WO2013042969A1 - Method for manufacturing soda-lime-silicate plate glass and highly transparent plate glass manufactured by said method - Google Patents

Method for manufacturing soda-lime-silicate plate glass and highly transparent plate glass manufactured by said method Download PDF

Info

Publication number
WO2013042969A1
WO2013042969A1 PCT/KR2012/007567 KR2012007567W WO2013042969A1 WO 2013042969 A1 WO2013042969 A1 WO 2013042969A1 KR 2012007567 W KR2012007567 W KR 2012007567W WO 2013042969 A1 WO2013042969 A1 WO 2013042969A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
weight
melter
parts
burner
Prior art date
Application number
PCT/KR2012/007567
Other languages
French (fr)
Korean (ko)
Inventor
김용이
임재청
이윤희
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Publication of WO2013042969A1 publication Critical patent/WO2013042969A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing soda lime silicate glass and to a high transparent glass produced thereby, and more particularly, a refiner located after the glass raw material mixture batch is melter and downstream to the melter.
  • the plate glass characterized in that the flow of oxidant is introduced into at least one of the melter and refiner to separate the operation of the burner It relates to a manufacturing method of and a high transparent plate glass produced thereby.
  • Soda lime silicate glass with high visible light and high solar radiation transmittance may be usefully used as a cover glass and substrate of a solar cell, a window or interior material of a building.
  • the glass since the glass has a high visible light and solar radiation transmittance, when applied to the cover glass and substrate of the solar cell can increase the energy conversion efficiency of the solar cell.
  • these glasses have a high visible light transmittance and are more colorless and transparent than ordinary glass, so they can be applied to interior glass such as building lobby or product display glass. Helps to see the sound without distortion.
  • soda lime silicate glass is produced by using these raw materials there is inevitably containing Fe 2 O 3 as an impurity, soda lime Fe 2 O 3 in the glass absorbs much of the sun's rays to visible light and solar radiation transmittance Dropped. Therefore, in order to manufacture soda-lime silicate glass having high visible light and high solar radiation transmittance, the Fe 2 O 3 content in the glass must be kept low. Therefore, a high purity raw material having a low content of Fe 2 O 3 has to be used in the past. .
  • the use of ultra-high purity raw material containing only a few ppm of Fe 2 O 3 the raw material price inevitably increases, there is a limit that it is difficult to apply to commercial glass production.
  • the cover glass and substrate of a solar cell In order to be suitable for application to the cover glass and substrate of a solar cell, it must be a glass having a very high optical transmittance (eg, visible light transmittance of at least 91.2% and solar radiation transmittance of at least 90.6%) based on 4 mm glass thickness.
  • Such high permeation glass can be achieved, for example, by reducing the total Fe 2 O 3 content in 100 parts by weight to 0.013 parts by weight or lowering the Redox ratio to 0.24 or less.
  • the total Fe 2 O 3 content Total Fe 2 O 3
  • the redox ratio represents Fe 2+ in the glass.
  • FeO (Fe 2+ ) in glass has an absorption peak near 1050 nm, and as its content increases, the visible and solar radiation transmittances decrease considerably, and the glass tends to be colored in very light blue.
  • Fe 2 O 3 (Fe 3+ ) in the glass has multiple absorption peaks in the vicinity of 380 ⁇ 435nm, and as its content increases, the visible light transmittance and the solar radiation transmittance increase, the ultraviolet transmittance decreases slightly, and the glass is very light. It tends to color yellow.
  • Conventional uncoloured soda lime silicate glass is called Clear glass and usually has a total Fe 2 O 3 content of about 0.07 to 0.13 parts by weight per 100 parts by weight of glass.
  • the clear glass manufactured by the conventional method has a redox ratio of 0.25-0.26.
  • the redox ratio exceeds 0.3, and may be seriously increased to 0.4 to 0.5. have. This is a natural phenomenon as the equilibrium concentration between Fe 3+ and Fe 2+ is adjusted as the total Fe 2 O 3 content in the soda lime silicate glass is lowered.
  • the redox ratio is dependent on the raw material, melting temperature, melting atmosphere, holding time in the furnace, cooling rate, and the like.
  • the atmosphere in the furnace tends to decrease in an oxidizing atmosphere and increases in a reducing atmosphere.
  • methods for using a variety of oxidants as raw materials for oxidizing the glass have been proposed in order to make the melting atmosphere into an oxidizing atmosphere in order to lower the redox ratio which is high in glass having a very low iron content.
  • Sodium lime silicate has been mainly used as a representative raw material for oxidizing soda lime silicate glass.
  • this material decomposes in the early stage of melting when used in excess, forming a strong foam layer, which prevents the heat source of the burner from being transferred to the molten glass, which leads to a sharp decrease in energy efficiency.
  • US Patent No. 6,610,622 discloses a low iron glass having a total Fe 2 O 3 content of 0.01 to 0.3% by weight, and a glass composition using 0.01 to 0.3% by weight of Er 2 O 3 and 0.005 to 0.3% by weight of Ce 2 O 3 as a colorant component. Is disclosed. However, the glass composition disclosed in this patent contains the expensive rare earth element Er 2 O 3 as an essential component and thus is not suitable as a commercial plate glass.
  • the glass composition disclosed in U.S. Patent No. 6,610,622 is a material which oxidizes iron from ferrous iron (FeO) to ferric iron (Fe 2 O 3 ) when melting the glass, and contains cerium oxide (Ce 2 O 3 ) as an essential component.
  • US Patent No. 6,844,280 discloses a technique of adding cerium oxide (CeO 2 ).
  • Cerium oxide is known to be a strong oxide that oxidizes glass, but glass containing low iron and Ce turns brown after prolonged exposure to ultraviolet light, ie, changes in the optical transmission spectrum of glass during prolonged exposure to sunlight.
  • cerium oxide in low iron glass adversely affects the long-term color stability of the glass, which is particularly useful for soda-lime silicate glass for use in glass and substrates for long exposure to external sunlight. Means that it is not suitable to use cerium oxide.
  • an excessive amount of oxidant for example, oxygen or air
  • oxidant for example, oxygen or air
  • US Patent Application Publication No. 2011/135938 It is described here to achieve a low redox ratio by supplying a superstoichiometric amount of oxidant with fuel to at least one burner located at the bottom of the furnace.
  • an overstoichiometric amount of oxidant eg oxygen
  • excess oxygen is supplied beyond the theoretical amount of oxygen required for the combustion of the fuel, which inevitably lowers the temperature inside the furnace, and to compensate for this, Since a large amount of fuel and air have to be injected, it is very weak in terms of energy efficiency of the furnace.
  • supplying an overstoichiometric amount of oxygen directly to an operating burner port may change the combustion conditions near the burner depending on the flow rate, and in some cases, the excess oxygen supplied does not contribute to the formation of an oxidizing atmosphere. Since it can be released, the level of oxidizing atmosphere actually formed may differ from the prediction. In other words, supplying an overstoichiometric amount of oxygen directly to an operating burner port has a problem that it is difficult to control the oxidizing atmosphere to a desired level.
  • Patent Document 1 US Patent No. 6,610,622
  • Patent Document 2 US Patent No. 6,844,280
  • Patent Document 3 United States Patent Application Publication No. 2011/135938
  • the present invention is directed to solving the problems of the prior arts as described above, and an object of the present invention is to provide metal oxides and lanthanide element oxides as oxidants in the preparation of soda lime silicate glass having a very low total Fe 2 O 3 content. It is a technical object of the present invention to provide a method for producing soda lime silicate glass having a very high visible light transmittance and a solar radiation transmittance by effectively lowering the redox ratio of the glass without using the present invention, and a high transparent plate glass produced thereby. .
  • the present invention continuously passes a batch of glass raw material mixture (melter) and a refiner located downstream of the melter, and then cools and molds the plated soda.
  • a method of making lime silicate glass wherein the melter melts the glass raw material mixture batch by injecting a plurality of burners with a stoichiometric amount of fuel material and a stoichiometric amount of oxidant, At least one of the melter and the refiner is introduced with a separate oxidant flow from the operation of the burner, the plate-like soda lime, characterized in that the total content of Fe 2 O 3 of the glass produced is 0 to 0.013 parts by weight per 100 parts by weight of glass.
  • a method for producing silicate glass is provided.
  • the glass manufacturing method of the present invention which is 65 to 75 parts by weight of SiO 2 , 0.1 to 3 parts by weight of Al 2 O 3 , Na 2 O and K 2 O per 100 parts by weight of glass Soda with 10 to 18 parts by weight, CaO 5 to 15 parts by weight, MgO 1 to 6 parts by weight, SO 3 0.01 to 0.5 part by weight, and total Fe 2 O 3 0 to 0.013 part by weight, and a redox ratio of 0.05 to 0.24.
  • Lime silicate panes are provided.
  • soda-lime silicate glass having a very low total Fe 2 O 3 content it is possible to effectively lower the redox ratio of the glass without the use of metal oxides and lanthanide element oxides as oxidants, thereby providing very high visible light.
  • Soda-lime silicate panes with transmittance and solar radiation transmittance can be prepared.
  • FIG. 1 is a schematic view of one embodiment of a soda lime silicate glass manufacturing method according to the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of the soda lime silicate glass manufacturing method according to the present invention.
  • Figure 3 is a schematic diagram of yet another embodiment of the method for producing soda lime silicate glass according to the present invention.
  • the present invention can be applied to the manufacturing process of soda-lime silicate plate glass having a very high visible light and solar radiation transmittance.
  • Representative methods of manufacturing the plate glass include the float (Float) method, roll-out (Fusion down draw) method, the down draw (Down draw) method, the up draw (Up draw) method, etc.
  • the application of the present invention is not limited thereto.
  • the present invention basically relates to a process for producing a glass-like mixture of soda-lime silicate after passing the batch of glass stock mixture continuously through a melter and a refiner located subsequent to the melter, followed by cooling and forming.
  • Plate glass manufacturing method of the present invention can be carried out using a continuous equipment as shown in Figures 1 to 3, but is not limited thereto.
  • the melter of the continuous installations usable in the present invention it is preferable that at least two burners (an apparatus for injecting fuel or a mixture of fuel and gas into the melting furnace) are provided on both sides of the melter.
  • burners an apparatus for injecting fuel or a mixture of fuel and gas into the melting furnace
  • Oxygen is preferable as the oxidant required for burning such fossil fuel, and oxygen may be introduced into the melter in the form of pure oxygen or in the form of atmospheric air or pure oxygen and air.
  • oxidants eg pure oxygen or atmospheric air or a mixture of pure oxygen and air
  • An electrical heat source may also be supplied to the bottom of the melter to assist in melting the batch of glass stock mixture.
  • Continuous equipment that can be utilized in the present invention, but may be employed in the combustion system commonly known in the art, such as regenerator method, oxy-firing method, oxy-boosting method, but is not limited thereto.
  • the continuous equipment usable in the present invention is largely for forming a glass melt exiting a melting-refining zone and a melting-clarifying section, in which raw material batches are introduced into a melting furnace, where melting, clarification and homogenization are performed. It is divided into two parts, the working end, which cools to an appropriate temperature.
  • the melt-clarification section is further divided into a melter that melts the batch of glass stock mixture and a refiner in which clarification and homogenization of the glass melt exiting the melter takes place.
  • the melter in the melter while operating a burner while adding a stoichiometric amount of fuel material and a oxidant to a plurality of burners to melt the glass raw material mixture batch, the melter and At least one of the refiners is characterized in that the flow of oxidant separate from the operation of the burner.
  • the melter is a side port in which a port including a burner and an oxidant (ie, air or oxygen) inlet is disposed on both sides of the melter rather than an end port method in which a port is located near a batch inlet. ) Is preferred in view of controlling the redox ratio.
  • the term “port pair” refers to two ports located parallel to both sides of a side port melter.
  • At least one of the melter and the refiner introduces an oxidant (i.e., oxygen or air) flow separate from the operation of the burner to effectively make the oxidizing atmosphere within the melt-clarification section.
  • an oxidant i.e., oxygen or air
  • FIG. 1 is a schematic view of one embodiment of a soda lime silicate glass manufacturing method according to the present invention.
  • only the oxidant flow is introduced into the melter without operating the burner in at least one port (port pair in the case of the side port method) present in the melter.
  • the remaining ports in the melter operate the burner while introducing a stoichiometric amount of oxidant to the fuel material and the fuel material.
  • the oxidant, such as oxygen, introduced through the port where the burner is not running is not immediately affected by the combustion reaction, which does not reduce energy efficiency and does not easily escape out of the melt-clarification section, so that Fe 2+ present in the glass is Fe It can be effectively oxidized to 3+ .
  • the amount of uninjected fuel from the burner-free port is distributed to the burner-operated port located at the front of the melter and injected with oxygen close to complete combustion to melt the raw material. It is possible to achieve high energy efficiency while supplying enough heat for.
  • FIG. 2 is a schematic diagram of another embodiment of the soda lime silicate glass manufacturing method according to the present invention.
  • an oxidant ie oxygen or air
  • the ports present in the melter operate the burner while introducing a stoichiometric amount of oxidant to the fuel material and the fuel material.
  • the reaction scheme in which Fe 2+ in the glass is oxidized to Fe 3+ by oxygen introduced into the refiner is as follows.
  • FIG. 3 is a schematic diagram of another embodiment of the soda lime silicate glass manufacturing method according to the present invention.
  • an oxidant ie oxygen or air
  • the ports present in the melter operate the burner while introducing a stoichiometric amount of oxidant to the fuel material and the fuel material.
  • the total amount of oxygen in the oxidant flow, which flows into at least one of the melter and the refiner, from the operation of the burner is at least 100 Nm 3 per hour on a volume basis (1 atm, gas fluid volume unit at 0 ° C.). desirable. If the total amount of oxygen in the oxidant flow is less than 100 Nm 3 per hour, it can be difficult to make the interior of the melt-clarification section a sufficient oxidizing atmosphere.
  • at least three pairs of burners in the melter are simultaneously supplied with a stoichiometric amount of oxidant (i.e., the equivalent of oxygen close to the complete combustion of the fuel and fuel) for the fuel substance and the fuel substance. desirable.
  • the volume ratio of air / fuel to atmospheric air is 10 to 15
  • the volume ratio of oxygen / fuel to oxygen is 2.0 to 2.9
  • the oxygen in the mixed gas is based on the amount of oxygen in the mixed gas. It is preferable that the volume ratio of / fuel is 2.0-2.9.
  • Fuel materials that can be used include fossil fuels such as LPG, LNG, and bunker seed oil (BC Oil), and the ratio that can achieve the highest efficiency in consideration of the type and condition of fossil fuels within the above ratio range is applicable. Can be.
  • the present invention relates to a method for continuously producing a plate-like soda lime silicate glass, in one embodiment of the present invention by floating the molten glass in a molten tin bath to form a plate.
  • the molten glass is pressed into one or a plurality of rollers to form a plate. At this time, by using one or more rollers with irregularities, the molten glass can be formed into a plate-shaped glass having a pattern.
  • the glass manufacturing method of the present invention preferably, a batch in which the glass raw materials are mixed is introduced into a melting furnace in which a plurality of burners using fossil fuel as a heat source are disposed by the transfer means and melted / clarified ( Refining / Homogenization / Cooling and the like may be performed, and the molten glass may be discharged and then may be performed in a continuous melting furnace that is shaped into a plate by various molding methods as described above.
  • process configurations or conditions other than those described above may be utilized as they are, or appropriately modified in the conventional soda-lime silicate plate glass manufacturing method, which is used in the art It is obvious to the skilled person.
  • the present invention is prepared by the glass manufacturing method of the present invention as described above, 65 to 75 parts by weight of SiO 2 , 0.1 to 3 parts by weight of Al 2 O 3 , Na 2 O and 100 parts by weight of glass and A total of 10 to 18 parts by weight of K 2 O, 5 to 15 parts by weight of CaO, 1 to 6 parts by weight of MgO, 0.01 to 0.5 parts by weight of SO 3 and 0 to 0.013 parts by weight of total Fe 2 O 3 , and redox (Redox ) Soda lime silicate panes with a ratio of 0.05-0.24 are provided.
  • the permeability is particularly suitable for use as solar cell cover glass and substrate glass. May not have
  • the total Fe 2 O 3 content per 100 parts by weight of glass is more preferably 0 to 0.01 parts by weight, even more preferably 0 to 0.009 parts by weight.
  • the redox ratio is less than 0.05, it is difficult to perform the defoaming process by decomposition of SO 3 in the glass, and when it exceeds 0.24, especially the solar cell cover glass and the substrate glass due to the reduction of visible light and solar radiation transmittance. May not have adequate permeability for use. More preferable redox ratio is 0.1-0.2, More preferably, it is 0.12-0.2.
  • SiO 2 in the soda lime silicate glass of the present invention serves as a network structure forming agent to form the basic structure of the glass, if the content is less than 65 parts by weight per 100 parts by weight of glass may cause problems in the durability of the glass, If it exceeds 75 parts by weight, there may be a problem of high temperature viscosity increase and meltability decrease.
  • the SiO 2 content per 100 parts by weight of glass is more preferably 68 to 72 parts by weight, even more preferably 70 to 72 parts by weight.
  • Al 2 O 3 is a component that increases the high temperature viscosity of the glass and improves the durability of the glass when a small amount is added. If the content is less than 0.1 part by weight per 100 parts by weight of the glass, chemical resistance and water resistance This may be vulnerable, and if it exceeds 3 parts by weight, there may be a problem that the melt load increases with increasing high temperature viscosity.
  • the Al 2 O 3 content per 100 parts by weight of glass is more preferably 0.5 to 2 parts by weight, even more preferably 0.7 to 1.2 parts by weight.
  • Na 2 O and K 2 O is a flux component that promotes the melting of the glass raw material, if the total of the two components is less than 10 parts by weight per 100 parts by weight of glass due to the increase in the occurrence of cosmetic melt Melt quality may occur, and if it exceeds 18 parts by weight, chemical resistance may occur.
  • the sum of the contents of Na 2 O and K 2 O per 100 parts by weight of glass is more preferably 12 to 16 parts by weight, even more preferably 13 to 15 parts by weight.
  • CaO and MgO in the soda lime silicate glass of the present invention is a component that reinforces the weather resistance of the glass structure while helping to melt the raw material. If the CaO content is less than 5 parts by weight per 100 parts by weight of glass, durability degradation may occur, and if it exceeds 15 parts by weight, it may adversely affect product quality due to an increase in crystallization tendency.
  • CaO per 100 parts by weight of glass The content is more preferably 7 to 12 parts by weight, even more preferably 8 to 11 parts by weight.
  • MgO if the content is less than 1 part by weight per glass part, the effect of reinforcing the weather resistance of the glass structure may be reduced while helping to melt the raw material. If the content exceeds 6 parts by weight, an increase in crystallization tendency causes an increase in crystal defects. Can be.
  • MgO per 100 parts by weight of glass The content is more preferably 2 to 5 parts by weight, even more preferably 3 to 5 parts by weight.
  • the forget-me-not (Na 2 SO 4 ) can be used to improve melt quality such as bubble removal, and the content remaining in the form of SO 3 gas in the glass during the melting process remains at 0.01 to 0.5 parts by weight per 100 parts by weight of glass. It is common to do
  • the soda lime silicate glass of the present invention may contain other components in a small proportion (for example, 1% or less) and impurities which may be inevitably included in raw materials or manufacturing processes, for example, TiO 2 , ZrO 2 , F, Cl Etc. can be mentioned.
  • the soda lime silicate glass of the present invention does not intentionally include oxides such as Sb 2 O 3 , As 2 O 3 or CeO 2 .
  • the soda lime silicate glass of the present invention is other than SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, CaO, MgO, SO 3 , Fe 2 O 3 , TiO 2 , ZrO 2 , F and Cl All elements may be included in oxide form at less than 0.05 parts by weight per 100 parts by weight of glass.
  • the soda lime silicate glass of the present invention is an oxide such as Sb 2 O 3 , As 2 O 3 and Ce, Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Oxides of elements selected from Er, Tm, Yb, and Lu and oxides or metals such as CoO, CuO, NiO, Cr 2 O 3 , MnO 2 , V 2 O 5 , Se, Ag, Cu, and the like are not intentionally included.
  • oxides or metals such as CoO, CuO, NiO, Cr 2 O 3 , MnO 2 , V 2 O 5 , Se, Ag, Cu, and the like are not intentionally included.
  • the cover glass or the substrate of the solar cell It can be suitably used for building windows, exterior decoration of home appliances, flat mirror or parabolic mirrors for condensing, light diffusing devices of LCD type display devices, flat panel displays based on organic light emitting diodes or flat lamps.
  • the soda lime silicate glass of the present invention may be coated with at least one transparent conductive thin film and / or low reflective thin film as needed.
  • a batch containing feldspar, limestone, dolomite, soda ash and forget-me-not as a raw material is put into a continuous apparatus as described above, melted, and molded into a plate shape through a float method.
  • the glass of the comparative examples was prepared.
  • Bunker seed oil was used as fuel and general atmospheric air was used as an oxidant for combustion.
  • There were a total of eight pairs of ports in the melter, and the burner operated ports were supplied with the stoichiometric ratio (fuel / bunker seed oil volume ratio 12) required for complete combustion.
  • excess air was injected from the stoichiometric ratio in the latter two pairs of ports.
  • a separate inlet for oxygen-containing gas input was installed in the refiner. The amount of oxygen-containing gas added separately was maintained at 100 Nm 3 or more per hour based on the volume of oxygen in the gas.
  • optical characteristic was evaluated based on 4 mm thickness. Optical properties were measured as follows using Perkin Elmer's Lambda950.
  • T-Vis Visible light transmittance
  • T-Sol Solar radiation transmittance
  • the total Fe 2 O 3 content range is 0.013 parts by weight or less, the redox ratio is 0.24 or less, at least 91.2% visible light transmittance and at least 90.6% solar radiation transmittance at 4 mm glass thickness. Indicated.
  • the sum of the amount of oxygen per hour inputted separately from the operation of the burner in the melt-clarification section was the same, but the redox ratio was lower in Example 3, and Example 3 provided a separate inlet to the refiner. In the case where the gas containing oxygen was installed and put in this way, it was estimated that the time for which the injected oxygen remained in the clarification section was longer, which was more effective in reducing the redox ratio.
  • Comparative Example 1 lowered the redox ratio by supplying oxygen through an inlet separate from the burner, but exhibited very low visible light and solar radiation transmittance due to excessive content of Fe 2 O 3. It was not suitable to be used as substrate glass or the like.
  • Comparative Examples 2 and 3 although the total Fe 2 O 3 content was the level of Example, the results of applying the conventional manufacturing technique showed a very high redox ratio, and thus the visible light and the solar radiation transmittance were very low, and thus the solar cell cover glass and the substrate It was also unsuitable to be used for glass or the like.
  • the glass is prepared by introducing a separate oxidant flow from the operation of the burner in the melt-clarification section, but the total content of Fe 2 O 3 in the prepared glass is 0 to 0.013 parts by weight per 100 parts by weight of glass. It was confirmed that the glass having high visible light and solar radiation transmittance at a level suitable for use as a solar cell cover glass and a substrate glass should be satisfied at the same time.

