WO2013042905A2 - Apparatus for evaporating and condensing wastewater and system for evaporating and condensing wastewater - Google Patents

Apparatus for evaporating and condensing wastewater and system for evaporating and condensing wastewater Download PDF

Info

Publication number
WO2013042905A2
WO2013042905A2 PCT/KR2012/007393 KR2012007393W WO2013042905A2 WO 2013042905 A2 WO2013042905 A2 WO 2013042905A2 KR 2012007393 W KR2012007393 W KR 2012007393W WO 2013042905 A2 WO2013042905 A2 WO 2013042905A2
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
condensation
tank
evaporation
air
Prior art date
Application number
PCT/KR2012/007393
Other languages
French (fr)
Korean (ko)
Other versions
WO2013042905A3 (en
Inventor
이종화
Original Assignee
Lee Jong Wha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lee Jong Wha filed Critical Lee Jong Wha
Priority to CN201280045564.6A priority Critical patent/CN103827041B/en
Publication of WO2013042905A2 publication Critical patent/WO2013042905A2/en
Publication of WO2013042905A3 publication Critical patent/WO2013042905A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0024Rotating vessels or vessels containing movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating

Definitions

  • Wastewater evaporation expansion device and wastewater evaporation condensation system including the same
  • the present invention relates to a wastewater evaporative condensation apparatus.
  • the present invention relates to a wastewater evaporation and expansion device for evaporating and treating the transported wastewater.
  • Conventional wastewater evaporation and expansion device is required to evaporate condensate wastewater in order to landfill by burning or sludge sludge
  • the conventional wastewater evaporation and expansion device is a boiler of steam or hot water circulating
  • the method uses evaporation and condensation by passing wastewater through a pipe.
  • the conventional wastewater evaporator has an increased manufacturing cost by the essential components to be installed, such as steam or hot water generation and circulation means for evaporation and condensation, and consumes power to drive them.
  • the essential components to be installed such as steam or hot water generation and circulation means for evaporation and condensation, and consumes power to drive them.
  • the present invention aims to provide a wastewater evaporative condensation system and a wastewater evaporative condensation system that can increase the efficiency of evaporation and condensation while reducing power consumption and manufacturing costs by improving the components related to evaporation and constriction. do.
  • the wastewater evaporation expansion device is a first receiving tank for transferring to the post-treatment process while storing the transported wastewater;
  • a blowing unit for supplying air;
  • a plurality of diaphragms provided with a plurality of diaphragms for passing the wastewater transferred from the first water tank to receive air from the blower unit and to evaporate water from the wastewater;
  • a total of two receiving tanks for receiving the wastewater that has passed through the clearance pipe;
  • a transfer pump transferring the wastewater contained in the second accommodation tank through a connection pipe;
  • a condensation tube that absorbs and condenses heat from steam supplied from the tubular body by a plurality of microtubes arranged in a bundle in which waste water conveyed by the transfer pump is circulated; and surfaces of the condensation tube microtubes; It characterized in that it comprises a third water tank for receiving the water formed by the air reached to expand.
  • the diaphragms may have a bent shape to extend the contact area with the wastewater.
  • the diaphragm may be formed with a plurality of holes for expanding the contact area with the waste water.
  • a first receiving tank for storing the wastewater thus transferred to a post-treatment process A tubular body provided with a plurality of diaphragms for passing the wastewater conveyed from the first water tank and receiving air from the blower unit to evaporate water from the wastewater; A second water tank containing wastewater that has passed through the clearance pipe; A transfer pump for transferring wastewater contained in the second accommodation tank through a connection pipe; A plurality of heat pipes partially embedded in a fourth water tank accommodating the waste water transferred by the transfer pump are arranged in a bundle shape to condense and absorb heat with steam supplied from the tubular body; and the It characterized in that it comprises a three-water tank containing water formed by the condensation of the air reaching the surface of the condensation tube heat pipe.
  • the diaphragms may have a bent shape to extend the contact area with the wastewater.
  • the diaphragm may be formed with a plurality of holes for expanding the contact area with the waste water.
  • the wastewater transported to the outside through the shaft tube is heated to a predetermined temperature and then transferred to the first receiving tank may be repeatedly processed by the wastewater evaporative condensation apparatus.
  • the wastewater evaporation expansion device is installed to penetrate up and down in the center of the condensation tube to be a rotating shaft of the rotation center of the condensation tube; And a joint for rotating the condensation tube; and a motor for providing rotation power to the rotation shaft via a pulley and a belt.
  • the wastewater evaporative condensation system includes a plurality of wastewater evaporative condensation device, the wastewater evaporative condensation devices are connected to each other, the wastewater evaporative condensation device of the front end disposed
  • the waste water conveyed from the mandrel pipe is characterized in that it is transferred to the first water tank of the waste water evaporative condenser arranged at the rear end.
  • Wastewater evaporation condenser and wastewater evaporative condensation system by introducing a curved structure in the diaphragm flowing wastewater to increase the evaporation rate of the wastewater and to increase the condensation tube in the form of a plurality of pipes Wastewater treatment can reduce energy consumption for evaporation and manure.
  • bent structure of the diaphragm applied in the wastewater evaporative condensation system and the wastewater evaporative condensation system according to the present invention and the multi-pipe structure of the mandrel tube can reduce the manufacturing cost by a simple structure change.
  • FIG. 1 is a block diagram of a wastewater evaporation condensation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line I— ⁇ of FIGS. 1 and 4.
  • FIG 3 is a procedure showing the wastewater treatment operation of the wastewater evaporation and contraction apparatus according to the present embodiment.
  • Figure 4 is a block diagram of the wastewater evaporation and contraction apparatus according to the second and third embodiments of the present invention.
  • FIG. 5 is a block diagram of a wastewater evaporation and expansion system according to another embodiment of the present invention.
  • Example 1 a wastewater evaporative condensation apparatus and a wastewater evaporative condensation system including the same according to various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • Example 1 a wastewater evaporative condensation apparatus and a wastewater evaporative condensation system including the same according to various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a block diagram of a wastewater evaporative condensation apparatus according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view according to ⁇ - ⁇ of FIG.
  • the wastewater evaporative condensation apparatus 100 according to the first embodiment of the present invention, the first water tank 110, the tubular body 120, the second container 130, It consists of a connector 140, a male tube 150, a transfer pump 160, a blowing unit 170, a third receiving tank 180, a blowing connector 190 and the like.
  • the first water tank 110 is supplied to the clearance body 120 while storing the waste water transferred from the outside.
  • the waste water may be directly transferred to the first water tank 110 from the outside, or may be transferred to the first water tank 110 while being heated by a heating water stage (not shown). Heating means not shown may be provided in the first receiving tank 110, if necessary.
  • the first receiving tank 110 is formed with a wastewater transport port 115 for transferring the stored wastewater to the clearance body (120).
  • the wastewater conveying port 115 is formed in the form of a plurality of holes in the lower surface of the first receiving tank 110, and the wastewater passing through the plurality of holes is introduced into the tubular body 120. Supplied.
  • the size of the wastewater feed port 115 formed in the first water tank 110 may vary depending on the structure of the diaphragm 125 shown in FIG. 2. This is because the evaporation rate of the wastewater evaporative condensation apparatus 100 according to the first embodiment of the present invention is affected by the structure of the diaphragm 125, and according to the structure of the diaphragm 125 through the wastewater feed port 115. This is to control the amount of wastewater transferred to the diaphragm 125.
  • the tubular body 120 is provided with a plurality of diaphragms 125 for evaporating while passing the waste water conveyed from the first water tank 110. These diaphragms 125 are supported by an outer body, not shown, of the tubular body 120. Wastewater transferred into the clearance body 120 flows along the diaphragm 125. Wastewater descending along the diaphragm 125 is deprived of heat by the air introduced into the diaphragm 125 while going along the diaphragm 125. Most of the wastewater deprived of heat while passing through the clearance body 120 is accommodated in the system 2 receiving tank 130. The air introduced into the diaphragms 125 is moved to the shaft tube 150 along with the heat absorbed while passing through the diaphragms 125. This movement is made by the blowing unit 170.
  • the diaphragm 125 has a curved shape as shown in FIG. 2. Due to such a curved shape, the wastewater flowing along the diaphragm 125 increases the time for which the flow is reduced to stay in the diaphragm 125, and the contact area between the wastewater and the diaphragm 125 is widened, thereby promoting the evaporation of moisture.
  • the curved shape of the diaphragm 125 can be variously modified to promote evaporation from the wastewater. It is also possible to form a plurality of holes not shown in the diaphragm 125 to increase the evaporation rate of the moisture. Multiple holes further mitigate the flow of wastewater and further increase the contact surface area.
  • the second receiving tank 130 accommodates the wastewater passing through the clearance body 120 above.
  • the temperature of the wastewater accommodated in the second water tank 130 may be lowered to 30 ° C. This is the lungs from the clearance 120
  • the amount of air blown at 170, the temperature / humidity of air, and the structure of the diaphragm 125 may vary.
  • the connecting pipe 140 performs a function of connecting the waste water received in the second water tank 130 to the male tube 150, the waste water to the condensation pipe 150 by the transfer pump 160 Move it.
  • the male tube 150 serves to recover the waste water moved through the connecting tube 140 to the outside as condensing steam to recover heat.
  • Condensation tube 150 may be formed of about 900 microtubes 154, the transfer pipe 152 for transporting the wastewater transferred to the condensation tube 150 to the outside is formed.
  • the number of microtubes 154 and the heat pipes 154a in the second embodiment to be described later and the gap therebetween may vary depending on the processing capacity or efficiency.
  • the plurality of microtubules 154 promotes the condensation of the vapor to maximize the contact surface of the vapor including the heat absorbed while passing through the diaphragm 125 and the outer surface of the male tube (150). In addition, it is possible to maximize the contact area by additionally installing a heat radiation fin (not shown) in the condensation tube (150).
  • the constriction tube 150 absorbs heat from the steam reaching the surface of the microtube 154 and performs the function of fruit ( ⁇ ) to transfer heat to the wastewater flowing therein.
  • the fruit is the wall between the high and low silver fluids. As a result, the temperature of the wastewater passing through the conduit 150 is slightly increased.
  • the wastewater evaporative condensation apparatus 100 may include a male tube body 156 housing the outer surface of the condensation tube 150.
  • a constriction tube body 156 seals around the condensation tube 150 and may accommodate the moisture generated by the constriction of the sealed steam to the third water tank 180.
  • the transfer pump 160 transfers the wastewater contained in the system 2 receiving tank 130 to the condensation tube 150, and transfers the wastewater transferred to the condensation tube 150 to the outside.
  • the wastewater transported to the outside may be heated by a heating means (not shown) such as a boiler or a heater according to a user's need, and then transferred to the first water tank 110 to undergo a reprocessing process.
  • the transfer pump 160 may be integrally formed to be connected to the connection pipe 140.
  • the air blowing connector 190 is disposed between the tubular body 120 and the male tube 150 as shown in Figure 1, the steam absorbing heat from the waste water in the process of passing through the diaphragm 125 To reach the surface of the conduit 150 and the microtubule 154.
  • the air blowing connector 190 should be closed without vapor leakage in the process of moving from the tubular body 120 to the condensation tube 150.
  • Blowing unit 170 inlet the air into the diaphragm 125 and the steam passed through the diaphragm 125 in advance to reach the surface of the condensation tube 150, the microtubule 154 through the air blow connection tube 190 Generates a wind of the set intensity.
  • the blower unit 170 introduces air (' ⁇ ') into the diaphragms 125 and passes through the diaphragms 125, and the steam passing through the diaphragms 125 (' ⁇ ). ') Is blown to reach the outer surface of the condensation tube 150 through the blowing connector (190).
  • the blowing amount generated by the blowing unit 170 may be changed by the diaphragm 125 structure as shown in FIG. 2. If the number of the diaphragm 125 is large or the bending formed in the diaphragm 125 is dense, the airflow amount should be increased.
  • blower pipe 175 is installed to guide the wind generated in the blowing unit 170 to the tubular body 120 without loss.
