WO2013042344A1 - Optical control device and optical element - Google Patents

Optical control device and optical element Download PDF

Info

Publication number
WO2013042344A1
WO2013042344A1 PCT/JP2012/005907 JP2012005907W WO2013042344A1 WO 2013042344 A1 WO2013042344 A1 WO 2013042344A1 JP 2012005907 W JP2012005907 W JP 2012005907W WO 2013042344 A1 WO2013042344 A1 WO 2013042344A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
light control
optical
input
branch
Prior art date
Application number
PCT/JP2012/005907
Other languages
French (fr)
Japanese (ja)
Inventor
智之 樋野
正宏 坂内
田島 章雄
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013042344A1 publication Critical patent/WO2013042344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/311Cascade arrangement of plural switches
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths
    • G02F2203/585Add/drop devices

Definitions

  • the present invention relates to a light control device and an optical element used for optical communication.
  • Patent Document 1 describes an example of an optical switch used in the WDM system
  • Patent Documents 2 and 3 describe optical cross-connect devices used in the WDM system.
  • Patent Document 2 describes that a tunable filter is provided between an N ⁇ 1 optical switch and a photoelectric conversion element.
  • the tunable filter changes the wavelength of transmitted light by adjusting the temperature of the waveguide.
  • a heater is used to adjust the temperature of the waveguide. For this reason, as described in Patent Document 2, when a tunable filter is provided between the N ⁇ 1 optical switch and the photoelectric conversion element, it is necessary to always operate the heater of the tunable filter. In this case, the power consumption of the optical communication system increases.
  • An object of the present invention is to provide a light control device and an optical element that can suppress the magnitude of an input to a photoelectric conversion element from exceeding an allowable amount of the photoelectric conversion element and can reduce power consumption. .
  • an optical control device that includes an N ⁇ 1 optical switch and outputs an optical signal to the outside via an output waveguide, An optical filter provided at the final stage and connected to the output waveguide;
  • the optical filter is A first directional coupler to which two input waveguides are connected;
  • a second directional coupler to which the output waveguide is connected;
  • Two relay waveguides connecting the first directional coupler and the second directional coupler and having different lengths;
  • a light control device is provided.
  • a light control device having an optical switch having an N ⁇ 1 structure
  • the last switch of the optical switch is A first branching unit that branches the input light into two intermediate lights, and the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100;
  • the two intermediate lights are input, the two intermediate lights are branched to two output ports, and branching ratios of the two intermediate lights to the two output ports are 100: 0, 50:50.
  • a second branching section set to any of 0: 100, Two relay waveguides that connect the first branch portion and the second branch portion and have different lengths;
  • Control means for controlling the branch ratio of the first branch section and the branch ratio of the second branch section;
  • a light control device is provided.
  • the first branching unit branches the input light into two intermediate lights and the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100.
  • the two intermediate lights are input, the two intermediate lights are branched to two output ports, and branching ratios of the two intermediate lights to the two output ports are 100: 0, 50:50.
  • a second branching section set to any of 0: 100, Two relay waveguides that connect the first branch portion and the second branch portion and have different lengths; Control means for controlling the branch ratio of the first branch section and the branch ratio of the second branch section; An optical element is provided.
  • the present invention it is possible to suppress the magnitude of the input to the photoelectric conversion element from exceeding the allowable amount of the photoelectric conversion element, and it is possible to reduce power consumption.
  • FIG. It is a block diagram which shows the function structure of the light control apparatus which concerns on 1st Embodiment. It is a figure explaining operation
  • FIG. 1 is a block diagram illustrating a functional configuration of the light control apparatus 100 according to the first embodiment.
  • the light control device 100 is used for, for example, an optical cross-connect device, an optical Add device, or an optical Drop device.
  • the light control device 100 includes an N ⁇ 1 optical switch. In the example shown in the figure, each component of the light control device 100 is formed on one substrate. This optical switch has N input ports 102 and one output port 104. This optical switch selects the input port 102 connected to the output port 104.
  • a transponder 300 is connected to the output port 104.
  • the transponder 300 includes a photoelectric conversion element.
  • the transponder 300 is a receiving device for optical communication, for example, a receiving device for digital coherent.
  • the optical switch has four input ports 102 and two stages of optical switches.
  • the optical switch 110 in the first stage has an MZI (Mach-Zehender Interferometer) structure.
  • MZI Machine-Zehender Interferometer
  • the latter-stage switch, that is, the last-stage switch 200 also has a function as an optical filter.
  • the number of input ports 102 and the number of stages of optical switches are not limited to the example shown in this figure.
  • the final stage switch 200 includes a first directional coupler 210, a second directional coupler 220, and a refractive index control unit 236.
  • the first directional coupler 210 has two input ports connected to one ends of the input waveguides 202 and 204, respectively.
  • the other end of the input waveguide 202 is connected to the first optical switch 110, and the other end of the input waveguide 204 is connected to the second optical switch 110.
  • One output port of the second directional coupler 220 is connected to the output port 104 via an output waveguide.
  • the second directional coupler 220 is connected to the first directional coupler 210 via the relay waveguides 232 and 234.
  • the relay waveguides 232 and 234 have different lengths. In the example shown in this figure, the relay waveguide 232 is longer than the relay waveguide 234.
  • the refractive index control unit 236 changes the refractive index of the relay waveguide 232.
  • the refractive index control unit 236 is, for example, a heater.
  • the refractive index control unit 236 is controlled by the control unit 50.
  • the two optical switches 110 immediately before the final stage switch 200 select one of the two input ports 102 and connect it to the input waveguide 202 or the input waveguide 204.
  • the control unit 50 of the final-stage switch 200 controls the refractive index of the relay waveguide 232 by the refractive index control unit 236, so that the input waveguide 202 and the input waveguide 204 are controlled as shown in FIG. It controls which is connected to the output port 104.
  • the control unit 50 determines that the difference in optical path length (refractive index ⁇ actual length) between the relay waveguide 232 and the relay waveguide 234 is the input waveguide 202. (N + 1/2) times the wavelength of the light propagating through (where n is an integer). Conversely, when the input waveguide 204 is connected to the output port 104, the control unit 50 determines that the difference in optical path length between the relay waveguide 232 and the relay waveguide 234 is the wavelength of light propagating through the input waveguide 204. N times (where n is an integer).
  • the final stage switch 200 also functions as a tunable filter. That is, when the light propagating through the input waveguides 202 and 204 includes a plurality of wavelengths, only light having a specific wavelength is output to the output port 104 according to the principle described above. For this reason, even if the light propagating through the input waveguide 202 or the input waveguide 204 includes a plurality of wavelengths and the intensity exceeds the allowable amount of the photoelectric conversion element of the transponder 300, The intensity of light propagating through the output port 104 can be reduced.
  • the spectrum of the light transmitted through the final stage switch 200 may be steep (that is, only light in a very narrow wavelength range is transmitted), or may be broad to some extent (that is, the wavelength range of transmitted light has a certain width). ). Even in the latter case, for example, when the transponder 300 is a digital coherent receiving device, only light of a necessary wavelength is selected by the internal processing of the transponder 300, and thus there is a problem in the quality of the signal to be decoded. Does not occur.
  • the last-stage switch 200 of the N ⁇ 1 optical switch has a function as a tunable filter.
  • the optical switch has an MZI structure like the optical switch 110.
  • the optical switch having the MZI structure has a heater. For this reason, even if the last stage switch 200 has the structure of this embodiment, the power consumption of the last stage switch 200 does not increase. Therefore, compared with the case where a tunable filter is provided between the N ⁇ 1 optical switch and the transponder 300, the power consumption of the light control device 100 can be reduced.
  • FIG. 3 is a diagram illustrating a configuration of the light control apparatus 100 according to the second embodiment.
  • the light control apparatus 100 according to the present embodiment has a plurality of input ports 402 and a plurality of output ports 104. Each of the plurality of output ports 104 is connected to a different transponder 300.
  • the optical control device 100 has an N ⁇ 1 optical switch, and can output an optical signal input to the input port 402 to an arbitrary transponder 300.
  • the light control apparatus 100 has two input ports 402 and two output ports 104.
  • the light control apparatus 100 includes four optical switches 110 and two final stage switches 200.
  • the light propagating through the input port 402 is branched to the two input ports 102 by the optical splitter 400.
  • Two input ports 102 connected to the same input port 402 are connected to different optical switches 110. That is, the two input ports 402 are both connected to the two optical switches 110.
  • the first final stage switch 200 is connected to the first input port 402 and the second input port 402 via different optical switches 110.
  • the second final stage switch 200 is connected to the first input port 402 and the second input port 402 via an optical switch 110 different from the first final stage switch 200.
  • the light control apparatus 100 can output the optical signal to the desired transponder 300 regardless of which input port 402 is receiving the optical signal. Since the optical switch 110 and the final stage switch 200 have the same configuration as that of the first embodiment, the same effect as that of the first embodiment can be obtained also by this embodiment.
  • FIG. 4 is a diagram illustrating a configuration of the light control apparatus 100 according to the third embodiment.
  • the light control apparatus 100 according to the present embodiment has the same configuration as the light control apparatus 100 according to the first or second embodiment except for the following points.
  • the light control device 100 includes an optical switch 120 as a final stage switch.
  • the optical switch 120 has the same configuration as the optical switch 110 and has two inputs and two outputs.
  • the optical switch 120 is controlled by the control unit 50.
  • a wavelength filter 201 is provided between the optical switch 120 and the output port 104.
  • the configuration of the wavelength filter 201 is the same as that of the final stage switch 200 according to the first or second embodiment except that the refractive index control unit 236 and the control unit 50 are not provided.
  • Two input ports 205 and 206 of the wavelength filter 201 are connected to two output ports of the optical switch 120.
