WO2013045581A1 - Reducing over-traction in an elevator - Google Patents

Reducing over-traction in an elevator Download PDF

Info

Publication number
WO2013045581A1
WO2013045581A1 PCT/EP2012/069133 EP2012069133W WO2013045581A1 WO 2013045581 A1 WO2013045581 A1 WO 2013045581A1 EP 2012069133 W EP2012069133 W EP 2012069133W WO 2013045581 A1 WO2013045581 A1 WO 2013045581A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
car
elevator installation
counterweight
over
Prior art date
Application number
PCT/EP2012/069133
Other languages
French (fr)
Inventor
Roman Lenk
Original Assignee
Inventio Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio Ag filed Critical Inventio Ag
Priority to US13/959,174 priority Critical patent/US20140202797A1/en
Priority to EP12766451.4A priority patent/EP2760775B1/en
Priority to CN201280011513.1A priority patent/CN103443010B/en
Publication of WO2013045581A1 publication Critical patent/WO2013045581A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/0065Roping
    • B66B11/008Roping with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/12Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of rope or cable slack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B15/00Main component parts of mining-hoist winding devices
    • B66B15/02Rope or cable carriers
    • B66B15/04Friction sheaves; "Koepe" pulleys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/08Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for preventing overwinding

Definitions

  • an elevator car and a counterweight are conventionally supported on and interconnected by traction means.
  • the traction means is driven through engagement with a motor-driven traction sheave to move the car and counterweight in opposing directions along the elevator hoistway.
  • the drive unit consisting of the motor, an associated brake and the traction sheave, is normally located in the upper end of the elevator hoistway or alternatively in a machine room directly above the hoistway.
  • a further important consequence of over-traction is that if the counterweight becomes stuck along the hoistway, so that the section of the traction means between the traction sheave and the counterweight becomes slack, the drive may still be capable of moving the elevator car upwards. In a second converse situation, if the car becomes jammed while being lowered down the hoistway, resulting in slackening of the section of the traction means between the car and the traction sheave, the drive may still be capable of moving the counterweight upwards.
  • US-A 1-2008/0185232 describes an apparatus and method for solving the problems associated with the first situation described above.
  • the drive unit has a motor unit and a deflecting unit. If the counterweight which is supported by the deflecting unit rests on a pit buffer for example, the deflecting unit is unloaded and is raised by means of a spring element of the monitoring device. A sensor of the monitoring device detects the movement of the deflecting unit and switches off the motor of the motor unit via a safety circuit.
  • EP-A2-1764335 proposes another solution to over-traction wherein the running surface of the traction sheave, over which the traction means runs, is provided with a friction- reducing coating or subjected to a friction-reducing surface treatment.
  • An objective of the present invention is to provide an elevator drive that reduces the effects and stated disadvantages of over-traction.
  • a further objective is to provide an elevator installation and an operating method in which the elevator car cannot be raised further by the traction means if the counterweight becomes jammed along its travel path particularly when it strikes an associated buffer.
  • the invention provides a method of operating an elevator installation having a car, a counterweight, traction means interconnecting the car and the counterweight, a motor and a traction sheave engaging the traction means, comprising the steps of monitoring the elevator installation for over-traction, creating an air cushion between the traction sheave and the traction means when over-traction is detected, and regulating flow to the air cushion.
  • the creation of an air-cushion between the traction sheave and the traction means reduces both the engagement and the traction capability therebetween resulting in a reduction in the effects of over-traction and regulating the flow to the air cushion ensures that the car can remain stationary so as to reduce jerk on the car and risk of injury to passengers or damage to the car.
  • Over-traction can be monitored by detecting whether the car or the counterweight engages with a buffer.
  • the step of monitoring the elevator installation for over-traction can comprises detecting whether the car or the counterweight moves into a predetermined section of a hoistway of the elevator installation.
  • over-traction can be monitored by detecting a predetermined unloading of the motor and traction sheave.