Abstract

The present invention relates to a method for manufacturing soda-lime-silicate plate glass and to highly transparent plate glass manufactured by said method. More particularly, the present invention relates to a method for manufacturing soda-lime-silicate plate glass and to highly transparent plate glass manufactured by said method, wherein the method permits a glass material mixture batch to sequentially pass through a melter and a refiner which is located at the downstream of the melter, and performs cooling and molding processes to manufacture plate-type soda-lime-silicate glass, wherein an oxidant flow is introduced in at least one of the melter and the refiner separately from an operation of a burner.

Description

소다라임 실리케이트 판유리의 제조방법 및 이에 의해 제조된 고투명 판유리Method for producing soda lime silicate glass and high transparency glass glass produced thereby
본 발명은 소다라임 실리케이트 판유리의 제조방법 및 이에 의해 제조된 고투명 판유리에 관한 것으로, 보다 상세하게는, 유리 원료 혼합물 배치(Batch)를 멜터(melter) 및 멜터에 후속(downstream)하여 위치한 리파이너(refiner)에 연속적으로 통과시킨 후, 냉각 및 성형을 거쳐 판상의 소다라임 실리케이트 유리로 제조하는 방법에 있어서, 멜터 및 리파이너 중 적어도 하나에서 버너의 가동과는 별개의 산화제 플로우가 유입되는 것을 특징으로 하는 판유리의 제조방법 및 이에 의해 제조된 고투명 판유리에 관한 것이다.The present invention relates to a method for producing soda lime silicate glass and to a high transparent glass produced thereby, and more particularly, a refiner located after the glass raw material mixture batch is melter and downstream to the melter. In the method for producing a soda-lime silicate glass in the form of a plate after successively passing through), the plate glass, characterized in that the flow of oxidant is introduced into at least one of the melter and refiner to separate the operation of the burner It relates to a manufacturing method of and a high transparent plate glass produced thereby.
가시광선 및 태양방사 투과율이 높은 소다라임 실리케이트 판유리는 태양전지의 커버글라스 및 기판, 건물의 창 또는 인테리어 소재로 유용하게 활용될 수 있다. 특히, 이러한 유리는 가시광선 및 태양방사 투과율이 높기 때문에 태양전지의 커버글라스 및 기판으로 적용시 태양전지의 에너지변환 효율을 높일 수 있다. 한편, 이들 유리는 가시광선 투과율이 높고 일반 유리에 비해 보다 무색 투명하여 건축물 로비 등의 인테리어용 유리나 상품 진열용 유리 등에 적용될 수 있으며 이러한 유리가 상품 진열용 유리에 적용될 경우 사람들이 전시된 제품의 색상을 왜곡없이 잘 볼 수 있게 도와준다.Soda lime silicate glass with high visible light and high solar radiation transmittance may be usefully used as a cover glass and substrate of a solar cell, a window or interior material of a building. In particular, since the glass has a high visible light and solar radiation transmittance, when applied to the cover glass and substrate of the solar cell can increase the energy conversion efficiency of the solar cell. On the other hand, these glasses have a high visible light transmittance and are more colorless and transparent than ordinary glass, so they can be applied to interior glass such as building lobby or product display glass. Helps to see the sound without distortion.
통상적으로 유리를 제조하는 원료로는 규사, 소다회, 백운석, 석회석 등이 사용되는데, 이러한 원료들은 불순물로 Fe2O3을 함유하고 있다. 따라서 이러한 원료들을 사용하여 제조되는 소다라임 실리케이트 유리는 필연적으로 불순물로 Fe2O3을 함유하게 되는데, 소다라임 유리 내의 Fe2O3은 태양광선의 상당부분을 흡수하여 가시광선 및 태양방사 투과율을 떨어뜨리게 된다. 따라서, 가시광선 및 태양방사 투과율이 높은 소다라임 실리케이트 유리를 제조하기 위해서는 유리내 Fe2O3 함유량을 낮게 유지하여야 하며, 이 때문에 종래에는 Fe2O3의 함유량이 적은 고순도의 원료를 사용해야만 했다. 하지만 Fe2O3의 함량이 수 ppm에 불과한 초고순도의 원료를 사용하려면 원료 가격이 필연적으로 상승하게 되어, 상업용 유리 제조에는 적용이 어렵다는 한계가 있다.Generally, silica, soda ash, dolomite, limestone, and the like are used as raw materials for manufacturing glass, and these raw materials contain Fe 2 O 3 as impurities. Therefore, soda lime silicate glass is produced by using these raw materials there is inevitably containing Fe 2 O 3 as an impurity, soda lime Fe 2 O 3 in the glass absorbs much of the sun's rays to visible light and solar radiation transmittance Dropped. Therefore, in order to manufacture soda-lime silicate glass having high visible light and high solar radiation transmittance, the Fe 2 O 3 content in the glass must be kept low. Therefore, a high purity raw material having a low content of Fe 2 O 3 has to be used in the past. . However, the use of ultra-high purity raw material containing only a few ppm of Fe 2 O 3 , the raw material price inevitably increases, there is a limit that it is difficult to apply to commercial glass production.
태양전지의 커버글라스 및 기판으로 적용되기에 적합하기 위해서는, 4mm 유리 두께를 기준으로 아주 높은 광학 투과율(예컨대, 91.2% 이상의 가시광선 투과율 및 90.6% 이상의 태양방사 투과율)을 갖는 유리이어야 한다. 이러한 고투과 유리는 예컨대, 유리 조성물 100중량부 내의 전체 Fe2O3 함량을 0.013 중량부 이하로 하고, 레독스(Redox) 비를 0.24 이하로 낮춤으로써 달성할 수 있다. 여기에서 전체 Fe2O3 함량(Total Fe2O3)이란 유리 내 모든 Fe3+와 Fe2+를 Fe2O3 형태로 환산한 함량을 의미하며, 레독스 비는 유리내 Fe2+를 FeO 형태로 환산한 함량을 전체 Fe2O3 함량으로 나눈 값(즉, 레독스 비 = FeO 함량/전체 Fe2O3 함량)을 의미한다.In order to be suitable for application to the cover glass and substrate of a solar cell, it must be a glass having a very high optical transmittance (eg, visible light transmittance of at least 91.2% and solar radiation transmittance of at least 90.6%) based on 4 mm glass thickness. Such high permeation glass can be achieved, for example, by reducing the total Fe 2 O 3 content in 100 parts by weight to 0.013 parts by weight or lowering the Redox ratio to 0.24 or less. Herein, the total Fe 2 O 3 content (Total Fe 2 O 3 ) means the content of all Fe 3+ and Fe 2+ in the form of Fe 2 O 3 in the glass, and the redox ratio represents Fe 2+ in the glass. The content in the form of FeO divided by the total Fe 2 O 3 content (that is, the redox ratio = FeO content / total Fe 2 O 3 content) means.
유리에서 가시광선 및 태양방사 투과율은 유리 내의 전체 Fe2O3 함량 및 레독스 비 양자 모두에 의존한다. 그러므로 유리에서 높은 가시광선 및 태양방사 투과율을 달성하기 위해서는 이들 중 어느 하나 또는 양자 모두를 감소시킬 필요가 있다. 유리 내에서 철은 두 가지 형태, 즉 환원된 상태인 산화제1철(ferrous oxide, FeO) 및 산화된 형태인 산화제2철(ferric oxide, Fe2O3)로서 존재하며, FeO와 Fe2O3 사이의 균형은 유리의 투과율 및 색상에 상당한 영향을 미친다.Visible light and solar radiation transmission in glass depend on both the total Fe 2 O 3 content and the redox ratio in the glass. Therefore, it is necessary to reduce either or both of them in order to achieve high visible and solar radiation transmittance in the glass. In glass, iron exists in two forms: ferrous oxide (FeO) in the reduced state and ferric oxide (Fe 2 O 3 ) in the oxidized form, and FeO and Fe 2 O 3 The balance between has a significant effect on the transmittance and color of the glass.
일반적으로 유리 내의 FeO(Fe2+)는 1050nm 부근에서 흡수 피크(peak)를 가지며, 그 함량이 증가하게 되면 가시광선 및 태양방사 투과율이 상당히 감소하고, 유리를 아주 옅은 파란색으로 착색시키는 경향이 있다. 유리 내의 Fe2O3(Fe3+)는 380~435nm 부근에서 다중 흡수 피크를 가지며, 그 함량이 증가하게 되면 가시광선 투과율 및 태양방사 투과율이 증가하고, 자외선 투과율이 소폭 감소하며 유리를 아주 옅은 노란색으로 착색시키는 경향이 있다.In general, FeO (Fe 2+ ) in glass has an absorption peak near 1050 nm, and as its content increases, the visible and solar radiation transmittances decrease considerably, and the glass tends to be colored in very light blue. . Fe 2 O 3 (Fe 3+ ) in the glass has multiple absorption peaks in the vicinity of 380 ~ 435nm, and as its content increases, the visible light transmittance and the solar radiation transmittance increase, the ultraviolet transmittance decreases slightly, and the glass is very light. It tends to color yellow.
통상의 착색되지 않은 소다라임 실리케이트 유리는 클리어(Clear) 유리로 불리며, 유리 100중량부 당 보통 약 0.07 ~ 0.13중량부의 전체 Fe2O3 함량을 갖는다. 또한 통상의 방법으로 제조된 클리어 유리는 0.25~0.26의 레독스 비를 갖는다. 하지만 유리 100중량부 당 전체 Fe2O3 함량이 0.013중량부 이하로 매우 작은 유리의 경우, 통상의 방법으로 유리를 제조하면 레독스 비가 0.3을 초과하게 되며, 심각하게는 0.4~0.5까지 높아질 수 있다. 이는 소다라임 실리케이트 유리 내에서 전체 Fe2O3 함량이 낮아짐에 따라 Fe3+와 Fe2+간의 평형 농도가 조정됨에 따른 자연스러운 현상이다. Conventional uncoloured soda lime silicate glass is called Clear glass and usually has a total Fe 2 O 3 content of about 0.07 to 0.13 parts by weight per 100 parts by weight of glass. In addition, the clear glass manufactured by the conventional method has a redox ratio of 0.25-0.26. However, in the case of very small glass with a total Fe 2 O 3 content of 0.013 parts by weight or less per 100 parts by weight of glass, the glass is prepared by a conventional method, the redox ratio exceeds 0.3, and may be seriously increased to 0.4 to 0.5. have. This is a natural phenomenon as the equilibrium concentration between Fe 3+ and Fe 2+ is adjusted as the total Fe 2 O 3 content in the soda lime silicate glass is lowered.
레독스 비는 원료, 용융온도, 용융분위기, 용해로내 유지시간, 냉각속도 등에 의존적이며, 특히 용해로 내 분위기가 산화 분위기일수록 감소하는 경향을 보이고, 환원 분위기 일수록 상승하는 경향을 보이는 것으로 알려져 있다. 이러한 점에 착안하여, 철분 함량이 매우 낮은 유리에서 높아지는 레독스 비를 낮추기 위해 용융 분위기를 산화 분위기로 만들고자, 유리를 산화시키는 원료인 다양한 산화제를 원료로 사용하는 방법들이 제안되어 왔다.The redox ratio is dependent on the raw material, melting temperature, melting atmosphere, holding time in the furnace, cooling rate, and the like. In particular, it is known that the atmosphere in the furnace tends to decrease in an oxidizing atmosphere and increases in a reducing atmosphere. In view of this, methods for using a variety of oxidants as raw materials for oxidizing the glass have been proposed in order to make the melting atmosphere into an oxidizing atmosphere in order to lower the redox ratio which is high in glass having a very low iron content.
소다라임 실리케이트 유리를 산화시키는 대표적인 원료물질로는 초석(Sodium Nitrate)이 주로 사용되어 왔다. 그러나 이 물질은 과량 사용시 용융 초기에 분해되어 강력한 폼(foam) 층을 형성하고, 이것이 버너의 열원이 용융 유리로 전달되는 것을 막아 에너지 효율을 급격히 떨어뜨리는 단점이 있다. Sodium lime silicate has been mainly used as a representative raw material for oxidizing soda lime silicate glass. However, this material decomposes in the early stage of melting when used in excess, forming a strong foam layer, which prevents the heat source of the burner from being transferred to the molten glass, which leads to a sharp decrease in energy efficiency.
한편, 퓨젼 다운드로우 공법으로 제조되는 보로실리케이트 및 보로알루미노실리케이트 등의 유리에서 주로 사용되는 안티몬산화물(Sb2O3) 및 비소산화물(As2O3)은 판유리를 제조하는 대표적인 공법인 플로트 공법에서는 사용할 수 없는데, 이는 유리 내에 함유된 안티몬 및 비소가 환원되어 유리 표면에 결함을 일으킬 수 있기 때문이다. Meanwhile, antimony oxide (Sb 2 O 3 ) and arsenic oxide (As 2 O 3 ), which are mainly used in glass such as borosilicate and boroaluminosilicate produced by the fusion downdraw method, are used in the float method, which is a typical method for manufacturing plate glass. It cannot be used because the antimony and arsenic contained in the glass can be reduced, causing defects on the glass surface.
