WO2013042821A1 - Selection of a permissive site for protein redesign, and method for producing a modified protein using same - Google Patents

Selection of a permissive site for protein redesign, and method for producing a modified protein using same Download PDF

Info

Publication number
WO2013042821A1
WO2013042821A1 PCT/KR2011/007683 KR2011007683W WO2013042821A1 WO 2013042821 A1 WO2013042821 A1 WO 2013042821A1 KR 2011007683 W KR2011007683 W KR 2011007683W WO 2013042821 A1 WO2013042821 A1 WO 2013042821A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
target protein
target
growth hormone
modified
Prior art date
Application number
PCT/KR2011/007683
Other languages
French (fr)
Korean (ko)
Inventor
이승구
이상준
김은미
김수진
손정훈
나유진
박순호
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2013042821A1 publication Critical patent/WO2013042821A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/27Growth hormone [GH], i.e. somatotropin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to protein engineering techniques for improving the efficacy of target proteins. More specifically, a method of selecting a allowable position where genetic modification, chemical modification, or heterologous protein fusion is possible in a target protein library in which the folding reporter protein has a fusion protein inserted at various internal positions of the target protein, and the allowance selected by the method
  • a method of making a modified target protein by performing mutations, chemical modifications or heterologous protein fusions in position relates to a target protein produced by the method and a novel modified target protein.
  • hGH Human growth hormone
  • insulin insulin
  • EGFR Epidermal growth Factor
  • EPO Erythropoietin
  • hematopoietic stimulant neutrophil promoter
  • platelet growth factor Thrombopoietin
  • interferon coagulation factor (coagulation) factors
  • follicle stimulating hormone etc.
  • hGH also called somatotropin
  • somatotropin is a hormone secreted by the somatotrophic cells of the anterior pituitary gland and is a monomer containing two disulfides (Cys53-Cys164 and Cys183-Cys190). Protein (191 amino acids, 22 kDa). Human growth hormone plays an important role in regulating the growth of human cells by acting directly on tissues such as bones and muscles or by indirect methods of stimulating the secretion of insulin-like growth factor-1. (Endocr Rev. (1995) Feb; 16 (1): 3-34).
  • Recombinant human growth hormone produced by genetic engineering technology is also known to exhibit the same biological efficacy as natural hormone (Nature Biotechnol. (1992) 10 (7): 812). Therefore, it is used to treat clinical symptoms caused by deficiency of human growth hormone, such as pediatric dwarf, which is caused by low growth hormone levels, and recently, it has been extended to be used as a muscle enhancer or anti-aging for cosmetic purposes.
  • recombinant human growth hormones exhibit immunoactivity due to thermodynamic instability or aggregation due to thermodynamic instability during manufacturing, distribution and use, and are rapidly hydrolyzed by various enzymes in the bloodstream in the human body.
  • the half life is very short, less than 10 minutes.
  • enzymes such as plasmin and thrombin present in plasma are likely to be hydrolyzed at 134-150 residues.
  • activity may be lost by proteolytic enzymes such as saliva enzyme, trypsin, pepsin, and the like. Since the instability problem of human growth hormone has a great influence on the bioavailability of the agent, protein engineering stabilization studies to improve the sustainability of the drug by improving the thermodynamic stability and resistance to proteolysis of human growth hormone are required.
  • One object of the present invention is to prepare a target protein library having a fusion protein in which a folding reporter protein is inserted at various internal positions of the target protein; (b) selecting from the target protein library a colony having a higher activity of the reporter protein than the control group in which the folding reporter protein is fused at the N-terminus or C-terminus of the target protein; And (c) analyzing a fusion protein sequence of the selected colonies to identify a position at which the folding reporter protein is inserted, thereby selecting a permissive site that can be modified among target proteins. .
  • Another object of the present invention is to provide a method for preparing a modified target protein, comprising performing a fusion of a mutation, chemical modification or heterologous protein at an allowable position selected by the method.
  • Another object of the present invention is to provide a modified protein produced by the above method.
  • Another object of the present invention is to provide a novel modified human growth hormone.
  • Acceptable site search techniques identified by random insertion of transposons containing nucleic acids encoding the folding reporter proteins of the present invention are very useful methods for improving the stability and activity of human growth hormone as well as most other protein therapeutics.
  • such a method may be very useful in the case of improving the protein for use as a smart drug applicable only to a specific target such as cancer cells. It can also be used for the attachment of surfactants such as cholic acid to increase the solubility of the protein.
  • surfactants such as cholic acid
  • Such stabilizing peptides that is, stabilized hGH redesign proteins with sugar chains, are expected to be very useful in the medical industry.
  • the acceptable positions of the present invention may be used as the position of a fusion protein that binds separate proteins (ligand, albumin, etc.).
  • 1 is a view briefly illustrating the experimental development and the final result derivation process of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the hGH library for the detection of hGH tolerance site, a human growth hormone.
  • (a) shows a transposon including a Tn5 transposase recognition site (Mosaic End, ME), a kanamycin resistance gene, a complementary Tn5 transposase recognition site (Mosaic End, ME), and an ultraviolet fluorescent gene It is a figure which shows (transposon).
  • (b) is a figure which shows the structure of the library which inserted the transposon of (a).
  • Figure 3 is a diagram showing the results of the image through the microscopic scanning of the library and the control inserting the folding reporter.
  • FIG. 4 is a diagram showing the configuration and results of the hGH library in which the transposon is inserted.
  • FIG. 5 is a diagram showing the results of position selection for the detection of the allowable region from the hGH library in which the transposon is inserted.
  • (a) is a table showing the position of the fluorescent reporter insertion confirmed by sequencing the hits obtained from the yeast library.
  • (b) is a diagram showing the amino acid sequence selected for each library during the allowable position search process.
  • Figure 6 is a diagram confirming the expression results in yeast of wild type (a) and variant hGH (b and c).
  • FIG. 7 is a diagram confirming the activity level of wild-type and mutant hGH expressed in yeast through Nb2 cell proliferation experiment.
  • 8a to 8c is a diagram confirming the stability of the mutant proteins through fragmentation confirmation by proteolytic enzymes (pepsin, plasmin, thrombin) in the human body.
  • the present invention comprises the steps of (a) preparing a target protein library having a fusion protein in which a folding reporter protein is inserted at various internal positions of the target protein; (b) selecting from the target protein library a colony having a higher activity of the reporter protein than the control group in which the folding reporter protein is fused at the N-terminus or C-terminus of the target protein; And (c) analyzing the fusion protein sequence of the selected colony to identify a position at which the folding reporter protein is inserted, thereby selecting a permissive site that can be modified among target proteins.
  • the term "permissive site” refers to a site that can be redesigned to enhance safety, delivery to a target, for example, without significantly affecting the original activity of the protein.
  • it may be a position where mutation, chemical modification or fusion of a heterologous protein can be performed without impairing the function of the target protein.
  • the chemical modification may be at a position to introduce a chemical modification including glycosylation, PEGylation, or the attachment of a surfactant. Such introduction can use without limitation methods known in the art.
  • the surfactant When the surfactant is attached at the selected allowable position, the surfactant may be, but is not limited to, for example, cholic acid, and such a surfactant may increase the solubility of the protein to increase the permeability of the cell membrane to increase the protein therapeutics. It is possible to facilitate the injection of the living body. Attachment of such surfactants can be carried out using known methods without limitation.
  • the heterologous protein When the heterologous protein is fused to a selected acceptable position, the heterologous protein may be, but is not limited to, a ligand, a receptor, or the like for moving the protein therapeutic agent to a specific target such as cancer cells.
  • heterologous proteins such as immunoglobulin Fc regions or albumin, may enhance the half-life or stability of the protein therapeutic agent, but are not limited thereto. Fusion of such heterologous proteins can be performed using known methods without limitation.
  • the overall schematic diagram of the permissible position selection method of the present invention is as shown in FIG.
  • the inventors constructed an in-frame fusion protein library into which a transposon containing a folding reporter protein was randomly inserted, and then selected candidate positions using protein engineering techniques, I went through the screening process.
  • the nucleic acid encoding the folding reporter protein may be inserted into various internal positions of the nucleic acid encoding the target protein by transposon.
  • the term "transposon” refers to a kind of protein expression cassette used for random insertion into a protein or for insertion into a designed position.
  • the transposon may include a nucleic acid encoding a folding reporter protein and a transposase recognition site at both ends.
  • a marker gene for transposon insertion clone selection may be included, and the marker gene may be an antibiotic resistance gene.
  • a brief schematic diagram of such a transposon is shown in Fig. 2 (a).
  • the translocation enzyme recognition sites are each complementary to each other.
  • the transposon may be a transposon consisting of the kanamycin resistance gene described in SEQ ID NO: 5, wherein the translocation enzyme recognition sites described in SEQ ID NOs: 2 and 3 are present at both ends.
  • the nucleic acid encoding the folding reporter protein, the antibiotic resistance gene for transposon insertion clone selection and the transposase recognition site at both ends may be in the form of an expression cassette operably linked.
  • operably linked in the present invention means that when one nucleic acid fragment is combined with another nucleic acid fragment, typically their respective function or expression is affected by the other nucleic acid fragment, but many possible Binding refers to binding in a state in which each fragment has no detectable effect on performing its function.
  • the transposon may be treated with a transposae to prepare a target protein library into which a transposon is randomly inserted.
  • the target protein library of step (a) comprises (i) introducing a transposon comprising a nucleic acid encoding a folding reporter protein, a transposon insertion clone selection marker gene, and a translocation enzyme recognition site at both ends into a first host cell; ; (ii) selecting a colony expressing a selection marker gene from the first host cells to prepare a transposon insertion first library; (iii) removing the selection marker gene from the transposon from the first library of step (ii); And (iv) introducing the transposon from which the selection marker has been removed into a second host cell to prepare a second library.
  • the first host cell may be a prokaryotic cell, for example, but may not be limited to E. coli.
  • the second host cell may be a eukaryotic cell, for example, but may not be limited to yeast.
  • the term "folding reporter protein” refers to a protein capable of confirming whether or not the folding and solubility of a target protein is correct.
  • the binding of the reporter protein to the target protein may reflect the success of the folding of the target protein. In other words, if the target protein is not properly folded, the activity of the reporter protein is weak. Therefore, even when the folding reporter protein is inserted, the reporter protein may exhibit activity if there is no effect on the folding of the target protein, but when the portion of the folding reporter protein is inserted is the position that affects the folding, the activity of the reporter protein is not perfect, You can see if the location is important.
  • the folding reporter protein may include, without limitation, a protein capable of confirming proper folding, but is preferably a green fluorescent protein (GFP), a modified green fluorescent protein (mGFP), or an enhanced green fluorescent protein.
  • GFP green fluorescent protein
  • mGFP modified green fluorescent protein
  • enhanced green fluorescent protein (EGFP) red fluorescent protein
  • RFP red fluorescent protein
  • mRFP modified red fluorescent protein
  • ERFP enhanced red fluorescent protein
  • BFP blue fluorescent protein
  • EBFP enhanced blue fluorescent protein
  • Yellow fluorescent protein (YFP), enhanced yellow fluorescent protein (EYFP), indigo fluorescent protein (CFP) or enhanced indigo fluorescent protein (ECFP) but is not limited thereto.
  • green fluorescent protein (GFP) was confirmed whether the folding is correct.
  • step (b) may be performed by selecting from the target protein library colonies having higher activity of the reporter protein than the control group in which the folding reporter protein is fused to the N-terminus or C-terminus of the target protein.
  • (c) analyzing the fusion protein sequence of the selected colony may be performed to determine the position where the folding reporter protein is inserted.
  • steps (a) to (c) may mean “experimental step of selecting acceptable positions”.
  • the "experimental method of finding acceptable positions” can be used to construct an in-frame fusion protein library by random insertion and search by high-speed fluorescence analysis. That is, a transposon containing a fluorescent protein gene, which is a reporter protein, is prepared, and high-speed search of a library randomly inserted into a target protein is performed.
  • the fluorescent protein gene functions as a kind of folding reporter. Therefore, when the target protein is normally folded in the target protein-fluorescence fusion protein, the fluorescence inherent in the fluorescence protein is strongly displayed, and thus, by selecting these and analyzing the gene sequence to confirm the insertion position, the target tolerance can be determined experimentally.
  • the experimental method of the present invention enables accurate and rapid hit screening by the folding reporter, and can be easily applied to improvement studies of other proteins as well as protein therapeutics such as human growth hormone. Modifications such as performing various genetic variations and chemical modifications to the excavated allowable positions do not affect the intrinsic function of the protein, and improve the usability of the target protein as a protein therapeutic agent, such as resistance to proteolytic enzymes. You can.
  • the method may further include designing an amino acid located within 5 ms ( ⁇ 2 ms) around the folding reporter protein insertion position identified in step (c) as an acceptable position. This range is supported by the mutations in Example 5.
  • the method may further include the step of (d) selecting an amino acid located within 5 ⁇ ( ⁇ 2 ⁇ ) of the folding reporter protein insertion sites identified in step (c) with respect to the cleavage site of the protease. It may include a site that is exposed to the outside.
  • This step (d) can be performed not only by experimental methods through sequencing, but also by structure-based rational selection by tertiary structure substitution of proteins.
  • the method may further include the step (e) of excluding the position at which the folding reporter protein insertion positions identified in step (c) remove the binding activity of the target protein or the intrinsic functional activity of the target protein.
  • the binding activity of the target protein may include various binding activities such as receptor binding, ligand binding, antigen-antibody binding and the like.
  • This step (e) can be confirmed experimentally on the basis of sequencing or cell system, as well as by the structure-based rational selection by tertiary structure substitution of the protein, more preferably the modification of the target protein during protein modification.
  • the site of eliminating binding activity or intrinsic functional activity of the target protein can be identified by substituting the known tertiary structure of the target protein.
  • Heterologous conserved sequences associated with the activity of the target protein may be excluded prior to assignment to the tertiary structure.
  • Such heterologous preservation sequences may be selected using a known sequence database (GenBank, etc.), and then the sequence of the target protein may be selected using a known sequence analysis program (blast, etc.).
  • Steps (d) and (e) may be performed simultaneously, in reverse order or sequentially.
  • step (d) selecting an amino acid located within 5 ⁇ ( ⁇ 2 ⁇ ) of the folding reporter protein insertion sites identified in step (c) around the cleavage site of the protease; And (e) excluding the position at which the folding reporter protein insertion positions identified in step (c) remove the binding activity of the target protein or the position of eliminating the intrinsic functional activity of the target protein when the protein is modified.
  • it may mean "structure based rational selection step”.
  • “Structural based rational selection” refers to sites where disallowing protein redesign through sequence and structural analysis, that is, directly or indirectly associated with the original activity of the target protein, resulting in mutation, glycosylation, or PEGylation.
  • the step of classifying a site that is difficult to redesign the protein and a site that is easy to redesign the protein, such as chemical modification (incorporation of chemical modification) and protein fusion, including the attachment of a surfactant may be performed according to the following steps. First, the protein amino acid sequences of various target proteins are compared to analyze the conserved common residues, and the structure of the target protein is analyzed. Then, the protein redesigning site is expected to influence the direct receptor binding site and the receptor binding site. Excluded as classified as unacceptable site.
  • a site close to the site cleaved by the protease in the body and exposed to the outside to facilitate protein redesign can be selected as a candidate site for protein redesign.
  • the protein redesign is excluded except the sites where protein redesign is not allowed among the positions of reporter proteins selected by the experimental method based on the protein redesign candidate candidate positions and the sites where the protein redesign is not allowed. Can select the possible positions.
  • the "structure-based rational selection" of the present invention can quickly and easily select only those positions capable of various genetic variations and chemical modifications among the positions of the folding reporter protein selected using the transposon.
  • the site for removing the binding activity of the protein target protein or the intrinsic functional activity of the target protein can be performed by substituting a known tertiary structure of the target protein.
  • the removal position may mean a position at which the function of the original protein does not operate when the protein redesign is applied, and may include, but is not limited to, a receptor binding position and a position expected to affect receptor binding. Does not. It may comprise an N-terminus or a C-terminus.
  • the tertiary structure of the protein therapeutic agent for structural analysis of the protein therapeutic agent may be provided from a database including all the structures of known human proteins such as PDB (Protein Data Bank), but are not limited thereto.
  • PDB Protein Data Bank
  • the three-dimensional structure of a human protein known in the art may be provided through various databases.
  • enzyme diagrams, gene ontology functional assignments, 1D sequence annotations, and schematic diagrams of protein-protein interactions PDBsum (http://www.ebi.ac.uk/pdsum) containing protein structure information and SCOP (Structural Claasification of Protein) classified into groups according to the three-dimensional structure of each human protein 3D structure information of the protein may be provided using various databases such as, but is not limited thereto. Thereafter, the three-dimensional structure of the protein therapeutic agent, which is provided from a known tertiary structure database, is analyzed using a 3D molecular visualization program such as PyMOL and Discovery Studio Visualizer. Identify areas where design is not acceptable and areas where protein redesign is easy.
  • Locations where protein redesign is not permitted include receptor binding sites and / or positions that are expected to affect receptor binding.
  • the target of the protein modification during the modification of the protein is not allowed Protein redesign based on the protein redesign candidate candidate sites classified through the structural analysis and sites where protein redesign is not allowed, including the step of excluding the binding activity of the protein or the location of eliminating the native functional activity of the target protein. Only the position inserted in the easy design area is easily selected.
  • target protein may refer to a protein for which to find an acceptable position for preparing a modified protein using the method of the present invention.
  • examples include, but are not limited to, human growth hormone, insulin, epidermal growth factor (EGFR), erythropoietin (EPO), hematopoietic stimulant, neutrophil promoter (G-CSF), platelet growth factor (Thrombopoietin), interferon, coagulation factor ( coagulation factor) or follicle stimulating hormone, or a protein therapeutic agent, but is preferably a human growth hormone.
  • acceptable positions were selected from human growth hormone.
  • transposon comprising translocation enzyme recognition site (Mosaic End, Me) of transposon 5 (Tn5) and GFP as a folding reporter, kanamycin resistance gene for primary selection for acceptable site search (FIG. 2)
  • a primary library was prepared by reacting transposon, human growth hormone (hGH) DNA, and Tn5 translocation enzyme, a secondary library from which kanamycin resistance gene was removed, and a folding reporter was included in hGH.
  • the transposons were selected randomly inserted colonies.
  • hGH-GFP was isolated from the colonies, and then introduced into yeast to obtain a yeast library.
  • hGH-GFP prepared by serially connecting GFP outside the ORF of hGH in the yeast as a positive control
  • colonies having higher fluorescence values were selected and sequenced to confirm that the reporter was introduced at position 8 ( 5).
  • This is indicated in the tertiary structure of the known hGH, and contains four amino acid conserved sequences, 40 amino acids that are the binding surface to the hGH receptor, 17 N-terminals, and 10 C-terminals, with four acceptable positions (Q49, E129, R134, Q141) were selected (FIG. 5). This acceptable position is close to the site hydrolyzed by pepsin (No.
  • the present invention provides a method for preparing a modified target protein, comprising rinsing a mutation, chemical modification or fusion of a heterologous protein at an acceptable position selected by the method.
  • Chemical formulas include glycosylation, PEGylation or attachment of surfactants as described above.
  • Surfactants include cholic acid and the like, which can facilitate their introduction into target cells.
  • the modified target protein may be a target protein having improved safety compared to a wild type target protein.
  • the modified target protein may be a target protein having improved introduction into the target cell compared to the wild type target protein. This enhances the solubility of the protein to increase the permeability of the cell membrane to facilitate the injection into the living body, or the ligand or receptor that can specifically bind to a receptor or ligand that is specifically expressed on the target cell surface is fused with a heterologous protein to the target cell.
  • a target protein having improved safety compared to a wild type target protein may be a target protein having improved introduction into the target cell compared to the wild type target protein. This enhances the solubility of the protein to increase the permeability of the cell membrane to facilitate the injection into the living body, or the ligand or receptor that can specifically bind to a receptor or ligand that is specifically expressed on the target cell surface is fused with a heterologous protein to the target cell.
  • Modified target proteins can be prepared by introducing new amino acids, artificial sugar chains, artificial polymers (eg PEGylation), surfactants, new fusion proteins, and the like into accepted positions discovered by experimental and theoretical methods. For example, when artificial sugar chains are introduced into the allowable position searched from hGH through the method of the present invention, hGH having high biological stability against pepsin, thrombin, plasmin, etc., can be produced compared to wild-type proteins.
  • biological stability means having resistance to degradation by enzymes in or in vitro that can cause denaturation to natural or unnatural proteins.
  • the method for producing a modified target protein in the present invention can be carried out by "search for and validate the location through cell-based activity assay". For example, by introducing a peptide sequence required for sugar chain binding at an allowable position and purifying the hGH protein produced by fermentation in a yeast strain, and applying various stresses such as temperature-pH-proteinase, a cell line having an hGH receptor ( For example using NB2 cell line). As a result, it is possible to produce a new hGH that is significantly improved in stability while maintaining efficacy compared to the existing wild type hGH.
  • the protein therapeutic agent may be a human growth hormone, wherein the wild type of human growth hormone is an amino acid set forth in SEQ ID NO: 1, the allowable position is 49th glutamine (Q), 50th threonine (T), 51st Serine (S), 129th Glutamic Acid (E), 130th Aspartic Acid (D), 131th Glycine (G), 133th Proline (P), 134th Arginine (R), 135 Threonine (T), 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S) , 155th alanine (A), 156th leucine (L), 157th leucine (L) and 158th lysine (K) amino acid, and at least one amino acid selected from the group consisting of One of the 49th glutamine (Q), the 129th glutamic acid (E), the 134th alg
  • the inventors performed the mutation for glycosylation at the allowable position in Example 5 to confirm that the mutation can be introduced into the protein without affecting the function (Table 1).
  • the present invention may be a target protein produced by the above method.
  • the method for preparing a modified target protein by attaching a surfactant to the selected allowable position may include, but is not limited to, a surfactant, for example, cholic acid, and the surfactant may be used to determine the solubility of the protein. Increasing the permeability of the cell membrane can be facilitated to facilitate the introduction of the protein therapeutic agent in vivo. Attachment of such surfactants can be carried out using known methods without limitation.
  • the heterologous protein in the method for producing a modified target protein by fusing a heterologous protein in a selected acceptable position, the heterologous protein may be a ligand, a receptor, or the like for moving the protein therapeutic agent to a specific target such as cancer cells, but is not limited thereto. Does not. Alternatively, heterologous proteins, such as immunoglobulin Fc regions or albumin, may enhance the half-life or stability of the protein therapeutic agent, but are not limited thereto. Fusion of such heterologous proteins can be performed using known methods without limitation.
  • Preferably human growth hormone Preferably human growth hormone.
  • the present invention provides the human growth hormone of SEQ ID NO: 1, wherein the allowable position is 49th glutamine (Q), 50th threonine (T), 51st serine (S), 129 Glutamic acid (E), 130th aspartic acid (D), 131th glycine (G), 133th proline (P), 134th arginine (R), 135th threonine (T), 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S), 155th alanine (A), Modified human growth hormone that fuses mutations, chemical modifications or heterologous proteins to one or more amino acids selected from the group consisting of 156 leucine (L), 157 leucine (L) and 158 lysine (K) amino acids To provide.
  • the allowable position is 49th glutamine (Q), 50th threonine (T), 51st serine (
  • amino acid may be substituted with asparagine (N) or cysteine (C).
  • the modified human growth hormone is in the human growth hormone set forth in SEQ ID NO: 1, the 49th glutamine (Q), the 129th glutamic acid (E), the 134th arginine (R), and 141 are acceptable positions. And one or more amino acids selected from the group consisting of the first glutamine (Q) amino acid, which is mutated to asparagine (N).
  • the modified human growth hormone may be a modified human growth hormone that has mutated one, two, three, or four acceptable positions with asparagine, which may increase cell growth than the wild type.
  • the modified human growth hormone is in the human growth hormone set forth in SEQ ID NO: 1, the 49th glutamine (Q), the 129th glutamic acid (E), the 134th arginine (R), and 141 are acceptable positions. And one or more amino acids selected from the group consisting of the first glutamine (Q) amino acid, each with cysteine (C), followed by pegylated modified human growth hormone.
  • the pegylated modified human growth hormone may be a pegylated modified human growth hormone after substitution of one, two, three or four acceptable positions with cysteine, which may increase the half-life than the wild type. Can be.
  • the modified human growth hormone is in the human growth hormone set forth in SEQ ID NO: 1, the 49th glutamine (Q), the 50th threonine (T), the 51st serine (S), 129th glutamic acid (E), 130th aspartic acid (D), 131th glycine (G), 133th proline (P), 134th arginine (R), 135th threonine (T) 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S), 155th alanine (A) At least one amino acid selected from the group consisting of 156 leucine (L), 157 leucine (L) and 158 lysine (K) amino acids, preferably 49th glutamine (Q), 129th A sugar chain is attached to each of one or more amino acids selected from the group consisting of glutamic acid (E), 134th arginine
  • the modified human growth hormone to which the sugar chains are added may be a modified human growth hormone that is glycosylated by adding sugar chains to one, two, three or four acceptable positions, which is proteolytic degradation in vivo than the wild type. It may be stable to enzymes.
  • each of the 49th glutamine (Q), 129th glutamic acid (E), 134th arginine (R) and 141th glutamine (Q) amino acids of human growth hormone is asparagine. It was confirmed that the modified human growth hormone mutated to (N) increased the cell growth of Nb2 compared to the wild type (FIG. 7), wherein the human growth hormone glycated at the allowable position was pepsin, an in vivo proteolytic enzyme, It was confirmed that the stability to plasmin, thrombin (Fig. 8).
  • the process of constructing the transposon and the transposon for the detection of the allowable position is briefly shown in FIG.
  • the transposon includes transposase recognition sites (Mosaic End, ME), translocation enzymes of Tn5 shown in SEQ ID NOs: 2 and 3, and ultraviolet fluorescence (GFPuv) gene of SEQ ID NO: 5 as folding reporters at both ends.
  • the transposon contains the kanamycin resistance gene of SEQ ID NO: 4 as a cloning marker for primary selection.
  • the present inventors prepared the transposon for the allowable position search by the following method. Using clones contained in the EZ-Tn5 In-Frame Linker Insertion Kit (Epicentre, USA) as a template, the kanamycin resistance gene and the Tn5 translocation enzyme recognition site of the C-terminal region were PCR (Polymerase) using primers of SEQ ID NOs: 8 and 9. obtained by performing a chain reaction. PCR conditions are as follows. First, the previous stage of denaturation was performed once at 98 degrees for 2 minutes, then the denaturation was repeated 30 times at 98 degrees for 30 seconds, the coupling reaction at 55 degrees for 15 seconds, and the renal response at 74 degrees for 23 seconds. The reaction was reacted for 2 minutes at 74 degrees.
  • the transposase recognition sequence and the fluorescent gene portion of the N-terminal region of the transposon sequence were PCR using primers of SEQ ID NOs: 6 and 7, and then purified by DNA using a Qiagen gel purification kit. Its PCR conditions are as follows. First, the denaturation reaction was performed once at 98 ° C for 2 minutes, then the denaturation reaction was repeated 30 times at 98 ° C for 30 seconds, the coupling reaction at 55 ° C for 15 seconds, and the renal response at 74 ° C for 37 seconds. Reacted for 2 minutes at 74 degrees. The GFPuv gene amplified by PCR and the kanamycin resistance gene were finally linked by overlap PCR.
  • a forward primer SEQ ID NO: 6
  • a reverse primer SEQ ID NO: 9
  • the overlap PCR conditions are as follows. First, the denaturation reaction was performed once at 98 degrees for 2 minutes, then the denaturation reaction was repeated at 98 degrees for 15 seconds, the coupling reaction at 55 degrees for 15 seconds, and the renal reaction was repeated 30 times for 1 minute at 74 degrees. Reacted for 2 minutes at 74 degrees. KOD polymerase (TOYOBO) was used for all PCR reactions. The transposon DNA obtained by the overlap PCR was performed using pBluescriptII SK (+) vector. PvuII The vector obtained by cleavage with the restriction enzyme was subcloned.
  • Primer sequences used in this example are as follows.
  • the transposon required for the Tn5-transposition reaction was obtained by cutting the transposon cloned into the pBluescriptII vector with PvuII restriction enzyme and gel purification.
  • Example 1 First, by inserting the hGH having the amino acid sequence of SEQ ID NO: 1 in place of the PvuII restriction enzyme pBluscript-SK2 (+) vector to prepare a pBlue-hGH clones. In addition, the high purity transposon prepared in Example 1 was used to make a random insertion library.
  • Tn5 transferase (Epicentre, USA, Cat No. TNP92110) capable of gene transfer and insertion in in vitro DNA was used. 200 ng of hGH DNA, 1 unit of Tn5 transferase and 1x reaction buffer were added to perform transposition at 37 ° C. for 2 hours, and 1% SDS (sodium dodecyl sulfate) was added, followed by heat at 70 ° C. for 10 minutes. The reaction was stopped by adding. The reaction DNA product was purified using a DNA purification kit (Qiagen, Germany), concentrated to 5 ⁇ l of ethanol and introduced into host E. coli (DH5a) by electroporation.
  • SDS sodium dodecyl sulfate
  • a secondary library was prepared by cleaving NheI restriction enzyme sites at both ends of the kanamycin resistance gene and restoring it into a circular clone through self-ligation. Secondary library size was 1.8 ⁇ 10 4 .
  • the plasmid pBlue-hGH-GFP was purified and recovered in the same manner as before.
  • the pBlue-hGH-GFP plasmid from which the kanamycin resistance gene has been removed has a form in which a gene encoding ultraviolet fluorescence (GFPuv) is inserted into various positions of the hGH open reading frame (ORF).
  • the pBlue-hGH-GFP plasmid prepared in Example 2 was treated with HindIII / SpeI restriction enzymes present at both ends of the hGH to recover the hGH-GFP gene, and the recovered hGH-GFP gene was transferred to the Yeast / E.coli shuttle vector. Introduced to YGaC9. This cloning induced a homologous recombination by introducing a linear hGH-GFP gene (1 kb) into the yeast ( Saccharomyces cerevisiae YT2805) containing the shuttle vector through heat shock transformation. . The LB was smeared on a solid medium containing empicillin and kanamycin antibiotics, and then cultured at 37 ° C.
  • hGH-GFP is secreted out of the cells through vesicles (ER) and Golgi, which are secretory cell organelles, and can be easily observed through cellular fluorescence. have.
  • the obtained yeast library was performed by analyzing fluorescence of 2 ⁇ 10 4 colonies in agar plate medium using AZ-M100 fluorescence microscope (Nikon, Japan) (FIG. 3). Thus, the screening is at a level of rescanning the library about 10 times.
  • Growth hormone has a 4-helix bundle structure in which four ⁇ -helixes are linked by a linker.
  • the way GH transmits a signal to a cell of interest is to bind two receptors (GHR1 and GHR2) on the cell surface to form an active dimer.
  • GHR1 and GHR2 two receptors
  • hGH has a binding surface with two receptors, which are called site1 and site2.
  • hGH Human growth hormone
  • seven types of GH porcine, bovine, ovine_ovisaries, horse_Equus caballus, rat_Nannospalax ehrenbergi, monkey_Callithrix jacchas and avian_Gallus gallus
  • the positions of the 78 clones obtained in the search of Example 3 using the GFP folding reporter could be classified into eight characteristic positions if they were marked on the known hGH structure and classified according to characteristics. 40 of these absolute majority were located on the binding side with the hGH receptors (38 Site1 and 2 Site2) and 17 and 10 were observed at the N- and C-terminus, respectively. Eventually, among the total 78 positions, the positions where protein engineering or chemical modification is possible without impairing the folding and efficacy of the hGH raised in the present invention are narrowed down to 4 positions (referred to as amino acid residues of 49, 129, 134 and 141). It could be lost (Fig. 5 (b)).
  • position 49 is close to the site hydrolyzed by pepsin (number 44)
  • number 134 is the position hydrolyzed by blood thrombin
  • number 141 is the plasmin.
  • 129 was located in a loop with high degree of freedom, although not directly related to hydrolysis.
  • the wild type and mutant proteins were produced through fed-batch cultivation using a 5L fermentor. Prior to the incubation, the cells were initially cultured in 50 ml YNB (yield substrate lacking 0.67% amino acid, 0.5% cassamino acid, 2% glucose) medium, and then cultured in 200 ml YEPD liquid medium and activated. Inoculation was incubated at 30 ° C. for 48 hours. HGH secreted in the medium was confirmed by SDS-PAGE analysis of the culture supernatant of the expected size of protein expression. hGH was solved by incubating poloxamer, which is a non-ionic detergent, with 0.5% of non-ionic detergent, due to the problem of aggregation during culturing in yeast.
  • poloxamer which is a non-ionic detergent, with 0.5% of non-ionic detergent, due to the problem of aggregation during culturing in yeast.
  • the fermented protein is centrifuged (3,500rpm X 20min X 4 °C) for purification, then passed through a 0.1 micron filtration membrane to completely remove the cells, and then the culture medium through ultrafiltration (molecular weight 30 kDa cut-off) Concentrated and exchanged with 20 mM Tris buffer (pH 8.0).
  • anion exchange chromatography was purified by a primary purification method. The method is as follows. The wild-type hGH protein fermentation supernatant in the above example was adsorbed at a rate of 2 ml / min on a previously equilibrated DEAE Sepharose fast flow column (1.5 ⁇ 6 cm; GE healthcare).
  • Tris buffer was passed through the column again to remove all remaining free protein in the column. 100 ml of the adsorbed protein was eluted with a NaCl linear concentration gradient from 0 to 0.5 M using 20 mM Tris buffer (pH 8.0) and 20 mM Tris buffer (pH 8.0) containing 0.5 M NaCl. As a result of confirming the eluted fraction by SDS-PAGE, the band was confirmed as shown in Figure 6, it was confirmed that most of the eluted at 0.2M NaCl concentration.
  • the fraction of the previous step was concentrated using a superdex 75 (1.6 ⁇ 61.5 cm) column using amicon (mwco: 10,000), and gel filtration chromatography was performed by reducing the amount. Chromatography using a method to separate the size of the protein was passed through 20mM Tris + 0.15M NaCl (pH8.0) buffer at a rate of 1 mL / min.
  • wild-type hGH recovered a fraction of 22 kDa with a purity of 95% or more
  • a glycated mutated hGH recovered a fraction near 50 KDa (FIG. 6).
  • the biological activity of the hGH protein was analyzed by measuring the proliferation of Nb2 cells by binding of hGH to prolactin receptors external to the Nb2 cells.
  • Nb2-11 rat lymphoma cells were purchased from the European Collection of Cell Culture (ECACC).
  • Cells were cultured in RPMI1640 medium (GIB-11875, invitrogen) with the addition of 2 mM merethanethanol, anti-contaminant antibiotics (invitrogen, cat No. 15240-062) and 10% horse serum.
  • the medium was passaged when the cells reached 80-90% of the surface of the culture flask, and exchanged every 2 to 3 days. After a 1X10 4 cells cultured into a triple (triplate) in a 96-well plate, was diluted in the same medium so that the maximum of the hGH protein 1 nM for at least 10 -4 nM was added to the well and stimulate the cells for 48 hours .
  • the Q49N glycosylation induced protein showed high stability against pepsin compared to the wild type, and the Q141N glycosylation induced protein showed stability against plasmin.
  • the Q141N glycosylation induced protein showed stability against plasmin.
  • the R134N mutant protein it showed stability against thrombin (FIG. 8).
  • the allowable position of the present invention showed little folding inhibition or deactivation of the protein drug, and was confirmed to be an excellent target position capable of producing a form showing better efficacy and stability through protein engineering or chemical modification.
  • the permissible position detection technology of the present invention is not limited to the phosphorus growth hormone (hGH) shown in the examples, and can be used as a source technology for developing a superior "super biosimilar" through the modification of various protein therapeutic agents. Being able to do that is obvious to an expert in protein engineering. Therefore, using the method of the present invention it is possible to develop a variety of protein drugs with excellent activity and stability.
  • hGH phosphorus growth hormone
  • the present invention can be a very useful invention even when the purpose of improving the protein for use as a smart drug (smart drug) applicable only to a specific target such as cancer cells. It can also be used for the attachment of surfactants such as cholic acid to increase the solubility of proteins.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)

