WO2013044968A1 - Überwachungsverfahren - Google Patents

Überwachungsverfahren Download PDF

Info

Publication number
WO2013044968A1
WO2013044968A1 PCT/EP2011/067034 EP2011067034W WO2013044968A1 WO 2013044968 A1 WO2013044968 A1 WO 2013044968A1 EP 2011067034 W EP2011067034 W EP 2011067034W WO 2013044968 A1 WO2013044968 A1 WO 2013044968A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
zone
furnace
pressure
suction
Prior art date
Application number
PCT/EP2011/067034
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Mnikoleiski
Detlef Maiwald
Wolfgang Uhrig
Frank Heinke
Domenico Di Lisa
Andreas HIMMELREICH
Original Assignee
Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg filed Critical Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg
Priority to AU2011377913A priority Critical patent/AU2011377913B2/en
Priority to PCT/EP2011/067034 priority patent/WO2013044968A1/de
Priority to US14/347,699 priority patent/US9927175B2/en
Priority to EP11771056.6A priority patent/EP2761241B1/de
Priority to CA2850254A priority patent/CA2850254C/en
Publication of WO2013044968A1 publication Critical patent/WO2013044968A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • F27B13/14Arrangement of controlling, monitoring, alarm or like devices

Definitions

  • the invention relates to a method for monitoring an operating sShes an anode furnace, wherein the anode furnace is formed of a plurality of heating channels and furnace chambers, wherein the furnace chambers for receiving anodes and the heating channels for controlling the temperature of the furnace chambers, wherein the anode furnace at least one furnace unit with a Heating zone, a fire zone and a
  • Cooling zone comprises, wherein in the heating zone from a suction device and in the fire zone, a burner device is arranged, wherein by means of the burner combustion air is heated in the heating channels of the fire zone, and wherein by means of the suction device from the hot air is sucked from the heating channels of the heating zone.
  • the present process finds application in the production of anodes needed for fused-salt electrolysis to produce primary aluminum.
  • These anodes are prepared from petroleum coke with the addition of pitch as binder in a molding process as so-called “green anodes” or “raw aodes”, which are subsequently sintered in an anode furnace in the molding process.
  • This sintering process takes place in a defined heat treatment process in which the anodes pass through three phases, namely a heating phase, a sintering phase and a cooling phase.
  • the various zones mentioned above are defined by a successively alternating arrangement of different units above furnace chambers or heating channels which receive the anodes.
  • a burner device By positioning a burner device above selected furnace chambers or heating channels, the fire zone is defined, which is arranged between the heating zone and the cooling zone. In the cooling zone are immediately before burned, ie heated to sintering temperature, anodes.
  • a blower device Above the cooling zone, a blower device is arranged, by means of which air is blown into the heating channels of the cooling zone. The air is directed through an arranged above the heating from the suction device through the heating channels of the cooling zone through the fire zone into the heating zone and passed from this as a flue gas through a flue gas cleaning system and discharged into the environment. From the suction device and the burner device together with the blower device and the heating channels form a furnace unit.
  • an anode furnace comprises a plurality of furnace units, the aggregates of each other Subsequently, above the furnace chambers or heating channels for subsequent heat treatments of the raw anode or anodes are moved.
  • anode kilns which may be designed in different designs as an open anode kiln or anode ring kiln, there is the problem that a volumetric flow of the air guided through the anode kiln can only be measured with unacceptably high outlay.
  • a B eados the volume flow is needed in particular for the regular monitoring of an operating condition of the anode furnace. This is to ensure that sufficient oxygen is available for combustion of a fuel of the burner device in the heating channels of the anode furnace. Since a direct volume flow measurement is not possible due to the meandering, rectangular geometry of the heating channels, an attempt is made to determine the volume flow by an indirect measurement, for example a pressure measurement. Such an estimate of the
  • volumetric flow often leads to unusable results, for example, when a heating channel cover is opened or improperly closed, or a heating channel is blocked or blocked. Even a measurement of the volume flow by means of a Venturi tube leads to unsatisfactory results, since the differential pressures necessary for the measurement can not be established. In practice, therefore, a volumetric flow rate is carried out by trained oven personnel in the context of a Ofenrundgangs at regular Zeitab states. If a malfunction of the anode furnace is detected, it is then turned off manually by the furnace personnel. However, this can lead to hazardous operating conditions of the anode furnace, which can lead to deflagration, fires or explosions, may not be detected in time.
  • Object of the present invention is therefore to propose a method for monitoring an operating sShes an anode furnace, which allows continuous monitoring of the operating condition. This object is achieved by a method with the features of claim 1 dissolved.
  • the anode furnace is formed from a plurality of heating channels and furnace chambers, the furnace chambers for receiving anodes and the heating channels for controlling the temperature of the furnace chambers, wherein the anode furnace at least one furnace unit with a heating zone, a Fire zone and a cooling zone, wherein in the heating zone from a suction device and arranged in the fire zone, a burner means i st, wherein medium s the burner means combustion air is heated in the heating channels of the fire zone, being sucked by means of the suction hot air from the heating channels of the heating zone, wherein a suction power from the suction device is determined, and wherein a pressure in the heating channel is measured, wherein from a ratio of suction power and pressure from a volume flow in the heating channel is determined.
  • the suction of the suction is relatively reliable determinable because the suction device from indeed causes a volume flow in the heating channels, j edoch is not regulated in direct dependence of the flow rate. Therefore, a suction of the
  • the respective corresponding size of the volumetric flow results from a deviation from the presumed volumetric flow at known suction power and measured pressure. Since the determination of the suction power and the measurement of the pressure in the heating channel can be carried out continuously, via transducers and thus without furnace personnel, it is thus possible to carry out a constant monitoring of the operating state of the anode combustion furnace by the continuous determination of the volume flow.
  • a pressure or negative pressure in the heating channel in the heating zone and / or the fire zone can be measured.
  • an operating state it is also possible for a closer determination of an operating state to measure a pressure or negative pressure in, for example, an air channel of the suction device. If the suction device from is designed so that it spans a plurality of heating channels in the transverse direction and is connected thereto, the pressure measured in this collecting duct from the suction device can also be used to determine the volume flow. Furthermore, it can also be ensured that there is no malfunction when the suction power and the measured pressure in the suction device from Ab is in an expected relationship to each other.
  • the volume flow can be determined even more accurately if this is determined from a ratio of suction power and pressure in the suction device and the ratio of suction power and pressure in the heating duct.
  • the respective conditions can in each case be formed separately from one another and the volumetric flow can be derived therefrom.
  • a volumetric flow can be determined individually for individual heating channels, for example, by setting a respective pressure in a plurality of heating channels in relation to the pressure in the suction device. A particularly high or low pressure in a heating channel compared to the other heating channels can already indicate a possible malfunction in the relevant heating channel.
  • a pressure deviation in a heating channel effects on the pressures in the other heating channels, so that here with relative reference to the suction pressure measured in the Ab a accordingly changed flow can be determined or calculated.
  • a B eados from the suction from the suction device can be done by determining a flap position of a throttle from the suction device.
  • a cross section from a suction channel can be varied by adjusting the throttle, so that from the suction power of the suction device from Ab depends, inter alia, on the set cross-section of the suction channel from. If a throttle valve or similar such device is used, therefore, from a flap position, for example, indicated in angular degrees relative to the suction channel from, on a sauglei be inferred from stung.
  • a flap position can be determined particularly simply and accurately, for example by means of a rotary potentiometer.
  • the volume flow in the heating channel of the heating zone and / or the fire zone is determined. Since, as the case may be, the volume flow differences caused by the combustion process result here, these can thus be taken into account. Thus, a volume flow in the heating channel of the aforementioned zones can in each case be determined separately from one another. Thus, a more differentiated consideration of the operating state in the respective zones of the anode furnace becomes possible. Overall, an operating state can be derived from the ratio of suction power and pressure and / or the specific volume flow. Thus, it is possible to determine, based on the measured data or the volume flow, in which phase of the anode production of the anode furnace or the relevant furnace unit is currently located.