미국특허 제6,610,622호에서는 총 Fe2O3 함량이 0.01~0.3중량%인 저철분 유리로서, Er2O3 0.01~0.3중량% 및 Ce2O3 0.005~0.3중량%를 착색제 성분으로 사용한 유리 조성이 개시되어 있다. 하지만 이 특허에 개시된 유리 조성은 고가의 희토류 원소인 Er2O3를 필수성분으로 포함하고 있어 상업적인 판유리로서 적합하지 못하다.US Patent No. 6,610,622 discloses a low iron glass having a total Fe 2 O 3 content of 0.01 to 0.3% by weight, and a glass composition using 0.01 to 0.3% by weight of Er 2 O 3 and 0.005 to 0.3% by weight of Ce 2 O 3 as a colorant component. Is disclosed. However, the glass composition disclosed in this patent contains the expensive rare earth element Er 2 O 3 as an essential component and thus is not suitable as a commercial plate glass.
미국특허 제6,610,622호에 개시된 유리 조성은 유리의 용융시 철을 제1철(FeO)에서 제2철(Fe2O3)로 산화시키는 물질로 산화세륨(Ce2O3)을 필수성분으로 포함하고 있으며, 미국특허 제6,844,280호에도 산화세륨(CeO2)을 첨가하는 기술이 개시되어 있다. 산화 세륨의 경우 유리를 산화시키는 강력한 산화물질로 알려져 있으나, 낮은 철분과 Ce을 함유하고 있는 유리의 경우 자외선에 장시간 노출시 갈색으로 변하는 현상, 즉, 장기간 태양광선 노출시 유리의 광학투과 스펙트럼의 변화를 일으킨다. 즉, 저철분 유리에 산화세륨을 사용할 경우, 유리의 장기 색 안정성에 악영향을 미치며, 이는 외부의 태양광선에 장시간 노출되는 용도의 유리, 특히 건축용 및 태양전지의 커버글라스 및 기판용 소다라임 실리케이트 유리에는 산화세륨을 사용하기가 적합하지 않음을 의미한다.The glass composition disclosed in U.S. Patent No. 6,610,622 is a material which oxidizes iron from ferrous iron (FeO) to ferric iron (Fe 2 O 3 ) when melting the glass, and contains cerium oxide (Ce 2 O 3 ) as an essential component. Also, US Patent No. 6,844,280 discloses a technique of adding cerium oxide (CeO 2 ). Cerium oxide is known to be a strong oxide that oxidizes glass, but glass containing low iron and Ce turns brown after prolonged exposure to ultraviolet light, ie, changes in the optical transmission spectrum of glass during prolonged exposure to sunlight. Causes In other words, the use of cerium oxide in low iron glass adversely affects the long-term color stability of the glass, which is particularly useful for soda-lime silicate glass for use in glass and substrates for long exposure to external sunlight. Means that it is not suitable to use cerium oxide.
한편, 상기와 같이 다양한 산화제 물질을 유리 원료로 사용하는 대신, 용융로에 투입되는 연료를 완전연소시킬 수 있는 양보다 과도한 양의 산화제(예컨대, 산소 또는 공기)를 버너에서 연료와 같이 분사하여 용해로 내부를 산화분위기로 형성시키는 방법이 미국특허출원 공개번호 2011/135938호에서 제안된 바 있다. 여기에서는 용해로의 하부에 위치한 적어도 1개의 버너에 연료와 함께 과화학량론적 분량의 산화제를 공급하여 낮은 레독스 비를 달성하는 방법이 기재되어 있다. 하지만 가동되는 버너에 과화학량론적 분량의 산화제(예컨대, 산소)를 투입하게 되면, 연료의 연소에 필요한 이론적 산소량 보다 과량의 산소가 공급되어 필연적으로 용해로 내부의 온도가 하락하며, 이를 보충하기 위해 더 많은 양의 연료와 공기를 투입하여야 하므로 용융로의 에너지효율 측면에서 매우 취약한 단점을 가지고 있다. 또한, 가동중인 버너 포트에 직접적으로 과화학량론적 분량의 산소를 공급하면 그 유속 등에 따라 버너 근처의 연소 조건이 변할 수 있고, 경우에 따라서는 공급된 과량의 산소가 산화 분위기 형성에 기여하지 않은 채 배출될 수 있기 때문에, 실제 형성된 산화 분위기의 수준이 예측과 달라질 수 있다. 즉, 가동중인 버너 포트에 직접적으로 과화학량론적 분량의 산소를 공급하면 산화 분위기를 원하는 수준으로 조절하기 어려운 문제점이 있다.Meanwhile, instead of using various oxidant materials as glass raw materials as described above, an excessive amount of oxidant (for example, oxygen or air) is injected together with the fuel in the burner to inject the fuel into the melting furnace to completely burn the fuel. Has been proposed in US Patent Application Publication No. 2011/135938. It is described here to achieve a low redox ratio by supplying a superstoichiometric amount of oxidant with fuel to at least one burner located at the bottom of the furnace. However, when an overstoichiometric amount of oxidant (eg oxygen) is added to a running burner, excess oxygen is supplied beyond the theoretical amount of oxygen required for the combustion of the fuel, which inevitably lowers the temperature inside the furnace, and to compensate for this, Since a large amount of fuel and air have to be injected, it is very weak in terms of energy efficiency of the furnace. In addition, supplying an overstoichiometric amount of oxygen directly to an operating burner port may change the combustion conditions near the burner depending on the flow rate, and in some cases, the excess oxygen supplied does not contribute to the formation of an oxidizing atmosphere. Since it can be released, the level of oxidizing atmosphere actually formed may differ from the prediction. In other words, supplying an overstoichiometric amount of oxygen directly to an operating burner port has a problem that it is difficult to control the oxidizing atmosphere to a desired level.
<선행기술문헌><Preceding technical literature>
<특허문헌><Patent Documents>
(특허문헌 1) 미국특허 제6,610,622호(Patent Document 1) US Patent No. 6,610,622
(특허문헌 2) 미국특허 제6,844,280호(Patent Document 2) US Patent No. 6,844,280
(특허문헌 3) 미국특허출원 공개번호 2011/135938호(Patent Document 3) United States Patent Application Publication No. 2011/135938
본 발명은 상기한 바와 같은 종래 기술들의 문제점을 해결하고자 한 것으로서, 본 발명의 목적은, 매우 낮은 전체 Fe2O3 함량을 가지는 소다라임 실리케이트 유리의 제조시, 산화제인 금속 산화물 및 란탄족 원소 산화물을 사용하지 않으면서도 효과적으로 유리의 레독스 비를 낮춤으로써 매우 높은 가시광선 투과율 및 태양방사 투과율을 가지는 소다라임 실리케이트 판유리를 제조할 수 있는 방법 및 이에 의해 제조된 고투명 판유리를 제공하는 것을 기술적 과제로 한다.The present invention is directed to solving the problems of the prior arts as described above, and an object of the present invention is to provide metal oxides and lanthanide element oxides as oxidants in the preparation of soda lime silicate glass having a very low total Fe 2 O 3 content. It is a technical object of the present invention to provide a method for producing soda lime silicate glass having a very high visible light transmittance and a solar radiation transmittance by effectively lowering the redox ratio of the glass without using the present invention, and a high transparent plate glass produced thereby. .
상기 기술적 과제를 달성하고자 본 발명은, 유리 원료 혼합물 배치(Batch)를 멜터(melter) 및 멜터에 후속(downstream)하여 위치한 리파이너(refiner)에 연속적으로 통과시킨 후, 냉각 및 성형을 거쳐 판상의 소다라임 실리케이트 유리로 제조하는 방법에 있어서, 상기 멜터에서는 복수의 버너에 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제를 투입하면서 버너를 가동시켜 상기 유리 원료 혼합물 배치(Batch)를 용융시키고, 상기 멜터 및 리파이너 중 적어도 하나에서 버너의 가동과는 별개의 산화제 플로우가 유입되며, 제조된 유리의 전체 Fe2O3의 함량이 유리 100중량부당 0~0.013중량부인 것을 특징으로 하는, 판상의 소다라임 실리케이트 유리 제조방법을 제공한다.In order to achieve the above technical problem, the present invention continuously passes a batch of glass raw material mixture (melter) and a refiner located downstream of the melter, and then cools and molds the plated soda. A method of making lime silicate glass, wherein the melter melts the glass raw material mixture batch by injecting a plurality of burners with a stoichiometric amount of fuel material and a stoichiometric amount of oxidant, At least one of the melter and the refiner is introduced with a separate oxidant flow from the operation of the burner, the plate-like soda lime, characterized in that the total content of Fe 2 O 3 of the glass produced is 0 to 0.013 parts by weight per 100 parts by weight of glass. Provided is a method for producing silicate glass.
본 발명의 다른 측면에 따르면, 본 발명의 유리 제조방법에 의해 제조되며, 유리 100중량부 당 SiO2 65~75중량부, Al2O3 0.1~3중량부, Na2O와 K2O의 합 10~18중량부, CaO 5~15중량부, MgO 1~6중량부, SO3 0.01~0.5중량부 및 전체 Fe2O3 0~0.013중량부를 포함하고, 레독스 비가 0.05~0.24인 소다라임 실리케이트 판유리가 제공된다.According to another aspect of the present invention, the glass manufacturing method of the present invention, which is 65 to 75 parts by weight of SiO 2 , 0.1 to 3 parts by weight of Al 2 O 3 , Na 2 O and K 2 O per 100 parts by weight of glass Soda with 10 to 18 parts by weight, CaO 5 to 15 parts by weight, MgO 1 to 6 parts by weight, SO 3 0.01 to 0.5 part by weight, and total Fe 2 O 3 0 to 0.013 part by weight, and a redox ratio of 0.05 to 0.24. Lime silicate panes are provided.
본 발명에 따르면, 매우 낮은 전체 Fe2O3 함량을 가지는 소다라임 실리케이트 유리의 제조시, 산화제인 금속 산화물 및 란탄족 원소 산화물을 사용하지 않으면서도 효과적으로 유리의 레독스 비를 낮춤으로써 매우 높은 가시광선 투과율 및 태양방사 투과율을 가지는 소다라임 실리케이트 판유리를 제조할 수 있다.According to the present invention, in the preparation of soda-lime silicate glass having a very low total Fe 2 O 3 content, it is possible to effectively lower the redox ratio of the glass without the use of metal oxides and lanthanide element oxides as oxidants, thereby providing very high visible light. Soda-lime silicate panes with transmittance and solar radiation transmittance can be prepared.
도 1은 본 발명에 따른 소다라임 실리케이트 판유리 제조방법의 일 구체예에 대한 개략도이다.1 is a schematic view of one embodiment of a soda lime silicate glass manufacturing method according to the present invention.
도 2는 본 발명에 따른 소다라임 실리케이트 판유리 제조방법의 다른 구체예에 대한 개략도이다.Figure 2 is a schematic diagram of another embodiment of the soda lime silicate glass manufacturing method according to the present invention.
도 3은 본 발명에 따른 소다라임 실리케이트 판유리 제조방법의 또 다른 구체예에 대한 개략도이다.Figure 3 is a schematic diagram of yet another embodiment of the method for producing soda lime silicate glass according to the present invention.
이하에서, 본 발명에 대해 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명은 가시광선 및 태양방사 투과율이 매우 높은 소다라임 실리케이트 판유리의 제조공정에 적용될 수 있다. 판유리를 제조하는 대표적인 방법으로는 플로트(Float)법, 롤아웃(Roll-out), 퓨전 다운드로우(Fusion down draw)법, 다운드로우(Down draw)법, 업드로우(Up draw)법 등이 있으나, 본 발명의 적용이 이에 한정되는 것은 아니다.The present invention can be applied to the manufacturing process of soda-lime silicate plate glass having a very high visible light and solar radiation transmittance. Representative methods of manufacturing the plate glass include the float (Float) method, roll-out (Fusion down draw) method, the down draw (Down draw) method, the up draw (Up draw) method, etc. The application of the present invention is not limited thereto.
본 발명은 기본적으로, 유리 원료 혼합물 배치를 멜터 및 멜터에 후속하여 위치한 리파이너에 연속적으로 통과시킨 후, 냉각 및 성형을 거쳐 판상의 소다라임 실리케이트 유리로 제조하는 방법에 관한 것이다. The present invention basically relates to a process for producing a glass-like mixture of soda-lime silicate after passing the batch of glass stock mixture continuously through a melter and a refiner located subsequent to the melter, followed by cooling and forming.
