WO2013042432A1 - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
WO2013042432A1
WO2013042432A1 PCT/JP2012/067456 JP2012067456W WO2013042432A1 WO 2013042432 A1 WO2013042432 A1 WO 2013042432A1 JP 2012067456 W JP2012067456 W JP 2012067456W WO 2013042432 A1 WO2013042432 A1 WO 2013042432A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water supply
unit
purified water
purified
Prior art date
Application number
PCT/JP2012/067456
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 森
千尋 井
尼木 実知子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013042432A1 publication Critical patent/WO2013042432A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to a water treatment apparatus for purifying raw water such as tap water to generate purified water.
  • an object of the present invention is to obtain a water treatment apparatus capable of emptying and sterilizing the inside of a route without drainage.
  • a raw water supply unit a purification unit for purifying raw water supplied from the raw water supply unit and passing the purified water to a purified water supply path;
  • a reservoir capable of storing water in a channel
  • a sterilizing fluid generator capable of supplying a bactericidal fluid containing a bactericidal component and supplying the bactericidal fluid into the purified water supply channel, and the purified water supply channel at the end of sterilization
  • the sterilizing component decomposing unit for recovering the sterilizing fluid and decomposing the sterilizing component, and transferring the water in the clean water supply channel to the storage unit when the clean water supply channel is sterilized.
  • a second feature of the present invention is that the storage unit doubles as the raw water supply unit.
  • a third feature of the present invention is that a water backflow unit is provided downstream of the purification unit to backflow water in the purified water supply path to the purification unit and transfer the water to the storage unit.
  • a fourth feature of the present invention is that the reservoir is disposed below the purified water supply path.
  • the water in the clean water supply path is transferred to the storage section to empty the clean water supply path, and the empty clean water supply path is Supply the sterilizing fluid generated by the sterilizing fluid generator.
  • the sterilizing fluid in the purified water supply channel is decomposed in the sterilizing component decomposition unit.
  • First Embodiment 1 to 3 show a water treatment apparatus 1 according to a first embodiment of the present invention.
  • the water treatment apparatus 1 of the present embodiment purifies raw water such as tap water and well water to generate clean water suitable for drinking, and enables sterilization in the clean water supply path 3.
  • the water treatment apparatus 1 includes the raw water supply unit 2 and the purification unit 4 that purifies the raw water supplied from the raw water supply unit 2 and passes the purified water to the clean water supply path 3. And a reservoir 5 capable of storing water at least in the purified water supply path 3.
  • the above-described raw water supply unit 2, the purified water supply path 3, the purification unit 4, the storage unit 5, and the like are covered with a cover or the like to form the main unit 11.
  • the raw water supply unit 2 is connected to a raw water source such as a water pipe (not shown) and takes the raw water into the main body 11, and is provided in the raw water feed path 21 and the main body 11 and disposed at the terminal of the raw water feed path 21 And a raw water feed valve 22.
  • the raw water feed valve 22 is a three-way valve in the present embodiment, the raw water feed passage 21 is connected to one valve port, the raw water introduction passage 41 of the purification unit 4 is connected to the other valve port,
  • the circulation water supply passage 51 communicating with the bottom portion of the storage unit 5 is connected to the valve port of the second embodiment.
  • the circulation water supply passage 51 is provided with a circulation pump P1 that pumps the water in the storage unit 5 to the purification unit 4 via the raw water supply valve 22.
  • the purification unit 4 has a function of purifying raw water to generate purified water, and may be an MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), RO membrane, NF membrane (reverse osmosis membrane), etc. It is configured using a separation membrane. In addition to these separation membranes, other means capable of purifying water can also be used. For example, adsorption materials such as activated carbon, hollow fiber membranes, sand filtration, ion exchange resins, etc. can be used.
  • the purified water supply channel 3 includes a purified water outlet channel 42 communicating with the outlet of the purification unit 4, and a cold water channel 31 and a thermal water channel 32 provided bifurcatedly from the purified water outlet channel 42.
  • a cold water discharge valve 33 is provided at the downstream end of the cold water passage 31, and a cold water discharge port 34 extends from the cold water discharge valve 33 to the outside of the main body 11. Further, a hot water spout valve 35 is provided at the downstream end of the thermal water passage 32, and a hot water spout 36 extends from the hot water spout valve 35 to the outside of the main body 11.
  • a hot water storage unit 6 incorporating the heating unit 61 is provided in the middle of the heat flow channel 32.
  • the primary side (upstream side) of the thermal water passage 32 is connected to the upper portion of the hot water storage portion 6, and the secondary side (downstream side) is connected to the lower portion of the hot water storage portion 6.
  • the water in the hot water storage unit 6 is heated by the heating unit 61 to a predetermined temperature.
  • a passage switching valve 37 is provided in a path between the hot water storage portion 6 and the hot water discharge valve 35.
  • the flow path switching valve 37 is constituted by a three-way valve, one hot water storage portion 6 side of the hot water passage 32 is connected to one valve port, the hot water discharge valve 35 side of the hot water flow passage 32 is another valve port
  • the circulation passage 7 of the sterilizing fluid is connected to the remaining valve ports.
  • a hot water supply pump P2 for pumping hot water in the direction of the hot water discharge port 36 is provided in the middle of the heat passage 32 on the secondary side from the hot water storage portion 6 to the flow path switching valve 37.
  • the direction connected to the flow path switching valve 37 is on the downstream side, and the opposite end, which is the upstream side, is on the upstream side of the hot water storage portion 6 of the heat channel 32. It is in communication with The circulation passage 7 is provided with a temporary water supply pump P3 which operates at the time of sterilization and transfers the sterilizing fluid to the downstream side. Further, a branch path 71 branched on the downstream side of the temporary water supply pump P3 is connected to the upper portion of the storage unit 5.
  • the drain pipe 52 is connected to the lower part of the storage part 5
  • the drain pipe 62 is connected to the lower part of the hot water storage part 6, too.
  • the drain pipe 52 is provided with a cold water drain valve 53
  • the drain pipe 62 is provided with a hot water drain valve 63. Therefore, by opening the drain valves 53 and 63 at the time of maintenance or the like, the storage unit 5 and the hot water storage unit 6 can be emptied.
  • a communication passage 38 is provided which communicates the upstream side of the cold water discharge valve 33 of the cold water passage 31 and the hot water passage 32 between the hot water discharge valve 35 and the flow passage switching valve 37. Then, an ozone generation unit 8 as a sterilizing fluid generation unit and an ozonolysis unit 81 as a sterilizing component decomposition unit are provided in series near the cold water discharge valve 33 of the communication passage 38 and near the hot water discharge valve 35.
  • the ozone generator 8 generates ozone gas as a sterilizing fluid, and can supply the ozone gas into the purified water supply path 3.
  • the ozonolysis unit 81 recovers the ozone gas in the purified water supply path 3 at the end of the sterilization in the purified water supply path 3 to decompose ozone which is a sterilizing component.
  • the water treatment apparatus 1 is provided with an operation panel (not shown) in the main body 11, and an operation signal of the operation panel is sent to the control unit 9 to control various electric devices of the water treatment apparatus 1. ing.
  • the cold water drain valve 53 and the hot water drain valve 63 are manually opened and closed as required.
  • a two-dot chain line shown in FIG. 1 is a wire for electrically connecting the control unit 9 and various electric devices.
  • the heating part 61 of the hot water storage part 6 may be a resistance heating type heater generally used, it can be constituted also using a Peltier device. That is, as is generally known, the Peltier element has a heat dissipation side and a heat absorption side, and in this case, the heat dissipation side of the Peltier element is used to heat the water in the hot water storage portion 6.
  • the temperature of the hot water to be warmed is preferably set in the range of about 60 ° C. to about 95 ° C., but a desired constant temperature, for example, 60 ° C., 80 ° C., 95 It may be set as a specific temperature such as ° C or more.
  • the control unit 9 switches the flow path switching valve 37 and opens the hot water discharge valve 35 at the same time, and operates the hot water supply pump P2. Do. As a result, the hot water in the hot water storage section 6 is discharged from the hot water discharge port 36.
  • the hot water storage unit 6 is provided with a heat retention function, and the heating unit 61 is operated even when the water treatment apparatus 1 is stopped, so that the water temperature in the hot water storage unit 6 becomes a predetermined temperature (for example, 60 °). You can keep it warm at C).
  • the heat absorption side of the Peltier element can be used to form a cold water storage unit (not shown).
  • the cold water reservoir is provided as described above, the cold water can be used besides the hot water.
  • the water treatment apparatus 1 has a water flow mode capable of discharging cold water or hot water and a sterilization mode for sterilizing the purified water supply path 3, and these modes can be selected by the operation panel.
  • the raw water supply valve 22 When the user selects the water flow mode on the operation panel, the raw water supply valve 22 is switched to connect the raw water supply passage 21 and the raw water introduction passage 41 with each other. Then, as shown by a dotted line in FIG. 2, the raw water supplied from the raw water supply passage 21 is purified by the purification unit 4 and becomes purified water, and the purified water flows into the cold water passage 31 and the hot water passage 32.
  • the purified water that has flowed into the hot water passage 32 is stored in the hot water storage unit 6, and it is preferable that the stored water be preheated by the heating unit 61.
  • the cold water discharge valve 33 When the cold water is selected on the operation panel, the cold water discharge valve 33 is opened, and the purified water generated by the purification unit 4 is discharged from the cold water discharge port 34 via the cold water passage 31.
  • the white triangle shows the communication state
  • the black triangle shows the interruption
  • the hot water discharge valve 35 is switched at the same time as the flow path switching valve 37 is switched. Opens.
  • the hot water in the hot water storage unit 6 passes through the hot water channel 32 on the secondary side of the hot water storage unit 6 by the operation of the hot water supply pump P2. The water is discharged from the hot water discharge port 36.
  • both the cold water discharge valve 33 and the hot water discharge valve 35 are closed, and the raw water feed valve 22 is switched so as to connect the raw water introduction passage 41 and the circulating water supply passage 51.