  • a plurality of wavelength filters 201 may be provided in series between the input port 102 and the transponder 300. In this case, the plurality of wavelength filters 201 have different optical path length differences ⁇ L between the relay waveguide 232 and the relay waveguide 234. For example, ⁇ L of one wavelength filter 201 is twice that of the next wavelength filter 201.
  • the optical switch 120 inputs signal light to one of the two input ports 205 and 206 of the wavelength filter 201.
  • the wavelength filter 201 transmits only light of a specific wavelength among the input signal light. For example, when signal light is input to the input port 205, the wavelength filter 201 passes only the component of which ⁇ L is (n + 1/2) times the wavelength (where n is an integer). Further, when the signal light is input to the input port 206, the wavelength filter 201 passes only the component of which ⁇ L is n times the wavelength (where n is an integer) in the signal light.
  • the optical switch 120 selects the input port of the wavelength filter 201, so that the wavelength of the light transmitted through the wavelength filter 201 can be selected. Therefore, according to this embodiment, the power consumption of the light control apparatus 100 can be reduced as compared with the case where a tunable filter is provided between the N ⁇ 1 optical switch and the transponder 300. Further, since the wavelength filter 201 does not include the refractive index control unit 236, the control of the light control device 100 is facilitated. This effect is particularly remarkable when a plurality of wavelength filters 201 are connected in series.
  • FIG. 5 is a diagram illustrating a configuration of a final-stage switch 200 according to the fourth embodiment.
  • the final stage switch 200 according to the present embodiment is used in the final stage of the N ⁇ 1 optical switch included in the light control apparatus 100, as in the first embodiment.
  • the final stage switch 200 includes a first branching unit 510, a second branching unit 520, two relay waveguides 530 and 540, a refractive index changing unit 532, and a control unit 50.
  • the first branching unit 510 is connected to the input waveguide 202 and the input waveguide 204.
  • the first branching unit 510 receives the input light propagating through the input waveguide 202 or the input waveguide 204. Branches into two intermediate lights.
  • the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100.
  • the first branching unit 510 has, for example, an MZI structure, and the branching ratio of the two intermediate lights is controlled by controlling the output of the heater. This heater is controlled by the control unit 50.
  • the two input ports of the second branch unit 520 are connected to the output port of the first branch unit 510 via the relay waveguides 530 and 540. That is, the second branch unit 520 receives the two intermediate lights generated by the first branch unit 510.
  • the second branching unit 520 branches the intermediate light propagating through the relay waveguides 530 and 540 to two output ports, respectively. One output port is connected to the output port 104, and the other output port is a discard port 544.
  • the light branching ratio in the second branching unit 520 is set to any one of 100: 0, 50:50, and 0: 100.
  • the second branching unit 520 has, for example, an MZI structure, and the branching ratio of the two intermediate lights is controlled by controlling the output of the heater. This heater is controlled by the control unit 50.
  • the refractive index changing section 532 is, for example, a heater, and changes the refractive index of one of the relay waveguides 530 and 540 (in the example shown in the figure, the relay waveguide 530).
  • the refractive index changing unit 532 is controlled by the control unit 50.
  • final stage switch 200 also functions as an optical filter. The reason for this will be described later with reference to FIG.
  • FIG. 6 is a diagram for explaining the operation of the light control apparatus 100 shown in FIG. In the example shown in this figure, it is assumed that an optical signal having the wavelength ⁇ 1 input to the input waveguide 202 is output to the output port 104.
  • FIG. 6A shows a case where the light input to the input waveguide 202 is output to the output port 104 as it is without filtering. In this case, since the heaters of the first branching unit 510 and the second branching unit 520 are not operated, the light phase is finally delayed by ⁇ .
  • the heater of the first branching unit 510 since the heater of the first branching unit 510 is not operating, the light input to the input waveguide 202 passes through the first branching unit 510, and thus two relay waveguides in the first branching unit 510 are used. Therefore, the signal is output only to the relay waveguide 540 in the same phase with both phases delayed by ⁇ / 2.
  • the heater of the second branch 520 is not operating. For this reason, the light output to the relay waveguide 540 is output to the output port 104 in the same-phase state (- ⁇ in total) further delayed in phase by ⁇ / 2.
  • FIG. 6B shows a case where the light input to the input waveguide 204 is output as it is to the output port 104 without being filtered.
  • the heater of the first branching unit 510 is operated to delay the light phase by ⁇ .
  • the heater of the second branch 520 is not operated.
  • the heater of the second branching unit 520 is operated to delay the phase of light by ⁇ , and the heater of the first branching unit 510 is not operated.
  • the heater of the first branching unit 510 since the heater of the first branching unit 510 is operating, the light input to the input waveguide 202 passes through the first branching unit 510, and thus two relay waveguides in the first branching unit 510. Thus, the signal is output only to the relaying waveguide 540 in the same phase state (that is, the phase difference is 2 ⁇ ) with the phase delayed by 0 and 2 ⁇ , respectively.
  • the heater of the second branch 520 is not operating. For this reason, the phase of the light output to the relay waveguide 540 is further delayed by ⁇ / 2 in the relay waveguide 540. As a result, the two lights are output to the output port 104 in the in-phase state ( ⁇ / 2 and ⁇ 5 ⁇ / 2) with a phase difference of 2 ⁇ .
  • FIG. 6C shows a case where the light input to the input waveguide 202 is filtered and output to the output port 104.
  • the heater is operated in each of the first branching unit 510 and the second branching unit 520 so that the light is equally divided into two output ports in each.
  • the difference ⁇ L between the optical path lengths of the relay waveguides 530 and 540 is determined according to the desired wavelength filter characteristics.
  • the light input to the input waveguide 202 passes through the first branching unit 510 and has the same intensity in each of the relaying waveguides 530 and 540. Is output. At this time, the output light is in a state where the phase is delayed by ⁇ / 2 and ⁇ , that is, light having a phase difference of ⁇ / 2, respectively.
  • the light When passing through the relay waveguides 530 and 540, the light undergoes a phase change corresponding to the difference ⁇ L in the optical path length between the relay waveguides 530 and 540.
  • the light passing through the relay waveguide 530 and the light passing through the relay waveguide 540 are further arranged in accordance with the optical path length difference ⁇ L. A phase difference occurs.
  • the wavelength of the light output to the output port 104 is filtered according to ⁇ L.
  • the light propagating through the input waveguide 202 or the input waveguide 204 includes a plurality of wavelengths, and the intensity thereof exceeds the allowable amount of the photoelectric conversion element of the transponder 300. Even so, by selecting the wavelength of the light output to the output port 104, the intensity of the light propagating through the output port 104 can be lowered.
  • the power consumption of the light control device 100 can be reduced.
  • the refractive index changing section 532 changes the refractive index of the relay waveguide 530, the optical path length of the relay waveguide 530 can be changed. Therefore, when the last stage switch 200 has a filtering function, the wavelength of light passing through the last stage switch 200 can be changed.
  • FIG. 7 is a diagram illustrating a configuration of a final-stage switch of the light control device according to the fifth embodiment.
  • the light control device according to the present embodiment has a configuration in which the light control device 100 shown in the third or fourth embodiment is connected in multiple stages in series at the final stage of the N ⁇ 1 optical switch.
  • the input port of the first light control device 100 is connected to the input waveguides 202 and 204.
  • the input port of the light control device 100 at the next stage is connected to the output port 104 of the first light control device 100.
  • the output port 104 of the final-stage light control apparatus 100 is connected to the transponder 300. Note that when the light control device 100 functions as a filter, the width of the listening area transmitted by the filter is different from the desired value by giving different optical path length differences ⁇ L to the relay waveguides of the respective light control devices 100. Become.
  • the same effects as those in the third or fourth embodiment can be obtained. Further, since the light control devices 100 are connected in multiple stages in series, the width of the wavelength range of the light input to the transponder 300 can be narrowed.
  • FIG. 8 is a diagram illustrating a configuration of an optical communication system according to the sixth embodiment.
  • each node of the data transfer network has a control unit 50 and an optical control device 100.
  • the nodes of the data communication network are controlled by the node control device 620 of the control network.
  • optical signals are transmitted and received by, for example, a digital coherent method.
  • the optical signal may be transmitted and received by a WDM (Wavelength Division Multiplexing) method.
  • WDM Widelength Division Multiplexing
  • the control unit 50 receives information indicating the number of wavelengths (number of operating wavelengths) of the optical signal input to the node control device 620 from the control system 600 of the optical communication system via the node control device 620 of the control network. To do. When the number of operating wavelengths exceeds the reference, the control unit 50 determines that the input to the photoelectric conversion element of the transponder 300 may exceed the allowable amount of the photoelectric conversion element, and performs filtering of the light control device 100. Activate the function. On the other hand, the control unit 50 does not operate the filtering function of the light control apparatus 100 when the number of operating wavelengths does not exceed the reference.
  • the node of the data communication network includes the control unit 50 and the light control device 100. Therefore, the reliability of the node can be improved and the power consumption of the node can be reduced.
  • FIG. 9 is a diagram illustrating a configuration of an N ⁇ 1 optical switch according to the seventh embodiment.
  • the optical switch shown in this embodiment has a tree structure.
  • the optical switch at the final stage has the light control device 100 shown in any of the first to fifth embodiments. Also according to this embodiment, the same effects as those of the first to fifth embodiments can be obtained.
  • FIG. 10 is a diagram illustrating a configuration of an N ⁇ 1 optical switch according to the eighth embodiment.
  • the optical switch shown in this embodiment has a tap structure.
  • the optical switch at the final stage has the light control device 100 shown in any of the first to fifth embodiments. Also according to this embodiment, the same effects as those of the first to fifth embodiments can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A final-stage switch of N×1 switches has a first directional coupler (210), a second directional coupler (220), and a refractive index control unit (236). One end of an output port of the second directional coupler (220) is connected to an output port (104) via an output waveguide path. The second directional coupler (220) is connected to the first directional coupler (210) via relay waveguide paths (232, 234). The relay waveguide paths (232, 234) have mutually different lengths. In the example illustrated in the drawing, the relay waveguide path (232) is longer than the relay waveguide path (234). The refractive index control unit (236) alters the refractive index of the relay waveguide path (232).