본 발명의 판유리 제조방법은 도 1 내지 도 3에 나타낸 바와 같은 연속식 설비를 사용하여 실시될 수 있으나, 이에 한정되는 것은 아니다. 본 발명에서 활용가능한 연속식 설비의 멜터에는, 최소 2개 이상의 버너(연료 또는 연료와 기체의 혼합물을 용해로 내부로 분사하는 장치)가 멜터 양측에 설치되어 있는 것이 바람직하다. 열원으로는 오일(oil) 또는 가스(gas) 형태의 화석연료를 사용할 수 있다. 이러한 화석연료의 연소에 필요한 산화제로는 산소가 바람직하며, 산소는 순수한 산소의 형태 또는 대기 공기 또는 순수 산소와 공기가 혼합된 형태로 멜터 내에 투입될 수 있다. 또한 화석연료의 효과적인 분사를 위해 화석연료와 함께 버너에서 산화제(예컨대, 순수한 산소 또는 대기 공기 또는 순수 산소와 공기의 혼합가스)를 추가적으로 분사할 수 있다. 또한 유리 원료 혼합물 배치의 용융을 돕기 위하여 멜터 하부에 전기적인 열원이 공급될 수 도 있다. 본 발명에서 활용가능한 연속식 설비는, 당 분야에 통상 알려진 연소방식, 예컨대 regenerator 방식, oxy-firing 방식, oxy-boosting 방식 등의 연소방식 시스템을 채택할 수 있으나, 이에 한정되지는 않는다. Plate glass manufacturing method of the present invention can be carried out using a continuous equipment as shown in Figures 1 to 3, but is not limited thereto. In the melter of the continuous installations usable in the present invention, it is preferable that at least two burners (an apparatus for injecting fuel or a mixture of fuel and gas into the melting furnace) are provided on both sides of the melter. As a heat source, fossil fuels in the form of oil or gas may be used. Oxygen is preferable as the oxidant required for burning such fossil fuel, and oxygen may be introduced into the melter in the form of pure oxygen or in the form of atmospheric air or pure oxygen and air. It is also possible to additionally inject oxidants (eg pure oxygen or atmospheric air or a mixture of pure oxygen and air) in the burner together with the fossil fuel for effective injection of the fossil fuel. An electrical heat source may also be supplied to the bottom of the melter to assist in melting the batch of glass stock mixture. Continuous equipment that can be utilized in the present invention, but may be employed in the combustion system commonly known in the art, such as regenerator method, oxy-firing method, oxy-boosting method, but is not limited thereto.
본 발명에서 활용가능한 연속식 설비는 크게, 원료배치가 용해로로 투입되어 용융, 청징 및 균질화가 이루어지는 부분인 용융-청징 구간(melting-refining zone) 및 용융-청징 구간을 빠져 나온 유리 용융물을 성형하기 적절한 온도로 냉각하는 워킹엔드(working end)의 두 부분으로 나뉜다. 또한, 상기 용융-청징 구간은 다시 유리 원료 혼합물 배치를 용융시키는 멜터(melter) 및 멜터를 빠져 나온 유리 용융물에 대한 청징 및 균질화가 이루어지는 리파이너(refiner)로 나뉜다.The continuous equipment usable in the present invention is largely for forming a glass melt exiting a melting-refining zone and a melting-clarifying section, in which raw material batches are introduced into a melting furnace, where melting, clarification and homogenization are performed. It is divided into two parts, the working end, which cools to an appropriate temperature. The melt-clarification section is further divided into a melter that melts the batch of glass stock mixture and a refiner in which clarification and homogenization of the glass melt exiting the melter takes place.
본 발명의 판유리 제조방법은, 상기 멜터에서는 복수의 버너에 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제를 투입하면서 버너를 가동시켜 상기 유리 원료 혼합물 배치(Batch)를 용융시키고, 상기 멜터 및 리파이너 중 적어도 하나에서 버너의 가동과는 별개의 산화제 플로우가 유입되는 것을 특징으로 한다.In the sheet glass manufacturing method of the present invention, in the melter while operating a burner while adding a stoichiometric amount of fuel material and a oxidant to a plurality of burners to melt the glass raw material mixture batch, the melter and At least one of the refiners is characterized in that the flow of oxidant separate from the operation of the burner.
본 발명에서 멜터는 버너 및 산화제(즉, 공기 또는 산소) 투입구를 포함하는 포트(Port)가 배치 투입구 근처에 존재하는 엔드포트(end port)방식보다는 멜터 양 옆에 배치되어 있는 사이드포트(side port) 방식이 레독스 비 조절의 측면에서 바람직하다. 본 명세서에서 용어 “포트쌍”은 사이드포트 방식의 멜터 양측에 평행하게 위치한 2개의 포트를 의미한다.In the present invention, the melter is a side port in which a port including a burner and an oxidant (ie, air or oxygen) inlet is disposed on both sides of the melter rather than an end port method in which a port is located near a batch inlet. ) Is preferred in view of controlling the redox ratio. As used herein, the term “port pair” refers to two ports located parallel to both sides of a side port melter.
용융-청징 구간 내부에 잉여 산소가 많을수록 잉여 산소가 유리 용융물로 확산하여 유리 용융물 내의 Fe2+를 Fe3+로 변환시키는 산화현상이 발생한다. 용융-청징 구간 내에 산소가 부족하면 그 반대이다. 종래에 용융-청징 구간 내부를 산화 분위기로 만들기 위한 방법으로는 멜터 내에 위치한 버너 혹은 포트에서, 버너의 작동하에 연료와 동시에 완전연소에 필요한 양보다 과잉의 산소량을 투입하는 방법이 제안된 바 있다. 하지만 실제로 연료와 공기 또는 과량의 산소가 멜터 내에서 동시에 분사될 경우 필연적으로 에너지 효율이 떨어지므로 원료의 용융에 필요한 열량 공급을 위해 추가적인 연료의 공급이 필요하다. 또한 사이드포트 방식에서는 좌우 측에서 일정시간 간격을 두고 연료와 산소가 좌우 교대로 공급되고, 연소된 가스는 반대편 포트로 배출되기 때문에, 연료를 완전연소하고 남은 과량의 산소가 용융-청징 구간 내부를 산화 분위기로 만드는 데에 기여하지 못한 채 반대편 포트를 통해 밖으로 배출되기 쉽다. 따라서 버너 혹은 포트에서 연료와 동시에 완전연소에 필요한 양보다 과한 산소량을 투입하여 용융-청징 구간 내를 산화 분위기로 만들려는 방식은 에너지 효율 측면에서 상당히 불리하며, 유리내 Fe2+를 Fe3+로 효과적으로 산화시키지 못하는 단점이 있다.The more excess oxygen in the melt-clarification section, the more the excess oxygen diffuses into the glass melt, and oxidation occurs to convert Fe 2+ into Fe 3+ in the glass melt. The lack of oxygen in the melt-clarification section is the reverse. Conventionally, as a method for making the inside of the melt-clarifying section into an oxidizing atmosphere, a method of injecting an excess amount of oxygen in a burner or a port located in the melter at the same time as the fuel is required for complete combustion at the same time as the burner is proposed. In practice, however, when fuel and air or excess oxygen are injected at the same time in the melter, energy efficiency is inevitably reduced, and thus additional fuel supply is needed to supply the heat required for melting the raw materials. In addition, in the side port method, fuel and oxygen are alternately supplied from side to side at a predetermined time interval from the left and right sides, and the burned gas is discharged to the opposite port, so that the excess oxygen remaining after the fuel is completely burned Easily vented out through the opposite port without contributing to the oxidizing atmosphere. Therefore, by putting the excessive amount of oxygen than the amount required for complete combustion with the burner or the fuel from the port at the same time the melt-system is to create within the refining zone to the oxidizing atmosphere is a significant disadvantage, and Fe 2+ in the glass in terms of energy efficiency to Fe 3+ There is a disadvantage that it does not oxidize effectively.
반면, 본 발명에서는 멜터 및 리파이너 중 적어도 하나에서 버너의 가동과는 별개의 산화제(즉, 산소 또는 공기) 플로우를 유입시킴으로써 효과적으로 용융-청징 구간 내를 산화 분위기로 만들 수 있다.On the other hand, in the present invention, at least one of the melter and the refiner introduces an oxidant (i.e., oxygen or air) flow separate from the operation of the burner to effectively make the oxidizing atmosphere within the melt-clarification section.
본 발명의 구체예들을 통하여 멜터 및/또는 리파이너에서 버너의 가동과는 별개의 산화제 플로우를 유입시키는 구성을 설명하면 다음과 같다.Referring to the configuration of introducing an oxidant flow separate from the operation of the burner in the melter and / or refiner through embodiments of the present invention.
도 1은 본 발명에 따른 소다라임 실리케이트 판유리 제조방법의 일 구체예에 대한 개략도이다. 도 1에 나타낸 구체예에서는 멜터에 존재하는 적어도 하나의 포트(사이드 포트 방식일 경우, 포트쌍)에서 버너를 가동시키지 않고 산화제 플로우만을 멜터에 투입시킨다. 이 때, 멜터에 존재하는 나머지 포트들에서는 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제를 투입하면서 버너를 가동시킨다.1 is a schematic view of one embodiment of a soda lime silicate glass manufacturing method according to the present invention. In the embodiment shown in Fig. 1, only the oxidant flow is introduced into the melter without operating the burner in at least one port (port pair in the case of the side port method) present in the melter. At this time, the remaining ports in the melter operate the burner while introducing a stoichiometric amount of oxidant to the fuel material and the fuel material.
이렇게 하면 버너가 가동되지 않는 포트를 통해 유입된 산화제, 예컨대 산소가 연소반응에 즉각적으로 영향받지 않으므로 에너지 효율이 감소하지 않고, 용융-청징 구간 밖으로 쉽게 배출되지 않아 유리 내에 존재하는 Fe2+가 Fe3+로 효과적으로 산화될 수 있다. 보다 높은 에너지 효율을 달성하기 위해서는, 버너가 가동되지 않는 포트에서 분사되지 않은 연료량을 멜터 전단에 위치한, 버너가 가동되는 포트 쪽으로 배분하고, 이를 완전연소에 가까운 비율의 산소와 함께 투입하면 원료의 용융에 필요한 충분한 열량을 공급하면서 높은 에너지 효율을 달성할 수 있다. This way, the oxidant, such as oxygen, introduced through the port where the burner is not running is not immediately affected by the combustion reaction, which does not reduce energy efficiency and does not easily escape out of the melt-clarification section, so that Fe 2+ present in the glass is Fe It can be effectively oxidized to 3+ . To achieve higher energy efficiency, the amount of uninjected fuel from the burner-free port is distributed to the burner-operated port located at the front of the melter and injected with oxygen close to complete combustion to melt the raw material. It is possible to achieve high energy efficiency while supplying enough heat for.
도 2는 본 발명에 따른 소다라임 실리케이트 판유리 제조방법의 다른 구체예에 대한 개략도이다. 도 2에 나타낸 구체예에서는, 버너의 가동과는 별개의 산화제(즉, 산소 또는 공기) 플로우가 리파이너에 존재하는 별도의 산화제 플로우 투입구를 통하여 리파이너에 유입된다. 이 때, 멜터에 존재하는 포트들에서는 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제를 투입하면서 버너를 가동시킨다.Figure 2 is a schematic diagram of another embodiment of the soda lime silicate glass manufacturing method according to the present invention. In the embodiment shown in FIG. 2, an oxidant (ie oxygen or air) flow separate from the operation of the burner is introduced into the refiner through a separate oxidant flow inlet present in the refiner. At this time, the ports present in the melter operate the burner while introducing a stoichiometric amount of oxidant to the fuel material and the fuel material.
이렇게 하면, 산화제 플로우가 연료의 연소에 따라 발생하는 대류의 흐름에 영향을 덜 받게 되어 리파이너에 산화제(예컨대, 산소)가 체류하는 시간이 길어지므로, 유리 내에 존재하는 Fe2+가 Fe3+로 효과적으로 산화될 수 있다. 리파이너에 유입된 산소에 의하여 유리내 Fe2+가 Fe3+로 산화되는 반응식은 하기와 같다.In this way, since the oxidant flow is less influenced by the convection currents generated by a combustion of a fuel, the longer the time to visit the oxidant (e.g., oxygen) to the refiner, the Fe 2+ to Fe 3+ present in the glass Can be effectively oxidized. The reaction scheme in which Fe 2+ in the glass is oxidized to Fe 3+ by oxygen introduced into the refiner is as follows.
O2 +2FeO → 1/2O2 - + Fe2O3 O 2 + 2FeO → 1 / 2O 2 - + Fe 2 O 3