  • the temporary water supply pump P3 When the user selects the sterilization mode on the operation panel, the temporary water supply pump P3 is activated to circulate the water in the purified water supply path 3, specifically the water in the cold water path 31 and the hot water path 32 shown by broken lines in FIG. Pass the passage 7 and transfer it into the reservoir 5. Therefore, the purified water supply path 3 to be disinfected in the present embodiment is a part which transfers water to the storage part 5 and becomes empty, and in the present embodiment, it becomes a part shown by a broken line in FIG. Therefore, the purified water supply path 3 described below indicates a portion to be sterilized after transferring water, and is a portion shown by a broken line in FIG. 3 of the cold water passage 31 and the heat water passage 32. At this time, the circulation path 7 also becomes a portion to be sterilized at the same time.
  • the water in the purified water supply path 3 is transferred to the storage unit 5, so that in the sterilization mode, the water in the purified water supply path 3 is temporarily evacuated in the storage portion 5. That is, by evacuating the water in the storage unit 5 in this manner, the inside of the purified water supply path 3 to be sterilized can be emptied.
  • the hot water in the hot water storage unit 6 may be evacuated to the storage unit 5, the hot water storage unit also affects the water temperature when the water in the storage unit 5 is reused as described later. It is preferable to leave the hot water in 6 as it is. Further, since the hot water storage portion 6 and the heat channel 32 on the secondary side of the hot water storage portion 6 are heated and sterilized by the hot water, it is not necessary to necessarily perform the ozone sterilization of the present embodiment.
  • a water level sensor is provided in the storage unit 5 or a timer is set in the control unit 9 It is built-in etc., and it is made to detect an empty state with these water level sensors or timers.
  • the ozone generation unit 8 is operated, and as shown in FIG. Switch to communicate. Then, the ozone gas generated by the ozone generating unit 8 flows through the cold water passage 31 by the temporary water supply pump P3 and flows into the hot water passage 32 as shown by the broken line and the arrow in FIG. After passing through the channel switching valve 37, it reaches the ozonolysis unit 81. As a result, the path through which the ozone gas passes is sterilized. At this time, although not shown, a structure in which ozone gas does not enter the storage unit 5 from the branch path 71 is provided. Then, the ozone gas finally reaching the ozone decomposition unit 81 is decomposed by the ozone decomposition unit 81 and detoxified.
  • the water evacuated to the storage unit 5 is used again as the raw water. That is, the circulation pump P1 is operated by the termination of the sterilization mode, and the water in the storage unit 5 is supplied from the circulation water supply passage 51 to the purification unit 4 through the raw water supply valve 22 and the raw water introduction passage 41. Therefore, the purified water purified by the purification unit 4 flows into the cold water passage 31 and the heat water passage 32, and the above-described water flow mode can be executed.
  • the sterilization mode can be selected by the user manually operating the operation panel, but may be controlled to automatically enter the sterilization mode.
  • the sterilization mode can be executed in a predetermined time zone by a timer or the like. In this case, it is preferable to control to be in the sterilization mode automatically at night when the frequency of use is low.
  • generation means of the ozone gas by a discharge system, an ultraviolet system, etc. are used.
  • the fluid is not limited to ozone gas, and may be a fluid having a sterilizing component such as ethylene oxide or formaldehyde.
  • the ozone decomposition unit 81 may have any structure as long as it can decompose ozone, such as activated carbon, ultraviolet light, or a heater. Moreover, when using an ultraviolet-ray and a heater as an ozone decomposition part, it is preferable to control the ozone decomposition part 81 automatically by the control part 9. FIG. That is, when the sterilization state is maintained, the ozonolysis unit 81 is stopped, and when the sterilization is completed, the ozonolysis unit 81 is operated to decompose ozone.
  • an ozone concentration detector may be separately provided to confirm that the concentration has been reduced to a safe concentration.
  • an ultraviolet ray absorption method can be used as an ozone concentration detection means, and the ozone concentration can be detected by measuring the absorbance by irradiating ultraviolet rays around a wavelength of 254 nm.
  • a semiconductor sensor as another ozone concentration detection means. That is, a semiconductor such as In2O3 or SnO3 is characterized in that the electric conductivity changes due to adsorption of ozone gas, and the ozone concentration is detected by measuring the change in electric resistance of the thin film obtained by oxidizing the thin film surface of the semiconductor with ozone. it can.
  • ozone is characterized by changing the blue color of indigo carmine used as a colorant to white, and this principle may be used to detect the ozone concentration.
  • this principle may be used to detect the ozone concentration.
  • any means other than these can be used as long as the ozone concentration can be detected.
  • the raw water supplied from the raw water supply unit 2 is purified by the purification unit 4, and the purified water is Water is supplied to the cold water passage 31 and the heat water passage 32. Then, cold water can be discharged from the cold water discharge port 34 by opening the cold water discharge valve 33, while hot water can be discharged from the hot water discharge port 36 by opening the hot water discharge valve 35.
  • the water in the purified water supply path 3 was once evacuated to the reservoir 5 to empty the purified water supply path 3, and the sterilizing fluid generator 8 generated the empty purified water supply path 3.
  • Supply ozone gas and sterilize When sterilization is completed, the bactericidal component of the bactericidal fluid in the purified water supply path 3 can be decomposed by the bactericidal component decomposing unit 81, and then the water evacuated in the storage unit 5 can be used again as raw water.
  • the water in the purified water supply path 3 can be evacuated to the storage unit 5 at the time of sterilization, the water removing operation becomes unnecessary, and the workability at the time of sterilization can be improved.
  • the evacuated water can be reused as raw water after sterilization is completed, economic efficiency can be enhanced.
  • FIG. 4 is a view showing a second embodiment of the present invention, and the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted to avoid duplication.
  • the water treatment apparatus 1A of the present embodiment is mainly different from the first embodiment in that the storage unit 5A also serves as a raw water supply unit.
  • the water treatment apparatus 1A of the present embodiment eliminates the raw water feed channel 21 and the raw water feed valve 22 shown in the first embodiment, and purifies the raw water directly from the storage section 5A through the circulation feed channel 51. It is supposed to be taken into The other configuration is the same as that of the first embodiment.
  • the storage unit 5A of the present embodiment has a volume equal to or greater than the combined volume of the raw water and the amount of water evacuated from the purified water supply path 3 in advance.
  • the storage part 5A of this embodiment in order to distinguish storage part 5A of this embodiment from storage part 5 of a 1st embodiment, it explains below as raw water storage part 5A.
  • the circulation water supply passage 51 is connected to the lower portion as in the first embodiment, but in this embodiment, the circulation water supply passage 51 is directly connected to the purification unit 4 and the circulation water supply passage A circulation pump P1 is provided in the middle of 51.
  • the raw water storage part 5A which served as the raw water supply part is provided with a door (not shown) for injecting the raw water.
  • the door may be opened and the raw water may be directly injected into the raw water reservoir 5A, or a pipe (not shown) for injecting the raw water may be provided, and the pipe may be inserted from the opened door to feed the raw water. It may be injected.
  • the raw water storage unit 5A does not necessarily have to be installed in the main body 11, and it is preferable that the door is closed except when the raw water is injected to block the inside of the raw water storage unit 5A from the outside air.
  • the circulation pump P1 is operated and stored in the raw water storage section 5A.
  • Raw water is supplied to the purification unit 4 to be purified.
  • the purified water is supplied to the cold water passage 31 and the hot water passage 32 as in the first embodiment. Thereafter, the operation until the cold water outlet 34 and the hot water outlet 36 are discharged is the same as that of the first embodiment, and the description thereof is omitted here.
  • the temporary water supply pump P3 operates in the same manner as in the first embodiment, and the water in the purified water supply channel 3 is stored from the circulation channel 7 via the branch channel 71 It is evacuated to the part 5A.
  • the ozone gas generated by the ozone generation unit 8 is supplied to the empty clean water supply path 3 to sterilize it, and when sterilization is completed, the ozone decomposition unit 81 decomposes the ozone, and this sterilization process It is similar to the first embodiment.
  • the operation of the circulation pump P1 introduces the water evacuated to the raw water storage unit 5A, that is, the water mixed with the original raw water into the purification unit 4 via the circulation water supply passage 51.
  • the water of the raw water reservoir 5A can be used again as raw water.
  • the storage portion 5 of the first embodiment can be obtained.
  • the raw water storage portion 5A also serves as a raw water supply portion. As a result, the raw water feed channel 21 and the raw water feed valve 22 (see FIG. 1) are unnecessary, and the water treatment apparatus 1A can be made compact.
  • the water treatment apparatus 1A can be made movable in combination with the downsizing, and the installation location of the apparatus can be easily changed if the power supply can be secured. become able to.
  • FIG. 5 is a view showing a third embodiment of the present invention, and the same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the water treatment apparatus 1B of this embodiment is mainly different from the second embodiment in that a backflow pump P4 as a water backflow unit is provided on the downstream side of the purification unit 4 and the water in the purified water supply path 3 is purified. It is because it was made to evacuate to the raw water storage part 5A as a storage part, making it backflow to 4.
  • the circulation water supply passage 51 is connected to the upper part of the raw water storage unit 5A, when the water in the purified water supply path 3 is evacuated, it flows from the upper part of the raw water storage unit 5A. Further, the circulation path 7 connected to the flow path switching valve 37 is connected to the purified water outflow path 42 instead of the heat flow path 32, and the temporary water supply pump P3 (see FIG. 4) is eliminated.
  • the other configuration is the same as that of the second embodiment.
  • the circulation pump P1 is operated and stored in the raw water storage section 5A.
  • Raw water is supplied to the purification unit 4 to be purified.
  • the purified water that has been purified is supplied to the cold water passage 31 and the hot water passage 32, and then the operation until it is discharged from the cold water outlet 34 and the hot water outlet 36 corresponds to the second embodiment. It is similar.
  • the backflow pump P4 operates, and the water in the clean water supply passage 3 flows back from the cold water passage 31 to the purification unit 4 through the clean water outflow passage 42. Then, the water that has flowed back to the purification unit 4 is evacuated to the raw water storage unit 5A through the circulation water supply passage 51. At this time, the circulation pump P1 is stopped, and the backflowed water passes through the circulation pump P1.
  • ozone gas generated by the ozone generation unit 8 is supplied to the empty clean water supply passage 3 for sterilization, and when sterilization is completed, ozone is decomposed by the ozone decomposition unit 81, and this sterilization is performed.