  • the determination of the operating condition can be used to determine a point in time for converting the suction device and the burner device as well as a blower device even more accurately.
  • a temperature in the heating channel can be measured. An assessment of an operating sShes is thereby further simplified, since such a required firing temperature can be monitored.
  • a temperature gradient in the heating channel can also be measured. Accordingly, a temperature profile can be monitored over a period of time, with a falling or rising temperature or a negative or positive temperature gradient allowing conclusions to be drawn about a change in operation.
  • the temperature gradient and / or the temperature can or can be measured in a collecting duct of the suction device and / or the heating zone and / or the fire zone.
  • the collecting duct or the aforementioned zones require a specific temperature gradient or temperature range, in each case for a proper operation of the furnace unit, so that an even more accurate determination of an operating state is possible with a metrological monitoring of these sections.
  • the volumetric flow can be determined even more accurately if a change in density of air in the heating channel is calculated from the temperature gradient and the temperature, and this density change is taken into account in the determination of the volumetric flow. Which is through an increase or decrease in a temperature in the heating channel resulting volume change of the air located in the heating channel can significantly affect a flow in the heating channel.
  • a calculation of the volumetric flow can therefore be corrected by a correction factor, which can be derived from a calculation of the density change on the basis of temperature gradient and temperature.
  • a B setriebsschreib can be derived from a ratio of temperature gradient and volume flow.
  • a relationship between temperature gradient and volume flow can be established. For example, a negative or very high temperature gradient in the heating zone at a low flow rate may indicate a blockage of the relevant heating channel.
  • the ratio formation of the temperature gradient and the volume flow can therefore even be used to determine a possible cause of a malfunction.
  • the operating state is evaluated, wherein, in the event of a deviation from a presumed operating state, a switch-off of the burner device takes place.
  • a malfunction of the furnace unit has a possible damage to the same result.
  • processing of the measured values and operating state variables detected in the context of the monitoring method takes place by means of a device for data processing or a corresponding control and regulating device.
  • the operation shunt can also be influenced or corrected automatically by influencing control of the relevant units of the furnace unit.
  • an evaluation of the current operating state can be carried out by comparing the stored operating state parameters with the current operating state.
  • a continuous comparison of the current operating state parameters with the stored operating state parameters can be carried out.
  • a plausibility check of transducers can also be carried out prior to each start or startup or recommissioning of the furnace unit. It can thus be ensured that, after the aggregates of the furnace unit have been transferred, the transducers of the furnace unit are connected to one another in the intended manner. Among other things, it can thus be ensured that, in the event of a malfunction of a measuring transducer, there is no undesired operating state influencing.
  • Fig. 1 A schematic representation of an anode furnace in a perspective view
  • FIG. 2 is a schematic representation of a furnace unit of the anode furnace in a longitudinal sectional view
  • 4 shows a graphic representation of the ratio of volume flow to operating state parameters
  • 5 a graphical representation of the ratio of volume flow to temperature gradient
  • FIG. 6 shows a flowchart for an embodiment of the method for monitoring a operating state.
  • FIGS. 1 and 2 shows a schematic representation of an anode furnace 10 with a furnace unit 11.
  • the anode baking oven 10 has a plurality of heating channels 12 extending in parallel along intermediate furnace chambers 13.
  • the oven chambers 13 serve to receive anodes not shown here.
  • the heating channels 12 extend in a meandering manner in the longitudinal direction of the anode furnace 10 and have at regular intervals from heating channel openings 14, which are in each case covered with a heating channel cover, not shown here.
  • the furnace unit 1 1 further comprises a suction device from 1 5, a burner device 16 and a blower 17. Their position at the anode furnace 10 defines in each case functionally a heating zone 1 8, a fire zone 19 and a cooling zone 20.
  • Their position at the anode furnace 10 defines in each case functionally a heating zone 1 8, a fire zone 19 and a cooling zone 20.
  • the furnace unit 1 1 relative to the furnace chambers 13 and the anodes displaced by reacting the devices 1 5 to 17 in the longitudinal direction of the anode furnace 10, so that all anodes located in the anode furnace 10, the zones 1 8 to 20 run through.
  • the suction device 1 5 is essentially formed from a collecting channel 21 which is connected via an annular channel 22 to an exhaust gas purification system not shown here.
  • the collecting channel 21 is in turn connected in each case via a connecting channel 23 to a heating channel opening 14, wherein here a throttle valve 24 is arranged on the connecting channel 23.
  • a measuring sensor not shown here, for measuring the pressure within the collecting channel 21 and another measuring sensor 25 for measuring the temperature in each heating Channel 12 is arranged immediately in front of the collecting channel 21 and connected via a data line 26 with this.
  • a measuring ramp 27 with measuring sensors 28 for each heating channel 12 is arranged in the heating zone 18. By means of the measuring ramp 27, a pressure and a temperature in the relevant section from the heating channel 12 can be determined.
  • the burner device 16 comprises three burner ramps 29 with burners 30 and transducers 3 1 for each heating channel 12.
  • the burners 30 in each case burn a flammable fuel in the heating channel 12, a burner temperature being measured by means of the transducers 3 1. It thus becomes possible to set a desired burner temperature in the area of the fire zone 19.
  • the cooling zone 20 comprises the blower device 17, which is formed from a feed channel 32 with respective connecting channels 33 and throttle valves 34 for connection to the heating channels 12. Fresh air is blown into the heating channels 12 via the feed channel 32. The fresh air cools the heating channels 12 and the anodes located in the furnace chambers 13 in the region of the cooling zone 20, wherein the fresh air is continuously heated until it reaches the fire zone 19.
  • FIG. 3 is a diagram of the temperature distribution based on the length of a heating channel 12 and the zones 1 8 to 20 refer to this.
  • a measuring ramp 35 with transducers 36 is arranged in the cooling zone 20.
  • the transducers 36 serve to detect a pressure in the respective heating channels 12.
  • the pressure in the heating channel 12 essentially assumes the value zero, wherein between the transducers 36 and the fan 17 an overpressure and between the transducers 36 and from the suction device 1 5 a negative pressure in the heating channels 12 is formed. Consequently, the fresh air flows from the fan 17 through the heating channels 12 to the suction device from 1 5 5.
  • a measurement of a position of the respective throttle valves 24, a pressure measurement in the collecting channel 21 and a pressure measurement in the heating channels 12 are carried out by means of the measuring transducer 28. From the measured values for the throttle valve position and the respective measured values for a negative pressure in the collecting channel 21 and in the heating channel 12 in each case relations are formed, which together with the above-described
  • Density correction can derive a volume flow in the heating channel 12. From a ratio of volume flow and temperature gradient in the heating channel 12, in turn, a B ssschreib is determined for the flow rate. Here is provided, the corresponding measured values or
  • this comparison may be made by comparing a current operating pressure to a throttle flap with a presumed operating pressure. It is also possible to evaluate a ratio of volume flow and temperature gradient as shown in FIG. 5. In the example shown, the ratio in a region 37 of the graph could be considered to be proper for the operating state, critical in a region 38 and unsatisfactory in a region 39.
  • These operating states can be signaled, for example, as a graphical representation in the manner of a traffic light or acoustically to an operator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Überwachung eines Betriebszustandes eines Anodenbrennofens, wobei der Anodenbrennofen aus einer Mehrzahl von Heizkanälen (12) und Ofenkammern gebildet ist, wobei die Ofenkammern zur Aufnahme von Anoden und die Heizkanäle zur Temperierung der Ofenkammern dienen, wobei der Anodenbrennofen zumindest eine Ofeneinheit (11) mit einer Aufheizzone (18), einer Feuerzone (19) und einer Kühlzone (20) umfasst, wobei in der Aufheizzone eine Absaugeinrichtung (15) und in der Feuerzone eine Brennereinrichtung (16) angeordnet ist, wobei mittels der Brennereinrichtung Verbrennungsluft in den Heizkanälen der Feuerzone erhitzt wird, wobei mittels der Absaugeinrichtung Heißluft aus den Heizkanälen der Aufheizzone abgesaugt wird, wobei eine Absaugleistung der Absaugeinrichtung bestimmt, und wobei ein Druck im Heizkanal gemessen wird, wobei aus einem Verhältnis von Absaugleistung und Druck ein Volumenstrom im Heizkanal bestimmt wird.