도 3는 본 발명에 따른 소다라임 실리케이트 판유리 제조방법의 또 다른 구체예에 대한 개략도이다. 도 3에 나타낸 구체예에서는, 버너의 가동과는 별개의 산화제(즉, 산소 또는 공기) 플로우가 멜터에 존재하는 별도의 산화제 플로우 투입구를 통하여 멜터에 유입된다. 이 때, 멜터에 존재하는 포트들에서는 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제를 투입하면서 버너를 가동시킨다.Figure 3 is a schematic diagram of another embodiment of the soda lime silicate glass manufacturing method according to the present invention. In the embodiment shown in FIG. 3, an oxidant (ie oxygen or air) flow separate from the operation of the burner is introduced into the melter through a separate oxidant flow inlet present in the melter. At this time, the ports present in the melter operate the burner while introducing a stoichiometric amount of oxidant to the fuel material and the fuel material.
본 발명에 있어서 멜터 및 리파이너 중 적어도 하나에 유입되는, 버너의 가동과는 별개의 산화제 플로우 중 산소의 총량은 부피기준으로 시간당 최소 100Nm3(1기압, 0℃에서의 기체유체 부피단위)인 것이 바람직하다. 산화제 플로우 중 산소의 총량이 시간당 100Nm3에 못 미치면 용융-청징 구간 내부를 충분한 산화 분위기로 만들기 어려울 수 있다. 또한 보다 높은 에너지효율을 얻기 위해서는, 멜터 내의 최소 3개쌍 이상의 버너에서 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제(즉, 연료 및 연료의 완전연소에 가까운 당량의 산소)가 동시에 공급되는 것이 바람직하다. 예컨대, 대기공기 기준으로 공기/연료의 부피비율은 10 ~ 15, 산소기준으로 산소/연료의 부피비는 2.0~2.9, 그리고 순수산소와 공기 혼합가스의 경우 혼합가스 내의 산소량을 기준으로 혼합가스내 산소/연료의 부피비가 2.0~2.9인 것이 바람직하다. 사용 가능한 연료 물질로는 화석연료로서 LPG, LNG, 벙커씨유(B-C Oil) 등을 들 수 있으며 상기 비율 범위 내에서 화석 연료의 종류 및 상태를 고려하여 최고 효율을 달성할 수 있는 비율을 적용할 수 있다.In the present invention, the total amount of oxygen in the oxidant flow, which flows into at least one of the melter and the refiner, from the operation of the burner is at least 100 Nm 3 per hour on a volume basis (1 atm, gas fluid volume unit at 0 ° C.). desirable. If the total amount of oxygen in the oxidant flow is less than 100 Nm 3 per hour, it can be difficult to make the interior of the melt-clarification section a sufficient oxidizing atmosphere. In addition, to achieve higher energy efficiency, at least three pairs of burners in the melter are simultaneously supplied with a stoichiometric amount of oxidant (i.e., the equivalent of oxygen close to the complete combustion of the fuel and fuel) for the fuel substance and the fuel substance. desirable. For example, the volume ratio of air / fuel to atmospheric air is 10 to 15, the volume ratio of oxygen / fuel to oxygen is 2.0 to 2.9, and in the case of pure oxygen and air mixed gas, the oxygen in the mixed gas is based on the amount of oxygen in the mixed gas. It is preferable that the volume ratio of / fuel is 2.0-2.9. Fuel materials that can be used include fossil fuels such as LPG, LNG, and bunker seed oil (BC Oil), and the ratio that can achieve the highest efficiency in consideration of the type and condition of fossil fuels within the above ratio range is applicable. Can be.
본 발명은 판상의 소다라임 실리케이트 유리를 연속식으로 제조하는 방법에 관한 것으로서, 본 발명의 일 구체예에서는 용융 주석조 내에 용융 유리를 띄워 판상으로 성형한다. 본 발명의 다른 구체예에서는 용융 유리를 하나 혹은 복수의 롤러로 압착하여 판상으로 성형하며, 이 때 요철이 있는 하나 혹은 복수의 롤러를 사용하면 무늬가 있는 판상 유리로 성형할 수 있다.The present invention relates to a method for continuously producing a plate-like soda lime silicate glass, in one embodiment of the present invention by floating the molten glass in a molten tin bath to form a plate. In another embodiment of the present invention, the molten glass is pressed into one or a plurality of rollers to form a plate. At this time, by using one or more rollers with irregularities, the molten glass can be formed into a plate-shaped glass having a pattern.
요컨대, 본 발명의 유리 제조방법은 바람직하게는, 유리 원료가 혼합된 배치가 이송수단에 의하여 화석연료를 열원으로 사용하는 복수의 버너가 양측에 배치된 용해로 내로 투입되어 용융(Melting)/청징(Refining)/균질화(Homogenization)/냉각(Cooling) 등이 이루어지고, 용융 유리가 배출된 후 상기와 같은 각종 성형법에 의해 판 형상으로 성형되는 연속식 용해로에서 수행될 수 있다. 본 발명의 판상의 소다라임 실리케이트 유리 제조방법에 있어서, 상기 설명한 것들 이외의 공정 구성 내지 조건은 통상의 소다라임 실리케이트 판유리 제조방법에서 채택가능한 것들을 그대로, 또는 적절히 변형하여 활용할 수 있으며, 이는 당 분야의 통상의 기술자에게 자명한 사항이다.In short, the glass manufacturing method of the present invention, preferably, a batch in which the glass raw materials are mixed is introduced into a melting furnace in which a plurality of burners using fossil fuel as a heat source are disposed by the transfer means and melted / clarified ( Refining / Homogenization / Cooling and the like may be performed, and the molten glass may be discharged and then may be performed in a continuous melting furnace that is shaped into a plate by various molding methods as described above. In the plate-like soda-lime silicate glass manufacturing method of the present invention, process configurations or conditions other than those described above may be utilized as they are, or appropriately modified in the conventional soda-lime silicate plate glass manufacturing method, which is used in the art It is obvious to the skilled person.
본 발명의 다른 측면에 따르면, 상기 설명한 바와 같은 본 발명의 유리 제조방법에 의해 제조되며, 유리 100중량부 당 SiO2 65~75중량부, Al2O3 0.1~3중량부, Na2O와 K2O의 합 10~18중량부, CaO 5~15중량부, MgO 1~6중량부, SO3 0.01~0.5중량부 및 전체 Fe2O3 0~0.013중량부를 포함하고, 레독스(Redox) 비가 0.05~0.24인 소다라임 실리케이트 판유리가 제공된다.According to another aspect of the present invention, it is prepared by the glass manufacturing method of the present invention as described above, 65 to 75 parts by weight of SiO 2 , 0.1 to 3 parts by weight of Al 2 O 3 , Na 2 O and 100 parts by weight of glass and A total of 10 to 18 parts by weight of K 2 O, 5 to 15 parts by weight of CaO, 1 to 6 parts by weight of MgO, 0.01 to 0.5 parts by weight of SO 3 and 0 to 0.013 parts by weight of total Fe 2 O 3 , and redox (Redox ) Soda lime silicate panes with a ratio of 0.05-0.24 are provided.
본 발명의 소다라임 실리케이트 판유리에서 전체 Fe2O3의 함량이 유리 100중량부당 0.013중량부를 초과할 경우 가시광선 및 태양방사 투과율 감소로 인해 특히 태양전지 커버글라스 및 기판 유리로 사용하기에 적절한 투과 성능을 갖지 못할 수 있다. 유리 100중량부당 전체 Fe2O3 함량은 보다 바람직하게는 0~0.01중량부, 보다 더 바람직하게는 0~0.009중량부이다.In the soda lime silicate glass of the present invention, when the total Fe 2 O 3 content exceeds 0.013 parts by weight per 100 parts by weight of glass, due to the reduction of visible light and solar radiation transmittance, the permeability is particularly suitable for use as solar cell cover glass and substrate glass. May not have The total Fe 2 O 3 content per 100 parts by weight of glass is more preferably 0 to 0.01 parts by weight, even more preferably 0 to 0.009 parts by weight.
본 발명의 소다라임 실리케이트 판유리에서 레독스 비가 0.05 미만이면 유리 내 SO3의 분해에 의한 탈포 과정이 이루어지기 어려우며, 0.24를 초과하면 가시광선 및 태양방사 투과율 감소로 인해 특히 태양전지 커버글라스 및 기판 유리로 사용하기에 적절한 투과 성능을 갖지 못할 수 있다. 보다 바람직한 레독스 비는 0.1~0.2이며, 보다 더 바람직하게는 0.12~0.2이다.In the soda lime silicate glass of the present invention, if the redox ratio is less than 0.05, it is difficult to perform the defoaming process by decomposition of SO 3 in the glass, and when it exceeds 0.24, especially the solar cell cover glass and the substrate glass due to the reduction of visible light and solar radiation transmittance. May not have adequate permeability for use. More preferable redox ratio is 0.1-0.2, More preferably, it is 0.12-0.2.
본 발명의 소다라임 실리케이트 판유리에서 SiO2는 유리의 기본 구조를 형성하는 망목 구조 형성제의 역할을 하는 것으로, 그 함량이 유리 100중량부당 65중량부 미만이면 유리의 내구성에 문제가 생길 수 있고, 75 중량부를 초과하면 고온 점도 증가 및 용융성 저하의 문제가 있을 수 있다. 유리 100중량부당 SiO2 함량은 보다 바람직하게는 68~72중량부, 보다 더 바람직하게는 70~72중량부이다.SiO 2 in the soda lime silicate glass of the present invention serves as a network structure forming agent to form the basic structure of the glass, if the content is less than 65 parts by weight per 100 parts by weight of glass may cause problems in the durability of the glass, If it exceeds 75 parts by weight, there may be a problem of high temperature viscosity increase and meltability decrease. The SiO 2 content per 100 parts by weight of glass is more preferably 68 to 72 parts by weight, even more preferably 70 to 72 parts by weight.
본 발명의 소다라임 실리케이트 판유리에서 Al2O3는 유리의 고온 점도를 증가시키고, 소량 첨가하는 경우 유리의 내구성을 향상시키는 성분으로, 그 함량이 유리 100중량부당 0.1 중량부 미만이면 내화학성, 내수성이 취약해질 수 있으며, 3 중량부를 초과하면 고온 점도 증가와 함께 용융 부하가 증가하는 문제가 있을 수 있다. 유리 100중량부당 Al2O3 함량은 보다 바람직하게는 0.5~2중량부, 보다 더 바람직하게는 0.7~1.2중량부이다.In the soda lime silicate glass of the present invention, Al 2 O 3 is a component that increases the high temperature viscosity of the glass and improves the durability of the glass when a small amount is added. If the content is less than 0.1 part by weight per 100 parts by weight of the glass, chemical resistance and water resistance This may be vulnerable, and if it exceeds 3 parts by weight, there may be a problem that the melt load increases with increasing high temperature viscosity. The Al 2 O 3 content per 100 parts by weight of glass is more preferably 0.5 to 2 parts by weight, even more preferably 0.7 to 1.2 parts by weight.
본 발명의 소다라임 실리케이트 판유리에서 Na2O 및 K2O는 유리 원료의 용융을 촉진하는 융제(flux) 성분으로, 두 성분의 총합이 유리 100중량부당 10중량부 미만이면 미용융물 발생 증가로 인한 용융품질 저하가 발생할 수 있으며, 18중량부를 초과하면 내화학성 저하가 발생할 수 있다. 유리 100중량부당 Na2O와 K2O의 함량의 합은 보다 바람직하게는 12~16중량부, 보다 더 바람직하게는 13~15중량부이다.In the soda lime silicate glass of the present invention Na 2 O and K 2 O is a flux component that promotes the melting of the glass raw material, if the total of the two components is less than 10 parts by weight per 100 parts by weight of glass due to the increase in the occurrence of cosmetic melt Melt quality may occur, and if it exceeds 18 parts by weight, chemical resistance may occur. The sum of the contents of Na 2 O and K 2 O per 100 parts by weight of glass is more preferably 12 to 16 parts by weight, even more preferably 13 to 15 parts by weight.
본 발명의 소다라임 실리케이트 판유리에서 CaO 및 MgO는 원료의 용융을 도우면서 유리 구조의 내후성을 보강해주는 성분이다. CaO 함량이 유리 100중량부당 5중량부 미만이면 내구성 저하가 발생할 수 있으며, 15중량부를 초과하면 결정화 경향이 증가함으로 인해 제품 품질에 악영향을 줄 수 있다. 유리 100중량부당 CaO 함량은 보다 바람직하게는 7~12중량부, 보다 더 바람직하게는 8~11중량부이다. 또한 MgO의 경우 그 함량이 유리 100중량부당 1중량부 미만이면 원료의 용융을 도우면서 유리 구조의 내후성을 보강해주는 효과가 감소할 수 있으며, 6중량부를 초과하면 결정화 경향 증가로 결정 결함 증가가 유발될 수 있다. 유리 100중량부당 MgO 함량은 보다 바람직하게는 2~5중량부, 보다 더 바람직하게는 3~5중량부이다.CaO and MgO in the soda lime silicate glass of the present invention is a component that reinforces the weather resistance of the glass structure while helping to melt the raw material. If the CaO content is less than 5 parts by weight per 100 parts by weight of glass, durability degradation may occur, and if it exceeds 15 parts by weight, it may adversely affect product quality due to an increase in crystallization tendency. CaO per 100 parts by weight of glass The content is more preferably 7 to 12 parts by weight, even more preferably 8 to 11 parts by weight. In addition, in the case of MgO, if the content is less than 1 part by weight per glass part, the effect of reinforcing the weather resistance of the glass structure may be reduced while helping to melt the raw material. If the content exceeds 6 parts by weight, an increase in crystallization tendency causes an increase in crystal defects. Can be. MgO per 100 parts by weight of glass The content is more preferably 2 to 5 parts by weight, even more preferably 3 to 5 parts by weight.
