, and thus corresponds to the shape of the gear teeth 11 c of the machining gear roller 11. The bi-directional corrugated material 100 that has been subjected to bending is carried out from the back side of the box 19.
 なお、この第二コルゲート加工時におけるサーボモータ16の回転トルクを出来形計測部20のトルク検出センサ24で検出し、記憶装置23に記憶する(ステップs8)。このステップs8においてトルク検出センサ24で検出した第二コルゲート加工時におけるサーボモータ16の回転トルクを検出回転トルクとして受け取った制御装置21は、記憶装置23に格納した経時変化データ算出プログラムによって、検出回転トルクの算出経時変化データを算出するとともに、図18に示すように、表示装置22にグラフ表示する(ステップs9)。 In addition, the rotational torque of the servo motor 16 at the time of the second corrugating process is detected by the torque detection sensor 24 of the finished shape measuring unit 20 and stored in the storage device 23 (step s8). The control device 21 that has received the rotational torque of the servo motor 16 at the time of the second corrugating process detected by the torque detection sensor 24 in step s8 as the detected rotational torque is detected by the time-dependent change data calculation program stored in the storage device 23. Torque calculation time-varying data is calculated and displayed on the display device 22 as a graph as shown in FIG. 18 (step s9).
 図18(a)に示すように、算出経時変化データは、第一コルゲート加工時の算出経時変化データと同様に、上側用サーボモータ16aにおける算出経時変化データの上向き凸部が二方向コルゲート材100の上面側のコルゲート形状を示しており、逆に、下側用サーボモータ16bにおける算出経時変化データの下向き凸部が二方向コルゲート材100の下面側のコルゲート形状を示している。つまり、上側用サーボモータ16aにおける算出経時変化データの上向き凸部と、下側用サーボモータ16bにおける算出経時変化データの下向き凸部とを合成することにより、図9(a)に示す二方向コルゲート材100のA-A切断部端面図に示す二方向コルゲート材100のコルゲート形状を示している。 As shown in FIG. 18 (a), the calculated temporal change data is similar to the calculated temporal change data at the time of the first corrugating process. The lower convex portion of the calculated time-dependent change data in the lower servo motor 16b shows the corrugated shape on the lower surface side of the two-way corrugated material 100. That is, the two-way corrugation shown in FIG. 9A is obtained by combining the upward convex portion of the calculated temporal change data in the upper servomotor 16a and the downward convex portion of the calculated temporal change data in the lower servomotor 16b. The corrugated shape of the two-way corrugated material 100 shown in the end view of the AA cut portion of the material 100 is shown.
 その結果、図18(b)に示す二方向コルゲート材100の全体が所望のコルゲートが形成されている場合、図18(a)に示すように、全体的に均一した経時変化データとなることが分かる。 As a result, when the desired corrugated material is formed on the entire bi-directional corrugated material 100 shown in FIG. 18B, the entire time-dependent change data may be obtained as shown in FIG. 18A. I understand.
 制御装置21は、算出経時変化データと、記憶装置23に格納した第二コルゲート加工用基準回転トルク経時変化データBL2とを比較し(ステップs10)、判定プログラムによって合否判定する。このとき、算出経時変化データが第二コルゲート加工用基準回転トルク経時変化データBL2の範囲を超えている場合(ステップs11:No)、この二方向コルゲート材100を不合格と判定する(ステップs16)。逆に、算出経時変化データが第二コルゲート加工用基準回転トルク経時変化データBL2の範囲内である場合(ステップs11:Yes,図16(a)に示す良判定領域のみの場合)、この二方向コルゲート材100を合格と判定する。 The control device 21 compares the calculated temporal change data with the second corrugating reference rotational torque temporal change data BL2 stored in the storage device 23 (step s10), and makes a pass / fail determination by the determination program. At this time, when the calculated temporal change data exceeds the range of the second corrugation reference rotational torque temporal change data BL2 (step s11: No), the two-way corrugated material 100 is determined to be rejected (step s16). . Conversely, when the calculated temporal change data is within the range of the second corrugating reference rotational torque temporal change data BL2 (step s11: Yes, only the good judgment region shown in FIG. 16A), these two directions The corrugated material 100 is determined to be acceptable.
 このように、二方向コルゲート材100を製造するために、アルミニウム製薄板材120を挟み込んでコルゲート加工する加工ギアローラ11に、ギア本体の径が異なる標準間隔ギア部12、広間隔ギア部13、及び狭間隔ギア部14を備えるとともに、加工ギアローラ11をそれぞれ回転駆動するサーボモータ16と、加工ギアローラ11における標準間隔ギア部12、広間隔ギア部13、及び狭間隔ギア部14を切り替える加工ギアローラスライド機構17とを備えた軸方向スライド式コルゲート材製造装置1を用い、加工ギアローラ11で挟み込んでアルミニウム製薄板材120にコルゲート加工した波状コルゲート材130に対して、第一コルゲート加工時におけるコルゲート加工方向に対して交差する方向の第二コルゲート加工を施すとともに、コルゲート加工ごとに、加工ギアローラスライド機構17で標準間隔ギア部12、広間隔ギア部13、及び狭間隔ギア部14を切替え可能としたことにより、様々なコルゲート形状の二方向コルゲート材100を製造することができる。 As described above, in order to manufacture the bi-directional corrugated material 100, the processing gear roller 11 that sandwiches the aluminum thin plate material 120 and corrugates it, the standard interval gear portion 12, the wide interval gear portion 13, and Servo motor 16 that includes narrow gap gear portion 14 and rotationally drives machining gear roller 11, and machining gear roller slide that switches standard gap gear portion 12, wide gap gear portion 13, and narrow gap gear portion 14 in machining gear roller 11. The corrugating direction in the first corrugating process with respect to the corrugated corrugated material 130 that is sandwiched between the processing gear rollers 11 and corrugated into the aluminum sheet 120 using the axially sliding corrugated material manufacturing apparatus 1 having the mechanism 17. Corrugation in the direction intersecting In addition, the corrugated material can be switched between the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 by the processing gear roller slide mechanism 17, so that various corrugated bi-directional corrugated materials are provided. 100 can be manufactured.
 詳しくは、アルミニウム製薄板材120を挟み込んでコルゲート加工する加工ギアローラ11に、ギア本体の径が異なる標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を備えるとともに、加工ギアローラ11をそれぞれ回転駆動するサーボモータ16と、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切り替える加工ギアローラスライド機構17とを備えた軸方向スライド式コルゲート材製造装置1を用い、加工ギアローラ11で挟み込んでアルミニウム製薄板材120にコルゲート加工した波状コルゲート材130に対して、第一コルゲート加工時におけるコルゲート加工方向に対して交差する方向の第二コルゲート加工を施すことにより二方向コルゲート材100を製造することができる。 Specifically, the processing gear roller 11 that corrugates by sandwiching the aluminum sheet material 120 includes the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 having different diameters of the gear body, and the processing gear roller 11 Using the axially slidable corrugated material manufacturing apparatus 1 provided with a servo motor 16 that rotates and a processing gear roller slide mechanism 17 that switches between the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14, respectively. Two-way corrugation is performed by applying a second corrugating process in a direction intersecting the corrugating process direction to the corrugated corrugated material 130 sandwiched between the processing gear rollers 11 and corrugated into the aluminum sheet 120. The material 100 can be manufactured.
 また、コルゲート加工ごとに、加工ギアローラスライド機構17で他の加工ギアローラ11に切替え可能としたことにより、コルゲート加工で加工されるコルゲートパターンを調整することができる。したがって、様々なコルゲート形状の二方向コルゲート材100を製造することができる。 In addition, the corrugation pattern processed by corrugation can be adjusted by enabling the processing gear roller slide mechanism 17 to switch to another processing gear roller 11 for each corrugation processing. Therefore, various corrugated two-way corrugated materials 100 can be manufactured.