  • the process is the same as in the second embodiment.
  • the water evacuated to 5 A of raw water storage parts similarly to 2nd Embodiment can be used again as raw water.
  • the backflow pump P4 is provided to supply clean water.
  • the water in the path 3 is transferred back to the purification unit 4 and transferred to the raw water storage unit 5A.
  • a flow path (branch path 71 in FIG. 4) for evacuating the water in the purified water supply path 3 to the raw water storage portion 5A, thereby suppressing the flow path from being complicated. Can.
  • FIG. 6 is a view showing a fourth embodiment of the present invention, and the same components as those of the third embodiment are indicated by the same reference numerals and the description thereof will be omitted.
  • the water treatment apparatus 1C of the present embodiment is mainly different from the third embodiment in that the raw water reservoir 5A as a reservoir is disposed below the purified water supply path 3.
  • the water treatment apparatus 1C of the present embodiment arranges the raw water storage portion 5A in the direction of gravity below the cold water passage 31 which is empty at least when sterilizing the clean water supply passage 3 and places the water in the cold water passage 31 by gravity. It is made to evacuate to the raw water storage part 5A. As a result, the backflow pump P4 of the third embodiment becomes unnecessary, and the backflow pump P4 can be eliminated.
  • the water to be evacuated flows back through the purification unit 4 and flows into the circulation water supply channel 51.
  • the circulation water supply channel 51 is cleaned with the purification unit 4 so as to easily flow from the purification unit 4 into the raw water storage unit 5A.
  • the water evacuated to 5 A of raw water storage parts like the 3rd embodiment can be used again as raw water.
  • the pipe of the circulation pump P1 be disposed in a state of extending to the lower part of the raw water reservoir 5A.
  • the upper and lower relationship between the raw water storage portion 5A and the purified water supply path 3 is specified, and basically the water treatment apparatus 1B of the third embodiment except for eliminating the backflow pump P4. It has the same configuration as
  • the raw water storage portion 5A is a purified water supply portion It is arranged below 3. Therefore, when the circulation pump P1 is stopped, the water in the purified water supply passage 3 is automatically evacuated to the raw water storage portion 5A by gravity. As a result, since the backflow pump P4 is not required, the structure of the water treatment apparatus 1C is simplified, and further downsizing and cost reduction can be achieved.
  • the feature portion is applied to the third embodiment.
  • the present invention can be applied to the first and second embodiments.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The present invention uses a purification unit (4) to purify raw water supplied from a raw water supply unit (2) and passes the result to a purified water supply pathway (3). The present invention is provided with at least: a reservoir unit (5) that can retain at least the water in the purified water supply pathway (3); a sterilizing fluid generating unit (8) that can generate a sterilizing fluid containing a sterilizing component and supply the result into the purified water supply pathway (3); and a sterilizing component decomposition unit (81) that, at the completion of sterilization, recovers the sterilizing fluid in the purified water supply pathway (3) and decomposes the sterilizing component. Also, during sterilization of the purified water supply pathway (3), the water in the purified water supply pathway (3) is transferred to the reservoir unit (5). This transferred water is used as raw water after sterilization.

Description

水処理装置Water treatment equipment
 本発明は、水道水などの原水を浄化して浄水を生成する水処理装置に関する。 The present invention relates to a water treatment apparatus for purifying raw water such as tap water to generate purified water.
 従来より、水道水や井戸水などの原水を浄化して浄水を生成する水処理装置では、ある程度の使用期間が経過した時に経路内を殺菌することが提案されており、その一例として、オゾンガスを用いて殺菌する水処理装置が知られている(例えば、特許文献1参照)。 Conventionally, in a water treatment apparatus that purifies raw water such as tap water or well water to generate purified water, it has been proposed to sterilize the inside of the route when a certain period of use has passed, and ozone gas is used as an example. There is known a water treatment apparatus for sterilizing (see, for example, Patent Document 1).
特開平10-337324号公報Japanese Patent Application Laid-Open No. 10-337324
 しかしながら、上記従来の水処理装置では、オゾンガスで殺菌する際に殺菌する経路内を一旦空の状態として、その空となった経路内にオゾンガスを所定濃度で充満させる必要がある。このとき、特許文献1の水処理装置では、経路内を水抜きして排水することにより空にするようにしている。 However, in the above-described conventional water treatment apparatus, it is necessary to temporarily set the inside of the path that has been emptied to a predetermined concentration, with the inside of the path that is sterilized when sterilizing with ozone gas empty. At this time, in the water treatment apparatus of Patent Document 1, the inside of the path is drained and drained to empty it.
 したがって、殺菌する度に水抜き作業が必要となって作業性が悪いものとなり、また、水抜きした水が排水されるため、経済性も悪くなってしまう恐れがあった。 Therefore, every time sterilization is required, draining work becomes necessary, and the workability becomes poor. Further, since drained water is drained, there is a fear that the economic efficiency will be deteriorated.
 そこで、本発明は、排水することなく経路内を空にして殺菌することのできる水処理装置を得ることを目的とする。 Therefore, an object of the present invention is to obtain a water treatment apparatus capable of emptying and sterilizing the inside of a route without drainage.
 上記目的を達成するために、本発明の第1の特徴は、原水供給部と、前記原水供給部から供給された原水を浄化して浄水供給経路に通水する浄化部と、少なくとも前記浄水供給経路内の水を溜めることができる貯留部と、殺菌成分を含む殺菌流体を生成し当該殺菌流体を前記浄水供給経路内に供給可能な殺菌流体生成部と、殺菌の終了時に前記浄水供給経路内の殺菌流体を回収して殺菌成分を分解する殺菌成分分解部と、を備え、前記浄水供給経路の殺菌時に、当該浄水供給経路内の水を前記貯留部に移送することを要旨とする。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a raw water supply unit, a purification unit for purifying raw water supplied from the raw water supply unit and passing the purified water to a purified water supply path; A reservoir capable of storing water in a channel, a sterilizing fluid generator capable of supplying a bactericidal fluid containing a bactericidal component and supplying the bactericidal fluid into the purified water supply channel, and the purified water supply channel at the end of sterilization The sterilizing component decomposing unit for recovering the sterilizing fluid and decomposing the sterilizing component, and transferring the water in the clean water supply channel to the storage unit when the clean water supply channel is sterilized.
 第2の特徴は、前記貯留部が、前記原水供給部を兼ねることを要旨とする。 A second feature of the present invention is that the storage unit doubles as the raw water supply unit.
 第3の特徴は、前記浄化部の下流側に、前記浄水供給経路内の水を前記浄化部に逆流させて前記貯留部に移送する水逆流部を設けたことを要旨とする。 A third feature of the present invention is that a water backflow unit is provided downstream of the purification unit to backflow water in the purified water supply path to the purification unit and transfer the water to the storage unit.
 第4の特徴は、前記貯留部を、前記浄水供給経路よりも下方に配置したことを要旨とする。 A fourth feature of the present invention is that the reservoir is disposed below the purified water supply path.
 本発明の水処理装置によれば、浄水供給経路を殺菌する際には、浄水供給経路内の水を貯留部に移送して浄水供給経路内を空とし、この空となった浄水供給経路に殺菌流体生成部で生成した殺菌流体を供給する。殺菌が終了すると浄水供給経路内の殺菌流体を殺菌成分分解部で分解する。このように、殺菌時には浄水供給経路内の水を貯留部に一旦退避させておくことができるため、水抜き作業が不要となり、殺菌時の作業性を向上させることができる。また、殺菌終了後は退避させた水を再利用できるため、経済性をも高めることができる。 According to the water treatment apparatus of the present invention, when sterilizing the clean water supply path, the water in the clean water supply path is transferred to the storage section to empty the clean water supply path, and the empty clean water supply path is Supply the sterilizing fluid generated by the sterilizing fluid generator. When sterilization is completed, the sterilizing fluid in the purified water supply channel is decomposed in the sterilizing component decomposition unit. As described above, since the water in the purified water supply path can be temporarily evacuated to the storage part at the time of sterilization, the water removing operation becomes unnecessary, and the workability at the time of sterilization can be improved. In addition, since the evacuated water can be reused after sterilization, economic efficiency can be enhanced.
本発明にかかる水処理装置の第1実施形態を概略的に示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows roughly 1st Embodiment of the water treatment apparatus concerning this invention. 図1に示す水処理装置の通水モードを示す全体構成図である。It is a whole block diagram which shows the water flow mode of the water treatment apparatus shown in FIG. 図1に示す水処理装置の殺菌モードを示す全体構成図である。It is a whole block diagram which shows the sterilization mode of the water treatment apparatus shown in FIG. 本発明にかかる水処理装置の第2実施形態を概略的に示す全体構成図である。It is a whole block diagram which shows roughly 2nd Embodiment of the water treatment apparatus concerning this invention. 本発明にかかる水処理装置の第3実施形態を概略的に示す全体構成図である。It is a whole block diagram which shows roughly 3rd Embodiment of the water treatment apparatus concerning this invention. 本発明にかかる水処理装置の第4実施形態を概略的に示す全体構成図である。It is a whole block diagram which shows roughly 4th Embodiment of the water treatment apparatus concerning this invention.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[第1実施形態]
 図1~図3は、本発明の第1実施形態にかかる水処理装置1を示した図である。本実施形態の水処理装置1は、水道水や井戸水などの原水を浄化して飲用に適する浄水を生成し、且つ、浄水供給経路3内の殺菌処理を可能とするものである。
First Embodiment
1 to 3 show a water treatment apparatus 1 according to a first embodiment of the present invention. The water treatment apparatus 1 of the present embodiment purifies raw water such as tap water and well water to generate clean water suitable for drinking, and enables sterilization in the clean water supply path 3.
 すなわち、図1に示すように、本実施形態の水処理装置1は、原水供給部2と、この原水供給部2から供給された原水を浄化して浄水供給経路3に通水する浄化部4と、少なくとも浄水供給経路3内の水を溜めることができる貯留部5と、を備えている。また、水処理装置1は、上述した原水供給部2、浄水供給経路3、浄化部4、貯留部5などがカバーなどで覆われて本体部11が構成されている。 That is, as shown in FIG. 1, the water treatment apparatus 1 according to this embodiment includes the raw water supply unit 2 and the purification unit 4 that purifies the raw water supplied from the raw water supply unit 2 and passes the purified water to the clean water supply path 3. And a reservoir 5 capable of storing water at least in the purified water supply path 3. In the water treatment apparatus 1, the above-described raw water supply unit 2, the purified water supply path 3, the purification unit 4, the storage unit 5, and the like are covered with a cover or the like to form the main unit 11.
 原水供給部2は、図示省略した水道管などの原水源に接続されて本体部11内に原水を取り込む原水給水路21と、本体部11内に設けられて原水給水路21の端末に配置される原水給水弁22とを備えている。原水給水弁22は、本実施形態では三方弁で構成されており、1つの弁口に原水給水路21が接続され、もう1つの弁口に浄化部4の原水導入路41が接続され、残りの弁口に貯留部5の底部に連通する循環給水路51が接続されている。この循環給水路51には、貯留部5内の水を原水給水弁22を介して浄化部4に圧送する循環ポンプP1が設けられている。 The raw water supply unit 2 is connected to a raw water source such as a water pipe (not shown) and takes the raw water into the main body 11, and is provided in the raw water feed path 21 and the main body 11 and disposed at the terminal of the raw water feed path 21 And a raw water feed valve 22. The raw water feed valve 22 is a three-way valve in the present embodiment, the raw water feed passage 21 is connected to one valve port, the raw water introduction passage 41 of the purification unit 4 is connected to the other valve port, The circulation water supply passage 51 communicating with the bottom portion of the storage unit 5 is connected to the valve port of the second embodiment. The circulation water supply passage 51 is provided with a circulation pump P1 that pumps the water in the storage unit 5 to the purification unit 4 via the raw water supply valve 22.
 浄化部4は、原水を浄化して浄水を生成する機能を有しており、MF膜(精密ろ過膜)、UF膜(限外ろ過膜)またはRO膜やNF膜(逆浸透膜)などの分離膜を用いて構成されている。また、これら分離膜以外にも水の浄化を可能とする他の手段を用いることもできる。例えば、活性炭などの吸着材料や中空糸膜または砂ろ過やイオン交換樹脂などを用いることができる。 The purification unit 4 has a function of purifying raw water to generate purified water, and may be an MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), RO membrane, NF membrane (reverse osmosis membrane), etc. It is configured using a separation membrane. In addition to these separation membranes, other means capable of purifying water can also be used. For example, adsorption materials such as activated carbon, hollow fiber membranes, sand filtration, ion exchange resins, etc. can be used.
 浄水供給経路3は、浄化部4の出口に連通する浄水流出路42と、この浄水流出路42から二股状に分岐して設けられる冷水路31および熱水路32を備えている。 The purified water supply channel 3 includes a purified water outlet channel 42 communicating with the outlet of the purification unit 4, and a cold water channel 31 and a thermal water channel 32 provided bifurcatedly from the purified water outlet channel 42.
 冷水路31には、下流側端末部に冷水吐水弁33が設けられており、この冷水吐水弁33から冷水吐水口34が本体部11の外側に延びている。また、熱水路32には、下流側端末部に熱水吐水弁35が設けられており、この熱水吐水弁35から熱水吐水口36が本体部11の外側に延びている。 A cold water discharge valve 33 is provided at the downstream end of the cold water passage 31, and a cold water discharge port 34 extends from the cold water discharge valve 33 to the outside of the main body 11. Further, a hot water spout valve 35 is provided at the downstream end of the thermal water passage 32, and a hot water spout 36 extends from the hot water spout valve 35 to the outside of the main body 11.
 熱水路32の途中には、加熱部61を内臓した熱水貯留部6が設けられている。そして、熱水路32の一次側(上流側)が熱水貯留部6の上部に接続されているとともに、二次側(下流側)が熱水貯留部6の下部に接続されている。また、熱水貯留部6内の水は、加熱部61により所定温度に加温されるようになっている。 In the middle of the heat flow channel 32, a hot water storage unit 6 incorporating the heating unit 61 is provided. The primary side (upstream side) of the thermal water passage 32 is connected to the upper portion of the hot water storage portion 6, and the secondary side (downstream side) is connected to the lower portion of the hot water storage portion 6. The water in the hot water storage unit 6 is heated by the heating unit 61 to a predetermined temperature.
 熱水貯留部6と熱水吐水弁35との間の経路には流路切替弁37が設けられている。流路切替弁37は三方弁で構成されており、1つの弁口に熱水路32の熱水貯留部6側が接続され、もう1つの弁口に熱水路32の熱水吐水弁35側が接続され、残りの弁口には殺菌流体の循環路7が接続されている。 A passage switching valve 37 is provided in a path between the hot water storage portion 6 and the hot water discharge valve 35. The flow path switching valve 37 is constituted by a three-way valve, one hot water storage portion 6 side of the hot water passage 32 is connected to one valve port, the hot water discharge valve 35 side of the hot water flow passage 32 is another valve port The circulation passage 7 of the sterilizing fluid is connected to the remaining valve ports.
 熱水貯留部6から流路切替弁37に至る二次側の熱水路32の途中には、熱水を熱水吐水口36方向へと圧送する熱水供給ポンプP2が設けられている。 A hot water supply pump P2 for pumping hot water in the direction of the hot water discharge port 36 is provided in the middle of the heat passage 32 on the secondary side from the hot water storage portion 6 to the flow path switching valve 37.
 循環路7は、殺菌流体を流す際には、流路切替弁37に接続される方向が下流側となり、上流側となる反対側端は熱水路32の熱水貯留部6よりも上流側に連通されている。この循環路7には、殺菌時に稼働して殺菌流体を下流側へと移送する一時給水ポンプP3が設けられている。また、この一時給水ポンプP3の下流側で分岐した分岐路71は、貯留部5の上部に接続されている。 In the circulation path 7, when the sterilizing fluid flows, the direction connected to the flow path switching valve 37 is on the downstream side, and the opposite end, which is the upstream side, is on the upstream side of the hot water storage portion 6 of the heat channel 32. It is in communication with The circulation passage 7 is provided with a temporary water supply pump P3 which operates at the time of sterilization and transfers the sterilizing fluid to the downstream side. Further, a branch path 71 branched on the downstream side of the temporary water supply pump P3 is connected to the upper portion of the storage unit 5.
 また、貯留部5の下部にはドレン管52が接続されている一方で、熱水貯留部6の下部にもドレン管62が接続されている。そして、ドレン管52には冷水排水弁53が設けられており、ドレン管62には熱水排水弁63が設けられている。したがって、メンテナンス時などにあって排水弁53、63を開弁することにより、貯留部5内および熱水貯留部6内を空にすることができる。 Moreover, while the drain pipe 52 is connected to the lower part of the storage part 5, the drain pipe 62 is connected to the lower part of the hot water storage part 6, too. The drain pipe 52 is provided with a cold water drain valve 53, and the drain pipe 62 is provided with a hot water drain valve 63. Therefore, by opening the drain valves 53 and 63 at the time of maintenance or the like, the storage unit 5 and the hot water storage unit 6 can be emptied.
 ここで、冷水路31の冷水吐水弁33の上流側と、熱水吐水弁35と流路切替弁37との間の熱水路32と、を連通する連通路38が設けられている。そして、この連通路38の冷水吐水弁33寄りに殺菌流体生成部としてのオゾン生成部8と、熱水吐水弁35寄りに殺菌成分分解部としてのオゾン分解部81とが直列に設けられる。 Here, a communication passage 38 is provided which communicates the upstream side of the cold water discharge valve 33 of the cold water passage 31 and the hot water passage 32 between the hot water discharge valve 35 and the flow passage switching valve 37. Then, an ozone generation unit 8 as a sterilizing fluid generation unit and an ozonolysis unit 81 as a sterilizing component decomposition unit are provided in series near the cold water discharge valve 33 of the communication passage 38 and near the hot water discharge valve 35.
 オゾン生成部8は、殺菌流体としてのオゾンガスを生成し、このオゾンガスを浄水供給経路3内に供給可能となっている。また、オゾン分解部81は、浄水供給経路3内の殺菌終了時に、この浄水供給経路3内のオゾンガスを回収して殺菌成分であるオゾンを分解するようになっている。 The ozone generator 8 generates ozone gas as a sterilizing fluid, and can supply the ozone gas into the purified water supply path 3. The ozonolysis unit 81 recovers the ozone gas in the purified water supply path 3 at the end of the sterilization in the purified water supply path 3 to decompose ozone which is a sterilizing component.
 水処理装置1には、図示省略した操作パネルが本体部11に備わっており、この操作パネルの操作信号は制御部9に送られて、水処理装置1の各種電気機器を制御するようになっている。この電気機器としては、加熱部61、オゾン生成部8、原水給水弁22、流路切替弁37、冷水吐水弁33、熱水吐水弁35、循環ポンプP1、熱水供給ポンプP2、一時給水ポンプP3があり、これらが制御部9によって制御される。なお、冷水排水弁53および熱水排水弁63は、必要に応じて手動で開閉するようになっている。また、図1中に示す2点鎖線は、制御部9と各種電気機器とを電気的に接続する配線である。 The water treatment apparatus 1 is provided with an operation panel (not shown) in the main body 11, and an operation signal of the operation panel is sent to the control unit 9 to control various electric devices of the water treatment apparatus 1. ing. As the electric device, a heating unit 61, an ozone generation unit 8, a raw water feed valve 22, a flow path switching valve 37, a cold water spout valve 33, a hot water spout valve 35, a circulation pump P1, a hot water supply pump P2, a temporary water feed pump There is P3 and these are controlled by the controller 9. The cold water drain valve 53 and the hot water drain valve 63 are manually opened and closed as required. Further, a two-dot chain line shown in FIG. 1 is a wire for electrically connecting the control unit 9 and various electric devices.
 ところで、熱水貯留部6の加熱部61は、一般に用いられる抵抗発熱式のヒータであってもよいが、ペルチェ素子を用いても構成できる。すなわち、ペルチェ素子は、一般に知られるように放熱側と吸熱側とを備えており、この場合はペルチェ素子の放熱側を利用して熱水貯留部6内の水を加温することになる。 By the way, although the heating part 61 of the hot water storage part 6 may be a resistance heating type heater generally used, it can be constituted also using a Peltier device. That is, as is generally known, the Peltier element has a heat dissipation side and a heat absorption side, and in this case, the heat dissipation side of the Peltier element is used to heat the water in the hot water storage portion 6.
 そして、制御部9によって加熱部61を制御する場合は、熱水貯留部6内に水温センサを設け、この水温センサの検出値を制御部9にフィードバックして制御することが好ましい。この場合、温めようとする熱水の温度は、60゜C前後~95゜C前後の範囲に設定されるのが好ましいが、所望する一定の温度、例えば、60゜C、80゜C、95゜C以上などの特定の温度として設定してもよい。 And when controlling the heating part 61 by the control part 9, it is preferable to provide a water temperature sensor in the hot water storage part 6, and to feed back and control the detected value of this water temperature sensor to the control part 9. In this case, the temperature of the hot water to be warmed is preferably set in the range of about 60 ° C. to about 95 ° C., but a desired constant temperature, for example, 60 ° C., 80 ° C., 95 It may be set as a specific temperature such as ° C or more.
 制御部9は、熱水貯留部6内の熱水が所望の温度に達すると、流路切替弁37を切り替えると同時に熱水吐水弁35を開弁し、そして、熱水供給ポンプP2を稼働する。これにより、熱水貯留部6内の熱水が熱水吐水口36から吐水されることになる。この場合、熱水貯留部6に保温機能を設けて、水処理装置1が停止している時も加熱部61を作動して、熱水貯留部6内の水温を所定温度(例えば、60゜C)に保温しておくこともできる。 When the hot water in the hot water storage unit 6 reaches a desired temperature, the control unit 9 switches the flow path switching valve 37 and opens the hot water discharge valve 35 at the same time, and operates the hot water supply pump P2. Do. As a result, the hot water in the hot water storage section 6 is discharged from the hot water discharge port 36. In this case, the hot water storage unit 6 is provided with a heat retention function, and the heating unit 61 is operated even when the water treatment apparatus 1 is stopped, so that the water temperature in the hot water storage unit 6 becomes a predetermined temperature (for example, 60 °). You can keep it warm at C).
 また、上述したようにペルチェ素子を加熱部61として用いた場合は、このペルチェ素子の吸熱側を利用して図示しない冷水貯留部を構成することができる。このように冷水貯留部を設けた場合は、熱水以外にも冷水を利用できるようになる。 When the Peltier element is used as the heating unit 61 as described above, the heat absorption side of the Peltier element can be used to form a cold water storage unit (not shown). When the cold water reservoir is provided as described above, the cold water can be used besides the hot water.
 水処理装置1は、冷水または熱水を吐水できる通水モードと、浄水供給経路3を殺菌する殺菌モードとが備わっており、これらのモードは操作パネルによって選択できるようになっている。 The water treatment apparatus 1 has a water flow mode capable of discharging cold water or hot water and a sterilization mode for sterilizing the purified water supply path 3, and these modes can be selected by the operation panel.
「通水モード」
 利用者が操作パネルで通水モードを選択すると、原水給水路21と原水導入路41とを連通するように原水供給弁22が切り替わる。すると、図2中に点線で示すように、原水給水路21から供給される原水は浄化部4で浄化されて浄水となり、この浄水は冷水路31および熱水路32に流入する。熱水路32に流入した浄水は熱水貯留部6に溜められるが、この溜められた水を加熱部61によって予備加熱しておくことが好ましい。
"Water flow mode"
When the user selects the water flow mode on the operation panel, the raw water supply valve 22 is switched to connect the raw water supply passage 21 and the raw water introduction passage 41 with each other. Then, as shown by a dotted line in FIG. 2, the raw water supplied from the raw water supply passage 21 is purified by the purification unit 4 and becomes purified water, and the purified water flows into the cold water passage 31 and the hot water passage 32. The purified water that has flowed into the hot water passage 32 is stored in the hot water storage unit 6, and it is preferable that the stored water be preheated by the heating unit 61.
 そして、操作パネルで冷水を選択した場合は冷水吐水弁33が開弁し、浄化部4で生成された浄水は冷水路31を経由して冷水吐水口34から吐出される。なお、水処理装置1に備わる各種弁は、図2に示すように、白抜きの三角が連通状態、黒塗りの三角が遮断状態を示しており、これは図3にあっても同様とする。 When the cold water is selected on the operation panel, the cold water discharge valve 33 is opened, and the purified water generated by the purification unit 4 is discharged from the cold water discharge port 34 via the cold water passage 31. In addition, as shown in FIG. 2, as for the various valves with which the water treatment apparatus 1 is equipped, the white triangle shows the communication state, and the black triangle shows the interruption | blocking state, and even if it exists in FIG. .
 一方、操作パネルで熱水を選択した場合は、上述したように熱水貯留部6内の熱水が所望の温度に達した時点で、流路切替弁37が切り替わると同時に熱水吐水弁35が開弁する。これにより、図2中に一点鎖線で示すように、熱水貯留部6内の熱水は、熱水供給ポンプP2の稼働によって熱水貯留部6の二次側の熱水路32を経由して熱水吐水口36から吐水される。 On the other hand, when hot water is selected on the operation panel, when the hot water in the hot water storage portion 6 reaches a desired temperature as described above, the hot water discharge valve 35 is switched at the same time as the flow path switching valve 37 is switched. Opens. As a result, as indicated by the alternate long and short dash line in FIG. 2, the hot water in the hot water storage unit 6 passes through the hot water channel 32 on the secondary side of the hot water storage unit 6 by the operation of the hot water supply pump P2. The water is discharged from the hot water discharge port 36.
 操作パネルによって通水を停止すると、冷水吐水弁33および熱水吐水弁35が共に閉弁状態となり、且つ、原水給水弁22は原水導入路41と循環給水路51とを連通するように切り替わる。 When water flow is stopped by the operation panel, both the cold water discharge valve 33 and the hot water discharge valve 35 are closed, and the raw water feed valve 22 is switched so as to connect the raw water introduction passage 41 and the circulating water supply passage 51.
「殺菌モード」
 利用者が操作パネルで殺菌モードを選択すると、一時給水ポンプP3が稼働して浄水供給経路3内の水、詳細には図3中破線で示す冷水路31および熱水路32内の水を循環路7を通過させて貯留部5内に移送する。したがって、本実施形態で殺菌する浄水供給経路3とは、水を貯留部5に移送して空となる部分であり、本実施形態では図3中破線で示す部分となる。よって、以下に述べる浄水供給経路3とは、水を移送した後に殺菌される部分を示し、冷水路31および熱水路32の図3中破線で示す部分となる。このとき循環路7も同時に殺菌される部分となる。
"Sterilization mode"
When the user selects the sterilization mode on the operation panel, the temporary water supply pump P3 is activated to circulate the water in the purified water supply path 3, specifically the water in the cold water path 31 and the hot water path 32 shown by broken lines in FIG. Pass the passage 7 and transfer it into the reservoir 5. Therefore, the purified water supply path 3 to be disinfected in the present embodiment is a part which transfers water to the storage part 5 and becomes empty, and in the present embodiment, it becomes a part shown by a broken line in FIG. Therefore, the purified water supply path 3 described below indicates a portion to be sterilized after transferring water, and is a portion shown by a broken line in FIG. 3 of the cold water passage 31 and the heat water passage 32. At this time, the circulation path 7 also becomes a portion to be sterilized at the same time.
 このように浄水供給経路3内の水が貯留部5に移送されることにより、殺菌モードでは、浄水供給経路3内の水が貯留部5内に一旦退避されることになる。つまり、このように貯留部5内に水を退避させることにより、殺菌しようとする上記浄水供給経路3内を空にすることができる。 As described above, the water in the purified water supply path 3 is transferred to the storage unit 5, so that in the sterilization mode, the water in the purified water supply path 3 is temporarily evacuated in the storage portion 5. That is, by evacuating the water in the storage unit 5 in this manner, the inside of the purified water supply path 3 to be sterilized can be emptied.
 このとき、熱水貯留部6内の熱水も貯留部5に退避させてもよいが、後述するように貯留部5内の水を再利用する際に水温に影響するため、熱水貯留部6内の熱水はそのままにしておく方が好ましい。また、熱水貯留部6および熱水貯留部6の二次側の熱水路32は熱水により加熱殺菌されるため、必ずしも本実施形態のオゾン殺菌を施す必要はない。 At this time, although the hot water in the hot water storage unit 6 may be evacuated to the storage unit 5, the hot water storage unit also affects the water temperature when the water in the storage unit 5 is reused as described later. It is preferable to leave the hot water in 6 as it is. Further, since the hot water storage portion 6 and the heat channel 32 on the secondary side of the hot water storage portion 6 are heated and sterilized by the hot water, it is not necessary to necessarily perform the ozone sterilization of the present embodiment.
 また、浄水供給経路3内の水を貯留部5内に移送して、浄水供給経路3内が空になった状態を検知するにあたって、貯留部5に水位センサを設けたり制御部9にタイマーを内臓する等し、これら水位センサまたはタイマーで空状態を検知するようにしている。 In addition, in order to transfer the water in the purified water supply path 3 into the storage unit 5 and detect the state in which the purified water supply path 3 is empty, a water level sensor is provided in the storage unit 5 or a timer is set in the control unit 9 It is built-in etc., and it is made to detect an empty state with these water level sensors or timers.
 このように浄水供給経路3内が空になったことを検知すると、オゾン生成部8が稼働するとともに、図3に示すように、流路切替弁37が循環路7とオゾン分解部81とを連通するように切り替わる。すると、オゾン生成部8で生成されたオゾンガスは、図3中破線および矢印に示すように、一時給水ポンプP3によって冷水路31を通過して熱水路32に流入し、そして、循環路7を通過した後に流路切替弁37を介してオゾン分解部81に至る。これにより、オゾンガスが通過する経路が殺菌されることになる。このとき、図示省略したが、分岐路71から貯留部5にオゾンガスが入り込まない構造が施されている。そして、最終的にオゾン分解部81に至ったオゾンガスは、このオゾン分解部81によって分解されて無毒化される。 As described above, when it is detected that the inside of the purified water supply path 3 has become empty, the ozone generation unit 8 is operated, and as shown in FIG. Switch to communicate. Then, the ozone gas generated by the ozone generating unit 8 flows through the cold water passage 31 by the temporary water supply pump P3 and flows into the hot water passage 32 as shown by the broken line and the arrow in FIG. After passing through the channel switching valve 37, it reaches the ozonolysis unit 81. As a result, the path through which the ozone gas passes is sterilized. At this time, although not shown, a structure in which ozone gas does not enter the storage unit 5 from the branch path 71 is provided. Then, the ozone gas finally reaching the ozone decomposition unit 81 is decomposed by the ozone decomposition unit 81 and detoxified.
 そして、殺菌モードが完了すると貯留部5に退避させてあった水が再度原水として用いられる。すなわち、殺菌モードの終了によって循環ポンプP1が稼働し、貯留部5内の水は循環給水路51から原水供給弁22および原水導入路41を通って浄化部4に供給される。したがって、浄化部4で浄化された浄水は冷水路31および熱水路32に流入されることになり、上述した通水モードを実行できることになる。 Then, when the sterilization mode is completed, the water evacuated to the storage unit 5 is used again as the raw water. That is, the circulation pump P1 is operated by the termination of the sterilization mode, and the water in the storage unit 5 is supplied from the circulation water supply passage 51 to the purification unit 4 through the raw water supply valve 22 and the raw water introduction passage 41. Therefore, the purified water purified by the purification unit 4 flows into the cold water passage 31 and the heat water passage 32, and the above-described water flow mode can be executed.
 殺菌モードは、利用者が手動で操作パネルを操作することによって選択することもできるが、自動で殺菌モードとなるように制御してもよい。例えば、タイマーなどによって所定の時間帯に殺菌モードを実行させることができる。この場合、使用頻度の少ない夜中に自動で殺菌モードとなるように制御することが好ましい。 The sterilization mode can be selected by the user manually operating the operation panel, but may be controlled to automatically enter the sterilization mode. For example, the sterilization mode can be executed in a predetermined time zone by a timer or the like. In this case, it is preferable to control to be in the sterilization mode automatically at night when the frequency of use is low.
 ところで、本実施形態のオゾン生成部8としては、放電方式や紫外線方式などによるオゾンガスの生成手段を用いるようにしている。また、オゾンガスに限ること無く、エチレンオキシド、ホルムアルデヒトなどの殺菌成分を有する流体であってもよい。 By the way, as the ozone generation part 8 of this embodiment, the production | generation means of the ozone gas by a discharge system, an ultraviolet system, etc. are used. Further, the fluid is not limited to ozone gas, and may be a fluid having a sterilizing component such as ethylene oxide or formaldehyde.
 オゾン分解部81は、活性炭や紫外線、またはヒータなどのオゾンを分解できる手段であればどのような構造であってもよい。また、オゾン分解部として紫外線やヒータを用いる場合、制御部9によってオゾン分解部81を自動制御することが好ましい。つまり、殺菌状態を維持している時はオゾン分解部81を停止しておき、殺菌が終了した時にオゾン分解部81を稼働してオゾンを分解するようにする。 The ozone decomposition unit 81 may have any structure as long as it can decompose ozone, such as activated carbon, ultraviolet light, or a heater. Moreover, when using an ultraviolet-ray and a heater as an ozone decomposition part, it is preferable to control the ozone decomposition part 81 automatically by the control part 9. FIG. That is, when the sterilization state is maintained, the ozonolysis unit 81 is stopped, and when the sterilization is completed, the ozonolysis unit 81 is operated to decompose ozone.
 また、殺菌モードでは、別途にオゾン濃度検知手段を設けて、安全な濃度まで分解されたことを確認できるようにしてもよい。その場合、オゾン濃度検知手段として例えば紫外線吸収法を用いることができ、これは波長254nm付近の紫外線を照射して吸光度を測定することによりオゾン濃度を検出できる。 In the sterilization mode, an ozone concentration detector may be separately provided to confirm that the concentration has been reduced to a safe concentration. In that case, for example, an ultraviolet ray absorption method can be used as an ozone concentration detection means, and the ozone concentration can be detected by measuring the absorbance by irradiating ultraviolet rays around a wavelength of 254 nm.
 さらに、その他のオゾン濃度検知手段として半導体センサを用いることによっても達成できる。すなわち、In2O3やSnO3などの半導体は、オゾンガスの吸着によって電気伝導度が変化する特徴があり、半導体の薄膜表面をオゾンによって酸化させた薄膜の電気抵抗値の変化を測定することでオゾン濃度を検出できる。 Furthermore, it can be achieved by using a semiconductor sensor as another ozone concentration detection means. That is, a semiconductor such as In2O3 or SnO3 is characterized in that the electric conductivity changes due to adsorption of ozone gas, and the ozone concentration is detected by measuring the change in electric resistance of the thin film obtained by oxidizing the thin film surface of the semiconductor with ozone. it can.
 さらにまた、オゾンは着色料として使用されるインジゴカルミンの青色を白色に変化させる特徴を有しており、この原理を利用してオゾン濃度を検出するようにしてもよい。勿論、これら以外の方法にあってもオゾン濃度を検知できればどのような手段でも用いることができる。 Furthermore, ozone is characterized by changing the blue color of indigo carmine used as a colorant to white, and this principle may be used to detect the ozone concentration. Of course, any means other than these can be used as long as the ozone concentration can be detected.
 以上、説明してきたように、本実施形態の水処理装置1によれば、通水モードでは、原水供給部2から供給された原水を浄化部4で浄化し、その浄水を浄水供給経路3の冷水路31および熱水路32に通水する。そして、冷水吐水弁33を開弁することにより冷水吐水口34から冷水を吐水できる一方、熱水吐水弁35を開弁することにより熱水吐水口36から熱水を吐水できる。 As described above, according to the water treatment apparatus 1 of the present embodiment, in the water flow mode, the raw water supplied from the raw water supply unit 2 is purified by the purification unit 4, and the purified water is Water is supplied to the cold water passage 31 and the heat water passage 32. Then, cold water can be discharged from the cold water discharge port 34 by opening the cold water discharge valve 33, while hot water can be discharged from the hot water discharge port 36 by opening the hot water discharge valve 35.
 次に、殺菌モードでは、浄水供給経路3内の水を一旦貯留部5に退避させて浄水供給経路3内を空とし、この空となった浄水供給経路3に殺菌流体生成部8で生成したオゾンガスを供給して殺菌する。殺菌が終了すると浄水供給経路3内の殺菌流体の殺菌成分を殺菌成分分解部81で分解し、その後に貯留部5に退避させた水を原水として再度用いることができる。 Next, in the sterilizing mode, the water in the purified water supply path 3 was once evacuated to the reservoir 5 to empty the purified water supply path 3, and the sterilizing fluid generator 8 generated the empty purified water supply path 3. Supply ozone gas and sterilize. When sterilization is completed, the bactericidal component of the bactericidal fluid in the purified water supply path 3 can be decomposed by the bactericidal component decomposing unit 81, and then the water evacuated in the storage unit 5 can be used again as raw water.
 したがって、殺菌時には浄水供給経路3内の水を貯留部5に退避させておくことができるため、水抜き作業が不要となり、殺菌時の作業性を向上させることができる。また、殺菌終了後は退避させた水を原水として再利用できるため経済性をも高めることができる。 Therefore, since the water in the purified water supply path 3 can be evacuated to the storage unit 5 at the time of sterilization, the water removing operation becomes unnecessary, and the workability at the time of sterilization can be improved. In addition, since the evacuated water can be reused as raw water after sterilization is completed, economic efficiency can be enhanced.
[第2実施形態]
 図4は、本発明の第2実施形態を示した図であり、上記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとする。
Second Embodiment
FIG. 4 is a view showing a second embodiment of the present invention, and the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted to avoid duplication.
 本実施形態の水処理装置1Aが上記第1実施形態と主に異なる点は、貯留部5Aに原水供給部を兼ねさせたことにある。 The water treatment apparatus 1A of the present embodiment is mainly different from the first embodiment in that the storage unit 5A also serves as a raw water supply unit.
 すなわち、本実施形態の水処理装置1Aは、上記第1実施形態に示した原水給水路21および原水給水弁22をなくして、貯留部5Aから循環給水路51を介して直接原水を浄化部4に取り込むようになっている。その他の構成は第1の実施形態と同様である。 That is, the water treatment apparatus 1A of the present embodiment eliminates the raw water feed channel 21 and the raw water feed valve 22 shown in the first embodiment, and purifies the raw water directly from the storage section 5A through the circulation feed channel 51. It is supposed to be taken into The other configuration is the same as that of the first embodiment.
 したがって、本実施形態の貯留部5Aは、予め原水を溜めておく容量と、浄水供給経路3から退避させる水量とを合わせた量以上の容積が確保されている。ここでは、本実施形態の貯留部5Aを第1の実施形態の貯留部5と区別するために原水貯留部5Aとして以下説明する。 Therefore, the storage unit 5A of the present embodiment has a volume equal to or greater than the combined volume of the raw water and the amount of water evacuated from the purified water supply path 3 in advance. Here, in order to distinguish storage part 5A of this embodiment from storage part 5 of a 1st embodiment, it explains below as raw water storage part 5A.
 原水貯留部5Aは、第1の実施形態と同様に下部に循環給水路51が接続されているが、本実施形態では、この循環給水路51は浄化部4に直接接続され、その循環給水路51の途中に循環ポンプP1が設けられている。 In the raw water storage unit 5A, the circulation water supply passage 51 is connected to the lower portion as in the first embodiment, but in this embodiment, the circulation water supply passage 51 is directly connected to the purification unit 4 and the circulation water supply passage A circulation pump P1 is provided in the middle of 51.