Description

Überwachungsverfahren
Die Erfindung betrifft ein Verfahren zur Überwachung eines Betrieb szustandes eines Anodenbrennofens, wobei der Anodenbrennofen aus einer Mehrzahl von Heizkanälen und Ofenkammern gebildet ist, wobei die Ofenkammern zur Aufnahme von Anoden und die Heizkanäle zur Temperierung der Ofenkammern dienen, wobei der Anodenbrennofen zumindest eine Ofeneinheit mit einer Aufheizzone, einer Feuerzone und einer
Kühlzone umfasst, wobei in der Aufheizzone eine Ab saugeinrichtung und in der Feuerzone eine Brennereinrichtung angeordnet ist, wobei mittels der Brennereinrichtung Verbrennungsluft in den Heizkanälen der Feuerzone erhitzt wird, und wobei mittels der Ab saugeinrichtung Heißluft aus den Heizkanälen der Aufheizzone abgesaugt wird.
Das vorliegende Verfahren findet Anwendung bei der Herstellung von Anoden, die für die Schmelzflusselektrolyse zur Herstellung von Primäraluminium benötigt werden. Diese Anoden werden aus Petrolkoks unter Zusatz von Pech als Bindemittel in einem Formungsverfahren als soge- nannte„Grüne Anoden" oder„Rohanoden" hergestellt, die nachfolgend dem Formungsverfahren in einem Anodenbrennofen gesintert werden. Dieser Sintervorgang findet in einem definiert ablaufenden Wärmebe- handlungsprozess statt, bei dem die Anoden drei Phasen, nämlich eine Aufheizphase, eine Sinterphase und eine Abkühlphase, durchlaufen.
Dabei befinden sich die Rohanoden in einer Aufheizzone eines aus der Aufheizzone, einer Feuerzone und einer Kühlzone zusammengesetzten, Anodenbrennofens ausgebildeten„Feuers" und werden durch die aus der Feuerzone stammende Abwärme von bereits fertig gesinterten Anoden vorgeheizt, bevor die vorgeheizten Anoden in der Feuerzone auf die Sintertemperatur von etwa 1200° Cel sius aufgeheizt werden. Entspre- chend dem Stand der Technik, wie er bei spiel swei se aus der
EP 1 785 685 AI bekannt ist, werden dabei die verschiedenen, vorgenannten Zonen durch eine wechselnd fortlaufende Anordnung unterschiedlicher Aggregate oberhalb von Ofenkammern bzw. Heizkanälen definiert, die die Anoden aufnehmen. Durch eine Positionierung einer Brennereinrichtung oberhalb ausgewählter Ofenkammern bzw. Heizkanäle ist die Feuerzone definiert, die zwischen der Aufheizzone und der Kühlzone angeordnet ist. In der Kühlzone befinden sich unmittelbar zuvor gebrannte, also auf Sintertemperatur aufgeheizte, Anoden. Oberhalb der Kühlzone ist eine Gebläseein- richtung angeordnet, mittels der Luft in die Heizkanäle der Kühlzone eingeblasen wird. Die Luft wird durch eine oberhalb der Aufheizzone angeordnete Ab saugeinrichtung durch die Heizkanäle von der Kühlzone durch die Feuerzone hindurch in die Aufheizzone und von dieser als Rauchgas durch eine Rauchgasreinigungsanlage geleitet und in die Umgebung abgegeben. Die Ab saugeinrichtung und die Brennereinrichtung bilden zusammen mit der Gebläseeinrichtung und den Heizkanälen eine Ofeneinheit.
Die vorgenannten Aggregate werden entlang der Heizkanäle in Richtung der im Anodenbrennofen angeordneten Rohanoden in regelmäßigen Zeitabständen verschoben. So kann es vorgesehen sein, dass ein Anodenbrennofen mehrere Ofeneinheiten umfasst, deren Aggregate einander nachfolgend oberhalb der Ofenkammern bzw. Heizkanäle zur nachfolgenden Wärmebehandlungen der Rohanoden bzw. Anoden verschoben werden. Bei derartigen Anodenbrennöfen, welche in unterschiedlichen Bauarten als offener Anodenbrennofen oder Anoden-Ringofen ausgebil- det sein können, besteht das Problem, dass ein Volumenstrom der durch den Anodenbrennofen geführten Luft nur mit unvertretbar hohem Aufwand gemessen werden kann. Eine B estimmung des Volumenstroms wird insbesondere zur regelmäßigen Überwachung eines Betriebszustandes des Anodenbrennofens benötigt. So soll sichergestellt werden, dass ausrei- chend Sauerstoff zur Verbrennung eines Brennstoffs der Brennereinrichtung in den Heizkanälen des Anodenbrennofens zur Verfügung steht. Da aufgrund der mäanderförmigen, rechteckigen Geometrie der Heizkanäle eine direkte Volumenstrommessung nicht möglich ist, wird versucht, den Volumenstrom durch eine indirekte Messung, beispielsweise eine Druckmessung, zu bestimmen. Eine derartige Ab schätzung des
Volumenstroms führt j edoch häufig zu unbrauchbaren Ergebnissen, wenn zum Beispiel eine Heizkanalabdeckung geöffnet oder unsachgemäß verschlossen ist, oder ein Heizkanal verstopft oder blockiert ist. Auch eine Messung des Volumenstroms mittels eines Venturirohrs führt zu unbefriedigenden Ergebnissen, da die für die Messung notwendigen Differenzdrücke nicht hergestellt werden können. In der Praxis wird daher eine Volumenstrombewertung durch geschultes Ofenpersonal im Rahmen eines Ofenrundgangs in regelmäßigen Zeitab ständen durchgeführt. Wird eine Fehlfunktion des Anodenbrennofens erkannt, wird diese dann manuell durch das Ofenpersonal abgeschaltet. Dies kann j edoch dazu führen, dass gefährliche Betrieb szustände des Anodenbrennofens, welche zu Verpuffungen, Bränden oder Explosionen führen können, möglicherweise nicht rechtzeitig erkannt werden.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Überwachung eines Betrieb szustandes eines Anodenbrennofens vorzuschlagen, das eine kontinuierliche Überwachung des Betriebszustandes ermöglicht. Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelö st.
Bei dem erfindungsgemäßen Verfahren zur Überwachung eines Betrieb szustandes eines Anodenbrennofens ist der Anodenbrennofen aus einer Mehrzahl von Heizkanälen und Ofenkammern gebildet, wobei die Ofenkammern zur Aufnahme von Anoden und die Heizkanäle zur Temperierung der Ofenkammern dienen, wobei der Anodenbrennofen zumindest eine Ofeneinheit mit einer Aufheizzone, einer Feuerzone und einer Kühlzone umfasst, wobei in der Aufheizzone eine Ab saugeinrichtung und in der Feuerzone eine Brennereinrichtung angeordnet i st, wobei mittel s der Brennereinrichtung Verbrennungsluft in den Heizkanälen der Feuerzone erhitzt wird, wobei mittels der Absaugeinrichtung Heißluft aus den Heizkanälen der Aufheizzone abgesaugt wird, wobei eine Ab saugleistung der Ab saugeinrichtung bestimmt wird, und wobei ein Druck im Heizka- nal gemessen wird, wobei aus einem Verhältnis von Ab saugleistung und Druck ein Volumenstrom im Heizkanal bestimmt wird.