  • the third receiving tank 180 serves to receive the water condensed on the outer surface of the tube 150. Moisture contained in the third water tank 180 is transferred to the water purification tank not shown through the water purification pipe 185. Here, it is possible to further install a purified water pipe valve 187 for controlling whether to transfer the water contained in the three water tank 180 to the purified water storage tank.
  • the steam passing through the diaphragm 125 by the blowing unit 170 is compressed by reaching the surface of the micro-pipe 154 of the expansion tube 150 by the blowing connection tube 190, by condensation
  • the formed water is accommodated in the third receiving tank 180, and is transferred to the purified water storage tank depending on whether the purified water pipe valve 187 is opened or closed.
  • the first water tank 110 of the wastewater evaporative condensation apparatus 100 is to transfer the wastewater stored in the wastewater transfer port 115 by a predetermined amount by a certain amount through the wastewater transfer port 115 while storing the wastewater transported from the outside. (S210).
  • Wastewater transported to the clearance body 120 is thus holed along the surface of the diaphragm 125, the wastewater flowing through the surface of the diaphragm 125 is deprived of heat by the air introduced, and absorbs heat in this process
  • One steam is moved to the male tube 150 through the air blower tube 190 (S220).
  • the movement of steam from the diaphragm 125 to the outer surface of the shaft 150 is effected by the wind generated by the blowing unit 170.
  • Waste water deprived of heat while passing through the partitions (125) is received by the second reservoir 130 (S230).
  • the received waste water is transferred to the outside via the connecting pipe 140 and the male pipe 150 by the transfer pump 160 (S240).
  • the wastewater passing through the diaphragm 125 of the tubular body 120 has a temperature of approximately 3 (C).
  • the lowering is accommodated in the second water tank 130.
  • the temperature drop of the waste water is because the waste water passing through the diaphragm 125 is deprived of heat by the air introduced by the blowing unit 170.
  • Wastewater of 30 ° C accommodated in the system 2 receiving tank 130 rises by approximately 10 ° C while passing through the male tube (150). This is because the steam moved through the air connection pipe 190 increases the temperature of the wastewater flowing therein while contacting the outer surface of the condensation pipe 150.
  • the steam moved to the shaft tube 150 in step S220 is constricted, the water formed by condensation is received by the third water tank (180) (S250).
  • the water contained in the third tank 180 is transferred to the purified water storage tank (not shown) through the purified water pipe 185.
  • the wastewater evaporative condensation apparatus d 00 may improve the evaporation rate by passing the wastewater through the curved diaphragm 125, and the outside of the condensation pipe 150
  • the temperature of the wastewater passing through the inside of the condensation tube 150 can be raised by bringing steam into contact with the surface.
  • Wastewater evaporative expansion device (1 oo) according to the first embodiment of the present invention transfers the wastewater transported to the outside through the condensation pipe 150 to the first water tank 110, the first of the present invention Reprocessing by wastewater evaporation condensation apparatus 100 according to the embodiment can be performed. In this case, back to the first tank 110
  • FIG. 4 is a block diagram of the wastewater evaporation and contraction apparatus according to the second embodiment of the present invention.
  • the wastewater evaporation contractor 200 includes a first accommodation tank 110 and a tubular body 120, a second accommodation tank 130, and a transfer.
  • Components such as the pump 160, the blowing unit 170, and the like are the same as those of the first embodiment of FIGS.
  • the transfer pump 160 in the first embodiment circulates the wastewater of the second water tank 130 to the microtubule 154 of the condensation tube 150 through the connecting pipe 140, but the second In the embodiment, the transfer pump 160 temporarily stores the wastewater of the second accommodation tank 130 in the fourth accommodation tank 157a through the connection pipe 140 and then discharges it to the outside through the transfer pipe 152a. .
  • Waste water transferred from the fourth tank 157a through the transfer pipe 152a is heated by an unshown heating means such as a boiler or a heater according to a user's need, and then the first tank 110 again. It can be transferred to and undergo reprocessing.
  • an unshown heating means such as a boiler or a heater according to a user's need
  • the wastewater was directly heated with heat obtained in the process of condensing the steam supplied from the tubular body 120 in the first embodiment, but in the second embodiment, the steam supplied from the tubular body 120 was The heat obtained from the condensation process heats the fruit of the heat pipe 154a, and uses the heat of the heat pipe 154a to heat the wastewater contained in the fourth water tank 157a again.
  • the condensation tube 150a in the second embodiment is arranged in a bundle such that a plurality of heat pipes 154a are partially embedded in the lower end of the fourth accommodation tank 157a, and the low 14 accommodation tank ( Waste water of the second water tank 130 is introduced into the water tank 157a by the transfer pump 160. Since the plurality of heat pipes 154a has a structure for maximizing the contact area between the steam including heat absorbed while passing through the diaphragms 125 and the surface of the heat pipe 154a of the condensation tube 150a, Promote cultivation.
  • the shape of the heat pipe 154a in the shape of a heat radiation fin can maximize the contact area between the heat pipe 154a and the air containing moisture.
  • the heat pipe 154a performs a function of absorbing heat from the steam reaching the surface of the heat pipe 154a and transferring it to the wastewater contained in the fourth water tank 157a.
  • the temperature of the wastewater accommodated in the fourth accommodation tank 157a is slightly increased.
  • the wastewater evaporation contractor 200 may include a shaft tube body 156a housing the outer surface of the shaft tube 150a.
  • the condensation tube body 156a seals the surroundings of the condensation tube 150a and can receive moisture generated by the expansion of the sealed steam into the third water bath 180.
  • Blowing air connection pipe 190 is disposed between the tubular body 120 and the male tube 150a, as shown in Figure 4, and the steam absorbing heat from the waste water in the process of passing through the diaphragm 125
  • the male tube 150a serves to transfer the surface of the heat pipe 1541 3 .
  • the third water tank 180 serves to receive the water condensed on the surface of the male tube (150a) heat pipe (154a). Moisture contained in the third water tank 180 is transferred to the purified water storage tank (not shown) through the purified water pipe 185.
  • a purified water pipe valve 187 for controlling whether to transfer the water contained in the third water tank 180 to the purified water storage tank.
  • the steam generated while passing through the diaphragm 125 by the blowing unit 170 is condensed by reaching the surface of the heat pipe (150a) heat pipe (154a) by the air blow connection pipe 190, Moisture formed by the water is bent down to be accommodated in the third receiving tank 180, and is transferred to the purified water storage tank according to the opening and closing of the purified water pipe valve (187).
  • the system 1 receiving tank 110 of the wastewater evaporative condensation apparatus 200 transfers the stored wastewater to the clearance body 120 by a predetermined amount through the wastewater conveyance port 115 while storing the wastewater transported from the outside ( S210).
  • Wastewater transported to the clearance body 120 is thus taken away by the air flowing in flowing along the surface of the diaphragm 125, the steam absorbing the heat in the process blows the connection pipe (190) Go through the male tube (150a) (S220).
  • the steam movement from the diaphragm 125 to the surface of the heat pipe 154a of the condensation tube 150a is made by the wind generated by the blowing unit 170.
  • Waste water deprived of heat while passing through the partitions (125) is received by the second reservoir 130 (S230).
  • the received waste water is transferred to the outside via the connection pipe 140 by the transfer pump 160 (S240).
  • the wastewater passing through the diaphragm 125 of the clearance body 120 is lowered to approximately 30 ° C. Is accommodated in the second receiving tank (130).
  • the temperature drop of the waste water is because the waste water passing through the diaphragm 125 is deprived of heat by the air introduced by the blower unit 170.
  • step S220 the steam moved to the expansion pipe 150a is condensed, and the water formed by condensation is received by the three-water tank 180 (S250).
  • the water contained in the third tank 180 is transferred to the purified water storage tank (not shown) through the purified water pipe 185.
  • the wastewater evaporative condensation apparatus 100 can improve the evaporation rate by passing the wastewater through the curved diaphragm 125, the condensation pipe 150a heat pipe
  • the temperature of the condensation tube 150a heat pipe 154a can be raised by bringing steam into contact with the surface of 154a, and the temperature of the wastewater contained in the fourth water tank 157a can be raised again.
  • Wastewater evaporative condensation apparatus 200 according to the second embodiment of the present invention is the second embodiment of the present invention by transferring the wastewater transported to the outside through the tubular body 120 to the first water tank 110 again Reprocessing by wastewater evaporative condensation apparatus 200 according to the example can be performed.
  • the wastewater conveyed back to the system 1 receiving tank 110 has a temperature of 20 ° C. in the clearance body 120 of the pretreatment step, the temperature of the wastewater before being conveyed to the first receiving tank 110. Can reduce the power consumed to raise
  • Wastewater evaporative condensation apparatus is the wastewater evaporative condensation apparatus (100X200) of the first and second embodiments as shown in Figures 1 and 4, the expansion pipe 150 (150a) It is to further increase the shaft of the water-containing steam supplied from the tubular body 120, further comprising a means for rotating while supporting.
  • the rotating shaft 151, 151a penetrating up and down in the center of the shaft tube 150, 150a is installed, the upper and lower ends of the rotating shaft 151, 151a, the rotating shaft 151, 151a.
  • the joint (163X164) for smooth rotation of the condensation tube (150) (150a) including a) is installed.
  • the rotary shafts 151 and 151a rotate by receiving rotational force from the motor 158 via the pulleys 161 and 162 and the belt 159.
  • Rotating shaft 151 (151a) should have a strength enough to support about 90 micro-tubes (154) or male tube (150) (150a) including the heat pipe (154a),
  • Rotating shaft 151, 151a may be installed separately from the connecting pipe 140 or the transfer pipe 152, 152a, the rotating shaft 151, 151a in the present invention is 1 and 4 As in the connection pipe 140 and the transfer pipe 152 (152a) also serves as.
  • the connecting tube 140 for supplying wastewater is connected to the lower end of the rotary shaft 151 (151a) in the form of a tube, and the upper end of the rare electrode shaft 151 (151a) is transported to discharge the ' outward ' tube
  • the rotation shaft (151a) as shown in Figure 4 the discharge port 155a for discharging the wastewater of the main inlet (163a) and the fourth receiving tank (157a) for injecting wastewater into the fourth receiving tank (157a) Is formed up and down, the rotary shaft 151a between the injection port (163a) and the discharge port (155a) is also blocked so as not to discharge the unheated waste water to the outside.
  • the inlet 163 of the rotary shaft 151 is in the rotary shaft 151 of the position that is in communication with the bottom end of the microtube 154
  • the outlet 155 is the position where the microtubule 154 is in communication with the top end Of the rotary shaft 151 and the injection port 163a of the rotary shaft 151a to the rotary shaft 151a at a position in communication with the lowest end of the four reservoir tanks 157a
  • the discharge port 155a is the fourth reservoir tank 157a. It is preferably formed on each of the rotary shaft (151a) of the position in communication with the top end of the.
  • the wastewater evaporative condensation system 10 is a wastewater evaporative condensation apparatus 100 used as a constitution of a plurality of wastewater evaporative condensation apparatuses 100 described above.
  • the evaporation expansion process is carried out as many as. Therefore, an improved wastewater treatment effect can be expected than using one wastewater evaporative condenser 100.
  • the wastewater evaporation expansion system 10 using two wastewater evaporation expansion units 100 is illustrated for convenience, but the number of wastewater evaporation expansion units 100 may be variously changed as necessary.
  • Wastewater evaporative condensation system 10 is connected to the two wastewater evaporation condensation apparatus (100) (100a).
  • the wastewater transferred from the transfer pipe 152 of the wastewater evaporative condenser 100 arranged at the front end is transferred to the first water tank 110 of the wastewater evaporation and expansion device 100a arranged at the rear end.
  • the treatment of the transferred wastewater is made in the same manner as the operation of the wastewater evaporation and contraction apparatus 100 described above.
  • the wastewater evaporation condensation system 10 performs the wastewater treatment operation twice, so that the first and second and third embodiments of the wastewater treatment operation are performed. Wastewater treatment performance is improved than the wastewater evaporation condenser 200.
  • the wastewater evaporative condensation device 100, 200 and the wastewater evaporative condensation system 10 according to the embodiments of the present invention were introduced only to the treatment using wastewater, but not the wastewater river water. Naturally, it is also applicable to other kinds of water such as seawater.
  • Microtube 154a Hi S pipe
  • Blower unit 180 3rd water tank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