Abstract

The present invention relates to a protein engineering technology for improving the effect of a target protein. More particularly, the present invention relates to a method for selecting a permissive site enabling genetic modification, chemical modification, or foreign protein fusion in a target protein library having a fusion protein in which a folding reporter protein is inserted to various inner positions of the target protein, and further relates to a method for producing a modified target protein by performing mutation, chemical modification, or foreign protein fusion at the selected permissive site, and further relates to a target protein produced by the method, and to a novel modified target protein.

Description

단백질의 재설계를 위한 허용 위치 선별 및 이를 이용한 변형된 단백질의 제조 방법Acceptance site screening for protein redesign and method for producing modified protein using same
본 발명은 표적 단백질의 효능 개선을 위한 단백질 공학 기술에 관한 것이다. 보다 구체적으로 폴딩 리포터 단백질이 표적 단백질의 다양한 내부 위치에 삽입된 융합 단백질을 갖는 표적 단백질 라이브러리에서 유전적 변형, 화학적 수식, 또는 이종 단백질 융합이 가능한 허용 위치를 선별하는 방법, 상기 방법으로 선별된 허용 위치에 돌연변이, 화학적 수식 또는 이종 단백질 융합을 수행하여 변형된 표적 단백질을 제조하는 방법, 상기 방법에 의해 제조된 표적 단백질 및 신규한 변형된 표적 단백질에 관한 것이다.The present invention relates to protein engineering techniques for improving the efficacy of target proteins. More specifically, a method of selecting a allowable position where genetic modification, chemical modification, or heterologous protein fusion is possible in a target protein library in which the folding reporter protein has a fusion protein inserted at various internal positions of the target protein, and the allowance selected by the method A method of making a modified target protein by performing mutations, chemical modifications or heterologous protein fusions in position, relates to a target protein produced by the method and a novel modified target protein.
인간 성장 호르몬(Human growth hormone, hGH), 인슐린, EGFR (Epidermal Growth Factor), EPO (Erythropoietin), 조혈자극제, 호중구 촉진인자 (G-CSF), 혈소판 성장 인자 (Thrombopoietin), 인터페론, 응고인자 (coagulation factor), 여포자극호르몬 등은 단백질 치료제로서 현재 다양하게 응용되고 있다.Human growth hormone (hGH), insulin, EGFR (Epidermal Growth Factor), EPO (Erythropoietin), hematopoietic stimulant, neutrophil promoter (G-CSF), platelet growth factor (Thrombopoietin), interferon, coagulation factor (coagulation) factors), follicle stimulating hormone, etc. are currently being applied variously as protein therapeutics.
그 중 hGH은 소마토트로핀 (somatotropin)이라고도 불리며 뇌하수체 전엽의 성장(somatotrophic) 세포들에 의해 분비되는 호르몬으로 2개의 이황화물 (disulfide) (Cys53-Cys164, Cys183-Cys190)결합을 포함하고 있는 단량체 단백질(191개 아미노산, 22kDa)이다. 인간성장호르몬은 뼈, 근육 등의 조직에 직접적으로 작용하거나, 인슐린 유사 성장인자 (insulin-like growth factor-1)의 분비를 자극하는 간접적인 방법에 의하여 인체 세포의 성장을 조절하는 중요한 역할을 수행한다 (Endocr Rev. (1995) Feb;16(1):3-34).Among them, hGH, also called somatotropin, is a hormone secreted by the somatotrophic cells of the anterior pituitary gland and is a monomer containing two disulfides (Cys53-Cys164 and Cys183-Cys190). Protein (191 amino acids, 22 kDa). Human growth hormone plays an important role in regulating the growth of human cells by acting directly on tissues such as bones and muscles or by indirect methods of stimulating the secretion of insulin-like growth factor-1. (Endocr Rev. (1995) Feb; 16 (1): 3-34).
유전공학기술에 의하여 제조한 재조합 인간성장호르몬도 자연형 호르몬과 동일한 생물학적 효능을 나타낸다고 알려져 있다 (Nature Biotechnol. (1992) 10(7): 812). 따라서 인간성장호르몬의 결핍으로 일어나는 임상학적 증상, 예를 들어 성장 호르몬의 수치가 낮아서 나타나는 소아 왜소증 치료에 이용되며, 근래에는 미용을 위한 목적으로 근육 강화제나 노화방지를 위한 용도로 확장 이용되고 있다 (Pediatric Drugs (2002) 4(1): 3747).Recombinant human growth hormone produced by genetic engineering technology is also known to exhibit the same biological efficacy as natural hormone (Nature Biotechnol. (1992) 10 (7): 812). Therefore, it is used to treat clinical symptoms caused by deficiency of human growth hormone, such as pediatric dwarf, which is caused by low growth hormone levels, and recently, it has been extended to be used as a muscle enhancer or anti-aging for cosmetic purposes. Pediatric Drugs (2002) 4 (1): 3747).
한편 재조합 인간성장호르몬은 제조-유통-사용과정에서 열역학적 불안정성으로 인한 활성저하나 응집 (aggregation)에 의한 면역원성 (immunogenicity)을 나타내기도 하고, 인체에서는 혈류에 존재하는 각종 효소들에 의하여 빠르게 가수분해되어 반감기가 10분 이내로 매우 짧다. 특히 혈장 (plasma)에 존재하는 플라스민, 트롬빈 등의 효소가 작용하여 134-150 잔기 등에서 가수분해될 가능성이 높다. 경구용 단백질 치료제로 이용하는 경우에는 타액 효소, 트립신, 펩신 등의 단백질 분해효소에 의하여 활성을 잃을 수 있다. 이러한 인간성장호르몬의 불안정성 문제는 제제의 생물학적 이용에 큰 영향을 미치게 되므로, 인간성장호르몬의 열역학적 안정성 및 단백질 가수분해에 대한 저항성을 개량하여 약효의 지속성을 높이려는 단백질 공학적 안정화 연구가 요구된다.On the other hand, recombinant human growth hormones exhibit immunoactivity due to thermodynamic instability or aggregation due to thermodynamic instability during manufacturing, distribution and use, and are rapidly hydrolyzed by various enzymes in the bloodstream in the human body. The half life is very short, less than 10 minutes. In particular, enzymes such as plasmin and thrombin present in plasma are likely to be hydrolyzed at 134-150 residues. When used as an oral protein therapeutic, activity may be lost by proteolytic enzymes such as saliva enzyme, trypsin, pepsin, and the like. Since the instability problem of human growth hormone has a great influence on the bioavailability of the agent, protein engineering stabilization studies to improve the sustainability of the drug by improving the thermodynamic stability and resistance to proteolysis of human growth hormone are required.
단백질공학을 이용하여 활성이나 안정성 개량을 수행하는 연구의 경우, 주로 단백질의 삼차구조를 분석하여 노출부위를 선택하여 변형하거나 화학적으로 수식하는 방식이 이용된다 (Protein Sci. (2002) 11: 1452-1461). 그러나 이러한 방법은 단백질의 구조-기능 상관성에 대한 완전한 이해를 전제로 하는 것이며, 현실조건에서는 예측과 일치할 확률이 높지 않다. 따라서, 보다 효율적인 단백질 활성이나 안전성을 개량할 수 있는 방법의 필요성이 대두 되고 있다.In the case of the study of improving the activity or stability using protein engineering, the method of analyzing the tertiary structure of the protein and selecting or modifying the exposed site and modifying it chemically is used (Protein Sci. (2002) 11: 1452-). 1461). However, this method assumes a complete understanding of the structure-function correlation of proteins, and in reality it is unlikely to match the prediction. Therefore, there is a need for a method capable of improving more efficient protein activity and safety.
본 발명자들은 인간 성장 호르몬의 삼차구조에 대한 합리적 분석 및 실험적 접근방법을 병행하여 단백질 본래의 접힘(folding) 및 효능(function)을 방해하지 않으면서도, 인공적 돌연변이 및 화학적 수식을 수용할 수 있는 허용위치를 발굴하고, 유전적 변형 및 화학적 수식을 도입하여 체내 단백질 분해효소(플라스민, 트롬빈, 펩신 등)에 내성을 갖는 새로운 인간 성장 호르몬을 개발하고자 예의 노력한 결과, 폴딩 리포터를 도입하여 유전적 변형 및 화학적 수식이 가능한 허용위치를 발굴할 수 있는 것을 확인한 동시에, 이렇게 변형된 새로운 인간 성장 호르몬이 체내 단백질 분해효소 (플라스민, 트롬빈, 펩신 등)에 내성을 갖는 것을 확인하여 본 발명을 완성하였다.We use a rational analysis and experimental approach to the tertiary structure of human growth hormone to allow for artificial mutations and chemical modifications without interfering with the inherent folding and function of proteins. We have developed a new human growth hormone that is resistant to proteolytic enzymes (plasmin, thrombin, pepsin, etc.) in the body by introducing genetic modifications and chemical modifications. The present invention was completed by confirming that chemical modifications could be identified and at the same time, the new human growth hormone thus modified was resistant to proteolytic enzymes (plasmin, thrombin, pepsin, etc.) in the body.
본 발명의 하나의 목적은 (a) 폴딩 (folding) 리포터 단백질이 표적 단백질의 다양한 내부 위치에 삽입된 융합 단백질을 갖는 표적 단백질 라이브러리를 제조하는 단계; (b) 표적 단백질의 N-말단 또는 C-말단에 폴딩 리포터 단백질이 융합된 대조군보다 리포터 단백질의 활성이 높은 콜로니를 상기 표적 단백질 라이브러리로부터 선별하는 단계; 및 (c) 상기 선별된 콜로니의 융합 단백질 서열을 분석하여 폴딩 리포터 단백질이 삽입된 위치를 확인하는 단계를 포함하는, 표적 단백질 중 수정이 가능한 허용 위치 (permissive site)를 선별하는 방법을 제공하는 것이다.One object of the present invention is to prepare a target protein library having a fusion protein in which a folding reporter protein is inserted at various internal positions of the target protein; (b) selecting from the target protein library a colony having a higher activity of the reporter protein than the control group in which the folding reporter protein is fused at the N-terminus or C-terminus of the target protein; And (c) analyzing a fusion protein sequence of the selected colonies to identify a position at which the folding reporter protein is inserted, thereby selecting a permissive site that can be modified among target proteins. .
본 발명의 또 하나의 목적은 상기 방법에 의해 선별된 허용 위치에 돌연변이, 화학적 수식 또는 이종 단백질의 융합을 수행하는 단계를 포함하는, 변형된 표적 단백질을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a modified target protein, comprising performing a fusion of a mutation, chemical modification or heterologous protein at an allowable position selected by the method.
본 발명의 또 하나의 목적은 상기 방법에 의해 제조된 변형된 단백질을 제공하는 것이다.Another object of the present invention is to provide a modified protein produced by the above method.
본 발명의 또 하나의 목적은 신규한 변형된 인간 성장 호르몬을 제공하는 것이다.Another object of the present invention is to provide a novel modified human growth hormone.
본 발명의 폴딩 리포터 단백질을 코딩하는 핵산을 포함하고 있는 트랜스포존을 무작위 삽입함으로써 확인된 허용 위치 탐색 기술은 인간 성장 호르몬뿐만 아니라 다른 대부분의 단백질 치료제들의 안정성 및 활성 개량을 목적하는 경우에도 매우 유용한 방법이 될 수 있다. 구체적으로, 이러한 방법은 암세포와 같은 특정 타겟에만 적용 가능한 스마트 약물 (smart drug)로 사용하기 위한 단백질의 개량을 목적하는 경우에도 매우 유용한 방법이 될 수 있다. 또한, 단백질의 용해도를 높이기 위한 콜릭산 (cholic acid)와 같은 계면활성제의 부착에도 이용될 수 있다. 아울러, 이러한 방법으로 탐색된 위치에 안정화를 위한 당쇄화를 통해 목적하고자 하는 효소에 대한 안정성을 월등히 높일 수 있었으며, 이로써 치료용 단백질의 가장 큰 약점인 혈류 내 효소에 대한 불안정성을 해소하는 방법을 제공한다. 이러한 안정화 펩타이드 즉, 당쇄가 결합된 안정화된 hGH 재설계 단백질은 의학 산업적으로 매우 유용하게 사용될 것으로 기대된다. 아울러, 본 발명의 허용 위치는 별개의 단백질 (리간드, 알부민 등)을 결합하는 융합 단백질의 위치로 사용될 수도 있을 것이다.Acceptable site search techniques identified by random insertion of transposons containing nucleic acids encoding the folding reporter proteins of the present invention are very useful methods for improving the stability and activity of human growth hormone as well as most other protein therapeutics. Can be. In particular, such a method may be very useful in the case of improving the protein for use as a smart drug applicable only to a specific target such as cancer cells. It can also be used for the attachment of surfactants such as cholic acid to increase the solubility of the protein. In addition, through the glycosylation for stabilization at the position searched in this way it was possible to significantly increase the stability of the desired enzyme, thereby providing a method of resolving the instability of the enzyme in the bloodstream, the biggest weakness of the therapeutic protein do. Such stabilizing peptides, that is, stabilized hGH redesign proteins with sugar chains, are expected to be very useful in the medical industry. In addition, the acceptable positions of the present invention may be used as the position of a fusion protein that binds separate proteins (ligand, albumin, etc.).
도 1은 본 발명의 실험 전개 및 최종 결과 도출과정을 간략하게 나타낸 도이다.1 is a view briefly illustrating the experimental development and the final result derivation process of the present invention.
도 2는 인간 성장호르몬인 hGH 허용부위 탐색을 위한 hGH 라이브러리의 구성 과정을 개략적으로 나타낸 도이다. (a)는 Tn5 트랜스포사제(transposase) 인식부위 (Mosaic End, ME), 카나마이신 저항성 유전자, 역상보적인 Tn5 트랜스포사제 (transposase) 인식부위 (Mosaic End, ME), 자외선 형광 유전자를 포함하는 트랜스포존 (transposon)을 나타내는 도이다. (b)는 (a)의 트랜스포존을 삽입한 라이브러리의 구성 과정을 나타내는 도이다.Figure 2 is a schematic diagram showing the configuration of the hGH library for the detection of hGH tolerance site, a human growth hormone. (a) shows a transposon including a Tn5 transposase recognition site (Mosaic End, ME), a kanamycin resistance gene, a complementary Tn5 transposase recognition site (Mosaic End, ME), and an ultraviolet fluorescent gene It is a figure which shows (transposon). (b) is a figure which shows the structure of the library which inserted the transposon of (a).
도 3은 폴딩 리포터를 삽입한 라이브러리 및 대조군들의 현미경 스캐닝을 통한 이미지 결과를 나타낸 도이다.Figure 3 is a diagram showing the results of the image through the microscopic scanning of the library and the control inserting the folding reporter.
도 4는 트랜스포존을 삽입한 hGH 라이브러리의 구성과정 및 결과를 나타낸 도이다.4 is a diagram showing the configuration and results of the hGH library in which the transposon is inserted.
도 5는 트랜스포존을 삽입한 hGH 라이브러리로부터 허용부위 탐색을 위한 위치선별 결과를 나타낸 도이다. (a)는 효모 라이브러리에서 얻어진 히트들의 서열분석을 통하여 확인된 형광리포터 삽입 위치를 나타낸 표이다. (b)는 허용위치 탐색 과정에서 라이브러리별로 선별된 아미노산 서열을 나타낸 도이다.5 is a diagram showing the results of position selection for the detection of the allowable region from the hGH library in which the transposon is inserted. (a) is a table showing the position of the fluorescent reporter insertion confirmed by sequencing the hits obtained from the yeast library. (b) is a diagram showing the amino acid sequence selected for each library during the allowable position search process.
도 6은 야생형 (a) 및 변이형 hGH (b 및 c)의 효모에서의 발현 결과를 확인한 도이다.Figure 6 is a diagram confirming the expression results in yeast of wild type (a) and variant hGH (b and c).
도 7은 효모에서 발현한 야생형 및 변이형 hGH의 활성수준을 Nb2 세포 증식실험을 통해 확인한 도이다.7 is a diagram confirming the activity level of wild-type and mutant hGH expressed in yeast through Nb2 cell proliferation experiment.
도 8a 내지 8c는 인체 내 단백질 분해 효소 (펩신, 플라스민, 트롬빈)에 의한 절편형성 확인을 통해 변이형 단백질들의 안정성을 확인한 도이다.8a to 8c is a diagram confirming the stability of the mutant proteins through fragmentation confirmation by proteolytic enzymes (pepsin, plasmin, thrombin) in the human body.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 (a) 폴딩 (folding) 리포터 단백질이 표적 단백질의 다양한 내부 위치에 삽입된 융합 단백질을 갖는 표적 단백질 라이브러리를 제조하는 단계; (b) 표적 단백질의 N-말단 또는 C-말단에 폴딩 리포터 단백질이 융합된 대조군보다 리포터 단백질의 활성이 높은 콜로니를 상기 표적 단백질 라이브러리로부터 선별하는 단계; 및 (c) 상기 선별된 콜로니의 융합 단백질 서열을 분석하여 폴딩 리포터 단백질이 삽입된 위치를 확인하는 단계를 포함하는, 표적 단백질 중 수정이 가능한 허용 위치 (permissive site)를 선별하는 방법을 제공한다.As one aspect for achieving the above object, the present invention comprises the steps of (a) preparing a target protein library having a fusion protein in which a folding reporter protein is inserted at various internal positions of the target protein; (b) selecting from the target protein library a colony having a higher activity of the reporter protein than the control group in which the folding reporter protein is fused at the N-terminus or C-terminus of the target protein; And (c) analyzing the fusion protein sequence of the selected colony to identify a position at which the folding reporter protein is inserted, thereby selecting a permissive site that can be modified among target proteins.
본 발명에서 용어, "허용 위치 (permissive site)"란 단백질 본래의 활성에는 크게 영향을 미치지 않으면서 예컨대 안전성, 타겟으로의 전달을 높일 수 있도록 재설계 가능한 부위를 의미한다. 바람직하게는 표적 단백질의 기능을 손상시키지 않으면서 돌연변이 (mutation), 화학적 수식 (chemical modification) 또는 이종 단백질의 융합을 수행할 수 있는 위치일 수 있다. 바람직하게 상기 화학적 수식은 당쇄화 (glycosylation), 페길화 (PEGylation) 또는 계면 활성제의 부착등을 포함하는 화학적 수식 (chemical modification)을 도입할 수 있는 위치일 수 있다. 이와 같은 도입은 당업계에 공지된 방법을 제한 없이 사용할 수 있다.As used herein, the term "permissive site" refers to a site that can be redesigned to enhance safety, delivery to a target, for example, without significantly affecting the original activity of the protein. Preferably, it may be a position where mutation, chemical modification or fusion of a heterologous protein can be performed without impairing the function of the target protein. Preferably, the chemical modification may be at a position to introduce a chemical modification including glycosylation, PEGylation, or the attachment of a surfactant. Such introduction can use without limitation methods known in the art.
선별된 허용 위치에 계면 활성제를 부착시, 계면 활성제는 이에 제한되지는 않으나, 그 예로 콜릭산 (cholic acid)일 수 있으며, 이와 같은 계면 활성제는 단백질의 용해도를 높여서 세포 막의 투과성을 높여서 단백질 치료제의 생체 투입을 용이하게 할 수 있도록 할 수 있다. 이와 같은 계면 활성제의 부착은 공지의 방법을 제한 없이 이용하여 수행될 수 있다. 선별된 허용 위치에 이종 단백질을 융합할 경우, 이종의 단백질은 암 세포와 같은 특정 타겟으로 단백질 치료제를 이동시키기 위한 리간드, 리셉터 등일 수 있으나, 이에 제한되지는 않는다. 또는 면역글로불린 Fc 영역 또는 알부민과 같이 단백질 치료제의 체내 반감기 또는 안정성을 높일 수 있는 이종의 단백질이 융합될 수 있으나, 이에 제한되지는 않는다. 이와 같은 이종 단백질의 융합은 공지의 방법을 제한 없이 이용하여 수행될 수 있다.When the surfactant is attached at the selected allowable position, the surfactant may be, but is not limited to, for example, cholic acid, and such a surfactant may increase the solubility of the protein to increase the permeability of the cell membrane to increase the protein therapeutics. It is possible to facilitate the injection of the living body. Attachment of such surfactants can be carried out using known methods without limitation. When the heterologous protein is fused to a selected acceptable position, the heterologous protein may be, but is not limited to, a ligand, a receptor, or the like for moving the protein therapeutic agent to a specific target such as cancer cells. Alternatively, heterologous proteins, such as immunoglobulin Fc regions or albumin, may enhance the half-life or stability of the protein therapeutic agent, but are not limited thereto. Fusion of such heterologous proteins can be performed using known methods without limitation.
본 발명의 허용 위치 선별 방법의 전체적인 모식도는 도 4에 나타낸 바와 같다. 본 발명자들은 폴딩 리포터 단백질을 포함하는 트랜스포존이 무작위적으로 삽입된 내부 접합 (in-frame) 융합 단백질 라이브러리를 구축한 후, 이를 단백질 공학 기술을 이용하여 후보 위치를 선별하고, 구조분석을 통해 이론적인 선별 과정을 거쳤다.The overall schematic diagram of the permissible position selection method of the present invention is as shown in FIG. The inventors constructed an in-frame fusion protein library into which a transposon containing a folding reporter protein was randomly inserted, and then selected candidate positions using protein engineering techniques, I went through the screening process.
상기 (a) 단계는 폴딩 리포터 단백질을 코딩하는 핵산을 트랜스포존에 의해 표적 단백질을 코딩하는 핵산의 다양한 내부 위치에 삽입될 수 있다.In step (a), the nucleic acid encoding the folding reporter protein may be inserted into various internal positions of the nucleic acid encoding the target protein by transposon.
본 발명에서 상기 "트랜스포존 (transposon)"은 단백질 내로의 무작위 삽입 또는 디자인된 위치에 삽입하기 위해 사용되는 일종의 단백질 발현 카세트를 의미한다. 바람직하게 상기 트랜스포존은 폴딩 리포터 단백질을 코딩하는 핵산 및 양 말단에 전위 효소 (transposase) 인식 부위를 포함할 수 있다. 또한, 트랜스포존 삽입 클론 선별을 위한 마커 유전자를 포함할 수 있으며, 마커 유전자는 항생제 저항성 유전자일 수 있다. 이와 같은 트랜스포존의 간략한 모식도는 도 2의 (a)에 나타냈다. 전위 효소 인식 부위는 서로 각각 역상보적인 서열을 이룬다. 바람직하게 상기 트랜스포존은 서열번호 2 및 3에 기재된 전위 효소 인식 부위가 양 말단에 존재하고, 서열번호 5로 기재된 카나마이신 저항성 유전자로 이루어진 트랜스포존일 수 있다.In the present invention, the term "transposon" refers to a kind of protein expression cassette used for random insertion into a protein or for insertion into a designed position. Preferably, the transposon may include a nucleic acid encoding a folding reporter protein and a transposase recognition site at both ends. In addition, a marker gene for transposon insertion clone selection may be included, and the marker gene may be an antibiotic resistance gene. A brief schematic diagram of such a transposon is shown in Fig. 2 (a). The translocation enzyme recognition sites are each complementary to each other. Preferably, the transposon may be a transposon consisting of the kanamycin resistance gene described in SEQ ID NO: 5, wherein the translocation enzyme recognition sites described in SEQ ID NOs: 2 and 3 are present at both ends.
상기 폴딩 리포터 단백질을 코딩하는 핵산, 트랜스포존 삽입 클론 선별을 위한 항생제 저항성 유전자 및 양 말단에 전위 효소 (transposase) 인식 부위는 작동가능하게 연결된 발현 카세트 형태일 수 있다.The nucleic acid encoding the folding reporter protein, the antibiotic resistance gene for transposon insertion clone selection and the transposase recognition site at both ends may be in the form of an expression cassette operably linked.
본 발명에서 용어 "작동가능하게 연결된 (operably linked)"은, 하나의 핵산 단편이 다른 핵산 단편과 결합되면 통상적으로 이들 각각의 기능 또는 발현이 다른 핵산 단편의 영향을 받지만, 이들 핵산 단편의 여러 가능한 결합 조합 중에서 각 단편이 그 기능을 수행하는데 있어 검출할 만한 영향이 없는 상태의 결합을 의미한다.The term "operably linked" in the present invention means that when one nucleic acid fragment is combined with another nucleic acid fragment, typically their respective function or expression is affected by the other nucleic acid fragment, but many possible Binding refers to binding in a state in which each fragment has no detectable effect on performing its function.
상기 트랜스포존에 전위 효소 (transposae)를 처리하여 무작위적으로 트랜스포존이 삽입된 표적 단백질 라이브러리를 제조할 수 있다.The transposon may be treated with a transposae to prepare a target protein library into which a transposon is randomly inserted.
바람직하게 상기 (a) 단계의 표적 단백질 라이브러리는 (i) 폴딩 리포터 단백질을 코딩하는 핵산, 트랜스포존 삽입 클론 선별 마커 유전자 및 양 말단에 전위 효소 인식부위를 포함하는 트랜스포존을 제1 숙주세포에 도입하는 단계; (ii) 상기 제1 숙주세포들로부터 선별 마커 유전자를 발현하는 콜로니를 선별하여 트랜스포존 삽입 제1 라이브러리를 제조하는 단계; (iii) 상기 (ii) 단계의 제1 라이브러리로부터 나온 트랜스포존에서 선별 마커 유전자를 제거하는 단계; 및 (iv) 상기 선별 마커가 제거된 트랜스포존을 제2 숙주세포에 도입하여 제2 라이브러리를 제조하는 단계에 의해 수행될 수 있다.Preferably, the target protein library of step (a) comprises (i) introducing a transposon comprising a nucleic acid encoding a folding reporter protein, a transposon insertion clone selection marker gene, and a translocation enzyme recognition site at both ends into a first host cell; ; (ii) selecting a colony expressing a selection marker gene from the first host cells to prepare a transposon insertion first library; (iii) removing the selection marker gene from the transposon from the first library of step (ii); And (iv) introducing the transposon from which the selection marker has been removed into a second host cell to prepare a second library.
상기 제1 숙주세포는 원핵 세포일수 있으며, 그 예로 이에 제한되지는 않으나 대장균일 수 있다. 상기 제2 숙주세포는 진핵 세포일 수 있으며, 그 예로 이에 제한되지는 않으나 효모일 수 있다.The first host cell may be a prokaryotic cell, for example, but may not be limited to E. coli. The second host cell may be a eukaryotic cell, for example, but may not be limited to yeast.
본 발명에서 용어, "폴딩 (folding) 리포터 단백질"은 표적 단백질의 폴딩 및 수용성 (solubility)이 제대로 되었는 지 여부를 확인할 수 있는 단백질을 의미한다. 폴딩 리포터 단백질이 표적 단백질에 결합하면 표적 단백질의 폴딩의 성공 여부를 반영할 수 있다. 즉, 표적 단백질의 폴딩이 제대로 되지 않으면 리포터 단백질의 활성이 약하게 된다. 따라서, 폴딩 리포터 단백질이 삽입되어도 목적 단백질의 폴딩에 영향이 없으면 리포터 단백질이 활성을 나타낼 수 있으나, 폴딩 리포터 단백질이 삽입된 부분이 폴딩에 영향이 있는 위치이면 리포터 단백질의 활성이 완벽하지 않아서, 삽입된 위치가 중요한 부분인지 확인할 수 있다. 상기 폴딩 리포터 단백질은 폴딩이 제대로 되었는지를 확인할 수 있는 단백질은 제한 없이 포함될 수 있으나, 바람직하게는 녹색 형광 단백질 (GFP), 변형된 녹색 형광 단백질 (modified green fluorescent protein; mGFP), 증강된 녹색 형광 단백질 (enhanced green fluorescent protein; EGFP), 적색 형광 단백질 (RFP), 변형된 적색 형광 단백질 (mRFP), 증강된 적색 형광 단백질 (ERFP), 청색 형광 단백질 (BFP), 증강된 청색 형광 단백질 (EBFP), 황색 형광 단백질 (YFP), 증강된 황색 형광 단백질 (EYFP), 남색 형광 단백질 (CFP) 또는 증강된 남색 형광 단백질 (ECFP)일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 일 실시예에 따르면 녹색 형광 단백질 (GFP)을 폴딩 리포터 단백질로 사용하여 폴딩이 제대로 되는지 확인하였다.As used herein, the term "folding reporter protein" refers to a protein capable of confirming whether or not the folding and solubility of a target protein is correct. The binding of the reporter protein to the target protein may reflect the success of the folding of the target protein. In other words, if the target protein is not properly folded, the activity of the reporter protein is weak. Therefore, even when the folding reporter protein is inserted, the reporter protein may exhibit activity if there is no effect on the folding of the target protein, but when the portion of the folding reporter protein is inserted is the position that affects the folding, the activity of the reporter protein is not perfect, You can see if the location is important. The folding reporter protein may include, without limitation, a protein capable of confirming proper folding, but is preferably a green fluorescent protein (GFP), a modified green fluorescent protein (mGFP), or an enhanced green fluorescent protein. enhanced green fluorescent protein (EGFP), red fluorescent protein (RFP), modified red fluorescent protein (mRFP), enhanced red fluorescent protein (ERFP), blue fluorescent protein (BFP), enhanced blue fluorescent protein (EBFP), Yellow fluorescent protein (YFP), enhanced yellow fluorescent protein (EYFP), indigo fluorescent protein (CFP) or enhanced indigo fluorescent protein (ECFP), but is not limited thereto. According to one embodiment of the present invention using green fluorescent protein (GFP) as a folding reporter protein was confirmed whether the folding is correct.
바람직하게 (b) 단계는 표적 단백질의 N-말단 또는 C-말단에 폴딩 리포터 단백질이 융합된 대조군보다 리포터 단백질의 활성이 높은 콜로니를 상기 표적 단백질 라이브러리로부터 선별하여 수행될 수 있다.Preferably step (b) may be performed by selecting from the target protein library colonies having higher activity of the reporter protein than the control group in which the folding reporter protein is fused to the N-terminus or C-terminus of the target protein.
또한 (c) 상기 선별된 콜로니의 융합 단백질 서열을 분석하여 폴딩 리포터 단백질이 삽입된 위치를 확인하는 단계를 수행할 수 있다.In addition, (c) analyzing the fusion protein sequence of the selected colony may be performed to determine the position where the folding reporter protein is inserted.
이와 같은, (a) 내지 (c) 단계는 "허용 위치를 선별하는 실험적 단계"를 의미할 수 있다. "허용위치를 발굴하는 실험적 방법"에는 무작위적 삽입에 의한 내부접합 (in-frame) 융합단백질 라이브러리 구축 및 고속 형광분석에 의한 탐색법을 이용할 수 있다. 즉 리포터 단백질인 형광 단백질 유전자를 포함하고 있는 트랜스포존을 제작하여 표적 단백질 내에 무작위 삽입한 라이브러리의 고속탐색을 수행한다. 이때 형광 단백질 유전자는 일종의 폴딩 리포터 (folding reporter)로 기능하게 된다. 따라서 표적 단백질-형광융합 단백질에서 표적 단백질이 정상적으로 폴딩되면 형광단백질 고유의 형광이 강하게 나타나게 되므로, 이들을 선별하여 삽입 위치 확인을 위해 유전자서열을 분석하면 목적하는 허용위치를 실험적으로 결정할 수 있게 된다. 본 발명의 실험적 방법은 폴딩 리포터에 의해 정확하고 빠른 히트 선별이 가능하고, 인간 성장 호르몬과 같은 단백질 치료제 뿐만 아니라 다른 단백질의 개량 연구에도 간편하게 적용할 수 있다. 이와 같이 발굴된 허용 위치에 다양한 유전적 변이 및 화학적 수식을 수행하는 등의 변형을 가하여도 단백질 고유의 기능에는 영향을 미치지 않게 되며, 단백질 분해효소에 대한 저항성 등 표적 단백질의 단백질치료제로서의 이용성을 향상시킬 수 있다.As such, steps (a) to (c) may mean "experimental step of selecting acceptable positions". The "experimental method of finding acceptable positions" can be used to construct an in-frame fusion protein library by random insertion and search by high-speed fluorescence analysis. That is, a transposon containing a fluorescent protein gene, which is a reporter protein, is prepared, and high-speed search of a library randomly inserted into a target protein is performed. In this case, the fluorescent protein gene functions as a kind of folding reporter. Therefore, when the target protein is normally folded in the target protein-fluorescence fusion protein, the fluorescence inherent in the fluorescence protein is strongly displayed, and thus, by selecting these and analyzing the gene sequence to confirm the insertion position, the target tolerance can be determined experimentally. The experimental method of the present invention enables accurate and rapid hit screening by the folding reporter, and can be easily applied to improvement studies of other proteins as well as protein therapeutics such as human growth hormone. Modifications such as performing various genetic variations and chemical modifications to the excavated allowable positions do not affect the intrinsic function of the protein, and improve the usability of the target protein as a protein therapeutic agent, such as resistance to proteolytic enzymes. You can.
바람직하게, 상기 (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치를 중심으로 5Å (±2Å) 이내에 위치하는 아미노산을 허용 위치로 설계하는 단계를 추가로 포함할 수 있다. 이와 같은 범위는 실시예 5의 돌연변이에 의해 뒷받침된다.Preferably, the method may further include designing an amino acid located within 5 ms (± 2 ms) around the folding reporter protein insertion position identified in step (c) as an acceptable position. This range is supported by the mutations in Example 5.
바람직하게, 상기 (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치들 중 단백질 분해효소의 절단 부위를 중심으로 5Å (±2Å) 이내에 위치하는 아미노산을 선별하는 (d) 단계를 추가로 포함할 수 있다. 이는 외부에 노출되는 부위를 포함할 수 있다. 이와 같은 (d) 단계는 서열 분석을 통한 실험적 방법 뿐 아니라, 단백질의 3차 구조 대입에 의한 구조 기반 합리적 선별에 의해서도 수행될 수 있다.Preferably, the method may further include the step of (d) selecting an amino acid located within 5 Å (± 2 절단) of the folding reporter protein insertion sites identified in step (c) with respect to the cleavage site of the protease. It may include a site that is exposed to the outside. This step (d) can be performed not only by experimental methods through sequencing, but also by structure-based rational selection by tertiary structure substitution of proteins.
바람직하게, (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치들에서 단백질 수정시 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치를 제외시키는 (e) 단계를 추가로 포함할 수 있다. 표적 단백질의 결합 활성은 리셉터 결합, 리간드 결합, 항원-항체 결합 등의 다양한 결합 활성을 포함할 수 있다. 이와 같은 (e) 단계는 서열 분석 또는 세포 시스템 바탕으로 실험적으로 확인할 수 있을 뿐만 아니라, 단백질의 3차 구조 대입에 의한 구조 기반 합리적 선별에 의할 수 있으며, 더 바람직하게는 단백질 수정시 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치는 상기 표적 단백질의 알려진 3차 구조에 대입하여 확인할 수 있다. 3차 구조에 대입하기 전에 표적 단백질의 활성과 관련된 이종 간 보존 서열을 제외할 수 있다. 이와 같은 이종 간 보존서열은 공지의 서열 데이터 베이스 (GenBank 등)를 이용하여 표적 단백질의 서열을 선별한 후, 공지의 서열 분석 프로그램 (blast 등)을 이용하여 보존 서열을 선별할 수 있다.Preferably, the method may further include the step (e) of excluding the position at which the folding reporter protein insertion positions identified in step (c) remove the binding activity of the target protein or the intrinsic functional activity of the target protein. The binding activity of the target protein may include various binding activities such as receptor binding, ligand binding, antigen-antibody binding and the like. This step (e) can be confirmed experimentally on the basis of sequencing or cell system, as well as by the structure-based rational selection by tertiary structure substitution of the protein, more preferably the modification of the target protein during protein modification. The site of eliminating binding activity or intrinsic functional activity of the target protein can be identified by substituting the known tertiary structure of the target protein. Heterologous conserved sequences associated with the activity of the target protein may be excluded prior to assignment to the tertiary structure. Such heterologous preservation sequences may be selected using a known sequence database (GenBank, etc.), and then the sequence of the target protein may be selected using a known sequence analysis program (blast, etc.).
상기 (d) 단계와 (e) 단계는 동시에, 역순으로 또는 순차적으로 수행할 수 있다.Steps (d) and (e) may be performed simultaneously, in reverse order or sequentially.
바람직하게, 상기 (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치들 중 단백질 분해효소의 절단 부위를 중심으로 5Å (±2Å) 이내에 위치하는 아미노산을 선별하는 (d) 단계; 및 (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치들에서 단백질 수정시 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치를 제외시키는 (e) 단계를 단백질의 3차 구조 대입하여 수행하는 경우에 이는 "구조 기반 합리적 선별 단계"를 의미할 수 있다.Preferably, (d) selecting an amino acid located within 5 이내에 (± 2 Å) of the folding reporter protein insertion sites identified in step (c) around the cleavage site of the protease; And (e) excluding the position at which the folding reporter protein insertion positions identified in step (c) remove the binding activity of the target protein or the position of eliminating the intrinsic functional activity of the target protein when the protein is modified. In this case it may mean "structure based rational selection step".
"구조기반 합리적 선별" 은 서열 및 구조 분석을 통해 단백질 재설계가 허용되지 않는 부위, 즉 표적 단백질의 본래의 활성과 직접적 혹은 간접적으로 연관되어 돌연변이, 또는 당쇄화 (glycosylation), 페길화 (PEGylation) 또는 계면 활성제 부착 등을 포함하는 화학적 수식 (chemical modification) 도입 및 단백질 융합과 같은 단백질 재설계가 어려운 부위와 단백질 재설계가 용이한 부위를 분류하는 단계로서, 다음의 단계에 따라 진행될 수 있다. 우선 다양한 표적 단백질의 단백질 아미노산 서열들을 비교하여 필수적으로 보존된 공통 잔기를 분석하고, 다음으로 표적 단백질의 구조 분석을 통해 직접적인 리셉터 결합부위와 리셉터 결합에 영향을 미칠 것으로 예상되는 부위를 단백질 재설계가 허용되지 않는 부위로 분류하여 제외한다. 아울러, 표적 단백질 내에 체내 단백질 분해효소에 의해서 절단되는 부위와 근접하고 외부에 노출되어 단백질 재설계가 용이한 부위를 단백질 재설계 후보 허용위치로 선별할 수 있다. 또한 상기 구조 분석을 통해 분류한 단백질 재설계 후보 허용위치 및 단백질 재설계가 허용되지 않는 부위를 바탕으로 실험적 방법으로 선별된 리포터 단백질의 위치 가운데 단백질 재설계가 허용되지 않는 부위를 제외하고 단백질 재설계가 가능한 위치를 선별할 수 있다."Structural based rational selection" refers to sites where disallowing protein redesign through sequence and structural analysis, that is, directly or indirectly associated with the original activity of the target protein, resulting in mutation, glycosylation, or PEGylation. Alternatively, the step of classifying a site that is difficult to redesign the protein and a site that is easy to redesign the protein, such as chemical modification (incorporation of chemical modification) and protein fusion, including the attachment of a surfactant, may be performed according to the following steps. First, the protein amino acid sequences of various target proteins are compared to analyze the conserved common residues, and the structure of the target protein is analyzed. Then, the protein redesigning site is expected to influence the direct receptor binding site and the receptor binding site. Excluded as classified as unacceptable site. In addition, a site close to the site cleaved by the protease in the body and exposed to the outside to facilitate protein redesign can be selected as a candidate site for protein redesign. In addition, the protein redesign is excluded except the sites where protein redesign is not allowed among the positions of reporter proteins selected by the experimental method based on the protein redesign candidate candidate positions and the sites where the protein redesign is not allowed. Can select the possible positions.
본 발명의 상기 "구조기반 합리적 선별"은 트랜스포존을 이용하여 선별된 폴딩 리포터 단백질의 위치 가운데 다양한 유전적 변이 및 화학적 수식이 가능한 위치만을 빠르고 용이하게 선별할 수 있다.The "structure-based rational selection" of the present invention can quickly and easily select only those positions capable of various genetic variations and chemical modifications among the positions of the folding reporter protein selected using the transposon.
상기 단백질 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치는 상기 표적 단백질의 알려진 3차 구조에 대입하여 수행될 수 있다.The site for removing the binding activity of the protein target protein or the intrinsic functional activity of the target protein can be performed by substituting a known tertiary structure of the target protein.
상기 제거 위치는 단백질 재설계가 적용되었을 때 본래의 단백질의 기능이 작동하지 않는 위치를 의미하며 그 예로, 리셉터 결합 위치, 리셉터 결합에 영향을 미칠 것으로 예상되는 위치를 포함할 수 있으나, 이로 제한되지는 않는다. 이는 N-말단 또는 C-말단을 포함할 수 있다.The removal position may mean a position at which the function of the original protein does not operate when the protein redesign is applied, and may include, but is not limited to, a receptor binding position and a position expected to affect receptor binding. Does not. It may comprise an N-terminus or a C-terminus.
상기 단백질 치료제의 구조 분석을 위한 단백질 치료제의 3차 구조는 PDB (Protein Data Bank)와 같은 3차 구조가 알려진 인간 단백질의 구조를 모두 포함하는 데이터 베이스로부터 제공받을 수 있으며, 이에 제한되는 것은 아니나, 공지의 3차원 구조가 알려진 인간 단백질의 3차원 구조는 다양한 데이터 베이스를 통하여 제공받을 수 있다.The tertiary structure of the protein therapeutic agent for structural analysis of the protein therapeutic agent may be provided from a database including all the structures of known human proteins such as PDB (Protein Data Bank), but are not limited thereto. The three-dimensional structure of a human protein known in the art may be provided through various databases.
또한, 효소 반응 다이어그램 (enzyme diagram), 유전자 온톨로지 기능적 분류 (gene ontology functional assignment), 1차 서열 주석 (1D sequence annotation), 단백질-단백질 상호작용의 구조적 다이어그램 (schematic diagram of protein-protein interaction) 등과 같은 단백질의 구조 정보를 포함하는 PDBsum (http://www.ebi.ac.uk/pdsum)과 인간 단백질 각각이 가지는 3차원적 구조에 따라 유형별로 복수의 그룹으로 분류되어 있는 SCOP (Structural Claasification of Protein) 등 다양한 데이터 베이스를 이용하여 단백질의 3차원 구조 정보를 제공받을 수 있으나, 이에 제한되지는 않는다. 이후, 공지의 3차 구조 데이터베이스로부터 제공받은 상기 단백질 치료제의 3차원 구조는 PyMOL과 Discovery Studio Visualizer와 같은 3차 분자 시각화 (3D molecular visualization) 프로그램을 이용하여 분석하며, 이를 통해 상기 표적 단백질 내에 단백질 재설계가 허용되지 않는 부위와 단백질 재설계가 용이한 부위를 분류한다. 단백질 재설계가 허용되지 않는 위치로는 리셉터 결합 위치 및/또는 리셉터 결합에 영향을 미칠 것으로 예상되는 위치 등을 포함한다. 또한 트랜스포존을 이용하여 상기 표적 단백질 내에 폴딩 리포터 단백질의 삽입 위치 가운데 단백질 재설계가 용이한 부위에 삽입된 위치만 효율적으로 선별 하기위해, 상기 삽입된 위치 중 단백질 재설계가 허용되지 않는 단백질 수정시 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치를 제외하는 단계를 포함하여, 상기 구조 분석을 통해 분류한 단백질 재설계 후보 허용위치 및 단백질 재설계가 허용되지 않는 부위를 바탕으로 단백질 재설계가 용이한 부위에 삽입된 위치만 용이하게 선별한다.In addition, enzyme diagrams, gene ontology functional assignments, 1D sequence annotations, and schematic diagrams of protein-protein interactions PDBsum (http://www.ebi.ac.uk/pdsum) containing protein structure information and SCOP (Structural Claasification of Protein) classified into groups according to the three-dimensional structure of each human protein 3D structure information of the protein may be provided using various databases such as, but is not limited thereto. Thereafter, the three-dimensional structure of the protein therapeutic agent, which is provided from a known tertiary structure database, is analyzed using a 3D molecular visualization program such as PyMOL and Discovery Studio Visualizer. Identify areas where design is not acceptable and areas where protein redesign is easy. Locations where protein redesign is not permitted include receptor binding sites and / or positions that are expected to affect receptor binding. In addition, in order to efficiently select only the insertion position of the folding reporter protein within the target protein, which is easily redesigned, using a transposon, the target of the protein modification during the modification of the protein is not allowed Protein redesign based on the protein redesign candidate candidate sites classified through the structural analysis and sites where protein redesign is not allowed, including the step of excluding the binding activity of the protein or the location of eliminating the native functional activity of the target protein. Only the position inserted in the easy design area is easily selected.
본 발명에서 용어, "표적 단백질"이란 본 발명의 방법을 이용하여 변형된 단백질을 제조하기 위한 허용 위치를 찾고자 하는 단백질을 의미할 수 있다. 그 예로 이에 제한되지는 않으나, 인간 성장 호르몬, 인슐린, EGFR (Epidermal Growth Factor), EPO (Erythropoietin), 조혈자극제, 호중구 촉진인자 (G-CSF), 혈소판 성장 인자 (Thrombopoietin), 인터페론, 응고인자 (coagulation factor) 또는 여포자극호르몬을 포함하는 단백질 치료제일 수 있으나, 바람직하게는 인간 성장 호르몬이다. 본 발명의 일 실시예에 따르면 인간 성장 호르몬에서 허용 위치를 선별하였다.As used herein, the term "target protein" may refer to a protein for which to find an acceptable position for preparing a modified protein using the method of the present invention. Examples include, but are not limited to, human growth hormone, insulin, epidermal growth factor (EGFR), erythropoietin (EPO), hematopoietic stimulant, neutrophil promoter (G-CSF), platelet growth factor (Thrombopoietin), interferon, coagulation factor ( coagulation factor) or follicle stimulating hormone, or a protein therapeutic agent, but is preferably a human growth hormone. According to one embodiment of the present invention, acceptable positions were selected from human growth hormone.
본 발명자들은 허용 위치 탐색을 위하여 트랜스포존 5 (Tn5)의 전위 효소 인식 부위 (Mosaic End, Me)와 폴딩 리포터로서 GFP, 1차 선별을 위한 카나마이신 저항성 유전자를 포함하는 트랜스포존을 제작하고 (도 2), 무작위적 삽입 라이브러리를 만들기 위하여 트랜스포존, 인간 성장 호르몬 (hGH) DNA 및 Tn5 전위효소를 반응시켜서 1차 라이브러리를 제조하고, 카나마이신 저항 유전자가 제거된 2차 라이브러리를 제조한 후, hGH에 폴딩 리포터를 포함하는 트랜스포존이 무작위적 삽입된 콜로니를 선별하였다. 다음으로, 상기 콜로니에서 hGH-GFP를 분리한 후, 효모에 도입하여 효모 라이브러리를 확보하였다. 상기 효모에서 hGH의 ORF 외부에 GFP를 일련 연결하여 제조한 hGH-GFP를 양성 대조군으로 사용하여 대조군보다 형광 수치가 높은 콜로니를 선별하여 서열 분석을 수행하여 8 위치에 리포터가 도입된 것을 확인하였다 (도 5). 이를 알려진 hGH의 3차 구조에 표시하고, 96개 아미노산 보존 서열, hGH 리셉터와의 결합면인 40개의 아미노산, N-말단 17개, C-말단 10개를 제외하여, 4개의 허용 위치 (Q49, E129, R134, Q141)을 선별하였다 (도 5). 이와 같은 허용 위치는 펩신에 의해 가수분해되는 부위 (44번)에 근접하고, 134번은 혈중 트롬빈에 의하여 가수 분해되는 위치이며, 141번은 플라스민에 의하여 가수 분해되는 위치이며, 129번은 가수 분해와는 직접적으로 관련이 없으나 자유도가 높은 루프에 위치하였다. 이러한 결과는 GFPuv 삽입을 통하여 발굴되는 단백질 공학적 허용위치가 단백질 가수 분해에 의하여 공격받기 쉽고 자유도가 높은 위치와 관련되고 있음을 시사하는 것이다.We constructed a transposon comprising translocation enzyme recognition site (Mosaic End, Me) of transposon 5 (Tn5) and GFP as a folding reporter, kanamycin resistance gene for primary selection for acceptable site search (FIG. 2), To make a random insertion library, a primary library was prepared by reacting transposon, human growth hormone (hGH) DNA, and Tn5 translocation enzyme, a secondary library from which kanamycin resistance gene was removed, and a folding reporter was included in hGH. The transposons were selected randomly inserted colonies. Next, hGH-GFP was isolated from the colonies, and then introduced into yeast to obtain a yeast library. Using the hGH-GFP prepared by serially connecting GFP outside the ORF of hGH in the yeast as a positive control, colonies having higher fluorescence values were selected and sequenced to confirm that the reporter was introduced at position 8 ( 5). This is indicated in the tertiary structure of the known hGH, and contains four amino acid conserved sequences, 40 amino acids that are the binding surface to the hGH receptor, 17 N-terminals, and 10 C-terminals, with four acceptable positions (Q49, E129, R134, Q141) were selected (FIG. 5). This acceptable position is close to the site hydrolyzed by pepsin (No. 44), 134 is the position hydrolyzed by thrombin in the blood, 141 is the position hydrolyzed by plasmin, and 129 is not hydrolyzed It is located in a loop that is not directly related but has a high degree of freedom. These results suggest that protein engineering tolerances discovered through GFPuv insertion are related to the high degree of freedom and probable attack by proteolysis.
또 하나의 양태로서, 본 발명은 상기 방법에 의해 선별된 허용 위치에 돌연변이 (mutation), 화학적 수식 또는 이종 단백질의 융합을 수헹하는 단계를 포함하는, 변형된 표적 단백질을 제조하는 방법을 제공한다.As another aspect, the present invention provides a method for preparing a modified target protein, comprising rinsing a mutation, chemical modification or fusion of a heterologous protein at an acceptable position selected by the method.
화학적 수식은 앞서 설명한 대로 당쇄화 (glycosylation), 페길화 (PEGylation) 또는 계면 활성제의 부착을 포함한다. 계면 활성제는 표적 세포로의 도입을 용이하게 할 수 있는 콜릭산 등을 포함한다.Chemical formulas include glycosylation, PEGylation or attachment of surfactants as described above. Surfactants include cholic acid and the like, which can facilitate their introduction into target cells.
바람직하게 상기 변형된 표적 단백질은 야생형 표적 단백질에 비해 안전성이 개선된 표적 단백질일 수 있다. 또한 상기 변형된 표적 단백질은 야생형 표적 단백질에 비해 타겟 세포로 도입이 개선된 표적 단백질일 수 있다. 이는 단백질의 용해도를 높여서 세포막의 투과성을 높여 생체 투입을 용이하게 하거나, 타겟 세포 표면에 특이적으로 발현하는 리셉터 또는 리간드 등에 특이적으로 결합할 수 있는 리간드 또는 리셉터를 이종 단백질로 융합하여 타겟 세포로의 전달을 용이하게 한다.Preferably, the modified target protein may be a target protein having improved safety compared to a wild type target protein. In addition, the modified target protein may be a target protein having improved introduction into the target cell compared to the wild type target protein. This enhances the solubility of the protein to increase the permeability of the cell membrane to facilitate the injection into the living body, or the ligand or receptor that can specifically bind to a receptor or ligand that is specifically expressed on the target cell surface is fused with a heterologous protein to the target cell. Facilitates the delivery of
실험적 및 이론적 방법에 의하여 발굴된 허용위치에 새로운 아미노산, 인공 당쇄, 인공고분자 (예: PEGylation), 계면 활성제, 새로운 융합 단백질 등을 도입하는 방식으로 변형된 표적 단백질을 제조할 수 있다. 예를 들어 본 발명의 방법을 통해 hGH로부터 탐색된 허용위치에 인공적 당쇄를 도입하는 경우, 야생형의 단백질에 비해 펩신, 트롬빈, 플라스민 등에 대하여 생물학적 안정성이 높은 hGH를 제조할 수 있다. 본 발명에서 용어 "생물학적 안정성"은 천연 또는 비천연 단백질에 변성을 일으킬 수 있는 체내 또는 체외 효소에 의한 분해에 대해 저항성을 가지는 것을 의미한다.Modified target proteins can be prepared by introducing new amino acids, artificial sugar chains, artificial polymers (eg PEGylation), surfactants, new fusion proteins, and the like into accepted positions discovered by experimental and theoretical methods. For example, when artificial sugar chains are introduced into the allowable position searched from hGH through the method of the present invention, hGH having high biological stability against pepsin, thrombin, plasmin, etc., can be produced compared to wild-type proteins. As used herein, the term "biological stability" means having resistance to degradation by enzymes in or in vitro that can cause denaturation to natural or unnatural proteins.
본 발명에서 변형된 표적 단백질을 제조하는 방법은 "세포기반 활성분석을 통한 허용위치 탐색 및 검증"에 의해 수행될 수 있다. 예를 들어 앞서 허용 위치에 당쇄 결합을 위해 요구되는 펩타이드 서열을 도입하고 효모 균주에서 발효 생산한 hGH 단백질을 정제하여, 온도-pH-단백질분해효소 등 다양한 스트레스를 가한 후, hGH 수용체를 보유한 세포주(예를 들어 NB2 세포주)를 이용하여 정량적 활성을 분석하는 방식으로 진행될 수 있다. 결과적으로 기존 야생형의 hGH과 비교하였을 때 효능을 유지하면서, 안정성에 있어서도 현저하게 개선된 새로운 hGH를 제조할 수 있다.The method for producing a modified target protein in the present invention can be carried out by "search for and validate the location through cell-based activity assay". For example, by introducing a peptide sequence required for sugar chain binding at an allowable position and purifying the hGH protein produced by fermentation in a yeast strain, and applying various stresses such as temperature-pH-proteinase, a cell line having an hGH receptor ( For example using NB2 cell line). As a result, it is possible to produce a new hGH that is significantly improved in stability while maintaining efficacy compared to the existing wild type hGH.
바람직하게, 상기 단백질 치료제는 인간 성장 호르몬일 수 있으며, 이때 인간 성장 호르몬의 야생형은 서열번호 1로 기재된 아미노산이고, 허용 위치는 49번째의 글루타민 (Q), 50번째의 쓰레오닌 (T), 51번째의 세린 (S), 129번째의 글루탐산 (E), 130번째의 아스파라긴산 (D), 131번째의 글리신 (G), 133번째의 프롤린 (P), 134번째의 알지닌 (R), 135번째의 쓰레오닌 (T), 136번째의 글리신 (G), 141번째의 글루타민 (Q), 142번째의 쓰레오닌 (T), 143번째의 타이로신 (Y), 144번째의 세린 (S), 155번째의 알라닌 (A), 156번째의 루이신 (L), 157번째의 루이신 (L) 및 158번째의 라이신 (K) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산일 수 있으며, 바람직하게는 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 또는 141번째의 글루타민 (Q) 아미노산 중 하나 이상일 수 있다.Preferably, the protein therapeutic agent may be a human growth hormone, wherein the wild type of human growth hormone is an amino acid set forth in SEQ ID NO: 1, the allowable position is 49th glutamine (Q), 50th threonine (T), 51st Serine (S), 129th Glutamic Acid (E), 130th Aspartic Acid (D), 131th Glycine (G), 133th Proline (P), 134th Arginine (R), 135 Threonine (T), 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S) , 155th alanine (A), 156th leucine (L), 157th leucine (L) and 158th lysine (K) amino acid, and at least one amino acid selected from the group consisting of One of the 49th glutamine (Q), the 129th glutamic acid (E), the 134th alginine (R), or the 141st glutamine (Q) amino acid One can.
본 발명자들은 실시예 5에서 상기 허용 위치에 당쇄화를 위한 돌연변이를 수행하여, 단백질에 기능에 영향이 없이 돌연변이를 도입할 수 있는 위치임을 확인하였다 (표 1).The inventors performed the mutation for glycosylation at the allowable position in Example 5 to confirm that the mutation can be introduced into the protein without affecting the function (Table 1).
또 하나의 양태로서, 본 발명은 상기 방법에 의해 제조된 표적 단백질일 수 있다.In another embodiment, the present invention may be a target protein produced by the above method.
상기 선별된 허용 위치에 계면 활성제를 부착하여 변형된 표적 단백질을 제조하는 방법은 계면 활성제는 이에 제한되지는 않으나, 그 예로 콜릭산 (cholic acid)일 수 있으며, 이와 같은 계면 활성제는 단백질의 용해도를 높여서 세포 막의 투과성을 높여서 단백질 치료제의 생체 투입을 용이하게 할 수 있도록 할 수 있다. 이와 같은 계면 활성제의 부착은 공지의 방법을 제한 없이 이용하여 수행될 수 있다. 또한, 선별된 허용 위치에 이종 단백질을 융합하여 변형된 표적 단백질을 제조하는 방법에 있어서, 이종의 단백질은 암 세포와 같은 특정 타겟으로 단백질 치료제를 이동시키기 위한 리간드, 리셉터 등일 수 있으나, 이에 제한되지는 않는다. 또는 면역글로불린 Fc 영역 또는 알부민과 같이 단백질 치료제의 체내 반감기 또는 안정성을 높일 수 있는 이종의 단백질이 융합될 수 있으나, 이에 제한되지는 않는다. 이와 같은 이종 단백질의 융합은 공지의 방법을 제한 없이 이용하여 수행될 수 있다.The method for preparing a modified target protein by attaching a surfactant to the selected allowable position may include, but is not limited to, a surfactant, for example, cholic acid, and the surfactant may be used to determine the solubility of the protein. Increasing the permeability of the cell membrane can be facilitated to facilitate the introduction of the protein therapeutic agent in vivo. Attachment of such surfactants can be carried out using known methods without limitation. In addition, in the method for producing a modified target protein by fusing a heterologous protein in a selected acceptable position, the heterologous protein may be a ligand, a receptor, or the like for moving the protein therapeutic agent to a specific target such as cancer cells, but is not limited thereto. Does not. Alternatively, heterologous proteins, such as immunoglobulin Fc regions or albumin, may enhance the half-life or stability of the protein therapeutic agent, but are not limited thereto. Fusion of such heterologous proteins can be performed using known methods without limitation.
바람직하게는 인간 성장 호르몬일 수 있다.Preferably human growth hormone.
또 하나의 양태로서, 본 발명은 서열번호 1로 기재된 인간 성장 호르몬에 있어서, 허용 위치인 49번째의 글루타민 (Q), 50번째의 쓰레오닌 (T), 51번째의 세린 (S), 129번째의 글루탐산 (E), 130번째의 아스파라긴산 (D), 131번째의 글리신 (G), 133번째의 프롤린 (P), 134번째의 알지닌 (R), 135번째의 쓰레오닌 (T), 136번째의 글리신 (G), 141번째의 글루타민 (Q), 142번째의 쓰레오닌 (T), 143번째의 타이로신 (Y), 144번째의 세린 (S), 155번째의 알라닌 (A), 156번째의 루이신 (L), 157번째의 루이신 (L) 및 158번째의 라이신 (K) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산에 돌연변이, 화학적 수식 또는 이종 단백질을 융합시킨 변형된 인간 성장 호르몬을 제공한다.In another aspect, the present invention provides the human growth hormone of SEQ ID NO: 1, wherein the allowable position is 49th glutamine (Q), 50th threonine (T), 51st serine (S), 129 Glutamic acid (E), 130th aspartic acid (D), 131th glycine (G), 133th proline (P), 134th arginine (R), 135th threonine (T), 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S), 155th alanine (A), Modified human growth hormone that fuses mutations, chemical modifications or heterologous proteins to one or more amino acids selected from the group consisting of 156 leucine (L), 157 leucine (L) and 158 lysine (K) amino acids To provide.
상기 아미노산의 돌연변이는 아스파라진 (N) 또는 시스테인 (C)으로 치환시키는 것일 수 있다.Mutation of the amino acid may be substituted with asparagine (N) or cysteine (C).
바람직하게, 상기 변형된 인간 성장호르몬은 서열번호 1로 기재된 인간 성장 호르몬에 있어서, 허용 위치인 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 및 141번째의 글루타민 (Q) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산 각각을 아스파라진 (N)으로 돌연변이시킨 변형된 인간 성장 호르몬일 수 있다. 상기 변형된 인간 성장 호르몬은 허용 위치 1개, 2개, 3개, 또는 4개 모두를 아스파라진으로 돌연변이시킨 변형된 인간 성장 호르몬일 수 있으며, 이는 야생형보다 세포의 성장을 증가시킬 수 있다.Preferably, the modified human growth hormone is in the human growth hormone set forth in SEQ ID NO: 1, the 49th glutamine (Q), the 129th glutamic acid (E), the 134th arginine (R), and 141 are acceptable positions. And one or more amino acids selected from the group consisting of the first glutamine (Q) amino acid, which is mutated to asparagine (N). The modified human growth hormone may be a modified human growth hormone that has mutated one, two, three, or four acceptable positions with asparagine, which may increase cell growth than the wild type.
바람직하게, 상기 변형된 인간 성장호르몬은 서열번호 1로 기재된 인간 성장 호르몬에 있어서, 허용 위치인 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 및 141번째의 글루타민 (Q) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산 각각을 시스테인 (C)으로 치환시킨 후, 페길화시킨 변형된 인간 성장 호르몬일 수 있다. 상기 페길화시킨 변형된 인간 성장 호르몬은 허용 위치 1개, 2개, 3개 또는 4개 모두를 시스테인으로 치환시킨 후, 페길화시킨 변형된 인간 성장 호르몬일 수 있으며, 이는 야생형보다 반감기가 증가할 수 있다.Preferably, the modified human growth hormone is in the human growth hormone set forth in SEQ ID NO: 1, the 49th glutamine (Q), the 129th glutamic acid (E), the 134th arginine (R), and 141 are acceptable positions. And one or more amino acids selected from the group consisting of the first glutamine (Q) amino acid, each with cysteine (C), followed by pegylated modified human growth hormone. The pegylated modified human growth hormone may be a pegylated modified human growth hormone after substitution of one, two, three or four acceptable positions with cysteine, which may increase the half-life than the wild type. Can be.
바람직하게, 상기 변형된 인간 성장호르몬은 서열번호 1로 기재된 인간 성장 호르몬에 있어서, 허용 위치인 49번째의 글루타민 (Q), 50번째의 쓰레오닌 (T), 51번째의 세린 (S), 129번째의 글루탐산 (E), 130번째의 아스파라긴산 (D), 131번째의 글리신 (G), 133번째의 프롤린 (P), 134번째의 알지닌 (R), 135번째의 쓰레오닌 (T), 136번째의 글리신 (G), 141번째의 글루타민 (Q), 142번째의 쓰레오닌 (T), 143번째의 타이로신 (Y), 144번째의 세린 (S), 155번째의 알라닌 (A), 156번째의 루이신 (L), 157번째의 루이신 (L) 및 158번째의 라이신 (K) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산, 바람직하게는 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 및 141번째의 글루타민 (Q) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산 각각에 당쇄를 부가한 변형된 인간 성장 호르몬을 제공한다. 상기 당쇄를 부가한 변형된 인간 성장 호르몬은 허용 위치 1개, 2개, 3개 또는 4개 모두에 당쇄를 부가하여 당쇄화된 변형된 인간 성장 호르몬일 수 있으며, 이는 야생형보다 생체 내 단백질 가수 분해 효소에 안정성을 갖을 수 있다.Preferably, the modified human growth hormone is in the human growth hormone set forth in SEQ ID NO: 1, the 49th glutamine (Q), the 50th threonine (T), the 51st serine (S), 129th glutamic acid (E), 130th aspartic acid (D), 131th glycine (G), 133th proline (P), 134th arginine (R), 135th threonine (T) 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S), 155th alanine (A) At least one amino acid selected from the group consisting of 156 leucine (L), 157 leucine (L) and 158 lysine (K) amino acids, preferably 49th glutamine (Q), 129th A sugar chain is attached to each of one or more amino acids selected from the group consisting of glutamic acid (E), 134th arginine (R), and 141th glutamine (Q) amino acids. It provides a modified human growth hormone. The modified human growth hormone to which the sugar chains are added may be a modified human growth hormone that is glycosylated by adding sugar chains to one, two, three or four acceptable positions, which is proteolytic degradation in vivo than the wild type. It may be stable to enzymes.
이와 같은 돌연변이, 당쇄화, 또는 페길화는 공지의 방법에 의해 수행될 수 있다. 본 발명의 일 실시예에 따르면, 인간 성장 호르몬의 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 및 141번째의 글루타민 (Q) 아미노산 각각을 아스파라진 (N)으로 돌연변이시킨 변형된 인간 성장 호르몬이 Nb2의 세포 성장을 야생형에 비해 증가시키는 것을 확인하였고 (도 7), 상기 허용 위치에 당쇄화된 인간 성장 호르몬이 생체 내 단백질 가수분해 효소인 펩신, 플라스민, 트롬빈에 안정성을 나타내는 것을 확인하였다 (도 8).Such mutations, glycosylation, or PEGylation can be carried out by known methods. According to one embodiment of the invention, each of the 49th glutamine (Q), 129th glutamic acid (E), 134th arginine (R) and 141th glutamine (Q) amino acids of human growth hormone is asparagine. It was confirmed that the modified human growth hormone mutated to (N) increased the cell growth of Nb2 compared to the wild type (FIG. 7), wherein the human growth hormone glycated at the allowable position was pepsin, an in vivo proteolytic enzyme, It was confirmed that the stability to plasmin, thrombin (Fig. 8).
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: 허용위치 탐색을 위한 트랜스포존 제작Example 1 Preparation of Transposon for Permissible Location Search
허용위치 탐색을 위한 트랜스포존 및 트랜스포존을 삽입한 라이브러리 구성과정을 도 2의(a)에 간략히 나타냈다. 상기 트랜스포존은 양쪽 말단에 서열번호 2 및 3에 제시된 Tn5의 전위효소인 트랜스포사제 인식부위 (Mosaic End, ME)와 폴딩 리포터로서 서열번호 5의 자외선 형광 (GFPuv) 유전자를 포함하고 있다. 또한 상기 트랜스포존은 1차선별을 위한 클로닝 마커로서 서열번호 4의 카나마이신 저항성 유전자를 포함하고 있다.The process of constructing the transposon and the transposon for the detection of the allowable position is briefly shown in FIG. The transposon includes transposase recognition sites (Mosaic End, ME), translocation enzymes of Tn5 shown in SEQ ID NOs: 2 and 3, and ultraviolet fluorescence (GFPuv) gene of SEQ ID NO: 5 as folding reporters at both ends. In addition, the transposon contains the kanamycin resistance gene of SEQ ID NO: 4 as a cloning marker for primary selection.
본 발명자들은 상기 허용위치 탐색을 위한 트랜스포존을 다음과 같은 방법으로 제조하였다. EZ-Tn5 In-Frame Linker Insertion Kit(Epicentre, 미국) 내에 포함된 클론을 주형으로 하여 카나마이신 저항성 유전자 및 C-말단부위의 Tn5 전위효소 인식부위를 서열번호 8과 9의 프라이머를 이용하여 PCR (Polymerase chain reaction)을 수행하여 획득하였다. PCR 조건은 다음과 같다. 먼저 전단계 변성반응을 98도에서 2분간 한번 수행한 후, 변성반응은 98도에서 30초, 결합반응은 55도에서 15초, 신장반응은 74도에서 23초간 30회를 반복 수행하였으며, 마지막 신장반응은 74도에서 2분간 반응시켰다. 트랜스포존 서열의 N-말단 부위의 트랜스포사제 인식서열과 형광 유전자 부분은 서열번호 6과 7의 프라이머를 이용하여 PCR한 후, Qiagen gel purification kit를 이용하여 DNA를 분리정제 하였다. 이의 PCR 조건은 다음과 같다. 먼저 변성반응을 98도에서 2분간 한번 수행한 후, 변성반응은 98도에서 30초, 결합반응은 55도에서 15초, 신장반응은 74도에서 37초간 30회를 반복 수행하였으며, 마지막 신장반응은 74도에서 2분간 반응시켰다. PCR을 통해 증폭된 GFPuv 유전자와 카나마이신 저항성 유전자는 overlap PCR을 통해 최종적으로 연결하였다. 이 때 사용한 프라이머는 정방향 프라이머 (서열번호 6)와 역방향 프라이머 (서열번호 9)를 사용하였다. overlap PCR 조건은 다음과 같다. 먼저 변성반응을 98도에서 2분간 한번 수행한 후, 변성반응은 98도에서 15초, 결합반응은 55도에서 15초, 신장반응은 74도에서 1분간 30회를 반복 수행하였으며, 마지막 신장반응은 74도에서 2분간 반응시켰다. 모든 PCR 반응에는 KOD polymerase (TOYOBO)를 이용하였다. Overlap PCR을 통해 얻어진 트랜스포존 DNA는 pBluescriptII SK(+) 벡터를 PvuII 제한효소로 절단하여 얻어진 벡터에 서브클로닝하였다.The present inventors prepared the transposon for the allowable position search by the following method. Using clones contained in the EZ-Tn5 In-Frame Linker Insertion Kit (Epicentre, USA) as a template, the kanamycin resistance gene and the Tn5 translocation enzyme recognition site of the C-terminal region were PCR (Polymerase) using primers of SEQ ID NOs: 8 and 9. obtained by performing a chain reaction. PCR conditions are as follows. First, the previous stage of denaturation was performed once at 98 degrees for 2 minutes, then the denaturation was repeated 30 times at 98 degrees for 30 seconds, the coupling reaction at 55 degrees for 15 seconds, and the renal response at 74 degrees for 23 seconds. The reaction was reacted for 2 minutes at 74 degrees. The transposase recognition sequence and the fluorescent gene portion of the N-terminal region of the transposon sequence were PCR using primers of SEQ ID NOs: 6 and 7, and then purified by DNA using a Qiagen gel purification kit. Its PCR conditions are as follows. First, the denaturation reaction was performed once at 98 ° C for 2 minutes, then the denaturation reaction was repeated 30 times at 98 ° C for 30 seconds, the coupling reaction at 55 ° C for 15 seconds, and the renal response at 74 ° C for 37 seconds. Reacted for 2 minutes at 74 degrees. The GFPuv gene amplified by PCR and the kanamycin resistance gene were finally linked by overlap PCR. In this case, a forward primer (SEQ ID NO: 6) and a reverse primer (SEQ ID NO: 9) were used. The overlap PCR conditions are as follows. First, the denaturation reaction was performed once at 98 degrees for 2 minutes, then the denaturation reaction was repeated at 98 degrees for 15 seconds, the coupling reaction at 55 degrees for 15 seconds, and the renal reaction was repeated 30 times for 1 minute at 74 degrees. Reacted for 2 minutes at 74 degrees. KOD polymerase (TOYOBO) was used for all PCR reactions. The transposon DNA obtained by the overlap PCR was performed using pBluescriptII SK (+) vector.PvuIIThe vector obtained by cleavage with the restriction enzyme was subcloned.
본 실시예에서 사용한 프라이머 서열은 하기와 같다.Primer sequences used in this example are as follows.
서열번호 6: 5'-ctgtctcttgtacacatctgagtaaaggagaagaacttttca-3'SEQ ID NO: 5'-ctgtctcttgtacacatctgagtaaaggagaagaacttttca-3 '
서열번호 7: 5'-ctgtctcttgtacacatctgcgtcagc-3'SEQ ID NO: 5'-ctgtctcttgtacacatctgcgtcagc-3 '
서열번호 8: 5'-catggcatggatgagctctacaaagctagcatcatgaacaat-3'SEQ ID NO: 5'-catggcatggatgagctctacaaagctagcatcatgaacaat-3 '
서열번호 9: 5'-ctgtctcttgtacacatctggctagctgaagcttgcatgc-3'SEQ ID NO: 5'-ctgtctcttgtacacatctggctagctgaagcttgcatgc-3 '
최종적으로 Tn5-transposition 반응에 필요한 트랜스포존은 상기 pBluescriptII 벡터에 클로닝한 트랜스포존을 PvuII 제한효소로 절단하고 젤 정제 (gel purification) 한 것을 사용하였다.Finally, the transposon required for the Tn5-transposition reaction was obtained by cutting the transposon cloned into the pBluescriptII vector with PvuII restriction enzyme and gel purification.
실시예 2: hGH 내부에 트랜스포존이 삽입된 라이브러리 구축Example 2: Constructing a Library with a Transposon Inserted in hGH
먼저 서열번호 1의 아미노산 서열을 가지는 hGH를 pBluscript-SK2(+) 벡터의 PvuII 제한효소 자리에 삽입하여 pBlue-hGH 클론을 제작하였다. 또한 무작위적 삽입 라이브러리를 만들기 위하여 상기 실시예 1에서 제조한 고순도 트랜스포존을 사용하였다.First, by inserting the hGH having the amino acid sequence of SEQ ID NO: 1 in place of the PvuII restriction enzyme pBluscript-SK2 (+) vector to prepare a pBlue-hGH clones. In addition, the high purity transposon prepared in Example 1 was used to make a random insertion library.
트랜스포존 전이효소는 시험관 내 DNA에서 유전자 이동 및 삽입이 가능한 Tn5 전이효소 (Epicentre, 미국, Cat No. TNP92110)를 사용하였다. hGH DNA 200 ng, 1 unit의 Tn5 전이효소 및 1x 반응 버퍼를 첨가하여 37℃에서 2시간 동안 전위반응 (transposition)을 진행하였으며, SDS (sodium dodecyl sulfate)를 1% 첨가하고 70℃ 10분 동안 열을 가함으로써 반응을 정지시켰다. 반응 DNA 산물은 DNA purification kit(Qiagen, 독일)를 이용하여 정제한 후, 5 ㎕ 부피로 에탄올 농축시켜 전기 천공법으로 숙주 대장균 (DH5a)에 도입하였다. 균주의 상태를 회복시키기 위해 37℃에서 1시간 회복기를 준 후, 10 ㎍/㎖의 카나마이신 (트랜스포존 선별마커)과 100 ㎍/㎖의 엠피실린이 첨가된 LB 고체 배지에 도포하여 37℃에서 16 시간 동안 배양하였다. 얻어진 라이브러리의 크기는 1.08 X 105 수준이었다. 배양 후 생성된 콜로니를 저장 버퍼 (1X TY buffer, 15% glycerol, 2% glucose)로 회수하였다. 회수된 미생물 라이브러리는 Qiagen plasmid prep kit를 이용하여 플라스미드 pBlue-hGH-GFP-Km 을 정제하였다.As the transposon transferase, Tn5 transferase (Epicentre, USA, Cat No. TNP92110) capable of gene transfer and insertion in in vitro DNA was used. 200 ng of hGH DNA, 1 unit of Tn5 transferase and 1x reaction buffer were added to perform transposition at 37 ° C. for 2 hours, and 1% SDS (sodium dodecyl sulfate) was added, followed by heat at 70 ° C. for 10 minutes. The reaction was stopped by adding. The reaction DNA product was purified using a DNA purification kit (Qiagen, Germany), concentrated to 5 μl of ethanol and introduced into host E. coli (DH5a) by electroporation. After recovering the strain for 1 hour at 37 ° C., it was applied to LB solid medium to which 10 μg / ml of kanamycin (transpozone selection marker) and 100 μg / ml of empicillin were added, and 16 hours at 37 ° C. Incubated for The size of the library obtained was 1.08 × 10 5 levels. Colonies generated after the culture were recovered in storage buffer (1X TY buffer, 15% glycerol, 2% glucose). The recovered microbial library was purified by plasmid pBlue-hGH-GFP-Km using Qiagen plasmid prep kit.
이어 트랜스포존 내에 들어있는 카나마이신 저항성 유전자를 제거하기 위하여 카나마이신 저항성 유전자의 양 말단에 존재하는 NheI 제한효소 부위를 절단하고 self-ligation을 통해 환형의 클론으로 복원한 2차 라이브러리를 제작하였다. 2차 라이브러리 사이즈는 1.8 X 104 이었다. 상기 플라스미드 pBlue-hGH-GFP는 앞서와 동일한 방법으로 정제 및 회수되었다. 카나마이신 저항성 유전자를 제거한 pBlue-hGH-GFP 플라스미드는 hGH ORF (open reading frame)의 다양한 위치 안에 자외선 형광 (GFPuv)을 코딩하는 유전자를 삽입한 형태를 갖게 된다.Subsequently, in order to remove the kanamycin resistance gene contained in the transposon, a secondary library was prepared by cleaving NheI restriction enzyme sites at both ends of the kanamycin resistance gene and restoring it into a circular clone through self-ligation. Secondary library size was 1.8 × 10 4 . The plasmid pBlue-hGH-GFP was purified and recovered in the same manner as before. The pBlue-hGH-GFP plasmid from which the kanamycin resistance gene has been removed has a form in which a gene encoding ultraviolet fluorescence (GFPuv) is inserted into various positions of the hGH open reading frame (ORF).
초기 라이브러리에서 15개의 콜로니를 분리하여 유전자서열을 분석한 결과, 15개 모두에서 염기서열 및 삽입위치가 달라서 본 발명에서 의도한 바대로 무작위적 삽입이 성공적으로 이루어진 것을 확인하였다. 한편, 15개의 콜로니 염기서열 분석에서 reading frame이 hGH(N)-GFP-hGH(C)로 정확하게 맞는 확률은 일반적 기대에 부합하는 1/3과 정확하게 일치하였다.As a result of analyzing the gene sequence by separating 15 colonies from the initial library, it was confirmed that random insertion was successfully performed as intended in the present invention because the base sequences and insertion positions were different in all 15. On the other hand, in 15 colony sequencing, the probability that the reading frame fits hGH (N) -GFP-hGH (C) correctly matches exactly one-third of general expectations.
실시예 3: 형광 리포터 발현을 위한 재조합 효모발현 라이브러리의 제조Example 3: Preparation of Recombinant Yeast Expression Library for Fluorescent Reporter Expression
상기 실시예 2에서 제조한 pBlue-hGH-GFP 플라스미드는 hGH 양 말단에 존재하는 HindIII / SpeI 제한효소를 처리하여 hGH-GFP 유전자를 회수하고, 회수된 hGH-GFP 유전자를 Yeast/E.coli 셔틀벡터 YGaC9에 도입하였다. 이 클로닝은 상기 셔틀벡터를 포함하는 효모 (Saccharomyces cerevisiae YT2805)에 선형 hGH-GFP 유전자 (1 kb)를 열 충격 형질전환 (heat shock transformation) 방법을 통해 효모에 도입하여 상동성 재조합이 일어나도록 유도하였다. LB에 엠피실린 및 카나마이신 항생제가 포함된 고체 배지에 도말하여 37℃에서 16 시간 배양 후 최종적으로 2×103 수준의 다양성을 갖는 효모 라이브러리를 확보하였다. 상기 셔틀벡터는 효모 고유의 분비신호 서열 (signal sequence)을 보유하므로, hGH-GFP는 분비 관련 세포 소기관인 소포체 (ER), 골지체 (Golgi)를 통하여 세포 외로 분비되어 세포 형광을 통해서도 쉽게 관찰할 수 있다.The pBlue-hGH-GFP plasmid prepared in Example 2 was treated with HindIII / SpeI restriction enzymes present at both ends of the hGH to recover the hGH-GFP gene, and the recovered hGH-GFP gene was transferred to the Yeast / E.coli shuttle vector. Introduced to YGaC9. This cloning induced a homologous recombination by introducing a linear hGH-GFP gene (1 kb) into the yeast ( Saccharomyces cerevisiae YT2805) containing the shuttle vector through heat shock transformation. . The LB was smeared on a solid medium containing empicillin and kanamycin antibiotics, and then cultured at 37 ° C. for 16 hours to finally obtain a yeast library having a diversity of 2 × 10 3 levels. Since the shuttle vector has a yeast-specific secretory signal sequence, hGH-GFP is secreted out of the cells through vesicles (ER) and Golgi, which are secretory cell organelles, and can be easily observed through cellular fluorescence. have.
확보된 효모 라이브러리는 AZ-M100 형광현미경 (Nikon, Japan)을 이용하여 아가 (agar) 평판 배지에 있는 콜로니 2×104 개의 형광을 분석하는 방식으로 수행하였다 (도 3). 따라서 상기 스크리닝은 라이브러리를 약 10회 재검색하는 수준이 된다.The obtained yeast library was performed by analyzing fluorescence of 2 × 10 4 colonies in agar plate medium using AZ-M100 fluorescence microscope (Nikon, Japan) (FIG. 3). Thus, the screening is at a level of rescanning the library about 10 times.
hGH의 ORF 외부에 GFP를 일련 연결(tandem fusion)하여 제조한 hGH-GFP를 양성 대조군으로 사용하여 비교하였을 때, 전체 콜로니의 약 1%에서 대조군과 유사한 수준의 형광이 관찰되었다. 이 중, 형광수치가 높은 클론 78개를 선발하여 유전자 서열분석을 수행한 결과, 8개의 그룹으로 특정되고 (도 5), 각 GFP 삽입위치를 잘 알려진 hGH 구조 (PDF entry: 3hhr)에 대입한 결과 대부분이 3차 구조 표면에 노출된 잔기에서 삽입이 일어난 것으로 확인되었다. 따라서 GFP 폴딩 리포터 실험을 통하여 선발된 부위에 대한 합리적 분석을 통하여 허용위치의 실험적 탐색을 수행하였다.When compared with hGH-GFP prepared by tandem fusion of GFP outside the ORF of hGH as a positive control, fluorescence levels similar to the control were observed in about 1% of the total colonies. Of these, 78 clones with high fluorescence values were selected and subjected to gene sequencing. As a result, eight groups were identified (Fig. 5), and each GFP insertion site was assigned to a well-known hGH structure (PDF entry: 3hhr). Most of the results confirmed that insertion occurred at residues exposed to the tertiary structure surface. Therefore, the experimental search of the allowable position was performed through rational analysis of the selected site through the GFP folding reporter experiment.
실시예 4: 구조 분석 및 합리적 선발 과정Example 4 Structural Analysis and Rational Selection Process
GH (growth hormone)는 4개의 α-helix가 링커에 의하여 연결되는 4-helix bundle구조를 갖는다. GH가 대상 세포에 신호를 전달하는 방식은 세포표면에 존재하는 2개의 리셉터 (GHR1 및 GHR2)와 결합하여 활성형 이량체를 형성하도록 하는 것이다. 따라서 hGH는 2개의 리셉터와의 결합 면을 갖게 되는데 이 두 부위를 site1 및 site2로 칭한다.Growth hormone (GH) has a 4-helix bundle structure in which four α-helixes are linked by a linker. The way GH transmits a signal to a cell of interest is to bind two receptors (GHR1 and GHR2) on the cell surface to form an active dimer. Thus, hGH has a binding surface with two receptors, which are called site1 and site2.
다양한 포유동물 유래의 GH 중에서 구조가 알려진 hGH 1종 (Human growth hormone), 구조가 알려지지 않은 7종의 GH (porcine, bovine, ovine_ovisaries, horse_Equus caballus, rat_Nannospalax ehrenbergi, monkey_Callithrix jacchas, avian_Gallus gallus)을 선발하여 GH 서열을 비교한 결과, 전체 191개의 아미노산 잔기 중 96개 아미노산이 모든 hGH에서 잘 보존되어 있었다. 이들 보존 서열은 site1 (8개/26개), site2 (9개/13개), 추가 중요위치 등에 대부분 보존되어 이들 부위가 hGH의 기능에 중요한 역할을 수행하는 것으로 판단되었다. 따라서 이종 간에도 잔기 위치 보존이 잘 되어있고 활성에 영향을 줄 가능성이 높은 hGH 리셉터와 결합 면에 위치하는 아미노산 잔기는 허용위치 후보로 부적절하다. 또한 hGH의 N-말단 및 C-말단은 기존 문헌 및 발명에서 수용성 고분자 (PEG)를 부가한 경우 활성 저하가 심각한 것으로 보고된바 있어서 본 발명의 고활성 및 고안정성 hGH 제조 목적에 적합하지 않은 것으로 판단하였다.Among the GHs derived from various mammals, one type of hGH (Human growth hormone) is known, and seven types of GH (porcine, bovine, ovine_ovisaries, horse_Equus caballus, rat_Nannospalax ehrenbergi, monkey_Callithrix jacchas and avian_Gallus gallus) are selected. Sequence comparison showed that 96 of the 191 amino acid residues were well conserved in all hGH. Most of these conserved sequences were conserved in site1 (8/26), site2 (9/13), and additional important positions, and it was determined that these sites play an important role in the function of hGH. Therefore, amino acid residues located at the binding side with hGH receptors that are well-preserved and possibly affect the activity among heterologous species are inadequate as acceptable sites. In addition, the N-terminus and C-terminus of hGH have been reported to be severely degraded when added to water-soluble polymers (PEG) in the existing literature and invention, which is not suitable for the purpose of preparing high activity and high stability hGH of the present invention. Judging
실제로 GFP 폴딩 리포터를 이용한 상기 실시예 3의 탐색에서 얻어진 78개 클론의 위치를 알려진 hGH 구조에 표시하고 특징에 따라 분류하면, 8개의 특징적인 위치로 분류될 수 있었다. 이중 절대 다수인 40개가 hGH 리셉터와의 결합 면(Site1 38개 및 Site2 2개)에 위치하고 있었고, N-말단 및 C-말단에서 17개 및 10개가 각각 관찰되었다. 결국 전체 78개 위치 중에서 본 발명에서 제기한 hGH의 폴딩 및 효능을 손상시키지 않으면서 단백질공학 혹은 화학적 수식이 가능한 위치는 4개 (49, 129, 134, 141번 아미노산 잔기로 지칭되는)위치로 좁혀질 수 있었다 (도 5의 (b)).Indeed, the positions of the 78 clones obtained in the search of Example 3 using the GFP folding reporter could be classified into eight characteristic positions if they were marked on the known hGH structure and classified according to characteristics. 40 of these absolute majority were located on the binding side with the hGH receptors (38 Site1 and 2 Site2) and 17 and 10 were observed at the N- and C-terminus, respectively. Eventually, among the total 78 positions, the positions where protein engineering or chemical modification is possible without impairing the folding and efficacy of the hGH raised in the present invention are narrowed down to 4 positions (referred to as amino acid residues of 49, 129, 134 and 141). It could be lost (Fig. 5 (b)).
상기 4가지 잔기 위치를 hGH 단백질 구조에 대입한 결과, 49번 위치는 펩신에 의하여 가수 분해되는 부위 (44번)에 근접하고, 134번은 혈중 트롬빈에 의하여 가수 분해되는 위치이며, 141번은 플라스민에 의하여 가수 분해되는 위치이며, 129번은 가수 분해와는 직접적으로 관련이 없으나 자유도가 높은 루프에 위치하였다. 이러한 결과는 GFPuv 삽입을 통하여 발굴되는 단백질 공학적 허용위치가 단백질 가수 분해에 의하여 공격받기 쉽고 자유도가 높은 위치와 관련되고 있음을 시사하는 것이다.As a result of substituting the four residue positions into the hGH protein structure, position 49 is close to the site hydrolyzed by pepsin (number 44), number 134 is the position hydrolyzed by blood thrombin, and number 141 is the plasmin. 129 was located in a loop with high degree of freedom, although not directly related to hydrolysis. These results suggest that protein engineering tolerances discovered through GFPuv insertion are related to the high degree of freedom and probable attack by proteolysis.
실시예 5: 허용위치 재설계를 통한 단백질공학 및 당쇄화, 페길화 발현, 정제Example 5 Protein Engineering and Glycosylation, Pegylation Expression, Purification through Redesigned Tolerance
실험 및 구조적인 방법을 통해 얻어진 위 아미노산 위치에 다양한 단백질공학적 수식 (modification)을 가하고, 효모에서 활성형 발현 및 분리정제를 수행하였다.Various protein engineering modifications were added to the above amino acid positions obtained through experimental and structural methods, and active expression and purification were performed in yeast.
먼저 앞서 실시예 4에서 선택한 4가지 허용위치에 단백질 당쇄 부가를 유도하기 위해 각 부위 주변의 서열을 변경하고자 하였다. 즉 웹 기반의 N-glycosylation 예측 프로그램 (http://www.cbs.dtu.dk/services/NetNGlyc/)을 사용하여 가장 당쇄 부가 반응의 확률이 높은 아미노산 서열을 설계하고, 그에 적합하도록 아미노산 서열을 변경하는 단백질공학을 수행하였다. 도 6에 나타낸 49번 잔기인 글루타민 Q49, 129번 잔기인 글루탐산 E129, 134번 잔기인 알지닌 R134, 141번 잔기인 글루타민 Q141 잔기에 아스파라진인 Asn(N)을 도입하고 전후위치를 조절하였다. 제작한 돌연변이 hGH 유전자는 효모-대장균 셔틀 벡터 YGaC9에 도입하고, 효모 균주 YT2805에서 발현시켜 당쇄화를 유도하였다. 엔지니어링한 단백질의 S.cerevisiae에서의 발현은 15% 아크릴아미드 젤에서 SDS-PAGE를 통해 확인하였다.First, in order to induce protein sugar chain addition to the four acceptable positions selected in Example 4, the sequence around each site was intended to be changed. In other words, using the web-based N-glycosylation prediction program (http://www.cbs.dtu.dk/services/NetNGlyc/) to design the amino acid sequence with the highest probability of sugar chain addition reaction, and to fit the amino acid sequence Altered protein engineering was performed. Asnazine (N), asparagine, was introduced into glutamine Q49, residue 49, glutamic acid E129, residue 129, and arginine R134, residue 134, and glutamine Q141, residue 141, as shown in FIG. The produced mutant hGH gene was introduced into the yeast-E. Coli shuttle vector YGaC9 and expressed in the yeast strain YT2805 to induce glycosylation. Expression of the engineered protein in S. cerevisiae was confirmed by SDS-PAGE on 15% acrylamide gels.
이와 같은 당쇄화 도입을 하기 표 1에 나타냈다. 155번 아미노산 잔기는 구조 분석을 통해 얻은 허용 위치이다.This glycosylation introduction is shown in Table 1 below. Amino acid residue 155 is an acceptable position obtained through structural analysis.
표 1
서열 (위치) 돌연변이 서열
Q49-T50-S51 N49-T50-T51
P133-R134-T135-G136 G133-N134-T135-T136
E129-D130-G131 N129-S130-T131
Q141-T142-Y143-S144 G141-N142-V143-T144
A155-L156-L157-K158 N155-L156-T157-N158
Table 1
Sequence (position) Mutation sequence
Q49-T50-S51 N49-T50-T51
P133-R134-T135-G136 G133-N134-T135-T136
E129-D130-G131 N129-S130-T131
Q141-T142-Y143-S144 G141-N142-V143-T144
A155-L156-L157-K158 N155-L156-T157-N158
그 결과, N-당쇄화 (N-glycosylation)를 수행한 49-NTS, 141NVTK에서는 당쇄 부가가 성공적으로 이루어진 것을 확인하였고, 129NSTS, 134NTT 변이단백질의 경우에서는 기대와 달리 당쇄화가 이루어지지 않고 야생형과 동일한 22 kDa 사이즈에서만 재조합 단백질 발현이 관찰되었다 (도 6).As a result, it was confirmed that sugar chain addition was successful in 49-NTS and 141NVTK which performed N-glycosylation, and in the case of 129NSTS and 134NTT mutant protein, glycosylation was not performed unlike expectations, and the same as wild type. Recombinant protein expression was observed only at 22 kDa size (FIG. 6).
한편 단백질치료제에 가용성 고분자물질인 PEG (polyethylene glycol)을 부가하여 혈중 안정성을 높이고 치료효율을 개선하기 위한 연구가 활발하게 이루어지고 있다. 특히 단백질 표면에 시스테인 Cys(C) 잔기를 노출키고, PEG를 특이적으로 부가하는 연구가 지속성 및 안정형 단백질치료제를 개발하는 방식으로 널리 이용되고 있다.Meanwhile, studies have been actively conducted to increase stability in blood and improve treatment efficiency by adding PEG (polyethylene glycol), a soluble polymer material, to protein therapeutics. In particular, studies of exposing cysteine Cys (C) residues on the surface of proteins and specifically adding PEG have been widely used in the development of persistent and stable protein therapeutics.
본 발명에서는 상기 실시예 4에서 발굴한 허용위치 (Q49, E129, R134, Q141)에 Cys 잔기를 도입하고 PEGylation을 수행하여 hGH의 효능에는 영향을 미치지 않으면서 지속가능한 약효를 갖는 새로운 재조합 hGH의 개발을 시도하였다.In the present invention, by introducing a Cys residue in the allowable positions (Q49, E129, R134, Q141) discovered in Example 4 and performing a PEGylation, the development of a new recombinant hGH having a sustainable effect without affecting the efficacy of hGH Tried.
상기 야생형 및 변이형 단백질은 5L 발효조를 이용한 유가식 배양을 통하여 생산되었다. 본 배양에 들어가기에 앞서 50 ㎖ YNB (0.67% 아미노산이 결여된 효모기질, 0.5% 카사미노에시드, 2% 글루코스)배지에 초기 배양한 후 다시 200 ㎖의 YEPD 액체 배지에서 배양하여 활성화하고 본 배양액에 접종하여 30℃에서 48시간 동안 배양하였다. 배지에 분비된 hGH은 배양 상등액을 SDS-PAGE 분석을 통해서 예상하는 크기의 단백질 발현을 확인하였다. hGH은 효모에서의 배양과정 중에 응집 (aggregation)의 문제점이 있어 비-이온 계면활성제 (non-ionic detergent)인 poloxamer를 배지 중에 0.5%를 첨가하여 배양함으로써 해결하였다.The wild type and mutant proteins were produced through fed-batch cultivation using a 5L fermentor. Prior to the incubation, the cells were initially cultured in 50 ml YNB (yield substrate lacking 0.67% amino acid, 0.5% cassamino acid, 2% glucose) medium, and then cultured in 200 ml YEPD liquid medium and activated. Inoculation was incubated at 30 ° C. for 48 hours. HGH secreted in the medium was confirmed by SDS-PAGE analysis of the culture supernatant of the expected size of protein expression. hGH was solved by incubating poloxamer, which is a non-ionic detergent, with 0.5% of non-ionic detergent, due to the problem of aggregation during culturing in yeast.
발효 생산된 단백질은 정제를 위하여 원심분리 (3,500rpm X 20min X 4℃)한 후, 0.1 마이크론 크기의 여과막을 통과시켜 균체를 완전히 제거한 후에 한외여과 (분자량 30 kDa cut-off)를 통해 배양 배지를 농축하였고, 20 mM 트리스 버퍼 (pH 8.0)로 교환해주었다. 먼저, 야생형 hGH의 경우는 1차 정제 방법으로 음이온 교환 크로마토그래피 정제를 진행하였다. 그 방법은 다음과 같다. 상기 실시예 중 야생형 hGH 단백질 발효 상층액은 미리 평형시킨 DEAE Sepharose fast flow 컬럼 (1.5X6cm ;GE healthcare)에 2 ㎖/min의 속도로 흡착시켰다. 컬럼에 다시 트리스 버퍼를 통과시켜 컬럼 내에 유리된 상태로 남아있는 단백질을 모두 제거하였다. 20 mM 트리스 버퍼(pH8.0)과 0.5M NaCl이 함유된 20 mM 트리스 버퍼(pH 8.0)를 이용하여 0부터 0.5M까지의 NaCl 직선농도 구배로 흡착된 단백질을 100 ㎖ 용출시켰다. 용출된 분획을 SDS-PAGE로 확인을 한 결과, 도 6에서 보는 것처럼 밴드가 확인되었고, 0.2M NaCl 농도에서 대부분 용출됨을 확인할 수 있었다.The fermented protein is centrifuged (3,500rpm X 20min X 4 ℃) for purification, then passed through a 0.1 micron filtration membrane to completely remove the cells, and then the culture medium through ultrafiltration (molecular weight 30 kDa cut-off) Concentrated and exchanged with 20 mM Tris buffer (pH 8.0). First, in the case of wild type hGH, anion exchange chromatography was purified by a primary purification method. The method is as follows. The wild-type hGH protein fermentation supernatant in the above example was adsorbed at a rate of 2 ml / min on a previously equilibrated DEAE Sepharose fast flow column (1.5 × 6 cm; GE healthcare). Tris buffer was passed through the column again to remove all remaining free protein in the column. 100 ml of the adsorbed protein was eluted with a NaCl linear concentration gradient from 0 to 0.5 M using 20 mM Tris buffer (pH 8.0) and 20 mM Tris buffer (pH 8.0) containing 0.5 M NaCl. As a result of confirming the eluted fraction by SDS-PAGE, the band was confirmed as shown in Figure 6, it was confirmed that most of the eluted at 0.2M NaCl concentration.
정제의 마지막 단계로서 superdex 75(1.6X61.5cm) 컬럼을 이용하여 전 단계의 분획을 amicon(mwco:10,000)을 이용하여 농축했고, 양을 줄여 젤 여과 크로마토그래피를 수행하였다. 단백질의 크기별로 분리가 되는 방법을 이용한 크로마토그래피로써 20mM 트리스 + 0.15M NaCl(pH8.0) 버퍼를 1 ㎖/min의 속도로 통과시켰다. 야생형 hGH는 SDS-PAGE 해본 결과, 순도 95% 이상인 22 kDa의 분획을 회수하였고, 당쇄화가 된 변이형 hGH는 50 KDa 근처의 분획을 회수하였다 (도 6).As a final step of the purification, the fraction of the previous step was concentrated using a superdex 75 (1.6 × 61.5 cm) column using amicon (mwco: 10,000), and gel filtration chromatography was performed by reducing the amount. Chromatography using a method to separate the size of the protein was passed through 20mM Tris + 0.15M NaCl (pH8.0) buffer at a rate of 1 mL / min. As a result of SDS-PAGE, wild-type hGH recovered a fraction of 22 kDa with a purity of 95% or more, and a glycated mutated hGH recovered a fraction near 50 KDa (FIG. 6).
실시예 6: 세포기반 활성분석을 통한 허용위치 활성 검증Example 6: Validation of Acceptable Site Activity Through Cell-Based Activity Assay
hGH 단백질의 생물학적 활성은 Nb2 세포 외부에 존재하는 프로락틴 리셉터와 hGH과의 결합에 의한 Nb2 세포의 증식을 측정함으로써 분석하였다.The biological activity of the hGH protein was analyzed by measuring the proliferation of Nb2 cells by binding of hGH to prolactin receptors external to the Nb2 cells.
Nb2-11 쥐 림프종 세포는 ECACC (European Collection of Cell Culture)에서 구입하였다. 세포는 RPMI1640 배지 (GIB-11875, invitrogen)에 2 mM 머켑토에탄올, 세포오염방지 항생제(invitrogen,cat No. 15240-062) 및 10% 말 혈청을 첨가하여 배양하였다. 배지는 배양 플라스크 표면에 세포가 80~90% 정도에 이르렀을 때 계대 배양을 실시하였으며, 2~3일을 주기로 교환해 주었다. 배양한 1X104 개의 세포를 96 웰 플레이트에 3중 (triplate)으로 넣은 후, hGH 단백질을 최소 10-4 nM에서 최대 1 nM이 되도록 동일한 배지에 희석하여 웰에 첨가하고 48시간 동안 세포를 자극하였다. 각각의 웰의 최종부피는 100 ㎕로 고정시켰다. 살아있는 세포의 미토콘드리아 탈수소효소의 활성에 의해 노란색의 MTS (Promega, Cell-titer 96 well Aqueous non-radioactive cell proliferation assay kit , Cat No.G5421)가 수용성의 보라색을 띠는 물질로 전환되는 특성을 이용하여 세포 생존률을 측정하였다. 96웰 플레이트에서 배양한 Nb2 세포에 MTS를 20 ㎕ 첨가한 후 2시간 동안 37℃, 5% 이산화탄소 배양기에서 반응시켰다. 최종 반응물은 490 nm에서 흡광도를 측정하는 활성분석법을 이용하였다.Nb2-11 rat lymphoma cells were purchased from the European Collection of Cell Culture (ECACC). Cells were cultured in RPMI1640 medium (GIB-11875, invitrogen) with the addition of 2 mM merethanethanol, anti-contaminant antibiotics (invitrogen, cat No. 15240-062) and 10% horse serum. The medium was passaged when the cells reached 80-90% of the surface of the culture flask, and exchanged every 2 to 3 days. After a 1X10 4 cells cultured into a triple (triplate) in a 96-well plate, was diluted in the same medium so that the maximum of the hGH protein 1 nM for at least 10 -4 nM was added to the well and stimulate the cells for 48 hours . The final volume of each well was fixed at 100 μl. Yellow MTS (Promega, Cell-titer 96 well Aqueous non-radioactive cell proliferation assay kit, Cat No.G5421) is converted to a water-soluble purple substance by the activity of mitochondrial dehydrogenase in living cells. Cell viability was measured. 20 μl of MTS was added to Nb2 cells incubated in 96-well plates, and then reacted in a 37 ° C., 5% carbon dioxide incubator for 2 hours. The final reaction was carried out using an activity assay to measure absorbance at 490 nm.
상기 실시예 4에서 발굴한 허용위치 (Q49, E129, R134, Q141 잔기)에 돌연변이 (mutation), 당쇄화 (glycosylation), 페길화 (pegylation)를 도입한 다양한 단백질에서 단백질공학적 수식이 활성에 미치는 영향을 조사하였다.Effect of proteolytic modification on the activity of various proteins in which mutation, glycosylation, and pegylation were introduced at the allowable positions (Q49, E129, R134, and Q141 residues) discovered in Example 4 above. Was investigated.
그 결과 허용위치의 다양한 변형에도 불구하고 NB2 세포의 성장을 촉진하는 효과가 거의 영향을 받지 않거나, 증가되는 결과를 나타내었다(도 7). 이러한 결과는 실험적 탐색을 통한 발굴, 이론적 필터링을 통해 선발된 본 발명의 허용위치가 단백질 폴딩을 저해하지 않을 뿐만 아니라, 고유의 생리적 효능을 전혀 저해하지 않는 매우 효과적인 타깃부위임을 명료하게 보여주고 있다. 따라서 본 발명에서 상기 허용위치에 당쇄 및 PEG 거대 분자량의 가용성 고분자를 부가하는 경우 일반적으로 기대되는 혈중 단백질 분해효소에 대한 안정성, clearance에 대한 내성 등의 효과를 기대할 수 있는지를 조사하고자 하였다.As a result, the effect of promoting the growth of NB2 cells was hardly affected or increased despite various modifications of the allowable position (FIG. 7). These results clearly show that the allowable positions of the present invention selected through experimental exploration, theoretical filtering, are not only inhibiting protein folding, but also very effective target sites that do not inhibit the inherent physiological efficacy at all. Therefore, in the present invention, the addition of sugar chains and PEG large molecular weight soluble polymers in the allowable position was to investigate whether the expected effects of stability, resistance to clearance, and the like generally expected in the blood protease.
이를 위하여 변이형 hGH의 펩신 및 플라스민, 트롬빈 효소에 대한 안정성을 테스트하기 위하여 4 ㎍의 hGH 단백질에 효소 플라스민과 트롬빈은 300 ng, 펩신은 100 ng 을 처리하였다. 우선 플라스민과 트롬빈에 대한 안정성 테스를 위해, pH 8의 버퍼조건으로 맞추어 최종 반응 부피는 20 ㎕가 되도록 PBS를 첨가해 주었다. 효소 반응 조건은 37℃에서 4시간 배양 후 95℃ 10분간 반응하여 효소의 비활성화를 유도하였다. 15% 아크릴아마이드 SDS-PAGE 젤 및 세포 활성 측정 방법을 통해 단백질의 단편 형성을 확인하였다. 우선 Q49N 당쇄화 유도 단백질의 경우 야생형과 비교하였을 때, 펩신에 대해 높은 안정성을 보였으며, Q141N 당쇄화 유도 단백질은 플라스민에 대한 안정성을 나타내었다. R134N 변이 단백질의 경우는 트롬빈에 대한 안정성을 나타내었다 (도 8).To test the stability of pepsin, plasmin, and thrombin enzymes of mutant hGH, 4 μg of hGH protein was treated with 300 ng of enzyme plasmin and thrombin and 100 ng of pepsin. First, to test the stability against plasmin and thrombin, PBS was added so that the final reaction volume was 20 μl according to the buffer condition of pH 8. Enzyme reaction conditions were incubated at 37 ° C. for 4 hours, followed by 95 ° C. for 10 minutes to inactivate enzyme inactivation. Fragment formation of the protein was confirmed via 15% acrylamide SDS-PAGE gel and cell activity measurement methods. First, the Q49N glycosylation induced protein showed high stability against pepsin compared to the wild type, and the Q141N glycosylation induced protein showed stability against plasmin. For the R134N mutant protein, it showed stability against thrombin (FIG. 8).
결과적으로 본 발명의 허용위치는 단백질의약품의 폴딩 저해나 활성감소가 거의 나타나지 않으며, 단백질 공학적 혹은 화학적 수식을 통하여 보다 우수한 효능 및 안정성을 나타내는 형태를 만들어 낼 수 있는 우수한 타깃위치인 것으로 확인되었다.As a result, the allowable position of the present invention showed little folding inhibition or deactivation of the protein drug, and was confirmed to be an excellent target position capable of producing a form showing better efficacy and stability through protein engineering or chemical modification.
한편 본 발명의 허용위치 발굴기술이 실시예에서 제시한 인성장호르몬(hGH)에 국한되지 않고, 다양한 단백질치료제의 수식을 통하여 보다 우수한 성능의 “슈퍼 바이오시밀러”를 개발하는 원천기술로 이용될 수 있음은 당 단백질공학 분야의 전문가라면 매우 자명한 일이다. 따라서 본 발명의 방법을 이용하면 활성 및 안정성이 우수한 다양한 단백질의약품의 개발이 가능하다.On the other hand, the permissible position detection technology of the present invention is not limited to the phosphorus growth hormone (hGH) shown in the examples, and can be used as a source technology for developing a superior "super biosimilar" through the modification of various protein therapeutic agents. Being able to do that is obvious to an expert in protein engineering. Therefore, using the method of the present invention it is possible to develop a variety of protein drugs with excellent activity and stability.
또한, 본 발명을 통해 암세포와 같은 특정 타겟에만 적용 가능한 스마트 약물 (smart drug)로 사용하기 위한 단백질의 개량을 목적하는 경우에도 매우 유용한 발명이 될 수 있다. 또한 단백질의 용해도를 높이기 위한 콜릭산 (cholic acid)와 같은 계면 활성제의 부착에도 이용될 수 있다.In addition, the present invention can be a very useful invention even when the purpose of improving the protein for use as a smart drug (smart drug) applicable only to a specific target such as cancer cells. It can also be used for the attachment of surfactants such as cholic acid to increase the solubility of proteins.

Claims (24)

  1. (a) 폴딩 (folding) 리포터 단백질이 표적 단백질의 다양한 내부 위치에 삽입된 융합 단백질을 갖는 표적 단백질 라이브러리를 제조하는 단계;(a) preparing a target protein library having a fusion protein in which the folding reporter protein is inserted at various internal positions of the target protein;
    (b) 표적 단백질의 N-말단 또는 C-말단에 폴딩 리포터 단백질이 융합된 대조군보다 리포터 단백질의 활성이 높은 콜로니를 상기 표적 단백질 라이브러리로부터 선별하는 단계; 및(b) selecting from the target protein library a colony having a higher activity of the reporter protein than the control group in which the folding reporter protein is fused at the N-terminus or C-terminus of the target protein; And
    (c) 상기 선별된 콜로니의 융합 단백질 서열을 분석하여 폴딩 리포터 단백질이 삽입된 위치를 확인하는 단계를 포함하는, 표적 단백질 중 수정이 가능한 허용 위치 (permissive site)를 선별하는 방법.(c) analyzing the fusion protein sequence of the selected colonies to identify the position where the folding reporter protein is inserted, and selecting a permissive site that can be modified among the target proteins.
  2. 제1항에 있어서, (c) 단계에서 확인된 폴딩 리포터 단백질 삽입 위치를 중심으로 5Å (±2Å) 이내에 위치하는 아미노산을 허용 위치로 설계하는 단계를 추가하는 방법.The method of claim 1, further comprising the step of designing an amino acid located within 5 ms (± 2 ms) about the folding reporter protein insertion position identified in step (c) as an acceptable position.
  3. 제1항에 있어서, (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치들 중 단백질 분해효소의 절단 부위를 중심으로 5Å (±2Å) 이내에 위치하는 아미노산을 선별하는 단계를 추가로 포함하는 것인 방법.The method of claim 1, further comprising selecting an amino acid located within 5 μs (± 2 μs) around the cleavage site of the protease among the folding reporter protein insertion sites identified in step (c).
  4. 제1항에 있어서, (c) 단계에서 확인한 폴딩 리포터 단백질 삽입 위치들에서 단백질 수정시 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치를 제외시키는 단계를 추가로 포함하는 것인 방법.The method of claim 1, further comprising excluding from the folding reporter protein insertion positions identified in step (c) a position that removes the binding activity of the target protein or the intrinsic functional activity of the target protein when modifying the protein. .
  5. 제4항에 있어서, 단백질 수정시 표적 단백질의 결합 활성 또는 표적 단백질의 고유 기능 활성을 제거하는 위치는 상기 표적 단백질의 알려진 3차 구조에 대입하여 확인하는 것인 방법.5. The method of claim 4, wherein the site that removes the binding activity of the target protein or the intrinsic functional activity of the target protein when modifying the protein is identified by substitution into a known tertiary structure of the target protein.
  6. 제1항에 있어서, 폴딩 (folding) 리포터 단백질을 코딩하는 핵산은 트랜스포존에 의해 표적 단백질을 코딩하는 핵산의 다양한 내부 위치에 삽입되는 것인 방법.The method of claim 1, wherein the nucleic acid encoding the folding reporter protein is inserted at various internal positions of the nucleic acid encoding the target protein by transposon.
  7. 제6항에 있어서, 상기 트랜스포존은 폴딩 리포터 단백질을 코딩하는 핵산 및 양 말단에 전위 효소 (transposase) 인식부위를 포함하는 방법.7. The method of claim 6, wherein the transposon comprises a nucleic acid encoding a folding reporter protein and a transposase recognition site at both ends.
  8. 제1항에 있어서, 상기 (a) 단계는The method of claim 1, wherein step (a)
    (i) 폴딩 리포터 단백질을 코딩하는 핵산, 트랜스포존 삽입 클론 선별 마커 유전자 및 양 말단에 전위 효소 인식부위를 포함하는 트랜스포존을 제1 숙주세포에 도입하는 단계;(i) introducing a transposon comprising a nucleic acid encoding a folding reporter protein, a transposon insertion clone selection marker gene, and a translocation enzyme recognition site at both ends into a first host cell;
    (ii) 상기 제1 숙주세포들로부터 선별 마커 유전자를 발현하는 콜로니를 선별하여 트랜스포존 삽입 제1 라이브러리를 제조하는 단계;(ii) selecting a colony expressing a selection marker gene from the first host cells to prepare a transposon insertion first library;
    (iii) 상기 (ii) 단계의 제1 라이브러리로부터 나온 트랜스포존에서 선별 마커 유전자를 제거하는 단계; 및(iii) removing the selection marker gene from the transposon from the first library of step (ii); And
    (iv) 상기 선별 마커가 제거된 트랜스포존을 제2 숙주세포에 도입하여 제2 라이브러리를 제조하는 단계인 것인 방법.(iv) introducing the transposon from which the selection marker has been removed into a second host cell to prepare a second library.
  9. 제8항에 있어서, 상기 제1 숙주세포는 대장균이고, 제2 숙주세포는 효모인 것인 방법.The method of claim 8, wherein the first host cell is Escherichia coli and the second host cell is yeast.
  10. 제8항에 있어서, 상기 폴딩 리포터 단백질을 코딩하는 핵산은 서열번호 5로 기재된 녹색 형광 단백질 (GFP)를 코딩하는 핵산이고, 상기 선별 마커 유전자는 서열번호 4로 기재된 카나마이신 저항성 유전자이고, 전위 효소 인식 부위는 서열번호 2 및 3에 기재된 서열인 것인 방법.The method of claim 8, wherein the nucleic acid encoding the folding reporter protein is a nucleic acid encoding a green fluorescent protein (GFP) as set forth in SEQ ID NO: 5, and the selection marker gene is a kanamycin resistance gene as set forth in SEQ ID NO: 4, and a translocation enzyme recognition. And the site is the sequence set forth in SEQ ID NOs: 2 and 3.
  11. 제1항에 있어서, 상기 허용 위치는 단백질 치료제의 기능을 손상시키지 않으면서 돌연변이, 화학적 수식 또는 이종 단백질의 융합을 수행할 수 있는 위치인 것인 방법.The method of claim 1, wherein said acceptable position is a position capable of performing mutation, chemical modification, or fusion of a heterologous protein without impairing the function of the protein therapeutic agent.
  12. 제11항에 있어서, 상기 화학적 수식은 당쇄화 (glycosylation), 페길화 (PEGylation) 또는 계면 활성제 부착을 포함하는 것인 방법.The method of claim 11, wherein the chemical modification comprises glycosylation, PEGylation or surfactant attachment.
  13. 제1항에 있어서, 상기 폴딩 리포터 단백질은 녹색 형광 단백질 (GFP), 변형된 녹색 형광 단백질 (modified green fluorescent protein; mGFP), 증강된 녹색 형광 단백질 (enhanced green fluorescent protein; EGFP), 적색 형광 단백질 (RFP), 변형된 적색 형광 단백질 (mRFP), 증강된 적색 형광 단백질 (ERFP), 청색 형광 단백질 (BFP), 증강된 청색 형광 단백질 (EBFP), 황색 형광 단백질 (YFP), 증강된 황색 형광 단백질 (EYFP), 남색 형광 단백질 (CFP) 및 증강된 남색 형광 단백질 (ECFP)로 이루어지는 군에서 선택된 것인 방법.The method of claim 1, wherein the folding reporter protein is a green fluorescent protein (GFP), modified green fluorescent protein (mGFP), enhanced green fluorescent protein (EGFP), red fluorescent protein ( RFP), modified red fluorescent protein (mRFP), enhanced red fluorescent protein (ERFP), blue fluorescent protein (BFP), enhanced blue fluorescent protein (EBFP), yellow fluorescent protein (YFP), enhanced yellow fluorescent protein ( EYFP), indigo blue fluorescent protein (CFP) and enhanced indigo blue fluorescent protein (ECFP).
  14. 제1항에 있어서, 상기 표적 단백질은 인간 성장 호르몬, 인슐린, EGFR (Epidermal Growth Factor), EPO (Erythropoietin), 조혈자극제, 호중구 촉진인자 (G-CSF), 혈소판 성장 인자 (Thrombopoietin), 인터페론, 응고인자 (coagulation factor) 및 여포자극호르몬으로 이루어진 군에서 선택된 단백질 치료제인 것인 방법.The method of claim 1, wherein the target protein is human growth hormone, insulin, EGFR (Epidermal Growth Factor), EPO (Erythropoietin), hematopoietic stimulant, neutrophil promoter (G-CSF), platelet growth factor (Thrombopoietin), interferon, coagulation And a protein therapeutic agent selected from the group consisting of coagulation factor and follicle stimulating hormone.
  15. 제1항 내지 제14항 중 어느 한 항의 방법에 의해 선별된 허용 위치에 돌연변이, 화학적 수식 또는 이종 단백질의 융합을 수행하는 단계를 포함하는, 변형된 표적 단백질을 제조하는 방법.15. A method of making a modified target protein, comprising performing fusion of a mutation, chemical modification or heterologous protein at an acceptable position selected by the method of any one of claims 1-14.
  16. 제15항에 있어서, 상기 변형된 표적 단백질은 야생형에 비해 안전성이 개선된 것인 방법.The method of claim 15, wherein the modified target protein has improved safety compared to wild type.
  17. 제15항에 있어서, 상기 변형된 표적 단백질은 야생형에 비해 타겟 세포로 도입이 개선된 것인 방법.The method of claim 15, wherein the modified target protein has improved introduction into the target cell compared to the wild type.
  18. 제15항에 있어서, 상기 표적 단백질은 인간 성장 호르몬인 것인 방법.The method of claim 15, wherein the target protein is human growth hormone.
  19. 제18항에 있어서, 상기 인간 성장 호르몬의 야생형은 서열번호 1로 기재된 아미노산이고, 허용 위치는 49번째의 글루타민 (Q), 50번째의 쓰레오닌 (T), 51번째의 세린 (S), 129번째의 글루탐산 (E), 130번째의 아스파라긴산 (D), 131번째의 글리신 (G), 133번째의 프롤린 (P), 134번째의 알지닌 (R), 135번째의 쓰레오닌 (T), 136번째의 글리신 (G), 141번째의 글루타민 (Q), 142번째의 쓰레오닌 (T), 143번째의 타이로신 (Y), 144번째의 세린 (S), 155번째의 알라닌 (A), 156번째의 루이신 (L), 157번째의 루이신 (L) 및 158번째의 라이신 (K) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산인 것인 방법.The wild type of human growth hormone according to claim 18 is an amino acid set forth in SEQ ID NO: 1, the allowable position is 49th glutamine (Q), 50th threonine (T), 51st serine (S), 129th glutamic acid (E), 130th aspartic acid (D), 131th glycine (G), 133th proline (P), 134th arginine (R), 135th threonine (T) 136th glycine (G), 141th glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S), 155th alanine (A) And 156 leucine (L), 157 leucine (L) and 158 lysine (K) amino acids.
  20. 서열번호 1로 기재된 인간 성장 호르몬에 있어서, 허용 위치인 49번째의 글루타민 (Q), 50번째의 쓰레오닌 (T), 51번째의 세린 (S), 129번째의 글루탐산 (E), 130번째의 아스파라긴산 (D), 131번째의 글리신 (G), 133번째의 프롤린 (P), 134번째의 알지닌 (R), 135번째의 쓰레오닌 (T), 136번째의 글리신 (G), 141번째의 글루타민 (Q), 142번째의 쓰레오닌 (T), 143번째의 타이로신 (Y), 144번째의 세린 (S), 155번째의 알라닌 (A), 156번째의 루이신 (L), 157번째의 루이신 (L) 및 158번째의 라이신 (K) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산에 돌연변이, 화학적 수식 또는 이종 단백질을 융합시킨 변형된 인간 성장 호르몬.In the human growth hormone of SEQ ID NO: 1, the allowable position is the 49th glutamine (Q), the 50th threonine (T), the 51st serine (S), the 129th glutamic acid (E), and the 130th Aspartic Acid (D), 131th Glycine (G), 133th Proline (P), 134th Arginine (R), 135th Threonine (T), 136th Glycine (G), 141 Glutamine (Q), 142th threonine (T), 143th tyrosine (Y), 144th serine (S), 155th alanine (A), 156th leucine (L), A modified human growth hormone, wherein a mutation, chemical modification, or heterologous protein is fused to one or more amino acids selected from the group consisting of 157th leucine (L) and 158th lysine (K) amino acids.
  21. 제20항에 있어서, 상기 아미노산의 돌연변이는 아스파라진 (N) 또는 시스테인 (C)으로 치환시킨, 변형된 인간 성장 호르몬.The modified human growth hormone of claim 20, wherein the amino acid mutation is substituted with asparagine (N) or cysteine (C).
  22. 제20항에 있어서, 허용 위치인 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 및 141번째의 글루타민 (Q) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산 각각을 아스파라진 (N)으로 돌연변이시켜서 당쇄화시킨 변형된 인간 성장 호르몬.The at least one amino acid of claim 20, wherein the amino acid is at least one amino acid selected from the group consisting of the 49th glutamine (Q), 129th glutamic acid (E), 134th arginine (R) and 141th glutamine (Q) amino acids. Modified human growth hormone glycosylated by mutating each with asparagine (N).
  23. 제20항에 있어서, 허용 위치인 49번째의 글루타민 (Q), 129번째의 글루탐산 (E), 134번째의 알지닌 (R) 및 141번째의 글루타민 (Q) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산 각각을 시스테인 (C)으로 치환시킨 후, 페길화시킨 변형된 인간 성장 호르몬.The at least one amino acid of claim 20, wherein the amino acid is at least one amino acid selected from the group consisting of the 49th glutamine (Q), 129th glutamic acid (E), 134th arginine (R) and 141th glutamine (Q) amino acids. Modified human growth hormone pegylated after each substitution with cysteine (C).
  24. 제20항에 있어서, 허용 위치인 49번째의 글루타민 (Q), 50번째의 쓰레오닌 (T), 51번째의 세린 (S), 129번째의 글루탐산 (E), 130번째의 아스파라긴산 (D), 131번째의 글리신 (G), 133번째의 프롤린 (P), 134번째의 알지닌 (R), 135번째의 쓰레오닌 (T), 136번째의 글리신 (G), 141번째의 글루타민 (Q), 142번째의 쓰레오닌 (T), 143번째의 타이로신 (Y), 144번째의 세린 (S), 155번째의 알라닌 (A), 156번째의 루이신 (L), 157번째의 루이신 (L) 및 158번째의 라이신 (K) 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산 각각에 당쇄를 부가한 변형된 인간 성장 호르몬.21. The acceptable position of claim 20, wherein the allowable position is 49th glutamine (Q), 50th threonine (T), 51st serine (S), 129th glutamic acid (E), 130th aspartic acid (D) , 131th glycine (G), 133th proline (P), 134th arginine (R), 135th threonine (T), 136th glycine (G), 141th glutamine (Q) ), 142 th threonine (T), 143 th tyrosine (Y), 144 th serine (S), 155 th alanine (A), 156 th leucine (L), 157 th leucine A modified human growth hormone, wherein a sugar chain is added to each of at least one amino acid selected from the group consisting of (L) and 158th lysine (K) amino acids.
PCT/KR2011/007683 2011-09-22 2011-10-14 Selection of a permissive site for protein redesign, and method for producing a modified protein using same WO2013042821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0095978 2011-09-22
KR20110095978 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042821A1 true WO2013042821A1 (en) 2013-03-28

Family

ID=47914566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007683 WO2013042821A1 (en) 2011-09-22 2011-10-14 Selection of a permissive site for protein redesign, and method for producing a modified protein using same

Country Status (2)

Country Link
KR (1) KR101752775B1 (en)
WO (1) WO2013042821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391884B1 (en) * 2002-07-04 2003-09-06 Amicogen Co Ltd Random codon based mutagenesis using transposon
WO2006017371A1 (en) * 2004-07-20 2006-02-16 Novozymes, Inc. Methods of producing mutant polynucleotides
WO2007137586A2 (en) * 2006-05-31 2007-12-06 Pharmexa A/S Random insertion of peptides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100391884B1 (en) * 2002-07-04 2003-09-06 Amicogen Co Ltd Random codon based mutagenesis using transposon
WO2006017371A1 (en) * 2004-07-20 2006-02-16 Novozymes, Inc. Methods of producing mutant polynucleotides
WO2007137586A2 (en) * 2006-05-31 2007-12-06 Pharmexa A/S Random insertion of peptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, SEUNG GU ET AL., KOR. J. MICROBIOL. BIOTECHNOL, vol. 36, no. 2, 2008, pages 149 - 157 *

Also Published As

Publication number Publication date
KR20130032217A (en) 2013-04-01
KR101752775B1 (en) 2017-07-03

Similar Documents

Publication Publication Date Title
KR102559311B1 (en) Recombinant human type XVII collagen, manufacturing method and application
JP3438227B2 (en) Method for refolding IGF-1 to an active conformation
US6331414B1 (en) Preparation of human IGF via recombinant DNA technology
US20190211321A1 (en) Processing engineered fmdv p1 polypeptide using an alternative tev protease
PL158064B1 (en) Method for expressing human proapolyprotein a-j
JP2004256541A (en) Insulin-like growth factor-binding protein and its composition
JPH06100593A (en) Naturally occurring g-csf derivative, its production and dna base sequence that encodes for amino acid sequence of naturally occurring g-csf derivative
IE48385B1 (en) Synthesis of a eucaryotic protein by a microorganism
CN103328649A (en) Novel signal sequences to improve protein expressions and secretion of recombinant enzymes and other proteins
EP0235187B1 (en) Polypeptides and antibodies characteristic of the papillomavirus, methods of diagnosis and vaccines in which they are used
CZ384896A3 (en) NOVEL MUTANT PROTEINS hIL-4 AS ANTAGONISTS OR PARTIAL ANTAGONISTS OF HUMAN INTERLEUKIN 4
US20210332100A1 (en) Novel pro-insulin aspart structure and method for preparing insulin aspart
UA68324C2 (en) Dimers of "cloverleaf" peptide (variants), method for their production (variants) and pharmaceutical composition (variants)
US7892787B2 (en) Method for production of recombinant growth hormone in form of hybrid protein
EP0117657A1 (en) Rabies immunogenic polypeptides and vaccine using them, DNA sequences, expression vectors, recombinant cells, and cultures therefor, and processes for their production
Dhakal et al. Cloning, expression and purification of the low-complexity region of RanBP9 protein
Razis et al. The periplasmic expression of recombinant human epidermal growth factor (hEGF) in Escherichia coli
WO2013042821A1 (en) Selection of a permissive site for protein redesign, and method for producing a modified protein using same
US7309785B1 (en) Modified chimeric Cry35 proteins
Flores-Ramírez et al. The effect of amino acid deletions and substitutions in the longest loop of GFP
WO2020138951A1 (en) Gene expression cassette for expressing n-terminal methionine-truncated protein of interest and method for producing n-terminal methionine-truncated protein of interest by using same
US5656458A (en) Expression and processing of amino terminus acetylated FGF's in yeast
EP1580196B1 (en) Monitor protein for measuring processing of protein
CN1721446B (en) Fusion protein and method for preparing same
WO2023229328A1 (en) Platform for expressing protein of interest using viral nucleocapsid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872659

Country of ref document: EP

Kind code of ref document: A1