실제 생산에서는 기포 제거 등의 용융 품질 향상을 위해 망초(Na2SO4)가 사용될 수 있으며, 용융 과정에서 유리에 SO3 가스 형태로 잔존하는 함량은 유리 100중량부당 0.01 내지 0.5중량부 수준으로 잔류하는 것이 일반적이다.In actual production, the forget-me-not (Na 2 SO 4 ) can be used to improve melt quality such as bubble removal, and the content remaining in the form of SO 3 gas in the glass during the melting process remains at 0.01 to 0.5 parts by weight per 100 parts by weight of glass. It is common to do
본 발명의 소다라임 실리케이트 판유리에는 특히, 원료 또는 제조공정상 불가피하게 포함될 수 있는 불순물과 적은 비율(예컨대, 1% 이하)의 다른 성분이 포함될 수 있으며, 그 예로는 TiO2, ZrO2, F, Cl 등을 들 수 있다. 그러나 앞에서 언급한 바와 같이 본 발명의 소다라임 실리케이트 판유리에는 Sb2O3, As2O3 또는 CeO2 같은 산화물이 의도적으로 포함되지는 않는다. 보다 구체적으로, 본 발명의 소다라임 실리케이트 판유리는 SiO2, Al2O3, Na2O, K2O, CaO, MgO, SO3, Fe2O3, TiO2, ZrO2, F 및 Cl 외의 모든 원소를 산화물 형태로 유리 100중량부당 0.05중량부 미만으로 포함할 수도 있다. 또한, 본 발명의 소다라임 실리케이트 판유리는 Sb2O3, As2O3 등과 같은 산화물질과 Ce, Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu 중에서 선택되는 원소의 산화물과 CoO, CuO, NiO, Cr2O3, MnO2, V2O5, Se, Ag, Cu 등의 산화물 또는 금속은 의도적으로 포함하지 않는다.In particular, the soda lime silicate glass of the present invention may contain other components in a small proportion (for example, 1% or less) and impurities which may be inevitably included in raw materials or manufacturing processes, for example, TiO 2 , ZrO 2 , F, Cl Etc. can be mentioned. However, as mentioned above, the soda lime silicate glass of the present invention does not intentionally include oxides such as Sb 2 O 3 , As 2 O 3 or CeO 2 . More specifically, the soda lime silicate glass of the present invention is other than SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, CaO, MgO, SO 3 , Fe 2 O 3 , TiO 2 , ZrO 2 , F and Cl All elements may be included in oxide form at less than 0.05 parts by weight per 100 parts by weight of glass. In addition, the soda lime silicate glass of the present invention is an oxide such as Sb 2 O 3 , As 2 O 3 and Ce, Sc, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Oxides of elements selected from Er, Tm, Yb, and Lu and oxides or metals such as CoO, CuO, NiO, Cr 2 O 3 , MnO 2 , V 2 O 5 , Se, Ag, Cu, and the like are not intentionally included.
본 발명의 소다라임 실리케이트 판유리는 매우 높은 가시광선 투과율 및 태양방사 투과율(예컨대, 4mm 두께 기준으로 91.2% 이상의 가시광선 투과율 및 90.6% 이상의 태양방사 투과율)을 나타내기 때문에, 태양전지의 커버글라스 또는 기판, 건축물의 창, 가전제품의 외부장식, 평면거울 또는 집광용 포물선 형상의 거울, LCD 타입 디스플레이 장치의 광 확산장치, 유기 발광 다이오드 기반의 평판디스플레이 또는 평판램프용으로 적합하게 사용될 수 있다. 본 발명의 소다라임 실리케이트 판유리는 필요에 따라 최소 하나의 투명한 전도성 박막 및/또는 저반사 박막으로 코팅될 수도 있다.Since the soda lime silicate glass of the present invention exhibits very high visible light transmittance and solar radiation transmittance (for example, at least 91.2% visible light transmittance and at least 90.6% solar radiation transmittance based on 4mm thickness), the cover glass or the substrate of the solar cell It can be suitably used for building windows, exterior decoration of home appliances, flat mirror or parabolic mirrors for condensing, light diffusing devices of LCD type display devices, flat panel displays based on organic light emitting diodes or flat lamps. The soda lime silicate glass of the present invention may be coated with at least one transparent conductive thin film and / or low reflective thin film as needed.
이하 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited by these examples.
[실시예 1~3] [Examples 1-3]
원료물질로서 조절된 배합비의 장석, 석회석, 백운석, 소다회 및 망초를 포함하는 배치(Batch)를 앞에서 서술한 바와 같은 연속식 설비에 투입하여 용융하고, float 공법을 통해 판형상으로 성형하여 실시예 및 비교예들의 유리를 제조하였다. 연료로는 벙커씨유, 연소용 산화제로는 일반 대기 공기를 사용하였다. 멜터에는 총 8쌍의 포트가 존재하였고, 버너가 가동되는 포트에는 연료 및 연소용 산화제가 완전연소에 필요한 화학양론적 비율(공기/벙커씨유 부피비 = 12)로 공급되었다. 단, 비교예 3에서는 후단 2쌍의 포트에서 화학양론적 비율보다 과량의 공기를 투입하였다. 리파이너에 산소-함유 기체 투입용 별도 투입구를 설치하였다. 별도로 투입되는 산소-함유 기체의 양은 기체내 산소의 부피를 기준으로 시간당 100Nm3 이상을 유지하였다.As a raw material, a batch containing feldspar, limestone, dolomite, soda ash and forget-me-not as a raw material is put into a continuous apparatus as described above, melted, and molded into a plate shape through a float method. The glass of the comparative examples was prepared. Bunker seed oil was used as fuel and general atmospheric air was used as an oxidant for combustion. There were a total of eight pairs of ports in the melter, and the burner operated ports were supplied with the stoichiometric ratio (fuel / bunker seed oil volume ratio = 12) required for complete combustion. However, in Comparative Example 3, excess air was injected from the stoichiometric ratio in the latter two pairs of ports. A separate inlet for oxygen-containing gas input was installed in the refiner. The amount of oxygen-containing gas added separately was maintained at 100 Nm 3 or more per hour based on the volume of oxygen in the gas.
제조된 유리의 화학적 조성 분석은 Rigaku사의 3370 X-ray 형광분석기(XRF)를 이용하여 진행하였다. 각 실시예 및 비교예에서 제조된 유리는 하기 표 1에 나타낸 조성 및 레독스 비를 가졌다.Chemical composition analysis of the prepared glass was carried out using Rigaku's 3370 X-ray fluorescence spectrometer (XRF). The glass produced in each Example and Comparative Example had the composition and redox ratio shown in Table 1 below.
표 1
Figure PCTKR2012007567-appb-T000001
Table 1
Figure PCTKR2012007567-appb-T000001
제조된 판유리에 대하여, 4mm 두께를 기준으로 광학 특성을 평가하였다. 광학 특성은 Perkin Elmer사 Lambda950을 사용하여 다음과 같이 측정하였다.About the produced glass plate, the optical characteristic was evaluated based on 4 mm thickness. Optical properties were measured as follows using Perkin Elmer's Lambda950.
- 가시광선 투과율(T-Vis): ISO9050:2003 규격에 따라 측정하였다.Visible light transmittance (T-Vis): measured according to ISO9050: 2003 standard.
- 태양방사 투과율(T-Sol): ISO9050:2003 규격에 따라 측정하였다. 태양방사 스펙트럼은 AM1.5를 기준으로 하였다.Solar radiation transmittance (T-Sol): measured according to ISO9050: 2003 standard. The solar radiation spectrum was based on AM1.5.
각 실시예/비교예의 유리에 대하여, 전체 Fe2O3 함량, 레독스 비, 광학 특성 및 특징적 공정조건을 하기의 표 2(실시예) 및 표 3(비교예)에 기재하였다.For the glass of each Example / Comparative Example, the total Fe 2 O 3 content, redox ratio, optical properties and characteristic process conditions are described in Table 2 (Example) and Table 3 (Comparative Example) below.
표 2
Figure PCTKR2012007567-appb-T000002
TABLE 2
Figure PCTKR2012007567-appb-T000002
표 3
Figure PCTKR2012007567-appb-T000003
TABLE 3
Figure PCTKR2012007567-appb-T000003
실시예 1 내지 3에서 제조된 유리의 경우, 전체 Fe2O3 함량 범위는 0.013 중량부 이하, 레독스 비는 0.24 이하였고, 4mm 유리 두께에서 91.2% 이상의 가시광선 투과율, 90.6% 이상의 태양방사 투과율을 나타내었다. 실시예 2와 3의 경우, 용융-청징구간에 버너의 가동과 별개로 투입되는 시간당 산소량의 합은 동일하지만 레독스 비는 실시예 3이 더 낮았던바, 실시예 3은 리파이너에 별도의 투입구를 설치하여 산소를 포함하는 기체를 투입한 경우로, 이렇게 하면 투입된 산소가 청징구간에 잔류하는 시간이 길어져 레독스 비를 낮추는데 더욱 효과적이었던 것으로 추정된다. For the glass prepared in Examples 1 to 3, the total Fe 2 O 3 content range is 0.013 parts by weight or less, the redox ratio is 0.24 or less, at least 91.2% visible light transmittance and at least 90.6% solar radiation transmittance at 4 mm glass thickness. Indicated. In Examples 2 and 3, the sum of the amount of oxygen per hour inputted separately from the operation of the burner in the melt-clarification section was the same, but the redox ratio was lower in Example 3, and Example 3 provided a separate inlet to the refiner. In the case where the gas containing oxygen was installed and put in this way, it was estimated that the time for which the injected oxygen remained in the clarification section was longer, which was more effective in reducing the redox ratio.
비교예 1은 버너와는 별도인 투입구를 통해 산소를 공급함으로써 레독스 비는 낮추었지만, 전체 Fe2O3 함량이 과다하여 매우 낮은 가시광선 및 태양방사 투과율을 나타내었는바, 태양전지 커버글라스 및 기판유리 등으로 사용되기에는 부적합하였다. 비교예 2 및 3은 전체 Fe2O3 함량은 실시예 수준이었지만, 종래의 제조기술을 적용한 결과 매우 높은 레독스 비를 나타내었고, 따라서 가시광선 및 태양방사 투과율이 매우 낮아져 태양전지 커버글라스 및 기판유리 등으로 사용되기에는 역시 부적합하였다. Comparative Example 1 lowered the redox ratio by supplying oxygen through an inlet separate from the burner, but exhibited very low visible light and solar radiation transmittance due to excessive content of Fe 2 O 3. It was not suitable to be used as substrate glass or the like. In Comparative Examples 2 and 3, although the total Fe 2 O 3 content was the level of Example, the results of applying the conventional manufacturing technique showed a very high redox ratio, and thus the visible light and the solar radiation transmittance were very low, and thus the solar cell cover glass and the substrate It was also unsuitable to be used for glass or the like.
따라서, 본 발명에 따라 용융-청징구간에서 버너의 가동과는 별개의 산화제 플로우를 유입시켜 유리를 제조하되, 제조된 유리의 전체 Fe2O3의 함량이 유리 100중량부당 0~0.013중량부인 두가지 조건을 동시에 만족시켜야 태양전지 커버글라스 및 기판유리 등으로 사용되기에 적합한 수준의 높은 가시광선 및 태양방사 투과율을 나타내는 유리를 제조할 수 있음을 확인하였다.Therefore, according to the present invention, the glass is prepared by introducing a separate oxidant flow from the operation of the burner in the melt-clarification section, but the total content of Fe 2 O 3 in the prepared glass is 0 to 0.013 parts by weight per 100 parts by weight of glass. It was confirmed that the glass having high visible light and solar radiation transmittance at a level suitable for use as a solar cell cover glass and a substrate glass should be satisfied at the same time.
<부호의 설명><Description of the code>
1: 버너를 가동시키지 않고 산화제 플로우만을 멜터에 투입하는, 멜터에 존재하는 포트(터널 형상 내의 점: 버너)1: Port present in the melter (point in the tunnel shape: burner) in which only the oxidant flow is introduced into the melter without starting the burner.
2: 리파이너에 존재하는 별도의 산화제 플로우 투입구2: Separate oxidant flow inlet in refiner
3: 멜터에 존재하는 별도의 산화제 플로우 투입구3: Separate oxidant flow inlet in melter