An apparatus for evaporating and condensing wastewater, according to the present invention, relates to an apparatus for treating wastewater that is transported by evaporating and condensing, and comprises: a first accommodation tub for storing and transporting the wastewater that is transported to a post-processing process; an air-blowing unit for supplying air; a pass-tube body, which is provided with a plurality of plates for moving the wastewater that is transported from the first accommodation tub, and for receiving air from the air-blowing unit to evaporate moisture from the wastewater; a second accommodation tub for accommodating the wastewater which has passed through the pass-tube body; a transport pump for transporting the wastewater that is accommodated in the second accommodation tub via a connection pipe; a condensation pipe for absorbing heat from vapor, which is supplied from the pass-tube body, by means of a plurality of fine tubes that are arranged in a bundle, though which the wastewater that is transported via the transport pump circulates, and then condensing the moisture; and a third accommodation tub for accommodating moisture which is formed by condensed air that reaches the surface of the fine tubes of the condensation pipe. As a result, the present invention can reduce power consumption for evaporation and condensation by increasing evaporation of the wastewater that passes through the plates and increasing condensation rate by means of the condensation pipe in the shape of the bundle.

Description

명 세 서 발명의 명칭 Name of Invention
폐수증발웅축장치 및 이를 포함하는 폐수증발응축 시스템 기 술 분 야 Wastewater evaporation expansion device and wastewater evaporation condensation system including the same
[0001 ] 본 발명은 폐수 증발응축장치에 관한 것이다. 특히 본 발명은 이송된 폐수를 증 발 웅축하여 처 리하는 폐수 증발웅축장치에 관한 것이다. 배 경 기 술  The present invention relates to a wastewater evaporative condensation apparatus. In particular, the present invention relates to a wastewater evaporation and expansion device for evaporating and treating the transported wastewater. Background art
[0002] 종래의 폐수 증발웅축장치는 슬러지를 소각하거나 케이크화하여 매 립하기 위해 서 폐수를 증발응축시 키는 과정 이 필요하며, 이를 위해 종래 폐수 증발웅축장치는 증기 나 고온수가 순환되는 보일러 의 관속으로 폐수를 통과시켜 증발 및 응축하는 방법을 사 용하고 있다.  Conventional wastewater evaporation and expansion device is required to evaporate condensate wastewater in order to landfill by burning or sludge sludge, the conventional wastewater evaporation and expansion device is a boiler of steam or hot water circulating The method uses evaporation and condensation by passing wastewater through a pipe.
[0003] 그러나 종래의 폐수 증발웅축장치는 증발 및 응축을 위해 증기나 고온수의 발 생 및 순환 수단과 같이 설치해야 할 필수 구성들에 의해 제조비가 증가하고, 이들을 구 동하기 위한 전력의 소모가 증가하는 단점 이 있다ᅳ  However, the conventional wastewater evaporator has an increased manufacturing cost by the essential components to be installed, such as steam or hot water generation and circulation means for evaporation and condensation, and consumes power to drive them. There is an increasing disadvantage
[0004] 또한, 종래의 폐수 증발응축장치는 이미 증발 및 웅축 처 리가 완료된 결과물에 대한 추가 처 리가 필요한 경우 별도의 장치를 설치해야 하는 번거로움이 있다. 발명의 내용 해결하려는 과제  In addition, the conventional wastewater evaporative condensation apparatus has a hassle of having to install a separate device if additional treatment is required for the result of the evaporation and expansion treatment already completed. The problem to be solved
[0005] 본 발명은 증발 및 웅축에 관련된 구성들을 개선함으로써 전력소모 및 제조비를 감소시 키 면서 증발 및 웅축의 효율을 증대시 킬 수 있는 폐수 증발응축장치 및 폐수 증발 웅축시스템을 제공하는 것을 목적으로 한다. 과제의 해결 수단  The present invention aims to provide a wastewater evaporative condensation system and a wastewater evaporative condensation system that can increase the efficiency of evaporation and condensation while reducing power consumption and manufacturing costs by improving the components related to evaporation and constriction. do. Solution to problem
[0006] 상기 과제를 해결하기 위하여, 본 발명에 따른 폐수 증발웅축장치는 이송된 폐수 를 저장하면서 후처 리 공정으로 이송하는 제 1수용조; 공기를 공급하는 송풍 유닛 ; 상기 제 1수용조로부터 이송된 폐수를 통과시 키기 위한 다수의 격판이 구비되어 상기 송풍유닛 으로부터 공기를 공급받아 상기 폐수로부터 수분을 증발시 키는 통관체 ; 상기 통관체를 통과한 폐수를 수용하는 계 2수용조; 상기 제 2수용조에 수용된 폐수를 연결관을 통해 이 송시 키는 이송펌프; 상기 이송펌프에 의해 이송된 폐수가 순환되는 다발형 태로 배열된 다수의 미세관에 의 해 상기 통관체로부터 공급되는 증기로부터 열을 흡수하여 응축시 키 는 응축관 ; 및 상기 응축관 미세관들의 표면에 도달한 공기가 웅축되어 형성된 수분을 수용하는 제 3수용조를 포함하는 것을 특징으로 한다.  In order to solve the above problems, the wastewater evaporation expansion device according to the present invention is a first receiving tank for transferring to the post-treatment process while storing the transported wastewater; A blowing unit for supplying air; A plurality of diaphragms provided with a plurality of diaphragms for passing the wastewater transferred from the first water tank to receive air from the blower unit and to evaporate water from the wastewater; A total of two receiving tanks for receiving the wastewater that has passed through the clearance pipe; A transfer pump transferring the wastewater contained in the second accommodation tank through a connection pipe; A condensation tube that absorbs and condenses heat from steam supplied from the tubular body by a plurality of microtubes arranged in a bundle in which waste water conveyed by the transfer pump is circulated; and surfaces of the condensation tube microtubes; It characterized in that it comprises a third water tank for receiving the water formed by the air reached to expand.
[0007] 상기 격판들은 폐수와의 접촉면적을 확장시 키기 위해 절곡된 형상을 가질 수 있 다.  The diaphragms may have a bent shape to extend the contact area with the wastewater.
[0008] 상기 격판들에는 폐수와의 접촉면적을 확장시키기 위한 다수 개의 홀이 형성될 수 있다.  The diaphragm may be formed with a plurality of holes for expanding the contact area with the waste water.
[0009] 상기 응축관을 통해 외부로 이송된 폐수는, 사전에 정해진 온도로 가열된 후 상 기 제 1 수용조로 이송되어 폐수 증발응축장치에 의해 반복처 리될 수 있다.  Waste water transported to the outside through the condensation tube, is heated to a predetermined temperature and then transferred to the first receiving tank may be repeatedly processed by the waste water evaporative condensation device.
[0010] 또한 상기 한 과제를 해결하기 위하여, 본 발명에 따른 폐수 증발응축장치는 이송  In addition, in order to solve the above problem, the wastewater evaporation condensation apparatus according to the present invention is transported
1  One
대 체용지 (규칙 제 26조) 된 폐수를 저장하면서 후처 리 공정으로 이송하는 제 1수용조; 공기를 공급하는 송풍 유 닛; 상기 제 1수용조로부터 이송된 폐수를 통과시키기 위 한 다수 개의 격판이 구비되어 상기 송풍유닛으로부터 공기를 공급받아 상기 폐수로부터 수분을 증발시 키는 통관체 ; 상 기 통관체를 통과한 폐수를 수용하는 제 2수용조; 상기 제 2수용조에 수용된 폐수를 연결 관을 통해 이송시 키는 이송펌프; 상기 이송펌프에 의해 이송된 폐수가 수용되는 제 4수용 조에 일부가 내입된 다수의 히트 파이프가 다발형 태로 배열되어 상기 통관체로부터 공급 되는 증기로 열을 흡수하여 응축시 키는 응축관 ; 및 상기 응축관 히트 파이프의 표면에 도달한 공기의 응축에 의해 형성된 수분을 수용하는 계 3수용조를 포함하는 것을 특징으 로 한다. Replacement Site (Rule 26) A first receiving tank for storing the wastewater thus transferred to a post-treatment process; A tubular body provided with a plurality of diaphragms for passing the wastewater conveyed from the first water tank and receiving air from the blower unit to evaporate water from the wastewater; A second water tank containing wastewater that has passed through the clearance pipe; A transfer pump for transferring wastewater contained in the second accommodation tank through a connection pipe; A plurality of heat pipes partially embedded in a fourth water tank accommodating the waste water transferred by the transfer pump are arranged in a bundle shape to condense and absorb heat with steam supplied from the tubular body; and the It characterized in that it comprises a three-water tank containing water formed by the condensation of the air reaching the surface of the condensation tube heat pipe.
[0011] 상기 격판들은 폐수와의 접촉면적을 확장시 키기 위해 절곡된 형상을 가질 수 있 다.  The diaphragms may have a bent shape to extend the contact area with the wastewater.
[0012] 상기 격판들에는 폐수와의 접촉면적을 확장시키기 위한 다수 개의 홀이 형성될 수 있다.  The diaphragm may be formed with a plurality of holes for expanding the contact area with the waste water.
[0013] 상기 웅축관을 통해 외부로 이송된 폐수는, 사전에 정해진 온도로 가열된 후 상 기 제 1 수용조로 이송되어 폐수 증발응축장치에 의 해 반복처 리 될 수 있다.  The wastewater transported to the outside through the shaft tube is heated to a predetermined temperature and then transferred to the first receiving tank may be repeatedly processed by the wastewater evaporative condensation apparatus.
[0014] 또한 상기 과제를 해결하기 위하여, 본 발명에 따른 폐수 증발웅축장치는 상기 응축관의 중앙에 상하로 관통지게 설치되어 상기 응축관의 회전중심 이 되는 회전축 ; 상 기 회 전축의 상하에 결합되어 상기 응축관을 회전시 키는 조인트 ; 및 상기 회 전축에 풀 리와 벨트를 매개로 회 전력을 제공하는 모터가 구비되는 것을 특징으로 한다.  In addition, in order to solve the above problems, the wastewater evaporation expansion device according to the present invention is installed to penetrate up and down in the center of the condensation tube to be a rotating shaft of the rotation center of the condensation tube; And a joint for rotating the condensation tube; and a motor for providing rotation power to the rotation shaft via a pulley and a belt.
[0015] 그리고 상기 과제를 해결하기 위하여, 본 발명에 따른 폐수 증발웅축시스템은 폐 수 증발웅축장치를 다수개 포함하고, 상기 폐수 증발응축장치들은 서로 연결되며 , 전단에 배치된 폐수 증발응축장치 의 웅축관으로부터 이송된 폐수를 후단에 배치된 폐수 증발응 축장치 의 계 1수용조로 이송하는 것을 특징으로 한다. 발명의 효과  And in order to solve the above problems, the wastewater evaporative condensation system according to the present invention includes a plurality of wastewater evaporative condensation device, the wastewater evaporative condensation devices are connected to each other, the wastewater evaporative condensation device of the front end disposed The waste water conveyed from the mandrel pipe is characterized in that it is transferred to the first water tank of the waste water evaporative condenser arranged at the rear end. Effects of the Invention
[0016] 본 발명에 따른 폐수 증발웅축장치 및 폐수 증발응축시스템은 폐수가 흘러가는 격판에 굴곡구조를 도입하여 폐수의 증발률을 높이고 응축관을 다수의 관의 형 태로 구성 하여 웅축률을 높임으로써 폐수처 리 과정에서 증발 및 웅축을 위 한 에너지소모를 감소시 킬 수 있다.  Wastewater evaporation condenser and wastewater evaporative condensation system according to the present invention by introducing a curved structure in the diaphragm flowing wastewater to increase the evaporation rate of the wastewater and to increase the condensation tube in the form of a plurality of pipes Wastewater treatment can reduce energy consumption for evaporation and manure.
[0017] 그리고 본 발명에 따른 폐수 증발응축장치 및 폐수 증발응축시스템에서 적용된 격판의 굴곡구조 및 웅축관의 다관 구조는 간단한 구조의 변경에 의한 것으로 제조원가 를 절감할 수 있다. 도면의 간단한 설명  And the bent structure of the diaphragm applied in the wastewater evaporative condensation system and the wastewater evaporative condensation system according to the present invention and the multi-pipe structure of the mandrel tube can reduce the manufacturing cost by a simple structure change. Brief description of the drawings
[0018] [0018]
도 1은 본 발명의 제 1실시 예에 따른 폐수 증발응축장치의 블록도이다. 1 is a block diagram of a wastewater evaporation condensation apparatus according to a first embodiment of the present invention.
도 2는 도 1 및 도 4의 I— Γ에 따른 단면도이다. 2 is a cross-sectional view taken along line I—Γ of FIGS. 1 and 4.
도 3은 본 실시 예에 따른 폐수 증발웅축장치의 폐수 처 리동작을 도시 한 절차도이 다. 도 4는 본 발명의 제 2, 3실시 예에 따른 폐수 증발웅축장치의 블록도이다. 3 is a procedure showing the wastewater treatment operation of the wastewater evaporation and contraction apparatus according to the present embodiment. Figure 4 is a block diagram of the wastewater evaporation and contraction apparatus according to the second and third embodiments of the present invention.
도 5는 본 발명의 또 다른 실시 예에 따른 폐수 증발웅축시스템의 블록도이다. 5 is a block diagram of a wastewater evaporation and expansion system according to another embodiment of the present invention.
2 2
대 체용지 (규칙 저 126조) 발몇을 실시하기 위한 구체적인 내용 Alternative Land (Article 126 of the Rules) Specific contents to carry out step
[0019] 이하에서는 도면을 참조하여 본 발명의 여러 실시예에 따른 폐수 증발응축장치 및 이를 포함하는 폐수 증발응축시스템에 대하여 구체적으로 설명한다. 실 시 예 1  Hereinafter, a wastewater evaporative condensation apparatus and a wastewater evaporative condensation system including the same according to various embodiments of the present invention will be described in detail with reference to the accompanying drawings. Example 1
[0020] 도 1 및 도 2를 참조하여 본 발명의 제 1실시예에 따른 폐수 증발웅축장치 (100)를 설명한다. 도 1은 본 발명의 계 1실시 예에 따른 폐수 증발응축장치의 블록도이고, 도 2는 도 1의 Ι-Γ에 따른 단면도이다.  1 and 2 will be described wastewater evaporative expansion device 100 according to a first embodiment of the present invention. 1 is a block diagram of a wastewater evaporative condensation apparatus according to a first embodiment of the present invention, Figure 2 is a cross-sectional view according to Ι-Γ of FIG.
[0021] 도 1에 도시된 바와 같이 본 발명의 제 1실시예에 따른 폐수 증발응축장치 (100) 는, 제 1수용조 (110), 통관체 (120), 제 2 수용조 (130), 연결관 (140), 웅축관 (150), 이송펌 프 (160), 송풍유닛 (170), 제 3 수용조 (180), 송풍 연결관 (190) 등으로 이루어져 있다.  1, the wastewater evaporative condensation apparatus 100 according to the first embodiment of the present invention, the first water tank 110, the tubular body 120, the second container 130, It consists of a connector 140, a male tube 150, a transfer pump 160, a blowing unit 170, a third receiving tank 180, a blowing connector 190 and the like.
[0022] 제 1수용조 (110)는 외부로부터 이송된 폐수를 저장하면서 통관체 (120)로 공급한 다. 폐수는 외부로부터 제 1수용조 (110)로 바로 이송될 수도 있고, 도시되지 않은 가열수 단에 의해 가열된 상태로 제 1수용조 (110)로 이송될수 있다. 도시되지 않은 가열수단은 필요에 따라 제 1수용조 (110) 내부에 구비될 수 있다. The first water tank 110 is supplied to the clearance body 120 while storing the waste water transferred from the outside. The waste water may be directly transferred to the first water tank 110 from the outside, or may be transferred to the first water tank 110 while being heated by a heating water stage (not shown). Heating means not shown may be provided in the first receiving tank 110, if necessary.
[0023] 제 1수용조 (110)에는 저장된 폐수를 통관체 (120)로 이송하기 위한 폐수이송구 (115)가 형성되어 있다. 도 1에 도시된 바와 같이, 폐수이송구 (115)는 제 1수용조 (110)의 하부면의 다수 개의 홀의 형태로 형성되어 있으며, 다수 개의 홀을 통과한 폐수는 통관 체 (120)의 내부로 공급된다.  The first receiving tank 110 is formed with a wastewater transport port 115 for transferring the stored wastewater to the clearance body (120). As shown in FIG. 1, the wastewater conveying port 115 is formed in the form of a plurality of holes in the lower surface of the first receiving tank 110, and the wastewater passing through the plurality of holes is introduced into the tubular body 120. Supplied.
[0024] 계 1수용조 (110)에 형성된 폐수이송구 (115)의 크기는 도 2에 도시된 격판 (125)의 구조에 의해 달라질 수 있다. 이것은 본 발명의 제 1실시예에 따른 폐수 증발응축장치 (100)의 증발률이 격판 (125)의 구조에 의해 영향을 받기 때문으로, 격판 (125)의 구조에 따라 폐수이송구 (115)를 통해 격판 (125)에 이송된 폐수의 양을 조절하기 위함이다.  The size of the wastewater feed port 115 formed in the first water tank 110 may vary depending on the structure of the diaphragm 125 shown in FIG. 2. This is because the evaporation rate of the wastewater evaporative condensation apparatus 100 according to the first embodiment of the present invention is affected by the structure of the diaphragm 125, and according to the structure of the diaphragm 125 through the wastewater feed port 115. This is to control the amount of wastewater transferred to the diaphragm 125.
[0025] 도 2에 도시된 바와 같이, 통관체 (120)는 제 1수용조 (110)로부터 이송된 폐수를 통 과시키면서 증발시키기 위한 다수의 격판 (125)을 구비한다. 이러한 격판 (125)들은 통관체 (120)의 도시되지 않은 외부몸체에 의해 지지된다. 통관체 (120) 내로 이송된 폐수는 격판 (125)을 따라 흐르게 된다. 격판 (125)을 따라 하강하는 폐수는 격판 (125)을 따라 홀러가 는 동안 격판 (125)에 유입된 공기에 의해 열을 빼앗기게 된다. 통관체 (120)를 통과하면서 열을 빼앗긴 대부분의 폐수는 계 2수용조 (130)에 수용된다. 격판 (125)들에 유입된 공기는 격판 (125)들을 통과하면서 흡수한 열과 함께 웅축관 (150)으로 이동된다. 이러한 이동은 송풍유닛 (170)에 의해 이루어진다. As shown in FIG. 2, the tubular body 120 is provided with a plurality of diaphragms 125 for evaporating while passing the waste water conveyed from the first water tank 110. These diaphragms 125 are supported by an outer body, not shown, of the tubular body 120. Wastewater transferred into the clearance body 120 flows along the diaphragm 125. Wastewater descending along the diaphragm 125 is deprived of heat by the air introduced into the diaphragm 125 while going along the diaphragm 125. Most of the wastewater deprived of heat while passing through the clearance body 120 is accommodated in the system 2 receiving tank 130. The air introduced into the diaphragms 125 is moved to the shaft tube 150 along with the heat absorbed while passing through the diaphragms 125. This movement is made by the blowing unit 170.
[0026] 격판 (125)은 도 2에 도시된 바와 같이 굴곡된 형상을 갖는다. 이러한 굴곡 형태 에 의해 격판 (125)을 따라 흐르는 폐수는 흐름이 완화되어 격판 (125)에 머무르는 시간 이 증가되고, 폐수와 격판 (125)의 접촉면적이 넓어지게 되어, 수분의 증발이 촉진된다. 격판 (125)의 굴곡형태는 폐수로부터 증발이 촉진되도록 다양하게 변경될 수 있다. 또한 수분의 증발률을 높이기 위해 격판 (125)에 도시되지 않은 다수 개의 홀을 형성할 수 있 다. 다수 개의 홀은 폐수의 흐름을 더욱 완화시키고, 접촉 표면적을 더욱 증가시킨다.  The diaphragm 125 has a curved shape as shown in FIG. 2. Due to such a curved shape, the wastewater flowing along the diaphragm 125 increases the time for which the flow is reduced to stay in the diaphragm 125, and the contact area between the wastewater and the diaphragm 125 is widened, thereby promoting the evaporation of moisture. The curved shape of the diaphragm 125 can be variously modified to promote evaporation from the wastewater. It is also possible to form a plurality of holes not shown in the diaphragm 125 to increase the evaporation rate of the moisture. Multiple holes further mitigate the flow of wastewater and further increase the contact surface area.
[0027] 제 2수용조 (130)는 위의 통관체 (120)를 통과한 폐수를 수용한다. 본 발명에 의한 제 1실시예에서 통관체 (120)를 통과하기 전의 폐수의 온도가 50°C인 경우 제 2수용조 (130)에 수용되는 폐수의 온도는 30°C까지 하강할 수 있다. 이것은 통관체 (120)에서 폐 The second receiving tank 130 accommodates the wastewater passing through the clearance body 120 above. In the first embodiment of the present invention, when the temperature of the wastewater before passing through the clearance body 120 is 50 ° C, the temperature of the wastewater accommodated in the second water tank 130 may be lowered to 30 ° C. This is the lungs from the clearance 120
3 3
대체용지 (규칙 저 126조) 수각 격¾(125)을 통과하면서 하강한 온도이며, 이러한 온도 하강의 크기는 송풍유닛Alternative Paper (Article 126 of the Rules) The temperature is lowered while passing through the water level ¾ (125), and the size of the temperature drop is the blower unit.
(170)의 송풍량, 공기의 온도 /습도, 격판 (125)의 구조에 의해 달라질 수 있다. The amount of air blown at 170, the temperature / humidity of air, and the structure of the diaphragm 125 may vary.
[0028] 연결관 (140)은 제 2수용조 (130)에 수용된 폐수를 웅축관 (150)으로 이송하도록 연결하는 기능을 수행하며, 이송 펌프 (160)에 의하여 응축관 (150)으로 폐수를 이동시킨 다.  The connecting pipe 140 performs a function of connecting the waste water received in the second water tank 130 to the male tube 150, the waste water to the condensation pipe 150 by the transfer pump 160 Move it.
[0029] 웅축관 (150)은 증기를 응축시켜 열을 회수하는 것으로서 연결관 (140)을 통해 이동된 폐수를 외부로 이송하기 위한 기능을 수행한다.  The male tube 150 serves to recover the waste water moved through the connecting tube 140 to the outside as condensing steam to recover heat.
[0030] 응축관 (150)은 900여 개의 미세관 (154)으로 형성될 수 있으며, 응축관 (150)으 로 이송된 폐수를 외부로 이송하기 위한 이송관 (152)이 형성되어 있다. 미세관 (154)과 이후 설명될 제 2실시예에서의 히트 파이트 (154a)의 갯수와, 이들간의 간극은 처리용량이 나 효율 둥에 따라 달라질 수 있다. 이러한 다수의 미세관 (154)은 격판 (125)들을 통과 하면서 흡수한 열을 포함한 증기와 웅축관 (150)의 외부면과의 접촉면을 최대화하기 위 한 것으로 증기의 응축을 촉진시킨다. 또한 응축관 (150)에 도시되지 않은 방열핀을 추가 적으로 설치함으로써 접촉면적을 극대화하는 것이 가능하다.  Condensation tube 150 may be formed of about 900 microtubes 154, the transfer pipe 152 for transporting the wastewater transferred to the condensation tube 150 to the outside is formed. The number of microtubes 154 and the heat pipes 154a in the second embodiment to be described later and the gap therebetween may vary depending on the processing capacity or efficiency. The plurality of microtubules 154 promotes the condensation of the vapor to maximize the contact surface of the vapor including the heat absorbed while passing through the diaphragm 125 and the outer surface of the male tube (150). In addition, it is possible to maximize the contact area by additionally installing a heat radiation fin (not shown) in the condensation tube (150).
[0031] 위의 응축과정에서 웅축관 (150)은 미세관 (154)의 표면에 도달한 증기로부터 열 을 흡수하여 내부에 흐르는 폐수로 열을 전달하는 열매 (熱媒)의 기능을 수행한다. 일반 적으로 열매는 높은 은도의 유체와 낮은 은도의 유체사이에 있는 벽을 의미한다. 이에 의해 웅축관 (150)을 통과한 폐수는 온도가 소폭 상승한다.  In the above condensation process, the constriction tube 150 absorbs heat from the steam reaching the surface of the microtube 154 and performs the function of fruit (열매) to transfer heat to the wastewater flowing therein. In general, the fruit is the wall between the high and low silver fluids. As a result, the temperature of the wastewater passing through the conduit 150 is slightly increased.
[0032] 또한, 본 발명의 제 1실시예에 따른 폐수 증발응축장치 (100)는 응축관 (150)의 외 부면을 하우징하는 웅축관 몸체 (156)를 포함할 수 있다. 이러한 웅축관 몸체 (156)는 응 축관 (150)의 주위를 밀폐시키고, 밀폐된 증기의 웅축에 의해 발생된 수분을 제 3수용조 (180)로 수용시킬 수 있다.  In addition, the wastewater evaporative condensation apparatus 100 according to the first embodiment of the present invention may include a male tube body 156 housing the outer surface of the condensation tube 150. Such a constriction tube body 156 seals around the condensation tube 150 and may accommodate the moisture generated by the constriction of the sealed steam to the third water tank 180.