Die Absaugleistung der Absaugeinrichtung ist relativ zuverlässig bestimmbar, da die Ab saugeinrichtung zwar einen Volumenstrom in den Heizkanälen bewirkt, j edoch nicht in unmittelbarer Abhängigkeit des Volumenstroms geregelt wird. Daher wird eine Absaugleistung der
Ab saugeinrichtung unter der Annahme eingestellt, dass sich daraus der erwünschte Volumenstrom ergibt. So ist es auch möglich, die Ab saugleistung der Absaugeinrichtung einfach und genau zu bestimmen. Weiter wird ein Druck bzw. ein durch die Ab saugeinrichtung bewirkter Unter- druck im Heizkanal gemessen . Aus dem Verhältni s von Ab sauglei stung zum Druck ist vergleichsweise genau der Volumenstrom im Heizkanal bestimmbar. Wenn beispielsweise eine Heizkanalabdeckung geöffnet oder unsachgemäß verschlo ssen oder auch der Heizkanal verstopft ist, kommt es zu einer Änderung des Drucks im Heizkanal relativ zur Ab- Saugleistung der Ab saugeinrichtung. Der gemessene Druck im Heizkanal weicht damit von einem vorausgesetzten Druck bei gleicher Ab saugleis- tung ab . Daraus kann ein verminderter oder erhöhter Volumenstrom im Heizkanal abgeleitet werden. Die j eweils entsprechende Größe des Volumenstroms ergibt sich aus einer Abweichung von dem vorausgesetzten Volumenstrom bei bekannter Ab saugleistung und gemessenem Druck. Da die Bestimmung der Ab saugleistung und die Messung des Drucks im Heizkanal kontinuierlich, über Messwertaufnehmer und somit ohne Ofenpersonal erfolgen kann, wird es somit möglich, durch die fortlaufende B estimmung des Volumenstroms eine ebensolche Überwachung des Betriebszustandes des Anodenbrennofens durchzuführen.
Durch die verschiedenen Ausführungsformen des Verfahrens kann ein Druck bzw. Unterdruck im Heizkanal in der Aufheizzone und/oder der Feuerzone gemessen werden. So ist es denkbar, mehrere Druckmessungen in der betreffenden Zone bzw. den j eweiligen Zonen durchzuführen, um die Position einer Betriebsstörung schnell zu ermitteln.
Weiter ist es zur näheren B estimmung eines B etrieb szustandes auch möglich, einen Druck bzw. Unterdruck in beispielsweise einem S ammelkanal der Ab saugeinrichtung zu messen. Wenn die Ab saugeinrichtung so ausgebildet ist, dass sie mehrere Heizkanäle in Querrichtung überspannt und an diese angeschlo ssen ist, kann der in diesem Sammelkanal der Ab saugeinrichtung gemessene Druck ebenfalls zur Bestimmung des Volumenstroms herangezogen werden. Weiterhin kann damit auch sichergestellt werden, dass keine Fehlfunktion vorliegt, wenn die Ab saugleistung und der gemessen Druck in der Ab saugeinrichtung in einem zu erwartenden Verhältnis zueinander steht.
Der Volumenstrom wird noch genauer bestimmbar, wenn dieser aus einem Verhältnis von Absaugleistung und Druck in der Absaugeinrichtung und dem Verhältnis von Absaugleistung und Druck im Heizkanal bestimmt wird. Die betreffenden Verhältnisse können j eweils getrennt voneinander gebildet und der Volumenstrom daraus abgeleitet werden. Auch kann ein Volumenstrom individuell für einzelne Heizkanäle bestimmt werden, beispielsweise dadurch, dass ein j eweiliger Druck in einer Mehrzahl von Heizkanälen in Verhältnis zu dem Druck in der Ab saugeinrichtung gesetzt wird. Ein im Vergleich zu den übrigen Heiz- kanälen besonders hoher oder niedriger Druck in einem Heizkanal kann schon auf eine mögliche B etrieb sstörung im betreffenden Heizkanal hinweisen. Weiter hat eine Druckabweichung in einem Heizkanal Auswirkungen auf die Drücke in den übrigen Heizkanälen, sodass auch hier mit Relativbezug zu dem in der Ab saugeinrichtung gemessenen Druck ein demnach veränderter Volumenstrom bestimmt bzw. berechnet werden kann.
Eine B estimmung der Ab saugleistung der Ab saugeinrichtung kann durch Bestimmung einer Klappenposition einer Drosselklappe der Ab saugeinrichtung erfolgen. Ein Querschnitt eines Ab saugkanals kann durch eine Verstellung der Drosselklappe variiert werden, sodass die Ab saugleistung der Ab saugeinrichtung unter anderem von dem eingestellten Querschnitt des Ab saugkanals abhängt. Wenn eine Drosselklappe oder eine ähnliche derartige Einrichtung verwendet wird, kann daher aus einer Klappenposition, beispielsweise angegeben in Winkelgrad relativ zum Ab saugkanal, auf eine Ab sauglei stung rückgeschlossen werden. Eine Klappenposition kann besonders einfach und genau, beispielsweise mittels eines Drehpotentiometers, bestimmt werden.
Besonders vorteilhaft ist es, wenn der Volumenstrom im Heizkanal der Aufheizzone und/oder der Feuerzone bestimmt wird. Da sich hier gege- benenfalls durch das Brennverfahren bedingte Volumenstromunterschiede ergeben, können diese so berücksichtigt werden. So kann ein Volumenstrom im Heizkanal der vorgenannten Zonen j eweils getrennt voneinander bestimmt werden. Somit wird eine differenziertere Betrachtung des Betrieb szustandes in den j eweiligen Zonen des Anoden- brennofens möglich. Insgesamt kann aus dem Verhältnis von Ab saugleistung und Druck und/oder dem bestimmten Volumenstrom ein Betrieb szustand abgeleitet werden. So wird es möglich, anhand der gemessenen Daten bzw. des Volumenstroms festzustellen, in welcher Phase der Anodenherstellung der Anodenbrennofen bzw. die betreffende Ofeneinheit sich gerade befindet. Zum Beispiel kann die Bestimmung des B etrieb szustandes dazu herangezogen werden, einen Zeitpunkt für ein Umsetzen der Ab saugeinrichtung und der Brennereinrichtung sowie einer Gebläseeinrichtung noch genauer zu bestimmen. In einer weiteren Ausführungsform des Verfahrens kann eine Temperatur im Heizkanal gemessen werden. Eine Bewertung eines Betrieb szustandes wird dadurch noch weiter vereinfacht, da so eine erforderliche Brenntemperatur überwacht werden kann.