Claims (8)

  1. 유리 원료 혼합물 배치(Batch)를 멜터(melter) 및 멜터에 후속(downstream)하여 위치한 리파이너(refiner)에 연속적으로 통과시킨 후, 냉각 및 성형을 거쳐 판상의 소다라임 실리케이트 유리로 제조하는 방법에 있어서, A method for producing a batch of soda-lime silicate glass in a plate form by continuously passing a batch of glass raw material mixture through a melter and a refiner located downstream of the melter, followed by cooling and forming.
    상기 멜터에서는 복수의 버너에 연료 물질 및 연료 물질에 대하여 화학양론적인 양의 산화제를 투입하면서 버너를 가동시켜 상기 유리 원료 혼합물 배치(Batch)를 용융시키고, The melter melts the batch of glass raw material mixture by operating a burner while introducing a stoichiometric amount of fuel material and a oxidant to the plurality of burners,
    상기 멜터 및 리파이너 중 적어도 하나에서 버너의 가동과는 별개의 산화제 플로우가 유입되며, At least one of the melter and the refiner is introduced with an oxidant flow separate from the operation of the burner,
    제조된 유리의 전체 Fe2O3의 함량이 유리 100중량부당 0~0.013중량부인 것을 특징으로 하는, The total Fe 2 O 3 content of the prepared glass, characterized in that 0 to 0.013 parts by weight per 100 parts by weight of glass,
    판상의 소다라임 실리케이트 유리 제조방법.Method for producing a plate-like soda lime silicate glass.
  2. 제1항에 있어서, 버너 및 산화제 투입구를 포함하는 포트가 멜터에 존재하며, 상기 포트 중 적어도 하나에서 버너를 가동시키지 않고 산화제 플로우만을 멜터에 투입시키는 것을 특징으로 하는 판상의 소다라임 실리케이트 유리 제조 방법.The method of claim 1, wherein a port including a burner and an oxidant inlet is present in the melter, and only the oxidant flow is introduced into the melter without operating the burner in at least one of the ports. .
  3. 제1항에 있어서, 버너의 가동과는 별개의 산화제 플로우가 리파이너에 존재하는 별도의 산화제 플로우 투입구를 통하여 리파이너에 유입되는 것을 특징으로 하는 판상의 소다라임 실리케이트 유리 제조 방법.The method of claim 1, wherein an oxidant flow separate from the operation of the burner is introduced into the refiner through a separate oxidant flow inlet present in the refiner.
  4. 제1항에 있어서, 버너의 가동과는 별개의 산화제 플로우가 멜터에 존재하는 별도의 산화제 플로우 투입구를 통하여 멜터에 유입되는 것을 특징으로 하는 판상의 소다라임 실리케이트 유리 제조 방법.The method of claim 1, wherein an oxidant flow separate from the operation of the burner is introduced into the melter through a separate oxidant flow inlet present in the melter.
  5. 제1항에 있어서, 멜터 및 리파이너 중 적어도 하나에 유입되는, 버너의 가동과는 별개의 산화제 플로우 중 산소의 총량은 부피기준으로 시간당 최소 100Nm3인 것을 특징으로 하는 판상의 소다라임 실리케이트 유리 제조 방법.The method of claim 1, wherein the total amount of oxygen in the oxidant flow separate from the operation of the burner, which flows into at least one of the melter and the refiner, is at least 100 Nm 3 per hour on a volume basis. .
  6. 제1항 내지 제5항 중 어느 한 항에 따른 방법에 의해 제조되며, 유리 100중량부 당 SiO2 65~75중량부, Al2O3 0.1~3중량부, Na2O와 K2O의 합 10~18중량부, CaO 5~15중량부, MgO 1~6중량부, SO3 0.01~0.5중량부 및 전체 Fe2O3 0~0.013중량부를 포함하고, 레독스 비가 0.05~0.24인 소다라임 실리케이트 판유리.Prepared by the method according to any one of claims 1 to 5, wherein 65 to 75 parts by weight of SiO 2 , 0.1 to 3 parts by weight of Al 2 O 3 , Na 2 O and K 2 O per 100 parts by weight of glass. Soda with 10 to 18 parts by weight, CaO 5 to 15 parts by weight, MgO 1 to 6 parts by weight, SO 3 0.01 to 0.5 part by weight, and total Fe 2 O 3 0 to 0.013 part by weight, and a redox ratio of 0.05 to 0.24. Lime silicate pane.
  7. 제6항에 있어서, 4mm 두께 기준으로 91.2% 이상의 가시광선 투과율 및 90.6% 이상의 태양방사 투과율을 나타내는 것을 특징으로 하는 소다라임 실리케이트 판유리.The soda lime silicate glass according to claim 6, wherein the soda lime silicate glass exhibits a visible light transmittance of 91.2% or more and a solar radiation transmittance of 90.6% or more on a 4 mm thickness basis.
  8. 제6항에 있어서, 태양전지의 커버글라스 또는 기판, 건축물의 창, 가전제품의 외부장식, 평면거울 또는 집광용 포물선 형상의 거울, LCD 타입 디스플레이 장치의 광 확산장치, 유기 발광 다이오드 기반의 평판디스플레이 또는 평판램프용인 것을 특징으로 하는 소다라임 실리케이트 판유리.The method of claim 6, wherein the cover glass or the substrate of the solar cell, the window of the building, the exterior decoration of the home appliances, the mirror of the flat mirror or condensed light, the light diffusing device of the LCD type display device, the organic light emitting diode-based flat panel display Or a soda lime silicate glass for flat plate lamps.
PCT/KR2012/007567 2011-09-23 2012-09-21 Method for manufacturing soda-lime-silicate plate glass and highly transparent plate glass manufactured by said method WO2013042969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0096153 2011-09-23
KR1020110096153A KR101340384B1 (en) 2011-09-23 2011-09-23 Method for producing soda lime silicate sheet glass and highly transparent sheet glass produced by the same