[0033] 이송펌프 (160)는 계 2수용조 (130)에 수용된 폐수를 응축관 (150)까지 이송시키 고, 응축관 (150)으로 이송된 폐수를 외부로 이송시킨다. 외부로 이송된 폐수는 사용자의 필요에 따라 보일러 또는 히터와 같은 도시되지 않은 가열수단에 의해 가열된 후 다시 제 1수용조 (110)로 이송되어 재 처리 과정을 거칠 수 있다.  The transfer pump 160 transfers the wastewater contained in the system 2 receiving tank 130 to the condensation tube 150, and transfers the wastewater transferred to the condensation tube 150 to the outside. The wastewater transported to the outside may be heated by a heating means (not shown) such as a boiler or a heater according to a user's need, and then transferred to the first water tank 110 to undergo a reprocessing process.
[0034] 도 1에 도시된 바와 같이, 이송펌프 (160)는 연결관 (140)에 연결되도록 일체로 형 성될 수 있다.  As shown in FIG. 1, the transfer pump 160 may be integrally formed to be connected to the connection pipe 140.
[0035] 송풍연결관 (190)은 도 1에 도시된 바와 같이 통관체 (120)와 웅축관 (150)의 사이 에 배치되며, 격판 (125)들을 통과하는 과정에서 폐수로부터 열을 흡수한 증기를 웅축관 (150) 미세관 (154)의 표면까지 도달하도록 연결한다. 송풍연결관 (190)은 통관체 (120) 로부터 응축관 (150)까지 이동하는 과정에서 증기가새지 않도흑 밀폐되어야 한다.  The air blowing connector 190 is disposed between the tubular body 120 and the male tube 150 as shown in Figure 1, the steam absorbing heat from the waste water in the process of passing through the diaphragm 125 To reach the surface of the conduit 150 and the microtubule 154. The air blowing connector 190 should be closed without vapor leakage in the process of moving from the tubular body 120 to the condensation tube 150.
[0036] 송풍유닛 (170)은 격판 (125)으로 공기를 유입시키고 격판 (125)을 통과한 증기가 송풍연결관 (190)을 통해 응축관 (150) 미세관 (154) 표면까지 도달하도록 사전에 정해진 세기의 바람을 발생시킨다. 도 1에 도시된 바와 같이, 송풍유닛 (170)은 격판 (125)들로 공 기 ('Α')를 유입시켜 격판 (125)들을 통해 통과시키며, 격판 (125)들을 통과한 증기 ('Β')가 송풍연결관 (190)을 통해 응축관 (150)의 외부면까지 도달하도록 송풍한다. 송풍유닛 (170) 에 의해 발생되는 송풍량은 도 2에 도시된 바와 같이 격판 (125) 구조에 의해 달라 질 수 있다. 격판 (125)의 갯수가 많거나, 격판 (125)에 형성된 굴곡이 조밀한 경우 송풍 량을 증가시켜야 한다. Blowing unit 170 inlet the air into the diaphragm 125 and the steam passed through the diaphragm 125 in advance to reach the surface of the condensation tube 150, the microtubule 154 through the air blow connection tube 190 Generates a wind of the set intensity. As shown in FIG. 1, the blower unit 170 introduces air ('Α') into the diaphragms 125 and passes through the diaphragms 125, and the steam passing through the diaphragms 125 ('Β). ') Is blown to reach the outer surface of the condensation tube 150 through the blowing connector (190). The blowing amount generated by the blowing unit 170 may be changed by the diaphragm 125 structure as shown in FIG. 2. If the number of the diaphragm 125 is large or the bending formed in the diaphragm 125 is dense, the airflow amount should be increased.
4 4
대체용지 (규칙 저 126조) [0037] 리고, 도 1에 도시된 바와 같이, 송풍유닛 (170)에서 발생된 바람을 유실없이 통 관체 (120)까지 인도하기 위해 송풍관 (175)이 설치된다. Alternative Paper (Article 126 of the Rules) And, as shown in Figure 1, the blower pipe 175 is installed to guide the wind generated in the blowing unit 170 to the tubular body 120 without loss.
[0038] 제 3수용조 (180)는 웅축관 (150)의 외부면에서 웅축된 수분을 수용하는 역할을 수행한다. 제 3수용조 (180)에 수용된 수분은 정수관 (185)을 통해 도시되지 않은 정수저 장조로 이송된다. 여기서 계 3수용조 (180)에 수용된 물을 정수저장조로 이송할 것인지를 조절하기 위한 정수관밸브 (187)를 추가로 설치하는 것이 가능하다.  The third receiving tank 180 serves to receive the water condensed on the outer surface of the tube 150. Moisture contained in the third water tank 180 is transferred to the water purification tank not shown through the water purification pipe 185. Here, it is possible to further install a purified water pipe valve 187 for controlling whether to transfer the water contained in the three water tank 180 to the purified water storage tank.
[0039] 즉, 송풍유닛 (170)에 의해 격판 (125)을 통과한 증기는 송풍연결관 (190)에 의해 웅축관 (150) 미세관 (154)의 표면에 도달하여 웅축되고, 응축에 의해 형성된 수분은 제 3 수용조 (180)에 수용되며, 정수관 밸브 (187)의 개폐 여부에 따라 정수 저장조로 이송된 다.  That is, the steam passing through the diaphragm 125 by the blowing unit 170 is compressed by reaching the surface of the micro-pipe 154 of the expansion tube 150 by the blowing connection tube 190, by condensation The formed water is accommodated in the third receiving tank 180, and is transferred to the purified water storage tank depending on whether the purified water pipe valve 187 is opened or closed.
[0040] 이하에서는, 도 3을 참조하여, 본 발명의 제 1실시예에 따론 폐수 증발웅축장치 (100)의 동작을 구체적으로 설명한다.  Hereinafter, with reference to Figure 3, the operation of the wastewater evaporation expansion device 100 according to the first embodiment of the present invention will be described in detail.
[0041] 먼저, 폐수 증발응축장치 (100)의 제 1수용조 (110)는 외부로부터 이송된 폐수를 저장하면서 저장된 폐수를 폐수 이송구 (115)를 통해 일정량씩 통관체 (120)로 이송시킨 다 (S210).  First, the first water tank 110 of the wastewater evaporative condensation apparatus 100 is to transfer the wastewater stored in the wastewater transfer port 115 by a predetermined amount by a certain amount through the wastewater transfer port 115 while storing the wastewater transported from the outside. (S210).
[0042] 이렇게 통관체 (120)로 이송된 폐수는 격판 (125)들의 표면을 따라 홀러가며, 격판 (125)들 표면을 흐르는 폐수는 유입된 공기에 의해 열을 빼앗기고, 이 과정에서 열을 흡수 한 증기는 송풍연결관 (190)을 통해 웅축관 (150)으로 이동한다 (S220). 격판 (125)으로부터 웅축관 (150)의 외부면까지의 증기의 이동은 송풍유닛 (170)에 의해 발생된 바람에 의해 이 루어진다.  Wastewater transported to the clearance body 120 is thus holed along the surface of the diaphragm 125, the wastewater flowing through the surface of the diaphragm 125 is deprived of heat by the air introduced, and absorbs heat in this process One steam is moved to the male tube 150 through the air blower tube 190 (S220). The movement of steam from the diaphragm 125 to the outer surface of the shaft 150 is effected by the wind generated by the blowing unit 170.
[0043] 격판 (125)들을 통과하면서 열을 빼앗긴 폐수는 계 2 수용조 (130)에 의해 수용된 다 (S230). 수용된 폐수는 이송펌프 (160)에 의하여 연결관 (140)과 웅축관 (150)을 거쳐 외부로 이송된다 (S240).  Waste water deprived of heat while passing through the partitions (125) is received by the second reservoir 130 (S230). The received waste water is transferred to the outside via the connecting pipe 140 and the male pipe 150 by the transfer pump 160 (S240).
[0044] 본 발명의 게 1실시예에서는 계 1수용조 (110)에 저장된 폐수가 대략 50°C인 경우 통관체 (120)의 격판 (125)을 통과한 폐수는 대략 3( C로 온도가 하강하여 제 2수용조 (130)에 수용된다. 이러한 폐수의 온도 하강은 격판 (125)을 통과하는 폐수가 송풍유닛 (170)에 의해 유입된 공기에 의해 열을 빼앗기기 때문이다. In an embodiment of the present invention, when the wastewater stored in the system 1 water tank 110 is approximately 50 ° C., the wastewater passing through the diaphragm 125 of the tubular body 120 has a temperature of approximately 3 (C). The lowering is accommodated in the second water tank 130. The temperature drop of the waste water is because the waste water passing through the diaphragm 125 is deprived of heat by the air introduced by the blowing unit 170.
[0045] 계 2수용조 (130)에 수용된 30°C의 폐수는 웅축관 (150)을 통과하면서 대략 10°C 정도 상승한다. 이것은 송풍연결관 (190)을 통해 이동된 증기가 응축관 (150)의 외부면에 접촉되면서 내부에 흐르는 폐수의 온도를 높이기 때문이다. Wastewater of 30 ° C accommodated in the system 2 receiving tank 130 rises by approximately 10 ° C while passing through the male tube (150). This is because the steam moved through the air connection pipe 190 increases the temperature of the wastewater flowing therein while contacting the outer surface of the condensation pipe 150.
[0046] S220단계에서 웅축관 (150)으로 이동된 증기는 웅축되고, 응축되어 형성된 수분 은 제 3수용조 (180)에 의해 수용된다 (S250). 제 3수용조 (180)에 수용된 물은 정수관 (185)을 통해 도시되지 않은 정수저장조로 이송된다.  The steam moved to the shaft tube 150 in step S220 is constricted, the water formed by condensation is received by the third water tank (180) (S250). The water contained in the third tank 180 is transferred to the purified water storage tank (not shown) through the purified water pipe 185.
[0047] 이와 같이 본 발명의 제 1실시예에 따른 폐수 증발응축장치 d 00)는, 굴곡된 격판 (125)을 통해 폐수를 통과시킴으로써 증발률을 향상시킬 수 있고, 응축관 (150)의 외부 면에 증기를 접촉시킴으로써 응축관 (150)의 내부를 통과하는 폐수의 온도를 상승시킬 수 있다.  As such, the wastewater evaporative condensation apparatus d 00 according to the first embodiment of the present invention may improve the evaporation rate by passing the wastewater through the curved diaphragm 125, and the outside of the condensation pipe 150 The temperature of the wastewater passing through the inside of the condensation tube 150 can be raised by bringing steam into contact with the surface.
[0048] 본 발명의 제 1실시예에 따른 폐수 증발웅축장치 (1oo)가 응축관 (150)을 통해 외 부로 이송된 폐수를 다시 계 1수용조 (110)로 이송하여 본 발명의 제 1실시예에 따른 폐수 증발응축장치 (100)에 의한 재 처리를 수행할 수 있다. 이 경우, 제 1수용조 (110)로 다시 Wastewater evaporative expansion device (1 oo) according to the first embodiment of the present invention transfers the wastewater transported to the outside through the condensation pipe 150 to the first water tank 110, the first of the present invention Reprocessing by wastewater evaporation condensation apparatus 100 according to the embodiment can be performed. In this case, back to the first tank 110
5 5
대체용지 (규칙 제 26조) 이拿된 폐,수는 전 처리 단계의 응축관 (150)에 의해 온도가 상승된 상태이므로 제 1수용 조 (110)로 이송되기 전 폐수의 온도를 상승시키는데 소모되는 전력을 감소시킬 수 있다. 실 시 예 2 Alternative Site (Article 26) Since the temperature of the waste and water is increased by the condensation tube 150 of the pretreatment stage, the power consumed to increase the temperature of the wastewater before being transferred to the first storage tank 110 may be reduced. Example 2
[0049] 이하, 도 4를 참조하여 본 발명의 계 2실시예에 따른 폐수 증발웅축장치를 설명한 다. 다만, 제 1실시예와 동일한 일부 구성요소에 대해서는 동일한 도면번호를 부여하고 구 체적인 설명은 생략한다. 도 4는 본 발명의 제 2실시예에 따른 폐수 증발웅축장치의 블록 도이다.  Hereinafter, the wastewater evaporation expansion device according to the second embodiment of the present invention will be described with reference to FIG. 4. However, the same reference numerals are assigned to some of the same components as the first embodiment, and detailed description thereof will be omitted. 4 is a block diagram of the wastewater evaporation and contraction apparatus according to the second embodiment of the present invention.
[0050] 도 4에 도시한 바와 같이 본 발명의 제 2실시예에 따른 폐수 증발웅축장치 (200)는 제 1수용조 (110)와 통관체 (120), 제 2수용조 (130), 이송펌프 (160), 송풍유닛 (170) 등과 같은 구성요소가 도 1 및 도 2의 제 1실시예와 동일하다.  As shown in FIG. 4, the wastewater evaporation contractor 200 according to the second embodiment of the present invention includes a first accommodation tank 110 and a tubular body 120, a second accommodation tank 130, and a transfer. Components such as the pump 160, the blowing unit 170, and the like are the same as those of the first embodiment of FIGS.
[0051] 제 1실시예에서의 이송펌프 (160)는 제 2수용조 (130)의 폐수를 연결관 (140)을 통 해 응축관 (150)의 미세관 (154)으로 순환시키지만, 제 2실시에에서의 이송펌프 (160)는 제 2수용조 (130)의 폐수를 연결관 (140)을 통해 제 4수용조 (157a)에 일시 수용한 후 이송관 (152a)을 통해 외부로 배출시킨다.  The transfer pump 160 in the first embodiment circulates the wastewater of the second water tank 130 to the microtubule 154 of the condensation tube 150 through the connecting pipe 140, but the second In the embodiment, the transfer pump 160 temporarily stores the wastewater of the second accommodation tank 130 in the fourth accommodation tank 157a through the connection pipe 140 and then discharges it to the outside through the transfer pipe 152a. .
[0052] 제 4수용조 (157a)로부터 이송관 (152a)을 통해 이송된 폐수는 사용자의 필요에 따라 보일러 또는 히터와 같은 도시되지 않은 가열수단에 의해 가열된 후 다시 제 1수용 조 (110)로 이송되어 재처리과정을 거칠 수 있다. 여기서 폐수의 1차 가열은 제 1실시예에 서는 통관체 (120)로부터 공급되는 증기를 웅축시키는 과정에서 얻은 열로 직접 폐수를 가열했지만, 제 2실시예에서는 통관체 (120)로부터 공급되는 증기를 응축시키는 과정에서 얻은 열로 히트 파이프 (154a)의 열매를 가열하고, 이 히트 파이프 (154a)의 열을 이용하 여 다시 제 4수용조 (157a)에 수용된 폐수를 가열하는 방식을 채택하고 있다.  Waste water transferred from the fourth tank 157a through the transfer pipe 152a is heated by an unshown heating means such as a boiler or a heater according to a user's need, and then the first tank 110 again. It can be transferred to and undergo reprocessing. Here, in the first embodiment, the wastewater was directly heated with heat obtained in the process of condensing the steam supplied from the tubular body 120 in the first embodiment, but in the second embodiment, the steam supplied from the tubular body 120 was The heat obtained from the condensation process heats the fruit of the heat pipe 154a, and uses the heat of the heat pipe 154a to heat the wastewater contained in the fourth water tank 157a again.
[0053] 제 2실시예에서의 응축관 (150a)은 다수의 히트 파이프 (154a)가 제 4수용조 (157a)의 하단부에 그의 일부가 내입되게 다발형태로 배열되는데, 이 저 14수용조 (157a) 에는 이송펌프 (160)에 의해 제 2수용조 (130)의 폐수가 유입된다. 이러한 다수의 히트 파 이프 (154a)는 격판 (125)들을 통과하면서 흡수한 열을 포함한 증기와 응축관 (150a)히트 파이프 (154a)의 표면과의 접촉면적을 극대화하기 위한 구조를 가지므로 증기의 웅축을 촉진시킨다. The condensation tube 150a in the second embodiment is arranged in a bundle such that a plurality of heat pipes 154a are partially embedded in the lower end of the fourth accommodation tank 157a, and the low 14 accommodation tank ( Waste water of the second water tank 130 is introduced into the water tank 157a by the transfer pump 160. Since the plurality of heat pipes 154a has a structure for maximizing the contact area between the steam including heat absorbed while passing through the diaphragms 125 and the surface of the heat pipe 154a of the condensation tube 150a, Promote cultivation.
[0054] 또한 히트 파이프 (154a)의 형상을 방열핀 형상으로 제작함으로써 히트 파이프 (154a)와 수분을 함유한 공기와의 접촉면적을 극대화할 수 있다.  In addition, by making the shape of the heat pipe 154a in the shape of a heat radiation fin can maximize the contact area between the heat pipe 154a and the air containing moisture.
[0055] 위의 웅축과정에서 히트 파이프 (154a)는 히트 파이프 (154a)의 표면에 도달한 증기로부터 열을 흡수하여 제 4수용조 (157a)에 수용된 폐수에 전달하는 기능을 수행한다. 이에 따라 제 4수용조 (157a)에 수용된 폐수는 온도가 소폭 상승한다.  In the above expansion process, the heat pipe 154a performs a function of absorbing heat from the steam reaching the surface of the heat pipe 154a and transferring it to the wastewater contained in the fourth water tank 157a. As a result, the temperature of the wastewater accommodated in the fourth accommodation tank 157a is slightly increased.
[0056] 또한, 본 발명의 제 2실시예에 따른 폐수 증발웅축장치 (200)는 웅축관 (150a)의 외부면을 하우징하는 웅축관 몸체 (156a)를 포함할 수 있다. 이러한 응축관 몸체 (156a) 는 응축관 (150a)의 주위를 밀폐시키고, 밀폐된 증기의 웅축에 의해 발생된 수분을 제 3수 용조 (180)로 수용시킬 수 있다. In addition, the wastewater evaporation contractor 200 according to the second embodiment of the present invention may include a shaft tube body 156a housing the outer surface of the shaft tube 150a. The condensation tube body 156a seals the surroundings of the condensation tube 150a and can receive moisture generated by the expansion of the sealed steam into the third water bath 180.
[0057] 송풍연결관 (190)은 도 4에 도시된 바와 같이 통관체 (120)와 웅축관 (150a) 사이 에 배치되며, 격판 (125)들을 통과하는 과정에서 폐수로부터 열을 흡수한 증기를 웅축관 (150a) 히트 파이프 (1543)의 표면까지 전달해 주는 역할을 한다. 송풍연결관 (190)은 통 Blowing air connection pipe 190 is disposed between the tubular body 120 and the male tube 150a, as shown in Figure 4, and the steam absorbing heat from the waste water in the process of passing through the diaphragm 125 The male tube 150a serves to transfer the surface of the heat pipe 1541 3 . Blower connector (190)
6 6
대체용지 (규칙 제 26조) 관체 (120)로부터 웅축관 (150a)까지 이동하는 과정에서 증기가 새지 않도록 밀폐되어야 한다. Alternative Site (Article 26) In the process of moving from the tubular body 120 to the male tube 150a, it should be sealed so that steam may not leak.
[0058] 제 3수용조 (180)는 웅축관 (150a) 히트 파이프 (154a)의 표면에서 응축된 수분을 수용하는 역할을 수행한다. 제 3수용조 (180)에 수용된 수분은 정수관 (185)을 통해 도시 되지 않은 정수저장조로 이송된다. 여기서 제 3수용조 (180)에 수용된 물을 정수저장조로 이송할 것인지를 조절하기 위한 정수관밸브 (187)를 추가로 설치하는 것이 가능하다.  The third water tank 180 serves to receive the water condensed on the surface of the male tube (150a) heat pipe (154a). Moisture contained in the third water tank 180 is transferred to the purified water storage tank (not shown) through the purified water pipe 185. Here, it is possible to further install a purified water pipe valve 187 for controlling whether to transfer the water contained in the third water tank 180 to the purified water storage tank.
[0059] 즉, 송풍유닛 (170)에 의해 격판 (125)을 통과하면서 생성된 증기는 송풍연결관 (190)에 의해 웅축관 (150a) 히트 파이프 (154a)의 표면에 도달하여 응축되고, 웅축에 의 해 형성된 수분은 아래로 홀러내려 제 3수용조 (180)에 수용되며, 정수관밸브 (187)의 개 폐여부에 따라 정수저장조로 이송된다. That is, the steam generated while passing through the diaphragm 125 by the blowing unit 170 is condensed by reaching the surface of the heat pipe (150a) heat pipe (154a) by the air blow connection pipe 190, Moisture formed by the water is bent down to be accommodated in the third receiving tank 180, and is transferred to the purified water storage tank according to the opening and closing of the purified water pipe valve (187).
[0060] 이하에서는, 도 3을 참조하여, 본 발명의 계 2실시예에 따른 폐수 증발응축장치 (200)의 동작을 구체적으로 설명한다.  Hereinafter, with reference to Figure 3, the operation of the wastewater evaporation condensation apparatus 200 according to the second embodiment of the present invention will be described in detail.
[0061] 먼저, 폐수 증발응축장치 (200)의 계 1 수용조 (110)는 외부로부터 이송된 폐수를 저장하면서 저장된 폐수를 폐수이송구 (115)를 통해 일정량씩 통관체 (120)로 이송시킨다 (S210).  First, the system 1 receiving tank 110 of the wastewater evaporative condensation apparatus 200 transfers the stored wastewater to the clearance body 120 by a predetermined amount through the wastewater conveyance port 115 while storing the wastewater transported from the outside ( S210).
[0062] 이렇게 통관체 (120)로 이송된 폐수는 격판 (125)들의 표면을 따라 흘러내리면서 유입된 공기에 의해 열을 빼앗기고, 이 과정에서 열을 흡수한 증기는 송풍연결관 (190)을 통해 웅축관 (150a)으로 이동한다 (S220). 격판 (125)으로부터 응축관 (150a) 히트 파이프 (154a)의 표면까지의 증기 이동은 송풍유닛 (170)에 의해 발생된 바람에 의해 이루어진 다.  Wastewater transported to the clearance body 120 is thus taken away by the air flowing in flowing along the surface of the diaphragm 125, the steam absorbing the heat in the process blows the connection pipe (190) Go through the male tube (150a) (S220). The steam movement from the diaphragm 125 to the surface of the heat pipe 154a of the condensation tube 150a is made by the wind generated by the blowing unit 170.
[0063] 격판 (125)들을 통과하면서 열을 빼앗긴 폐수는 계 2 수용조 (130)에 의해 수용된 다 (S230). 수용된 폐수는 이송펌프 (160)에 의하여 연결관 (140)을 거쳐 외부로 이송된다 (S240).  Waste water deprived of heat while passing through the partitions (125) is received by the second reservoir 130 (S230). The received waste water is transferred to the outside via the connection pipe 140 by the transfer pump 160 (S240).
[0064] 본 발명의 제 2 실시예에서도 게 1수용조 (110)에 저장된 폐수가 대략 50°C인 경 우 통관체 (120)의 격판 (125)을 통과한 폐수는 대략 30°C로 하강하여 제 2수용조 (130)에 수용된다. 이러한 폐수의 온도 하강은 격판 (125)을 통과하는 폐수가 송풍유닛 (170)에 의해 유입된 공기에 의해 열을 빼앗기기 때문이다. In the second embodiment of the present invention, when the wastewater stored in the crab 1 tank 110 is approximately 50 ° C, the wastewater passing through the diaphragm 125 of the clearance body 120 is lowered to approximately 30 ° C. Is accommodated in the second receiving tank (130). The temperature drop of the waste water is because the waste water passing through the diaphragm 125 is deprived of heat by the air introduced by the blower unit 170.
[0065] S220단계에서 웅축관 (150a)으로 이동된 증기는 응축되고, 응축되어 형성된 수분 은 계 3수용조 (180)에 의해 수용된다 (S250). 제 3수용조 (180)에 수용된 물은 정수관 (185)을 통해 도시되지 않은 정수저장조로 이송된다.  In step S220, the steam moved to the expansion pipe 150a is condensed, and the water formed by condensation is received by the three-water tank 180 (S250). The water contained in the third tank 180 is transferred to the purified water storage tank (not shown) through the purified water pipe 185.
[0066] 이와 같이 본 발명의 제 2실시예에 따른 폐수 증발응축장치 (100)는, 굴곡된 격판 (125)을 통해 폐수를 통과시킴으로써 증발률을 향상시킬 수 있고, 응축관 (150a) 히트 파이프 (154a)의 표면에 증기를 접촉시킴으로써 응축관 (150a) 히트 파이프 (154a)의 온 도를 상승시키고, 이를 매개로 다시 제 4수용조 (157a)에 수용된 폐수의 온도를 상승시킬 수 있다.  Thus, the wastewater evaporative condensation apparatus 100 according to the second embodiment of the present invention can improve the evaporation rate by passing the wastewater through the curved diaphragm 125, the condensation pipe 150a heat pipe The temperature of the condensation tube 150a heat pipe 154a can be raised by bringing steam into contact with the surface of 154a, and the temperature of the wastewater contained in the fourth water tank 157a can be raised again.
[0067] 본 발명의 제 2실시예에 따른 폐수 증발응축장치 (200)는 통관체 (120)를 통해 외 부로 이송된 폐수를 다시 제 1수용조 (110)로 이송하여 본 발명의 제 2실시예에 따른 폐수 증발응축장치 (200)에 의한 재 처리를 수행할 수 있다. 이 경우, 계 1수용조 (110)로 다시 이송된 폐수는 전 처리 단계의 통관체 (120)에서 20°C의 온도가 하강한 상태이므로 제 1 수용조 (110)로 이송되기 전 폐수의 온도를 상승시키는데 소모되는 전력을 감소시킬 수 Wastewater evaporative condensation apparatus 200 according to the second embodiment of the present invention is the second embodiment of the present invention by transferring the wastewater transported to the outside through the tubular body 120 to the first water tank 110 again Reprocessing by wastewater evaporative condensation apparatus 200 according to the example can be performed. In this case, since the wastewater conveyed back to the system 1 receiving tank 110 has a temperature of 20 ° C. in the clearance body 120 of the pretreatment step, the temperature of the wastewater before being conveyed to the first receiving tank 110. Can reduce the power consumed to raise
대체용지 (규칙 저 126조) 있다. 실 시 예 3 Alternative Paper (Article 126 of the Rules) have. Example 3
[0068] 본 발명의 제 3실시예에 의한 폐수 증발응축장치는 도 1 및 도 4에 도시한 바와 갈 은 제 1, 2실시예의 폐수 증발웅축장치 (100X200)에, 웅축관 (150)(150a)을 지지하면서 회전시키기 위한 수단을 더 구비하여, 통관체 (120)로 부터 공급되는 수분을 함유한 증기 의 웅축를을 높이기 위한 것이다.  Wastewater evaporative condensation apparatus according to a third embodiment of the present invention is the wastewater evaporative condensation apparatus (100X200) of the first and second embodiments as shown in Figures 1 and 4, the expansion pipe 150 (150a) It is to further increase the shaft of the water-containing steam supplied from the tubular body 120, further comprising a means for rotating while supporting.
[0069] 이를 위해, 웅축관 (150)(150a)의 중앙에 상하로 관통하는 회전축 (151)(151a)이 설치되고, 회전축 (151)(151a)의 상단과 하단에는 회전축 (151)(151a)을 포함하는 응축 관 (150)(150a)의 원활한 회전을 위한 조인트 (163X164)가 설치되어 있다. 회전축 (151)(151a)은 풀리 (161)(162)와 벨트 (159)를 매개로 모터 (158)로부터 회전력을 전달 받아 회전한다.  To this end, the rotating shaft 151, 151a penetrating up and down in the center of the shaft tube 150, 150a is installed, the upper and lower ends of the rotating shaft 151, 151a, the rotating shaft 151, 151a. The joint (163X164) for smooth rotation of the condensation tube (150) (150a) including a) is installed. The rotary shafts 151 and 151a rotate by receiving rotational force from the motor 158 via the pulleys 161 and 162 and the belt 159.
[0070] 회전축 (151)(151a)은 대략 900개의 미세관 (154)이나 히트 파이프 (154a)를 포 함하는 웅축관 (150)(150a)을 지지할 수 있을 정도로 강도를 가져야 하고, 회전축 Rotating shaft 151 (151a) should have a strength enough to support about 90 micro-tubes (154) or male tube (150) (150a) including the heat pipe (154a),
(151) (151a)과 웅축관 (150)(150a)과의 결합은 웅축관 (150)(150a)의 중량에 회전력까 지 가해지는 하중에도 버틸 수 있을 정도로 견고해야 함은 당연하다. (151) (151a) and the coupling of the shaft 150 (150a) is a natural that it must be strong enough to withstand the load applied to the rotational force to the weight of the shaft 150 (150a).
[0071] 회전축 (151)(151a)은 연결관 (140) 혹은 이송관 (152)(152a)과는 별개로 설치할 수도 있으나, 본 발명에서의 회전축 (151)(151a)은 도 1 및 도 4에서와 같이 연결관 (140) 및 이송관 (152)(152a)의 역할도 한다.  Rotating shaft 151, 151a may be installed separately from the connecting pipe 140 or the transfer pipe 152, 152a, the rotating shaft 151, 151a in the present invention is 1 and 4 As in the connection pipe 140 and the transfer pipe 152 (152a) also serves as.
[0072] 이를 위해 관 형태의 회전축 (151)(151a)의 하단에는 폐수를 공급하는 연결관 (140)이 연결되고, 희전축 (151)(151a)의 상단에는 폐수를 '외부로 배출하는 이송관To this end, the connecting tube 140 for supplying wastewater is connected to the lower end of the rotary shaft 151 (151a) in the form of a tube, and the upper end of the rare electrode shaft 151 (151a) is transported to discharge the ' outward ' tube
(152) (152a)이 연결되어 있다. 152 and 152a are connected.
[0073] 뿐만 아니라, 회전축 (151)의 상하에는 도 1에서와 같이 미세관 (154)에 폐수를 주 입하는 주입구 (163)와 미세관 (154)의 폐수를 외부로 배출하는 배출구 (155)가 형성되어 있으며, 이 주입구 (163)와 배출구 (155) 사이의 회전축 (151)은 가열되지 않은 폐수가 외 부로 배출되지 않도록 막혀 있다.  In addition, the upper and lower rotation shaft 151, the injection port 163 for injecting waste water into the microtube 154 as shown in Figure 1 and the outlet 155 for discharging the wastewater of the microtube 154 to the outside Is formed, and the rotary shaft 151 between the injection port 163 and the discharge port 155 is blocked so that the unheated waste water is not discharged to the outside.
[0074] 또한 회전축 (151a)에는 도 4에서와 같이 제 4수용조 (157a)에 폐수를 주입하는 주 입구 (163a)와 제 4수용조 (157a)의 폐수를 외부로 배출하는 배출구 (155a)가 상하로 형성 되어 있으며, 이 주입구 (163a)와 배출구 (155a) 사이의 회전축 (151a) 역시 가열되지 않 은 폐수가외부로 배출되지 않도록 막혀 있다.  In addition, the rotation shaft (151a) as shown in Figure 4 the discharge port 155a for discharging the wastewater of the main inlet (163a) and the fourth receiving tank (157a) for injecting wastewater into the fourth receiving tank (157a) Is formed up and down, the rotary shaft 151a between the injection port (163a) and the discharge port (155a) is also blocked so as not to discharge the unheated waste water to the outside.
[0075] 여기서, 회전축 (151)의 주입구 (163)는 미세관 (154)의 최하단부와 연통되는 위 치의 회전축 (151)에, 배출구 (155)는 미세관 (154)이 최상단부와 연통되는 위치의 회전축 (151)에, 그리고 회전축 (151a)의 주입구 (163a)는 계 4수용조 (157a)의 최하단부와 연통 되는 위치의 회전축 (151a)에, 배출구 (155a)는 제 4수용조 (157a)의 최상단부와 연통되는 위치의 회전축 (151a)에 각각 형성되는 것이 바람직하다.  Here, the inlet 163 of the rotary shaft 151 is in the rotary shaft 151 of the position that is in communication with the bottom end of the microtube 154, the outlet 155 is the position where the microtubule 154 is in communication with the top end Of the rotary shaft 151 and the injection port 163a of the rotary shaft 151a to the rotary shaft 151a at a position in communication with the lowest end of the four reservoir tanks 157a, and the discharge port 155a is the fourth reservoir tank 157a. It is preferably formed on each of the rotary shaft (151a) of the position in communication with the top end of the.
[0076] 따라서 응축관 (150)(150a)의 회전으로 통관체 (120)로부터 유입된 수분을 함유 한 고온의ᅳ증기가 흐르는 경로가 계속해서 바뀌면서 웅축관 (150)의 미세관 (154)이나 웅 축관 (150a)의 히트 파이프 (154a)를 고르게 가열하므로 증기의 웅축를이 극대화되는 것 이다. 실 시 예 4  Therefore, as the condensation tube (150) (150a) by the rotation of the hot steam vapor containing the moisture flowing from the tube body 120 is continuously changed while the microtube 154 of the male tube 150 or Since the heat pipe 154a of the male tube 150a is heated evenly, the expansion of the steam is maximized. Example 4
8  8
대체용지 (규칙 제 26조) [0077] 이하에서는, 도 5를 참조하여 본 발명의 또 다른 일 실시예에 따른 폐수 증발웅축 시스템 (10)에 대해 설명한다. 다만, 이하에서는 제 1실시예의 폐수 증발응축장치 (100)를 포함하는 폐수 증발웅축시스템 (10)에 대해서만 설명하나, 제 4실시예는 이에 한정되지 않 고 제 2, 3설시예의 폐수 증발웅축장치 (100K200)를 포함하는 폐수 증할응축시'스템도 가 능하다. Alternative Site (Article 26) Hereinafter, with reference to Figure 5 will be described for the wastewater evaporation expansion system 10 according to another embodiment of the present invention. However, hereinafter, only the wastewater evaporative condensation system 10 including the wastewater evaporative condensation apparatus 100 of the first embodiment will be described, but the fourth embodiment is not limited thereto, and the wastewater evaporative condenser of the second and third embodiments is not limited thereto. the 'system also good in waste water comprising a condensing authenticate (100K200).
[0078] 도 5에 도시된 바와 같이, 본 실시예에 따른 폐수 증발응축시스템 (10)은 위에서 설명한 폐수 증발응축장치 (100)를 다수개를 연결하여 구성한 것으로 사용된 폐수 증발 응축장치 (100)의 갯수 만큼 증발웅축공정이 진행된다. 따라서 한 개의 폐수 증발응축장 치 (100)를사용하는 것보다 향상된 폐수 처리 효과를 기대할 수 있다.  As shown in FIG. 5, the wastewater evaporative condensation system 10 according to the present embodiment is a wastewater evaporative condensation apparatus 100 used as a constitution of a plurality of wastewater evaporative condensation apparatuses 100 described above. The evaporation expansion process is carried out as many as. Therefore, an improved wastewater treatment effect can be expected than using one wastewater evaporative condenser 100.
[0079] 도 5에서는 편의상 2개의 폐수 증발웅축장치 (100)를 사용한 폐수 증발웅축시스템 (10)을 도시하였으나, 필요에 따라 폐수 증발웅축장치 (100)의 갯수는 다양하게 변경할 수 있다. In FIG. 5, the wastewater evaporation expansion system 10 using two wastewater evaporation expansion units 100 is illustrated for convenience, but the number of wastewater evaporation expansion units 100 may be variously changed as necessary.
[0080] 본 발명에 의한 다른 실시예에 따른 폐수 증발응축시스템 (10)은 2개의 폐수 증 발응축장치 (100)(100a)가 연결되어 있다. 전단에 배치된 폐수 증발응축장치 (100)의 이 송관 (152)로부터 이송된 폐수가 후단에 배치된 폐수증발웅축장치 (100a)의 제 1수용조 (110)로 이송된다. 이송된 폐수에 대한 처리는 전술한 폐수 증발웅축장치 (100)의 동작 과 동일하게 이루어진다.  Wastewater evaporative condensation system 10 according to another embodiment of the present invention is connected to the two wastewater evaporation condensation apparatus (100) (100a). The wastewater transferred from the transfer pipe 152 of the wastewater evaporative condenser 100 arranged at the front end is transferred to the first water tank 110 of the wastewater evaporation and expansion device 100a arranged at the rear end. The treatment of the transferred wastewater is made in the same manner as the operation of the wastewater evaporation and contraction apparatus 100 described above.
[0081] 따라서, 본 발명의 다른 실시예에 따른 폐수 증발응축시스템 (10)은 폐수 처리동 작을 2번 수행하기 때문에 1번의 폐수 처리동작을 수행하는 제 1실시예 및 제 2, 3실시예 의 폐수 증발응축장치 (200)보다 폐수 처리 성능이 향상된다.  Therefore, the wastewater evaporation condensation system 10 according to another embodiment of the present invention performs the wastewater treatment operation twice, so that the first and second and third embodiments of the wastewater treatment operation are performed. Wastewater treatment performance is improved than the wastewater evaporation condenser 200.
[0082] 한편, 위에서 본 발명의 각 실시예에 따른 폐수 증발웅축장치 (100)(200) 및 폐 수 증발응축시스템 (10)이 폐수를 이용한 처리에 적용되는 것만을 소개하였지만, 폐수가 아닌 강물 및 해수와 같은 다른 종류의 물에 대해서도 적용이 가능함은 당연하다ᅳ 부호의 설명  On the other hand, the wastewater evaporative condensation device 100, 200 and the wastewater evaporative condensation system 10 according to the embodiments of the present invention were introduced only to the treatment using wastewater, but not the wastewater river water. Naturally, it is also applicable to other kinds of water such as seawater.
[0083] 10 : 폐수 증발웅축시스템 100, 100a, 200 : 폐수 증발웅축장치  10 : wastewater evaporation expansion system 100 , 100a, 200 : wastewater evaporation expansion system
110 : 제 1수용조 115 : 폐수 이송구  110 : 1st water tank 115 : wastewater conveyance port
120 : 통관체 125 : 격판  120 : customs clearance 125 : diaphragm
130 : 제 2수용조 140 : 연결관  130: second tank 140: connector
150, 150a : 응축관 151, 151a : 회전축  150, 150a : Condensation tube 151, 151a : rotating shaft
152, 152a : 이송관 153, 153a : 배출구  152, 152a : Transfer pipe 153, 153a : Outlet
154 : 미세관 154a : 히 S 파이프  154 : Microtube 154a : Hi S pipe
155, 155a : 유입구 156, 156a : 응축관 몸체  155, 155a : Inlet 156, 156a : Condenser tube body
157a : 제 4수용조 158 : 모터  157a : Fourth tank 158 : Motor
159 : 벨트 161, 162 : 풀리  159 : Belt 161 , 162 : Pulley
163, 164 : 조인트 160 : 이송펌프  163, 164: Joint 160: Transfer pump
170 : 송풍유닛 180 : 제 3수용조  170 : Blower unit 180 : 3rd water tank
185 : 정수관 187 : 정수관 밸브  185 : Water pipe 187 : Water pipe valve
190 : 송풍 연결관 ᅳ  190 : Ventilation connector ᅳ
9  9
대체용지 (규칙 저 126조)  Alternative Paper (Article 126 of the Rules)

Claims

특허 청구의 범위 청구항 1 Claims Claim 1
이송된 폐수를 저장하면서 후처 리 공정으로 이송하는 제 1수용조 ( 110); A first accommodating tank (110) for storing the transferred wastewater and transferring it to a post-treatment process;
공기를 공급하는 송풍 유닛 (170); A blowing unit 170 for supplying air;
상기 제 1수용조 (110)로부터 이송된 폐수를 통과시 키기 위한 다수의 격판 (125)이 구비 되어 상기 송풍유닛 (170)으로부터 공기를 공급받아 상기 폐수로부터 열을 흡수하여 수 분을 증발시키 는 통관체 (120); A plurality of diaphragms 125 are provided for passing the wastewater transferred from the first water tank 110 to receive air from the blower unit 170 to absorb heat from the wastewater to evaporate moisture. Clearance (120);
상기 통관체 (120)를 통과한 폐수를 수용하는 제 2수용조 (130); A second accommodation tank 130 for receiving wastewater that has passed through the clearance pipe 120;
상기 계 2수용조 ( 130)에 수용된 폐수를 연결관 (140)을 통해 이송시 키는 이송펌프 (160); A transfer pump 160 for transferring wastewater contained in the system 2 receiving tank 130 through a connecting pipe 140;
상기 이송펌프 (160)에 의해 이송되어 다발형 태로 배열된 다수의 미세관 (154)을 순환 되는 폐수에 의해 상기 통 관체 ( 120)로부터 공급되는 수분을 함유한 공기로부터 열을 흡수하여 응축시키는 응축관 (150;) ; 및 Condensation that absorbs heat from the air containing moisture supplied from the tubular body 120 and condenses the waste water circulated through the plurality of microtubes 154 that are transported by the transfer pump 160 and arranged in a bundle form. tube (150;); and
상기 응축관 (150) 미세관 (154)들의 표면에 도달한 공기가 응축되어 형성된 수분을 수 용하는 겨 13수용조 ( 180) 를 포함하며 , It comprises a chapel 13 reservoir 180 for receiving the water formed by the condensation of the air reaching the surface of the condensation tube 150, the microtubes (154),
상기 통관체 (120) 내의 상기 폐수는 상기 송풍 유닛 (170)으로부터의 공기에 의해 열을 빼앗겨 상기 통관체 (120)를 통과하기 전보다 온도가 하강하는 것을 특징으로 하는 폐수 중발웅축장치 . 청구항 2 The wastewater heavy expansion apparatus characterized in that the temperature of the wastewater in the clearance body (120) is deprived of heat by the air from the blower unit (170), and the temperature is lower than before passing through the clearance body (120). Claim 2
제 1항에 있어서, The method of claim 1,
상기 격판 ( 125)들은 폐수와의 접촉면적을 확장시키기 위해 절곡된 형상을 가지는 것 을 특징으로 하는 폐수 증 발응축장치 . 청구항 3 The diaphragm (125) is a waste water evaporation condenser characterized in that it has a bent shape to expand the contact area with the waste water. Claim 3
제 1항에 있어서, The method of claim 1,
상기 격판 (125)들에는 폐수와의 접촉면적을 확장시 키기 위한 다수 개의 홀이 형성된 것을 특징으로 하는 폐수 증발웅축장치 . 청구항 4 The diaphragm 125 is a wastewater evaporation expansion device characterized in that a plurality of holes are formed for extending the contact area with the wastewater. Claim 4
제 1항에 있어서, The method of claim 1,
상기 응축관 ( 150)을 통해 외부로 이송된 폐수는, 사전에 정해진 온도로 가열된 후 상 기 제 1수용조 (110)로 이 송되어 폐수 증발웅축장치 (100)에 의해 반복처 리되는 것을 특징으로 하는 폐수 증발웅축장치 . 청구항 5 The wastewater transported to the outside through the condensation tube 150 is heated to a predetermined temperature and then transferred to the first water tank 110 to be repeatedly processed by the wastewater evaporation and expansion device 100. Wastewater evaporation expansion device characterized by the above-mentioned. Claim 5
이송된 폐수를 저장하면서 후처 리 공정으로 이송하는 계 1수용조 (110); A first water tank 110 for storing the transferred wastewater and transferring it to the post-treatment process;
공기를 공급하는 송풍 유닛 ( 170); A blowing unit 170 for supplying air;
10 10
대체용지 (규칙 제 26조) 상기 제 1수용조 (110)로부터 이송된 폐수를 통과시키기 위한 다수 개의 격판 (125)이 구비되어 상기 송풍유닛 (170)으로부터 공기를 공급받아 상기 폐수로부터 열을 흡수하 여 수분을 증발시키는 통관체 (120); Alternative Site (Article 26) A plurality of diaphragms 125 for passing the wastewater transferred from the first water tank 110 are provided to receive air from the blower unit 170 to absorb heat from the wastewater to evaporate moisture. 120;
상기 통관체 (120)를 통과한 폐수를 수용하는 계 2 수용조 (130); A total 2 reservoir 130 for receiving wastewater passing through the clearance body 120;
상기 제 2수용조 (130)에 수용된 폐수를 연결관 (140)을 통해 이송시키는 이송펌프 (160); A transfer pump 160 for transferring the wastewater contained in the second receiving tank 130 through a connecting pipe 140;
상기 이송펌프 (160)에 의해 이송되어 계 4수용조 (157a)에 일부가 내입된 다발형태로 배 열된 히트 파이프 (154 a)를 순환되는 폐수에 의해 상기 통관체 (120)로부터 공급되는 수분을 함유한 공기로부터 열을 흡수하여 응축 시키는 응축관 (150a) ; 및 Water supplied from the tubular body 120 by waste water conveyed by the transfer pump 160 and circulated through the heat pipe 154a arranged in a bundle form partially embedded in the four-reservoir tank 157a is collected. A condensation tube 150a for absorbing and condensing heat from the contained air; and
상기 응축관 (150a) 히트 파이프 (154a)의 표면에 도달한 공기의 웅축에 의해 형성된 수분올 수용하는 제 3수용조 (180)를 포함하며, The condensation tube (150a) includes a third water tank (180) for receiving water formed by the expansion of the air reaching the surface of the heat pipe (154a),
상기 통관체 (120) 내의 상기 폐수는 상기 송풍 유닛 (170)으로부터의 공기에 의해 열을 빼앗겨 상기 통관체 (120)를 통과하기 전보다 온도가 하강하는 것을 특징으로 하는 폐수 증발응축장치 . 청구항 6 Waste water evaporative condensation apparatus characterized in that the temperature of the waste water in the clearance body 120 is deprived of heat by the air from the blowing unit (170) than before passing through the clearance body (120). Claim 6
제 5항에 있어서, The method of claim 5,
상기 격판 (125)들은 폐수와의 접촉면적을 확장시키기 위해 절곡된 형상을 가지는 것 을 특징으로 하는 폐수 증 발응축장치. 청구항 7 The diaphragm (125) is a waste water evaporation condenser characterized in that it has a bent shape to expand the contact area with the waste water. Claim 7
제 5항에 있어서, The method of claim 5,
상기 격판 (125)들에는 폐수와의 접촉면적을 확장시키기 위한 다수 개의 홀이 형성된 것을 특징으로 하는 폐수 증발웅축장치 . 청구항 8 The diaphragm 125 is a wastewater evaporation contractor, characterized in that a plurality of holes are formed to expand the contact area with the wastewater. Claim 8
제 5항에 있어서, The method of claim 5,
상기 웅축관 (150a)을 통해 외부로 이송된 폐수는, 사전에 정해진 온도로 가열된 후 상 기 제 1수용조 (110)로 이 송되어 폐수 증발응축장치 (200)에 의해 반복처리되는 것을 특징으로 하는 폐수 증발웅축장치. 청구항 9 The wastewater transported to the outside through the shaft tube 150a is heated to a predetermined temperature and then transferred to the first water tank 110 to be repeatedly processed by the wastewater evaporative condenser 200. Wastewater evaporation expander. Claim 9
제 1항 또는 제 5항에 있어서, The method according to claim 1 or 5,
상기 응축관 (150)(150a)의 중앙에 상하로 관통지게 설치되어 상기 웅축관 (150)(150a)의 회전중심이 되는 회전 축 (151)(151a) ; Rotating shafts 151 and 151a which are installed to penetrate up and down in the center of the condensation pipes 150 and 150a to become the rotation centers of the male pipes 150 and 150a;
상기 회전축 (151)(151a)의 상하에 결합되어 상기 응축관 (150)(150a)을 회전시키는 조인트 (163X164); 및 A joint 163X164 coupled to the top and bottom of the rotation shaft 151 and 151a to rotate the condensation tube 150 and 150a; And
상기 회전축 (151)(151a)에 풀리 (161X162)와 벨트 (159)를 매개로 회전력을 제공하는 모터 (158) 가 더 구비되는 것을 특징으로 하는 폐수 증발웅축장치. The rotary shaft (151) (151a) waste water evaporative expansion device characterized in that it is further provided with a motor (158) for providing a rotational force via the pulley (161X162) and the belt (159).
11 11
대체용지 (규칙 저 126조) 청구항 10 Alternative Paper (Article 126 of the Rules) Claim 10
제 1항과 제 5항 및 계 9항 중 어느 한 항의 폐수 증발응축장치 (100) (200)를 다수개 포 함하고, A plurality of waste water evaporation condensation apparatus (100) (200) of any one of claims 1, 5 and 9,
상기 폐수 증발응축장치 (100) (200)들은 서로 연결되며 , 전단에 배치된 폐수 증발응축 장치 (100X200)의 응축관 (150) (150a)으로부터 이송된 폐수를 후단에 배치된 폐수 증발응축장치 (100X200)의 제 1수용조 (110)로 이송하는 것을 특징으로 하는 폐수 증발 응축시스템, The wastewater evaporative condensation apparatus 100 and 200 are connected to each other, and the wastewater evaporative condensation apparatus disposed at the rear end of the wastewater transferred from the condensation pipes 150 and 150a of the wastewater evaporative condensation apparatus 100X200 disposed at the front end ( Wastewater evaporative condensation system, characterized in that the transfer to the first tank 110 of 100X200,
12 12
대체용지 (규칙 저 126조)  Alternative Paper (Article 126 of the Rules)
PCT/KR2012/007393 2010-09-17 2012-09-17 Apparatus for evaporating and condensing wastewater and system for evaporating and condensing wastewater WO2013042905A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280045564.6A CN103827041B (en) 2010-09-17 2012-09-17 Waste water apparatus for evaporation condensation and comprise the waste water evaporative condenser system of this device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20100091514 2010-09-17
KR1020110093945A KR101176113B1 (en) 2010-09-17 2011-09-19 Evaporative condensing apparatus for waste water and system including the apparatus
KR10-2011-0093945 2011-09-19

Publications (2)

Publication Number Publication Date
WO2013042905A2 true WO2013042905A2 (en) 2013-03-28
WO2013042905A3 WO2013042905A3 (en) 2013-05-23

Family

ID=46134419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007393 WO2013042905A2 (en) 2010-09-17 2012-09-17 Apparatus for evaporating and condensing wastewater and system for evaporating and condensing wastewater

Country Status (3)

Country Link
KR (1) KR101176113B1 (en)
CN (1) CN103827041B (en)
WO (1) WO2013042905A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716642B (en) * 2021-09-08 2023-10-13 北京北科欧远科技有限公司 Device for concentrating desulfurization wastewater by utilizing waste heat and low-temperature flue gas concentrating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074481B2 (en) * 1987-12-28 1995-01-25 三菱重工業株式会社 Heat transfer plate element for plate type falling film evaporator
JPH0796110B2 (en) * 1986-04-04 1995-10-18 コニカ株式会社 Photoprocessing waste liquid processing method and apparatus
KR0144768B1 (en) * 1995-07-03 1998-07-01 이은인 Evaporative Wastewater Treatment System Using Electrode Heating Plate
KR20010000782A (en) * 2000-10-19 2001-01-05 서금숙 Waste water disposal plant
KR20030074098A (en) * 2002-03-12 2003-09-19 최부식 A wastewater treatment apparatus
KR20030084134A (en) * 2002-04-25 2003-11-01 권익 Evaporation concentrator of direct heating type
KR20030089812A (en) * 2002-05-20 2003-11-28 병 조 최 Path structure of dirty and waste water treatment device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101182049B (en) * 2007-11-23 2011-03-16 陈伟雄 Evaporation system for treating refuse leachate
CN101811743A (en) * 2010-04-09 2010-08-25 兰州节能环保工程有限责任公司 Circulation evaporator
JP7096110B2 (en) * 2018-09-07 2022-07-05 花王株式会社 Manufacturing method of uneven non-woven fabric for absorbent articles
JP7004481B2 (en) * 2019-10-11 2022-01-21 ウェスト・アファム・ホールディングス・コーポレーション WCD system warning issuance and resolution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796110B2 (en) * 1986-04-04 1995-10-18 コニカ株式会社 Photoprocessing waste liquid processing method and apparatus
JPH074481B2 (en) * 1987-12-28 1995-01-25 三菱重工業株式会社 Heat transfer plate element for plate type falling film evaporator
KR0144768B1 (en) * 1995-07-03 1998-07-01 이은인 Evaporative Wastewater Treatment System Using Electrode Heating Plate
KR20010000782A (en) * 2000-10-19 2001-01-05 서금숙 Waste water disposal plant
KR20030074098A (en) * 2002-03-12 2003-09-19 최부식 A wastewater treatment apparatus
KR20030084134A (en) * 2002-04-25 2003-11-01 권익 Evaporation concentrator of direct heating type
KR20030089812A (en) * 2002-05-20 2003-11-28 병 조 최 Path structure of dirty and waste water treatment device

Also Published As

Publication number Publication date
CN103827041A (en) 2014-05-28
CN103827041B (en) 2016-02-24
KR101176113B1 (en) 2012-08-27
KR20120030322A (en) 2012-03-28
WO2013042905A3 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
CN105466157B (en) Used heat is used for the vacuum tube bank drying system of multiple-effect evaporation and pneumatic conveying drying
KR102231839B1 (en) Processing system intended to dehydrate food waste
KR101082971B1 (en) Low-energy drying system for preheating sludge using exhaust gas of dryer
CN202116898U (en) Drying machine
CN107098414A (en) A kind of the low-temperature evaporation device and its discharge technology of the discharge for the treatment of of Power desulfurization wastewater
CN107388793A (en) One kind energy-conservation continuous drying equipment
CN104761009A (en) Industrial waste water processing system
WO2013042905A2 (en) Apparatus for evaporating and condensing wastewater and system for evaporating and condensing wastewater
CN205482260U (en) Economic benefits and social benefits vacuum tube bank drying system
CN109607646B (en) Seawater desalination device based on multiple renewable energy sources
CN207095237U (en) One kind energy-conservation continuous drying equipment
CN206940470U (en) Utilize the low-temperature evaporation device of heat value recycling device processing discharge of wastewater
CN110404281A (en) A kind of economic benefits and social benefits external circulation evaporator
CN205773463U (en) A kind of blower fan waste heat recovery device in sewage disposal system
CN210065232U (en) Integrated equipment for treating chemical nickel plating waste liquid
CN108503186B (en) Sludge heat pump drying system
CN206940475U (en) A kind of low-temperature evaporation device using plating spraying waste water
CN105776811A (en) Sludge dewatering method and device
CN205332665U (en) Used heat is used for multiple effect evaporation and pneumatic drying's vacuum tube bank drying system
CN206262144U (en) Exchange type nickel chloride solution crystallizing tank
CN206262145U (en) A kind of stannous sulfate negative pressure crystallizing tank for including heating power recovery system
CN108911474A (en) A kind of belt type sludge low temperature drying equipment using waste heat
CN109850965A (en) A kind of evaporator system
CN108658425B (en) Double-loop sludge heat pump drying system
CN219518348U (en) Environment-friendly carbon processing environment-friendly treatment device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280045564.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834255

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834255

Country of ref document: EP

Kind code of ref document: A2