Description

光制御装置及び光素子Light control device and optical element
 本発明は、光通信に用いられる光制御装置及び光素子に関する。 The present invention relates to a light control device and an optical element used for optical communication.
 光通信において、通信容量を増大させる方式として、波長分割多重(WDM:Wavelength Division Multiplexing)方式が普及している。特許文献1には、WDM方式で使用される光スイッチの一例が記載されており、特許文献2,3には、WDM方式で使用される光クロスコネクト装置が記載されている。 In optical communication, a wavelength division multiplexing (WDM) method is widely used as a method for increasing communication capacity. Patent Document 1 describes an example of an optical switch used in the WDM system, and Patent Documents 2 and 3 describe optical cross-connect devices used in the WDM system.
 光通信の受信機には、光電変換素子が用いられている。光電変換素子への入力が許容量を超えると、その光電変換素子は破壊する恐れがある。これに対して特許文献2では、N×1の光スイッチと、光電変換素子との間に、チューナブルフィルタを設けることが記載されている。 A photoelectric conversion element is used in a receiver for optical communication. If the input to the photoelectric conversion element exceeds the allowable amount, the photoelectric conversion element may be destroyed. On the other hand, Patent Document 2 describes that a tunable filter is provided between an N × 1 optical switch and a photoelectric conversion element.
特開2004-177515号公報JP 2004-177515 A 特開2010-81374号公報JP 2010-81374 A 特表2009-530970号公報Special table 2009-530970
 チューナブルフィルタは、導波路の温度を調節することにより、透過させる光の波長を変えている。導波路の温度の調節には、ヒータが用いられている。このため、特許文献2に記載のように、N×1の光スイッチと光電変換素子との間にチューナブルフィルタを設けると、このチューナブルフィルタのヒータを常に動作させる必要が出てくる。この場合、光通信システムの消費電力が増大してしまう。 The tunable filter changes the wavelength of transmitted light by adjusting the temperature of the waveguide. A heater is used to adjust the temperature of the waveguide. For this reason, as described in Patent Document 2, when a tunable filter is provided between the N × 1 optical switch and the photoelectric conversion element, it is necessary to always operate the heater of the tunable filter. In this case, the power consumption of the optical communication system increases.
 本発明の目的は、光電変換素子に対する入力の大きさがその光電変換素子の許容量を越えることを抑制でき、かつ消費電力を少なくすることができる光制御装置及び光素子を提供することにある。 An object of the present invention is to provide a light control device and an optical element that can suppress the magnitude of an input to a photoelectric conversion element from exceeding an allowable amount of the photoelectric conversion element and can reduce power consumption. .
 本発明によれば、N×1の光スイッチを含み、出力用導波路を介して外部に光信号を出力する光制御装置であって、
 最終段に設けられ、前記出力用導波路に接続する光フィルタを有し、
 前記光フィルタは、
  2つの入力用導波路が接続される第1方向性結合器と、
  前記出力用導波路が接続される第2方向性結合器と、
  前記第1方向性結合器と、前記第2方向性結合器とをつなぎ、長さが互いに異なる2つの中継用導波路と、
を備える光制御装置が提供される。
According to the present invention, there is provided an optical control device that includes an N × 1 optical switch and outputs an optical signal to the outside via an output waveguide,
An optical filter provided at the final stage and connected to the output waveguide;
The optical filter is
A first directional coupler to which two input waveguides are connected;
A second directional coupler to which the output waveguide is connected;
Two relay waveguides connecting the first directional coupler and the second directional coupler and having different lengths;
A light control device is provided.
 本発明によれば、N×1構造の光スイッチを有する光制御装置であって、
 前記光スイッチの最終段スイッチが、
  入力光を2つの中間光に分岐するとともに、前記2つの中間光の分岐比率が100:0、50:50、及び0:100のいずれかに設定される第1分岐部と、
  前記2つの中間光が入力されるとともに、前記2つの中間光を、2つの出力ポートに分岐し、かつ前記2つの中間光の前記2つの出力ポートへの分岐比率が100:0、50:50、及び0:100のいずれかに設定される第2分岐部と、
  前記第1分岐部及び前記第2分岐部を接続し、かつ互いに長さが異なる2つの中継用導波路と、
  前記第1分岐部の分岐比率及び前記第2分岐部の分岐比率を制御する制御手段と、
を備える光制御装置が提供される。
According to the present invention, there is provided a light control device having an optical switch having an N × 1 structure,
The last switch of the optical switch is
A first branching unit that branches the input light into two intermediate lights, and the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100;
The two intermediate lights are input, the two intermediate lights are branched to two output ports, and branching ratios of the two intermediate lights to the two output ports are 100: 0, 50:50. , And a second branching section set to any of 0: 100,
Two relay waveguides that connect the first branch portion and the second branch portion and have different lengths;
Control means for controlling the branch ratio of the first branch section and the branch ratio of the second branch section;
A light control device is provided.
 本発明によれば、入力光を2つの中間光に分岐するとともに、前記2つの中間光の分岐比率が100:0、50:50、及び0:100のいずれかに設定される第1分岐部と、
 前記2つの中間光が入力されるとともに、前記2つの中間光を、2つの出力ポートに分岐し、かつ前記2つの中間光の前記2つの出力ポートへの分岐比率が100:0、50:50、及び0:100のいずれかに設定される第2分岐部と、
 前記第1分岐部及び前記第2分岐部を接続し、かつ互いに長さが異なる2つの中継用導波路と、
 前記第1分岐部の分岐比率及び前記第2分岐部の分岐比率を制御する制御手段と、
を備える光素子が提供される。
According to the present invention, the first branching unit branches the input light into two intermediate lights and the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100. When,
The two intermediate lights are input, the two intermediate lights are branched to two output ports, and branching ratios of the two intermediate lights to the two output ports are 100: 0, 50:50. , And a second branching section set to any of 0: 100,
Two relay waveguides that connect the first branch portion and the second branch portion and have different lengths;
Control means for controlling the branch ratio of the first branch section and the branch ratio of the second branch section;
An optical element is provided.
 本発明によれば、光電変換素子に対する入力の大きさが、その光電変換素子の許容量を越えることを抑制でき、かつ消費電力を少なくすることができる。 According to the present invention, it is possible to suppress the magnitude of the input to the photoelectric conversion element from exceeding the allowable amount of the photoelectric conversion element, and it is possible to reduce power consumption.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る光制御装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the light control apparatus which concerns on 1st Embodiment. 図1に示した光制御装置の動作を説明する図である。It is a figure explaining operation | movement of the light control apparatus shown in FIG. 第2の実施形態に係る光制御装置の構成を示す図である。It is a figure which shows the structure of the light control apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る光制御装置の構成を示す図である。It is a figure which shows the structure of the light control apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る最終段スイッチの構成を示す図である。It is a figure which shows the structure of the last stage switch which concerns on 4th Embodiment. 図5に示した光制御装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the light control apparatus shown in FIG. 第5の実施形態に係る光制御装置の最終段スイッチの構成を示す図である。It is a figure which shows the structure of the last stage switch of the light control apparatus which concerns on 5th Embodiment. 第6の実施形態に係る光通信システムの構成を示す図である。It is a figure which shows the structure of the optical communication system which concerns on 6th Embodiment. 第7の実施形態に係るN×1の光スイッチの構成を示す図である。It is a figure which shows the structure of the Nx1 optical switch which concerns on 7th Embodiment. 第8の実施形態に係るN×1の光スイッチの構成を示す図である。It is a figure which shows the structure of the Nx1 optical switch which concerns on 8th Embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る光制御装置100の機能構成を示すブロック図である。光制御装置100は、例えば、光クロスコネクト装置、光Add装置、又は光Drop装置に使用される。光制御装置100は、N×1の光スイッチを含んでいる。図に示す例において、光制御装置100の各構成要素は、一つの基板上に形成されている。この光スイッチは、N個の入力ポート102及び一つの出力ポート104を有している。この光スイッチは、出力ポート104に接続する入力ポート102を選択する。出力ポート104には、トランスポンダ300が接続されている。トランスポンダ300は、光電変換素子を含んでいる。トランスポンダ300は、光通信用の受信装置、例えばデジタルコヒーレント用の受信装置である。
(First embodiment)
FIG. 1 is a block diagram illustrating a functional configuration of the light control apparatus 100 according to the first embodiment. The light control device 100 is used for, for example, an optical cross-connect device, an optical Add device, or an optical Drop device. The light control device 100 includes an N × 1 optical switch. In the example shown in the figure, each component of the light control device 100 is formed on one substrate. This optical switch has N input ports 102 and one output port 104. This optical switch selects the input port 102 connected to the output port 104. A transponder 300 is connected to the output port 104. The transponder 300 includes a photoelectric conversion element. The transponder 300 is a receiving device for optical communication, for example, a receiving device for digital coherent.
 本図に示す例では、光スイッチは4つの入力ポート102を有しており、光スイッチを2段有している。最初の段の光スイッチ110は、MZI(Mach-Zehender Interferometer)構造を有している。後段のスイッチすなわち最終段スイッチ200は、光フィルタとしての機能も有している。ただし入力ポート102の数や光スイッチの段数は、本図に示す例に限定されない。 In the example shown in the figure, the optical switch has four input ports 102 and two stages of optical switches. The optical switch 110 in the first stage has an MZI (Mach-Zehender Interferometer) structure. The latter-stage switch, that is, the last-stage switch 200 also has a function as an optical filter. However, the number of input ports 102 and the number of stages of optical switches are not limited to the example shown in this figure.
 最終段スイッチ200は、第1方向性結合器210、第2方向性結合器220、及び屈折率制御部236を有している。 The final stage switch 200 includes a first directional coupler 210, a second directional coupler 220, and a refractive index control unit 236.