Weiter kann auch ein Temperaturgradient im Heizkanal gemessen wer- den. Demnach kann ein Temperaturverlauf über einen Zeitab schnitt überwacht werden, wobei eine fallende oder steigende Temperatur bzw. ein negativer oder positiver Temperaturgradient Rückschlüsse auf eine Betrieb szu Standsänderung zulässt.
Der Temperaturgradient und/oder die Temperatur können bzw. kann in einem Sammelkanal der Ab saugeinrichtung und/oder der Aufheizzone und/oder der Feuerzone gemessen werden. Der Sammelkanal bzw. die vorgenannten Zonen erfordern für einen ordnungsgemäßen Betrieb der Ofeneinheit j eweils einen bestimmten Temperaturgradienten bzw. Temperaturbereich, sodass mit einer messtechnischen Überwachung dieser Anlagenab schnitte eine noch genauere Bestimmung eines Betrieb szustandes möglich wird.
Auch kann der Volumenstrom noch genauer bestimmt werden, wenn aus dem Temperaturgradient und der Temperatur eine Dichteänderung von Luft in dem Heizkanal berechnet wird, und diese Dichteänderung bei der Bestimmung des Volumenstroms berücksichtigt wird. Die sich durch einen Anstieg oder ein Fallen einer Temperatur im Heizkanal ergebende Volumenänderung der sich im Heizkanal befindlichen Luft kann einen Volumenstrom im Heizkanal wesentlich beeinflussen. Eine B erechnung des Volumenstroms kann daher durch einen Korrekturfaktor, der aus einer Berechnung der Dichteänderung auf Basis von Temperaturgradient und Temperatur abgeleitet werden kann, korrigiert werden.
Aus einem Verhältnis von Temperaturgradient und Volumenstrom kann auch ein B etrieb szustand abgeleitet werden. In Abhängigkeit des Volumenstroms im Heizkanal kommt es zu einer fortschreitenden Erwärmung in der Aufheizzone. Folglich kann so ein Zusammenhang zwischen Temperaturgradient und Volumenstrom hergestellt werden. Ein beispielsweise negativer oder sehr hoher Temperaturgradient in der Aufheizzone bei geringem Volumenstrom kann auf eine Verstopfung des betreffenden Heizkanals hinweisen. Durch die Verhältnisbildung von Temperaturgradient und Volumenstrom kann daher sogar eine mögliche Ursache für eine B etrieb sstörung ermittelt werden.
In diesem Zusammenhang ist es vorteilhaft, wenn der Betrieb szustand bewertet wird, wobei bei Abweichung von einem vorausgesetzten B etrieb szustand eine Ab schaltung der Brennereinrichtung erfolgt. So kann vermieden werden, dass eine Fehlfunktion der Ofeneinheit eine eventuelle Beschädigung derselben zur Folge hat. Die Ab schaltung der Brennereinrichtung oder der gesamten Ofeneinheit kann auch automatisch erfolgen, ohne dass Ofenpersonal vor Ort sein muss. Insofern kann es vorgesehen sein, dass eine Verarbeitung der im Rahmen des Überwa- chungsverfahrens erfassten Messwerte und Betrieb szustandsgrößen mittels einer Einrichtung zur Datenverarbeitung oder einer entsprechenden Steuer- und Regelungseinrichtung erfolgt. So kann der Betrieb szustand ebenfalls automatisch durch eine beeinflussende Regelung der betreffenden Aggregate der Ofeneinheit beeinflusst bzw. korrigiert werden. Auch können den B etrieb szustand beschreibende B etneb szustandsparameter gespeichert werden, wobei eine Bewertung des aktuellen B etrieb szustands durch einen Vergleich der gespeicherten mit den aktuellen Betrieb szustandsparametern durchgeführt werden kann. Insbesondere wenn eine Einrichtung zur Datenverarbeitung verwendet wird, kann ein fortlaufender Vergleich der aktuellen Betrieb szustandsparameter mit den gespeicherten Betrieb szustandsparametern durchgeführt werden. Dabei ist es möglich, für die verschiedenen B etrieb szustandsparameter Schwellenwerte zu definieren, die eine Ab schaltung bzw. korrigierende Rege- lung von Aggregaten auslösen.
Vorteilhaft kann auch vor j edem Start bzw. Inbetriebnahme oder Wiederinbetriebnahme der Ofeneinheit eine Plausibilitätsprüfung von Messwertaufnehmern durchgeführt werden. So kann sichergestellt werden, dass nach einem Umsetzen der Aggregate der Ofeneinheit die Messwert- aufnehmer der Ofeneinheit in der vorgesehenen Weise miteinander angeschlo ssen sind. Unter anderem kann so auch sichergestellt werden, dass bei einer Fehlfunktion eines Messwertaufnehmers keine unerwünschte Betrieb szustandsbeeinflussung erfolgt.
Nachfolgend wird eine bevorzugte Ausführungsform der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 : Eine schematische Darstellung eines Anodenbrennofens in einer perspektivischen Ansicht;
Fig. 2 : eine schematische Darstellung einer Ofeneinheit des Ano- denbrennofens in einer Längsschnittansicht;
Fig. 3 : eine Temperaturverteilung in der Ofeneinheit;
Fig. 4 : eine grafische Darstellung des Verhältnisses von Volumenstrom zu Betriebszustandsparametern; Fig. 5 : eine grafische Verhältnisdarstellung von Volumenstrom zu Temperaturgradient;
Fig. 6 : ein Ablaufdiagramm für eine Ausführungsform des Verfahrens zur Überwachung eines B etrieb szustandes.
Eine Zusammenschau der Fig. 1 und 2 zeigt eine schematische Darstellung eines Anodenbrennofens 10 mit einer Ofeneinheit 1 1 . Der Anodenbrennofen 10 weist eine Mehrzahl von Heizkanälen 12 auf, die parallel entlang zwischenliegender Ofenkammern 13 verlaufen. Die Ofenkammern 13 dienen dabei zur Aufnahme von hier nicht näher dargestellten Anoden. Die Heizkanäle 12 verlaufen mäanderförmig in Längsrichtung des Anodenbrennofens 10 und weisen in regelmäßigen Ab ständen Heizkanalöffnungen 14 auf, die j eweils mit einer hier nicht näher dargestellten Heizkanalabdeckung abgedeckt sind.
Die Ofeneinheit 1 1 umfasst weiter eine Ab saugeinrichtung 1 5 , eine Brennereinrichtung 16 und eine Gebläseeinrichtung 17. Deren Position am Anodenbrennofen 10 definiert j eweils funktionsbedingt eine Aufheiz zone 1 8, eine Feuerzone 19 und eine Kühlzone 20. Im Laufe des Produktionsprozesses der Anoden wird die Ofeneinheit 1 1 relativ zu den Ofenkammern 13 bzw. den Anoden durch Umsetzen der Einrichtungen 1 5 bis 17 in Längsrichtung des Anodenbrennofens 10 verschoben, sodass alle im Anodenbrennofen 10 befindlichen Anoden die Zonen 1 8 bis 20 durch laufen.
Die Absaugeinrichtung 1 5 ist im Wesentlichen aus einem Sammelkanal 21 gebildet, der über einen Ringkanal 22 an eine hier nicht dargestellte Abgasreinigungsanlage angeschlossen ist. Der Sammelkanal 21 ist seinerseits j eweils über einen Anschlusskanal 23 an einer Heizkanalöffnung 14 angeschlossen, wobei hier eine Drosselklappe 24 am Anschlusskanal 23 angeordnet ist. Weiter ist ein hier nicht dargestellter Messwert aufnehmer zur Druckmessung innerhalb des Sammelkanals 21 und ein weiterer Messwertaufnehmer 25 zur Temperaturmessung in j edem Heiz- kanal 12 unmittelbar vor dem Sammelkanal 21 angeordnet und über eine Datenleitung 26 mit diesem verbunden. In der Aufheizzone 1 8 ist darüber hinaus eine Messrampe 27 mit Messwertaufnehmern 28 für j eden Heizkanal 12 angeordnet. Mittels der Messrampe 27 können ein Druck und eine Temperatur im betreffenden Ab schnitt des Heizkanals 12 ermittelt werden.
Die Brennereinrichtung 16 umfasst drei Brennerrampen 29 mit Brennern 30 und Messwertaufnehmern 3 1 für j eden Heizkanal 12. Die Brenner 30 verbrennen j eweils im Heizkanal 12 einen entzündbaren Brennstoff, wobei mittels der Messwertaufnehmer 3 1 eine Brennertemperatur gemessen wird. So wird es möglich, im B ereich der Feuerzone 19 eine gewünschte Brennertemperatur einzustellen.
Die Kühlzone 20 umfasst die Gebläseeinrichtung 17, welche aus einem Zuführkanal 32 mit j eweiligen Anschlusskanälen 33 und Drosselklappen 34 zum Anschluss an die Heizkanäle 12 ausgebildet ist. Über den Zuführkanal 32 wird Frischluft in die Heizkanäle 12 eingeblasen. Die Frischluft kühlt die Heizkanäle 12 bzw. die in den Ofenkammern 13 befindlichen Anoden im Bereich der Kühlzone 20, wobei die Frischluft sich bis zum Erreichen der Feuerzone 19 kontinuierlich erwärmt. Der Fig. 3 ist hierzu ein Diagramm der Temperaturverteilung bezogen auf die Länge eines Heizkanals 12 und die Zonen 1 8 bis 20 zu entnehmen.
Weiter ist in der Kühlzone 20 eine Messrampe 35 mit Messwertaufnehmern 36 angeordnet. Die Messwertaufnehmer 36 dienen zur Erfassung eines Drucks in den j eweiligen Heizkanälen 12. Im Bereich der Mess- wertaufnehmer 36 nimmt der Druck im Heizkanal 12 im Wesentlichen den Wert Null an, wobei zwischen den Messwertaufnehmern 36 und der Gebläseeinrichtung 17 ein Überdruck und zwischen den Messwertaufnehmern 36 und der Ab saugeinrichtung 1 5 ein Unterdruck in den Heizkanälen 12 sich ausbildet. Folglich strömt die Frischluft ausgehend von der Gebläseeinrichtung 17 durch die Heizkanäle 12 zur Ab saugeinrichtung 1 5. Mit dem beispielhaft in Fig. 6 dargestellten Verfahrensablauf ist nun eine Bestimmung eines Volumenstroms der Luft und somit eines B etrieb szustandes möglich. Mit Bezug auf den Anodenbrennofen nach den Fig. 1 und 2 erfolgt zunächst eine Prüfung aller Messwertaufnehmer 25 , 28, 3 1 , 36 sowie des hier nicht dargestellten Messwertaufnehmers zur Bestimmung der Position der Drosselklappe 24 der Ab saugeinrichtung 1 5. So kann sichergestellt werden, dass keine Messwerte gegebenenfalls defekter Messwertaufnehmer ausgelesen werden. Diese Prüfung erfolgt unmittelbar nach einem Umsetzen der Ofeneinheit 1 1 und einer wieder- holten Inb etriebnahme der Einrichtungen 1 5 bi s 17. Während des B etrieb s der Ofeneinheit 1 1 wird eine Temperatur im Heizkanal 12 sowie ein Temperaturgradient mittels des Messwertaufnehmers 25 bzw. 28 erfasst, wobei diese Messwerte zur Dichtekorrektur der im Heizkanal 12 befindlichen Luft bzw. Heißluft genutzt wird. Parallel dazu erfolgt eine Messung einer Position der j eweiligen Drosselklappen 24, eine Druckmessung im Sammelkanal 21 und eine Druckmessung in den Heizkanälen 12 mittels des Messwertaufnehmers 28. Aus den Messwerten für die Drosselklappenposition und den j eweiligen Messwerten für einen Unterdruck im Sammelkanal 21 und im Heizkanal 12 werden j eweils Verhält- nisse gebildet, aus denen sich zusammen mit der vorbeschriebenen
Dichtekorrektur ein Volumenstrom im Heizkanal 12 ableiten lässt. Aus einem Verhältnis von Volumenstrom und Temperaturgradienten im Heizkanal 12 wird wiederum ein B etrieb szustand für den Volumenstrom bestimmt. Hier ist vorgesehen, die entsprechenden Messwerte bzw.
Betrieb szustandsparameter zu speichern und damit einen Betrieb szustand zu kalibrieren bzw. einen ordnungsgemäßen Betrieb szustand zu beschreiben. Während sich wiederholender Betrieb sphasen ist es dann möglich, einen Vergleich zwischen dem kalibrierten bzw. vorausgesetzten ordnungsgemäßen B etrieb szustand und dem aktuellen Betrieb szu- stand durchzuführen.
Dieser Vergleich kann beispielsweise, wie in Fig. 4 dargestellt, durch einen Vergleich von einem aktuellen Betriebsdruck an einer Drossel- klappe mit einem vorausgesetzten B etrieb sdruck erfolgen. Ebenso ist es möglich, ein Verhältnis von Volumenstrom und Temperaturgradient, wie in Fig. 5 dargestellt, zu bewerten. Im dargestellten B eispiel könnte das Verhältnis in einem Bereich 37 des Graphen als für den B etrieb szustand ordnungsgemäß, in einem Bereich 38 als kritisch und in einem Bereich 39 als ungenügend bewertet werden. Diese Betrieb szustände können beispielsweise als eine grafische Darstellung in Art einer Ampel oder auch akustisch einer Bedienperson signali siert werden.

Claims

Patentansprüche
1. Verfahren zur Überwachung eines Betriebszustandes eines Annoden- brennofens (10), wobei der Annodenbrennofen aus einer Mehrzahl von Heizkanälen (12) und Ofenkammern (13) gebildet ist, wobei die Ofenkammern zur Aufnahme von Anoden und die Heizkanäle zur Temperierung der Ofenkammern dienen, wobei der Annodenbrennofen zumindest eine Ofeneinheit (11) mit einer Aufheizzone (18), einer Feuerzone (19) und einer Kühlzone (20) umfasst, wobei in der Aufheizzone eine Absaugeinrichtung (15) und in der Feuerzone eine Brennereinrichtung (16) angeordnet ist, wobei mittels der Brennereinrichtung Verbrennungsluft in den Heizkanälen der Feuerzone erhitzt wird, wobei mittels der Absaugeinrichtung Heißluft aus den Heizkanälen der Aufheizzone abgesaugt wird,
dadurch gekennzeichnet,
dass eine Absaugleistung der Absaugeinrichtung bestimmt wird, und dass ein Druck im Heizkanal gemessen wird, wobei aus einem Verhältnis von Absaugleistung und Druck ein Volumenstrom im Heizkanal bestimmt wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass ein Druck im Heizkanal (12) der Aufheizzone (18) und/oder der Feuerzone (19) gemessen wird.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass ein Druck in der Absaugeinrichtung (15) gemessen wird.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
dass aus einem Verhältnis von Absaugleistung und Druck in der Absaugeinrichtung (15) und dem Verhältnis von Absaugleistung und Druck im Heizkanal (12) der Volumenstrom im Heizkanal bestimmt wird.
5. Verfahren nach Anspruch 3 oder 4,
dadurch gekennzeichnet,
dass ein jeweiliger Druck in einer Mehrzahl von Heizkanälen (12) in Verhältnis zu dem Druck in der Absaugeinrichtung (15) gesetzt wird.
6. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Bestimmung der Absaugleistung der Absaugeinrichtung (15) durch Bestimmung einer Klappenposition einer Drosselklappe (24) der Absaugeinrichtung (15) erfolgt.
7. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass der Volumenstrom im Heizkanal (12) der Aufheizzone (18) und/oder der Feuerzone (19) bestimmt wird.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,
dass aus dem Verhältnis und/oder dem Volumenstrom ein Betriebszustand abgeleitet wird.
9. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Temperatur im Heizkanal (12) gemessen wird.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass ein Temperaturgradient im Heizkanal (12) gemessen wird.
11. Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass der Temperaturgradient und/oder die Temperatur in einem Sammelkanal (21) der Absaugeinrichtung (15) und/oder der Aufheizzone (18) und/oder der Feuerzone (19) gemessen wird.
12. Verfahren nach Anspruch 10 oder 11,
dadurch gekennzeichnet,
dass aus dem Temperaturgradient und der Temperatur eine Dichteänderung von Luft in dem Heizkanal (12) berechnet wird, wobei die Dichteänderung zur Bestimmung des Volumenstroms verwendet wird.
13. Verfahren nach einem der Ansprüche 10 bis 12,
dadurch gekennzeichnet,
dass aus einem Verhältnis von Temperaturgradient und Volumenstrom ein Betriebszustand abgeleitet wird.
14. Verfahren nach Anspruch 8 oder 13,
dadurch gekennzeichnet,
dass der Betriebszustand bewertet wird, wobei bei Abweichung von einem vorausgesetzten Betriebszustand eine Abschaltung der Brennereinrichtung (16) erfolgt.
15. Verfahren nach Anspruch 14,
dadurch gekennzeichnet,
dass den Betriebszustand beschreibende Betriebszustandsparameter gespeichert werden, wobei eine Bewertung des aktuellen Betriebszustands durch einen Vergleich der gespeicherten mit den aktuellen Betrieb szustandsparametern erfolgt.
16. Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass vor Inbetriebnahme der Ofeneinheit (11) eine Plausibilitätsprü- fung von Messwertaufnehmern (25, 28, 31, 36) durchgeführt wird.
PCT/EP2011/067034 2011-09-29 2011-09-29 Überwachungsverfahren WO2013044968A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2011377913A AU2011377913B2 (en) 2011-09-29 2011-09-29 Monitoring method
PCT/EP2011/067034 WO2013044968A1 (de) 2011-09-29 2011-09-29 Überwachungsverfahren
US14/347,699 US9927175B2 (en) 2011-09-29 2011-09-29 Monitoring method
EP11771056.6A EP2761241B1 (de) 2011-09-29 2011-09-29 Überwachungsverfahren
CA2850254A CA2850254C (en) 2011-09-29 2011-09-29 Monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/067034 WO2013044968A1 (de) 2011-09-29 2011-09-29 Überwachungsverfahren

Publications (1)

Publication Number Publication Date
WO2013044968A1 true WO2013044968A1 (de) 2013-04-04

Family

ID=44860312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067034 WO2013044968A1 (de) 2011-09-29 2011-09-29 Überwachungsverfahren

Country Status (5)

Country Link
US (1) US9927175B2 (de)
EP (1) EP2761241B1 (de)
AU (1) AU2011377913B2 (de)
CA (1) CA2850254C (de)
WO (1) WO2013044968A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012590A1 (fr) * 2013-10-31 2015-05-01 Solios Carbone Procede de regulation d'un four a chambres a feu(x) tournant(s) pour la cuisson de blocs carbones
WO2021037622A1 (de) 2019-08-28 2021-03-04 Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg Brennofen und verfahren zum betrieb eines brennofens
WO2022048754A1 (de) 2020-09-03 2022-03-10 Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg Brennofen und verfahren zum betrieb eines brennofens
WO2022089796A1 (de) 2020-10-28 2022-05-05 Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg Brennofen und verfahren zum betrieb eines brennofens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785685A1 (de) 2005-11-10 2007-05-16 Innovatherm Prof. Dr. Leisenberg GmbH & Co. KG Vorrichtung und Verfahren zur Erwärmung eines Ausgangsstoffes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850772B2 (ja) * 1979-02-27 1983-11-12 工業技術院長 流動層反応装置及びその運転方法
CA2699825C (en) * 2007-09-18 2014-06-17 Wolfgang Leisenberg Method and device for recovering heat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785685A1 (de) 2005-11-10 2007-05-16 Innovatherm Prof. Dr. Leisenberg GmbH & Co. KG Vorrichtung und Verfahren zur Erwärmung eines Ausgangsstoffes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANNWEILER U ET AL: "Process control in an anode bake furnace fired with heavy oil", LIGHT METALS. NEW ORLEANS, FEB. 17 - 21, 1991; [PROCEEDINGS OF THE TMS ANNUAL MEETING], WARRENDALE, TMS, US, vol. MEETING 120, 17 February 1991 (1991-02-17), pages 667 - 671, XP002356253, ISBN: 978-0-87339-161-0 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012590A1 (fr) * 2013-10-31 2015-05-01 Solios Carbone Procede de regulation d'un four a chambres a feu(x) tournant(s) pour la cuisson de blocs carbones
WO2015063396A1 (fr) * 2013-10-31 2015-05-07 Solios Carbone Procede de regulation d'un four a chambres a feu(x) tournant(s) pour la cuisson de blocs carbones
CN105765330A (zh) * 2013-10-31 2016-07-13 索里斯卡彭公司 调整用于焙烧碳块的回转火炉的方法
CN105765330B (zh) * 2013-10-31 2018-04-06 索里斯卡彭公司 调整用于焙烧碳块的回转火炉的方法
RU2682077C2 (ru) * 2013-10-31 2019-03-14 Фив Солиос Способ регулирования многокамерной печи с поворотным пламенем для обжига углеродных блоков
WO2021037622A1 (de) 2019-08-28 2021-03-04 Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg Brennofen und verfahren zum betrieb eines brennofens
WO2022048754A1 (de) 2020-09-03 2022-03-10 Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg Brennofen und verfahren zum betrieb eines brennofens
WO2022089796A1 (de) 2020-10-28 2022-05-05 Innovatherm Prof. Dr. Leisenberg Gmbh + Co. Kg Brennofen und verfahren zum betrieb eines brennofens

Also Published As

Publication number Publication date
US20140255860A1 (en) 2014-09-11
EP2761241B1 (de) 2018-12-26
US9927175B2 (en) 2018-03-27
AU2011377913B2 (en) 2017-05-11
EP2761241A1 (de) 2014-08-06
CA2850254C (en) 2017-01-10
CA2850254A1 (en) 2013-04-04
AU2011377913A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
DE2515807C3 (de)
DE2507840C3 (de) Regelverfahren für die Zementherstellung im Drehrohrofen und Regelvorrichtung
DE112014001000T5 (de) Gasturbinensystem, Steuer- bzw. Regelungseinrichtung und Gasturbinenbetriebsverfahren
EP2191205B1 (de) Backofen mit luftaustrittsöffnung
EP2761241B1 (de) Überwachungsverfahren
EP1742004A1 (de) Verfahren zur Prozessführung eines offenen Anodenbrennofens
EP3105435B1 (de) Verfahren und anordnung zum betrieben einer gasturbinenainlage im teillastbetrieb
EP0931214B1 (de) Verfahren zur temperaturregelung von ansaugluft, temperaturregeleinrichtung zur durchführung des verfahrens und eine gasturbine
EP2292976B1 (de) Strahlheizvorrichtung
EP4022237A1 (de) Brennofen und verfahren zum betrieb eines brennofens
EP3896339B1 (de) Verfahren zur anpassung einer steuerung eines heizgeräts
DE102018203196A1 (de) Verfahren zum Bereitstellen eines geregelten Unterdrucks in mindestens einer Trockentrommel einer Anlage zur Asphaltherstellung sowie derartige Anlage zur Asphaltherstellung
CH695870A5 (de) Optimierung der Pechdampfverbrennung in einem Brennofen für Kohlenstoffelektroden.
EP4237778A1 (de) Brennofen und verfahren zum betrieb eines brennofens
DE10144406C1 (de) Heizgerät, insbesondere Zusatzheizgerät für mobile Anwendungen
WO2022048754A1 (de) Brennofen und verfahren zum betrieb eines brennofens
EP3743605B1 (de) Verfahren und vorrichtung zur druckregelung des abgases einer arbeitsmaschine
AT520648B1 (de) Verfahren und Vorrichtung zur Druckregelung des Verbrennungs- und/oder Abgases einer Arbeitsmaschine
DE102014001208A1 (de) Verdämmungserkennung
EP4215815A1 (de) Verfahren zum betreiben eines flammenbildenden heizgerätes einer heizungsanlage, computerprogramm, speichermedium, regel- und steuergerät, heizgerät und verwendung einer durchflussrate einer heizungsanlage und eines ionisationssignals eines heizgerätes
EP3335563A1 (de) Verfahren zur steuerung und/oder regelung des gasdurchsatzes im backraum einer backvorrichtung
DE102014005986B4 (de) Betriebsverfahren für einen Magergasmotor und Magergasmotor
AT517033B1 (de) Verfahren zur regelung des betriebspunktes einer abgasturbine
EP2687784B1 (de) System mit einer Abgasvorrichtung und Verfahren zum Betreiben eines solchen Systems
EP2502014A1 (de) Verfahren und vorrichtung zur herstellung von anoden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011771056

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2850254

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011377913

Country of ref document: AU

Date of ref document: 20110929

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347699

Country of ref document: US