  • Over-traction can also be monitored by detecting a reduction in the tension in a portion of the tension means.
  • the position of the car is monitored so as to provide a control signal to regulate flow to the air cushion. Accordingly, once over-traction has been detected, the flow to air cushion can be changed to ensure that the car remains in a stationary position.
  • the invention also provides an elevator installation comprising a car, a counterweight, traction means interconnecting the car and the counterweight, a motor, a traction sheave having an engagement surface for engaging the traction means, a position sensor to determine the position of the car, at least one sensor to detect over-traction, and a pneumatic circuit connecting the engagement surface to a source of pressurized gas. If over-traction is detected by the sensor, pressurized gas can be directed to the engagement surface to create an air-cushion between the traction sheave and the traction means. This reduces both the engagement and the traction capability therebetween resulting in a reduction in the effects of over-traction.
  • the traction sheave contains a cavity and a plurality of holes extending between the cavity and the engagement surface.
  • the pneumatic circuit contains a pneumatic valve to regulate the flow of pressurized gas through the circuit.
  • the pneumatic valve can be actuated by the sensor.
  • the pneumatic circuit may contain a flow regulator. Accordingly, the degree of flow of pressurized gas to the air cushion can be controlled.
  • the flow regulator is connected to the position sensor so that the degree of flow is dependent on the position of the car so as to ensure that the car remains stationary.
  • the sensor can be is mounted on a buffer to detect whether the car or counterweight has collided with its respective buffer.
  • the sensor can be mounted within the hoistway to detect whether the car or the counterweight moves into a predetermined section of a hoistway.
  • the motor is mounted on resilient means.
  • the sensor can detect displacement of the motor. Accordingly, when either the car or the counterweight becomes jammed when moving down the hoistway resulting in an over-traction situation, the motor becomes unloaded, the resilient means relax and the motor is thereby displaced. This displacement is detected by the sensor.
  • FIG. 1 is a schematic of an elevator installation
  • FIG. 2 is an exploded perspective view of a traction sheave for use in the elevator installation of FIG. 1 ;
  • FIG. 3 is a transverse view of an elevator drive incorporating the traction sheave of FIG.
  • FIG. 4 is a transverse view of the elevator drive of FIG. 3 when over-traction has been detected
  • FIG. 5 is a transverse view of an alternative elevator drive arrangement incorporating the traction sheave of FIG. 2 operating under normal conditions for use in the elevator installation of FIG. 1 ;
  • FIG. 6 is a transverse view of the elevator drive of FIG. 5 when over-traction has been detected.
  • FIG. 1 An elevator installation 1 according to the invention is shown in FIG. 1.
  • the installation 1 is generally defined by a hoistway 3 bound by walls 2 within a building wherein a counterweight 5 and car 4 are movable in opposing directions along guide rails (not shown).
  • a position sensor 50 is mounted on the car 4 to determine its position within the hoistway 3.
  • Buffers 12, 13 are mounted in a pit of the hoistway 3 underneath the counterweight 5 and car 4, respectively.
  • Sensors 10 are provided on each of the buffers to determine whether the car 4 or counterweight 5 collide with its respective buffer 12, 13.
  • Suitable traction means 11 supports and interconnects the counterweight 5 and the car 4.
  • the traction means 11 is fastened at either end to termination devices 40 mounted in the upper region of the hoistway 3.
  • the traction means 11 extends from one termination device 40 to a deflection pulley 6 mounted on top of the counterweight 5, over a traction sheave 7, under the car 4 via deflection pulleys 6 and is fastened at the other end in the other termination device 40.
  • the traction sheave 7 is driven by a motor 8 which together form the drive 9 of the elevator 1.
  • the traction sheave 7 is implemented as a cylindrical body 15 having a closed axial end connected to a shaft 14 of the motor 8 for concurrent rotation therewith.
  • the cylindrical sheave body 15 is open to define a cavity 16 bound by a radially inner, cylindrical surface 15.2.
  • the traction means 11 engages with an engagement surface 18 on a radially outer, cylindrical surface 15.2 of the sheave body 15.
  • a plurality of holes 17 extend radially between the inner surface 15.2 and the outer surface 15.1 of the sheave body 15.
  • the cavity 16 is hermetically sealed by a gasket 19 positioned between the sheave body 15 and a closing plate 20 which is fastened by bolts 21 to the sheave body 15.
  • a pneumatic circuit is connected to the cavity 16 by a nozzle 22 mounted on the closing plate 20.