 第1方向性結合器210は、2つの入力ポートがそれぞれ入力用導波路202,204の一端に接続されている。なお、入力用導波路202の他端は、第1の光スイッチ110に接続されており、入力用導波路204の他端は第2の光スイッチ110に接続されている。 The first directional coupler 210 has two input ports connected to one ends of the input waveguides 202 and 204, respectively. The other end of the input waveguide 202 is connected to the first optical switch 110, and the other end of the input waveguide 204 is connected to the second optical switch 110.
 第2方向性結合器220の出力ポートの一方は、出力用導波路を介して出力ポート104に接続されている。第2方向性結合器220は、中継用導波路232,234を介して第1方向性結合器210に接続している。中継用導波路232,234は、長さが互いに異なる。本図に示す例では、中継用導波路232は中継用導波路234よりも長い。 One output port of the second directional coupler 220 is connected to the output port 104 via an output waveguide. The second directional coupler 220 is connected to the first directional coupler 210 via the relay waveguides 232 and 234. The relay waveguides 232 and 234 have different lengths. In the example shown in this figure, the relay waveguide 232 is longer than the relay waveguide 234.
 本図に示す例において、屈折率制御部236は、中継用導波路232の屈折率を変化させる。屈折率制御部236は、例えばヒータである。屈折率制御部236は、制御部50によって制御されている。 In the example shown in the figure, the refractive index control unit 236 changes the refractive index of the relay waveguide 232. The refractive index control unit 236 is, for example, a heater. The refractive index control unit 236 is controlled by the control unit 50.
 次に、図1に示した光制御装置100の動作を、図2を用いて説明する。まず最終段スイッチ200の一つ手前の2つの光スイッチ110は、それぞれ、2つの入力ポート102のうち一つを選択して入力用導波路202又は入力用導波路204に接続する。そして最終段スイッチ200の制御部50は、屈折率制御部236によって中継用導波路232の屈折率を制御することにより、図2に示すように、入力用導波路202及び入力用導波路204のいずれが出力ポート104に接続するかを制御する。例えば入力用導波路202を出力ポート104に接続する場合、制御部50は、中継用導波路232と中継用導波路234の光路長(屈折率×実寸長)の差が、入力用導波路202を伝播する光の波長の(n+1/2)倍(ただしnは整数)となるようにする。逆に入力用導波路204を出力ポート104に接続する場合、制御部50は、中継用導波路232と中継用導波路234の光路長の差が、入力用導波路204を伝播する光の波長のn倍(ただしnは整数)となるようにする。 Next, the operation of the light control apparatus 100 shown in FIG. 1 will be described with reference to FIG. First, the two optical switches 110 immediately before the final stage switch 200 select one of the two input ports 102 and connect it to the input waveguide 202 or the input waveguide 204. Then, the control unit 50 of the final-stage switch 200 controls the refractive index of the relay waveguide 232 by the refractive index control unit 236, so that the input waveguide 202 and the input waveguide 204 are controlled as shown in FIG. It controls which is connected to the output port 104. For example, when the input waveguide 202 is connected to the output port 104, the control unit 50 determines that the difference in optical path length (refractive index × actual length) between the relay waveguide 232 and the relay waveguide 234 is the input waveguide 202. (N + 1/2) times the wavelength of the light propagating through (where n is an integer). Conversely, when the input waveguide 204 is connected to the output port 104, the control unit 50 determines that the difference in optical path length between the relay waveguide 232 and the relay waveguide 234 is the wavelength of light propagating through the input waveguide 204. N times (where n is an integer).
 またこのとき、上記した説明で示されるように、最終段スイッチ200はチューナブルフィルタとしても機能する。すなわち入力用導波路202,204を伝播する光に複数の波長が含まれていた場合、上記した原理により、特定の波長の光のみが出力ポート104に出力される。このため、入力用導波路202又は入力用導波路204を伝播する光が複数の波長を含んでおり、かつその強度がトランスポンダ300の光電変換素子の許容量を超えていた場合であっても、出力ポート104を伝播する光の強度を低くすることができる。 At this time, as shown in the above description, the final stage switch 200 also functions as a tunable filter. That is, when the light propagating through the input waveguides 202 and 204 includes a plurality of wavelengths, only light having a specific wavelength is output to the output port 104 according to the principle described above. For this reason, even if the light propagating through the input waveguide 202 or the input waveguide 204 includes a plurality of wavelengths and the intensity exceeds the allowable amount of the photoelectric conversion element of the transponder 300, The intensity of light propagating through the output port 104 can be reduced.
 なお、最終段スイッチ200を透過する光のスペクトルは急峻(すなわち非常に狭い波長域の光のみが透過する)であってもよいし、ある程度ブロード(すなわち透過する光の波長域はある程度幅を有する)であってもよい。後者の場合であっても、例えばトランスポンダ300がデジタルコヒーレント用の受信装置である場合、トランスポンダ300の内部処理によって必要な波長の光のみが選択されるため、復号される信号の品質には問題が生じない。 The spectrum of the light transmitted through the final stage switch 200 may be steep (that is, only light in a very narrow wavelength range is transmitted), or may be broad to some extent (that is, the wavelength range of transmitted light has a certain width). ). Even in the latter case, for example, when the transponder 300 is a digital coherent receiving device, only light of a necessary wavelength is selected by the internal processing of the transponder 300, and thus there is a problem in the quality of the signal to be decoded. Does not occur.
 以上、本実施形態によれば、トランスポンダ300の光電変換素子に対する入力光の大きさが、その光電変換素子の許容量を越えることを抑制できる。また、N×1の光スイッチの最終段スイッチ200に、チューナブルフィルタとしての機能を持たせている。通常、光スイッチは、光スイッチ110と同様にMZI構造を有している。MZI構造の光スイッチはヒータを有している。このため、最終段スイッチ200を本実施形態の構造としても、最終段スイッチ200の消費電力は上昇しない。従って、N×1の光スイッチとトランスポンダ300の間にチューナブルフィルタを設ける場合と比較して、光制御装置100の消費電力を少なくすることができる。 As mentioned above, according to this embodiment, it can suppress that the magnitude | size of the input light with respect to the photoelectric conversion element of the transponder 300 exceeds the allowable amount of the photoelectric conversion element. Further, the last-stage switch 200 of the N × 1 optical switch has a function as a tunable filter. Usually, the optical switch has an MZI structure like the optical switch 110. The optical switch having the MZI structure has a heater. For this reason, even if the last stage switch 200 has the structure of this embodiment, the power consumption of the last stage switch 200 does not increase. Therefore, compared with the case where a tunable filter is provided between the N × 1 optical switch and the transponder 300, the power consumption of the light control device 100 can be reduced.
(第2の実施形態)
 図3は、第2の実施形態に係る光制御装置100の構成を示す図である。本実施形態にかかる光制御装置100は、複数の入力ポート402と、複数の出力ポート104を有している。複数の出力ポート104のそれぞれは、互いに異なるトランスポンダ300に接続している。光制御装置100は、N×1の光スイッチを有しており、入力ポート402に入力される光信号を、任意のトランスポンダ300に出力することができる。
(Second Embodiment)
FIG. 3 is a diagram illustrating a configuration of the light control apparatus 100 according to the second embodiment. The light control apparatus 100 according to the present embodiment has a plurality of input ports 402 and a plurality of output ports 104. Each of the plurality of output ports 104 is connected to a different transponder 300. The optical control device 100 has an N × 1 optical switch, and can output an optical signal input to the input port 402 to an arbitrary transponder 300.
 例えば本図に示す例では、光制御装置100は、入力ポート402及び出力ポート104を2つずつ有している。そして光制御装置100は、光スイッチ110を4つ、最終段スイッチ200を2つ有している。 For example, in the example shown in this figure, the light control apparatus 100 has two input ports 402 and two output ports 104. The light control apparatus 100 includes four optical switches 110 and two final stage switches 200.
 入力ポート402を伝播する光は、光スプリッタ400によって2つの入力ポート102に分岐される。同一の入力ポート402に接続する2つの入力ポート102は、互いに異なる光スイッチ110に接続している。すなわち2つの入力ポート402は、いずれも2つの光スイッチ110に接続している。そして第1の最終段スイッチ200は、互いに異なる光スイッチ110を介して第1の入力ポート402及び第2の入力ポート402に接続している。また第2の最終段スイッチ200は、第1の最終段スイッチ200とは異なる光スイッチ110を介して、第1の入力ポート402及び第2の入力ポート402に接続している。 The light propagating through the input port 402 is branched to the two input ports 102 by the optical splitter 400. Two input ports 102 connected to the same input port 402 are connected to different optical switches 110. That is, the two input ports 402 are both connected to the two optical switches 110. The first final stage switch 200 is connected to the first input port 402 and the second input port 402 via different optical switches 110. The second final stage switch 200 is connected to the first input port 402 and the second input port 402 via an optical switch 110 different from the first final stage switch 200.
 このため、本実施形態に係る光制御装置100は、いずれの入力ポート402に光信号が入力している場合であっても、その光信号を、所望するトランスポンダ300に出力することができる。そして光スイッチ110及び最終段スイッチ200は第1の実施形態と同様の構成を有しているため、本実施形態によっても、第1の実施形態と同様の効果を得ることができる。 For this reason, the light control apparatus 100 according to the present embodiment can output the optical signal to the desired transponder 300 regardless of which input port 402 is receiving the optical signal. Since the optical switch 110 and the final stage switch 200 have the same configuration as that of the first embodiment, the same effect as that of the first embodiment can be obtained also by this embodiment.
(第3の実施形態)
 図4は、第3の実施形態に係る光制御装置100の構成を示す図である。本実施形態に係る光制御装置100は、以下の点を除いて、第1又は第2の実施形態に係る光制御装置100と同様の構成である。
(Third embodiment)
FIG. 4 is a diagram illustrating a configuration of the light control apparatus 100 according to the third embodiment. The light control apparatus 100 according to the present embodiment has the same configuration as the light control apparatus 100 according to the first or second embodiment except for the following points.
 本実施形態に係る光制御装置100は、最終段スイッチに、光スイッチ120を有している。光スイッチ120は、光スイッチ110と同様の構成を有しており、2入力2出力となっている。光スイッチ120は、制御部50によって制御されている。 The light control device 100 according to the present embodiment includes an optical switch 120 as a final stage switch. The optical switch 120 has the same configuration as the optical switch 110 and has two inputs and two outputs. The optical switch 120 is controlled by the control unit 50.