 また、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を、加工ギアローラ11の同軸上に配置し、加工ギアローラスライド機構17により、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を、簡易な構造で長手方向Xにスライドさせて切り替え、複数種類のコルゲート形状の二方向コルゲート材100を製造することができる。 Further, the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 are arranged on the same axis of the processing gear roller 11, and the standard interval gear portion 12 and the wide interval gear portion 13 are arranged by the processing gear roller slide mechanism 17. And the narrow gap gear part 14 can be switched by sliding in the longitudinal direction X with a simple structure, and the bi-directional corrugated material 100 having a plurality of types of corrugated shapes can be manufactured.
 また、軸方向スライド式コルゲート材製造装置1に、それぞれのサーボモータ16における検出回転トルクを検出回転トルクとして検出するトルク検出センサ24と、加工ギアローラ11で挟み込んだアルミニウム製薄板材120にコルゲート加工する際における検出回転トルクを出力する表示装置22とを備え、表示装置22によって出力された検出回転トルクの経時変化に基づいてコルゲート加工による波形の出来形を計測することにより、加工ギアローラ11における標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14でアルミニウム製薄板材120を挟み込んでコルゲート加工して形成する二方向コルゲート材100のコルゲート形状全体の出来形をコルゲート加工しながら計測することができる。 
 詳しくは、アルミニウム製薄板材120を挟み込んでコルゲート加工する加工ギアローラ11を回転駆動するサーボモータ16の回転トルクを検出回転トルクとしてトルク検出センサ24で検出することにより、コルゲート加工においてアルミニウム製薄板材120を曲げるときの負荷を検出することができる。
Further, the axial slide type corrugated material manufacturing apparatus 1 performs corrugation processing on the aluminum sheet material 120 sandwiched between the torque detection sensor 24 that detects the detected rotational torque of each servo motor 16 as the detected rotational torque and the processing gear roller 11. And a display device 22 for outputting the detected rotational torque at the time, and measuring the waveform shape by corrugation based on the change over time of the detected rotational torque output by the display device 22, thereby providing a standard interval in the processing gear roller 11. Measuring the overall shape of the corrugated shape of the bi-directional corrugated material 100 formed by corrugating with the aluminum sheet 120 sandwiched between the gear portion 12, the wide gear portion 13 and the narrow gear portion 14 while corrugating. Can do.
More specifically, the aluminum sheet material 120 is used in corrugating by detecting the rotational torque of the servo motor 16 that rotationally drives the processing gear roller 11 that sandwiches the aluminum sheet material 120 and corrugating it as the detected rotational torque. The load when bending can be detected.
 なお、アルミニウム製薄板材120や波状コルゲート材130の板厚一定及びギア歯11cの形状やギア本体の径が同一であれば、V曲げにおける曲げ角度に応じて回転トルクが変動する、詳しくは、板厚一定の条件下において、V曲げにおける曲げ角度が大きい場合、回転トルクが高くなり、逆に、V曲げにおける曲げ角度が小さい場合、回転トルクが低くなる。 If the plate thickness of the aluminum thin plate material 120 or the corrugated corrugated material 130 is constant and the shape of the gear teeth 11c and the diameter of the gear body are the same, the rotational torque varies depending on the bending angle in V-bending. Under a constant plate thickness, when the bending angle in V bending is large, the rotational torque increases. Conversely, when the bending angle in V bending is small, the rotational torque decreases.
 このため、回転トルクが高い場合は曲げ角度が大きくなり、回転トルクが低い場合は曲げ角度が小さくなるという検出回転トルクの経時変化を捉えることにより、コルゲート加工したアルミニウム製薄板材120や波状コルゲート材130のコルゲート形状全体の出来形を計測することができる。 For this reason, the corrugated aluminum sheet material 120 and the corrugated corrugated material are obtained by grasping the change over time of the detected rotational torque in which the bending angle increases when the rotational torque is high and the bending angle decreases when the rotational torque is low. It is possible to measure the overall shape of 130 corrugated shapes.
 また、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を有する加工ギアローラ11のうち上側加工ギアローラ11a(下側加工ギアローラ11b)のギア歯11cの凸部分でアルミニウム製薄板材120を曲げ、凹部分では、下側加工ギアローラ11b(上側加工ギアローラ11a)のギア歯11c凸部分で曲げられたアルミニウム製薄板材120を受けることとなる。 Further, among the processing gear rollers 11 having the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14, the aluminum thin plate material 120 is a convex portion of the gear teeth 11c of the upper processing gear roller 11a (lower processing gear roller 11b). In the concave portion, the aluminum sheet material 120 bent by the convex portion of the gear teeth 11c of the lower processing gear roller 11b (upper processing gear roller 11a) is received.
 したがって、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を有する加工ギアローラ11を回転駆動するサーボモータ16における検出回転トルクからはその加工ギアローラ11によって曲げられた部分、つまり、その加工ギアローラ11に対して凸方向に曲げ加工された波形だけを計測することができる。 Therefore, a portion bent by the machining gear roller 11 from the detected rotational torque in the servo motor 16 that rotationally drives the machining gear roller 11 having the standard gap gear portion 12, the wide gap gear portion 13, and the narrow gap gear portion 14, that is, Only the waveform bent in the convex direction with respect to the processing gear roller 11 can be measured.
 しかしながら、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を有する加工ギアローラ11の両方のそれぞれに対して回転駆動するサーボモータ16におけるそれぞれの検出回転トルクを出力することにより、上側加工ギアローラ11a(下側加工ギアローラ11b)に対して凸方向に曲げ加工された波形だけでなく、下側加工ギアローラ11b(上側加工ギアローラ11a)によって曲げられた部分、つまり上側加工ギアローラ11a(下側加工ギアローラ11b)に対して凹方向に曲げ加工された波形の形状も計測することができる。 However, by outputting the respective detected rotational torques in the servo motor 16 that is rotationally driven with respect to both the processing gear roller 11 having the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14, the upper side Not only the waveform bent in the convex direction with respect to the processing gear roller 11a (lower processing gear roller 11b), but also the portion bent by the lower processing gear roller 11b (upper processing gear roller 11a), that is, the upper processing gear roller 11a (lower side). The shape of the waveform bent in the concave direction with respect to the processing gear roller 11b) can also be measured.
 したがって、アルミニウム製薄板材120の表面に対して両方向に波付けされたコルゲート形状全体の出来形をコルゲート加工しながら計測することができ、コルゲート加工完了と同時に形成されたコルゲート形状の全体の計測を完了することができる。よって、不適正なコルゲートが形成された二方向コルゲート材100を早期に発見することができる。 Therefore, it is possible to measure the corrugated shape of the entire corrugated shape corrugated in both directions with respect to the surface of the aluminum sheet material 120, and measure the entire corrugated shape formed simultaneously with the corrugated processing. Can be completed. Therefore, the two-way corrugated material 100 in which an inappropriate corrugate is formed can be discovered early.
 なお、上述の軸方向スライド式コルゲート材製造装置1は、コルゲート加工部10と出来形計測部20とを一体化した装置であったが、コルゲート加工部10と出来形計測部20とが独立した構成であってもよく、既存のコルゲート加工部10に対して出来形計測部20を装着してもよい。 In addition, although the above-mentioned axial direction slide type corrugated material manufacturing apparatus 1 was an apparatus in which the corrugated portion 10 and the finished shape measuring portion 20 were integrated, the corrugated portion 10 and the finished shape measuring portion 20 were independent. A configuration may be sufficient and the shape measurement part 20 may be mounted with respect to the existing corrugating part 10.