 このように原水供給部を兼ねた原水貯留部5Aは、原水を注入するための図示省略した扉が設けられている。この場合、その扉を開いて原水を直接原水貯留部5A内に注入してもよく、また、原水を注入するための図示省略した配管を設け、開いた扉からその配管を挿入して原水を注入してもよい。この場合、原水貯留部5Aは必ずしも本体部11内に設置する必要はなく、また、原水の注入時以外は扉を密閉して原水貯留部5A内が外気と遮断されていることが好ましい。 Thus, the raw water storage part 5A which served as the raw water supply part is provided with a door (not shown) for injecting the raw water. In this case, the door may be opened and the raw water may be directly injected into the raw water reservoir 5A, or a pipe (not shown) for injecting the raw water may be provided, and the pipe may be inserted from the opened door to feed the raw water. It may be injected. In this case, the raw water storage unit 5A does not necessarily have to be installed in the main body 11, and it is preferable that the door is closed except when the raw water is injected to block the inside of the raw water storage unit 5A from the outside air.
 勿論、本実施形態にあっても通水モードと殺菌モードとを有しており、操作パネルによって通水モードが選択されると、循環ポンプP1が稼働して原水貯留部5Aに貯留されている原水が浄化部4に供給されて浄化される。そして、浄化された浄水は、第1の実施形態と同様に冷水路31および熱水路32に通水されることになる。その後、冷水吐水口34および熱水吐水口36から吐水されるまでの動作は第1の実施形態と同様であり、ここではその説明を省略するものとする。 Of course, even in the present embodiment, there is a water flow mode and a sterilization mode, and when the water flow mode is selected by the operation panel, the circulation pump P1 is operated and stored in the raw water storage section 5A. Raw water is supplied to the purification unit 4 to be purified. Then, the purified water is supplied to the cold water passage 31 and the hot water passage 32 as in the first embodiment. Thereafter, the operation until the cold water outlet 34 and the hot water outlet 36 are discharged is the same as that of the first embodiment, and the description thereof is omitted here.
 一方、操作パネルによって殺菌モードが選択されると、第1の実施形態と同様に一時給水ポンプP3が稼働し、浄水供給路3内の水が循環路7から分岐路71を経由して原水貯留部5Aへと退避される。その後、空となった浄水供給路3にオゾン生成部8で生成したオゾンガスを供給して殺菌し、そして、殺菌が終了するとオゾン分解部81でオゾンが分解されることになり、この殺菌工程は第1の実施形態と同様である。 On the other hand, when the sterilization mode is selected by the operation panel, the temporary water supply pump P3 operates in the same manner as in the first embodiment, and the water in the purified water supply channel 3 is stored from the circulation channel 7 via the branch channel 71 It is evacuated to the part 5A. After that, the ozone gas generated by the ozone generation unit 8 is supplied to the empty clean water supply path 3 to sterilize it, and when sterilization is completed, the ozone decomposition unit 81 decomposes the ozone, and this sterilization process It is similar to the first embodiment.
 そして、殺菌が完了すると、循環ポンプP1の稼働により、原水貯留部5Aに退避させてあった水、つまり、元の原水と混合された水を循環給水路51を介して浄化部4に導入し、その原水貯留部5Aの水を再度原水として用いることができる。 Then, when the sterilization is completed, the operation of the circulation pump P1 introduces the water evacuated to the raw water storage unit 5A, that is, the water mixed with the original raw water into the purification unit 4 via the circulation water supply passage 51. The water of the raw water reservoir 5A can be used again as raw water.
 以上、説明してきたように、本実施形態の水処理装置1Aによれば、上記第1実施形態と同様の効果を奏するのは勿論のこと、それに加えて第1の実施形態の貯留部5を原水貯留部5Aとして原水供給部を兼ねるようにしている。これにより、原水給水路21や原水給水弁22(図1参照)が不要となって水処理装置1Aのコンパクト化を図ることができる。 As described above, according to the water treatment apparatus 1A of the present embodiment, it is a matter of course that the same effects as those of the first embodiment can be obtained, and additionally, the storage portion 5 of the first embodiment can be obtained. The raw water storage portion 5A also serves as a raw water supply portion. As a result, the raw water feed channel 21 and the raw water feed valve 22 (see FIG. 1) are unnecessary, and the water treatment apparatus 1A can be made compact.
 また、このように原水給水路21の引き込みがなくなるので、コンパクト化と相俟って水処理装置1Aを移動式とすることができ、電源さえ確保できれば装置の設置場所を容易に変更することができるようになる。 Moreover, since the draw-in of the raw water supply channel 21 is eliminated in this way, the water treatment apparatus 1A can be made movable in combination with the downsizing, and the installation location of the apparatus can be easily changed if the power supply can be secured. become able to.
[第3実施形態]
 図5は、本発明の第3実施形態を示した図であり、上記第2実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとする。
Third Embodiment
FIG. 5 is a view showing a third embodiment of the present invention, and the same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 本実施形態の水処理装置1Bが上記第2実施形態と主に異なる点は、浄化部4の下流側に水逆流部としての逆流用ポンプP4を設け、浄水供給経路3内の水を浄化部4に逆流させつつ貯留部としての原水貯留部5Aに退避させるようにしたことにある。 The water treatment apparatus 1B of this embodiment is mainly different from the second embodiment in that a backflow pump P4 as a water backflow unit is provided on the downstream side of the purification unit 4 and the water in the purified water supply path 3 is purified. It is because it was made to evacuate to the raw water storage part 5A as a storage part, making it backflow to 4.
 このとき、循環給水路51は、原水貯留部5Aの上部に接続されているので、浄水供給経路3内の水を退避させる際、原水貯留部5Aの上部から流入することになる。また、流路切替弁37に繋がる循環路7は、熱水路32ではなく浄水流出路42に接続されており、また、一時給水ポンプP3(図4参照)が廃止されている。その他の構成は上記第2実施形態と同様である。 At this time, since the circulation water supply passage 51 is connected to the upper part of the raw water storage unit 5A, when the water in the purified water supply path 3 is evacuated, it flows from the upper part of the raw water storage unit 5A. Further, the circulation path 7 connected to the flow path switching valve 37 is connected to the purified water outflow path 42 instead of the heat flow path 32, and the temporary water supply pump P3 (see FIG. 4) is eliminated. The other configuration is the same as that of the second embodiment.
 勿論、本実施形態にあっても通水モードと殺菌モードとを有しており、操作パネルによって通水モードが選択されると、循環ポンプP1が稼働して原水貯留部5Aに貯留されている原水が浄化部4に供給されて浄化される。そして、浄化された浄水は冷水路31および熱水路32に通水されることになり、その後、冷水吐水口34および熱水吐水口36から吐水されるまでの動作は第2の実施形態と同様である。 Of course, even in the present embodiment, there is a water flow mode and a sterilization mode, and when the water flow mode is selected by the operation panel, the circulation pump P1 is operated and stored in the raw water storage section 5A. Raw water is supplied to the purification unit 4 to be purified. Then, the purified water that has been purified is supplied to the cold water passage 31 and the hot water passage 32, and then the operation until it is discharged from the cold water outlet 34 and the hot water outlet 36 corresponds to the second embodiment. It is similar.
 一方、操作パネルによって殺菌モードが選択されると、逆流用ポンプP4が稼働し、浄水供給路3内の水が冷水路31から浄水流出路42を介して浄化部4へと逆流する。そして、浄化部4を逆流した水は循環給水路51を経て原水貯留部5Aへと退避される。このとき、循環ポンプP1は停止しており、逆流した水は循環ポンプP1を通過するようになっている。 On the other hand, when the sterilization mode is selected by the operation panel, the backflow pump P4 operates, and the water in the clean water supply passage 3 flows back from the cold water passage 31 to the purification unit 4 through the clean water outflow passage 42. Then, the water that has flowed back to the purification unit 4 is evacuated to the raw water storage unit 5A through the circulation water supply passage 51. At this time, the circulation pump P1 is stopped, and the backflowed water passes through the circulation pump P1.
 次に、空となった浄水供給路3にオゾン生成部8で生成されたオゾンガスを供給して殺菌し、そして、殺菌が終了するとオゾン分解部81でオゾンが分解されることになり、この殺菌工程は第2の実施形態と同様である。そして、殺菌が完了すると、第2の実施形態と同様に原水貯留部5Aに退避させてあった水を再度原水として用いることができる。 Next, ozone gas generated by the ozone generation unit 8 is supplied to the empty clean water supply passage 3 for sterilization, and when sterilization is completed, ozone is decomposed by the ozone decomposition unit 81, and this sterilization is performed. The process is the same as in the second embodiment. And when sterilization is completed, the water evacuated to 5 A of raw water storage parts similarly to 2nd Embodiment can be used again as raw water.
 以上、説明してきたように、本実施形態の水処理装置1Bによれば、上記第2実施形態と同様の効果を奏するのは勿論こと、これに加えて逆流用ポンプP4を設けて、浄水供給経路3内の水を浄化部4に逆流させつつ原水貯留部5Aに移送させるようにしている。これにより、浄水供給経路3内の水を原水貯留部5Aに退避させるための流路(図4の分岐路71)を別途設ける必要がないので、流路が複雑化してしまうのを抑制することができる。 As described above, according to the water treatment apparatus 1B of this embodiment, it goes without saying that the same effects as those of the second embodiment can be obtained, but in addition to this, the backflow pump P4 is provided to supply clean water. The water in the path 3 is transferred back to the purification unit 4 and transferred to the raw water storage unit 5A. As a result, there is no need to separately provide a flow path (branch path 71 in FIG. 4) for evacuating the water in the purified water supply path 3 to the raw water storage portion 5A, thereby suppressing the flow path from being complicated. Can.
 また、浄水供給経路3内の水を退避させる際に浄化部4を逆流するので、その逆流水によって浄化部4の目詰まりを除去でき、浄化部4の寿命を延ばすことができるという利点もある。 In addition, since the purification unit 4 is reversely flowed when the water in the purified water supply path 3 is evacuated, clogging of the purification unit 4 can be removed by the backflow water, and the life of the purification unit 4 can be extended. .
[第4実施形態]
 図6は、本発明の第4実施形態を示した図であり、上記第3実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとする。
Fourth Embodiment
FIG. 6 is a view showing a fourth embodiment of the present invention, and the same components as those of the third embodiment are indicated by the same reference numerals and the description thereof will be omitted.
 本実施形態の水処理装置1Cが上記第3実施形態と主に異なる点は、貯留部としての原水貯留部5Aを、浄水供給経路3よりも下方に配置したことにある。 The water treatment apparatus 1C of the present embodiment is mainly different from the third embodiment in that the raw water reservoir 5A as a reservoir is disposed below the purified water supply path 3.
 すなわち、本実施形態の水処理装置1Cは、浄水供給経路3の少なくとも殺菌時に空となる冷水路31よりも重力方向で下方に原水貯留部5Aを配置し、冷水路31内の水を重力によって原水貯留部5Aに退避させるようにしている。これにより、上記第3実施形態の逆流用ポンプP4が不要となり、この逆流用ポンプP4を廃止することができる。 That is, the water treatment apparatus 1C of the present embodiment arranges the raw water storage portion 5A in the direction of gravity below the cold water passage 31 which is empty at least when sterilizing the clean water supply passage 3 and places the water in the cold water passage 31 by gravity. It is made to evacuate to the raw water storage part 5A. As a result, the backflow pump P4 of the third embodiment becomes unnecessary, and the backflow pump P4 can be eliminated.
 このとき、退避させる水は浄化部4を逆流して循環給水路51に流入するが、本実施形態では浄化部4から原水貯留部5Aに流入し易いように、循環給水路51を浄化部4の上部に接続している。そして、殺菌が完了すると、第3の実施形態と同様に原水貯留部5Aに退避させてあった水を再度原水として用いることができる。なお、原水貯留部5A内の水を浄化部4へと汲み上げる際には、図6では図示省略したが循環ポンプP1が備える管を用いることで行うことができる。よって、循環ポンプP1の管は原水貯留部5Aの下部まで延びた状態で配置されるのが好ましい。 At this time, the water to be evacuated flows back through the purification unit 4 and flows into the circulation water supply channel 51. However, in the present embodiment, the circulation water supply channel 51 is cleaned with the purification unit 4 so as to easily flow from the purification unit 4 into the raw water storage unit 5A. Connected to the top of the And when sterilization is completed, the water evacuated to 5 A of raw water storage parts like the 3rd embodiment can be used again as raw water. In addition, when pumping up the water in the raw water storage part 5A to the purification part 4, it can carry out by using the pipe | tube with which the circulation pump P1 is provided although illustration is abbreviate | omitted in FIG. Therefore, it is preferable that the pipe of the circulation pump P1 be disposed in a state of extending to the lower part of the raw water reservoir 5A.
 このように、本実施形態では原水貯留部5Aと浄水供給経路3との上下関係を特定した場合であり、逆流用ポンプP4を廃止した以外は基本的に第3の実施形態の水処理装置1Bと同様の構成となる。 Thus, in the present embodiment, the upper and lower relationship between the raw water storage portion 5A and the purified water supply path 3 is specified, and basically the water treatment apparatus 1B of the third embodiment except for eliminating the backflow pump P4. It has the same configuration as
 以上、説明してきたように、本実施形態の水処理装置1Cによれば、上記第3実施形態と同様の作用効果を奏するのは勿論のこと、これに加えて原水貯留部5Aが浄水供給部3よりも下方に配置されている。したがって、循環ポンプP1が停止すると、浄水供給路3内の水が重力により自動的に原水貯留部5Aに退避されることになる。これにより、逆流用ポンプP4が不要となるため、水処理装置1Cの構造が簡素化され、よりコンパクト化および低コスト化を図ることができる。 As described above, according to the water treatment apparatus 1C of this embodiment, it is needless to say that the same effects as those of the third embodiment can be obtained, and in addition to this, the raw water storage portion 5A is a purified water supply portion It is arranged below 3. Therefore, when the circulation pump P1 is stopped, the water in the purified water supply passage 3 is automatically evacuated to the raw water storage portion 5A by gravity. As a result, since the backflow pump P4 is not required, the structure of the water treatment apparatus 1C is simplified, and further downsizing and cost reduction can be achieved.
 なお、本実施形態では、特徴部分を上記第3実施形態に適用した場合を示したが、上記第1および第2実施形態にあっても適用することができる。 In the present embodiment, the feature portion is applied to the third embodiment. However, the present invention can be applied to the first and second embodiments.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。 As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible.
 1、1A、1B、1C 水処理装置
 2 原水供給部
 3 浄水供給経路
 4 浄化部
 5 貯留部
 5A 原水貯留部(貯留部)
 8 殺菌流体生成部
 81 殺菌成分分解部
1, 1A, 1B, 1C water treatment apparatus 2 raw water supply unit 3 clean water supply path 4 purification unit 5 storage unit 5A raw water storage unit (storage unit)
8 sterilizing fluid generation unit 81 sterilizing component decomposition unit

Claims (4)

  1.  原水供給部と、
     前記原水供給部から供給された原水を浄化して浄水供給経路に通水する浄化部と、
     少なくとも前記浄水供給経路内の水を溜めることができる貯留部と、
     殺菌成分を含む殺菌流体を生成し当該殺菌流体を前記浄水供給経路内に供給可能な殺菌流体生成部と、
     殺菌の終了時に前記浄水供給経路内の殺菌流体を回収して殺菌成分を分解する殺菌成分分解部と、を備え、
     前記浄水供給経路の殺菌時に、当該浄水供給経路内の水を前記貯留部に移送することを特徴とする水処理装置。
    Raw water supply department,
    A purification unit for purifying the raw water supplied from the raw water supply unit and passing the purified water through a purified water supply path;
    A reservoir capable of storing water at least in the purified water supply channel;
    A sterilizing fluid generation unit capable of generating a sterilizing fluid containing a sterilizing component and supplying the sterilizing fluid into the purified water supply path;
    And b) a sterilizing component decomposing unit for recovering the bactericidal fluid in the purified water supply channel at the end of the sterilization and decomposing the bactericidal component;
    A water treatment apparatus characterized by transferring water in the purified water supply path to the storage unit at the time of sterilization of the purified water supply path.
  2.  前記貯留部が、前記原水供給部を兼ねることを特徴とする請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein the storage unit doubles as the raw water supply unit.
  3.  前記浄化部の下流側に、前記浄水供給経路内の水を前記浄化部に逆流させて前記貯留部に移送する水逆流部を設けたことを特徴とする請求項1または2に記載の水処理装置。 The water treatment according to claim 1 or 2, characterized in that a water backflow unit is provided downstream of the purification unit to backflow water in the purified water supply path to the purification unit and transfer the water to the storage unit. apparatus.
  4.  前記貯留部を、前記浄水供給経路よりも下方に配置したことを特徴とする請求項1または2に記載の水処理装置。 The said storage part was arrange | positioned downward rather than the said purified water supply path | route, The water treatment apparatus of Claim 1 or 2 characterized by the above-mentioned.
PCT/JP2012/067456 2011-09-21 2012-07-09 Water treatment device WO2013042432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011205449A JP2013066822A (en) 2011-09-21 2011-09-21 Water treatment device
JP2011-205449 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042432A1 true WO2013042432A1 (en) 2013-03-28

Family

ID=47914213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067456 WO2013042432A1 (en) 2011-09-21 2012-07-09 Water treatment device

Country Status (2)

Country Link
JP (1) JP2013066822A (en)
WO (1) WO2013042432A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155361A (en) * 1995-12-04 1997-06-17 Japan Organo Co Ltd Ultrapure water supply apparatus and sterilization of piping thereof
JPH10337324A (en) * 1997-06-09 1998-12-22 Kurita Water Ind Ltd Sterilizing method for water purifier
JP2006314918A (en) * 2005-05-12 2006-11-24 Kurita Water Ind Ltd Membrane filter equipment and its operation control method
JP2007319801A (en) * 2006-06-01 2007-12-13 Ohbayashi Corp Washing method of circulating water-purifying system, and circulating water-purifying system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155361A (en) * 1995-12-04 1997-06-17 Japan Organo Co Ltd Ultrapure water supply apparatus and sterilization of piping thereof
JPH10337324A (en) * 1997-06-09 1998-12-22 Kurita Water Ind Ltd Sterilizing method for water purifier
JP2006314918A (en) * 2005-05-12 2006-11-24 Kurita Water Ind Ltd Membrane filter equipment and its operation control method
JP2007319801A (en) * 2006-06-01 2007-12-13 Ohbayashi Corp Washing method of circulating water-purifying system, and circulating water-purifying system

Also Published As

Publication number Publication date
JP2013066822A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
EP3388130B1 (en) Water treatment device
US10099179B2 (en) Reverse osmosis system
US10159939B2 (en) Reverse osmosis system
KR101734194B1 (en) Sterilizing method for water treatment apparatus
KR101705529B1 (en) Water purifier with self cleaning means and cleaning method for a water furifier using the same
CA2567211A1 (en) Heat sanitization for reverse osmosis systems
KR20160012973A (en) Ballast-water treatment device and ballast-water management system
KR101686131B1 (en) Water purifier for automatic sterilization
KR102058059B1 (en) Sterilization method of water purifier using portable sterilization kit
WO2013042432A1 (en) Water treatment device
WO2012063583A1 (en) Water purification device and disinfection/sterilization method for water purification device
KR102462653B1 (en) Water purifier having sterilizing function using carbonated water
JP2011200787A (en) Filter medium cleaning device and water purifier equipped with the same
CN210176649U (en) Sanitary direct-drinking water purification system
KR20130131964A (en) Water sterilization system of water treatment apparatus
KR20170087842A (en) Water treatment apparatus and sterilizing method thereof
KR101459001B1 (en) Water treatment apparatus and water treatment method
KR101198652B1 (en) Purifier apparatus equipped with self-sterilizing and Sterilization Method having the same
KR20120131720A (en) drain apparatus of water treatmenter
KR101612815B1 (en) Cleaning apparatus for a water purifier and a water furifier using the same
KR101782545B1 (en) Apparatus for supplying filtered water
KR101447963B1 (en) Water treatment method
KR101939746B1 (en) Charcoal filter regeneration system and it using charcoal filter regeneration method
KR20130131965A (en) Water sterilization system of water treatment apparatus
KR101476323B1 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833648

Country of ref document: EP

Kind code of ref document: A1