Publications (1)

Publication Number Publication Date
WO2013042969A1 true WO2013042969A1 (en) 2013-03-28

Family

ID=47914631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007567 WO2013042969A1 (en) 2011-09-23 2012-09-21 Method for manufacturing soda-lime-silicate plate glass and highly transparent plate glass manufactured by said method

Country Status (3)

Country Link
KR (1) KR101340384B1 (en)
TW (1) TW201317190A (en)
WO (1) WO2013042969A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102590179B1 (en) * 2017-03-31 2023-10-19 코닝 인코포레이티드 High transmission glasses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030037571A1 (en) * 2001-08-21 2003-02-27 Hisashi Kobayashi Method for controlling glass furnace atmosphere
KR20080014952A (en) * 2006-08-12 2008-02-15 쇼오트 아게 Method and system for production of glasses, where chemical reduction of components is avoided
KR100983476B1 (en) * 2009-06-26 2010-09-24 한국유리공업주식회사 Low iron float glass and its preparation method and use
KR20110095903A (en) * 2008-11-21 2011-08-25 피피지 인더스트리즈 오하이오 인코포레이티드 Method of reducing redox ratio of molten glass and ultra-clear glass made thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8806897B2 (en) * 2009-06-12 2014-08-19 Air Products And Chemicals, Inc. Furnace and process for controlling the oxidative state of molten materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030037571A1 (en) * 2001-08-21 2003-02-27 Hisashi Kobayashi Method for controlling glass furnace atmosphere
KR20080014952A (en) * 2006-08-12 2008-02-15 쇼오트 아게 Method and system for production of glasses, where chemical reduction of components is avoided
KR20110095903A (en) * 2008-11-21 2011-08-25 피피지 인더스트리즈 오하이오 인코포레이티드 Method of reducing redox ratio of molten glass and ultra-clear glass made thereby
KR100983476B1 (en) * 2009-06-26 2010-09-24 한국유리공업주식회사 Low iron float glass and its preparation method and use

Also Published As

Publication number Publication date
KR20130032513A (en) 2013-04-02
KR101340384B1 (en) 2013-12-11
TW201317190A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
EP2396284B1 (en) Method of reducing redox ratio of molten glass for making ultra-clear glass
US8966941B2 (en) Process for obtaining glass and glass obtained
US11814315B2 (en) Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
KR100360628B1 (en) Glass composition
US20110098171A1 (en) Method of producing glass
JP5927308B2 (en) Lithium-containing glass having high iron oxide content and method for producing the same
US11780764B2 (en) Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
KR100983476B1 (en) Low iron float glass and its preparation method and use
KR20120095358A (en) Method for producing a sheet of glass containing antimony oxide
JP2000143284A (en) Light-colored high transmission glass and its production
WO2013042969A1 (en) Method for manufacturing soda-lime-silicate plate glass and highly transparent plate glass manufactured by said method
CN100569682C (en) A kind of Antiradiation crystal yellow glass composition
EP3219682A1 (en) Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
US20110271717A1 (en) System and method for control of glass transmittance
JP2001139343A (en) Hypochromic high-transparency glass and method for manufacturing the same
KR20220137942A (en) Soda lime silica glass with high visible light transmittance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833024

Country of ref document: EP

Kind code of ref document: A1