 また、上述の説明では、アルミニウム製薄板材120に対して二回のコルゲート加工を施したが、アルミニウム製薄板材120に対して一回のコルゲート加工を施した波状コルゲート材130を製品としても良いし、三回以上のコルゲート加工を施してもよい。さらにまた、複数回のコルゲート加工の加工方向は、直前のコルゲート加工の加工方向に対して直交する方向のみならず、その他の角度で交差する方向でもよく、さらには、複数回のコルゲート加工のうち、同じ方向にコルゲート加工を施してもよい。 Further, in the above description, the corrugating process is performed twice on the aluminum sheet material 120. However, the corrugated corrugated material 130 obtained by performing the corrugating process once on the aluminum sheet material 120 may be used as a product. And you may give corrugation processing 3 times or more. Furthermore, the machining direction of the multiple corrugating operations may be not only the direction orthogonal to the immediately preceding corrugating machining direction, but also the direction intersecting at other angles. Corrugating may be applied in the same direction.
 また、加工ギアローラスライド機構17により加工ギアローラ11をスライドさせて標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切り替えて、クリアランスKを所望の間隔として第一コルゲート加工時及び第二コルゲート加工時を行ったが、第一コルゲート加工時及び第二コルゲート加工時の途中で加工ギアローラスライド機構17を制御駆動させ、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切り替えてクリアランスKの間隔を所望の間隔としてもよい。 Further, the processing gear roller 11 is slid by the processing gear roller slide mechanism 17 to switch the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14, and the clearance K is set as a desired interval during the first corrugation processing and Although the second corrugating process was performed, the processing gear roller slide mechanism 17 is controlled and driven in the middle of the first corrugating process and the second corrugating process, and the standard interval gear part 12, the wide interval gear part 13, and the narrow interval gear are driven. The interval of the clearance K may be set as a desired interval by switching the part 14.
 このようにコルゲート加工途中に、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切り替えてクリアランスKを所望の間隔とすることによって、二方向コルゲート材100の幅方向Wや奥行き方向Vにおいて途中でコルゲート形状が変化する二方向コルゲート材100を製造することができる。したがって、コルゲート加工された二方向コルゲート材100を立体変形させる場合などにおいて、部位ごとの所望の性能を奏することのできるコルゲート形状を設定し、所望の形状のコルゲート材を製造することができる。 In this way, during the corrugating process, by switching the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 to set the clearance K to a desired interval, the width direction W and depth of the two-way corrugated material 100 are changed. A two-way corrugated material 100 whose corrugated shape changes midway in the direction V can be manufactured. Accordingly, when the corrugated bi-directional corrugated material 100 is three-dimensionally deformed, a corrugated shape capable of exhibiting desired performance for each part can be set, and a corrugated material having a desired shape can be manufactured.
 なお、上述の説明では、加工ギアローラスライド機構17により加工ギアローラ11をスライドさせて標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切り替え、クリアランスKが所望の間隔となるようにしてコルゲート加工したが、加工ギアローラ11をスライドさせることなく、加工ギアローラスライド機構17で投入口19aをスライドさせ、投入口19aから投入したアルミニウム製薄板材120が所望の間隔である標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14のいずれかでコルゲート加工してもよい。 In the above description, the machining gear roller 11 is slid by the machining gear roller slide mechanism 17 to switch the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 so that the clearance K becomes a desired interval. The corrugation processing is performed, but the processing gear roller slide mechanism 17 slides the insertion port 19a without sliding the processing gear roller 11, and the aluminum thin plate material 120 introduced from the insertion port 19a has a desired interval. Corrugating may be performed in any one of the portion 12, the wide gap gear portion 13, and the narrow gap gear portion 14.
 また、加工ギアローラ11における標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14は、同じギア歯11cを用いて加工ギアローラ11のギア本体の径を異ならせることにより、クリアランスKを標準間隔H、広間隔H1及び狭間隔H2としたが、同じ径の加工ギアローラ11において、ギア歯11cのギア歯高さの異なるギア歯11cを用いて標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を構成してもよい。 Further, the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 in the processing gear roller 11 use the same gear teeth 11c to make the diameter of the gear body of the processing gear roller 11 different so that the clearance K is standardized. Although the interval H, the wide interval H1, and the narrow interval H2 are used, in the processing gear roller 11 having the same diameter, the gear teeth 11c having different gear tooth heights are used, and the standard interval gear portion 12, the wide interval gear portion 13, and the like. The narrow gap gear portion 14 may be configured.
 また、サーボモータ16に接続され、アルミニウム製薄板材120の5倍程度の長さに形成された回転支持軸15で加工ギアローラ11を支持し、回転支持軸15に対して加工ギアローラ11を加工ギアローラスライド機構17によってスライドさせて、標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切替えたが、回転支持軸15を加工ギアローラ11と同程度の長さに形成し、加工ギアローラ11をサーボモータ16ごと加工ギアローラスライド機構17によってスライドさせて標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を切替えてもよい。 Further, the processing gear roller 11 is supported by the rotation support shaft 15 connected to the servo motor 16 and formed to have a length about five times that of the aluminum thin plate material 120. The standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14 are switched by sliding with the roller slide mechanism 17, but the rotation support shaft 15 is formed to have the same length as the processing gear roller 11 and processed. The gear roller 11 and the servo motor 16 may be slid by the machining gear roller slide mechanism 17 to switch the standard interval gear portion 12, the wide interval gear portion 13, and the narrow interval gear portion 14.
 続いて、加工ギアローラ11を加工ギアローラスライド機構17でスライドさせることなく、クリアランスKが所望の間隔となる回転式コルゲート材製造装置4を用いて二方向コルゲート材100を製造する場合について、図19乃至図23とともに説明する。 Subsequently, a case where the two-way corrugated material 100 is manufactured using the rotary corrugated material manufacturing apparatus 4 having a clearance K of a desired interval without sliding the processed gear roller 11 by the processed gear roller slide mechanism 17 is shown in FIG. It demonstrates with thru | or FIG.
 図19は回転式コルゲート材製造装置4の一部拡大ブロック図を示し、図20は回転式コルゲート加工装置40の斜視図を示し、図21及び図22はコルゲート加工部40におけるコルゲート加工についての説明図を示し、図23は加工ギアローラの回転切換えについての説明図を示している。 FIG. 19 is a partially enlarged block diagram of the rotary corrugated material manufacturing apparatus 4, FIG. 20 is a perspective view of the rotary corrugating apparatus 40, and FIGS. 21 and 22 illustrate corrugating in the corrugating section 40. FIG. 23 shows an explanatory diagram of rotation switching of the processing gear roller.
 詳しくは、図19は、回転式コルゲート材製造装置4におけるコルゲート加工部40についての一部拡大概略図を示している。 
 また、図21(a)は加工ギアローラ11の標準間隔ギア部12aでコルゲート加工する状態の概略図を示し、図21(b)は加工ギアローラ11の標準間隔ギア部12aでのコルゲート加工した後、加工ギアローラ11を上下移動させる状態の概略図を示し、図21(c)は上下移動した加工ギアローラ11の標準間隔ギア部12aで再度コルゲート加工するために逆回転する状態の概略図を示し、図22(a)は逆回転した加工ギアローラ11の標準間隔ギア部12aで再度コルゲート加工するために上下移動させる状態の概略図を示し、図22(b)は加工ギアローラ11の標準間隔ギア部12aで再度コルゲート加工する状態の概略図を示し、図22(c)は加工ギアローラ11の標準間隔ギア部12aでのコルゲート加工した後、加工ギアローラ11を上下移動させる状態の概略図を示している。
Specifically, FIG. 19 shows a partially enlarged schematic view of the corrugated portion 40 in the rotary corrugated material manufacturing apparatus 4.
FIG. 21A shows a schematic view of a state in which corrugation is performed by the standard interval gear portion 12a of the processing gear roller 11, and FIG. 21B shows a state after corrugation processing by the standard interval gear portion 12a of the processing gear roller 11 is performed. FIG. 21 (c) shows a schematic diagram of a state in which the machining gear roller 11 is moved up and down, and FIG. 21 (c) shows a schematic diagram of a state in which the machining gear roller 11 is reversely rotated for corrugating again at the standard interval gear portion 12a of the machining gear roller 11 moved up and down. 22 (a) is a schematic diagram showing a state in which the standard interval gear portion 12a of the reversely rotated processing gear roller 11 is moved up and down to corrugate again, and FIG. 22 (b) is a diagram of the standard interval gear portion 12a of the processing gear roller 11. FIG. 22 (c) shows a schematic view of the state of corrugating again, and FIG. 22 (c) shows a state after corrugating at the standard interval gear portion 12a of the processing gear roller 11. It shows a schematic view of a state in which vertically moving the Engineering Giarora 11.
 図23(a)の左図は標準間隔ギア部12aから狭間隔ギア部14aに切替えるための切替え回転についての概略図を示し、図23(a)の右図は切替えられた狭間隔ギア部14aでコルゲート加工する状態の概略図を示し、図23(b)の左図は狭間隔ギア部14aから広間隔ギア部13aに切替えるための切替え回転についての概略図を示し、図23(b)の右図は切替えられた広間隔ギア部13aでコルゲート加工する状態の概略図を示している。 The left figure of Fig.23 (a) shows the schematic about the switching rotation for switching from the standard gap gear part 12a to the narrow gap gear part 14a, and the right figure of Fig.23 (a) shows the switched narrow gap gear part 14a. FIG. 23B shows a schematic diagram of the state of corrugating, and the left diagram of FIG. 23B shows a schematic diagram of switching rotation for switching from the narrow gap gear portion 14a to the wide gap gear portion 13a, and FIG. The right figure has shown the schematic of the state which corrugates by the switched wide space | interval gear part 13a.
 上述の軸方向スライド式コルゲート材製造装置1の加工ギアローラ11において、ギア本体の径が異なる狭間隔ギア部14、標準間隔ギア部12及び広間隔ギア部13を長手方向Xに配置し、加工ギアローラ11を回転支持軸15に対してスライドさせてクリアランスKを標準間隔H、広間隔H1及び狭間隔H2から選択し、所望のコルゲート形状を形成していた。 In the machining gear roller 11 of the above-described axially sliding corrugated material manufacturing apparatus 1, the narrow gap gear portion 14, the standard gap gear portion 12 and the wide gap gear portion 13 having different gear main body diameters are arranged in the longitudinal direction X, and the machining gear roller 11 is slid with respect to the rotation support shaft 15, and the clearance K is selected from the standard interval H, the wide interval H1, and the narrow interval H2, thereby forming a desired corrugated shape.
 これに対し、回転式コルゲート材製造装置4のコルゲート加工部40は、アルミニウム製薄板材120の幅よりひと回り長い長さの加工ギアローラ11における外周面を3等分に割り付けて、各範囲におけるギア歯11cの高さを調整して標準間隔ギア部12a、広間隔ギア部13a及び狭間隔ギア部14aとし、上側加工ギアローラ11a及び下側加工ギアローラ11bにおける標準間隔ギア部12a、広間隔ギア部13a及び狭間隔ギア部14aのそれぞれが対向するように加工ギアローラ11を回転させて当該ギア部でコルゲート加工し、様々なコルゲート形状を形成している。 On the other hand, the corrugation processing unit 40 of the rotary corrugated material manufacturing apparatus 4 assigns the outer peripheral surface of the processing gear roller 11 having a length slightly longer than the width of the aluminum sheet material 120 into three equal parts, and gear teeth in each range. 11c is adjusted to obtain a standard interval gear portion 12a, a wide interval gear portion 13a, and a narrow interval gear portion 14a, and a standard interval gear portion 12a, a wide interval gear portion 13a, and an upper processing gear roller 11a and a lower processing gear roller 11b. The processing gear roller 11 is rotated so that each of the narrow gap gear portions 14a faces each other, and corrugation processing is performed by the gear portions, thereby forming various corrugated shapes.
 そのため、コルゲート加工部10の加工ギアローラスライド機構17の代わりに、加工ギアローラ11と標準間隔ギア部12とを一体的に離間方向に移動させる離間用サーボモータ18を備えている。 Therefore, instead of the processing gear roller slide mechanism 17 of the corrugating unit 10, a separation servomotor 18 that moves the processing gear roller 11 and the standard interval gear unit 12 integrally in the separation direction is provided.
 なお、約0.04mmのアルミニウム製薄板材120にコルゲート形状を施す本実施例の加工ギアローラ11のギア歯11cは、標準間隔ギア部12aにおいて高さ約0.48mm、頂角約32度、R約0.25mmとし、広間隔ギア部13aにおいて高さ約0.14mm、頂角約71度、R約0.25mmとし、狭間隔ギア部14aにおいて高さ約0.60mm、頂角約21度、R約0.25mmとしている。 In addition, the gear teeth 11c of the processing gear roller 11 of the present embodiment in which the corrugated shape is applied to the thin aluminum plate material 120 of about 0.04 mm has a height of about 0.48 mm, an apex angle of about 32 degrees, and R in the standard interval gear portion 12a. The height is about 0.25 mm, the height of the wide gap gear portion 13a is about 0.14 mm, the apex angle is about 71 degrees, the radius R is about 0.25 mm, and the height of the narrow gap gear portion 14a is about 0.60 mm and the apex angle is about 21 degrees. R is about 0.25 mm.
 これにより、上側加工ギアローラ11aと下側加工ギアローラ11bとの間のクリアランスKは、標準間隔ギア部12a同士が対向する場合を標準間隔H、広間隔ギア部13a同士が対向する場合を広間隔H1及び狭間隔ギア部14a同士が対向する場合を狭間隔H2となる。なお、標準間隔H、広間隔H1及び狭間隔H2は上述の軸方向スライド式コルゲート材製造装置1における間隔であるため、詳細な説明を省略する。 Thereby, the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b is a standard interval H when the standard interval gear portions 12a face each other, and a wide interval H1 when the wide interval gear portions 13a face each other. And the narrow space | interval H2 is the case where the narrow space | interval gear parts 14a oppose. Note that the standard interval H, the wide interval H1, and the narrow interval H2 are intervals in the above-described axially sliding corrugated material manufacturing apparatus 1, and thus detailed description thereof is omitted.
 なお、コルゲート加工部40の加工ギアローラ11は、周方向に三等分しているため、加工ギアローラ11を単に回転させた場合、所望の間隔となるギア部でのコルゲート加工の後ギア歯高さの異なるギア部でコルゲート加工されることとなる。 Since the processing gear roller 11 of the corrugating section 40 is divided into three equal parts in the circumferential direction, when the processing gear roller 11 is simply rotated, the gear tooth height after corrugating at the gear section at a desired interval is obtained. Corrugation is performed with different gear parts.
 そのため、コルゲート加工部40では、加工ギアローラ11を回転させて、標準間隔ギア部12a、広間隔ギア部13a、及び狭間隔ギア部14aのうちいずれかのギア部でコルゲート加工し(図21(a))、回転により当該ギア部の範囲が終わると(図21(b))、上側加工ギアローラ離間用サーボモータ18aにより上側加工ギアローラ11aと標準間隔ギア部12aを上方に移動させ、下側加工ギアローラ離間用サーボモータ18bにより下側加工ギアローラ11bと標準間隔ギア部12bとを下方に移動させてコルゲート加工しているアルミニウム製薄板材120(波状コルゲート材130)から加工ギアローラ11を離間させる(図21(c))。 Therefore, in the corrugating part 40, the processing gear roller 11 is rotated and corrugated by any one of the standard gap gear part 12a, the wide gap gear part 13a, and the narrow gap gear part 14a (see FIG. 21 (a)). )), When the range of the gear portion is ended by rotation (FIG. 21B), the upper processing gear roller 11a and the standard interval gear portion 12a are moved upward by the upper processing gear roller separation servomotor 18a, and the lower processing gear roller The processing gear roller 11 is separated from the aluminum thin plate material 120 (the corrugated corrugated material 130) by moving the lower processing gear roller 11b and the standard interval gear portion 12b downward by the separation servo motor 18b (FIG. 21). (C)).
