WO2013042787A1 - Organic itinerant magnetic compound, process for producing organic itinerant magnetic compound, magnet, spintronic element, and material for hydrogen refining - Google Patents

Organic itinerant magnetic compound, process for producing organic itinerant magnetic compound, magnet, spintronic element, and material for hydrogen refining Download PDF

Info

Publication number
WO2013042787A1
WO2013042787A1 PCT/JP2012/074307 JP2012074307W WO2013042787A1 WO 2013042787 A1 WO2013042787 A1 WO 2013042787A1 JP 2012074307 W JP2012074307 W JP 2012074307W WO 2013042787 A1 WO2013042787 A1 WO 2013042787A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
itinerant
magnetic compound
magnetic
compound
Prior art date
Application number
PCT/JP2012/074307
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 小林
日織 木野
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2013534777A priority Critical patent/JP5880893B2/en
Publication of WO2013042787A1 publication Critical patent/WO2013042787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to an organic itinerant magnetic compound, a method for producing an organic itinerant magnetic compound, a magnet, a spintronic device, and a hydrogen purification material.
  • Si-based amorphous semiconductors currently occupy most of the market due to their excellent processability.
  • Si-based amorphous semiconductors are frequently used in TFTs (Thin Film Transistors) for liquid crystal displays and solar cells.
  • organic semiconductors are expected to be applied to wearable devices because of their light weight and flexibility.
  • inorganic crystals or doped polymers are the mainstream, and the development of organic semiconductors such as organic amorphous semiconductors has been remarkably delayed even in the world.
  • organic thin-film solar cells and organic EL (Organic Electro-Luminescence) devices using low-molecular ⁇ compounds and photoconductive doped polymers is currently underway, but their performance is in comparison with inorganic Si-based amorphous solids. It is well known that it is inferior. This is related to the fact that high performance and stability cannot be maintained in processing forms such as thin films and chips.
  • Organic compounds such as organic amorphous solids are expected to have high potential from an industrial point of view, such as inorganic Si-based amorphous materials that do not depend on the processing form and have high performance, but very few examples have been applied so far. . What is known as an organic amorphous solid is limited to similar ⁇ -electron starburst molecules, and some of these radicals exhibit conductivity, but their values are generally very low. It is.
  • thermoelectric materials are also difficult to reduce in weight and thickness.
  • Patent Document 3 a compound that can be a material capable of controlling many functions has recently been proposed.
  • This is an organic semiconductor that can be produced by a simple technique in which a donor molecule is salted with an inorganic acid or an inorganic base. It is expected that various organic semiconductors can be manufactured by the same method, and this method is a breakthrough.
  • the present invention has been made in view of the above-described background art, and an object thereof is to provide a compound that can be a material capable of controlling many functions.
  • the first aspect of the present invention is Formed by salting organic molecules that serve as donors with inorganic acids or bases, It is an organic itinerant magnetic compound characterized by self-assembly.
  • the second aspect of the present invention is 2.
  • the third aspect of the present invention is 3.
  • the fourth aspect of the present invention is An organic itinerant magnetic compound characterized in that it is formed by derivatizing a compound having a tetrathiafulvalene analog moiety in the skeleton and having a protonic acid functional group into a salt with ammonia or a salt with hydroxyamine .
  • the fifth aspect of the present invention provides The organic itinerant magnetic compound is characterized in that it is formed by inducing a compound having a primary amine with a tetrathiafulvalene analog moiety in the skeleton into an inorganic acid salt.
  • the sixth aspect of the present invention provides An organic itinerant magnetic compound characterized by being any one of the compounds represented by (Chemical Formula 1).
  • X1 to X4 are either S or Se, and R1 is any one represented by (Chemical Formula 2).
  • R2 to R8 are any one represented by (Chemical Formula 3) (same or different) May be.)
  • the seventh aspect of the present invention provides It is an organic itinerant magnetic compound characterized by being any compound represented by (Chemical Formula 4).
  • the eighth aspect of the present invention is It is an organic itinerant magnetic compound characterized by being any compound represented by (Chemical Formula 5).
  • the ninth aspect of the present invention provides An organic itinerant magnetic compound characterized by being tetrathiafulvalene-2-carboxylic acid / ammonium salt.
  • the tenth aspect of the present invention provides A method for producing an organic itinerant magnetic compound is characterized in that an organic molecule serving as a donor is formed by salt formation with an inorganic acid or an inorganic base on a one-to-one basis to produce a self-assembling compound.
  • the eleventh aspect of the present invention is An organic itinerant magnetic compound characterized by having a pseudo-closed shell configuration.
  • the twelfth aspect of the present invention is Including salt bridge bonds, It is an organic itinerant magnetic compound formed by adding a Brönsted acid or base to an organic compound having a molecular weight of 20000 or less and stably generating 0.1% or more radical species.
  • the thirteenth aspect of the present invention is A salt bridge material having multiple bonds that can be protonated in an electron donor molecule or in an electron acceptor molecule; It is an organic itinerant magnetic compound formed by stable generation of 0.1% or more of radical species in the formation of salt bridges.
  • the fourteenth aspect of the present invention provides A salt bridge substance having a tetrathiafulvalene skeleton or a tetraselenafulvalene skeleton, It is an organic itinerant magnetic compound formed by the stable generation of 5% or more radical species in the formation of salt bridges.
  • the fifteenth aspect of the present invention is 15.
  • the sixteenth aspect of the present invention is A method for producing an organic itinerant magnetic compound containing a salt bridge bond
  • the present invention relates to a method for producing an organic itinerant magnetic compound formed by adding a Bronsted acid or a base to an organic compound having a molecular weight of 20000 or less and stably generating 0.1% or more radical species.
  • the seventeenth aspect of the present invention is A method for producing an organic itinerant magnetic compound which is a salt bridge substance having multiple bonds that can be protonated in an electron donor molecule or an electron acceptor molecule,
  • the present invention relates to a method for producing an organic itinerant magnetic compound formed by stably generating 0.1% or more radical species in the formation of a salt bridge.
  • the eighteenth aspect of the present invention provides A method for producing an organic itinerant magnetic compound which is a salt bridge substance having a tetrathiafulvalene skeleton or a tetraselenafulvalene skeleton,
  • the present invention relates to a method for producing an organic itinerant magnetic compound formed by stably generating 0.1% or more radical species in the formation of a salt bridge.
  • the nineteenth aspect of the present invention provides 19. The method for producing an organic itinerant magnetic compound according to claim 17, wherein the electronic state of the radical spin has a pseudo-closed shell configuration.
  • the twentieth aspect of the present invention provides 10.
  • the 21st aspect of the present invention is 10.
  • the twenty-second aspect of the present invention provides 10.
  • the twenty-third aspect of the present invention provides A magnet containing the organic itinerant magnetic compound according to claim 9.
  • the twenty-fourth aspect of the present invention provides A spintronic device comprising the organic itinerant magnetic compound according to claim 9.
  • the 25th aspect of the present invention is It exists in the hydrogen purification material containing the organic itinerant magnetic compound of Claim 9.
  • the twenty-sixth aspect of the present invention provides An organic compound containing a proton defect in a salt bridge bond, which generates a radical cation or a radical anion to compensate for the lost charge.
  • the twenty-seventh aspect of the present invention provides This is an organic itinerant magnetic compound that generates radical cations or radical anions to compensate for the lost charges due to the abundance ratio of cation and anion deviating from 1: 1 in the salt bridge material.
  • the 28th aspect of the present invention provides 2.
  • the 29th aspect of the present invention provides 7.
  • the thirtieth aspect of the present invention is 10.
  • the thirty-first aspect of the present invention provides 10.
  • the thirty-second aspect of the present invention provides 32.
  • the thirty-third aspect of the present invention provides 32.
  • examples of the protonic acid functional group include —COOH, —SO 3 H, —PO 3 H, and —PSO 2 H.
  • examples of the inorganic acid include HBF 4 , HClO 4 , HCl, HBr, HI, DBF 4 , DClO 4 , DCl, DBr, and DI.
  • a semiconductor refers to a substance that exhibits an intermediate property between a conductor that conducts electricity and an insulator that does not conduct electricity.
  • the electrical conductivity is in the range of approximately 10 2 to 10 ⁇ 6 Scm ⁇ 1 (S is ⁇ ⁇ 1 ) near room temperature.
  • the donor refers to an electron donor (electron donating molecule or electron donating group).
  • the acceptor refers to an electron acceptor (electron acceptor molecule or electron acceptor group).
  • Room temperature refers to 300K (27 ° C), and near room temperature means about ⁇ 10 ° C.
  • TTF tetrathiafulvalene
  • the compounds in the present specification and claims include compounds having an equivalent structure and having an element substituted with an element isotope such as deuterium. Therefore, for example, the above (Chemical Formula 2) includes the following (Chemical Formula 2A).
  • thermogravimetric analyzer Thermogravimetric analyzer (TGA)
  • TGA thermogravimetric analyzer
  • thermoelectromotive force It is a figure which shows the temperature dependence of electrical conductivity. It is a figure which shows the temperature dependence of electrical conductivity. It is a figure which shows a diffuse reflection spectrum. It is a figure which shows the temperature dependence of a thermoelectromotive force. It is a figure which shows the diffuse reflection spectrum of each compound.
  • This is a powder X-ray crystal structure analysis of deuterated tetrathiafulvalene-2-carboxylic acid / ammonium salt.
  • TTFCOO ⁇ NH 4 salt shows the electronic state by the unrestricted Hartree-Fock method (UHF) / 6-31G * using a model in which one molecule of the radical species TTF ⁇ + COO ⁇ NH 4 is buried in the tetramer
  • FIG. It is a figure which shows the result of the periodic quantum chemical calculation performed in consideration of the periodicity of a hydrogen bond direction (one-dimensional) with respect to the cluster model which contains one radical seed
  • TTFCOO - is a diagram showing the external magnetic field dependency example (temperature 300K) of the electrical conductivity of the NH 4 + salt.
  • TTFCOO - is a diagram showing a magnetoresistance measurement example (temperature 300K) of NH 3 + OH salts single crystal samples.
  • TTFCOO - is a diagram showing temperature dependence of the magnetoresistive effect of the NH 3 + OH salts single crystal samples.
  • TTFCOO - is a diagram showing a magnetoresistance measurement example (temperature 300K) of NH 3 + Ph salt.
  • TTFCOO - is a diagram showing temperature dependence of the magnetoresistive effect of the NH 3 + Ph salt.
  • DBTTF (CH) (CH 3) NH 3 + ⁇ Br - is a diagram showing a magnetoresistive measurement example (temperature 300K) salts.
  • the magnetic interaction of pure organic solids is generally very weak, and any ferromagnetic properties appear only at very low temperatures of about 7K or less.
  • the carrier-doped organic matter developed by the present inventors produces some itinerant electrons that behave ferromagnetically in a wide temperature range from extremely low temperature to room temperature.
  • the technique described in the present embodiment strongly suggests the possibility of realizing an organic magnet at room temperature that is the first in the world if the proportion of ferromagnetic itinerant electrons in a material can be increased synthetically. It is also expected to be applied to room temperature spintronics because it is a room-temperature itinerant magnet that is rarely seen in organic materials. Furthermore, since it has proton conductivity, it can be applied to hydrogen purification materials from room temperature organic fuel cells and natural gas.
  • TTF tetrathiafulvalene-2-carboxylic acid
  • TTF tetrathiafulvalene
  • the electrical conductivity when the obtained powdered solid was pelletized was about 1.0 ⁇ 10 ⁇ 3 S / cm at room temperature.
  • dibenzotetrathiafulvalenylethylamine was obtained in 15 steps in a total yield of 1%, and then salted with 42% aqueous tetrafluoroboric acid solution or 47-49% aqueous bromic acid solution.
  • the electrical conductivity when the obtained powdery amorphous solid was pelletized was about 1.0 ⁇ 10 ⁇ 3 to 10 ⁇ 4 S / cm at room temperature.
  • Ammonium is not only the key to physical properties, but also plays a role in effectively self-assembling TTF (donor) molecules into a molecular arrangement suitable for the carrier transport phenomenon.
  • the crystal structure at 300K will be described as an example.
  • FIG. 12 is a schematic diagram showing a crystal structure at 300K. As shown in the figure, a columnar hydrogen bond network is formed with ammonium as the center, and the ⁇ - ⁇ interaction and S ... S contact are generated by stacking them in a nested manner. The carrier can move around in a two-dimensional array.
  • These compounds are primarily organic materials that are carrier-doped to compensate for the loss of proton defects that occur in salt bridge bonds.
  • FIG. 1 is a diagram showing the bond energy of N (1s) of tetrathiafulvalene-2-carboxylic acid ammonium salt.
  • the amount of proton defects contained in ammonium tetrathiafulvalene-2-carboxylate, which is the most representative substance, is estimated to be 15% from the mixing ratio of NH 3 species in the nitrogen 1s orbital by photoelectron spectroscopy (XPS). This almost coincides with the tetrathiafulvalene radical molecule content of 16% estimated from the electron spin resonance method. The presence of this proton defect causes spin polarization in the electrons in the crystal.
  • FIG. 2 shows the band structure of tetrathiafulvalene-2-carboxylic acid ammonium salt a) band dispersion b) density of states near the Fermi level c) spin polarization orbit.
  • FIG. 2a shows the band dispersion of the ground state of the crystal structure based on the unit cell of tetrathiafulvalene-2-carboxylic acid ammonium salt optimized by the first principle calculation. K space is considered 4x4x4 size. Here, a 16% doping effect is added as a background charge. This is a square lattice with large dispersion in the a-axis and b-axis, and its shape differs between up and down spins.
  • FIG. 2 shows the band structure of tetrathiafulvalene-2-carboxylic acid ammonium salt a) band dispersion b) density of states near the Fermi level c) spin polarization orbit.
  • FIG. 2a shows the band dispersion of the ground
  • FIG. 3 shows the magnetization curve of a sample obtained by pressure-molding tetrathiafulvalene-2-carboxylic acid ammonium salt crystal. Diamagnetic correction is not performed. Residual magnetization has been confirmed over a wide temperature range from 5K to 400K, indicating the presence of ferromagnetic interactions. The tendency of soft magnets with small coercive force is shown from the shape of the magnetization curve.
  • FIG. 4 shows the results of surface analysis by XPS.
  • XPS detects the presence of very small amounts of metal impurities attached to the sample surface.
  • elements other than organic substances are not detected over a wide range by multiple measurements, it can be said that the above-mentioned magnetic properties are derived from itinerant electrons of tetrathiafulvalene-2-carboxylic acid ammonium salt.
  • the size of the magnetic moment of saturation magnetization is significantly smaller than 10 -4 mu B and theoretical values, which is that incorporation of proton defect is not a favorable uniform conditions for expressing the magnetic interaction Is considered to be the biggest cause.
  • the powder microcrystals into a pellet shape pressurized at 9 MPa / cm 2 for 2 minutes, the uniformity of the proton defect mixing state inside the crystal increases and the magnetic susceptibility tends to increase.
  • FIG. 5 is a diagram showing an optical absorption spectrum of a tetrathiafulvalene-2-carboxylic acid ammonium salt pellet sample. The change in the electronic state is also apparent from the difference in the optical absorption spectrum between the powder crystallite and the pellet state shown in the figure.
  • FIG. 6 is a diagram showing a magnetization curve of deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt.
  • FIG. 7 is a graph showing proton electromotive forces of tetrathiafulvalene-2-carboxylic acid ammonium salt and deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt. Furthermore, tetrathiafulvalene-2-carboxylic acid ammonium salt and deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt generate proton electromotive force of about half and 1/4 of Nernst's theoretical formula, respectively, by the hydrogen concentration cell method. Therefore, both have proton conductivity (FIG. 7A).
  • the table shows the measurement conditions at this time.
  • FIG. 7B is a diagram showing the hydrogen concentration cell method.
  • FIG. 8 is a diagram showing a magnetization curve of tetrathiafulvalene-2-carboxylic acid hydroxyammonium salt.
  • FIG. 9 is a diagram showing a magnetization curve of dibenzotetrathiafulvaleneethane ammonium bromide.
  • Each of these figures shows the magnetization curves of different types of carrier-doped organic materials. Differences in the magnitude of the magnetic moment due to differences in the amount of proton defects and the crystal arrangement, but all are basically room temperature itinerant magnets, similar to the mechanism of magnetic properties of tetrathiafulvalene-2-carboxylic acid ammonium salt It is thought that magnetic interaction is expressed by the mechanism.
  • FIG. 10A is a diagram showing a magnetization curve of dibenzotetrathiafulvaleneethaneammonium tetrafluoride salt.
  • the following organic organic magnetic compound is preferable.
  • a salt bridge substance having a tetrathiafulvalene skeleton and a tetraselenafulvalene skeleton, in which 0.1% or more of the radical species are stably generated when the salt bridge is formed.
  • the radical spin electronic state has a quasi-closed shell configuration.
  • FIG. 10B is a plot of the residual magnetization in a 300K, 0 magnetic field for three compounds with different radical spin concentrations.
  • the compounds are A (tetrathiafulvalenecarboxylic acid: 0%), B (tetrathiafulvalenecarboxylic acid aniline salt single crystal: 2%), and C (tetrathiafulvalenecarboxylic acid hydroxyamine salt single crystal: 10%), respectively. . From this figure, it can be seen that it is preferable to generate at least 0.1% or more radical spins in order to obtain effective magnetic properties.
  • Organic radical species are highly reactive because the electronic state of radical spin is at the HOMO level, and they tend to decompose due to external factors such as oxygen in the air. Therefore, in order to make the organic radical species into a chemically stable electronic state, ingenuity is generally made to introduce an electron-withdrawing group such as a cyano group or a nitro group into the molecule for stabilization. In this way, even if the electronic state is devised and stored in the air for a long time, the composition and electronic state of the molecule at the beginning of the synthesis are maintained, and a state in which radical spin that does not easily decompose occurs is generated. Is expressed here.
  • the d orbitals of transition metal elements and the f orbitals of rare earth metal elements are atomic orbitals with higher localization located in the inner shell than the s or p orbit of the outermost shell, and have lower orbital energy.
  • the electronic state of this d orbital or f orbital is called a quasi-closed shell configuration, but because of the high localization of these orbitals, the d and f electrons occupied there tend not to participate in chemical bonds, so Stabilize.
  • the pseudo-shell configuration, not participating in chemical bonds, and strongly stabilized odd-electron properties often cause magnetism.
  • the pseudo closed shell arrangement will be described later.
  • radical spin occurs at a concentration of 0.1% or more, electrons on the radical spin move as itinerant electrons and exhibit electron conductivity.
  • 1% or more is more preferable because of a decrease in non-essential electronic conductivity due to grain boundary resistance in the polycrystalline sample. Further, it is more preferably 5% or more for the reason that a sufficiently large magnetic property can be exhibited even in a polycrystalline sample.
  • the molecular weight is 10,000 or less.
  • the properties of the semiconductor and the magnetic material can be fused, it can be used as a ferromagnetic semiconductor. This fusion shows the feasibility of spintronic devices and is important. Here, what is related to the properties as a semiconductor is mainly described. First, the physical properties of the following compounds will be described.
  • FIG. 13 is a diagram showing temperature dependence of electrical conductivity. The 4-terminal method was used for measurement.
  • FIG. 14 is a diagram showing the thermoelectromotive force. As shown in the figure, even when the temperature is changed from low temperature to high temperature or from high temperature to low temperature, no change due to phase transition is observed, indicating that the temperature dependence of resistivity is a thermally activated semiconductor. Further, the thermoelectromotive force has almost no temperature dependence, and it can be seen that this compound has excellent physical properties in a wide temperature range. In particular, this data shows that application to thermoelectric power generation using the thermoelectric effect can be expected.
  • FIG. 15 is a diagram showing a calorimetric measurement result of differential scanning calorimeter (DSC).
  • FIG. 5 is a diagram showing a thermogravimetric measurement result by a thermogravimetric analyzer (TGA). All measured values were almost stable up to 140 ° C or lower, but the measured values changed greatly after exceeding 140 ° C. This seems to suggest that NH 3 is lost when the temperature exceeds 140 ° C.
  • FIG. 16 is a diagram showing a dielectric constant. As shown in the figure, polarization and dielectric response were observed. This result suggests the possibility of application as a ferroelectric memory and, consequently, an actuator utilizing the piezoelectric effect due to the ferroelectricity.
  • FIG. 18 and FIG. 19 are diagrams showing measurement data when the photoconductivity is measured while changing the temperature.
  • 18, 19 and 20 show data obtained when measurement was performed at 0 ° C., 20 ° C., and 30 ° C., respectively.
  • a pelleted sample (width 0.08 cm, thickness 0.03 cm) was used, and a two-terminal method was used in which terminals were attached with silver paste. Further, light irradiation in a wavelength region including the entire visible light region was performed.
  • FIG. 21 is a diagram showing a thermoelectromotive force. Similar to the above-described compound, even when the temperature is changed from low temperature to high temperature or from high temperature to low temperature, no change due to phase transition is observed, indicating that the temperature dependence of resistivity is a thermally active semiconductor. Further, it is understood that there is almost no temperature dependence of the thermoelectromotive force, and this compound has excellent physical properties in a wide temperature range. This data also shows that this compound can be expected to be applied to thermoelectric power generation utilizing the thermoelectric effect.
  • FIG. 22 is a diagram showing temperature dependence of electrical conductivity.
  • FIG. 23 is a graph showing the temperature dependence of the electrical conductivity of the compound of formula 6. As shown in the figure, the temperature dependence of the electrical conductivities of the two is very similar, suggesting that they exhibit similar physical properties in other respects.
  • FIG. 24 is a diagram showing the temperature dependence of electrical conductivity.
  • FIG. 23 is a graph showing the temperature dependence of the electrical conductivity of the compound of formula 6. As shown in the figure, the temperature dependence of the electrical conductivities of the two is very similar, suggesting that they exhibit similar physical properties in other respects.
  • FIG. 25 is a diagram showing the temperature dependence of the thermoelectromotive force. Like FIG. 14 and FIG. 21, it shows a high thermoelectromotive force and has little temperature dependence, which indicates that this compound also has excellent physical properties. This data also shows that this compound can be expected to be applied to thermoelectric power generation utilizing the thermoelectric effect.
  • FIG. 26 is a diagram showing a diffuse reflection spectrum of each compound. As shown in the figure, each compound was found to have absorption up to about 900 nm, unlike ordinary acid / base salts. This indicates that absorption of long-wavelength electromagnetic waves has been realized, indicating that these compounds are suitable for applications such as solar cells.
  • FIG. 27 is a powder X-ray crystal structure analysis of tetrathiafulvalene-2-carboxylic acid / ammonium salt.
  • FIG. 28 is a powder X-ray crystal structure analysis of deuterated tetrathiafulvalene-2-carboxylic acid / ammonium salt. All were measured using synchrotron light under conditions of 1.3000 angstroms. By analyzing these, it is clear that tetrathiafulvalene-2-carboxylic acid / ammonium salt is in a microcrystalline state having a certain regularity in its molecular assembly structure.
  • FIG. 29 and FIG. 30 are schematic diagrams showing a three-dimensional structure focusing on intermolecular bonds and intermolecular interactions.
  • compounds such as tetrathiafulvalene-2-carboxylic acid / ammonium salt overlap each other, and there are many loose bonds due to hydrogen bonds between the molecules, and the TTF sites are arranged in a column as a whole. is doing.
  • the contact distance between S atoms and S atoms is 3.5 angstroms or less, and the orbits of adjacent S atoms overlap to maintain a stable three-dimensional structure.
  • the pseudo-closed-shell arrangement is realized by a simple technique of embedding organic radical species between closed-shell molecular arrays by self-assembly using a hydrogen bond network consisting of an acid and a base, which is the key to carrier generation.
  • the quasi-closed-shell configuration is, for example, an electron configuration found in transition metal d orbitals and particularly rare earth metal f orbitals. In this configuration, spin does not participate in chemical bonds and is low. Since it has orbital energy and is shielded by electrons in other high energy states, it is isolated and localized inside the atomic orbital. This induces a strong electron correlation effect in the solid state and becomes a source of various high physical properties specific to the strongly correlated metal.
  • This system is also called a “heavy electron system” because it increases the effective mass of electrons due to the strong electron correlation effect.
  • the series of compounds that have been described so far are positioned as f-electron metals that have been realized for the first time in organic solids.
  • Figure 31 is based on the unrestricted Hartree-Fock method (UHF) / 6-31G * using a model in which one molecule of the radical species TTF ⁇ + COO ⁇ NH 4 is embedded in a tetramer of TTFCOO ⁇ NH 4 salt. It is a figure which shows an electronic state. In the figure, a) pseudo-closed shell configuration, b) molecular orbital diagram. In both results, it was found that the single occupied molecular orbital (SOMO) of radical species is not in the frontier orbital, but is localized in a more stabilized orbital. This pseudo-closed-shell configuration is expressed for a compound having a form in which radical species are embedded in a supramolecular arrangement utilizing hydrogen bonding.
  • SOMO single occupied molecular orbital
  • FIG. 32 is a diagram showing the results of periodic quantum chemical calculations performed for a cluster model including one radical species in four molecular units in consideration of the periodicity in the hydrogen bonding direction (one-dimensional).
  • the band gap at the M point is only 0.3 eV, and it reproduces semiconductor properties well. This confirms that conduction carriers are generated by splitting the orbit near SOMO due to the pseudo-closed shell arrangement.
  • the calculation method was as follows. Periodic Boundary Condition (PBC) -UHF / 3-21G * Brillian zone sampling: 40k x 1 x 1 point calculation program: Gaussian03, Rev. D 01 [Negative magnetoresistance effect]
  • the group of substances described in this specification is an organic substance doped to compensate for the loss charge of proton defects generated in the salt bridge bond. These substance groups produce a negative magnetoresistive effect corresponding to the applied magnetic field in either a powder molded pellet or single crystal state.
  • Table 2 shows crystallization solvent dependence of magnetoresistance of TTFCOO - NH 4 + salt (300K), that is, powder molding by changing the amount of dope by recrystallizing TTFCOO - NH 4 + salt from various solvents by recrystallization.
  • Table 3 shows the increase in magnetic resistance (300K) due to ammonia treatment of TTFCOO - NH 4 + salt, that is, the data when the powder crystal precipitated from diethyl ether was left in an ammonia gas atmosphere for 1 minute. Indicates. In this case, an MR effect increase of about 30% is confirmed compared to the state before ammonia treatment.
  • Table 4 shows the magnetoresistance characteristics (300K) of a single crystal sample of TTFCOO - NH 4 + salt, that is, the MR effect when 9T is applied to a single crystal of the same substance.
  • FIG. 33 shows the external magnetic field dependence at 300K of powder-molded pellet samples of the same material.
  • the value of a sample precipitated from a tetrahydrofuran (THF) solvent is shown.
  • a substantially linear negative magnetoresistance effect is generated according to the applied magnetic field.
  • Table 5 shows the magnetoresistance effect of the TTFCOO - NH 3 + OH salt single crystal sample, that is, the MR effect of 300K and 130K when 9T is applied to the TTFCOO - NH 3 + OH salt single crystal.
  • FIG. 34 shows the magnetic field dependence of MR at 300 K for the same material.
  • FIG. 35 shows the temperature dependence of the MR effect of the same substance at 9T.
  • the magnetoresistive effect increases substantially linearly at lower temperatures.
  • the magnetoresistance effect increases in the temperature range of 250K-300K, 200K-300K, and 130K-300K.
  • TTFCOO - NH 3 + Ph single crystal magneto-resistance effect of salt 300K
  • TTFCOO - shows the 300K of the MR effect during 9T application of NH 3 + Ph salts single crystal.
  • FIG. 36 shows the magnetic field dependence of MR of the same substance at 300K.
  • FIG. 37 shows the temperature dependence of the MR effect of the same substance at 9T.
  • FIG. 38 shows the magnetic field dependence of the MR effect at 300 K of DBTTF (CH) (CH 3 ) NH 3 .Br salt.
  • the group of substances described in the present specification such as Chemical Formula 1 to Chemical Formula 11 described above are organic semiconductors containing ammonium ions as a main skeleton, and when proton defects of 0.1% or more and 99.9% or less are generated on ammonium ions, It has been revealed that conductivity is greatly expressed.
  • an organic semiconductor in which proton defects on ammonium serve as a dopant magnetism occurs around the dopant, so that charge carriers are affected by the influence and develop a negative magnetoresistance when a magnetic field is applied.
  • the effect of the generation of ferromagnetism around the defect structure is the first case of the substance group described in this specification in the organic matter, so it is inevitable that the substance development will be greatly affected in the future.
  • the ferromagnetism generated in the salt bridge structure including proton defects is observed not only at low temperatures but also at high temperatures such as room temperature, and all cases show that they are not easily affected by temperature. Therefore, all substances that generate charge carriers with this dopant exhibit a negative magnetoresistance effect.
  • the mixture was stirred for 15 minutes while maintaining the temperature, and precipitation of the lithio compound was confirmed.
  • Dry ice passed through dry diethyl ether was added thereto, and the temperature was returned to room temperature overnight.
  • a solid was obtained by filtration and then washed with diethyl ether.
  • the obtained solid was dissolved in alkaline water, and the aqueous layer was washed with diethyl ether.
  • the aqueous layer was acidified with 3M HCl and extracted with diethyl ether.
  • Tetrathiafulvalene-2-carboxylic acid (150 mg, 0.604 mmol) was dissolved in dry diethyl ether (30 ml), and insoluble components were removed by suction filtration. A 28% aqueous ammonia solution was dropped into the filtrate, and a solid was deposited on an ultrasonic generator over 15 seconds. The precipitated solid was filtered, washed with diethyl ether, stirred while suspended in toluene (3 ml), and then filtered to obtain tetrathiafulvalene-2-carboxylic acid / ammonium salt (130.8 mg, 0.493 mmol, 82%).
  • the reaction was stopped by adding water, 1M hydrochloric acid was added, extracted with diethyl ether, dried and concentrated.
  • the concentrate was dissolved in a chloroform / ether (1: 1) solution (8 ml), and a 60% aqueous solution of perchloric acid (2 ml) was added dropwise with stirring in a 50 ml flask. .
  • the reaction was stopped by adding water, extracted with diethyl ether, dried and concentrated.
  • 1,3-benzodithiol-2-thione (1.19 g, 6.46 mmol) and 5- (2-methyl-1,3-dioxalan-2-yl) -1,3-benzodithiol-2-one (0.66 g, 2.60 mmol) and triethyl phosphite (70 ml) were added to a 200 ml flask purged with argon, and the mixture was heated to reflux for 9 hours. Water was added, 3M hydrochloric acid was added dropwise while cooling in an ice bath, and the mixture was concentrated and dried.
  • 1- (dibenzotetrathiafulvalen-2-yl) ethylamine is dissolved in a solvent (diethyl ether or dichloromethane), and a Bronsted acid aqueous solution (HBr, HBF 4 ) is added dropwise thereto for several minutes. It was prepared by applying ultrasonic waves and filtering the resulting solid. Distilled water used for one washing was washed by performing a few drops with a Pasteur pipette about 5 times.
  • the spin concentration in the solid by carrier doping is an important factor in improving the magnetic properties, but by changing the crystallization solvent, the spin concentration can be up to 38% (using 1,4-dioxane). Succeeded in improving.
  • FIG. 11 is a diagram showing the correlation between the solvent used for crystallization of ammonium salt and the spin concentration of the obtained carrier-doped crystal. *
  • the experiment was carried out by ESR measurement of pellet-shaped small pieces of carrier-doped salt polycrystals at room temperature, and the ESR signal was measured using the standard 2,2-diphenyl-1-picrylhydrazyl (The spins were quantified in comparison with the peak area of 2,2-diphenyl -1-picrylhydrazyl) (commonly called DPPH). All sample quantities used are standardized.
  • the compound of this embodiment can be used for various uses.
  • Spintronics device information communication device, memory device, magnetic shield, medical magnetic shield, magnet, magnetic semiconductor, field effect transistor (FET), adhesive bandage, hard disk drive head, high-sensitivity playback GMR head, solid-state magnetic memory
  • FET field effect transistor
  • Examples include magnetoresistive memory (MRAM), optical isolators for fiber communication, materials that change color with a magnetic field, and materials that use the interaction between conduction electron spin and atomic magnetic moment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Hall/Mr Elements (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