 また、光スイッチ120と出力ポート104の間には、波長フィルタ201が設けられている。波長フィルタ201の構成は、屈折率制御部236及び制御部50を備えない点を除いて、第1又は第2の実施形態に係る最終段スイッチ200と同様の構成である。波長フィルタ201の2つの入力ポート205,206は、光スイッチ120の2つの出力ポートに繋がっている。なお、入力ポート102とトランスポンダ300の間には、複数の波長フィルタ201が直列に設けられていても良い。この場合、複数の波長フィルタ201は、中継用導波路232と中継用導波路234の光路長の差ΔLが異なる。例えばある波長フィルタ201のΔLは、次の波長フィルタ201のΔLの2倍となる。 A wavelength filter 201 is provided between the optical switch 120 and the output port 104. The configuration of the wavelength filter 201 is the same as that of the final stage switch 200 according to the first or second embodiment except that the refractive index control unit 236 and the control unit 50 are not provided. Two input ports 205 and 206 of the wavelength filter 201 are connected to two output ports of the optical switch 120. A plurality of wavelength filters 201 may be provided in series between the input port 102 and the transponder 300. In this case, the plurality of wavelength filters 201 have different optical path length differences ΔL between the relay waveguide 232 and the relay waveguide 234. For example, ΔL of one wavelength filter 201 is twice that of the next wavelength filter 201.
 次に、本実施形態の作用及び効果について説明する。本実施形態において、光スイッチ120は、波長フィルタ201の2つの入力ポート205,206のうちのいずれか一方に信号光を入力する。波長フィルタ201は、入力された信号光のうち、特定の波長の光のみを透過する。例えば波長フィルタ201は、入力ポート205に信号光が入力された場合、信号光のうち、ΔLが波長の(n+1/2)倍(ただしnは整数)となる成分のみを通過させる。また波長フィルタ201は、入力ポート206に信号光が入力された場合、信号光のうち、ΔLが波長のn倍(ただしnは整数)となる成分のみを通過させる。 Next, functions and effects of this embodiment will be described. In the present embodiment, the optical switch 120 inputs signal light to one of the two input ports 205 and 206 of the wavelength filter 201. The wavelength filter 201 transmits only light of a specific wavelength among the input signal light. For example, when signal light is input to the input port 205, the wavelength filter 201 passes only the component of which ΔL is (n + 1/2) times the wavelength (where n is an integer). Further, when the signal light is input to the input port 206, the wavelength filter 201 passes only the component of which ΔL is n times the wavelength (where n is an integer) in the signal light.
 このため、本実施形態によっても、光スイッチ120が波長フィルタ201の入力ポートを選択することにより、波長フィルタ201に透過させる光の波長を選択することができる。従って、本実施形態によっても、N×1の光スイッチとトランスポンダ300の間にチューナブルフィルタを設ける場合と比較して、光制御装置100の消費電力を少なくすることができる。また、波長フィルタ201は屈折率制御部236を有していないため、光制御装置100の制御は容易になる。この効果は、複数の波長フィルタ201を直列に接続している場合、特に顕著になる。 Therefore, also in this embodiment, the optical switch 120 selects the input port of the wavelength filter 201, so that the wavelength of the light transmitted through the wavelength filter 201 can be selected. Therefore, according to this embodiment, the power consumption of the light control apparatus 100 can be reduced as compared with the case where a tunable filter is provided between the N × 1 optical switch and the transponder 300. Further, since the wavelength filter 201 does not include the refractive index control unit 236, the control of the light control device 100 is facilitated. This effect is particularly remarkable when a plurality of wavelength filters 201 are connected in series.
(第4の実施形態)
 図5は、第4の実施形態に係る最終段スイッチ200の構成を示す図である。本実施形態に係る最終段スイッチ200は、第1の実施形態と同様に、光制御装置100が有するN×1の光スイッチの最終段に使用される。最終段スイッチ200は、第1分岐部510、第2分岐部520、2つの中継用導波路530,540、屈折率変化部532、及び制御部50を有している。
(Fourth embodiment)
FIG. 5 is a diagram illustrating a configuration of a final-stage switch 200 according to the fourth embodiment. The final stage switch 200 according to the present embodiment is used in the final stage of the N × 1 optical switch included in the light control apparatus 100, as in the first embodiment. The final stage switch 200 includes a first branching unit 510, a second branching unit 520, two relay waveguides 530 and 540, a refractive index changing unit 532, and a control unit 50.
 第1分岐部510は、入力用導波路202及び入力用導波路204に接続している、第1分岐部510は、入力用導波路202又は入力用導波路204を伝播してきた入力光を、2つの中間光に分岐する。第1分岐部510において、2つの中間光の分岐比率は、100:0、50:50、及び0:100のいずれかに設定される。第1分岐部510は、例えばMZI構造を有しており、ヒータの出力が制御されることにより、2つの中間光の分岐比率が制御される。このヒータは、制御部50によって制御されている。 The first branching unit 510 is connected to the input waveguide 202 and the input waveguide 204. The first branching unit 510 receives the input light propagating through the input waveguide 202 or the input waveguide 204. Branches into two intermediate lights. In the first branching unit 510, the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100. The first branching unit 510 has, for example, an MZI structure, and the branching ratio of the two intermediate lights is controlled by controlling the output of the heater. This heater is controlled by the control unit 50.
 第2分岐部520の2つの入力ポートは、中継用導波路530,540を介して、第1分岐部510の出力ポートに接続している。すなわち第2分岐部520は、第1分岐部510で生成された2つの中間光が入力される。第2分岐部520は、中継用導波路530,540を伝播してきた中間光を、それぞれ2つの出力ポートに分岐する。一方の出力ポートは出力ポート104に接続しており、他方の出力ポートは破棄ポート544となっている。第2分岐部520における光の分岐比率は、100:0、50:50、及び0:100のいずれかに設定される。第2分岐部520は、例えばMZI構造を有しており、ヒータの出力が制御されることにより、2つの中間光の分岐比率が制御される。このヒータは、制御部50によって制御されている。 The two input ports of the second branch unit 520 are connected to the output port of the first branch unit 510 via the relay waveguides 530 and 540. That is, the second branch unit 520 receives the two intermediate lights generated by the first branch unit 510. The second branching unit 520 branches the intermediate light propagating through the relay waveguides 530 and 540 to two output ports, respectively. One output port is connected to the output port 104, and the other output port is a discard port 544. The light branching ratio in the second branching unit 520 is set to any one of 100: 0, 50:50, and 0: 100. The second branching unit 520 has, for example, an MZI structure, and the branching ratio of the two intermediate lights is controlled by controlling the output of the heater. This heater is controlled by the control unit 50.
 屈折率変化部532は例えばヒータであり、中継用導波路530,540の一方(本図に示す例では中継用導波路530)の屈折率を変化させる。屈折率変化部532は、制御部50によって制御される。 The refractive index changing section 532 is, for example, a heater, and changes the refractive index of one of the relay waveguides 530 and 540 (in the example shown in the figure, the relay waveguide 530). The refractive index changing unit 532 is controlled by the control unit 50.
 また、最終段スイッチ200は、光フィルタとしても機能する。この理由については、図6を用いて後述する。 Further, the final stage switch 200 also functions as an optical filter. The reason for this will be described later with reference to FIG.
 図6は、図5に示した光制御装置100の動作を説明するための図である。本図に示す例は、入力用導波路202に入力された波長λの光信号を、出力ポート104に出力する場合を想定している。 FIG. 6 is a diagram for explaining the operation of the light control apparatus 100 shown in FIG. In the example shown in this figure, it is assumed that an optical signal having the wavelength λ 1 input to the input waveguide 202 is output to the output port 104.
 図6(a)は、入力用導波路202に入力された光をフィルタリングせずにそのまま出力ポート104に出力する場合を示している。この場合、第1分岐部510及び第2分岐部520のヒータを動作させないため、最終的に光の位相はπ遅れる。 FIG. 6A shows a case where the light input to the input waveguide 202 is output to the output port 104 as it is without filtering. In this case, since the heaters of the first branching unit 510 and the second branching unit 520 are not operated, the light phase is finally delayed by π.
 まず、第1分岐部510のヒータが動作していないため、入力用導波路202に入力された光は、第1分岐部510を経由すると、第1分岐部510内の2つの中継用導波路から、位相がともにπ/2遅れた同相の状態で、中継用導波路540にのみ出力される。 First, since the heater of the first branching unit 510 is not operating, the light input to the input waveguide 202 passes through the first branching unit 510, and thus two relay waveguides in the first branching unit 510 are used. Therefore, the signal is output only to the relay waveguide 540 in the same phase with both phases delayed by π / 2.
 そして第2分岐部520のヒータも動作していない。このため、中継用導波路540に出力された光は、さらに共に位相がπ/2遅れた同相の状態(トータルで-π)で、出力ポート104に出力される。 And the heater of the second branch 520 is not operating. For this reason, the light output to the relay waveguide 540 is output to the output port 104 in the same-phase state (-π in total) further delayed in phase by π / 2.
 図6(b)は、入力用導波路204に入力された光をフィルタリングせずにそのまま出力ポート104に出力する場合を示している。この場合、第1分岐部510のヒータを動作させて光の位相をπ遅らせる。また、第2分岐部520のヒータは動作させない。または、第2分岐部520のヒータを動作させて光の位相をπ遅らせ、第1分岐部510のヒータは動作させない。 FIG. 6B shows a case where the light input to the input waveguide 204 is output as it is to the output port 104 without being filtered. In this case, the heater of the first branching unit 510 is operated to delay the light phase by π. Further, the heater of the second branch 520 is not operated. Alternatively, the heater of the second branching unit 520 is operated to delay the phase of light by π, and the heater of the first branching unit 510 is not operated.
 まず、第1分岐部510のヒータが動作しているため、入力用導波路202に入力された光は、第1分岐部510を経由すると、第1分岐部510内の2つの中継用導波路から、位相がそれぞれ0、2π遅れた同相の状態(すなわち位相差が2π)で、中継用導波路540にのみ出力される。 First, since the heater of the first branching unit 510 is operating, the light input to the input waveguide 202 passes through the first branching unit 510, and thus two relay waveguides in the first branching unit 510. Thus, the signal is output only to the relaying waveguide 540 in the same phase state (that is, the phase difference is 2π) with the phase delayed by 0 and 2π, respectively.
 そして第2分岐部520のヒータは動作していない。このため、中継用導波路540に出力された光は、中継用導波路540内でさらに位相が共にπ/2遅れる。その結果、2つの光は、位相差が2πの同相の状態(-π/2と-5π/2)で、出力ポート104に出力される。 And the heater of the second branch 520 is not operating. For this reason, the phase of the light output to the relay waveguide 540 is further delayed by π / 2 in the relay waveguide 540. As a result, the two lights are output to the output port 104 in the in-phase state (−π / 2 and −5π / 2) with a phase difference of 2π.