  • the pneumatic circuit comprises a female connector 23 which hermetically engages with the nozzle 22 to permit relative rotation therebetween and further includes tubing 24 leading from the female connector 23 through a flow regulator 60 to a pneumatic valve 25 which in turn is connected to a source of pressurized gas 27.
  • the pneumatic valve 25 is spring-biased to a non-conducting state (as shown) but can be activated into a conducting state by a solenoid actuator 26.
  • the solenoid actuator 26 is controlled by signals sent from the sensors 10.
  • the flow regulator 60 is controlled by signals sent from the position sensor 50 mounted on the car.
  • a first portion 11.1 of the tension means 11 spanning the traction sheave 7 and the deflection pulleys 6 mounted under the elevator car 4 is under a first tension FZ1.
  • the portion 11.2 of the traction means 11 spanning between the sheave 7 and the deflection pulley 6 mounted on the counterweight 5 experiences a second tension FZ2.
  • the motor 8 will rotate the traction sheave 7 to drive the interconnected car 4 and counterweight 5 via the tension member 11 to enable transportation of passengers and goods in the car 4 between floors within the building. Since neither the car 4 nor the counterweight 5 engages with its associated buffer 12,13 during such normal operation, the sensors 10 remain inactive and accordingly, the pneumatic valve 25 maintains a non-conducting state.
  • the pneumatic valve 25 is activated into a conducting state by the solenoid actuator 26 and pressurised gas flows through the pneumatic circuit into the internal cavity 16 of the traction sheave body 15, through the holes 17 extending radially through the sheave body 15 and out from the radially outer, cylindrical surface 15.2 of the sheave body 15.
  • This flow of pressurised gas creates an air-cushion 28 between the engagement surface 18 on the outer surface 15.2 of the traction sheave 7 and the traction means 11 reducing both the engagement and the traction capability therebetween.
  • the degree to which the traction capability is reduced is determined by the flow regulator 60 which is controlled by the signals received from the car position sensor 50. Initially, as the counterweight 5 engages its buffer 12 in the pit of the hoistway 3, maximum flow of pressurized gas will be required through the regulator 60 to ensure that the position of the car 4 as measured by position sensor 50 remains constant or stationary. As the effects of over-traction subsequently subside, the flow through the regulator 60 can be reduced. The flow is thereby regulated to maintain the car in a substantially stationary position.
  • one or more sensors 10' can be mounted within the hoistway 3, as shown in FIG. 1, to detect whether the car 4 or counterweight 5 moves into a predetermined section of a hoistway 3.
  • buffer sensors 10 instead of using buffer sensors 10 to detect over-traction, alternative means are available.
  • displacement sensors 30a,30b such as those used in US-A1- 2008/0185232, are arranged to detect over-traction.
  • FIG. 2 is mounted via resilient means 31 to a support 29 within the hoistway 3.
  • a first portion 11.1 of the tension means 11 spanning the traction sheave 7 and the deflection pulleys 6 mounted under the elevator car 4 is under a first tension FZ1.
  • the portion 11.2 of the traction means 11 spanning between the sheave 7 and the deflection pulley 6 mounted on the counterweight 5 experiences a second tension FZ2.
  • sensor 30a triggers the solenoid actuator 26 so that the pneumatic valve 25 is activated into a conducting state and pressurised gas flows through the pneumatic circuit into the internal cavity 16 of the traction sheave body 15, through the holes 17 extending radially through the sheave body 15 and out from the radially outer, cylindrical surface 15.2 of the sheave body 15.
  • This flow of pressurised gas creates an air-cushion 28 between the engagement surface 18 on the outer surface 15.2 of the traction sheave 7 and the traction means 11 reducing both the engagement and the traction capability therebetween.
  • the degree to which the traction capability is reduced is determined by the flow regulator 60 which is controlled by the signals received from the car position sensor 50.
  • FIGS. 5 and 6 depicts the counterweight 5 becoming jammed while moving down the hoistway 3 or striking its buffer 12
  • the person skilled in the art will easily appreciate that the same arrangement can be used to detect over-traction due to the car 4 becoming jammed while moving down the hoistway 3 or striking its buffer 12.
  • Another alternative for detecting over-traction is to monitor at least one of the tensions FZ1 and FZ2 in the first portion 11.1 and second portion 11.2 of the tension means 11 with a slack rope contact such as described in US-A1-2007/0170009.
  • a slack rope contact such as described in US-A1-2007/0170009.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Types And Forms Of Lifts (AREA)

Abstract

An elevator installation (1) having a car (4), a counterweight (5), traction means (11) interconnecting the car and the counterweight, a motor (8) and a traction sheave (7) engaging the traction means. The elevator installation (1) is monitored for over-traction and an air cushion (28) is created between the traction sheave (7) and the traction means (11) when over-traction is detected.

Description

Reducing Over-traction in an Elevator
In an elevator installation, an elevator car and a counterweight are conventionally supported on and interconnected by traction means. The traction means is driven through engagement with a motor-driven traction sheave to move the car and counterweight in opposing directions along the elevator hoistway. The drive unit, consisting of the motor, an associated brake and the traction sheave, is normally located in the upper end of the elevator hoistway or alternatively in a machine room directly above the hoistway.
Traditionally, steel cables have been used as traction means. More recently, synthetic cables and belt-like traction means comprising steel or aramid cords of relatively small diameter coated in a synthetic material have been developed. An important aspect of these synthetic traction means is the significant increase in the coefficient of friction they exhibit through engagement with the traction sheave as compared to the traditional steel cables. This can give rise to a situation called over-traction. Due to this increase in relative coefficient of friction, when the brake is applied in an emergency stop for an elevator employing synthetic traction means there is an significant increase in the deceleration of the car which severely degrades passenger comfort and could even result in injury to passengers.
Publications WO-A1-2011/069773, GB-A-2153465, US 5,323,878 and US 5,244,060 all describe methods of controlling the movement of an elevator car during an emergency stop wherein the brake is applied but the degree of the brake force or torque exerted by the brake is dependent on the load of the car. These methods help reduce deceleration of the elevator car during an emergency stop.
A further important consequence of over-traction is that if the counterweight becomes stuck along the hoistway, so that the section of the traction means between the traction sheave and the counterweight becomes slack, the drive may still be capable of moving the elevator car upwards. In a second converse situation, if the car becomes jammed while being lowered down the hoistway, resulting in slackening of the section of the traction means between the car and the traction sheave, the drive may still be capable of moving the counterweight upwards. Either situation presents a severe risk of injury to any passengers in the car because when the elevator controller eventually directs the drive unit to stop, the elevator car will drop back down the hoistway in the first situation whereas the counterweight will fall back and subsequently jerk the car upwards in the second situation. US-A 1-2008/0185232 describes an apparatus and method for solving the problems associated with the first situation described above. The drive unit has a motor unit and a deflecting unit. If the counterweight which is supported by the deflecting unit rests on a pit buffer for example, the deflecting unit is unloaded and is raised by means of a spring element of the monitoring device. A sensor of the monitoring device detects the movement of the deflecting unit and switches off the motor of the motor unit via a safety circuit.
The problems associated with second situation outlined above have conventionally been solved by monitoring the tension in the traction means on the car-side of the traction sheave with a slack rope contact such as described in US-A 1-2007/0170009. Because of its complexity, the slack rope contact solution is expensive, time-consuming to install and must be individually tailored to the existing car or car frame during modernization of an existing installation. EP-A 1-2292546 describes an alternative method wherein the load of the car is monitored along its downward travel path and it is determined that the car has jammed if the monitored load of the car deviates outside a predetermined range.
Accordingly, the elevator controller can automatically instruct the drive unit to commence an emergency stop such that the car can be stopped immediately and thereby minimise the risk of injury to passengers or damage to the car. EP-A2-1764335 proposes another solution to over-traction wherein the running surface of the traction sheave, over which the traction means runs, is provided with a friction- reducing coating or subjected to a friction-reducing surface treatment.
An objective of the present invention is to provide an elevator drive that reduces the effects and stated disadvantages of over-traction. A further objective is to provide an elevator installation and an operating method in which the elevator car cannot be raised further by the traction means if the counterweight becomes jammed along its travel path particularly when it strikes an associated buffer. Accordingly, the invention provides a method of operating an elevator installation having a car, a counterweight, traction means interconnecting the car and the counterweight, a motor and a traction sheave engaging the traction means, comprising the steps of monitoring the elevator installation for over-traction, creating an air cushion between the traction sheave and the traction means when over-traction is detected, and regulating flow to the air cushion. The creation of an air-cushion between the traction sheave and the traction means reduces both the engagement and the traction capability therebetween resulting in a reduction in the effects of over-traction and regulating the flow to the air cushion ensures that the car can remain stationary so as to reduce jerk on the car and risk of injury to passengers or damage to the car.
Over-traction can be monitored by detecting whether the car or the counterweight engages with a buffer. Alternatively, the step of monitoring the elevator installation for over-traction can comprises detecting whether the car or the counterweight moves into a predetermined section of a hoistway of the elevator installation.
In a further alternative, over-traction can be monitored by detecting a predetermined unloading of the motor and traction sheave.