Provided is, for example, a compound which can be a material that renders many functions controllable. One aspect of the present invention resides in an organic itinerant magnetic compound characterized in that the compound is formed by causing organic molecules as a donor to form a salt with an inorganic acid or inorganic base and that the compound self-stacks. Another aspect of the invention resides in the organic itinerant magnetic compound of claim 1 which is characterized by having ammonium moieties. Still another aspect of the invention resides in the organic itinerant magnetic compound of claim 2 which is characterized in that the ammonium moieties of the compound in the self-stacked state are caused to form hydrogen bonds.

Description

有機遍歴磁性体化合物、有機遍歴磁性体化合物の製造方法、磁石、スピントロニクス素子及び水素精製材料Organic itinerant magnetic compound, method for producing organic itinerant magnetic compound, magnet, spintronic device, and hydrogen purification material
本発明は、有機遍歴磁性体化合物、有機遍歴磁性体化合物の製造方法、磁石、スピントロニクス素子及び水素精製材料に関する。 The present invention relates to an organic itinerant magnetic compound, a method for producing an organic itinerant magnetic compound, a magnet, a spintronic device, and a hydrogen purification material.
Si系アモルファス半導体は、その優れた加工性から現在市場の大半を占めている。例えば、液晶ディスプレイのTFT(Thin Film Transistor)や太陽電池には、Si系アモルファス半導体が頻繁に用いられる。 Si-based amorphous semiconductors currently occupy most of the market due to their excellent processability. For example, Si-based amorphous semiconductors are frequently used in TFTs (Thin Film Transistors) for liquid crystal displays and solar cells.
一方、有機半導体は、軽量、柔軟性という特性からウエラブルなデバイスへの応用が期待されている。しかしながら、主に半導体部は無機結晶またはドープされたポリマーが主流であり、世界的に見ても有機アモルファス半導体などの有機半導体の開発は著しく遅れているのが現状である。 On the other hand, organic semiconductors are expected to be applied to wearable devices because of their light weight and flexibility. However, mainly in the semiconductor part, inorganic crystals or doped polymers are the mainstream, and the development of organic semiconductors such as organic amorphous semiconductors has been remarkably delayed even in the world.
また、低分子π化合物や光伝導性ドープポリマーを用いた有機薄膜太陽電池や、有機EL(Organic Electro-Luminescence)素子の開発が現在進められているが、その性能は無機Si系アモルファス固体に比べて劣ることがよく知られている。これは、薄膜やチップなどの加工形態において高い性能や安定性を維持できないことと関係がある。加工形態に依存せず高い性能を有する無機Si系アモルファスのように、有機アモルファス固体などの有機化合物には工業的な観点から高いポテンシャルが期待されるが、これまでに応用された例は極めて少ない。それは、有機アモルファス固体として知られているものは、類似したπ電子系スターバスト分子群に限られており、これらのラジカル体に伝導性の発現するものも存在するがその値は一般に極めて低いためである。 In addition, the development of organic thin-film solar cells and organic EL (Organic Electro-Luminescence) devices using low-molecular π compounds and photoconductive doped polymers is currently underway, but their performance is in comparison with inorganic Si-based amorphous solids. It is well known that it is inferior. This is related to the fact that high performance and stability cannot be maintained in processing forms such as thin films and chips. Organic compounds such as organic amorphous solids are expected to have high potential from an industrial point of view, such as inorganic Si-based amorphous materials that do not depend on the processing form and have high performance, but very few examples have been applied so far. . What is known as an organic amorphous solid is limited to similar π-electron starburst molecules, and some of these radicals exhibit conductivity, but their values are generally very low. It is.
さらに、一般の電荷移動型の有機導体は電気分解法などにより作成していたため、配列制御を行うことは困難である。また、電子物性は結晶構造に大きく依存しているため、工業化に必要とされるポリマー化や液晶化による薄膜への応用の点でも難がある。 Furthermore, since a general charge transfer type organic conductor is prepared by electrolysis or the like, it is difficult to control the arrangement. In addition, since the electronic properties greatly depend on the crystal structure, there is a difficulty in application to a thin film by polymerization or liquid crystal which is required for industrialization.
また、ドーピングを行うことにより半導体化する伝導性高分子は、配列を制御することは困難であるため、電荷分離能の向上は困難である。また、化学的な安定性に欠け、経時劣化が激しい。 Moreover, since it is difficult to control the arrangement of a conductive polymer that becomes a semiconductor by doping, it is difficult to improve the charge separation performance. Moreover, it lacks chemical stability and is deteriorated with time.
高いホール効果を有するInScやGaAs結晶は、稀少金属であるため高価であり、また、加工性に乏しい。熱電材料として知られるコバルト酸化物結晶も、軽量化や薄膜化は困難である。 InSc and GaAs crystals having a high Hall effect are rare metals and are expensive and have poor workability. Cobalt oxide crystals known as thermoelectric materials are also difficult to reduce in weight and thickness.
これらの観点から、多くの機能を制御可能な材料となり得る化合物が最近提案された(特許文献3)。これは、ドナー分子を無機酸あるいは無機塩基と塩形成させるというシンプルな手法で製造できる有機半導体である。同様の手法で多様な有機半導体を製造できる見込みがあり、この手法は画期的なものである。 From these viewpoints, a compound that can be a material capable of controlling many functions has recently been proposed (Patent Document 3). This is an organic semiconductor that can be produced by a simple technique in which a donor molecule is salted with an inorganic acid or an inorganic base. It is expected that various organic semiconductors can be manufactured by the same method, and this method is a breakthrough.
特開2005-112951JP2005-112951 特表2007-526640Special table 2007-526640 PCT/JP2009/ 52440PCT / JP2009 / 52440
本発明は、上述の背景技術に鑑みてなされたものであり、多くの機能を制御可能な材料となり得る化合物などを提供することを目的とする。 The present invention has been made in view of the above-described background art, and an object thereof is to provide a compound that can be a material capable of controlling many functions.
この発明によれば、上述の目的を達成するために、特許請求の範囲に記載のとおりの構成を採用している。以下、この発明を詳細に説明する。 According to this invention, in order to achieve the above-mentioned object, the configuration as described in the claims is adopted. Hereinafter, the present invention will be described in detail.
 本発明の第1の側面は、
ドナーとなる有機分子を無機酸あるいは無機塩基と塩形成させることによって形成され、
自己集積することを特徴とする有機遍歴磁性体化合物
にある。
The first aspect of the present invention is
Formed by salting organic molecules that serve as donors with inorganic acids or bases,
It is an organic itinerant magnetic compound characterized by self-assembly.
 本発明の第2の側面は、
アンモニウム部位を有することを特徴とする請求項1記載の有機遍歴磁性体化合物
にある。
The second aspect of the present invention is
2. The organic itinerant magnetic compound according to claim 1, which has an ammonium moiety.
 本発明の第3の側面は、
自己集積した状態でアンモニウム部位に対して水素結合がなされることを特徴とする請求項2記載の有機遍歴磁性体化合物
にある。
The third aspect of the present invention is
3. The organic itinerant magnetic compound according to claim 2, wherein hydrogen bonds are made to the ammonium moiety in a self-assembled state.
 本発明の第4の側面は、
テトラチアフルバレン類縁体部位を骨格に含みプロトン酸官能基を有する化合物を、アンモニアとの塩又はヒドロキシアミンとの塩へと誘導させることによって形成されることを特徴とする有機遍歴磁性体化合物
にある。
The fourth aspect of the present invention is
An organic itinerant magnetic compound characterized in that it is formed by derivatizing a compound having a tetrathiafulvalene analog moiety in the skeleton and having a protonic acid functional group into a salt with ammonia or a salt with hydroxyamine .
 本発明の第5の側面は、
テトラチアフルバレン類縁体部位を骨格に含み第一級アミンを有する化合物を、無機酸塩へと誘導させることによって形成されることを特徴とする有機遍歴磁性体化合物
にある。
The fifth aspect of the present invention provides
The organic itinerant magnetic compound is characterized in that it is formed by inducing a compound having a primary amine with a tetrathiafulvalene analog moiety in the skeleton into an inorganic acid salt.
 本発明の第6の側面は、
(化1)で表されるいずれかの化合物であることを特徴とする有機遍歴磁性体化合物
にある。
Figure JPOXMLDOC01-appb-C000006
(式中、X1からX4はS又はSe、R1は(化2)に表されるいずれかである。)(式中、R2からR8は(化3)に表されるいずれか(同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
The sixth aspect of the present invention provides
An organic itinerant magnetic compound characterized by being any one of the compounds represented by (Chemical Formula 1).
Figure JPOXMLDOC01-appb-C000006
(In the formula, X1 to X4 are either S or Se, and R1 is any one represented by (Chemical Formula 2).) (In the formula, R2 to R8 are any one represented by (Chemical Formula 3) (same or different) May be.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 本発明の第7の側面は、
(化4)で表されるいずれかの化合物であることを特徴とする有機遍歴磁性体化合物
にある。
Figure JPOXMLDOC01-appb-C000009
The seventh aspect of the present invention provides
It is an organic itinerant magnetic compound characterized by being any compound represented by (Chemical Formula 4).
Figure JPOXMLDOC01-appb-C000009
 本発明の第8の側面は、
(化5)で表されるいずれかの化合物であることを特徴とする有機遍歴磁性体化合物
にある。
Figure JPOXMLDOC01-appb-C000010
The eighth aspect of the present invention is
It is an organic itinerant magnetic compound characterized by being any compound represented by (Chemical Formula 5).
Figure JPOXMLDOC01-appb-C000010
 本発明の第9の側面は、
テトラチアフルバレン-2-カルボン酸・アンモニウム塩であることを特徴とする有機遍歴磁性体化合物
にある。
The ninth aspect of the present invention provides
An organic itinerant magnetic compound characterized by being tetrathiafulvalene-2-carboxylic acid / ammonium salt.
 本発明の第10の側面は、
ドナーとなる有機分子を無機酸あるいは無機塩基と1対1で塩形成させることによって形成し、自己集積する化合物を製造することを特徴とする有機遍歴磁性体化合物の製造方法
にある。
The tenth aspect of the present invention provides
A method for producing an organic itinerant magnetic compound is characterized in that an organic molecule serving as a donor is formed by salt formation with an inorganic acid or an inorganic base on a one-to-one basis to produce a self-assembling compound.
 本発明の第11の側面は、
擬似閉殻配置を有することを特徴とする有機遍歴磁性体化合物
にある。
The eleventh aspect of the present invention is
An organic itinerant magnetic compound characterized by having a pseudo-closed shell configuration.
 本発明の第12の側面は、
塩橋結合を含み、
分子量20000以下の有機化合物にブレンステッド酸又は塩基を添加することで全体の0.1%以上のラジカル種が安定に発生することによって形成される有機遍歴磁性体化合物
にある。
The twelfth aspect of the present invention is
Including salt bridge bonds,
It is an organic itinerant magnetic compound formed by adding a Brönsted acid or base to an organic compound having a molecular weight of 20000 or less and stably generating 0.1% or more radical species.
 本発明の第13の側面は、
 電子ドナー分子中又は電子アクセプター分子中にプロトン化され得る多重結合を有する塩橋物質であり、
 塩橋形成の際に全体の0.1%以上のラジカル種が安定に発生することによって形成される有機遍歴磁性体化合物
にある。
The thirteenth aspect of the present invention is
A salt bridge material having multiple bonds that can be protonated in an electron donor molecule or in an electron acceptor molecule;
It is an organic itinerant magnetic compound formed by stable generation of 0.1% or more of radical species in the formation of salt bridges.
 本発明の第14の側面は、
 テトラチアフルバレン骨格又はテトラセレナフルバレン骨格を有する塩橋物質であり、
 塩橋形成の際に全体の5%以上のラジカル種が安定に発生することによって形成される有機遍歴磁性体化合物
にある。
The fourteenth aspect of the present invention provides
A salt bridge substance having a tetrathiafulvalene skeleton or a tetraselenafulvalene skeleton,
It is an organic itinerant magnetic compound formed by the stable generation of 5% or more radical species in the formation of salt bridges.
 本発明の第15の側面は、
 ラジカルスピンの電子状態が擬似閉殻配置を有する請求項13又は14に記載の有機遍歴磁性体化合物
にある。
The fifteenth aspect of the present invention is
15. The organic itinerant magnetic compound according to claim 13, wherein the electronic state of the radical spin has a quasi-closed shell configuration.
 本発明の第16の側面は、
塩橋結合を含む有機遍歴磁性体化合物の製造方法であって、
分子量20000以下の有機化合物にブレンステッド酸又は塩基を添加することで全体の0.1%以上のラジカル種を安定に発生させることによって形成する有機遍歴磁性体化合物の製造方法
にある。
The sixteenth aspect of the present invention is
A method for producing an organic itinerant magnetic compound containing a salt bridge bond,
The present invention relates to a method for producing an organic itinerant magnetic compound formed by adding a Bronsted acid or a base to an organic compound having a molecular weight of 20000 or less and stably generating 0.1% or more radical species.
 本発明の第17の側面は、
 電子ドナー分子中又は電子アクセプター分子中にプロトン化され得る多重結合を有する塩橋物質である有機遍歴磁性体化合物の製造方法であって、
塩橋形成の際に全体の0.1%以上のラジカル種を安定に発生させることによって形成される有機遍歴磁性体化合物の製造方法
にある。
The seventeenth aspect of the present invention is
A method for producing an organic itinerant magnetic compound which is a salt bridge substance having multiple bonds that can be protonated in an electron donor molecule or an electron acceptor molecule,
The present invention relates to a method for producing an organic itinerant magnetic compound formed by stably generating 0.1% or more radical species in the formation of a salt bridge.
 本発明の第18の側面は、
 テトラチアフルバレン骨格又はテトラセレナフルバレン骨格を有する塩橋物質である有機遍歴磁性体化合物の製造方法であって、
塩橋形成の際に全体の0.1%以上のラジカル種を安定に発生させることによって形成される有機遍歴磁性体化合物の製造方法
にある。
The eighteenth aspect of the present invention provides
A method for producing an organic itinerant magnetic compound which is a salt bridge substance having a tetrathiafulvalene skeleton or a tetraselenafulvalene skeleton,
The present invention relates to a method for producing an organic itinerant magnetic compound formed by stably generating 0.1% or more radical species in the formation of a salt bridge.
 本発明の第19の側面は、
ラジカルスピンの電子状態が擬似閉殻配置を有する請求項17又は18に記載の有機遍歴磁性体化合物の製造方法
にある。
The nineteenth aspect of the present invention provides
19. The method for producing an organic itinerant magnetic compound according to claim 17, wherein the electronic state of the radical spin has a pseudo-closed shell configuration.
 本発明の第20の側面は、
半導体であることを特徴とする請求項9に記載の有機遍歴磁性体化合物
にある。
The twentieth aspect of the present invention provides
10. The organic itinerant magnetic compound according to claim 9, which is a semiconductor.
 本発明の第21の側面は、
強磁性体であることを特徴とする請求項9に記載の有機遍歴磁性体化合物
にある。
The 21st aspect of the present invention is
10. The organic itinerant magnetic compound according to claim 9, which is a ferromagnetic material.
 本発明の第22の側面は、
有機室温遍歴磁性体化合物であることを特徴とする請求項9に記載の有機遍歴磁性体化合物
にある。
The twenty-second aspect of the present invention provides
10. The organic itinerant magnetic compound according to claim 9, which is an organic room temperature itinerant magnetic compound.
 本発明の第23の側面は、
 請求項9記載の有機遍歴磁性体化合物を含有する磁石
にある。
The twenty-third aspect of the present invention provides
A magnet containing the organic itinerant magnetic compound according to claim 9.
 本発明の第24の側面は、
 請求項9記載の有機遍歴磁性体化合物を含有するスピントロニクス素子
にある。
The twenty-fourth aspect of the present invention provides
A spintronic device comprising the organic itinerant magnetic compound according to claim 9.
 本発明の第25の側面は、
 請求項9記載の有機遍歴磁性体化合物を含有する水素精製材料
にある。
The 25th aspect of the present invention is
It exists in the hydrogen purification material containing the organic itinerant magnetic compound of Claim 9.
本発明の第26の側面は、
 塩橋結合内にプロトン欠陥を含む有機化合物であって、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機遍歴磁性体化合物
にある。
The twenty-sixth aspect of the present invention provides
An organic compound containing a proton defect in a salt bridge bond, which generates a radical cation or a radical anion to compensate for the lost charge.
本発明の第27の側面は、
 塩橋物質中でカチオンとアニオンの存在比が1:1から外れることにより電荷が不釣り合いとなり、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機遍歴磁性体化合物
にある。
The twenty-seventh aspect of the present invention provides
This is an organic itinerant magnetic compound that generates radical cations or radical anions to compensate for the lost charges due to the abundance ratio of cation and anion deviating from 1: 1 in the salt bridge material.
本発明の第28の側面は、
負性磁気抵抗効果を生じる請求項1記載の有機遍歴磁性体化合物
にある。
The 28th aspect of the present invention provides
2. The organic itinerant magnetic compound according to claim 1, which produces a negative magnetoresistance effect.
本発明の第29の側面は、
負性磁気抵抗効果を生じる請求項6記載の有機遍歴磁性体化合物
にある。
The 29th aspect of the present invention provides
7. The organic itinerant magnetic compound according to claim 6, which produces a negative magnetoresistance effect.
本発明の第30の側面は、
負性磁気抵抗効果を生じる請求項9記載の有機遍歴磁性体化合物
にある。
The thirtieth aspect of the present invention is
10. The organic itinerant magnetic compound according to claim 9, which produces a negative magnetoresistance effect.
本発明の第31の側面は、
印加磁場に応じた略線形の負性磁気抵抗効果を生じる請求項9記載の有機遍歴磁性体化合物
にある。
The thirty-first aspect of the present invention provides
10. The organic itinerant magnetic compound according to claim 9, which produces a substantially linear negative magnetoresistance effect according to an applied magnetic field.
本発明の第32の側面は、
低温になればなるほど磁気抵抗効果が大きくなる請求項31記載の有機遍歴磁性体化合物
にある。
The thirty-second aspect of the present invention provides
32. The organic itinerant magnetic compound according to claim 31, wherein the magnetoresistive effect increases as the temperature decreases.
本発明の第33の側面は、
有機室温遍歴磁性体化合物であって、250K以上300K以下の温度範囲において低温になればなるほど磁気抵抗効果が大きくなる請求項31記載の有機遍歴磁性体化合物
にある。
The thirty-third aspect of the present invention provides
32. The organic itinerant magnetic compound according to claim 31, wherein the magnetoresistive effect increases as the temperature becomes lower in a temperature range of 250K to 300K.
ここで、プロトン酸官能基には、例えば、-COOH、-SO3H、-PO3H、-PSO2Hがある。第一級アミンは例えば-NHnD3-n(n=2~0)(ここでDは重水素)で表される。また、無機酸には、例えばHBF4, HClO4, HCl, HBr, HI, DBF4, DClO4, DCl, DBr, DIがある。無機塩基には、例えばNHnD3-n (n=3~0), NHnD2-nOH (n=2~0), NHnD2-nOD (n=2~0)がある。 Here, examples of the protonic acid functional group include —COOH, —SO 3 H, —PO 3 H, and —PSO 2 H. The primary amine is represented by, for example, —NH n D 3-n (n = 2 to 0) (where D is deuterium). Examples of the inorganic acid include HBF 4 , HClO 4 , HCl, HBr, HI, DBF 4 , DClO 4 , DCl, DBr, and DI. Examples of inorganic bases include NH n D 3-n (n = 3-0), NH n D 2-n OH (n = 2-0), NH n D 2-n OD (n = 2-0). is there.