 図6(c)は、入力用導波路202に入力された光をフィルタリングしたうえで出力ポート104に出力する場合を示している。この場合、第1分岐部510,第2分岐部520それぞれでヒータを動作させ、それぞれで光が2つの出力ポートに等分されるようにする。また中継用導波路530,540の光路長の差ΔLは、所望する波長フィルタの特性に従って決定される。 FIG. 6C shows a case where the light input to the input waveguide 202 is filtered and output to the output port 104. In this case, the heater is operated in each of the first branching unit 510 and the second branching unit 520 so that the light is equally divided into two output ports in each. The difference ΔL between the optical path lengths of the relay waveguides 530 and 540 is determined according to the desired wavelength filter characteristics.
 まず、第1分岐部510のヒータが動作しているため、入力用導波路202に入力された光は、第1分岐部510を経由すると、中継用導波路530,540のそれぞれに同じ強度で出力される。この際、出力される光は、それぞれ位相が-π/2、-π遅れた状態、すなわち位相差が-π/2ついた光となる。 First, since the heater of the first branching unit 510 is operating, the light input to the input waveguide 202 passes through the first branching unit 510 and has the same intensity in each of the relaying waveguides 530 and 540. Is output. At this time, the output light is in a state where the phase is delayed by −π / 2 and −π, that is, light having a phase difference of −π / 2, respectively.
 そして中継用導波路530,540を経由する際、光は、中継用導波路530,540の光路長の差ΔLに応じた位相変化を受ける。つまり、中継用導波路530,540を経由した後、中継用導波路530を経由した光と、中継用導波路540を経由した光との間には、光路長の差ΔLに応じてさらに位相差が生じる。 When passing through the relay waveguides 530 and 540, the light undergoes a phase change corresponding to the difference ΔL in the optical path length between the relay waveguides 530 and 540. In other words, after passing through the relay waveguides 530 and 540, the light passing through the relay waveguide 530 and the light passing through the relay waveguide 540 are further arranged in accordance with the optical path length difference ΔL. A phase difference occurs.
 上記したように、中継用導波路530を経由した光と、中継用導波路540を経由した光は、光路長の差ΔLに応じた位相の差が生じている。このため、出力ポート104に出力される光は、ΔLに応じて波長がフィルタリングされる。 As described above, there is a phase difference between the light passing through the relay waveguide 530 and the light passing through the relay waveguide 540 according to the optical path length difference ΔL. For this reason, the wavelength of the light output to the output port 104 is filtered according to ΔL.
 以上、本実施形態によっても、入力用導波路202又は入力用導波路204を伝播する光が複数の波長を含んでおり、かつその強度がトランスポンダ300の光電変換素子の許容量を超えていた場合であっても、出力ポート104に出力される光の波長を選択することにより、出力ポート104を伝播する光の強度を低くすることができる。 As described above, also in this embodiment, the light propagating through the input waveguide 202 or the input waveguide 204 includes a plurality of wavelengths, and the intensity thereof exceeds the allowable amount of the photoelectric conversion element of the transponder 300. Even so, by selecting the wavelength of the light output to the output port 104, the intensity of the light propagating through the output port 104 can be lowered.
 また、入力される光の強度によっては、第2分岐部520のヒータを動作させなくても良い場合がある。従って、N×1の光スイッチとトランスポンダ300の間にチューナブルフィルタを設ける場合と比較して、光制御装置100の消費電力を少なくすることができる。 Also, depending on the intensity of the input light, it may not be necessary to operate the heater of the second branch 520. Therefore, compared with the case where a tunable filter is provided between the N × 1 optical switch and the transponder 300, the power consumption of the light control device 100 can be reduced.
 また、屈折率変化部532が中継用導波路530の屈折率を変化させるため、中継用導波路530の光路長を変化させることができる。従って、最終段スイッチ200にフィルタリング機能を持たせる場合において、最終段スイッチ200を通過する光の波長を変えることができる。 Further, since the refractive index changing section 532 changes the refractive index of the relay waveguide 530, the optical path length of the relay waveguide 530 can be changed. Therefore, when the last stage switch 200 has a filtering function, the wavelength of light passing through the last stage switch 200 can be changed.
 (第5の実施形態)
 図7は、第5の実施形態に係る光制御装置の最終段スイッチの構成を示す図である。本実施形態に係る光制御装置は、N×1の光スイッチの最終段に、第3又は第4の実施形態に示した光制御装置100を直列に多段に接続した構成を有している。第1の光制御装置100の入力ポートは、入力用導波路202,204に接続している。その次の段の光制御装置100の入力ポートは、第1の光制御装置100の出力ポート104に接続している。そして最終段の光制御装置100の出力ポート104は、トランスポンダ300に接続している。なお、光制御装置100をフィルタとして機能させる場合、そのフィルタが透過する拝聴域の幅は、それぞれの光制御装置100の中継用導波路に異なる光路長差ΔLを与えることで、所望の値となる。
(Fifth embodiment)
FIG. 7 is a diagram illustrating a configuration of a final-stage switch of the light control device according to the fifth embodiment. The light control device according to the present embodiment has a configuration in which the light control device 100 shown in the third or fourth embodiment is connected in multiple stages in series at the final stage of the N × 1 optical switch. The input port of the first light control device 100 is connected to the input waveguides 202 and 204. The input port of the light control device 100 at the next stage is connected to the output port 104 of the first light control device 100. The output port 104 of the final-stage light control apparatus 100 is connected to the transponder 300. Note that when the light control device 100 functions as a filter, the width of the listening area transmitted by the filter is different from the desired value by giving different optical path length differences ΔL to the relay waveguides of the respective light control devices 100. Become.
 本実施形態によっても、第3又は第4の実施形態と同様の効果を得ることができる。また光制御装置100を直列に多段に接続しているため、トランスポンダ300に入力する光の波長域の幅を狭くすることができる。 Also in this embodiment, the same effects as those in the third or fourth embodiment can be obtained. Further, since the light control devices 100 are connected in multiple stages in series, the width of the wavelength range of the light input to the transponder 300 can be narrowed.
(第6の実施形態)
 図8は、第6の実施形態に係る光通信システムの構成を示す図である。本図に示す光通信システムにおいて、データ転送ネットワークのノードは、制御部50及び光制御装置100を有している。データ通信ネットワークのノードは、制御ネットワークのノード制御装置620によって制御されている。このデータ通信ネットワークにおいて、光信号は、例えばデジタルコヒーレント方式で送受信される。ただし光信号は、WDM(Wavelength Division Multiplexing)方式で送受信されてもよい。
(Sixth embodiment)
FIG. 8 is a diagram illustrating a configuration of an optical communication system according to the sixth embodiment. In the optical communication system shown in the figure, each node of the data transfer network has a control unit 50 and an optical control device 100. The nodes of the data communication network are controlled by the node control device 620 of the control network. In this data communication network, optical signals are transmitted and received by, for example, a digital coherent method. However, the optical signal may be transmitted and received by a WDM (Wavelength Division Multiplexing) method.
 制御部50は、制御ネットワークのノード制御装置620を介して、光通信システムの制御システム600から、そのノード制御装置620に入力される光信号の波長の数(運用波長数)を示す情報を受信する。制御部50は、運用波長数が基準を超えている場合、トランスポンダ300の光電変換素子への入力が、その光電変換素子の許容量を越える可能性があると判断し、光制御装置100のフィルタリング機能を動作させる。一方、制御部50は、運用波長数が基準を超えていない場合、光制御装置100のフィルタリング機能を動作させない。 The control unit 50 receives information indicating the number of wavelengths (number of operating wavelengths) of the optical signal input to the node control device 620 from the control system 600 of the optical communication system via the node control device 620 of the control network. To do. When the number of operating wavelengths exceeds the reference, the control unit 50 determines that the input to the photoelectric conversion element of the transponder 300 may exceed the allowable amount of the photoelectric conversion element, and performs filtering of the light control device 100. Activate the function. On the other hand, the control unit 50 does not operate the filtering function of the light control apparatus 100 when the number of operating wavelengths does not exceed the reference.
 本実施形態によれば、データ通信ネットワークのノードは、制御部50及び光制御装置100を有している。従って、ノードの信頼性を向上させることができ、かつノードの消費電力を削減することができる。 According to this embodiment, the node of the data communication network includes the control unit 50 and the light control device 100. Therefore, the reliability of the node can be improved and the power consumption of the node can be reduced.
(第7の実施形態)
 図9は、第7の実施形態に係るN×1の光スイッチの構成を示す図である。本実施形態に示す光スイッチは、ツリー構造を有している。そして最終段の光スイッチに、第1~第5の実施形態のいずれかに示した光制御装置100を有している。
 本実施形態によっても、第1~第5の実施形態と同様の効果を得ることができる。
(Seventh embodiment)
FIG. 9 is a diagram illustrating a configuration of an N × 1 optical switch according to the seventh embodiment. The optical switch shown in this embodiment has a tree structure. The optical switch at the final stage has the light control device 100 shown in any of the first to fifth embodiments.
Also according to this embodiment, the same effects as those of the first to fifth embodiments can be obtained.
(第8の実施形態)
 図10は、第8の実施形態に係るN×1の光スイッチの構成を示す図である。本実施形態に示す光スイッチは、タップ構造を有している。そして最終段の光スイッチに、第1~第5の実施形態のいずれかに示した光制御装置100を有している。
 本実施形態によっても、第1~第5の実施形態と同様の効果を得ることができる。
(Eighth embodiment)
FIG. 10 is a diagram illustrating a configuration of an N × 1 optical switch according to the eighth embodiment. The optical switch shown in this embodiment has a tap structure. The optical switch at the final stage has the light control device 100 shown in any of the first to fifth embodiments.
Also according to this embodiment, the same effects as those of the first to fifth embodiments can be obtained.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 この出願は、2011年9月22日に出願された日本出願特願2011-207991を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-207991 filed on September 22, 2011, the entire disclosure of which is incorporated herein.