 アルミニウム製薄板材120(波状コルゲート材130)から離間させた加工ギアローラ11を回転させ、上側加工ギアローラ11aと下側加工ギアローラ11bにおいて、これまでコルゲート加工していたギア部の開始位置を対向させるとともに(図22(a))、離間用サーボモータ18により加工ギアローラ11が所定の位置となるように、つまり、クリアランスKが所定の間隔となるように移動し(図22(b))、当該ギア部でのコルゲート加工を再開する(図22(c))。 The processing gear roller 11 separated from the aluminum sheet material 120 (the corrugated corrugated material 130) is rotated so that the upper processing gear roller 11a and the lower processing gear roller 11b face the start positions of the gear portions that have been corrugated so far. (FIG. 22 (a)), the processing gear roller 11 is moved to a predetermined position by the separation servo motor 18, that is, the clearance K is moved to a predetermined interval (FIG. 22 (b)), and the gear The corrugating process at the part is resumed (FIG. 22C).
 このようにコルゲート加工部40では、加工ギアローラ11をサーボモータ16で回転させてコルゲート加工するとともに、当該ギア部の範囲が終わると、離間用サーボモータ18で離間させ、開始位置まで回転させてから加工を再開する。つまり、加工ギアローラ11を反復回転させて、所望のコルゲート形状を形成する。 As described above, in the corrugating section 40, the processing gear roller 11 is rotated by the servo motor 16 to perform corrugation, and when the range of the gear section is finished, the processing is performed by the separating servo motor 18 and rotating to the start position. Resume machining. That is, the processing gear roller 11 is repeatedly rotated to form a desired corrugated shape.
 次に、所望のコルゲート形状に応じて選択されたギア部に切替えについて説明する。 
 所望のコルゲート形状に応じて選択されたギア部に切替えるためには、そのギア部の範囲でのコルゲート加工が終了後に反復させるために加工ギアローラ11を離間用サーボモータ18で離間するのと同様に、ギア歯11cが噛合状態にある所定位置から一旦、離間用サーボモータ18で加工ギアローラ11を離間させ、所望のギア部の開始位置が対向するまで加工ギアローラ11を回転し、該当するギア部が噛合する所定位置まで加工ギアローラ11を離間用サーボモータ18で移動させて切替える。
Next, switching to the gear portion selected according to the desired corrugated shape will be described.
In order to switch to the gear portion selected according to the desired corrugated shape, the processing gear roller 11 is separated by the separation servo motor 18 in order to repeat the corrugation processing in the range of the gear portion after the end. The processing gear roller 11 is once separated from the predetermined position where the gear teeth 11c are engaged with each other by the separating servo motor 18, and the processing gear roller 11 is rotated until the start position of the desired gear portion opposes. The machining gear roller 11 is moved by the separation servomotor 18 to a predetermined position where the meshing gears are engaged with each other and switched.
 具体的には、標準間隔ギア部12aが噛合した状態から狭間隔ギア部14aに切替える場合について図23(a)に基づいて説明する。 
 まず、標準間隔ギア部12aから狭間隔ギア部14aに切替えるために、標準間隔ギア部12aが噛合した状態の加工ギアローラ11を離間用サーボモータ18で離間させ(図23(a)左図)、狭間隔ギア部14aの開始位置が対向する位置までサーボモータ16で加工ギアローラ11を回転する。そして、狭間隔ギア部14aの開始位置が対向してから、加工ギアローラ11を離間用サーボモータ18で近接させて、狭間隔ギア部14aのギア歯11c同士を噛合する(図23(a)右図)。このようにして、標準間隔ギア部12aから狭間隔ギア部14aに切替えることができる。
Specifically, the case of switching from the state in which the standard interval gear portion 12a is engaged to the narrow interval gear portion 14a will be described with reference to FIG.
First, in order to switch from the standard interval gear portion 12a to the narrow interval gear portion 14a, the processing gear roller 11 in a state in which the standard interval gear portion 12a is engaged is separated by the separation servo motor 18 (FIG. 23 (a) left figure). The machining gear roller 11 is rotated by the servomotor 16 until the start position of the narrow gap gear portion 14a faces. Then, after the start position of the narrow gap gear portion 14a is opposed, the processing gear roller 11 is brought close to the separation servo motor 18 to engage the gear teeth 11c of the narrow gap gear portion 14a (FIG. 23 (a) right) Figure). In this way, the standard interval gear portion 12a can be switched to the narrow interval gear portion 14a.
 次に、狭間隔ギア部14aが噛合した状態から広間隔ギア部13aに切替える場合について図23(b)に基づいて説明する。 
 まず、狭間隔ギア部14aから広間隔ギア部13aに切替えるために、狭間隔ギア部14aが噛合した状態の加工ギアローラ11を離間用サーボモータ18で離間させ(図23(b)左図)、広間隔ギア部13aの開始位置が対向する位置までサーボモータ16で加工ギアローラ11を回転する。そして、広間隔ギア部13aの開始位置が対向してから、加工ギアローラ11を離間用サーボモータ18で近接させて、広間隔ギア部13aのギア歯11c同士を噛合する(図23(b)右図)。このようにして、狭間隔ギア部14aから広間隔ギア部13aに切替えることができる。
Next, the case of switching from the state in which the narrow gap gear portion 14a is engaged to the wide gap gear portion 13a will be described with reference to FIG.
First, in order to switch from the narrow gap gear portion 14a to the wide gap gear portion 13a, the machining gear roller 11 in a state where the narrow gap gear portion 14a is engaged is separated by the separation servo motor 18 (FIG. 23 (b) left figure). The machining gear roller 11 is rotated by the servo motor 16 until the start position of the wide gap gear portion 13a faces. Then, after the start positions of the wide gap gear portion 13a face each other, the processing gear roller 11 is brought close to the separation servomotor 18 to engage the gear teeth 11c of the wide gap gear portion 13a (FIG. 23 (b) right) Figure). In this way, the narrow gap gear portion 14a can be switched to the wide gap gear portion 13a.
 なお、上述の説明では、標準間隔ギア部12aから狭間隔ギア部14a、及び狭間隔ギア部14aから広間隔ギア部13aへ切替える動作について説明したが、もちろん、標準間隔ギア部12aから広間隔ギア部13aへ切替えてもよく、逆の切替えパターンであっても、同様の切替え動作で所望のギア部に切替えることができる。したがって、クリアランスKが所望の間隔であるギア部に容易に切替え、様々なコルゲート形状の二方向コルゲート材100を製造することができる。 In the above description, the operation of switching from the standard interval gear portion 12a to the narrow interval gear portion 14a and the narrow interval gear portion 14a to the wide interval gear portion 13a has been described. It is possible to switch to the part 13a, and even if the reverse switching pattern is used, it is possible to switch to the desired gear part by the same switching operation. Accordingly, the two-way corrugated material 100 having various corrugated shapes can be manufactured by easily switching to the gear portion having the desired clearance K.
 このように、形状が異なるギア歯11cを有する標準間隔ギア部12a、広間隔ギア部13a及び狭間隔ギア部14aを加工ギアローラ11における対応する周方向角度ごとに配置するとともに、サーボモータ16で加工ギアローラ11をそれぞれ所定角度の反復回転させ、標準間隔ギア部12と離間用サーボモータ18とを協働させて、加工ギアローラ11における標準間隔ギア部12a、広間隔ギア部13a、及び狭間隔ギア部14aを切替えるため、コンパクトな構造で対応する周方向角度回転させて標準間隔ギア部12a、広間隔ギア部13a、及び狭間隔ギア部14aを切り替え、複数種類のコルゲート形状の二方向コルゲート材100を製造することができる。 In this manner, the standard interval gear portion 12a, the wide interval gear portion 13a, and the narrow interval gear portion 14a having the gear teeth 11c having different shapes are arranged for each corresponding circumferential angle in the processing gear roller 11, and processed by the servo motor 16. Each of the gear rollers 11 is repeatedly rotated by a predetermined angle, and the standard interval gear portion 12 and the separation servo motor 18 cooperate with each other, so that the standard interval gear portion 12a, the wide interval gear portion 13a, and the narrow interval gear portion in the processing gear roller 11 are obtained. 14a can be switched by rotating the corresponding circumferential angle with a compact structure to switch between the standard interval gear portion 12a, the wide interval gear portion 13a, and the narrow interval gear portion 14a. Can be manufactured.
 この発明の構成と、上述の実施例との対応において、この発明の薄板材は、アルミニウム製薄板材120や波状コルゲート材130に対応し、
以下同様に、
一対の波付け歯車は、加工ギアローラ11、上側加工ギアローラ11a、下側加工ギアローラ11bに対応し、
ギア歯形状の異なる複数種類は、標準間隔ギア部12,12a、広間隔ギア部13,13a、狭間隔ギア部14,14aに対応し、
回転駆動手段は、サーボモータ16、上側用サーボモータ16a、下側用サーボモータ16bに対応し、
歯車切換え手段は、加工ギアローラスライド機構17及び離間用サーボモータ18に対応し、
歯車スライド手段は、加工ギアローラスライド機構17に対応し、
周方向角度回転させて切替える歯車切換え手段は、離間用サーボモータ18に対応し、
波付け材製造装置は、コルゲート材製造装置1,4に対応し、
波付け加工は、コルゲート加工に対応し、
波付け加工方向は、コルゲート加工方向Lに対応し、
直前の波付け加工時は、ステップs3に示す第一コルゲート加工に対応し、
多方向波付け材は、二方向コルゲート材100、第1パターン二方向コルゲート材100a、第2パターン二方向コルゲート材100b、第3パターン二方向コルゲート材100c、第4パターン二方向コルゲート材100d、第5パターン二方向コルゲート材100e、第6パターン二方向コルゲート材100f、第7パターン二方向コルゲート材100gに対応し、
記憶手段は、記憶装置23に対応し、
制御手段は、制御装置21に対応し、
トルク検出手段は、トルク検出センサ24、上側用トルク検出センサ24a、下側用トルク検出センサ24bに対応し、
検出トルク出力手段は、表示装置22に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In the correspondence between the configuration of the present invention and the above-described embodiment, the thin plate material of the present invention corresponds to the aluminum thin plate material 120 and the corrugated corrugated material 130,
Similarly,
The pair of corrugated gears correspond to the processing gear roller 11, the upper processing gear roller 11a, and the lower processing gear roller 11b,
A plurality of types with different gear tooth shapes correspond to the standard interval gear portions 12, 12a, the wide interval gear portions 13, 13a, and the narrow interval gear portions 14, 14a,
The rotation driving means corresponds to the servo motor 16, the upper servo motor 16a, and the lower servo motor 16b.
The gear switching means corresponds to the processing gear roller slide mechanism 17 and the separating servo motor 18,
The gear slide means corresponds to the processing gear roller slide mechanism 17,
The gear switching means for switching by rotating the angle in the circumferential direction corresponds to the separating servo motor 18,
The corrugated material manufacturing apparatus corresponds to the corrugated material manufacturing apparatuses 1 and 4,
Corrugation processing corresponds to corrugation processing,
Corrugation processing direction corresponds to corrugation processing direction L,
At the time of the last corrugation processing, it corresponds to the first corrugation processing shown in step s3,
The multi-directional corrugating material includes a bi-directional corrugated material 100, a first patterned bi-directional corrugated material 100a, a second patterned bi-directional corrugated material 100b, a third patterned bi-directional corrugated material 100c, a fourth patterned bi-directional corrugated material 100d, Corresponding to 5 pattern bi-directional corrugated material 100e, 6th pattern bi-directional corrugated material 100f, 7th pattern bi-directional corrugated material 100g,
The storage means corresponds to the storage device 23,
The control means corresponds to the control device 21,
The torque detection means corresponds to the torque detection sensor 24, the upper torque detection sensor 24a, and the lower torque detection sensor 24b.
The detected torque output means corresponds to the display device 22,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.
 例えば、制御装置21及び記憶装置23と、コルゲート加工部10、40とで軸方向スライド式コルゲート材製造装置1、4を構成し、つまりトルク検出センサ24を備えずに、サーボモータ16の回転トルクを検出せずに、加工ギアローラスライド機構17でクリアランスKを調整し、所望のコルゲート形状の二方向コルゲート材100を製造してもよい。 For example, the control device 21, the storage device 23, and the corrugated processing units 10, 40 constitute the axial slide type corrugated material manufacturing devices 1, 4, that is, without the torque detection sensor 24, the rotational torque of the servo motor 16. Without detecting this, the clearance K may be adjusted by the processing gear roller slide mechanism 17 to produce the desired corrugated bi-directional corrugated material 100.
 また、上述の説明ではステップs5やs9において、波状コルゲート材130(二方向コルゲート材100)を不合格判定としただけであったが、基準回転トルク経時変化データBLとの比較において不合格判定された部分を特定するログデータを蓄積したり、マーキングを施し、その他の合格判定となった部分を製品として用いてもよい。これにより、不合格と判断されたコルゲート形状部分を排除できるため、製品の精度を向上できるとともに、製品のロスを低減することができる。 In the above description, in step s5 and s9, only the corrugated corrugated material 130 (two-way corrugated material 100) is determined to be rejected, but it is determined to be rejected in comparison with the reference rotational torque temporal change data BL. The log data for identifying the part may be accumulated, or marking may be performed, and the part that has passed the other pass determination may be used as the product. Thereby, since the corrugated shape part judged to be unacceptable can be eliminated, the accuracy of the product can be improved and the loss of the product can be reduced.
 また、上述の説明において、トルク検出センサ24で検出した検出回転トルクを記憶装置23に記憶したが、一時的に記憶する制御装置21のRAMに記憶してもよい。 In the above description, the detected rotational torque detected by the torque detection sensor 24 is stored in the storage device 23, but may be stored in the RAM of the control device 21 that temporarily stores it.
 また、コルゲート加工した際の検出回転トルクの経時変化を表示装置22にグラフ表示したが、表示装置22のみならず、プリント出力としても良いし、数値を表示してもよい。 Further, although the change with time of the detected rotational torque when corrugated is displayed on the display device 22, not only the display device 22 but also a print output or a numerical value may be displayed.
 なお、コルゲート加工部10における標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14、コルゲート加工部40における標準間隔ギア部12a、広間隔ギア部13a及び狭間隔ギア部14aがそれぞれ対向するようにしてクリアランスKを選択してコルゲート加工を行ったが、例えば、上側加工ギアローラ11aを標準間隔ギア部12、下側加工ギアローラ11bを狭間隔ギア部14とするように、上側加工ギアローラ11aと下側加工ギアローラ11bとで対向するギア部を異ならせてコルゲート加工してもよい。このように、上側加工ギアローラ11aと下側加工ギアローラ11bとで対向するギア部を異ならせてコルゲート加工することにより、コルゲート形状が表裏で異なる二方向コルゲート材100を形成することができる。 In addition, the standard interval gear portion 12, the wide interval gear portion 13 and the narrow interval gear portion 14 in the corrugated portion 10, and the standard interval gear portion 12a, the wide interval gear portion 13a and the narrow interval gear portion 14a in the corrugated portion 40 are opposed to each other. Thus, the corrugation processing is performed by selecting the clearance K. For example, the upper processing gear roller 11a is configured such that the upper processing gear roller 11a is the standard interval gear portion 12 and the lower processing gear roller 11b is the narrow interval gear portion 14. And the lower processing gear roller 11b may be corrugated by changing the facing gear portions. As described above, the corrugating process is performed by changing the gear portions facing each other between the upper processing gear roller 11a and the lower processing gear roller 11b, so that the two-way corrugated material 100 having different corrugated shapes can be formed.
 なお、上述のコルゲート加工部10の加工ギアローラ11では標準間隔ギア部12、広間隔ギア部13及び狭間隔ギア部14を備え、上述の回転式コルゲート加工装置40の加工ギアローラ11では標準間隔ギア部12a、広間隔ギア部13a及び狭間隔ギア部14aを備えたが、これに限定されず、少なくとも2種類のギア部を備えればよく、例えば、4種類以上のギア部を備えてもよい。 The processing gear roller 11 of the corrugating section 10 includes a standard interval gear section 12, a wide interval gear section 13, and a narrow interval gear section 14, and the processing gear roller 11 of the rotary corrugating apparatus 40 includes a standard interval gear section. 12a, wide gap gear part 13a, and narrow gap gear part 14a are provided, but the invention is not limited to this, and it is sufficient that at least two kinds of gear parts are provided. For example, four or more kinds of gear parts may be provided.
1…軸方向スライド式コルゲート材製造装置
4…回転式コルゲート材製造装置
11…加工ギアローラ
11a…上側加工ギアローラ
11b…下側加工ギアローラ
11c…ギア歯
12,12a…標準間隔ギア部
13,13a…広間隔ギア部
14,14a…狭間隔ギア部
16……サーボモータ
16a…上側用サーボモータ
16b…下側用サーボモータ
17…加工ギアローラスライド機構
18…離間用サーボモータ
21…制御装置
22…表示装置
23…記憶装置
24……トルク検出センサ
24a…上側用トルク検出センサ
24b…下側用トルク検出センサ
100…二方向コルゲート材
100a…第1パターン二方向コルゲート材
100b…第2パターン二方向コルゲート材
100c…第3パターン二方向コルゲート材
100d…第4パターン二方向コルゲート材
100e…第5パターン二方向コルゲート材
100f…第6パターン二方向コルゲート材
100g…第7パターン二方向コルゲート材
120…アルミニウム製薄板材
130…波状コルゲート材
DESCRIPTION OF SYMBOLS 1 ... Axial-sliding-type corrugated material manufacturing apparatus 4 ... Rotary-type corrugated material manufacturing apparatus 11 ... Processing gear roller 11a ... Upper processing gear roller 11b ... Lower processing gear roller 11c ... Gear teeth 12, 12a ... Standard spacing gear parts 13, 13a ... Wide Spacing gears 14, 14a ... Narrow spacing gear 16 ... Servo motor 16a ... Upper servo motor 16b ... Lower servo motor 17 ... Processing gear roller slide mechanism 18 ... Separation servo motor 21 ... Control device 22 ... Display device 23 ... Storage device 24 ... Torque detection sensor 24a ... Upper torque detection sensor 24b ... Lower torque detection sensor 100 ... Two-way corrugated material 100a ... First pattern two-way corrugated material 100b ... Second pattern two-way corrugated material 100c ... 3rd pattern bi-directional corrugated material 100d ... 4th pattern bi-directional corrugated material Gate material 100 e ... fifth pattern bidirectional corrugated member 100f ... sixth pattern bidirectional corrugated material 100 g ... seventh pattern bidirectional corrugated material 120 ... aluminum thin plate 130 ... wavy corrugated material

Claims (9)

  1.  薄板材を挟み込んで波付け加工する一対の波付け歯車を、ギア歯形状の異なる複数種類備えるとともに、
    前記一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、
    前記複数種類の波付け歯車を切り替える歯車切換え手段とを備えた波付け材製造装置を用い、
    前記一対の波付け歯車で挟み込んで前記薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施すとともに、
    前記波付け加工ごとに、前記歯車切換え手段で前記波付け歯車を切替え可能とした
    多方向波付け材を製造する多方向波付け材の製造方法。
    A pair of corrugated gears that sandwich and corrugate a thin plate material are provided with a plurality of types having different gear tooth shapes,
    Rotation drive means for rotating each of the pair of corrugated gears;
    Using a corrugated material manufacturing apparatus comprising a gear switching means for switching the plural types of corrugated gears,
    The corrugated thin plate sandwiched between the pair of corrugated gears and corrugated to the thin plate material is subjected to a plurality of corrugations in a direction intersecting the corrugating direction at the time of the previous corrugation. ,
    A multidirectional corrugating material manufacturing method for manufacturing a multidirectional corrugating material in which the corrugated gear can be switched by the gear switching means for each corrugation process.
  2.  前記複数種類の波付け歯車を、
    一対の波付け歯車と同軸上に配置し、
    前記歯車切換え手段を、
    前記一対の波付け歯車を軸線方向にスライドする歯車スライド手段で構成とした
    請求項1に記載の多方向波付け材の製造方法。
    The plurality of types of corrugated gears,
    Arranged coaxially with a pair of corrugated gears,
    The gear switching means,
    The method for producing a multi-directional corrugated material according to claim 1, wherein the pair of corrugated gears is constituted by gear sliding means for sliding in the axial direction.
  3.  前記回転駆動手段を、
    前記一対の波付け歯車を、それぞれ所定角度の反復回転駆動する構成とするとともに、
    前記複数種類の波付け歯車を、
    一対の波付け歯車における対応する周方向角度ごとに配置した異なるギア歯形状で構成し、
    前記歯車切換え手段を、
    一対の波付け歯車における対応する周方向角度回転させて切替える構成とした
    請求項1に記載の多方向波付け材の製造方法。
    The rotation driving means;
    Each of the pair of corrugated gears is configured to repeatedly rotate at a predetermined angle, and
    The plurality of types of corrugated gears,
    Consists of different gear tooth shapes arranged for each corresponding circumferential angle in a pair of corrugated gears,
    The gear switching means,
    The method for producing a multidirectional corrugated material according to claim 1, wherein the pair of corrugated gears are configured to be switched by rotating at a corresponding circumferential angle.
  4.  前記波付け材製造装置に、
    それぞれの前記回転駆動手段における前記検出回転トルクを検出回転トルクとして検出するトルク検出手段と、
    前記波付け歯車で挟み込んだ前記薄板材に波付け加工する際における前記検出回転トルクを出力する検出トルク出力手段とを備え、
    該検出トルク出力手段によって出力された前記検出回転トルクの経時変化に基づいて前記波付け加工による波形の出来形を計測する
    請求項1乃至3のうちいずれかに記載の多方向波付け材の製造方法。
    In the corrugated material manufacturing apparatus,
    Torque detecting means for detecting the detected rotational torque in each of the rotational drive means as detected rotational torque;
    Detecting torque output means for outputting the detected rotational torque when corrugating the thin plate material sandwiched between the corrugated gears,
    4. The multi-directional corrugated material according to claim 1, wherein a waveform shape by the corrugation processing is measured based on a change with time of the detected rotational torque output by the detected torque output means. Method.
  5.  請求項1乃至4のうちいずれかの製造方法で製造した
    多方向波付け材。
    The multidirectional corrugated material manufactured with the manufacturing method in any one of Claims 1 thru | or 4.
  6.  一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施して多方向波付け材を製造する波付け材製造装置であって、
    薄板材を挟み込んで波付け加工する前記一対の波付け歯車を、ギア歯形状の異なる複数種類備えるとともに、
    前記一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、
    前記複数種類の波付け歯車を切り替える歯車切換え手段とを備えた
    波付け材製造装置。
    Corrugated thin plate sandwiched between a pair of corrugated gears and corrugated into a thin plate material is subjected to multiple undulations in the direction intersecting the corrugated direction at the time of the previous corrugation. A corrugated material manufacturing apparatus for manufacturing a corrugated material,
    A pair of corrugated gears that sandwich and corrugate a thin plate material are provided with a plurality of types having different gear tooth shapes,
    Rotation drive means for rotating each of the pair of corrugated gears;
    A corrugated material manufacturing apparatus comprising gear switching means for switching the plurality of types of corrugated gears.
  7.  前記複数種類の波付け歯車を、
    一対の波付け歯車と同軸上に配置し、
    前記歯車切換え手段を、
    前記一対の波付け歯車を軸線方向にスライドする歯車スライド手段で構成とした
    請求項6に記載の波付け材製造装置。
    The plurality of types of corrugated gears,
    Arranged coaxially with a pair of corrugated gears,
    The gear switching means,
    The corrugated material manufacturing apparatus according to claim 6, wherein the pair of corrugated gears is configured by a gear sliding means that slides in the axial direction.
  8.  前記回転駆動手段を、
    前記一対の波付け歯車を、それぞれ所定角度の反復回転駆動する構成とするとともに、
    前記複数種類の波付け歯車を、
    一対の波付け歯車における対応する周方向角度ごとに配置した異なるギア歯形状で構成し、
    前記歯車切換え手段を、
    一対の波付け歯車における対応する周方向角度回転させて切替える構成とした
    請求項7に記載の波付け材製造装置。
    The rotation driving means;
    Each of the pair of corrugated gears is configured to repeatedly rotate at a predetermined angle, and
    The plurality of types of corrugated gears,
    Consists of different gear tooth shapes arranged for each corresponding circumferential angle in a pair of corrugated gears,
    The gear switching means,
    The corrugated material manufacturing apparatus according to claim 7, wherein the corrugated material manufacturing apparatus is configured to perform switching by rotating a corresponding circumferential angle in a pair of corrugated gears.
  9.  それぞれの前記回転駆動手段における前記検出回転トルクを検出回転トルクとして検出するトルク検出手段と、
    前記波付け歯車で挟み込んだ前記薄板材に波付け加工する際における前記検出回転トルクを出力する検出トルク出力手段とを備え、
    該検出トルク出力手段によって出力された前記検出回転トルクの経時変化に基づいて前記波付け加工による波形の出来形を計測する
    請求項6乃至8のうちいずれかに記載の波付け材製造装置。
    Torque detecting means for detecting the detected rotational torque in each of the rotational drive means as detected rotational torque;
    Detecting torque output means for outputting the detected rotational torque when corrugating the thin plate material sandwiched between the corrugated gears,
    The corrugated material manufacturing apparatus according to any one of claims 6 to 8, wherein a waveform shape by the corrugation processing is measured based on a change with time of the detected rotational torque output by the detected torque output means.
PCT/JP2011/072025 2011-09-27 2011-09-27 Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material WO2013046326A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/072025 WO2013046326A1 (en) 2011-09-27 2011-09-27 Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material
JP2011554320A JP5039233B1 (en) 2011-09-27 2011-09-27 Multi-directional corrugated material manufacturing method, multi-directional corrugated material, and corrugated material manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072025 WO2013046326A1 (en) 2011-09-27 2011-09-27 Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material

Publications (1)

Publication Number Publication Date
WO2013046326A1 true WO2013046326A1 (en) 2013-04-04

Family

ID=47087555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072025 WO2013046326A1 (en) 2011-09-27 2011-09-27 Method for manufacturing multidirectional waved material, multidirectional waved material, and device for manufacturing waved material

Country Status (2)

Country Link
JP (1) JP5039233B1 (en)
WO (1) WO2013046326A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265292B1 (en) * 2017-04-04 2018-01-24 国産部品工業株式会社 Method for producing metal embossed plate
CN108723144A (en) * 2017-04-19 2018-11-02 上海申捷管业科技有限公司 A kind of continuous wave pattern baseplate molding machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420482B2 (en) * 2015-07-31 2018-11-14 日産自動車株式会社 Metal plate and metal cover using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225597U (en) * 1985-07-27 1987-02-17
JPS6333122A (en) * 1986-07-29 1988-02-12 Hiroo Ichikawa Method and device for manufacturing reinforced corrugated sheet
JPH0775836A (en) * 1993-09-03 1995-03-20 Toyota Motor Corp Production of corrugated sheet for metal carrier
JP2001504393A (en) * 1996-08-10 2001-04-03 フェデラル−モウガル テクノロジー リミテッド Metal sheet forming method and panel comprising such sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321025A (en) * 1988-06-23 1989-12-27 Ishikawajima Harima Heavy Ind Co Ltd Method and device for producing corrugated sheet
JP5705402B2 (en) * 2008-02-08 2015-04-22 ニチアス株式会社 Method for producing aluminum molded plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225597U (en) * 1985-07-27 1987-02-17
JPS6333122A (en) * 1986-07-29 1988-02-12 Hiroo Ichikawa Method and device for manufacturing reinforced corrugated sheet
JPH0775836A (en) * 1993-09-03 1995-03-20 Toyota Motor Corp Production of corrugated sheet for metal carrier
JP2001504393A (en) * 1996-08-10 2001-04-03 フェデラル−モウガル テクノロジー リミテッド Metal sheet forming method and panel comprising such sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265292B1 (en) * 2017-04-04 2018-01-24 国産部品工業株式会社 Method for producing metal embossed plate
CN108723144A (en) * 2017-04-19 2018-11-02 上海申捷管业科技有限公司 A kind of continuous wave pattern baseplate molding machine

Also Published As

Publication number Publication date
JPWO2013046326A1 (en) 2015-03-26
JP5039233B1 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
Wang et al. Modulation of multi-directional auxeticity in hybrid origami metamaterials
Gattas et al. Miura-base rigid origami: parametrizations of curved-crease geometries
JP5039233B1 (en) Multi-directional corrugated material manufacturing method, multi-directional corrugated material, and corrugated material manufacturing apparatus
Cerda et al. Conical dislocations in crumpling
RU2717184C2 (en) Lamella for plate heat exchanger and method for production thereof
Klett et al. Designing technical tessellations
Seffen Compliant shell mechanisms
CA2563257A1 (en) Method of designing fold lines in sheet material
TW201102242A (en) Process for preparation of quadrangle unit
Chen et al. Mobile assemblies based on the Bennett linkage
CN110568540B (en) Micro-nano wave plate array with double-image display function and construction method thereof
JP4970626B1 (en) Multi-directional corrugated material manufacturing method, multi-directional corrugated material, and corrugated material manufacturing apparatus
JP5299895B2 (en) Method, program and apparatus for generating contour shape of a pair of non-circular gears
JP2013071126A (en) Method for manufacturing multidirectional corrugated material, multidirectional corrugated material, and device for manufacturing corrugated material
JP4896528B2 (en) Hypoid gear processing machine setting device
Meeussen et al. Multistable sheets with rewritable patterns for switchable shape-morphing
JP2013071130A (en) Method for manufacturing multidirectional corrugated material, multidirectional corrugated material, and device for manufacturing corrugated material
JP6682576B2 (en) Device for folding a sheet of material into a support structure
Habibi et al. An accurate and efficient approach to undeformed chip geometry in face-hobbing and its application in cutting force prediction
Sheikh et al. An assessment of finite element software for application to the roll-forming process
CN1960636A (en) Noodles manufacturing apparatus
JPH08309439A (en) Rolling mill
JP2013071127A (en) Waveform measuring device, waveform measuring method, and device for manufacturing corrugated material
JPH08319056A (en) Manufacturing device for strip with diagonal pleats
Mainini et al. On the Optical Characterization of Architectural Three-Dimensional Skins and Their Solar Control Potential

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011554320

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873276

Country of ref document: EP

Kind code of ref document: A1