Over-traction can also be monitored by detecting a reduction in the tension in a portion of the tension means. Preferably, the position of the car is monitored so as to provide a control signal to regulate flow to the air cushion. Accordingly, once over-traction has been detected, the flow to air cushion can be changed to ensure that the car remains in a stationary position.
The invention also provides an elevator installation comprising a car, a counterweight, traction means interconnecting the car and the counterweight, a motor, a traction sheave having an engagement surface for engaging the traction means, a position sensor to determine the position of the car, at least one sensor to detect over-traction, and a pneumatic circuit connecting the engagement surface to a source of pressurized gas. If over-traction is detected by the sensor, pressurized gas can be directed to the engagement surface to create an air-cushion between the traction sheave and the traction means. This reduces both the engagement and the traction capability therebetween resulting in a reduction in the effects of over-traction. Preferably, the traction sheave contains a cavity and a plurality of holes extending between the cavity and the engagement surface.
Preferably, the pneumatic circuit contains a pneumatic valve to regulate the flow of pressurized gas through the circuit. The pneumatic valve can be actuated by the sensor.
Furthermore, the pneumatic circuit may contain a flow regulator. Accordingly, the degree of flow of pressurized gas to the air cushion can be controlled. Preferably, the flow regulator is connected to the position sensor so that the degree of flow is dependent on the position of the car so as to ensure that the car remains stationary.
The sensor can be is mounted on a buffer to detect whether the car or counterweight has collided with its respective buffer. Alternatively, the sensor can be mounted within the hoistway to detect whether the car or the counterweight moves into a predetermined section of a hoistway.
In one example, the motor is mounted on resilient means. In this case, the sensor can detect displacement of the motor. Accordingly, when either the car or the counterweight becomes jammed when moving down the hoistway resulting in an over-traction situation, the motor becomes unloaded, the resilient means relax and the motor is thereby displaced. This displacement is detected by the sensor.
The invention is herein described by way of specific examples with reference to the accompanying drawings of which:
FIG. 1 is a schematic of an elevator installation;
FIG. 2 is an exploded perspective view of a traction sheave for use in the elevator installation of FIG. 1 ;
FIG. 3 is a transverse view of an elevator drive incorporating the traction sheave of FIG.
2 operating under normal conditions for use in the elevator installation of FIG. 1 ;
FIG. 4 is a transverse view of the elevator drive of FIG. 3 when over-traction has been detected;
FIG. 5 is a transverse view of an alternative elevator drive arrangement incorporating the traction sheave of FIG. 2 operating under normal conditions for use in the elevator installation of FIG. 1 ; and
FIG. 6 is a transverse view of the elevator drive of FIG. 5 when over-traction has been detected.
An elevator installation 1 according to the invention is shown in FIG. 1. The installation 1 is generally defined by a hoistway 3 bound by walls 2 within a building wherein a counterweight 5 and car 4 are movable in opposing directions along guide rails (not shown). A position sensor 50 is mounted on the car 4 to determine its position within the hoistway 3. Buffers 12, 13 are mounted in a pit of the hoistway 3 underneath the counterweight 5 and car 4, respectively. Sensors 10 are provided on each of the buffers to determine whether the car 4 or counterweight 5 collide with its respective buffer 12, 13. Suitable traction means 11 supports and interconnects the counterweight 5 and the car 4.
The traction means 11 is fastened at either end to termination devices 40 mounted in the upper region of the hoistway 3. The traction means 11 extends from one termination device 40 to a deflection pulley 6 mounted on top of the counterweight 5, over a traction sheave 7, under the car 4 via deflection pulleys 6 and is fastened at the other end in the other termination device 40. Naturally, the skilled person will easily appreciate other elevator roping arrangements are equally possible.
The traction sheave 7 is driven by a motor 8 which together form the drive 9 of the elevator 1. As shown specifically in the exploded view of FIG. 2, the traction sheave 7 is implemented as a cylindrical body 15 having a closed axial end connected to a shaft 14 of the motor 8 for concurrent rotation therewith. At the opposing axial end, the cylindrical sheave body 15 is open to define a cavity 16 bound by a radially inner, cylindrical surface 15.2. The traction means 11 engages with an engagement surface 18 on a radially outer, cylindrical surface 15.2 of the sheave body 15. A plurality of holes 17 extend radially between the inner surface 15.2 and the outer surface 15.1 of the sheave body 15. The cavity 16 is hermetically sealed by a gasket 19 positioned between the sheave body 15 and a closing plate 20 which is fastened by bolts 21 to the sheave body 15.
A pneumatic circuit is connected to the cavity 16 by a nozzle 22 mounted on the closing plate 20. The pneumatic circuit comprises a female connector 23 which hermetically engages with the nozzle 22 to permit relative rotation therebetween and further includes tubing 24 leading from the female connector 23 through a flow regulator 60 to a pneumatic valve 25 which in turn is connected to a source of pressurized gas 27. The pneumatic valve 25 is spring-biased to a non-conducting state (as shown) but can be activated into a conducting state by a solenoid actuator 26. The solenoid actuator 26 is controlled by signals sent from the sensors 10. The flow regulator 60 is controlled by signals sent from the position sensor 50 mounted on the car.
As shown in FIG. 3, a first portion 11.1 of the tension means 11 spanning the traction sheave 7 and the deflection pulleys 6 mounted under the elevator car 4 is under a first tension FZ1. Likewise on the other side of the sheave 7, the portion 11.2 of the traction means 11 spanning between the sheave 7 and the deflection pulley 6 mounted on the counterweight 5 experiences a second tension FZ2.
In normal operation of the elevator installation 1, the motor 8 will rotate the traction sheave 7 to drive the interconnected car 4 and counterweight 5 via the tension member 11 to enable transportation of passengers and goods in the car 4 between floors within the building. Since neither the car 4 nor the counterweight 5 engages with its associated buffer 12,13 during such normal operation, the sensors 10 remain inactive and accordingly, the pneumatic valve 25 maintains a non-conducting state.
If however an over-traction situation is detected as depicted in FIG. 4, in the present example the counterweight 5 engaging its buffer 12 in the pit of the hoistway 3 and thereby triggering the sensor 10, the pneumatic valve 25 is activated into a conducting state by the solenoid actuator 26 and pressurised gas flows through the pneumatic circuit into the internal cavity 16 of the traction sheave body 15, through the holes 17 extending radially through the sheave body 15 and out from the radially outer, cylindrical surface 15.2 of the sheave body 15. This flow of pressurised gas creates an air-cushion 28 between the engagement surface 18 on the outer surface 15.2 of the traction sheave 7 and the traction means 11 reducing both the engagement and the traction capability therebetween. The degree to which the traction capability is reduced is determined by the flow regulator 60 which is controlled by the signals received from the car position sensor 50. Initially, as the counterweight 5 engages its buffer 12 in the pit of the hoistway 3, maximum flow of pressurized gas will be required through the regulator 60 to ensure that the position of the car 4 as measured by position sensor 50 remains constant or stationary. As the effects of over-traction subsequently subside, the flow through the regulator 60 can be reduced. The flow is thereby regulated to maintain the car in a substantially stationary position.
Instead of providing sensors 10 on each of the buffers to determine whether the car 4 or counterweight 5 collide with its respective buffer 12, 13, one or more sensors 10' can be mounted within the hoistway 3, as shown in FIG. 1, to detect whether the car 4 or counterweight 5 moves into a predetermined section of a hoistway 3.
The skilled person will readily appreciate that instead of using buffer sensors 10 to detect over-traction, alternative means are available. In an alternative arrangement as shown in FIGS. 5 and 6, displacement sensors 30a,30b, such as those used in US-A1- 2008/0185232, are arranged to detect over-traction. In this example the elevator drive 9 of
FIG. 2 is mounted via resilient means 31 to a support 29 within the hoistway 3. Again, as in the previous example, a first portion 11.1 of the tension means 11 spanning the traction sheave 7 and the deflection pulleys 6 mounted under the elevator car 4 is under a first tension FZ1. Likewise on the other side of the sheave 7, the portion 11.2 of the traction means 11 spanning between the sheave 7 and the deflection pulley 6 mounted on the counterweight 5 experiences a second tension FZ2.
In normal operation, as shown in FIG. 5, the downward tensions FZ1 and FZ2 in the traction means 11 cause the drive 9 to compress the resilient means 31. If, however, an over-traction situation is detected, such as the counterweight 5 becoming jammed while moving down the hoistway 3 or if it strikes its buffer 12, the second tension FZ2 is substantially relieved and consequently the load of the drive 9 on its resilient mounting means 31 is significantly reduced as shown in FIG. 6 and the drive 9 is raised. Displacement sensors 30a,30b are arranged at opposing sides of the motor 8 to detect this movement of the drive 9. In the example as shown, sensor 30a triggers the solenoid actuator 26 so that the pneumatic valve 25 is activated into a conducting state and pressurised gas flows through the pneumatic circuit into the internal cavity 16 of the traction sheave body 15, through the holes 17 extending radially through the sheave body 15 and out from the radially outer, cylindrical surface 15.2 of the sheave body 15. This flow of pressurised gas creates an air-cushion 28 between the engagement surface 18 on the outer surface 15.2 of the traction sheave 7 and the traction means 11 reducing both the engagement and the traction capability therebetween. The degree to which the traction capability is reduced is determined by the flow regulator 60 which is controlled by the signals received from the car position sensor 50. Initially, as the counterweight 5 engages its buffer 12 in the pit of the hoistway 3, maximum flow of pressurized gas will be required through the regulator 60 to ensure that the position of the car 4 as measured by position sensor 50 remains constant or stationary. As the effects of over-traction subsequently subside, the flow through the regulator 60 can be reduced. The flow is thereby regulated to maintain the car in a substantially stationary position.
Although the specific example shown in FIGS. 5 and 6 depicts the counterweight 5 becoming jammed while moving down the hoistway 3 or striking its buffer 12, the person skilled in the art will easily appreciate that the same arrangement can be used to detect over-traction due to the car 4 becoming jammed while moving down the hoistway 3 or striking its buffer 12.
Another alternative for detecting over-traction is to monitor at least one of the tensions FZ1 and FZ2 in the first portion 11.1 and second portion 11.2 of the tension means 11 with a slack rope contact such as described in US-A1-2007/0170009. When the contact detects that a portion of the tension means 11 has become slack it activate the solenoid actuator 26 to create an air-cushion 28 between the traction sheave 7 and the traction means 11 as described previously above.
Although the examples have been described as overcoming the problems associated with over-traction when the counterweight or car becomes stuck while moving downwards in the hoistway, it will be apparent to those skilled in the art that the invention can be easily adopted to alleviate the previously described problems associated with over-traction during emergency stops. The present invention has been developed, in particular, for use in conjunction with synthetic traction means, but it can equally be applied to any elevator to reduce problems associated with over-traction and thereby improve passenger comfort.

Claims

Claims
1. A method of operating an elevator installation (1) having a car (4), a counterweight (5), traction means (11) interconnecting the car and the counterweight, a motor (8) and a traction sheave (7) engaging the traction means, comprising the steps of: monitoring the elevator installation (1) for over-traction;
creating an air cushion (28) between the traction sheave (7) and the traction means (11) when over-traction is detected; and
regulating flow to the air cushion.
2. A method according to claim 1 wherein the step of monitoring the elevator installation (1) for over-traction comprises detecting whether the car (4) or the counterweight (5) engages with a buffer (12;13).
3. A method according to claim 1 wherein the step of monitoring the elevator installation (1) for over-traction comprises detecting whether the car (4) or the counterweight (5) moves into a predetermined section of a hoistway (3) of the elevator installation (1).
4. A method according to claim 1 wherein the step of monitoring the elevator installation (1) for over-traction comprises detecting a predetermined unloading of the motor (8) and traction sheave (7).
5. A method according to claim 1 wherein the step of monitoring the elevator installation (1) for over-traction comprises detecting a reduction in the tension (FZ1 ;FZ2) in a portion ( 11.1 ; 11.2) of the tension means (11).
6. A method according to claim 1 wherein the step of regulating flow to the air cushion is controlled by monitoring the position of the car (4) to ensure that the car (4) does not move.
7. An elevator installation (1) comprising a car (4), a counterweight (5), traction means (11) interconnecting the car and the counterweight, a motor (8), a traction sheave (7) having an engagement surface (18) for engaging the traction means, a position sensor (50) to determine the position of the car (4), at least one sensor (10;10' ;30a,30b) to detect over-traction, and a pneumatic circuit connecting the engagement surface (18) to a source of pressurized gas (27).
8. An elevator installation (1) according to claim 7 wherein the traction sheave (7) contains a cavity (16) and a plurality of holes (17) extending between the cavity and the engagement surface (18).
9. An elevator installation (1) according to claim 7 or claim 8 wherein the pneumatic circuit contains a pneumatic valve (25).
10. An elevator installation (1) according to claim 9 wherein the pneumatic valve (25) is actuatable by the sensor (10;10' ;30a,30b).
11. An elevator installation (1) according to any of claims 7 to 10, wherein the pneumatic circuit contains a flow regulator (60).
12. An elevator installation (1) according to claim 11 wherein the flow regulator (60) is connected to the position sensor (50).
13. An elevator installation (1) according to any of claims 7 to 12, wherein the sensor (10) is mounted on a buffer (12;13).
14. An elevator installation (1) according to any of claims 7 to 12, wherein the sensor (10') detects whether the car (4) or the counterweight (5) moves into a predetermined section of a hoistway (3).
15. An elevator installation (1) according to any of claims 7 to 12, wherein the motor (8) is mounted on resilient means (31).
16. An elevator installation (1) according to claim 14, wherein the sensor (30a,30b) detects displacement of the motor (8).
PCT/EP2012/069133 2011-09-30 2012-09-27 Reducing over-traction in an elevator WO2013045581A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/959,174 US20140202797A1 (en) 2011-09-30 2012-09-27 Reducing over-traction in an elevator
EP12766451.4A EP2760775B1 (en) 2011-09-30 2012-09-27 Reducing over-traction in an elevator
CN201280011513.1A CN103443010B (en) 2011-09-30 2012-09-27 Reduce crossing in elevator to draw

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11183576.5 2011-09-30
EP11183576A EP2574583A1 (en) 2011-09-30 2011-09-30 Reducing over-traction in an elevator

Publications (1)

Publication Number Publication Date
WO2013045581A1 true WO2013045581A1 (en) 2013-04-04

Family

ID=46940501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/069133 WO2013045581A1 (en) 2011-09-30 2012-09-27 Reducing over-traction in an elevator

Country Status (4)

Country Link
US (1) US20140202797A1 (en)
EP (2) EP2574583A1 (en)
CN (1) CN103443010B (en)
WO (1) WO2013045581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796560B2 (en) 2013-11-12 2017-10-24 Otis Elevator Company Detection of stuck elevator car or counterweight
EP3705441A1 (en) * 2019-03-05 2020-09-09 KONE Corporation A method for controlling an elevator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2602062T3 (en) 2014-05-19 2017-02-17 Kone Corporation An elevator
EP2987758B1 (en) * 2014-08-18 2016-11-30 KONE Corporation Elevator
CN105217401B (en) * 2015-10-28 2017-06-23 中国矿业大学 Air bag fluid pressure type vertical shaft hoist overwind trouble occupant safety protection device and method
WO2019175398A1 (en) * 2018-03-16 2019-09-19 Inventio Ag Elevator arrangement enabling methods for determining and monitoring a minimum counterweight to buffer distance
CN111170109A (en) * 2020-02-27 2020-05-19 江苏聚力智能机械股份有限公司 Car anti-falling device capable of being controlled at car
CN114803794A (en) * 2022-04-19 2022-07-29 康力电梯股份有限公司 Cargo elevator of big load

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153465A (en) 1984-01-11 1985-08-21 Hitachi Ltd Emergency stop control apparatus for elevator
US4987994A (en) * 1989-06-12 1991-01-29 Pre-Engineered Components, Inc. Spur conveyor assembly
US5244060A (en) 1991-05-09 1993-09-14 Hitachi, Ltd. Elevator apparatus
US5323878A (en) 1991-08-20 1994-06-28 Hitachi, Ltd. Braking apparatus for elevator cage
EP1764335A2 (en) 2005-09-20 2007-03-21 Inventio Ag Elevator with drive sheave and belt like carrier means.
US20070170009A1 (en) 2004-04-28 2007-07-26 Mitsubishi Denki Kabushiki Kaisha Elevator Appartus
US20080185232A1 (en) 2007-02-02 2008-08-07 Philippe Henneau Lift and method of monitoring a lift
EP2292546A1 (en) 2009-09-04 2011-03-09 Inventio AG Apparatus and method for detecting whether an elevator car has become jammed along its travel path
US20110088980A1 (en) * 2008-06-19 2011-04-21 Josef Husmann Elevator system with bottom tensioning apparatus
WO2011069773A1 (en) 2009-12-11 2011-06-16 Inventio Ag Selective elevator braking during emergency stop

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US440040A (en) * 1890-11-04 Perforated pulley
US1629154A (en) * 1926-06-30 1927-05-17 Ybarrondo Vincent C De Pneumatic pulley for motion-picture films
US3174585A (en) * 1962-08-13 1965-03-23 Otis Elevator Co Elevator hoisting mechanism
US3448023A (en) * 1966-01-20 1969-06-03 Hammond Machinery Builders Inc Belt type electro-chemical (or electrolytic) grinding machine
US4509933A (en) * 1982-06-01 1985-04-09 Dayco Corporation Belt pulley and method of making the same
CN1011217B (en) * 1985-04-24 1991-01-16 株式会社日立制作所 Emergency braking control device for elevator
US4722276A (en) * 1986-08-01 1988-02-02 Tyler Jack D Air blast for preventing contact of wet ink sheets with printing press delivery mechanisms
KR960010067B1 (en) * 1987-08-07 1996-07-25 도오교오 에레구토론 가부시끼가이샤 Apparatus for turning over
DE9116251U1 (en) * 1991-05-28 1992-07-16 Koenig & Bauer Ag, 8700 Wuerzburg, De
JP3956264B2 (en) * 1999-10-08 2007-08-08 富士フイルム株式会社 Web conveying method and apparatus
US6336608B1 (en) * 2000-02-29 2002-01-08 James Robert Cope Flexible web roller guide assembly with an integral centrifugal pump capability to provide a hydrostatic air bearing function to the roller guides outside supporting surface
US6938508B1 (en) * 2003-02-19 2005-09-06 Polaris Industries Inc. Ventilated clutch having exhaust hub
WO2012004268A1 (en) * 2010-07-09 2012-01-12 Inventio Ag Monitoring of supporting means in an elevator system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153465A (en) 1984-01-11 1985-08-21 Hitachi Ltd Emergency stop control apparatus for elevator
US4987994A (en) * 1989-06-12 1991-01-29 Pre-Engineered Components, Inc. Spur conveyor assembly
US5244060A (en) 1991-05-09 1993-09-14 Hitachi, Ltd. Elevator apparatus
US5323878A (en) 1991-08-20 1994-06-28 Hitachi, Ltd. Braking apparatus for elevator cage
US20070170009A1 (en) 2004-04-28 2007-07-26 Mitsubishi Denki Kabushiki Kaisha Elevator Appartus
EP1764335A2 (en) 2005-09-20 2007-03-21 Inventio Ag Elevator with drive sheave and belt like carrier means.
US20080185232A1 (en) 2007-02-02 2008-08-07 Philippe Henneau Lift and method of monitoring a lift
US20110088980A1 (en) * 2008-06-19 2011-04-21 Josef Husmann Elevator system with bottom tensioning apparatus
EP2292546A1 (en) 2009-09-04 2011-03-09 Inventio AG Apparatus and method for detecting whether an elevator car has become jammed along its travel path
WO2011069773A1 (en) 2009-12-11 2011-06-16 Inventio Ag Selective elevator braking during emergency stop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796560B2 (en) 2013-11-12 2017-10-24 Otis Elevator Company Detection of stuck elevator car or counterweight
EP3705441A1 (en) * 2019-03-05 2020-09-09 KONE Corporation A method for controlling an elevator
US11535485B2 (en) 2019-03-05 2022-12-27 Kone Corporation Method for controlling an elevator

Also Published As

Publication number Publication date
EP2760775B1 (en) 2015-01-21
CN103443010A (en) 2013-12-11
CN103443010B (en) 2015-11-25
EP2760775A1 (en) 2014-08-06
US20140202797A1 (en) 2014-07-24
EP2574583A1 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
EP2760775B1 (en) Reducing over-traction in an elevator
US8261886B2 (en) Safety device for elevator and rope slip detection method
US7798290B2 (en) Arrangement in an elevator without counterweight
AU2007285644B2 (en) Elevator system
EP2636626B1 (en) Elevator device
KR101343700B1 (en) Brake device of an elevator car
US9227815B2 (en) Selective elevator braking during emergency stop
KR102609346B1 (en) Elevator emergency stop systems
KR20040019269A (en) Elevator device
EP3858775B1 (en) Monitoring device for elevator compensation roping
JPWO2002072461A1 (en) Elevator equipment
EP2292546A1 (en) Apparatus and method for detecting whether an elevator car has become jammed along its travel path
EP2574584A1 (en) Frictional drive for an elevator and operating method
US7419033B2 (en) Emergency brake device for elevator
EP1724225B1 (en) Emergency brake device of elevator
JP4123864B2 (en) Reciprocating body drive device
AU2004291361B2 (en) Tension means for elevator cable
JP5829869B2 (en) Elevator emergency stop device
JP2010095355A (en) Elevator safety device
KR20020038605A (en) Safety Device for Elevator
KR980009081A (en) Rope Braking System for Elevator
JP2011026130A (en) Elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12766451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012766451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13959174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE