WO2013044981A1 - Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire - Google Patents

Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire Download PDF

Info

Publication number
WO2013044981A1
WO2013044981A1 PCT/EP2011/067131 EP2011067131W WO2013044981A1 WO 2013044981 A1 WO2013044981 A1 WO 2013044981A1 EP 2011067131 W EP2011067131 W EP 2011067131W WO 2013044981 A1 WO2013044981 A1 WO 2013044981A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar thermal
heat
solar
interconnection system
heat pipe
Prior art date
Application number
PCT/EP2011/067131
Other languages
English (en)
Inventor
Hagai Aran
Original Assignee
Siemens Aktiengesellschaft
Siemens Concentrated Solar Power Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Concentrated Solar Power Ltd. filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2011/067131 priority Critical patent/WO2013044981A1/fr
Publication of WO2013044981A1 publication Critical patent/WO2013044981A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • This invention relates to a solar thermal interconnection system; the use of the solar thermal interconnection system and a power plant with the solar thermal interconnection system.
  • a sun energy collecting unit of a sun field power plant based on the concentrated solar power technique is for instance a linear Fresnel mirror collector with linear Fresnel mirrors and a heat receiver tube.
  • the heat receiver tube is arranged in a focal line of the mirrors.
  • a heat transfer fluid e.g. a thermo-oil.
  • the energy of the sunlight is coupled into the heat transfer fluid.
  • Solar en ⁇ ergy is converted to thermal energy.
  • a heat receiver tube with a heat transfer fluid (HTF) flowing there through is positioned in a focal line of the reflecting surfaces of the mirror facets of the Fresnel mirror for solar radiation collection.
  • HTF heat transfer fluid
  • an additional secondary mirror behind the focal plane directs the rays onto the heat receiver tube.
  • the HTF collects heat of so ⁇ lar radiation which impinges on the receiver surface and transfers it to a power generation block (for example, a steam-electric power plant) of a solar thermal power plant.
  • the elevation of the solar ecliptic over the solar field lo ⁇ cation on the surface of earth is dependant on the latitude of the location, and changes over the course of the year. This effect causes a reduction in the receiver's efficiency due to the incident angle between the sun's beam and the plane defined by east-west axis and the normal to the earth surface. This reduction is called Incident Angle Modifier (IAM) .
  • IAM Incident Angle Modifier
  • a solar thermal interconnection system is provided with at least one solar thermal interconnection system with at least one Fresnel mirror collector with at least one Fresnel mirror for concentrating sunlight in a focal line of the Fresnel mirror; at least one heat pipe with at least one heat pipe working fluid for absorbing solar energy, wherein the heat pipe is located in the focal line of the; at least one heat absorber system with a heat absorber medium; wherein the heat pipe and the heat absorber system are thermally coupled such, that a heat transfer from the heat pipe working fluid to the absorber medium can occur.
  • the heat absorber system comprises a heat receiver tube.
  • the absorber medium is a heat transfer fluid.
  • a use of a solar thermal interconnection system is disclosed to provide thermal energy.
  • This use includes a use for transferring solar energy into electrical energy.
  • the use includes a use in a plant for manufacturing goods by the aid of the thermal energy. For instance, these goods are goods of the chemical industry.
  • a solar thermal power plant for transferring so ⁇ lar energy into electrical energy with at least one solar thermal interconnection system, wherein the linear Fresnel mirror collector is oriented with its longitudi ⁇ nal alignment in north-south direction.
  • a Fresnel mirror comprises several mirrors. These mirrors are flat or slightly bended in order to reduce a reflected line width.
  • a plurality of solar thermal interconnection sys ⁇ tems is set up.
  • a tracking system is set up.
  • the tracking system is configured for tilting the heat pipe to lie in a plane substantially perpendicular to a path of incident solar radiation and/or for tilting said parabolic mirror to maintain its focal line and vertex aligned along a line parallel the path of incident solar ra ⁇ diation .
  • the heat pipe working fluid com ⁇ prises at least one material selected from the group existing of nitrogen, ammonia, methanol, water, mercury, potassium, sodium, lithium and silver. Other materials or mixtures thereof with the materials of the group are possible, too.
  • the solar the heat absorber medium comprises a heat transfer fluid.
  • the heat transfer fluid is a thermo-oil.
  • a thermo-salt or a mixture of different thermo- salts is possible, too.
  • the absorber medium comprises a power block working fluid of a power generating block for generating electrical energy.
  • a heat absorber medium comprises water.
  • the power block working fluid is based on Sulfur.
  • Figure 1 shows a heat pipe
  • Figure 2 shows a cross section of the heat pipe of figure 1 along the line II-II.
  • Figure 3 shows a detail of the solar thermal interconnection system.
  • Figure 4 shows a sun field of a solar power thermal power plant with the solar thermal interconnection system.
  • Figure 5 shows a perspective view of the sun field.
  • the heat absorber system 20 comprises a heat receiver tube 10 which is filled with a heat transfer fluid (HTF) 21.
  • the heat transfer fluid is the absorber medium of the absorber system.
  • each HTF pipe 10 is connected to a plurality of heat pipes 12, each protruding there from.
  • Each heat pipe 12 is associated with a linear Fresnel mirror 22 (figure 5) .
  • each heat pipe 12 comprises a transparent casing 14 with an evacuated interior 16, and a sealed thermal pipe 18 therein.
  • the thermal pipe 18 carries a heat pipe working fluid, which occupies (when in liquid form) only a small percentage of the volume of the thermal pipe. The remainder of the interior volume of the thermal pipe 18 may be at least partially evacuated.
  • the cold interface 18b may be provided with a construction or other appropriate means for increasing the rate of heat transfer between the heat pipe working fluid of the thermal pipe 18 and the HTF thereby. For example, it maybe be pro ⁇ vided with fins (not illustrated) for this purpose.
  • each may be positioned independently of one another. For example, in some applications, it is ad ⁇ vantageous to dispose the pipes carrying the HTF at a certain angle, for example to take advantage of heat gradients, dif ⁇ ferent phases of the HTF, etc.
  • a different set of considerations governs the angle at which the receiver tubes should be angled (either each receiver tube, or a plane which contains several receiver tubes), typically the inci ⁇ dence angle of solar radiation.
  • the dispositions thereof may be provided and/or adjusted independently of one another.
  • the HTF may be thermal oil which is passed through a heat exchanger of the power block for heating working fluid of the power generation block.
  • the HTF may be the working fluid of the power generation block, for example in a direct steam generation configuration of the solar thermal power plant.
  • the thermal pipe 18 may be provided with a mechanism (not shown) for regulating the pressure therein.
  • a mechanism for regulating the pressure therein.
  • the temperature of the working fluid thereof, and thus of the HTF can be regulated based on the requirements of the power plant.
  • Non-limiting examples of mechanisms and/or configura ⁇ tions for providing the regulation include a gas load pipe, excess liquid, and vapor flow modulation.
  • the working fluid may be any appropriate material, for ex ⁇ ample based on the desired temperature range of the HTF.
  • Non- limiting examples of materials for use as working fluid in ⁇ clude water, mercury, magnesium, potassium, sodium, and lithium.
  • a second heat pipe may be provided.
  • one heat pipe 12 would be extending upwardly from the HTF pipe 10, and a second downwardly there from.
  • the heat pipe 12 which extends upwardly may be provided with any known technology for use thereof in such a configuration, includ ⁇ ing, but not limited to, a fine fiber bundled wick, thin grooves formed on the inner surface of the thermal pipe 18, a screen mesh, or a sintered powder.
  • the system may be configured to tilt and/or rotate to track the sun. For example, rotation may be facilitated about the longitudinal axis of the HTF pipe 10 in order to track the sun as the height of the ecliptic (i.e., the solar elevation) changes throughout time (e.g. day) .
  • rotation of each parabolic mirror about its focus i.e., about the longi ⁇ tudinal axis of the heat pipe 12

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

La présente invention concerne un système d'interconnexion thermique solaire équipé d'au moins un système d'interconnexion thermique solaire avec au moins un collecteur à miroir de Fresnel linéaire comprenant au moins un miroir de Fresnel linéaire pour la concentration de la lumière solaire dans une ligne focale du miroir de Fresnel linéaire; d'au moins un caloduc avec au moins un fluide de travail de caloduc pour absorber l'énergie solaire, le caloduc étant situé dans la ligne focale du miroir de Fresnel linéaire: au moins un système d'absorption de chaleur avec un fluide d'absorption de chaleur, le caloduc et le système d'absorption de chaleur étant en couplage thermique de sorte que le transfert de chaleur depuis le fluide de travail du caloduc vers le fluide d'absorption puisse s'effectuer. Par exemple, le système d'absorption de chaleur comporte un tube de réception de chaleur. Le fluide d'absorption est un fluide de transfert de chaleur. L'invention concerne également une centrale thermique solaire pour la transformation d'énergie solaire en énergie électrique avec au moins un système d'interconnexion thermique solaire, dans laquelle le collecteur à miroir de Fresnel est orienté avec son alignement longitudinal dans la direction nord-sud. De préférence, une pluralité de systèmes d'interconnexion thermique solaire est installée.
PCT/EP2011/067131 2011-09-30 2011-09-30 Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire WO2013044981A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/067131 WO2013044981A1 (fr) 2011-09-30 2011-09-30 Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/067131 WO2013044981A1 (fr) 2011-09-30 2011-09-30 Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire

Publications (1)

Publication Number Publication Date
WO2013044981A1 true WO2013044981A1 (fr) 2013-04-04

Family

ID=44764143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067131 WO2013044981A1 (fr) 2011-09-30 2011-09-30 Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire

Country Status (1)

Country Link
WO (1) WO2013044981A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045141A1 (fr) * 2007-10-01 2009-04-09 Global Sun Engineering Sweden Ab Concentrateur d'énergie solaire
US20090223508A1 (en) * 2008-03-05 2009-09-10 Centre Suisse D'electronique Et De Microtechnique Sa Man Made Island With Solar Energy Collection Facilities
WO2010099516A1 (fr) * 2009-02-28 2010-09-02 Richard Welle Concentrateur solaire de fresnel segmenté
WO2011064365A2 (fr) * 2009-11-30 2011-06-03 Siemens Concentrated Solar Power Ltd. Système d'interconnexion thermo-solaire, utilisation dudit système d'interconnexion thermo-solaire, et centrale thermo-solaire équipée dudit système d'interconnexion thermo-solaire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045141A1 (fr) * 2007-10-01 2009-04-09 Global Sun Engineering Sweden Ab Concentrateur d'énergie solaire
US20090223508A1 (en) * 2008-03-05 2009-09-10 Centre Suisse D'electronique Et De Microtechnique Sa Man Made Island With Solar Energy Collection Facilities
WO2010099516A1 (fr) * 2009-02-28 2010-09-02 Richard Welle Concentrateur solaire de fresnel segmenté
WO2011064365A2 (fr) * 2009-11-30 2011-06-03 Siemens Concentrated Solar Power Ltd. Système d'interconnexion thermo-solaire, utilisation dudit système d'interconnexion thermo-solaire, et centrale thermo-solaire équipée dudit système d'interconnexion thermo-solaire

Similar Documents

Publication Publication Date Title
Romero et al. Solar thermal CSP technology
US20130098354A1 (en) Solar collectors
KR20130057992A (ko) 태양열 집열 시스템
CN103512224B (zh) 一种太阳能光热接收装置
WO2013144749A2 (fr) Systèmes hybrides photovoltaïques thermiques et leur procédé de fonctionnement
JP2013539000A (ja) クロスライン型太陽熱集光装置
US11431289B2 (en) Combination photovoltaic and thermal energy system
US20190326852A1 (en) Solar receivers and methods for capturing solar energy
KR20100103164A (ko) 열전발전소자를 이용한 전력에너지 변환방법 및 이를 이용한 추적식 태양열 발전장치
CN104321595A (zh) 直线式太阳能集热器系统和太阳能发电机系统
Morciano et al. Installation of a concentrated solar power system for the thermal needs of buildings or industrial processes
US20120000530A1 (en) Device for harnessing solar energy with integrated heat transfer core, regenerator, and condenser
Dabiri et al. Basic introduction of solar collectors and energy and exergy analysis of a heliostat plant
KR101233976B1 (ko) 곡률타입 반사판을 가지는 내집광 진공관식 태양열 집열기
WO2011064365A2 (fr) Système d'interconnexion thermo-solaire, utilisation dudit système d'interconnexion thermo-solaire, et centrale thermo-solaire équipée dudit système d'interconnexion thermo-solaire
WO2013044981A1 (fr) Système d'interconnexion thermique solaire avec collecteur à miroir de fresnel linéaire, utilisation du système d'interconnexion thermique solaire et centrale thermique solaire avec système d'interconnexion thermique solaire
KR102358978B1 (ko) 집광형 태양전지가 결합된 ptc형 태양열 시스템
CN202734300U (zh) 一种太阳能光热接收装置
JP2003227661A (ja) 光ファイバーソーラーコレクタ
Mukesh et al. Design and development of a concentrated solar water heating system
WO2016017323A1 (fr) Dispositif de collecte de chaleur solaire
KR100920796B1 (ko) 태양 복사열의 전자파를 집속하여 이용한 축열장치
KR101010859B1 (ko) 접시형 태양열 집광기
WO2013005479A1 (fr) Système de collecte de lumière solaire et système de génération d'énergie électrique thermique solaire
TW201351674A (zh) 太陽能發電系統及其太陽能集熱裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11766974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11766974

Country of ref document: EP

Kind code of ref document: A1