Claims (15)

  1.  N×1の光スイッチを含み、出力用導波路を介して外部に光信号を出力する光制御装置であって、
     最終段に設けられ、前記出力用導波路に接続する光フィルタを有し、
     前記光フィルタは、
      2つの入力用導波路が接続される第1方向性結合器と、
      前記出力用導波路が接続される第2方向性結合器と、
      前記第1方向性結合器と、前記第2方向性結合器とをつなぎ、長さが互いに異なる2つの中継用導波路と、
    を備える光制御装置。
    An optical control device that includes an N × 1 optical switch and outputs an optical signal to the outside via an output waveguide,
    An optical filter provided at the final stage and connected to the output waveguide;
    The optical filter is
    A first directional coupler to which two input waveguides are connected;
    A second directional coupler to which the output waveguide is connected;
    Two relay waveguides connecting the first directional coupler and the second directional coupler and having different lengths;
    A light control device comprising:
  2.  請求項1に記載の光制御装置において、
     前記光フィルタは、
      前記N×1の光スイッチの最終段スイッチであり、
      前記2つの中継用導波路の一方の屈折率を変化させる屈折率変化手段を備える光制御装置。
    The light control device according to claim 1,
    The optical filter is
    A final stage switch of the N × 1 optical switch,
    A light control device comprising a refractive index changing means for changing a refractive index of one of the two relay waveguides.
  3.  請求項2に記載の光制御装置において、
     前記屈折率変化手段はヒータである光制御装置。
    The light control device according to claim 2,
    The light control device, wherein the refractive index changing means is a heater.
  4.  請求項1~3のいずれか一項に記載の光制御装置において、
     複数の前記最終段スイッチを備える光制御装置。
    The light control device according to any one of claims 1 to 3,
    A light control device comprising a plurality of the final stage switches.
  5.  請求項1に記載の光制御装置において、
     前記N×1の光スイッチの最終段スイッチは、出力ポートを2つ有しており、
     前記光フィルタの前記2つの入力用導波路は、前記最終段スイッチの前記2つの入力ポートに接続している光制御装置。
    The light control device according to claim 1,
    The last stage switch of the N × 1 optical switch has two output ports,
    The light control device, wherein the two input waveguides of the optical filter are connected to the two input ports of the final stage switch.
  6.  N×1構造の光スイッチを有する光制御装置であって、
     前記光スイッチの最終段スイッチが、
      入力光を2つの中間光に分岐するとともに、前記2つの中間光の分岐比率が100:0、50:50、及び0:100のいずれかに設定される第1分岐部と、
      前記2つの中間光が入力されるとともに、前記2つの中間光を、2つの出力ポートに分岐し、かつ前記2つの中間光の前記2つの出力ポートへの分岐比率が100:0、50:50、及び0:100のいずれかに設定される第2分岐部と、
      前記第1分岐部及び前記第2分岐部を接続し、かつ互いに長さが異なる2つの中継用導波路と、
      前記第1分岐部の分岐比率及び前記第2分岐部の分岐比率を制御する制御手段と、
    を備える光制御装置。
    An optical control device having an optical switch of N × 1 structure,
    The last switch of the optical switch is
    A first branching unit that branches the input light into two intermediate lights, and the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100;
    The two intermediate lights are input, the two intermediate lights are branched to two output ports, and branching ratios of the two intermediate lights to the two output ports are 100: 0, 50:50. , And a second branching section set to any of 0: 100,
    Two relay waveguides that connect the first branch portion and the second branch portion and have different lengths;
    Control means for controlling the branch ratio of the first branch section and the branch ratio of the second branch section;
    A light control device comprising:
  7.  請求項6に記載の光制御装置において、
     前記第1分岐部及び前記第2分岐部は、2つの方向性結合器を有するMZI(Mach-Zehender Interferometer)構造を有している光制御装置。
    The light control device according to claim 6,
    The first branching unit and the second branching unit have an MZI (Mach-Zehender Interferometer) structure having two directional couplers.
  8.  請求項6又は7に記載の光制御装置において、
     前記2つの中継用導波路の一方の屈折率を変化させる屈折率変化手段を備える光制御装置。
    The light control device according to claim 6 or 7,
    A light control device comprising a refractive index changing means for changing a refractive index of one of the two relay waveguides.
  9.  請求項8に記載の光制御装置において、
     前記屈折率変化手段はヒータである光制御装置。
    The light control device according to claim 8,
    The light control device, wherein the refractive index changing means is a heater.
  10.  請求項6~9のいずれか一項に記載の光制御装置において、
     前記第2分岐部が接続している前記2つの光路の少なくとも一方にはトランスポンダが接続され、
     前記制御手段は、前記トランスポンダの許容入力量に基づいて、前記第1分岐部の分岐比率及び前記第2分岐部の分岐比率を制御する光制御装置。
    The light control device according to any one of claims 6 to 9,
    A transponder is connected to at least one of the two optical paths to which the second branching unit is connected,
    The said control means is an optical control apparatus which controls the branch ratio of the said 1st branch part and the branch ratio of the said 2nd branch part based on the allowable input amount of the said transponder.
  11.  請求項6~9のいずれか一項に記載の光制御装置において、
     前記制御手段は、外部から入力される指示に従って、前記第1分岐部の分岐比率及び前記第2分岐部の分岐比率を制御する光制御装置。
    The light control device according to any one of claims 6 to 9,
    The said control means is a light control apparatus which controls the branch ratio of the said 1st branch part and the branch ratio of the said 2nd branch part according to the instruction | indication input from the outside.
  12.  請求項6~11のいずれか一項に記載の光制御装置において、
     第1の前記最終段スイッチと、
     前記第1の最終段スイッチの出力が入力される第2の前記最終段スイッチと、
    を備える光制御装置。
    The light control device according to any one of claims 6 to 11,
    A first last stage switch;
    A second last stage switch to which an output of the first last stage switch is input;
    A light control device comprising:
  13.  請求項1~12のいずれか一項に記載の光制御装置において、
     ツリー構造である光制御装置。
    The light control device according to any one of claims 1 to 12,
    Light control device with a tree structure.
  14.  請求項1~12のいずれか一項に記載の光制御装置において、
     タップ構造である光制御装置。
    The light control device according to any one of claims 1 to 12,
    Light control device with a tap structure.
  15.  入力光を2つの中間光に分岐するとともに、前記2つの中間光の分岐比率が100:0、50:50、及び0:100のいずれかに設定される第1分岐部と、
     前記2つの中間光が入力されるとともに、前記2つの中間光を、2つの出力ポートに分岐し、かつ前記2つの中間光の前記2つの出力ポートへの分岐比率が100:0、50:50、及び0:100のいずれかに設定される第2分岐部と、
     前記第1分岐部及び前記第2分岐部を接続し、かつ互いに長さが異なる2つの中継用導波路と、
     前記第1分岐部の分岐比率及び前記第2分岐部の分岐比率を制御する制御手段と、
    を備える光素子。
    A first branching unit that branches the input light into two intermediate lights, and the branching ratio of the two intermediate lights is set to any one of 100: 0, 50:50, and 0: 100;
    The two intermediate lights are input, the two intermediate lights are branched to two output ports, and branching ratios of the two intermediate lights to the two output ports are 100: 0, 50:50. , And a second branching section set to any of 0: 100,
    Two relay waveguides that connect the first branch portion and the second branch portion and have different lengths;
    Control means for controlling the branch ratio of the first branch section and the branch ratio of the second branch section;
    An optical element comprising:
PCT/JP2012/005907 2011-09-22 2012-09-14 Optical control device and optical element WO2013042344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011207991 2011-09-22
JP2011-207991 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042344A1 true WO2013042344A1 (en) 2013-03-28