なお、半導体とは、電気を通す導体や電気を通さない絶縁体に対して、それらの中間的な性質を示す物質を指す。例えば、室温付近で、電気伝導度がほぼ102~10-6Scm-1(SはΩ-1)の範囲のものである。 Note that a semiconductor refers to a substance that exhibits an intermediate property between a conductor that conducts electricity and an insulator that does not conduct electricity. For example, the electrical conductivity is in the range of approximately 10 2 to 10 −6 Scm −1 (S is Ω −1 ) near room temperature.
ドナーとは電子供与体(電子供与分子ないしは電子供与基)を指す。また、アクセプターとは電子受容体(電子受容分子ないしは電子受容基)を指す。 The donor refers to an electron donor (electron donating molecule or electron donating group). The acceptor refers to an electron acceptor (electron acceptor molecule or electron acceptor group).
室温とは300K(27℃)を指し、室温付近はその±10℃程度を意味する。 Room temperature refers to 300K (27 ° C), and near room temperature means about ± 10 ° C.
テトラチアフルバレン(TTF)類縁体部位を骨格に含むとは、1-(ジベンゾテトラチアフルバレン-2-イル)エチルアミン、テトラチアフルバレン-2-カルボン酸のように、分子の骨格中にテトラチアフルバレン構造を有するものを指す。 Containing tetrathiafulvalene (TTF) analog moiety in the skeleton means tetrathiafulvalene in the skeleton of the molecule, such as 1- (dibenzotetrathiafulvalen-2-yl) ethylamine and tetrathiafulvalene-2-carboxylic acid. It has a structure.
また、本明細書及び本特許請求の範囲の化合物には、同等の構造を有し、重水素などの元素同位体で元素が置換された化合物も含まれる。したがって、例えば、上述の(化2)には下記の(化2A)で表されるものも含まれる。
Figure JPOXMLDOC01-appb-C000011
In addition, the compounds in the present specification and claims include compounds having an equivalent structure and having an element substituted with an element isotope such as deuterium. Therefore, for example, the above (Chemical Formula 2) includes the following (Chemical Formula 2A).
Figure JPOXMLDOC01-appb-C000011
本発明によれば、多くの機能を制御可能な材料となり得る化合物などが得られる。本発明のさらに他の目的、特徴又は利点は、後述する本発明の実施の形態や添付する図面に基づく詳細な説明によって明らかになるであろう。 According to the present invention, a compound that can be a material capable of controlling many functions can be obtained. Other objects, features, or advantages of the present invention will become apparent from the detailed description based on the embodiments of the present invention described later and the accompanying drawings.
テトラチアフルバレン-2-カルボン酸アンモニウム塩の光電子分光法(X-rayphotoelectron spectroscopy (XPS) )によって測定されたN(1s)の結合エネルギーを示す図である。It is a figure which shows the binding energy of N (1s) measured by the photoelectron spectroscopy (X-rayphotoelectron | spectroscopy * (XPS) *) of tetrathiafulvalene-2-carboxylic acid ammonium salt. テトラチアフルバレン-2-カルボン酸アンモニウム塩のバンド構造 a)バンド分散 b) Fermi準位付近の状態密度Band structure of tetrathiafulvalene-2-carboxylic acid ammonium salt a) Band dispersion b) 状態 Density of states near Fermi level テトラチアフルバレン-2-カルボン酸アンモニウム塩の磁化曲線の温度依存性を示す図である。It is a figure which shows the temperature dependence of the magnetization curve of tetrathiafulvalene-2-carboxylic acid ammonium salt. テトラチアフルバレン-2-カルボン酸アンモニウム塩のXPSによる表面分析を示す図である。It is a figure which shows the surface analysis by XPS of tetrathiafulvalene-2-carboxylic acid ammonium salt. テトラチアフルバレン-2-カルボン酸アンモニウム塩ペレットサンプルの光学吸収スペクトルを示す図である。It is a figure which shows the optical absorption spectrum of the tetrathiafulvalene-2-carboxylic-acid ammonium salt pellet sample. 重水素化テトラチアフルバレン-2-カルボン酸アンモニウム塩の磁化曲線を示す図である。It is a figure which shows the magnetization curve of deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt. テトラチアフルバレン-2-カルボン酸アンモニウム塩及び重水素化テトラチアフルバレン-2-カルボン酸アンモニウム塩のプロトン起電力を示す図である。It is a figure which shows the proton electromotive force of tetrathiafulvalene-2-carboxylic acid ammonium salt and deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt. 水素濃淡電池法を示す図である。It is a figure which shows the hydrogen concentration battery method. テトラチアフルバレン-2-カルボン酸ヒドロキシアンモニウム塩の磁化曲線を示す図である。It is a figure which shows the magnetization curve of tetrathiafulvalene-2-carboxylic acid hydroxyammonium salt. ジベンゾテトラチアフルバレンエタンアンモニウム臭化塩の磁化曲線を示す図である。It is a figure which shows the magnetization curve of dibenzotetrathiafulvalene ethane ammonium bromide. ジベンゾテトラチアフルバレンエタンアンモニウム四フッ化ホウ素塩の磁化曲線を示す図である。It is a figure which shows the magnetization curve of dibenzotetrathiafulvalene ethane ammonium tetrafluoride salt. ラジカルスピン濃度が異なる3種の化合物の300K, 0磁場における残留磁化をプロットした図である。インセット図は、0.1%以上のスピン濃度で十分に有効的な磁気モーメントを発現することを示す。It is the figure which plotted the remanent magnetization in 300K and 0 magnetic field of three kinds of compounds with different radical spin concentrations. The inset diagram shows that a sufficiently effective magnetic moment is developed at a spin concentration of 0.1% or more. アンモニウム塩結晶化の際に使用する溶媒と得られたキャリアドープ結晶のスピン濃度との相関関係を示す図である。It is a figure which shows the correlation with the spin concentration of the solvent used in the case of crystallization of ammonium salt, and the obtained carrier dope crystal | crystallization. 300Kにおける結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure in 300K. 電気伝導度の温度依存性を示す図である。It is a figure which shows the temperature dependence of electrical conductivity. 熱起電力を示す図である。It is a figure which shows a thermoelectromotive force. 示差走査熱量測定(Differential Scanning Calorimeter(DSC))の熱量測定結果を示す図である。It is a figure which shows the calorimetric measurement result of differential scanning calorimetry (Differential Scanning Calorimeter (DSC)). 熱重量分析計(Thermogravimetric analyzer(TGA))による熱重量測定結果を示す図である。It is a figure which shows the thermogravimetric measurement result by a thermogravimetric analyzer (Thermogravimetric analyzer (TGA)). 誘電率を示す図ある。It is a figure which shows a dielectric constant. 温度を変化させながら光伝導性を測定した際の測定データを示す図である。It is a figure which shows the measurement data at the time of measuring photoconductivity, changing temperature. 温度を変化させながら光伝導性を測定した際の測定データを示す図である。It is a figure which shows the measurement data at the time of measuring photoconductivity, changing temperature. 温度を変化させながら光伝導性を測定した際の測定データを示す図である。It is a figure which shows the measurement data at the time of measuring photoconductivity, changing temperature. 熱起電力を示す図である。It is a figure which shows a thermoelectromotive force. 電気伝導度の温度依存性を示す図である。It is a figure which shows the temperature dependence of electrical conductivity. 電気伝導度の温度依存性を示す図である。It is a figure which shows the temperature dependence of electrical conductivity. 拡散反射スペクトルを示す図である。It is a figure which shows a diffuse reflection spectrum. 熱起電力の温度依存性を示す図である。It is a figure which shows the temperature dependence of a thermoelectromotive force. 各化合物の拡散反射スペクトルを示す図である。It is a figure which shows the diffuse reflection spectrum of each compound. テトラチアフルバレン-2-カルボン酸・アンモニウム塩の粉末X線結晶構造解析である。This is a powder X-ray crystal structure analysis of tetrathiafulvalene-2-carboxylic acid / ammonium salt. 重水素化テトラチアフルバレン-2-カルボン酸・アンモニウム塩の粉末X線結晶構造解析である。This is a powder X-ray crystal structure analysis of deuterated tetrathiafulvalene-2-carboxylic acid / ammonium salt. 分子間結合と分子間相互作用に着目した立体構造を示す模式図である。It is a schematic diagram which shows the three-dimensional structure which paid its attention to the intermolecular bond and the intermolecular interaction. 分子間結合と分子間相互作用に着目した立体構造を示す模式図である。It is a schematic diagram which shows the three-dimensional structure which paid its attention to the intermolecular bond and the intermolecular interaction. TTFCOO・NH4塩の4量体中に1分子のラジカル種TTF・+COO・NH4が埋没されたモデルを用いた非制限Hartree-Fock法(UHF)/6-31G*による電子状態を示す図である。TTFCOO · NH 4 salt shows the electronic state by the unrestricted Hartree-Fock method (UHF) / 6-31G * using a model in which one molecule of the radical species TTF · + COO · NH 4 is buried in the tetramer FIG. 4分子ユニット中に1つラジカル種を含むクラスターモデルに対して、水素結合方向(1次元)の周期性を考慮して行った周期的量子化学計算の結果を示す図である。It is a figure which shows the result of the periodic quantum chemical calculation performed in consideration of the periodicity of a hydrogen bond direction (one-dimensional) with respect to the cluster model which contains one radical seed | species in 4 molecular units. TTFCOO-NH4 +塩の電気電導度の外部磁界依存性例(温度300K)を示す図である。TTFCOO - is a diagram showing the external magnetic field dependency example (temperature 300K) of the electrical conductivity of the NH 4 + salt. TTFCOO-NH3 +OH塩単結晶サンプルの磁気抵抗測定例(温度300K)を示す図である。TTFCOO - is a diagram showing a magnetoresistance measurement example (temperature 300K) of NH 3 + OH salts single crystal samples. TTFCOO-NH3 +OH塩単結晶サンプルの磁気抵抗効果の温度依存性を示す図である。TTFCOO - is a diagram showing temperature dependence of the magnetoresistive effect of the NH 3 + OH salts single crystal samples. TTFCOO-NH3 +Ph 塩の磁気抵抗測定例(温度300K)を示す図である。TTFCOO - is a diagram showing a magnetoresistance measurement example (temperature 300K) of NH 3 + Ph salt. TTFCOO-NH3 +Ph 塩の磁気抵抗効果の温度依存性を示す図である。TTFCOO - is a diagram showing temperature dependence of the magnetoresistive effect of the NH 3 + Ph salt. DBTTF(CH)(CH3)NH3 +・Br- 塩の磁気抵抗効果測定例 (温度 300K) を示す図である。 DBTTF (CH) (CH 3) NH 3 + · Br - is a diagram showing a magnetoresistive measurement example (temperature 300K) salts.
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [概要] [Overview]
純粋な有機固体の磁気相互作用は一般に極めて弱く、いかなる強磁性的特性も7K以下程度の極低温でのみしか発現しない。ところが、本発明者らが開発したキャリアドープ有機物は、極低温から室温を超える幅広い温度範囲で強磁性的振る舞いをする遍歴電子を一部生じる。本実施形態に記載の技術は、物質中における強磁性遍歴電子の割合を合成的に増やすことができれば、世界初となる室温での有機磁石実現の可能性を強く示唆するものである。また、有機物ではほとんど例のない室温遍歴磁性体であることから、室温スピントロニクスへの応用も期待される。更に、プロトン伝導能を有することから、室温有機燃料電池や天然ガスからの水素精製材料への応用も可能である。 The magnetic interaction of pure organic solids is generally very weak, and any ferromagnetic properties appear only at very low temperatures of about 7K or less. However, the carrier-doped organic matter developed by the present inventors produces some itinerant electrons that behave ferromagnetically in a wide temperature range from extremely low temperature to room temperature. The technique described in the present embodiment strongly suggests the possibility of realizing an organic magnet at room temperature that is the first in the world if the proportion of ferromagnetic itinerant electrons in a material can be increased synthetically. It is also expected to be applied to room temperature spintronics because it is a room-temperature itinerant magnet that is rarely seen in organic materials. Furthermore, since it has proton conductivity, it can be applied to hydrogen purification materials from room temperature organic fuel cells and natural gas.
ここでは、その具体例として2つの例を簡潔に示す。 Here, two examples are briefly shown as specific examples.
1)テトラチアフルバレン(TTF)から2工程にてテトラチアフルバレン-2-カルボン酸を全収率65%で得た後に、28%アンモニア水溶液で塩を調製し、元素分析レベルで純粋な1:1のテトラチアフルバレニルカルボン酸・アンモニウム塩を得た。 1) After tetrathiafulvalene-2-carboxylic acid was obtained from tetrathiafulvalene (TTF) in two steps in a total yield of 65%, a salt was prepared with a 28% aqueous ammonia solution, and pure 1: 1 tetrathiafulvalenylcarboxylic acid / ammonium salt was obtained.
なお、得られた粉末状固体をペレット化した際の電気伝導性は、室温で1.0x10-3 S/cm程度であった。 The electrical conductivity when the obtained powdered solid was pelletized was about 1.0 × 10 −3 S / cm at room temperature.
2)エチルメチルケトンを出発原料とし、15工程にてジベンゾテトラチアフルバレニルエチルアミンを全収率1%で得た後に、42%四フッ化ホウ素酸水溶液または47-49%臭素酸水溶液で塩を調製し、いずれも元素分析レベルで純粋な1:1のジベンゾテトラチアフルバレニルエチルアミン・四フッ化ホウ素酸塩およびジベンゾテトラチアフルバレニルエチルアミン・臭素酸塩を得た。 2) Using ethyl methyl ketone as a starting material, dibenzotetrathiafulvalenylethylamine was obtained in 15 steps in a total yield of 1%, and then salted with 42% aqueous tetrafluoroboric acid solution or 47-49% aqueous bromic acid solution. Prepared to obtain 1: 1 dibenzotetrathiafulvalenylethylamine tetrafluoroborate and dibenzotetrathiafulvalenylethylamine bromate, both of which were pure at the elemental analysis level.
なお、得られた粉末状アモルファス固体をペレット化した際の電気伝導性は、室温で1.0x10-3~10-4S/cm程度であった。 The electrical conductivity when the obtained powdery amorphous solid was pelletized was about 1.0 × 10 −3 to 10 −4 S / cm at room temperature.
次に、テトラチアフルバレン-2-カルボン酸・アンモニウム塩の分子集合構造の概要などについて説明する。 Next, an outline of the molecular assembly structure of tetrathiafulvalene-2-carboxylic acid / ammonium salt will be described.
200K以上の高温領域では、アンモニウム部位回転および振動運動に由来するメカニズムにより高い熱起電力が発生する点で、特にこれまでにない新規な特性が観測された。アンモニウム部位に対して水素結合能を有さないカウンターカチオンおよびアンモニウムプロトンの一部を置換基で置き換えた場合はそれほど優れた物性を発揮しないことから、アンモニウムの回転運動が物性発現の大きな鍵になることが実験的に証明されている。 In the high temperature region above 200K, a new characteristic that has never been seen before was observed in that a high thermoelectromotive force was generated by the mechanism derived from the rotation and vibration of the ammonium moiety. When counter cations that do not have hydrogen-bonding ability for the ammonium moiety and a part of the ammonium proton are replaced with substituents, the rotation properties of ammonium are the key to physical properties because they do not exhibit very good physical properties. It has been proved experimentally.
なお、電気伝導に関しては、重水素化サンプルの誘電分散の周波数依存性から、水素結合が電子伝導にあらわに関与していることが明らかとなっている。 Regarding electrical conduction, it is clear that hydrogen bonds are involved in electron conduction from the frequency dependence of dielectric dispersion of deuterated samples.
アンモニウムは物性発現の鍵になるだけでなく、TTF(ドナー)分子をキャリア輸送現象に適した分子配列に有効に自己集積させる役割を担っている。 Ammonium is not only the key to physical properties, but also plays a role in effectively self-assembling TTF (donor) molecules into a molecular arrangement suitable for the carrier transport phenomenon.
まず、一例として300Kにおける結晶構造について説明する。 First, the crystal structure at 300K will be described as an example.
図12は、300Kにおける結晶構造を示す模式図である。図に示すとおり、アンモニウムを中心としてカラム状の水素結合ネットワークが形成されており、それらが入れ子状にスタックすることにより有効なπ-π相互作用とS・・・S接触を発生している。キャリアは2次元的な配列中を動き回ることができる。 FIG. 12 is a schematic diagram showing a crystal structure at 300K. As shown in the figure, a columnar hydrogen bond network is formed with ammonium as the center, and the π-π interaction and S ... S contact are generated by stacking them in a nested manner. The carrier can move around in a two-dimensional array.
 以下では、特定の化合物を例示しながら、それらの化合物の物性などを詳細に説明する。それらの化合物は、主として、塩橋結合内に生じるプロトン欠陥の損失電荷を補填するためにキャリアドープされる有機物である。 Hereinafter, the physical properties of these compounds will be described in detail while exemplifying specific compounds. These compounds are primarily organic materials that are carrier-doped to compensate for the loss of proton defects that occur in salt bridge bonds.
 [遍歴強磁性体] [Itinerant ferromagnet]
 図1は、テトラチアフルバレン-2-カルボン酸アンモニウム塩のN(1s)の結合エネルギーを示す図である。最も代表的な物質であるテトラチアフルバレン-2-カルボン酸アンモニウムに含まれるプロトン欠陥量は、光電子分光法(XPS)による窒素1s軌道のNH3種の混入割合より15%と見積もられる。これは、電子スピン共鳴法から見積もられるテトラチアフルバレンラジカル分子の含有量16%とほぼ一致している。このプロトン欠陥の存在が結晶中の電子にスピン分極を生じさせる。 FIG. 1 is a diagram showing the bond energy of N (1s) of tetrathiafulvalene-2-carboxylic acid ammonium salt. The amount of proton defects contained in ammonium tetrathiafulvalene-2-carboxylate, which is the most representative substance, is estimated to be 15% from the mixing ratio of NH 3 species in the nitrogen 1s orbital by photoelectron spectroscopy (XPS). This almost coincides with the tetrathiafulvalene radical molecule content of 16% estimated from the electron spin resonance method. The presence of this proton defect causes spin polarization in the electrons in the crystal.
 図2は、テトラチアフルバレン-2-カルボン酸アンモニウム塩のバンド構造 a)バンド分散 b) Fermi準位付近の状態密度 c) スピン分極軌道を示す図である。図2aは、テトラチアフルバレン-2-カルボン酸アンモニウム塩のユニットセルを基本とする結晶構造を第一原理計算によって構造最適化したものの基底状態のバンド分散を示す。K空間は4x4x4のサイズを考慮した。ここでは16%のドープ効果をバックグラウンドチャージとして加えている。これはa軸およびb軸に大きな分散を有する四角格子であり、その形はup, downスピン間で異なる。図2bは、Fermiレベルにおけるupスピン、downスピンの状態密度が異なることを示す。これらは電子伝導に寄与する遍歴電子にスピン分極が生じることを示す。その磁化の大きさは0.66μBである。この計算は、この物質中にプロトン欠陥が一様に配置された場合には、室温下で遍歴強磁性体となることを明確に示す。しかしながら、水素結合性のプロトンが可動であり、このプロトン移動の際に生じる準安定状態のスピン分極の度合いは小さいことが同様の計算から明らかとなっており、これが実際の磁気相互作用を減少させる要因となっている。 FIG. 2 shows the band structure of tetrathiafulvalene-2-carboxylic acid ammonium salt a) band dispersion b) density of states near the Fermi level c) spin polarization orbit. FIG. 2a shows the band dispersion of the ground state of the crystal structure based on the unit cell of tetrathiafulvalene-2-carboxylic acid ammonium salt optimized by the first principle calculation. K space is considered 4x4x4 size. Here, a 16% doping effect is added as a background charge. This is a square lattice with large dispersion in the a-axis and b-axis, and its shape differs between up and down spins. FIG. 2b shows that the up-spin and down-spin state densities at the Fermi level are different. These indicate that spin polarization occurs in itinerant electrons that contribute to electron conduction. The magnitude of the magnetization is 0.66μ B. This calculation clearly shows that when proton defects are uniformly arranged in this material, it becomes an itinerant ferromagnet at room temperature. However, similar calculations have shown that hydrogen-bonded protons are mobile and the degree of metastable spin polarization that occurs during proton transfer is small, which reduces the actual magnetic interaction. It is a factor.
 図3は、テトラチアフルバレン-2-カルボン酸アンモニウム塩結晶を加圧成型したサンプルの磁化曲線を示す。反磁性補正は行っていない。5Kから400Kの広い温度範囲で残留磁化が確認され、強磁性相互作用の存在を示している。磁化曲線の形状から保持力の小さい軟磁石の傾向を示す。 FIG. 3 shows the magnetization curve of a sample obtained by pressure-molding tetrathiafulvalene-2-carboxylic acid ammonium salt crystal. Diamagnetic correction is not performed. Residual magnetization has been confirmed over a wide temperature range from 5K to 400K, indicating the presence of ferromagnetic interactions. The tendency of soft magnets with small coercive force is shown from the shape of the magnetization curve.
 図4は、XPSによる表面分析の結果を示す。XPSはサンプル表面に付着した金属不純物の存在が極微量でもあれば、それを検出する。しかしながら複数回の測定で広い範囲にわたり有機物以外の元素は検出されないことから、上述の磁気特性はテトラチアフルバレン-2-カルボン酸アンモニウム塩の遍歴電子由来のものであると言える。飽和磁化の磁気モーメントの大きさは10-4μBと理論値よりも大幅に小さいが、これは、プロトン欠陥の混入が磁気的相互作用を発現するのに有利な一様な状態ではないことが最大の原因と考えられる。また、粉末微結晶を9MPa/cm2, 2分間加圧したペレット状とすることで、結晶内部のプロトン欠陥混入状態の一様性が増し、磁化率が増大する傾向が見られる。 FIG. 4 shows the results of surface analysis by XPS. XPS detects the presence of very small amounts of metal impurities attached to the sample surface. However, since elements other than organic substances are not detected over a wide range by multiple measurements, it can be said that the above-mentioned magnetic properties are derived from itinerant electrons of tetrathiafulvalene-2-carboxylic acid ammonium salt. The size of the magnetic moment of saturation magnetization is significantly smaller than 10 -4 mu B and theoretical values, which is that incorporation of proton defect is not a favorable uniform conditions for expressing the magnetic interaction Is considered to be the biggest cause. In addition, by making the powder microcrystals into a pellet shape pressurized at 9 MPa / cm 2 for 2 minutes, the uniformity of the proton defect mixing state inside the crystal increases and the magnetic susceptibility tends to increase.
 図5は、テトラチアフルバレン-2-カルボン酸アンモニウム塩ペレットサンプルの光学吸収スペクトルを示す図である。電子状態の変化は図に示す粉末微結晶とペレット状態の光学吸収スペクトルの違いからも明らかである。 FIG. 5 is a diagram showing an optical absorption spectrum of a tetrathiafulvalene-2-carboxylic acid ammonium salt pellet sample. The change in the electronic state is also apparent from the difference in the optical absorption spectrum between the powder crystallite and the pellet state shown in the figure.
 図6は、重水素化テトラチアフルバレン-2-カルボン酸アンモニウム塩の磁化曲線を示す図である。 FIG. 6 is a diagram showing a magnetization curve of deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt.
 図7は、テトラチアフルバレン-2-カルボン酸アンモニウム塩及び重水素化テトラチアフルバレン-2-カルボン酸アンモニウム塩のプロトン起電力を示す図である。更に、テトラチアフルバレン-2-カルボン酸アンモニウム塩及び重水素化テトラチアフルバレン-2-カルボン酸アンモニウム塩は水素濃淡電池法によりネルンストの理論式のそれぞれ約半分、1/4のプロトン起電力を発生することから、いずれもプロトン伝導能を有する(図7A)。 FIG. 7 is a graph showing proton electromotive forces of tetrathiafulvalene-2-carboxylic acid ammonium salt and deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt. Furthermore, tetrathiafulvalene-2-carboxylic acid ammonium salt and deuterated tetrathiafulvalene-2-carboxylic acid ammonium salt generate proton electromotive force of about half and 1/4 of Nernst's theoretical formula, respectively, by the hydrogen concentration cell method. Therefore, both have proton conductivity (FIG. 7A).
 表は、この際の測定条件を示す。
Figure JPOXMLDOC01-appb-T000012
The table shows the measurement conditions at this time.
Figure JPOXMLDOC01-appb-T000012
 図7Bは、水素濃淡電池法を示す図である。 FIG. 7B is a diagram showing the hydrogen concentration cell method.
 これは燃料電池や天然ガスからの水素精製等に応用可能な特性である。 This is a characteristic that can be applied to hydrogen purification from fuel cells and natural gas.
 図8は、テトラチアフルバレン-2-カルボン酸ヒドロキシアンモニウム塩の磁化曲線を示す図である。図9は、ジベンゾテトラチアフルバレンエタンアンモニウム臭化塩の磁化曲線を示す図である。これらの図はそれぞれ、種類の異なるキャリアドープ有機物の磁化曲線を示す。プロトン欠陥量や結晶配列の違いから磁気モーメントの大きさに差を生じるが、基本的にいずれも室温遍歴磁性体であり、テトラチアフルバレン-2-カルボン酸アンモニウム塩の磁気特性発現機構と同様の機構で磁気相互作用を発現するものと考えられる。 FIG. 8 is a diagram showing a magnetization curve of tetrathiafulvalene-2-carboxylic acid hydroxyammonium salt. FIG. 9 is a diagram showing a magnetization curve of dibenzotetrathiafulvaleneethane ammonium bromide. Each of these figures shows the magnetization curves of different types of carrier-doped organic materials. Differences in the magnitude of the magnetic moment due to differences in the amount of proton defects and the crystal arrangement, but all are basically room temperature itinerant magnets, similar to the mechanism of magnetic properties of tetrathiafulvalene-2-carboxylic acid ammonium salt It is thought that magnetic interaction is expressed by the mechanism.
 図10Aは、ジベンゾテトラチアフルバレンエタンアンモニウム四フッ化ホウ素塩の磁化曲線を示す図である。 FIG. 10A is a diagram showing a magnetization curve of dibenzotetrathiafulvaleneethaneammonium tetrafluoride salt.
 特に、有機遍歴磁性体化合物としては下記のものが好ましい。 In particular, the following organic organic magnetic compound is preferable.
 1、テトラチアフルバレン骨格、テトラセレナフルバレン骨格を有する塩橋物質で、塩橋形成の際に全体の0.1%以上のラジカル種が安定に発生するもの。ラジカルスピンの電子状態が擬似閉殻配置を有するもの。 1. A salt bridge substance having a tetrathiafulvalene skeleton and a tetraselenafulvalene skeleton, in which 0.1% or more of the radical species are stably generated when the salt bridge is formed. The radical spin electronic state has a quasi-closed shell configuration.
 その根拠は、0.1%以上の濃度でラジカルスピンが発生し、その電子状態が擬似閉殻配置を有する場合には、ラジカルスピン上の電子が遍歴電子として動き回り、10-5S/cm程度以上の電子伝導性を示すようになることが実験によって確認されているためである。 The basis for this is that when a radical spin occurs at a concentration of 0.1% or higher and the electronic state has a pseudo-closed-shell configuration, electrons on the radical spin move as itinerant electrons, and electrons of about 10 -5 S / cm or higher. This is because it has been confirmed by experiments that conductivity is exhibited.
 図10Bは、ラジカルスピン濃度が異なる3種の化合物の300K, 0磁場における残留磁化をプロットした図である。化合物はそれぞれ、A (テトラチアフルバレンカルボン酸:0%), B(テトラチアフルバレンカルボン酸アニリン塩単結晶:2%), C(テトラチアフルバレンカルボン酸ヒドロキシアミン塩単結晶:10%)である。この図から、有効的な磁気特性を得るためには少なくとも0.1%以上のラジカルスピンを発生していることが好ましいことが分かる。 FIG. 10B is a plot of the residual magnetization in a 300K, 0 magnetic field for three compounds with different radical spin concentrations. The compounds are A (tetrathiafulvalenecarboxylic acid: 0%), B (tetrathiafulvalenecarboxylic acid aniline salt single crystal: 2%), and C (tetrathiafulvalenecarboxylic acid hydroxyamine salt single crystal: 10%), respectively. . From this figure, it can be seen that it is preferable to generate at least 0.1% or more radical spins in order to obtain effective magnetic properties.
 有機ラジカル種は、ラジカルスピンの電子状態がHOMO準位にあるために反応性に富み、空気中の酸素等の外的要因により分解する傾向が強い。そこで、有機ラジカル種を化学的に安定な電子状態にするために、一般にシアノ基やニトロ基などの電子吸引性基を分子中に導入して安定化する工夫がなされる。そのように、電子状態に工夫を施して空気中において長期保存しても、合成当初の分子の組成や電子状態を保ち、容易に分解しないラジカルスピンを発生した状態を「ラジカル種が安定に発生」とここで表現している。 Organic radical species are highly reactive because the electronic state of radical spin is at the HOMO level, and they tend to decompose due to external factors such as oxygen in the air. Therefore, in order to make the organic radical species into a chemically stable electronic state, ingenuity is generally made to introduce an electron-withdrawing group such as a cyano group or a nitro group into the molecule for stabilization. In this way, even if the electronic state is devised and stored in the air for a long time, the composition and electronic state of the molecule at the beginning of the synthesis are maintained, and a state in which radical spin that does not easily decompose occurs is generated. Is expressed here.
 遷移金属元素のd軌道や希土類金属元素のf軌道は、最外殻のs軌道またはp軌道より内殻に位置し、高い局在性を有する原子軌道であり、より低い軌道エネルギーを有する。このd軌道やf軌道の電子状態を擬似閉殻配置というが、これらの軌道の高い局在性から、そこに占有されたd電子やf電子は化学結合に関与しない傾向にあるため、奇電子を安定化する。擬似閉殻配置をとり、化学結合に参加せず、強く安定化された奇電子の性質が磁性の原因になることが多い。擬似閉殻配置についてはあらためて後述する。 The d orbitals of transition metal elements and the f orbitals of rare earth metal elements are atomic orbitals with higher localization located in the inner shell than the s or p orbit of the outermost shell, and have lower orbital energy. The electronic state of this d orbital or f orbital is called a quasi-closed shell configuration, but because of the high localization of these orbitals, the d and f electrons occupied there tend not to participate in chemical bonds, so Stabilize. The pseudo-shell configuration, not participating in chemical bonds, and strongly stabilized odd-electron properties often cause magnetism. The pseudo closed shell arrangement will be described later.
 0.1%以上の濃度でラジカルスピンが発生する場合には、ラジカルスピン上の電子が遍歴電子として動き回り電子伝導性を示す。しかしながら、多結晶サンプルにおける粒界抵抗による非本質的な電子伝導性の低下という理由により 1 %以上がより好ましい。また、多結晶サンプルにおいても十分に大きな磁気特性を発揮しうるという理由により5 %以上であることがさらに好ましい。 When radical spin occurs at a concentration of 0.1% or more, electrons on the radical spin move as itinerant electrons and exhibit electron conductivity. However, 1% or more is more preferable because of a decrease in non-essential electronic conductivity due to grain boundary resistance in the polycrystalline sample. Further, it is more preferably 5% or more for the reason that a sufficiently large magnetic property can be exhibited even in a polycrystalline sample.
 2、電子ドナーもしくは電子アクセプター分子中にプロトン化されうる多重結合を有する塩橋物質で、塩橋形成の際に全体の0.1%以上のラジカル種が安定に発生するもの。さらに好ましくは、ラジカルスピンの電子状態が擬似閉殻配置を有するもの。 2. A salt bridge substance having multiple bonds that can be protonated in an electron donor or electron acceptor molecule, and stable generation of radical species of 0.1% or more of the whole when forming a salt bridge. More preferably, the electronic state of the radical spin has a quasi-closed shell configuration.
 その根拠は、0.1%以上の濃度でラジカルスピンが発生し、その電子状態が擬似閉殻配置を有する場合には、ラジカルスピン上の電子が遍歴電子として動き回り、10-5S/cm程度以上の電子伝導性を示すようになることが実験によって確認されているためである。 The basis for this is that when a radical spin occurs at a concentration of 0.1% or higher and the electronic state has a pseudo-closed-shell configuration, electrons on the radical spin move as itinerant electrons, and electrons of about 10 -5 S / cm or higher. This is because it has been confirmed by experiments that conductivity is exhibited.
 3、塩橋結合を含み、分子量20000以下の低分子量有機化合物にブレンステッド酸または塩基を添加することにより全体の0.1%以上のラジカル種が安定に発生する物質。さらに好ましくは、ラジカルスピンの電子状態が擬似閉殻配置を有するもの。 3. A substance that contains a salt bridge bond and stably generates more than 0.1% of radical species by adding a Bronsted acid or base to a low molecular weight organic compound having a molecular weight of 20000 or less. More preferably, the electronic state of the radical spin has a quasi-closed shell configuration.
 その根拠は、0.1%以上の濃度でラジカルスピンが発生する場合には、ラジカルスピン上の電子が遍歴電子として動き回り電子伝導性を示すようになることが実験によって確認されているためである。 The reason for this is that, when radical spin is generated at a concentration of 0.1% or more, it is confirmed by experiments that electrons on the radical spin move as itinerant electrons and show electron conductivity.
 高分子であっても一部塩橋による自己集積部位を有することが好ましく、これを満たすためには分子量20000以下が望ましい。磁気特性を十分に発揮するためには、プロトン欠陥が物質中に均一に導入され、均一なドープ状態が得られることが望ましく、極端に大きい分子量では難易度が上昇することが推測されるため、分子量は10000以下であることがさらに好ましい。 Even if it is a polymer, it preferably has a part of self-assembly by salt bridges, and a molecular weight of 20000 or less is desirable to satisfy this. In order to fully exhibit magnetic properties, it is desirable that proton defects are uniformly introduced into the material and a uniform dope state is obtained, and it is assumed that the difficulty increases at an extremely large molecular weight. More preferably, the molecular weight is 10,000 or less.
 [他の物性など] [Other physical properties]
半導体の性質と磁性体の性質とを融合することができれば、強磁性半導体として利用できる。この融合は、スピントロニクス素子の実現可能性を示すものであり、重要である。ここでは、半導体としての性質に関することを主に述べる。まず、下記の化合物の物性について説明する。
Figure JPOXMLDOC01-appb-C000013
If the properties of the semiconductor and the magnetic material can be fused, it can be used as a ferromagnetic semiconductor. This fusion shows the feasibility of spintronic devices and is important. Here, what is related to the properties as a semiconductor is mainly described. First, the physical properties of the following compounds will be described.
Figure JPOXMLDOC01-appb-C000013
図13は、電気伝導度の温度依存性を示す図である。測定の際には4端子法を採用した。 FIG. 13 is a diagram showing temperature dependence of electrical conductivity. The 4-terminal method was used for measurement.
図14は、熱起電力を示す図である。図に示すように、温度を低温から高温、または高温から低温に変化させても相転移による変化が観測されず、抵抗率の温度依存性が熱活性型の半導体であることがわかる。また、熱起電力の温度依存性はほとんどなく、広い温度範囲でこの化合物は優れた物性を持つことがわかる。特に、熱電効果を利用した熱発電などへの応用が期待できることをこのデータは示している。 FIG. 14 is a diagram showing the thermoelectromotive force. As shown in the figure, even when the temperature is changed from low temperature to high temperature or from high temperature to low temperature, no change due to phase transition is observed, indicating that the temperature dependence of resistivity is a thermally activated semiconductor. Further, the thermoelectromotive force has almost no temperature dependence, and it can be seen that this compound has excellent physical properties in a wide temperature range. In particular, this data shows that application to thermoelectric power generation using the thermoelectric effect can be expected.
図15は、示差走査熱量測定(Differential Scanning Calorimeter(DSC))の熱量測定結果を示す図である。図5は、熱重量分析計(Thermogravimetric analyzer(TGA))による熱重量測定結果を示す図である。140℃以下まではいずれの測定値もほぼ安定しているが、およそ140℃を超えると測定値が大きく変化した。これは140℃を超えるとNH3が失われることを示唆していると考えられる。 FIG. 15 is a diagram showing a calorimetric measurement result of differential scanning calorimeter (DSC). FIG. 5 is a diagram showing a thermogravimetric measurement result by a thermogravimetric analyzer (TGA). All measured values were almost stable up to 140 ° C or lower, but the measured values changed greatly after exceeding 140 ° C. This seems to suggest that NH 3 is lost when the temperature exceeds 140 ° C.
図16は、誘電率を示す図ある。図に示すとおり、分極、誘電応答が観測された。この結果は、強誘電性により、強誘電体メモリ、ひいては圧電効果を利用するアクチュエータなどとしての応用の可能性を示唆するものである。 FIG. 16 is a diagram showing a dielectric constant. As shown in the figure, polarization and dielectric response were observed. This result suggests the possibility of application as a ferroelectric memory and, consequently, an actuator utilizing the piezoelectric effect due to the ferroelectricity.
図17、図18及び図19は、温度を変化させながら光伝導性を測定した際の測定データを示す図である。図18、図19及び図20は、それぞれ、0℃、20℃、30℃で測定を行った際のデータを示している。ペレット化したサンプル(幅0.08 cm、厚み0.03 cm)を使用し、銀ペーストにて端子付けを行う2端子法を採用した。また、可視光領域を全て含む波長領域の光照射を行った。 17, FIG. 18 and FIG. 19 are diagrams showing measurement data when the photoconductivity is measured while changing the temperature. 18, 19 and 20 show data obtained when measurement was performed at 0 ° C., 20 ° C., and 30 ° C., respectively. A pelleted sample (width 0.08 cm, thickness 0.03 cm) was used, and a two-terminal method was used in which terminals were attached with silver paste. Further, light irradiation in a wavelength region including the entire visible light region was performed.
次に、下記の化合物の物性について説明する。
Figure JPOXMLDOC01-appb-C000014
Next, the physical properties of the following compounds will be described.
Figure JPOXMLDOC01-appb-C000014
図21は、熱起電力を示す図である。上述の化合物と同様に、温度を低温から高温、または高温から低温に変化させても相転移による変化が観測されず、抵抗率の温度依存性が熱活性型の半導体であることがわかる。また、熱起電力の温度依存性はほとんどなく、広い温度範囲でこの化合物も優れた物性を持つことがわかる。この化合物もまた、熱電効果を利用した熱発電などへの応用が期待できることをこのデータは示している。 FIG. 21 is a diagram showing a thermoelectromotive force. Similar to the above-described compound, even when the temperature is changed from low temperature to high temperature or from high temperature to low temperature, no change due to phase transition is observed, indicating that the temperature dependence of resistivity is a thermally active semiconductor. Further, it is understood that there is almost no temperature dependence of the thermoelectromotive force, and this compound has excellent physical properties in a wide temperature range. This data also shows that this compound can be expected to be applied to thermoelectric power generation utilizing the thermoelectric effect.
次に、下記の化合物の物性について説明する。
Figure JPOXMLDOC01-appb-C000015
Next, the physical properties of the following compounds will be described.
Figure JPOXMLDOC01-appb-C000015
図22は、電気伝導度の温度依存性を示す図である。一方、図23は化6の化合物の電気伝導度の温度依存性を示す図である。図に示すように、両者の電気伝導度の温度依存性はよく似ており、他の点においても似た物性を示すことが示唆される。
Figure JPOXMLDOC01-appb-C000016
FIG. 22 is a diagram showing temperature dependence of electrical conductivity. On the other hand, FIG. 23 is a graph showing the temperature dependence of the electrical conductivity of the compound of formula 6. As shown in the figure, the temperature dependence of the electrical conductivities of the two is very similar, suggesting that they exhibit similar physical properties in other respects.
Figure JPOXMLDOC01-appb-C000016
図24は、電気伝導度の温度依存性を示す図である。一方、図23は化6の化合物の電気伝導度の温度依存性を示す図である。図に示すように、両者の電気伝導度の温度依存性はよく似ており、他の点においても似た物性を示すことが示唆される。 FIG. 24 is a diagram showing the temperature dependence of electrical conductivity. On the other hand, FIG. 23 is a graph showing the temperature dependence of the electrical conductivity of the compound of formula 6. As shown in the figure, the temperature dependence of the electrical conductivities of the two is very similar, suggesting that they exhibit similar physical properties in other respects.
図25は、熱起電力の温度依存性を示す図である。図14、図21と同様に高い熱起電力を示すとともに、温度依存性は少ないことから、この化合物も優れた物性を持つことが分かる。この化合物もまた、熱電効果を利用した熱発電などへの応用が期待できることをこのデータは示している。 FIG. 25 is a diagram showing the temperature dependence of the thermoelectromotive force. Like FIG. 14 and FIG. 21, it shows a high thermoelectromotive force and has little temperature dependence, which indicates that this compound also has excellent physical properties. This data also shows that this compound can be expected to be applied to thermoelectric power generation utilizing the thermoelectric effect.
図26は、各化合物の拡散反射スペクトルを示す図である。図に示すとおり、各化合物は、通常の酸・塩基の塩とは異なり、900nm付近まで吸収を有することが判明した。これは、長波長の電磁波の吸収が実現していることを示しており、太陽電池などの応用にこれらの化合物が適していることを示している。 FIG. 26 is a diagram showing a diffuse reflection spectrum of each compound. As shown in the figure, each compound was found to have absorption up to about 900 nm, unlike ordinary acid / base salts. This indicates that absorption of long-wavelength electromagnetic waves has been realized, indicating that these compounds are suitable for applications such as solar cells.
なお、下記の化合物は電気伝導性から2つのグループに分類された。 The following compounds were classified into two groups based on electrical conductivity.
1)電気伝導性が~10-2S/cm程度のグループ
Figure JPOXMLDOC01-appb-C000017
1) Group with electrical conductivity ~ 10 -2 S / cm
Figure JPOXMLDOC01-appb-C000017
2)電気伝導性が~10-3S/cm程度のグループ
Figure JPOXMLDOC01-appb-C000018
2) Group with electrical conductivity ~ 10 -3 S / cm
Figure JPOXMLDOC01-appb-C000018
[分子集合構造] [Molecular assembly structure]
図27は、テトラチアフルバレン-2-カルボン酸・アンモニウム塩の粉末X線結晶構造解析である。また、図28は、重水素化テトラチアフルバレン-2-カルボン酸・アンモニウム塩の粉末X線結晶構造解析である。いずれも、シンクロトロン光を使用し、1.3000オングストロームの条件下で測定した。これらを解析することにより、テトラチアフルバレン-2-カルボン酸・アンモニウム塩は一定の規則性をその分子集合構造中に有する微結晶状態となっていることが明らかである。 FIG. 27 is a powder X-ray crystal structure analysis of tetrathiafulvalene-2-carboxylic acid / ammonium salt. FIG. 28 is a powder X-ray crystal structure analysis of deuterated tetrathiafulvalene-2-carboxylic acid / ammonium salt. All were measured using synchrotron light under conditions of 1.3000 angstroms. By analyzing these, it is clear that tetrathiafulvalene-2-carboxylic acid / ammonium salt is in a microcrystalline state having a certain regularity in its molecular assembly structure.
図29及び図30は、分子間結合と分子間相互作用に着目した立体構造を示す模式図である。図に示すように、テトラチアフルバレン-2-カルボン酸・アンモニウム塩などの化合物は、各分子が重なり合い、分子間では水素結合による多数の緩やかな結合があり、全体としてTTF部位がカラム状に配列している。S原子とS原子との接触距離が3.5オングストローム以下であり、隣り合うS原子の軌道が重なり合い、安定な立体構造が保たれている。 FIG. 29 and FIG. 30 are schematic diagrams showing a three-dimensional structure focusing on intermolecular bonds and intermolecular interactions. As shown in the figure, compounds such as tetrathiafulvalene-2-carboxylic acid / ammonium salt overlap each other, and there are many loose bonds due to hydrogen bonds between the molecules, and the TTF sites are arranged in a column as a whole. is doing. The contact distance between S atoms and S atoms is 3.5 angstroms or less, and the orbits of adjacent S atoms overlap to maintain a stable three-dimensional structure.
[擬似閉殻配置] [Pseudo closed shell arrangement]
擬似閉殻配置は、キャリア発生の鍵となる酸と塩基とからなる水素結合ネットワークによる自己集積化によって有機ラジカル種を閉殻分子配列の間に埋め込むというシンプルな手法により実現している。擬似閉殻配置(quasi-closed-shell configuration)とは、例えば、遷移金属d軌道や特に希土類金属f軌道で見られる電子配置のことであり、この配置では、スピンは化学結合に関与せず、低い軌道エネルギーを有し、他のエネルギー状態の高い電子に遮蔽されているため原子軌道内部に孤立、局在する。これは、固体状態において強い電子相関効果を誘引し、強相関系金属に特有の種々の高い物性発現の源となる。また、この系のことは、強い電子相関効果から電子の有効質量を増大させるため「重い電子系」とも呼ばれる。これまで説明してきた一連の化合物群は、有機固体で初めて実現されたf電子系金属に位置づけられる。 The pseudo-closed-shell arrangement is realized by a simple technique of embedding organic radical species between closed-shell molecular arrays by self-assembly using a hydrogen bond network consisting of an acid and a base, which is the key to carrier generation. The quasi-closed-shell configuration is, for example, an electron configuration found in transition metal d orbitals and particularly rare earth metal f orbitals. In this configuration, spin does not participate in chemical bonds and is low. Since it has orbital energy and is shielded by electrons in other high energy states, it is isolated and localized inside the atomic orbital. This induces a strong electron correlation effect in the solid state and becomes a source of various high physical properties specific to the strongly correlated metal. This system is also called a “heavy electron system” because it increases the effective mass of electrons due to the strong electron correlation effect. The series of compounds that have been described so far are positioned as f-electron metals that have been realized for the first time in organic solids.
このことは理論計算により裏付けられる。粉末X線結晶構造より得られたTTFCOO・NH4塩の原子座標を基にして、2個以上60個以下の原子中に1個の有機ラジカル種を水素結合によって埋め込んだクラスターモデルを用いてab initio計算(量子化学計算)を行った。 This is supported by theoretical calculations. Based on the atomic coordinates of the TTFCOO · NH 4 salt obtained from the powder X-ray crystal structure, ab using a cluster model in which one organic radical species is embedded by hydrogen bonding in 2 to 60 atoms. Initio calculation (quantum chemical calculation) was performed.
図31は、TTFCOO・NH4塩の4量体中に1分子のラジカル種TTF・+COO・NH4が埋没されたモデルを用いた非制限Hartree-Fock法(UHF)/6-31G*による電子状態を示す図である。図において、a) 擬似閉殻配置、b) 分子軌道図である。いずれの結果においても、ラジカル種の単占有軌道(singly occupied molecular orbital: SOMO)はフロンティア軌道にはおらず、より安定化された軌道に局在することが明らかとなった。この擬似閉殻配置は、ラジカル種が水素結合を利用した超分子配列中に埋め込まれた形を有する化合物について発現する。 Figure 31 is based on the unrestricted Hartree-Fock method (UHF) / 6-31G * using a model in which one molecule of the radical species TTF · + COO · NH 4 is embedded in a tetramer of TTFCOO · NH 4 salt. It is a figure which shows an electronic state. In the figure, a) pseudo-closed shell configuration, b) molecular orbital diagram. In both results, it was found that the single occupied molecular orbital (SOMO) of radical species is not in the frontier orbital, but is localized in a more stabilized orbital. This pseudo-closed-shell configuration is expressed for a compound having a form in which radical species are embedded in a supramolecular arrangement utilizing hydrogen bonding.
例として、アクセプター性分子で同様の効果を発現すると考えられるものを以下列挙する。
Figure JPOXMLDOC01-appb-C000019
Examples of acceptor molecules that are considered to exhibit similar effects are listed below.
Figure JPOXMLDOC01-appb-C000019
図32は、4分子ユニット中に1つラジカル種を含むクラスターモデルに対して、水素結合方向(1次元)の周期性を考慮して行った周期的量子化学計算の結果を示す図である。M点のバンドギャップはわずか0.3 eVであり、半導体的性質をよく再現する。これは、擬似閉殻配置により、SOMO近傍の軌道がスプリットされることにより伝導キャリアが発生していることを裏付けている。なお、計算方法は以下のとおりであった。
Periodic Boundary Condition (PBC)-UHF/3-21G*
ブリリアンゾーンサンプリング: 40k x 1 x 1 点
計算プログラム: Gaussian03, Rev. D 01
[負性磁気抵抗効果]
FIG. 32 is a diagram showing the results of periodic quantum chemical calculations performed for a cluster model including one radical species in four molecular units in consideration of the periodicity in the hydrogen bonding direction (one-dimensional). The band gap at the M point is only 0.3 eV, and it reproduces semiconductor properties well. This confirms that conduction carriers are generated by splitting the orbit near SOMO due to the pseudo-closed shell arrangement. The calculation method was as follows.
Periodic Boundary Condition (PBC) -UHF / 3-21G *
Brillian zone sampling: 40k x 1 x 1 point calculation program: Gaussian03, Rev. D 01
[Negative magnetoresistance effect]
上述の化1から化11などの本明細書に記載の物質群は、塩橋結合内に生じるプロトン欠陥の損失電荷を補填するためにドープされる有機物である。これらの物質群は、粉末成形ペレット、単結晶いずれの状態においても、印加磁場に応じた負性磁気抵抗効果を生じる。 The group of substances described in this specification, such as the above-mentioned chemical formula 1 to chemical formula 11, is an organic substance doped to compensate for the loss charge of proton defects generated in the salt bridge bond. These substance groups produce a negative magnetoresistive effect corresponding to the applied magnetic field in either a powder molded pellet or single crystal state.
以下、様々な物質を具体的に例示しながら説明する。 Hereinafter, various materials will be described with specific examples.
表2は、TTFCOO-NH4 +塩の磁気抵抗の結晶化溶媒依存性   (300K) 、すなわち、TTFCOO-NH4 +塩を様々な溶媒から再結晶により析出させ、ドープ量を変化させた粉末成形ペレットサンプルの励起電流値と9T印加時、室温における負性磁気抵抗(MR)の大きさを示す。いずれも、0.35-0.55%の範囲のMR効果が確認される。
Figure JPOXMLDOC01-appb-T000020
Table 2 shows crystallization solvent dependence of magnetoresistance of TTFCOO - NH 4 + salt (300K), that is, powder molding by changing the amount of dope by recrystallizing TTFCOO - NH 4 + salt from various solvents by recrystallization. The excitation current value of the pellet sample and the magnitude of negative magnetoresistance (MR) at room temperature when 9T is applied. In both cases, an MR effect in the range of 0.35-0.55% is confirmed.
Figure JPOXMLDOC01-appb-T000020
表3は、TTFCOO-NH4 +塩のアンモニア処理による磁気抵抗の増加(300K)、すなわち、ジエチルエーテルから析出させた粉末結晶をアンモニアガス雰囲気中に1分間静置する処理を行った場合のデータを示す。この場合、アンモニア処理前の状態に比べて30%程度のMR効果の増大が確認される。
Figure JPOXMLDOC01-appb-T000021
Table 3 shows the increase in magnetic resistance (300K) due to ammonia treatment of TTFCOO - NH 4 + salt, that is, the data when the powder crystal precipitated from diethyl ether was left in an ammonia gas atmosphere for 1 minute. Indicates. In this case, an MR effect increase of about 30% is confirmed compared to the state before ammonia treatment.
Figure JPOXMLDOC01-appb-T000021
表4は、TTFCOO-NH4 +塩の単結晶試料の磁気抵抗特性(300K)、すなわち、同物質の単結晶の9T印加時のMR効果を示す。
Figure JPOXMLDOC01-appb-T000022
Table 4 shows the magnetoresistance characteristics (300K) of a single crystal sample of TTFCOO - NH 4 + salt, that is, the MR effect when 9T is applied to a single crystal of the same substance.
Figure JPOXMLDOC01-appb-T000022
図33は同物質の粉末成形ペレットサンプルの300Kにおける外部磁場依存性を示す。一例として、テトラヒドロフラン(THF)溶媒から析出させたサンプルの値を示している。印加磁場に応じて略線形の負性磁気抵抗効果が生じている。 FIG. 33 shows the external magnetic field dependence at 300K of powder-molded pellet samples of the same material. As an example, the value of a sample precipitated from a tetrahydrofuran (THF) solvent is shown. A substantially linear negative magnetoresistance effect is generated according to the applied magnetic field.
表5は、TTFCOO-NH3 +OH塩単結晶サンプルの磁気抵抗効果
、すなわち、TTFCOO-NH3 +OH塩単結晶の9T印加時の300Kと130KのMR効果を示す。
Figure JPOXMLDOC01-appb-T000023
Table 5 shows the magnetoresistance effect of the TTFCOO - NH 3 + OH salt single crystal sample, that is, the MR effect of 300K and 130K when 9T is applied to the TTFCOO - NH 3 + OH salt single crystal.
Figure JPOXMLDOC01-appb-T000023
図34は同物質の300KにおけるMRの磁場依存性を示す。 FIG. 34 shows the magnetic field dependence of MR at 300 K for the same material.
図35は同物質の9TにおけるMR効果の温度依存性を示す。低温になればなるほど磁気抵抗効果が略線形に大きくなる。例えば、250K-300K、200K-300K及び130K-300Kの温度範囲において磁気抵抗効果が増大する。 FIG. 35 shows the temperature dependence of the MR effect of the same substance at 9T. The magnetoresistive effect increases substantially linearly at lower temperatures. For example, the magnetoresistance effect increases in the temperature range of 250K-300K, 200K-300K, and 130K-300K.
表6は、TTFCOO-NH3 +Ph塩の単結晶磁気抵抗効果(300K) 、すなわち、TTFCOO-NH3 +Ph塩単結晶の9T印加時の300KのMR効果を示す。
Figure JPOXMLDOC01-appb-T000024
Table 6, TTFCOO - NH 3 + Ph single crystal magneto-resistance effect of salt (300K), i.e., TTFCOO - shows the 300K of the MR effect during 9T application of NH 3 + Ph salts single crystal.
Figure JPOXMLDOC01-appb-T000024
図36は同物質の300KにおけるMRの磁場依存性を示す。 FIG. 36 shows the magnetic field dependence of MR of the same substance at 300K.
図37は同物質の9TにおけるMR効果の温度依存性を示す。 FIG. 37 shows the temperature dependence of the MR effect of the same substance at 9T.
図38はDBTTF(CH)(CH3)NH3・Br塩の300KにおけるMR効果の磁場依存性を示す。 FIG. 38 shows the magnetic field dependence of the MR effect at 300 K of DBTTF (CH) (CH 3 ) NH 3 .Br salt.
いずれの物質においても、室温付近において1%以下のMR効果を示しており、セルフドープされた電子状態は磁場に応答するキャリアを有することが示された。この現象の起源は、本物質群が有する強磁性スピン成分と伝導キャリアが相互作用することにより発生するものであり、本物質群の強磁性スピン成分の存在を証明するものである。 All materials showed an MR effect of 1% or less near room temperature, indicating that the self-doped electronic state has carriers that respond to a magnetic field. The origin of this phenomenon is caused by the interaction between the ferromagnetic spin component of the substance group and the conduction carrier, and proves the existence of the ferromagnetic spin component of the substance group.
上述の化1から化11などの本明細書に記載の物質群は、アンモニウムイオンを主骨格として含む有機半導体であり、アンモニウムイオン上に0.1%以上99.9%以下のプロトン欠陥を生じた場合に、伝導性が大きく発現することが明らかになっている。このように、アンモニウム上のプロトン欠陥がドーパントとなる有機半導体では、ドーパントの周りに磁性が生じるため、荷電キャリアがその影響を受けて磁場印加時に負性磁気抵抗を発現する。欠陥構造の周囲に強磁性が発生する効果は、有機物では本明細書に記載の物質群が初めての事例であるため、今後の物質開発に大きな影響を及ぼすことは必至である。プロトン欠陥を含む塩橋構造に発生する強磁性は、低温のみならず、室温のような高温でも同様に観測されており、温度による影響を受けにくいことが全ての事例によって示されている。そのため、このドーパントにより荷電キャリアを発生した物質では、すべて負性磁気抵抗効果を発揮する。 The group of substances described in the present specification such as Chemical Formula 1 to Chemical Formula 11 described above are organic semiconductors containing ammonium ions as a main skeleton, and when proton defects of 0.1% or more and 99.9% or less are generated on ammonium ions, It has been revealed that conductivity is greatly expressed. As described above, in an organic semiconductor in which proton defects on ammonium serve as a dopant, magnetism occurs around the dopant, so that charge carriers are affected by the influence and develop a negative magnetoresistance when a magnetic field is applied. The effect of the generation of ferromagnetism around the defect structure is the first case of the substance group described in this specification in the organic matter, so it is inevitable that the substance development will be greatly affected in the future. The ferromagnetism generated in the salt bridge structure including proton defects is observed not only at low temperatures but also at high temperatures such as room temperature, and all cases show that they are not easily affected by temperature. Therefore, all substances that generate charge carriers with this dopant exhibit a negative magnetoresistance effect.
[合成方法] [Synthesis method]
次に、化合物の具体的な合成方法について説明する。 Next, a specific method for synthesizing the compound will be described.
(テトラチアフルバレン-2-カルボン酸の合成) (Synthesis of tetrathiafulvalene-2-carboxylic acid)
アルゴン雰囲気下ジイソプロピルアミン(0.65 ml, 5.42 mmol)に乾燥ジエチルエーテル(10 ml)を加え、n-BuLi (1.65 mol/ L, 5.45 mmol)をゆっくり滴下した。これを氷浴上で1時間撹拌し、リチウムジイソプロピルアミド(LDA)を調製した。アルゴン雰囲気下、テトラチアフルバレン (TTF) (1.014 g, 4.96 mmol) を乾燥ジエチルエーテル(100 ml)に溶解し、-78 ℃で撹拌しながら、調製したLDAをキャヌラーを用いてゆっくり滴下した。温度を維持したまま15分間撹拌し、リチオ体の沈殿を確認した。そこに乾燥ジエチルエーテルにくぐらせたドライアイスを投入し、一晩かけて温度を室温に戻した。濾過により固体を得た後にジエチルエーテルで洗浄した。得られた固体をアルカリ水に溶解し、ジエチルエーテルにより水層を洗浄した。水層に、3M HClを加えて酸性にし、ジエチルエーテルで抽出した。ジエチルエーテル層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去することにより、赤色固体のテトラチアフルバレン-2-カルボン酸 (0.8023 g, 3.23 mmol, 65%) を得た。
1H NMR(DMSO) : δ= 7.67 (s, 1H), 6.75 (s, 2H) ppm.
IR (KBr) : 3060, 2930, 1650, 1530, 1420, 1290 cm-1.
Dry diethyl ether (10 ml) was added to diisopropylamine (0.65 ml, 5.42 mmol) under an argon atmosphere, and n-BuLi (1.65 mol / L, 5.45 mmol) was slowly added dropwise. This was stirred for 1 hour on an ice bath to prepare lithium diisopropylamide (LDA). Under an argon atmosphere, tetrathiafulvalene (TTF) (1.014 g, 4.96 mmol) was dissolved in dry diethyl ether (100 ml), and the prepared LDA was slowly added dropwise using a cannula while stirring at -78 ° C. The mixture was stirred for 15 minutes while maintaining the temperature, and precipitation of the lithio compound was confirmed. Dry ice passed through dry diethyl ether was added thereto, and the temperature was returned to room temperature overnight. A solid was obtained by filtration and then washed with diethyl ether. The obtained solid was dissolved in alkaline water, and the aqueous layer was washed with diethyl ether. The aqueous layer was acidified with 3M HCl and extracted with diethyl ether. The diethyl ether layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain red solid tetrathiafulvalene-2-carboxylic acid (0.8023 g, 3.23 mmol, 65%).
1 H NMR (DMSO): δ = 7.67 (s, 1H), 6.75 (s, 2H) ppm.
IR (KBr): 3060, 2930, 1650, 1530, 1420, 1290 cm -1 .
(テトラチアフルバレン-2-カルボン酸・アンモニウム塩の調製) (Preparation of tetrathiafulvalene-2-carboxylic acid / ammonium salt)
テトラチアフルバレン-2-カルボン酸 (150 mg, 0.604 mmol)を乾燥ジエチルエーテル(30 ml)に溶解し、不溶成分を吸引ろ過により取り除いた。ろ液に28%アンモニア水溶液を滴下し、超音波発生装置に15秒かけて固体を析出させた。析出した固体をろ過し、ジエチルエーテルで洗浄し、さらにトルエン (3 ml) 中で懸濁させながら撹拌し、その後にろ過することによりテトラチアフルバレン-2-カルボン酸・アンモニウム塩 (130.8 mg, 0.493 mmol, 82%)を得た。
1H NMR(DMSO) : δ= 6.75 (s, 2H), 7.67 (s, 1H) ppm. 
IR (KBr) : 2930, 1650, 1530, 1420, 1290 cm-1.
Anal. Calcd. for C7H6N O2S4: C, 31.68; H, 2.66; N, 5.28.  Found. C, 31.59; H, 2.75; N, 5.10.
Tetrathiafulvalene-2-carboxylic acid (150 mg, 0.604 mmol) was dissolved in dry diethyl ether (30 ml), and insoluble components were removed by suction filtration. A 28% aqueous ammonia solution was dropped into the filtrate, and a solid was deposited on an ultrasonic generator over 15 seconds. The precipitated solid was filtered, washed with diethyl ether, stirred while suspended in toluene (3 ml), and then filtered to obtain tetrathiafulvalene-2-carboxylic acid / ammonium salt (130.8 mg, 0.493 mmol, 82%).
1 H NMR (DMSO): δ = 6.75 (s, 2H), 7.67 (s, 1H) ppm.
IR (KBr): 2930, 1650, 1530, 1420, 1290 cm -1 .
Anal.Calcd.for C 7 H 6 N O 2 S 4 : C, 31.68; H, 2.66; N, 5.28. Found. C, 31.59; H, 2.75; N, 5.10.
(1-(ジベンゾテトラチアフルバレン-2-イル)エチルアミンの合成) (Synthesis of 1- (dibenzotetrathiafulvalen-2-yl) ethylamine)
<1,3-ベンゾジチオール-2-チオン>
アルゴン置換した100 mlフラスコにイソアミルアルコール (0.80 ml, 0.73 mmol),二硫化炭素 (4.0 ml, 6.6 mmol),1,2-ジクロロエタン(20 ml),イソアミルニトリル (0.97 ml, 0.73 mmol)を加え、加熱撹拌しながら1,4-ジオキサン(4 ml)に溶解したアントラニル酸 (1.00 g, 7.30 mmol)を加えた。10時間加熱還流した後,水を加えて反応を停止し、3M水酸化カリウム水溶液を加え,ジクロロメタンにより抽出し,乾燥,濃縮することで1.29 gの茶色液体を得た。次いで、シリカゲルカラムクロマトグラフィーにより原点成分を除いた。これに、硫黄(0.143 g, 4.46 mmol)とオルトジクロロベンゼン(2.0 ml)を加え、4時間加熱還流した。これを一晩放置し,生じた結晶をろ過して茶色針状結晶の1,3-ベンゾジチオール-2-チオン (0.383 g, 2.08 mmol, 51 %)を得た。
1H NMR (CDCl3) : δ= 7.26-7.42 (m,2H), 7.46-7.50 (m,2H) ppm.
IR (KBr) : 1434, 1264, 1119, 1059, 1025, 741, 474, 892 cm-1.
<1,3-Benzodithiol-2-thione>
To a 100 ml flask purged with argon was added isoamyl alcohol (0.80 ml, 0.73 mmol), carbon disulfide (4.0 ml, 6.6 mmol), 1,2-dichloroethane (20 ml), isoamyl nitrile (0.97 ml, 0.73 mmol), Anthranilic acid (1.00 g, 7.30 mmol) dissolved in 1,4-dioxane (4 ml) was added with heating and stirring. After heating at reflux for 10 hours, the reaction was stopped by adding water, 3M aqueous potassium hydroxide solution was added, extracted with dichloromethane, dried and concentrated to obtain 1.29 g of a brown liquid. Subsequently, the origin component was removed by silica gel column chromatography. To this, sulfur (0.143 g, 4.46 mmol) and orthodichlorobenzene (2.0 ml) were added and heated to reflux for 4 hours. This was allowed to stand overnight, and the resulting crystals were filtered to obtain 1,3-benzodithiol-2-thione (0.383 g, 2.08 mmol, 51%) as brown needle crystals.
1 H NMR (CDCl 3 ): δ = 7.26-7.42 (m, 2H), 7.46-7.50 (m, 2H) ppm.
IR (KBr): 1434, 1264, 1119, 1059, 1025, 741, 474, 892 cm -1 .
<4,5-ジメチル-1,3-ジチオール-2-オン>
アルゴン雰囲気下で,蒸留精製したエチルメチルケトン (0.53 mg, 5.9 mmol)をアセトニトリル (8 ml)に溶解した溶液を30 mlフラスコ中に加え,室温で撹拌しながらブロモテトラメチルシラン (0.86 ml, 6.2 mmol),蒸留精製したジメチルスルホキシド (0.46ml, 6.5 mmol)を加え,氷浴上で一時間撹拌した。これにイソプロピルキサントゲン酸カリウム (1.14 g, 6.53 mmol)を加え更に室温で1時間撹拌した。水を加えて反応を停止し,1M塩酸を加え,ジエチルエーテルで抽出し,乾燥,濃縮した。濃縮物をクロロホルム/エーテル(1:1)溶液 (8 ml)に溶解し、50 mlフラスコ中で撹拌しながら60%過塩素酸水溶液 (2 ml) を滴下し、滴下終了後1時間加熱還流した。水を加えて反応を停止し,ジエチルエーテルにより抽出し,乾燥,濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン→ヘキサン/ジクロロメタン(3:1))により精製することで、無色結晶の4,5-ジメチル-1,3-ジチオール-2-オン(0.37 g,2.5 mmol, 43%)を得た。
1H NMR (CDCl3) : δ= 2.15 (s,6H) ppm.
IR (KBr) : 1655, 1600, 1438, 1188, 1092, 885, 755, 418 cm-1.
<4,5-dimethyl-1,3-dithiol-2-one>
Under argon atmosphere, a solution of distilled and purified ethyl methyl ketone (0.53 mg, 5.9 mmol) in acetonitrile (8 ml) was added to a 30 ml flask and stirred at room temperature with bromotetramethylsilane (0.86 ml, 6.2 mmol) and distilled and purified dimethyl sulfoxide (0.46 ml, 6.5 mmol) were added, and the mixture was stirred on an ice bath for 1 hour. To this was added potassium isopropylxanthate (1.14 g, 6.53 mmol), and the mixture was further stirred at room temperature for 1 hour. The reaction was stopped by adding water, 1M hydrochloric acid was added, extracted with diethyl ether, dried and concentrated. The concentrate was dissolved in a chloroform / ether (1: 1) solution (8 ml), and a 60% aqueous solution of perchloric acid (2 ml) was added dropwise with stirring in a 50 ml flask. . The reaction was stopped by adding water, extracted with diethyl ether, dried and concentrated. The resulting solid was purified by silica gel column chromatography (hexane → hexane / dichloromethane (3: 1)) to give colorless crystals of 4,5-dimethyl-1,3-dithiol-2-one (0.37 g, 2.5 mmol, 43%).
1 H NMR (CDCl 3 ): δ = 2.15 (s, 6H) ppm.
IR (KBr): 1655, 1600, 1438, 1188, 1092, 885, 755, 418 cm -1 .
<5-アセチル-1,3-ベンゾジチオール-2-オン>
アルゴン雰囲気下で,50 mlフラスコに4,5-ジメチル-1,3-ジチオール-2-オン (0.445 g, 3.04 mmol)の四塩化炭素 (18 ml)溶液を加えて撹拌し,ここにN-ブロモスクシンイミド(NBS)(2.38 g, 13.4 mmol)を加えた。白熱電球照射下で10時間加熱還流し,その後13.5時間室温で撹拌した。反応液をろ過し,濾液を濃縮乾固,乾燥することにより、1.26 gの黒色固体(粗収率107%)を得た。得られた黒色固体とヨウ化テトラブチルアンモニウム (2.34 g, 9.09 mmol)を50 mlフラスコ中に加え,アセトニトリル (14 ml) に溶解させて5時間加熱還流し,ここにメチルビニルケトン (1.93 ml, 12.7 mmol)を滴下した後,30分間加熱還流した。濃縮後、得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン(1:1)→(4:3))により精製し,5-アセチル-1,3-ベンゾジチオール-2-オン(0.222 g, 1.06 mmol, 39%)を得た。
1H NMR (CDCl3) : δ= 2.63 (s,3H), 7.60 (d,1H,J = 4.2 Hz), 7.90 (dd,1H,J = 1.7 Hz,J = 3.3 Hz), 8.09 (d,1H,J = 1.2 Hz) ppm.
IR (KBr) : 3078, 2923, 1687, 1638, 1391, 1355, 1273, 1248, 889, 818 cm-1.
<5-acetyl-1,3-benzodithiol-2-one>
Under an argon atmosphere, a solution of 4,5-dimethyl-1,3-dithiol-2-one (0.445 g, 3.04 mmol) in carbon tetrachloride (18 ml) was added to a 50 ml flask and stirred. Bromosuccinimide (NBS) (2.38 g, 13.4 mmol) was added. The mixture was heated to reflux for 10 hours under incandescent bulb irradiation, and then stirred at room temperature for 13.5 hours. The reaction solution was filtered, and the filtrate was concentrated to dryness and dried to obtain 1.26 g of a black solid (crude yield 107%). The resulting black solid and tetrabutylammonium iodide (2.34 g, 9.09 mmol) were added to a 50 ml flask, dissolved in acetonitrile (14 ml) and heated to reflux for 5 hours, where methyl vinyl ketone (1.93 ml, 12.7 mmol) was added dropwise, followed by heating to reflux for 30 minutes. After concentration, the obtained solid was purified by silica gel column chromatography (dichloromethane / hexane (1: 1) → (4: 3)) to give 5-acetyl-1,3-benzodithiol-2-one (0.222 g, 1.06 mmol, 39%).
1 H NMR (CDCl 3 ): δ = 2.63 (s, 3H), 7.60 (d, 1H, J = 4.2 Hz), 7.90 (dd, 1H, J = 1.7 Hz, J = 3.3 Hz), 8.09 (d, 1H, J = 1.2 Hz) ppm.
IR (KBr): 3078, 2923, 1687, 1638, 1391, 1355, 1273, 1248, 889, 818 cm -1 .
<5-(2-メチル-1,3-ジオキサラン-2-イル)-1,3-ベンゾジチオール-2-オン>
アルゴン置換した50 mlフラスコに5-アセチル-1,3-ベンゾジチオール-2-オン(0.222 g, 1.06 mmol)のトルエン (12 ml) 溶液を加え撹拌し,これにパラトルエンスルホン酸一水和物 (0.059 g, 0.34 mmol)を加え,更にエチレングリコール(0.3 ml)を加えて4時間加熱還流した。その後、約1.5 mlのトリエチルアミンを加えて反応を停止し,更に一時間室温で撹拌した。反応液を濃縮,乾燥して、0.359 gの茶色オイルを得た。これをシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン(2:1)→ジクロロメタンのみ)により精製し,5-(2-メチル-1,3-ジオキサラン-2-イル)-1,3-ベンゾジチオール-2-オン (0.158 g,0.621 mmol, 59%)を得た。
1H NMR (CDCl3) : δ= 1.66 (s,3H), 3.76-3.81 (m,2H), 4.04-4.09 (m,2H), 7.45 (s,2H), 7.63 (s,1H) ppm.
IR (KBr) : 3421, 1685, 1638, 1375, 1274, 1243, 1195, 1038, 878 cm-1.
<5- (2-Methyl-1,3-dioxalan-2-yl) -1,3-benzodithiol-2-one>
Add a solution of 5-acetyl-1,3-benzodithiol-2-one (0.222 g, 1.06 mmol) in toluene (12 ml) to a 50 ml flask purged with argon, and stir it. Paratoluenesulfonic acid monohydrate (0.059 g, 0.34 mmol) was added, ethylene glycol (0.3 ml) was further added, and the mixture was heated to reflux for 4 hours. Thereafter, about 1.5 ml of triethylamine was added to stop the reaction, and the mixture was further stirred at room temperature for 1 hour. The reaction solution was concentrated and dried to obtain 0.359 g of a brown oil. This was purified by silica gel column chromatography (dichloromethane / hexane (2: 1) → dichloromethane only) to give 5- (2-methyl-1,3-dioxalan-2-yl) -1,3-benzodithiol-2- On (0.158 g, 0.621 mmol, 59%) was obtained.
1 H NMR (CDCl 3 ): δ = 1.66 (s, 3H), 3.76-3.81 (m, 2H), 4.04-4.09 (m, 2H), 7.45 (s, 2H), 7.63 (s, 1H) ppm.
IR (KBr): 3421, 1685, 1638, 1375, 1274, 1243, 1195, 1038, 878 cm -1 .
<2-アセチルジベンゾテトラチアフルバレン>
1,3-ベンゾジチオール-2-チオン (1.19 g, 6.46 mmol)と5-(2-メチル-1,3-ジオキサラン-2-イル)-1,3-ベンゾジチオール-2-オン (0.66 g, 2.60 mmol),トリエチルホスファイト (70 ml) をアルゴン置換した200 mlフラスコに加え,9時間加熱還流した。水を加え,氷浴で冷却しながら3M塩酸を滴下したのち,濃縮,乾燥した。生成物をシリカゲルカラムクロマトグラフィーにより精製した後(クロロホルムのみ→酢酸エチルのみ),クロロホルムから再結晶することにより、2-アセチルジベンゾテトラチアフルバレン(0.481 g,1.39 mmol, 53%)を得た。
1H NMR (CDCl3) : δ= 2.57 (s,3H), 7.12-7.15 (m,2H), 7.26-7.33 (m,2H), 7.69 (dd,2H,J = 3.5 Hz,J = 0.6 Hz), 7.83 (d,1H,J = 0.8 Hz) ppm.
IR (KBr) : 1668, 1568, 1447, 1390, 1348, 1272, 1235, 1121, 810, 748 cm-1.
<2-acetyldibenzotetrathiafulvalene>
1,3-benzodithiol-2-thione (1.19 g, 6.46 mmol) and 5- (2-methyl-1,3-dioxalan-2-yl) -1,3-benzodithiol-2-one (0.66 g, 2.60 mmol) and triethyl phosphite (70 ml) were added to a 200 ml flask purged with argon, and the mixture was heated to reflux for 9 hours. Water was added, 3M hydrochloric acid was added dropwise while cooling in an ice bath, and the mixture was concentrated and dried. The product was purified by silica gel column chromatography (chloroform only → ethyl acetate only) and recrystallized from chloroform to obtain 2-acetyldibenzotetrathiafulvalene (0.481 g, 1.39 mmol, 53%).
1 H NMR (CDCl 3 ): δ = 2.57 (s, 3H), 7.12-7.15 (m, 2H), 7.26-7.33 (m, 2H), 7.69 (dd, 2H, J = 3.5 Hz, J = 0.6 Hz ), 7.83 (d, 1H, J = 0.8 Hz) ppm.
IR (KBr): 1668, 1568, 1447, 1390, 1348, 1272, 1235, 1121, 810, 748 cm -1 .
<O-メチル-2-アセチルジベンゾテトラチアフルバレンオキシム>
200 mlフラスコに2-アセチルジベンゾテトラチアフルバレン (0.98 g, 2.83 mmol) を加え,ピリジン (70 ml) を加えて撹拌し,ここにO-メチルヒドロキシアミン塩酸塩 (0.354, 4.24 mmol)を加えて6時間加熱還流し,室温で40時間撹拌した。反応液に水を加えてジクロロメタンで抽出し,有機層を濃縮,乾燥させ、生成物をクロロホルムで再結晶し,O-メチル-2-アセチルジベンゾテトラチアフルバレンオキシム (0.85 g,  2.26 mmol, 80%) を得た。
1H NMR (CDCl3) : δ= 2.17 (d,3H,E/Z mixture), 3.98 (d,3H,E/Z mixture), 7.10-7.13 (m,2H), 7.21-7.27 (m,5H), 7.38 (d,1H,J = 4.2 Hz), 7.58 (d,1H,E/Z mixture) ppm.
IR (KBr) : 3436, 2923, 1653, 1444, 1050, 892, 818, 745 cm-1.
<O-methyl-2-acetyldibenzotetrathiafulvalene oxime>
Add 2-acetyldibenzotetrathiafulvalene (0.98 g, 2.83 mmol) to a 200 ml flask, add pyridine (70 ml) and stir, and add O-methylhydroxyamine hydrochloride (0.354, 4.24 mmol) here. The mixture was heated to reflux for 6 hours and stirred at room temperature for 40 hours. Water was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was concentrated and dried. The product was recrystallized from chloroform, and O-methyl-2-acetyldibenzotetrathiafulvalene oxime (0.85 g, 2.26 mmol, 80% )
1 H NMR (CDCl 3 ): δ = 2.17 (d, 3H, E / Z mixture), 3.98 (d, 3H, E / Z mixture), 7.10-7.13 (m, 2H), 7.21-7.27 (m, 5H ), 7.38 (d, 1H, J = 4.2 Hz), 7.58 (d, 1H, E / Z mixture) ppm.
IR (KBr): 3436, 2923, 1653, 1444, 1050, 892, 818, 745 cm -1 .
<1-(ジベンゾテトラチアフルバレン-2-イル)エチルアミン>
アルゴン置換した300 mlフラスコにO-メチル-2-アセチルジベンゾテトラチアフルバレンオキシム(1.92 g, 5.12 mmol)とTHF (160 ml) を加えて撹拌し,氷冷下ボランテトラヒドロフラン錯体テトラヒドロフラン溶液 (21.1 ml, 21.4 mmol) を加え,3時間加熱還流した。冷却した反応液に1M塩酸 (20 ml) を加えて反応を停止し,水酸化カリウム水溶液を少量ずつ加えるとともに濃縮してTHFをある程度除去した後,液性を塩基性にし,ジクロロメタンで抽出した。有機層を濃縮,乾燥して, 1-(ジベンゾテトラチアフルバレン-2-イル)-エチルアミン(1.67 g,4.79 mmol, 94%)を得た。
1H NMR (CDCl3) : δ= 1.35 (d,3H,J = 3.3 Hz), 4.08 (q,1H,J = 3.3 Hz), 7.08-7.14 (m,3H), 7.19-7.29 (m,4H) ppm.
IR (KBr) : 3046, 2922, 1561, 1445, 1428, 1260, 1120, 1028, 811, 776, 737 cm-1.
<1- (Dibenzotetrathiafulvalen-2-yl) ethylamine>
To a 300 ml flask purged with argon, add O-methyl-2-acetyldibenzotetrathiafulvalene oxime (1.92 g, 5.12 mmol) and THF (160 ml) and stir. Under ice cooling, borane tetrahydrofuran complex tetrahydrofuran solution (21.1 ml, 21.4 mmol) was added and heated to reflux for 3 hours. 1M hydrochloric acid (20 ml) was added to the cooled reaction solution to stop the reaction, and an aqueous potassium hydroxide solution was added little by little and concentrated to remove THF to some extent, and then the solution was made basic and extracted with dichloromethane. The organic layer was concentrated and dried to give 1- (dibenzotetrathiafulvalen-2-yl) -ethylamine (1.67 g, 4.79 mmol, 94%).
1 H NMR (CDCl 3 ): δ = 1.35 (d, 3H, J = 3.3 Hz), 4.08 (q, 1H, J = 3.3 Hz), 7.08-7.14 (m, 3H), 7.19-7.29 (m, 4H ) ppm.
IR (KBr): 3046, 2922, 1561, 1445, 1428, 1260, 1120, 1028, 811, 776, 737 cm -1 .
(ブレンステッド酸塩の調製) (Preparation of Bronsted acid salt)
各種酸との塩は,1-(ジベンゾテトラチアフルバレン-2-イル)エチルアミンを溶媒(ジエチルエーテル又はジクロロメタン)に溶解し,そこにブレンステッド酸水溶液 (HBr, HBF4) を滴下し,数分間超音波を当て,生成した固体を濾過することにより調製した。1回の洗浄に用いる蒸留水はパスツールピペットで2、3滴,これを5回程度行なうことによって洗浄とした。 For salts with various acids, 1- (dibenzotetrathiafulvalen-2-yl) ethylamine is dissolved in a solvent (diethyl ether or dichloromethane), and a Bronsted acid aqueous solution (HBr, HBF 4 ) is added dropwise thereto for several minutes. It was prepared by applying ultrasonic waves and filtering the resulting solid. Distilled water used for one washing was washed by performing a few drops with a Pasteur pipette about 5 times.
<1-(ジベンゾテトラチアフルバレン-2-イル)エチルアミン・臭素酸塩>
1H NMR (DMSO-d6) : δ= 1.49 (d,3H,J = 6.9 Hz), 4.40 (s,1H), 7.27-7.76 (m,7H), 8.21 (s,3H) ppm.
IR (KBr) : 2923, 1590, 1497, 1444, 1222, 1080, 738, 591, 435 cm-1.
Anal. Calcd. for C16H14BrNS4・H2O:  C, 43.03%; H, 3.62%; N, 3.14%.  Found. C, 43.24%; H, 3.37%, N, 3.04%.  
<1- (Dibenzotetrathiafulvalen-2-yl) ethylamine / bromate>
1 H NMR (DMSO-d6): δ = 1.49 (d, 3H, J = 6.9 Hz), 4.40 (s, 1H), 7.27-7.76 (m, 7H), 8.21 (s, 3H) ppm.
IR (KBr): 2923, 1590, 1497, 1444, 1222, 1080, 738, 591, 435 cm -1 .
Anal.Calcd.for C 16 H 14 BrNS 4・ H 2 O: C, 43.03%; H, 3.62%; N, 3.14%. Found. C, 43.24%; H, 3.37%, N, 3.04%.
<1-(ジベンゾテトラチアフルバレン-2-イル)エチルアミン・四フッ化ホウ素酸塩>
1H NMR (DMSO-d6) : δ= 1.50 (d,3H,J = 6.9 Hz), 4.39 (q,1H,J = 6.9 Hz), 7.33 (m,4H), 7.62 (m,5H) ppm.
IR (KBr) : 2924, 1616, 1498, 1445, 1225, 1083, 741, 591, 523, 415 cm-1.
Anal. Calcd. for C16 H14 B F4 N S4: C, 44.14%; H, 3.24%; N, 3.22%.  Found. C, 43.96%; H, 3.40%, N, 3.17%. 
<1- (Dibenzotetrathiafulvalen-2-yl) ethylamine tetrafluoroborate>
1 H NMR (DMSO-d6): δ = 1.50 (d, 3H, J = 6.9 Hz), 4.39 (q, 1H, J = 6.9 Hz), 7.33 (m, 4H), 7.62 (m, 5H) ppm.
IR (KBr): 2924, 1616, 1498, 1445, 1225, 1083, 741, 591, 523, 415 cm -1 .
Anal.Calcd.for C 16 H 14 B F 4 N S 4 : C, 44.14%; H, 3.24%; N, 3.22%. Found. C, 43.96%; H, 3.40%, N, 3.17%.
 [合成過程での創意工夫] [Ingenuity in the synthesis process]
 キャリアドープにより、固体中でのラジカルスピン濃度を増やすことが磁気特性を向上させる上で重要な要素であるが、結晶化溶媒を変えることで最大38%(1,4-ジオキサン使用)までスピン濃度を向上させることに成功した。 Increasing the radical spin concentration in the solid by carrier doping is an important factor in improving the magnetic properties, but by changing the crystallization solvent, the spin concentration can be up to 38% (using 1,4-dioxane). Succeeded in improving.
 図11は、アンモニウム塩結晶化の際に使用する溶媒と得られたキャリアドープ結晶のスピン濃度との相関関係を示す図である。  FIG. 11 is a diagram showing the correlation between the solvent used for crystallization of ammonium salt and the spin concentration of the obtained carrier-doped crystal. *
 実験はキャリアドープされた塩の多結晶を加圧成型してペレット状にした小片を室温条件でESR測定し、そのESRシグナルを標準物質である2,2-ジフェニル-1-ピクリルヒドラジル(2,2-diphenyl -1-picrylhydrazyl) (通称DPPH)のピーク面積と比べてスピンの定量を行ったものである。使用したサンプル量はいずれも規格化されている。 The experiment was carried out by ESR measurement of pellet-shaped small pieces of carrier-doped salt polycrystals at room temperature, and the ESR signal was measured using the standard 2,2-diphenyl-1-picrylhydrazyl ( The spins were quantified in comparison with the peak area of 2,2-diphenyl -1-picrylhydrazyl) (commonly called DPPH). All sample quantities used are standardized.
 [用途] [Usage]
本実施形態の化合物は多様な用途に使用することができる。スピントロニクス素子、情報通信素子、メモリ素子、磁気シールド、医療用磁気シールド、磁石、磁性半導体、電界効果トランジスタ(FET)、磁石入り絆創膏、ハードディスクドライブのヘッド、高感度再生用GMRヘッド、固体磁気メモリ、磁気抵抗メモリ(MRAM)、ファイバ通信用光アイソレータ、磁界で色が変わる材料、伝導電子スピンと原子磁気モーメントの相互作用を利用した材料などが例として挙げられる。 The compound of this embodiment can be used for various uses. Spintronics device, information communication device, memory device, magnetic shield, medical magnetic shield, magnet, magnetic semiconductor, field effect transistor (FET), adhesive bandage, hard disk drive head, high-sensitivity playback GMR head, solid-state magnetic memory, Examples include magnetoresistive memory (MRAM), optical isolators for fiber communication, materials that change color with a magnetic field, and materials that use the interaction between conduction electron spin and atomic magnetic moment.
なお、単結晶ではなくとも、微結晶加圧成形状態で高い物性値を示すことから、ポリマーや液晶へ形態変換し、薄膜化できる可能性が示唆される。塗布による薄膜形成は多くの用途への可能性を拓くものである。 In addition, even if it is not a single crystal, it shows a high physical property value in the microcrystalline pressure molding state, suggesting the possibility that it can be converted into a polymer or liquid crystal and thinned. Thin film formation by coating opens up possibilities for many applications.
 [権利解釈など] [Interpretation of rights, etc.]
以上、特定の実施形態を参照しながら、本発明について説明してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が実施形態の修正又は代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、冒頭に記載した特許請求の範囲の欄を参酌すべきである。 The present invention has been described above with reference to specific embodiments. However, it is obvious that those skilled in the art can make modifications or substitutions of the embodiments without departing from the gist of the present invention. That is, the present invention has been disclosed in the form of exemplification, and the contents described in the present specification should not be interpreted in a limited manner. In order to determine the gist of the present invention, the claims section described at the beginning should be considered.
また、この発明の説明用の実施形態が上述の目的を達成することは明らかであるが、多くの変更や他の実施例を当業者が行うことができることも理解されるところである。特許請求の範囲、明細書、図面及び説明用の各実施形態のエレメント又はコンポーネントを他の1つまたは組み合わせとともに採用してもよい。特許請求の範囲は、かかる変更や他の実施形態をも範囲に含むことを意図されており、これらは、この発明の技術思想および技術的範囲に含まれる。 It will also be appreciated that illustrative embodiments of the invention achieve the above objects, but that many modifications and other examples can be made by those skilled in the art. The elements or components of each embodiment described in the claims, specification, drawings, and description may be employed in combination with one or more other elements. The claims are intended to cover such modifications and other embodiments, which are within the spirit and scope of the present invention.

Claims (33)

  1. ドナーとなる有機分子を無機酸あるいは無機塩基と塩形成させることによって形成され、
    自己集積することを特徴とする有機遍歴磁性体化合物。
    Formed by salting organic molecules that serve as donors with inorganic acids or bases,
    An organic itinerant magnetic compound characterized by self-assembly.
  2. アンモニウム部位を有することを特徴とする請求項1記載の有機遍歴磁性体化合物。 2. The organic itinerant magnetic compound according to claim 1, which has an ammonium moiety.
  3. 自己集積した状態でアンモニウム部位に対して水素結合がなされることを特徴とする請求項2記載の有機遍歴磁性体化合物。 3. The organic itinerant magnetic compound according to claim 2, wherein hydrogen bonds are made to the ammonium moiety in a self-assembled state.
  4. テトラチアフルバレン類縁体部位を骨格に含みプロトン酸官能基を有する化合物を、アンモニアとの塩又はヒドロキシアミンとの塩へと誘導させることによって形成されることを特徴とする有機遍歴磁性体化合物。 An organic itinerant magnetic compound, characterized in that it is formed by inducing a compound containing a tetrathiafulvalene analog moiety in the skeleton and having a protonic acid functional group into a salt with ammonia or a salt with hydroxyamine.
  5. テトラチアフルバレン類縁体部位を骨格に含み第一級アミンを有する化合物を、無機酸塩へと誘導させることによって形成されることを特徴とする有機遍歴磁性体化合物。 An organic itinerant magnetic compound formed by inducing a compound having a tetrathiafulvalene analog moiety in a skeleton and having a primary amine into an inorganic acid salt.
  6. (化1)で表されるいずれかの化合物であることを特徴とする有機遍歴磁性体化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1からX4はS又はSe、R1は(化2)に表されるいずれかである。)(式中、R2からR8は(化3)に表されるいずれか(同一でも異なっていてもよい。)である。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    An organic itinerant magnetic compound, which is any compound represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (X 4 wherein the X 1 is S or Se, R 1 is any one expressed in the formula 2.) (One wherein, R 8 from R 2 is represented in (formula 3) (It may be the same or different.)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  7. (化4)で表されるいずれかの化合物であることを特徴とする有機遍歴磁性体化合物。
    Figure JPOXMLDOC01-appb-C000004
    An organic itinerant magnetic compound, which is any compound represented by the formula (4):
    Figure JPOXMLDOC01-appb-C000004
  8. (化5)で表されるいずれかの化合物であることを特徴とする有機遍歴磁性体化合物。
    Figure JPOXMLDOC01-appb-C000005
    An organic itinerant magnetic compound, which is any compound represented by the formula (5):
    Figure JPOXMLDOC01-appb-C000005
  9. テトラチアフルバレン-2-カルボン酸・アンモニウム塩であることを特徴とする有機遍歴磁性体化合物。 An organic itinerant magnetic compound characterized by being tetrathiafulvalene-2-carboxylic acid / ammonium salt.
  10. ドナーとなる有機分子を無機酸あるいは無機塩基と1対1で塩形成させることによって形成し、自己集積する化合物を製造することを特徴とする有機遍歴磁性体化合物の製造方法。 A method for producing an organic itinerant magnetic compound, characterized in that an organic molecule serving as a donor is formed by salt formation with an inorganic acid or an inorganic base on a one-to-one basis to produce a self-assembling compound.
  11. 擬似閉殻配置を有することを特徴とする有機遍歴磁性体化合物。 An organic itinerant magnetic compound characterized by having a pseudo-closed shell configuration.
  12. 塩橋結合を含み、
    分子量20000以下の有機化合物にブレンステッド酸又は塩基を添加することで全体の0.1%以上のラジカル種が安定に発生することによって形成される有機遍歴磁性体化合物。
    Including salt bridge bonds,
    An organic itinerant magnetic compound formed by adding a Brönsted acid or base to an organic compound having a molecular weight of 20000 or less and stably generating 0.1% or more radical species.
  13.  電子ドナー分子中又は電子アクセプター分子中にプロトン化され得る多重結合を有する塩橋物質であり、
     塩橋形成の際に全体の0.1%以上のラジカル種が安定に発生することによって形成される有機遍歴磁性体化合物。
    A salt bridge material having multiple bonds that can be protonated in an electron donor molecule or in an electron acceptor molecule;
    An organic itinerant magnetic compound formed by the stable generation of 0.1% or more of the radical species during salt bridge formation.
  14.  テトラチアフルバレン骨格又はテトラセレナフルバレン骨格を有する塩橋物質であり、
     塩橋形成の際に全体の0.1%以上のラジカル種が安定に発生することによって形成される有機遍歴磁性体化合物。
    A salt bridge substance having a tetrathiafulvalene skeleton or a tetraselenafulvalene skeleton,
    An organic itinerant magnetic compound formed by the stable generation of 0.1% or more of the radical species during salt bridge formation.
  15.  ラジカルスピンの電子状態が擬似閉殻配置を有する請求項13又は14に記載の有機遍歴磁性体化合物。 15. The organic itinerant magnetic compound according to claim 13, wherein the electronic state of the radical spin has a pseudo-closed shell configuration.
  16. 塩橋結合を含む有機遍歴磁性体化合物の製造方法であって、
    分子量20000以下の有機化合物にブレンステッド酸又は塩基を添加することで全体の0.1%以上のラジカル種を安定に発生させることによって形成する有機遍歴磁性体化合物の製造方法。
    A method for producing an organic itinerant magnetic compound containing a salt bridge bond,
    A method for producing an organic itinerant magnetic compound formed by adding a Bronsted acid or a base to an organic compound having a molecular weight of 20000 or less and stably generating at least 0.1% of radical species.
  17.  電子ドナー分子中又は電子アクセプター分子中にプロトン化され得る多重結合を有する塩橋物質である有機遍歴磁性体化合物の製造方法であって、
    塩橋形成の際に全体の0.1%以上のラジカル種を安定に発生させることによって形成される有機遍歴磁性体化合物の製造方法。
    A method for producing an organic itinerant magnetic compound which is a salt bridge substance having multiple bonds that can be protonated in an electron donor molecule or an electron acceptor molecule,
    A method for producing an organic itinerant magnetic compound formed by stably generating at least 0.1% of radical species in the formation of a salt bridge.
  18.  テトラチアフルバレン骨格又はテトラセレナフルバレン骨格を有する塩橋物質である有機遍歴磁性体化合物の製造方法であって、
    塩橋形成の際に全体の0.1%以上のラジカル種を安定に発生させることによって形成される有機遍歴磁性体化合物の製造方法。
    A method for producing an organic itinerant magnetic compound which is a salt bridge substance having a tetrathiafulvalene skeleton or a tetraselenafulvalene skeleton,
    A method for producing an organic itinerant magnetic compound formed by stably generating at least 0.1% of radical species in the formation of a salt bridge.
  19. ラジカルスピンの電子状態が擬似閉殻配置を有する請求項17又は18に記載の有機遍歴磁性体化合物の製造方法。 19. The method for producing an organic itinerant magnetic compound according to claim 17, wherein the electronic state of the radical spin has a quasi-closed shell configuration.
  20. 半導体であることを特徴とする請求項9に記載の有機遍歴磁性体化合物。 10. The organic itinerant magnetic compound according to claim 9, which is a semiconductor.
  21. 強磁性体であることを特徴とする請求項9に記載の有機遍歴磁性体化合物。 10. The organic itinerant magnetic compound according to claim 9, wherein the organic itinerant magnetic compound is a ferromagnetic material.
  22. 有機室温遍歴磁性体化合物であることを特徴とする請求項9に記載の有機遍歴磁性体化合物。 10. The organic itinerant magnetic compound according to claim 9, which is an organic room temperature itinerant magnetic compound.
  23.  請求項9記載の有機遍歴磁性体化合物を含有する磁石。 10. A magnet containing the organic itinerant magnetic compound according to claim 9.
  24.  請求項9記載の有機遍歴磁性体化合物を含有するスピントロニクス素子。 10. A spintronic device comprising the organic itinerant magnetic compound according to claim 9.
  25.  請求項9記載の有機遍歴磁性体化合物を含有する水素精製材料。 A hydrogen purification material containing the organic itinerant magnetic compound according to claim 9.
  26.  塩橋結合内にプロトン欠陥を含む有機化合物であって、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機遍歴磁性体化合物。 Organic organic compound containing a proton defect in a salt bridge bond and generating a radical cation or radical anion to compensate for the lost charge.
  27.  塩橋物質中でカチオンとアニオンの存在比が1:1から外れることにより電荷が不釣り合いとなり、損失した電荷を補うためにラジカルカチオンまたはラジカルアニオンを発生した有機遍歴磁性体化合物。 An organic itinerant magnetic compound that generates radical cations or radical anions to compensate for lost charges due to the abundance ratio of cation and anion deviating from 1: 1 in the salt bridge material.
  28. 負性磁気抵抗効果を生じる請求項1記載の有機遍歴磁性体化合物。 2. The organic itinerant magnetic compound according to claim 1, which produces a negative magnetoresistance effect.
  29. 負性磁気抵抗効果を生じる請求項6記載の有機遍歴磁性体化合物。 7. The organic itinerant magnetic compound according to claim 6, which produces a negative magnetoresistance effect.
  30. 負性磁気抵抗効果を生じる請求項9記載の有機遍歴磁性体化合物。 10. The organic itinerant magnetic compound according to claim 9, which produces a negative magnetoresistance effect.
  31. 印加磁場に応じた略線形の負性磁気抵抗効果を生じる請求項9記載の有機遍歴磁性体化合物。 10. The organic itinerant magnetic compound according to claim 9, which produces a substantially linear negative magnetoresistance effect in accordance with an applied magnetic field.
  32. 低温になればなるほど磁気抵抗効果が大きくなる請求項31記載の有機遍歴磁性体化合物。 32. The organic itinerant magnetic compound according to claim 31, wherein the magnetoresistive effect increases as the temperature decreases.
  33. 有機室温遍歴磁性体化合物であって、250K以上300K以下の温度範囲において低温になればなるほど磁気抵抗効果が大きくなる請求項31記載の有機遍歴磁性体化合物。 32. The organic itinerant magnetic compound according to claim 31, wherein the magnetoresistive effect increases as the temperature becomes lower in a temperature range of 250K to 300K.
PCT/JP2012/074307 2011-09-22 2012-09-21 Organic itinerant magnetic compound, process for producing organic itinerant magnetic compound, magnet, spintronic element, and material for hydrogen refining WO2013042787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013534777A JP5880893B2 (en) 2011-09-22 2012-09-21 Magnet containing organic itinerant magnetic compound, spintronic device and hydrogen purification material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207231 2011-09-22
JP2011207231 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042787A1 true WO2013042787A1 (en) 2013-03-28

Family

ID=47914545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074307 WO2013042787A1 (en) 2011-09-22 2012-09-21 Organic itinerant magnetic compound, process for producing organic itinerant magnetic compound, magnet, spintronic element, and material for hydrogen refining

Country Status (2)

Country Link
JP (1) JP5880893B2 (en)
WO (1) WO2013042787A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141692A1 (en) * 2016-02-19 2017-08-24 国立研究開発法人物質・材料研究機構 Hydrogen generating agent, hydrogen generation method, and method of producing substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102039A1 (en) * 2008-02-15 2009-08-20 The University Of Tokyo Organic semiconductor compound, semiconductor element, solar battery, and process for producing organic semiconductor compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102039A1 (en) * 2008-02-15 2009-08-20 The University Of Tokyo Organic semiconductor compound, semiconductor element, solar battery, and process for producing organic semiconductor compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAKESHI TERAUCHI ET AL.: "Protonic defect induced carrier doping in TTFCOO-NH4+: Tunable doping level by solvent", SYNTHETIC MATERIALS, vol. 162, no. 5-6, 2012, pages 531 - 535, XP055043721, DOI: doi:10.1016/j.synthmet.2012.01.026 *
Y. KOBAYASHI ET AL.: "Synthesis, characterization, and dc conductivity of hydrogen-bonding dibenzotetrathiafulvalene(DBTTF) based salts", SYNTHETIC MATERIALS, vol. 160, no. 7-8, 2010, pages 575 - 583 *
YUKA KOBAYASHI ET AL.: "Hydrogen-Bonding-Assisted Self-Doping in Tetrathiafulvalene(TTF) Conductor", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 29, 2009, pages 9995 - 10002, XP055043205, DOI: doi:10.1021/ja809425b *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141692A1 (en) * 2016-02-19 2017-08-24 国立研究開発法人物質・材料研究機構 Hydrogen generating agent, hydrogen generation method, and method of producing substance
JPWO2017141692A1 (en) * 2016-02-19 2018-11-15 国立研究開発法人物質・材料研究機構 Hydrogen generator, method of generating hydrogen, and method of producing substance

Also Published As

Publication number Publication date
JP5880893B2 (en) 2016-03-09
JPWO2013042787A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
Yamashita et al. Preparation and properties of bis [1, 2, 5] thiadiazolo-p-quinobis (1, 3-dithiole)(BTQBT) and its derivatives. Novel organic semiconductors
Deng et al. Our research progress in heteroaggregation and homoaggregation of organic π‐conjugated systems
Shi et al. Improving organic memory performance through mounting conjugated branches on a triphenylamine core
Horii et al. Changing single-molecule magnet properties of a windmill-like distorted terbium (III) α-butoxy-substituted phthalocyaninato double-decker complex by protonation/deprotonation
Abdullah et al. Spin-crossover, mesomorphic and thermoelectrical properties of cobalt (ii) complexes with alkylated N 3-Schiff bases
JP5943285B2 (en) Electric wire, electronic device, compound, metallized organic substance, and manufacturing method thereof
Li et al. Stimuli‐responsive materials from ferrocene‐based organic small molecule for wearable sensors
Li et al. Ferromagnetic Fe-doped GaN nanowires grown by chemical vapor deposition
JP5880893B2 (en) Magnet containing organic itinerant magnetic compound, spintronic device and hydrogen purification material
US11560644B2 (en) Supramolecular tessellation of rigid triangular macrocycles
Yang et al. Thermally Ultrarobust S= 1/2 Tetrazolinyl Radicals: Synthesis, Electronic Structure, Magnetism, and Nanoneedle Assemblies on Silicon Surface
JP5728777B2 (en) Organic compounds, organic semiconductor compounds, semiconductor elements, and solar cells
Xia et al. Negative effect on molecular planarity to achieve organic ternary memory: triphenylamine as the spacer
Victoria Martínez-Díaz et al. Supramolecular organization of phthalocyanines: from solution to surface
Blundell et al. Enantiopure and racemic radical-cation salts of B (mandelate) 2− and B (2-chloromandelate) 2− anions with BEDT-TTF
Yao et al. Structural, magnetic and phase transition properties in S= ½ radical solid solutions of [F x Cl 1− x-BzPy][Ni (mnt) 2](x= 0.07–0.87)
Lim Exploring the potential applications of lead-free organic–inorganic perovskite type [NH3 (CH2) n NH3] M Cl4 (n= 2, 3, 4, 5, and 6; M= Mn, Co, Cu, Zn, and Cd) crystals
Liu et al. The electric memory properties of azo-chalcone derivatives based on different film forming processes
JP2005209802A (en) Molecular magnetic material using hydrogen bonding and its manufacturing method
Li et al. Monoatomic Nickel Wires via Columnar Self-Assembly of Tribenzocyclyne Nickel Complexes
Shinya International Conference on Spin Transition Abstracts
Hiraoka et al. Magnetic ion salts using selenium analogues of a new donor molecule, benzotetrathiafulvalenothioquinone-1, 3-dithiolemethide
Šagátová et al. Above room temperature spin crossover in mononuclear iron (II) complexes featuring pyridyl-benzimidazole bidentate ligands adorned with aliphatic chains
Kurmoo et al. Free Standing Large Area Metal-Organic Nanosheets Encapsulating Periodically Spaced Single-Ion Magnets
Lim et al. NH2 (CH3) 2CuCl3 Organic–Inorganic Hybrid Perovskite: Consideration to Crystal Structure, Thermodynamics, and Structural Molecular Dynamics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833905

Country of ref document: EP

Kind code of ref document: A1