Family

ID=47914132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005907 WO2013042344A1 (en) 2011-09-22 2012-09-14 Optical control device and optical element

Country Status (1)

Country Link
WO (1) WO2013042344A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232414A (en) * 1997-05-30 1998-09-02 Nec Corp Multi-channel optical switch and driving method therefor
JP2000019569A (en) * 1998-07-01 2000-01-21 Nec Corp Optical circuit
JP2002228862A (en) * 2001-01-31 2002-08-14 Furukawa Electric Co Ltd:The Plane optical waveguide type mach-zehnder circuit, and plate optical waveguide circuit and optical multiplexer/ demultiplexer using the plane optical waveguide type mach-zehnder circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232414A (en) * 1997-05-30 1998-09-02 Nec Corp Multi-channel optical switch and driving method therefor
JP2000019569A (en) * 1998-07-01 2000-01-21 Nec Corp Optical circuit
JP2002228862A (en) * 2001-01-31 2002-08-14 Furukawa Electric Co Ltd:The Plane optical waveguide type mach-zehnder circuit, and plate optical waveguide circuit and optical multiplexer/ demultiplexer using the plane optical waveguide type mach-zehnder circuit

Similar Documents

Publication Publication Date Title
JP5261542B2 (en) Optical circuit device
US7221821B2 (en) Hitless errorless trimmable dynamic optical add/drop multiplexer devices
CA2613105C (en) Method and system for hitless tunable optical processing
JP2006295324A5 (en)
WO2012132688A1 (en) Optical transmission device
JP2009530970A (en) Wavelength channel insertion and branching
US8032023B2 (en) Reconfigurable DWDM wavelength switch based on complementary bandpass filters
JP4022766B2 (en) Chromatic dispersion device
Ikuma et al. Integrated 40-$\lambda $1$\,\times\, $2 Wavelength Selective Switch Without Waveguide Crossings
US8699834B2 (en) Bandwidth adjustable bandpass filter
WO2013042344A1 (en) Optical control device and optical element
US7330658B2 (en) Device and method for optical add/drop multiplexing
JP2009210788A (en) Optical matrix switch
EP3874327B1 (en) Optical finite impulse response filter with rate flexibility and multi-wavelength operation capability based on integrated delay lines with micro-ring resonators
KR100709880B1 (en) A tuneable optical filter
JP7310336B2 (en) optical add/drop device
JP5632436B2 (en) Optical wavelength filter
JP7079391B2 (en) Optical transmission equipment and optical elements
CN114924357B (en) Wavelength division multiplexing optical delay line based on cascade Mach-Zehnder interferometer structure
Jinguji et al. Synthesis of one-input M-output optical FIR lattice circuits
JP2009246768A (en) Wave-band cross connect apparatus
JP2003124888A (en) Wavelength light signal supervisory mechanism and its method, supervisory system for optical add-drop device, and supervisory system for optical cross connect device
US20050180683A1 (en) Tuneable filter arrangement
Suzuki et al. Fully-reconfigurable wavelength-selective optical 1/spl times/N switch based on transversal filter configuration
EP1855132A2 (en) Trimmable optical add/drop multiplexer devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP