WO2013041781A1 - Pile à combustible à haute densité d'assemblages membrane-électrodes partageant une cavité fluidique commune - Google Patents

Pile à combustible à haute densité d'assemblages membrane-électrodes partageant une cavité fluidique commune Download PDF

Info

Publication number
WO2013041781A1
WO2013041781A1 PCT/FR2012/000366 FR2012000366W WO2013041781A1 WO 2013041781 A1 WO2013041781 A1 WO 2013041781A1 FR 2012000366 W FR2012000366 W FR 2012000366W WO 2013041781 A1 WO2013041781 A1 WO 2013041781A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
fuel cell
electrode assemblies
cavity
fluid
Prior art date
Application number
PCT/FR2012/000366
Other languages
English (en)
Other versions
WO2013041781A8 (fr
Inventor
Audrey Martinent
Kurt Rath
Alain Rosenzweig
Bruno Valon
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2013041781A1 publication Critical patent/WO2013041781A1/fr
Publication of WO2013041781A8 publication Critical patent/WO2013041781A8/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell comprising:
  • first element incorporating at least two membrane-electrode assemblies whose electrodes of the same type are disposed at the same face of said first element
  • a fluidic cavity for supplying the electrodes of the same type of the first fluid element.
  • an element comprising one or more membrane-electrode assemblies 1a, 1b, and associated by planar technology to a distribution plate 2 of hydrogen provided with a cavity C common to the anodes of the aforementioned element.
  • Separate elementary cells can be electrically connected to each other, for example to increase the capacity of a main battery. Therefore, to obtain good yields, it is necessary to control and adjust the hydrogen pressure in the elementary cells so as to harmonize the pressure. This implies the implementation of expensive and bulky measuring systems and valves.
  • WO2009 / 053398 discloses the use of several large-area membrane-electrode assemblies stacked on top of one another. Two adjacent assemblies share the same distribution cavity of an associated fluid (fuel or oxidant). Thus, there is alternately between two assemblies a cavity for the fuel and a cavity for the oxidizer.
  • a fuel cell obtained according to this document has an induced rigidity of its thickness which does not make it easily integrable. In addition, such a fuel cell necessarily has a complex fluid circulation system to properly feed the different cavities.
  • Documents EP 2 333 889 and EP 2 337 132 describe a fuel cell comprising a flow plate that may comprise a plurality of channels, each side of said plate being in contact with a "unit" composed of an electrode membrane assembly ( AME), diffusion layers and current collectors. Several diffusion layers are arranged on either side of a single membrane-electrode assembly, the layers being face to face two by two and arranged facing the channels of the flow plate.
  • Document US 2006/269821 discloses a fuel cell comprising current collectors disposed around an electrode membrane assembly (AME), said MEA being composed of an electrolyte membrane, a catalyst and a diffusion layer.
  • the current collector comprises a metal plate and an insulating plate on each side of the metal plate. The insulating plate is pierced so as to form passages for the fluidic element, the latter can thus reach PAME and react with the catalyst.
  • Such fuel cells comprise a single electrolytic membrane completely covered on both sides by the electrodes, thus requiring large amounts of catalyst, often based on noble metals, which increases the cost of developing fuel cells.
  • these cells require that the deposition of the electrodes on the membrane is homogeneous over large areas so as not to create large voltage or current differences in the different areas covered by the diffusion layers.
  • the object of the invention is to provide a fuel cell avoiding the disadvantages referred to in the prior art.
  • FIG. 1 represents a fuel cell according to the prior art
  • FIG. 2 illustrates a fuel cell according to one embodiment of the invention
  • FIG. 3 illustrates a distribution plate of a fluid
  • FIG. 4 illustrates a first delimitation plate that can be used in the first element and in the second element
  • FIG. 5 illustrates a membrane defining the membrane-electrode assemblies
  • FIG. 6 illustrates a second boundary plate used in the first and second elements
  • FIG. 7 illustrates a complete fuel cell according to one embodiment
  • FIG. 8 illustrates an alternative embodiment of a current collector applicable to FIGS. 4 and 6.
  • the present fuel cell differs from the prior art notably in that it makes it possible to double the number of membrane-electrode assemblies for the same distribution plate of a fluid (typically hydrogen) by using a common fluidic cavity. two elements.
  • each MEA comprises a membrane associated with a first electrode and a second electrode.
  • the membrane of an MEA may consist essentially of a perfluoropolymer or polyimide or polyether type material, such as the material marketed by DuPont under the trademark Nafion®.
  • the first and second electrodes are intended to form the cathode and the anode of ⁇ .
  • the fluid cavity is in fact an anode cavity and this cavity makes it possible to supply anodes with hydrogen.
  • the fuel cell comprises a first element 3 incorporating at least two AMEs 1a, 1b whose anodes 4a, 4b are disposed at the same face of said first element 3. It further comprises a second element 5 incorporating at least two AME 1c, 1d whose anodes 4c, 4d are disposed at the same face of said second element 5.
  • a hydrogen distribution plate 2 is interposed between the first element 3 and the second element 5, said distribution plate 2 delimiting with the first element 3 and the second element 5 an anode cavity C common to the anodes 4a, 4b, 4c, 4d of said first and second elements 3 and 5, the anode cavity C serving to supply the anodes of the first and second elements 3, 5 in hydrogen.
  • the anodes of the first and second elements 3, 5 face each other.
  • the hydrogen distribution plate 2 makes it possible in fact to supply hydrogen to the anodes of the different MEAs in order to carry out the reaction enabling the assemblies to generate current in the concomitant presence of oxygen at the cathodes 6a, 6b, 6c, 6d of the different MEAs.
  • the distribution plate 2 advantageously comprises a through-opening 7 connecting two opposite faces of said distribution plate 2. These opposite faces are substantially parallel to the plane of the distribution plate 2.
  • the opening 7 has several sections opening and passing through the plane of the plate.
  • the first section T1 has the general shape of a circular hole connected by a segment to a second section T2 of greater importance arranged so that the hydrogen, injected through the hole of the first section T1, travels the second section T2 so as to "lick" the anodes of the MEAs of the first and second elements.
  • the second section T2 is intended to form, with the first and second elements 3, 5 of Figure 2, the anode cavity C of the fuel cell.
  • the opening 7 of the distribution plate 2 may, in a non-mandatory manner, comprise a third section T3 comprising a connecting segment the second section T2 to a circular hole for purging the anode cavity.
  • the purge of the anode cavity may be of interest for adapting the pressure of the hydrogen in the cavity or for discharging water, which could be in the anode cavity following a backscattering of the water formed by the reaction at the cathode of MEAs.
  • the second section T2 has a preferred serpentine shape comprising first parallel segments 8 and arranged with regular spaces staggered perpendicular to an axis A1. These first segments 8 are connected in series by second segments 9 alternately on either side of the axis A1. The second segments 9 are respectively formed along axes A2 and A3 disposed on either side of the axis A1. These second segments 9 are in FIG. 3 perpendicular to the first segments 8.
  • the distribution plate 2 comprises 6 first segments 8, each first segment will be associated with two AMEs disposed on either side of the plate. distribution 2. This particular shape gives a better mechanical strength during assembly.
  • any other form may also be suitable. For example, it is possible to have a rectangular cavity.
  • the coil has two ends distal to each other along its length. A first end is connected to the first section T1 and a second end is connected to the second section T2.
  • the first and second elements 3, 5 each comprise a successive stack of a first MEA delimiting plate provided with an opening at each MEA, associated MEAs comprising a preferentially common membrane, and a second MEA delimiting plate provided with an aperture at each MEA.
  • the first delimiting plates of the first and second elements 3, 5 are mounted on either side of the distribution plate 2 of so to take it in sandwich.
  • the anodes of each MEA have at least one portion in the cavity that can be reached by hydrogen.
  • FIG. 4 illustrates a first demarcation plate 20 of the MEAs that can be used in the first and second elements 3, 5.
  • the first demarcation plate 20 has as many through-openings 10 as there are MEAs that it is desired to make. These through openings 10 join first 11 and second 12 faces of said boundary plate 20. These first and second faces 11, 12 are preferably parallel to the plane of the first boundary plate 20. In FIG. 4, the first face 11 is hidden.
  • the first faces 11 of the first two limiting plates 20 of the first and second elements 3, 5 are respectively intended to be carried on the two opposite faces of the distribution plate 2 connected by the opening 7 (FIG. 3) to be mounted therein .
  • the through openings 10 of the first delimitation plates 12 then open into the opening 7 of the distribution plate 2, preferably at an associated segment 8 of its second section T2 ( Figure 3).
  • the second faces 12 of the delimiting plates 20 of the first and second elements 3, 5 each comprise current collectors 13.
  • the second face 12 is the face intended to be oriented towards the associated common membrane.
  • These current collectors 13 are preferably distinct from each other and each surround at least partially the periphery of an associated opening on the second face 12 so as to be placed in electrical contact with an anode of a corresponding AME.
  • the face of a first plate oriented towards the associated common membrane comprises current collectors 13 formed around the periphery of the openings 10, each current collector being in electrical contact with an associated anode of an AME.
  • connection track 13a (electrically conductive) may be formed, for example on the first associated demarcation plate 20, so as to deport separate areas of contact contact of the current collectors 13 on one edge of the first boundary plate. These tracks 13a thus each connect a current collector 13 to a contact recovery area and can be electrically insulated from each other.
  • Current collectors 13 may also be interconnected by tracks 13a so as to form an electric circuit desired by those skilled in the art.
  • the current collectors 13 may be formed around the periphery of the associated openings 10 as in FIG. 4, or on part of the periphery of the openings 10 as in FIG. 8.
  • a tab 13b can advantageously be deported on the geometric center of the opening 10 to optimize the collection of charges by decreasing their path to the contact formed by the free end of the tab 13b
  • Each second face 12 of the first delimitation plates 20 is in contact with the MEAs formed at each opening 10.
  • the MEAs share a common membrane.
  • This single membrane locally comprises anodes and cathodes for forming the MEAs.
  • the use of a single membrane makes it possible to provide a simplified and less expensive manufacturing process. Moreover, this offers the advantage of overcoming the sealing problems between the different cells since there is advantageously no need for seals.
  • FIG. 5 illustrates a membrane 14.
  • the first and second elements may each comprise a membrane of the type of FIG. 5. As indicated above, this membrane may be of the Nafion® type. Moreover, the membrane is preferably solid.
  • the anodes 4 and cathodes (not visible) of Figure 5 can be made on the membrane 14, as it is solid, by deposition or printing.
  • each electrode may comprise a catalytic layer to promote the chemical reaction of the fuel cell and a metal layer.
  • the catalytic and metallic layers will be porous to let hydrogen (at the anode) and oxygen (at the cathode) pass respectively.
  • the metal layer may be gold.
  • the thickness of the metal layer is preferably less than 1 ⁇ and, even more preferably, of the order of 0.5 ⁇ m.
  • the catalytic layer may consist of carbon platinum.
  • the catalytic layer is carbon-platinum and comprises gold nanoparticles. The presence of such particles advantageously facilitates electronic conduction and can also achieve the conductivity of a gold metal layer.
  • the thickness of the catalytic layer is of the order of 10 ⁇ m.
  • the catalytic layer is carbon-platinum and is covered by a porous gold metal layer.
  • the electrodes do not comprise metal layers: they comprise only the catalytic layer.
  • each membrane may be glued to the first delimitation plate 20 associated therewith.
  • electrically conductive adhesive will be disposed on the current collectors 13 before bonding. This implies that the dimensions of the rectangles forming the anodes are greater than the dimensions of the openings 10 of the first associated boundary plate.
  • an electrically non-conductive adhesive strip will be disposed on each first boundary plate so as to cooperate with the entire border of the face of the associated membrane 14 comprising the anodes. This band will among other things to seal the assembly.
  • FIG. 6 illustrates a second delimitation plate 15 which will be used in each of the elements 3 and 5.
  • This second delimitation plate 15 is substantially similar to the first delimitation plate of FIG. 4. It thus comprises openings 16 connecting a first face 17 to a second face 18.
  • the first and second faces 17, 18 are substantially parallel to the plane of the second boundary plate 15. In Figure 6, the second face 18 is hidden.
  • the first faces 17 of the second delimitation plates 15 of the first and second elements 3, 5 each comprise current collectors 19.
  • these current collectors 19 are distinct from each other and each surround at least partially around an opening 16 of the second associated boundary plate on the first face 17 so as to be placed in electrical contact with a cathode of an associated AME during the assembly of the element 3, 5 concerned.
  • each second boundary plate has on its face facing the associated common membrane 14 current collectors 19 formed on the periphery of the openings 16, each current collector 19 being in electrical contact with an associated cathode of an AME.
  • a connection track 19a (electrically conductive) may be formed on the second associated boundary plate so as to deport separate contact areas of the current collectors 19 on an edge of the second collector plate. delineation 15. These tracks 19a each connect a current collector 19 to a contact recovery area, and can be electrically insulated from each other.
  • the current collectors 19 may also be interconnected by the tracks so as to form an electrical diagram desired by those skilled in the art.
  • the current collectors 19 can be formed around the periphery of the 16 associated openings as in Figure 6 or a portion of the periphery of the openings 16 by analogy of Figure 8 associated with the current collectors 13.
  • the tab 13b of Figure 8 can also be applied at the current collector 19.
  • each membrane 14 may be glued to the second delimitation plate 15 associated therewith.
  • electrically conductive adhesive will be disposed on the current collectors 19 before bonding. This implies that the dimensions of the rectangles forming the cathodes are greater than the dimensions of the openings 16 of the associated boundary plate.
  • an electrically nonconductive glue strip will be arranged to bond the entire edge of the face of the common membrane 14 having the cathodes to the associated second bounding plate. .
  • FIG 7 illustrates the fuel cell once assembled.
  • the plates forming the elements sandwiching the electrode membrane assemblies make it possible to produce electrically conductive tracks for each current collector of the assemblies and to deport contact recovery zones of these tracks on the same edge of the Fuel cell.
  • current collectors 13, 19 may be connected to separate contact recovery areas by electrically conductive tracks electrically insulated from each other. These areas of contact recovery can then be electrically connected to a management strip 21 able to connect the MEAs according to different electrical diagrams.
  • the management strip 21 can connect all the contact recovery areas and interconnect them as desired, for example by means of switches formed in the strip.
  • switches may be controlled by a management system for managing the different electrical diagrams as needed.
  • the fuel cell may, if necessary, adapt its operation in terms of amperage, voltage or other desired parameter.
  • MEAs may be connected in series and / or in parallel.
  • the fuel cell may incorporate temperature and / or humidity sensors which may preferably be used by the management system to adapt the fuel cell to its operating environment.
  • the strip management system will be able to perform electrical tests of the MEAs, for example by measuring a current or a voltage in the MEAs.
  • will be considered as defective.
  • the management system may delete ⁇ defective to prevent its malfunction from degrading the entire circuit.
  • the strip 21 additionally incorporates at its two ends valves 22a, 22b respectively for injecting hydrogen into the anode cavity and purge the anode cavity (as previously indicated, the purge valve is not necessary).
  • the fuel cell comprises a hydrogen inlet in the anode cavity C and a purge outlet of the anode cavity C.
  • These valves 22a, 22b are preferably respectively mounted at holes 23a, 23b formed in only one of the first plates delimitation (see Figure 4), the other first plate is not perforated for reasons of sealing. These holes communicate with the anode cavity, preferably at the holes of the first and second sections of the distribution plate defined above.
  • the strip 21 is mounted directly on the first distribution plates of the first and second elements, for this purpose the second delimiting plates have a transverse dimension along the axis A4 smaller than the transverse dimension of the first distribution plates. .
  • the longitudinal dimension along A5 of the first and second boundary plates is substantially identical.
  • the various plates (distribution / first and second plates) constituting the fuel cell and the membrane-electrode assemblies are flexible so as to allow the fuel cell to be bent to adapt to the lines of a non-flat support.
  • a fuel cell as illustrated in Figure 2 or 7 will have a thickness less than 5 mm and advantageously between 100 pm and 2.5 mm.
  • the fuel cell described above makes it possible to homogeneously distribute the hydrogen at the level of all the AMEs constituting it.
  • the use of both sides of the distribution plate makes it possible to increase the density of AME within the same elementary fuel cell.
  • the first and second elements preferably have the same number of MEAs.
  • the different plates referred to above may be made in a plastic substrate of the epoxy, FR4 or Kapton® type. These plastics make it possible to give the said plates a certain flexibility when the thickness does not exceed 100 ⁇ m.
  • the fuel cell comprises a first element 3 incorporating at least two AMEs 1a, 1b whose electrodes of the same type 4a, 4b are disposed at the same face of said first element 3; a fluidic cavity C for supplying the electrodes of the same type 4a, 4b of the first element 3 in fluid; a second element 5 incorporating at least two AME 1c, 1d whose electrodes of the same type 4c, 4d are disposed at the same face of said second element 5; and a fluid distribution plate 2 interposed between the first element 3 and the second element 5, said distribution plate 2 delimiting with the first element 3 and the second element 5 the fluidic cavity C common to the electrodes of the same type 4a, 4b, 4c, 4d of said first and second elements 3, 5.
  • the electrodes of the same type are anodes and the fluid is a fuel.
  • the fuel may be selected from hydrogen, methanol, glucose, butane, etc. Such fuel can be injected into the anode cavity.
  • Other fuels used in fuel cells can also be used by those skilled in the art.
  • the cathodes of the cell can be in contact with air which then forms the fuel. The battery can then bathe in the air.
  • the electrodes of the same type are cathodes and the fluid is an oxidant, generally air, which can be injected into the cathode cavity.
  • the battery can be enclosed so that the anodes are in contact with the fuel, for example the battery can bathe in glucose.
  • the cell may comprise a fluid inlet in the fluid cavity C, and advantageously a purge outlet of the fluid cavity C.
  • the fluid inlet and / or the purge outlet are holes arranged in one of the delimiting plates 15, 20.
  • the battery may comprise at least one temperature sensor and / or a humidity sensor electrically connected to one of the delimiting plates 15, 20.
  • the fuel cell thus obtained has fewer components, and in particular smaller amounts of catalyst compared to the batteries obtained according to the prior art. It is, moreover, lighter, has a small footprint and is flexible.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La pile à combustible comprend un premier élément (3) incorporant au moins deux assemblages membrane-électrodes (1a, 1b) dont des électrodes d'un même type (4a, 4b) sont disposées au niveau d'une même face dudit premier élément (3), et une cavité fluidique (C) pour fournir les électrodes du même type (4a, 4b) du premier élément (3) en fluide. Elle comporte un second élément (5) incorporant au moins deux assemblages membrane-électrodes (1c, 1d) dont des électrodes d'un même type (4c, 4d) sont disposées au niveau d'une même face dudit second élément (5), et elle comporte une plaque de distribution (2) d'un fluide interposée entre le premier élément (3) et le second élément (5), ladite plaque de distribution (2) délimitant avec le premier élément (3) et le second élément (5) la cavité fluidique (C) commune aux électrodes du même type (4a, 4b, 4c, 4d) desdits premier et second éléments (3, 5). Les assemblages membrane-électrodes (1a, 1 b) partagent une première membrane commune et les assemblages (1c, 1d) partagent une deuxième membrane commune. Chaque membrane comporte localement des anodes et des cathodes destinées à former les assemblages membrane-électrodes (1a, 1 b, 1c, 1d).

Description

Pile à combustible à haute densité d'assemblages membrane-électrodes partageant une cavité fluidique commune
Domaine technique de l'invention
L'invention est relative à une pile à combustible comprenant :
un premier élément incorporant au moins deux assemblages membrane- électrodes dont des électrodes d'un même type sont disposées au niveau d'une même face dudit premier élément,
une cavité fluidique pour fournir les électrodes du même type du premier élément en fluide.
État de la technique
Dans le domaine des piles à combustible, il est courant de trouver, comme illustré à la figure 1 , un élément comprenant un ou plusieurs assemblages membrane-électrodes 1a, 1b, et associé par technologie planaire à une plaque de distribution 2 de l'hydrogène munie d'une cavité C commune aux anodes de l'élément susmentionné.
Des piles élémentaires distinctes peuvent être connectées électriquement entre elles, par exemple pour augmenter la capacité d'une pile principale. Dès lors, pour obtenir de bons rendements, il est nécessaire de contrôler et ajuster la pression de l'hydrogène dans les piles élémentaires de sorte à en harmoniser la pression. Ceci implique la mise en œuvre de systèmes de mesure et de valves coûteux et encombrants. Le document WO2009/053398 divulgue l'utilisation de plusieurs assemblages membrane-électrodes de grande surface empilés les uns sur les autres. Deux assemblages adjacents partagent une même cavité de distribution d'un fluide associé (combustible ou comburant). Ainsi, on retrouve alternativement entre deux assemblages une cavité destinée au combustible et une cavité destinée au comburant. Une pile à combustible obtenue selon ce document présente une rigidité induite de son épaisseur qui ne la rend pas facilement intégrable. De plus, une telle pile à combustible a nécessairement un système de circulation des fluides complexe pour alimenter convenablement les différentes cavités.
Les documents EP 2 333 889 et EP 2 337 132 décrivent une pile à combustible comportant une plaque d'écoulement pouvant comporter une pluralité de canaux, chaque côté de ladite plaque étant en contact avec une « unité » composée d'un assemblage membrane électrode (AME), de couches de diffusion et de collecteurs de courant. Plusieurs couches de diffusion sont disposées de part et d'autre d'un unique assemblage membrane-électrode, les couches étant face à face deux par deux et disposées face aux canaux de la plaque d'écoulement. Le document US 2006/269821 décrit une pile à combustible comportant des collecteurs de courant disposés autour d'un assemblage membrane électrode (AME), ledit AME étant composé d'une membrane électrolytique, d'un catalyseur et d'une couche de diffusion. Le collecteur de courant comprend une plaque métallique et une plaque isolante de chaque côté de la plaque métallique. La plaque isolante est percée de sorte à former des passages pour l'élément fluidique, ce dernier peut ainsi atteindre PAME et réagir avec le catalyseur.
De telles piles à combustible comportent une seule membrane électrolytique entièrement recouverte de part et d'autre par les électrodes, nécessitant donc de grandes quantités de catalyseur, souvent à base de métaux nobles, ce qui augmente les coûts d'élaboration des piles à combustible. De plus, ces piles nécessitent que le dépôt des électrodes sur la membrane soit homogène sur de grandes surfaces afin de ne pas créer de grandes différences de tension ou de courant au niveau des différentes zones recouvertes par les couches de diffusion.
Objet de l'invention L'objet de l'invention consiste à réaliser une pile à combustible évitant les inconvénients visés dans l'art antérieur.
On tend vers cet objet par les revendications annexées.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
la figure 1 représente une pile à combustible selon l'art antérieur, la figure 2 illustre une pile à combustible selon un mode de réalisation de l'invention,
la figure 3 illustre une plaque de distribution d'un fluide,
- la figure 4 illustre une première plaque de délimitation pouvant être utilisée dans le premier élément et dans le second élément,
la figure 5 illustre une membrane définissant les assemblages membrane-électrodes,
la figure 6 illustre une seconde plaque de délimitation utilisée dans les premier et second éléments, la figure 7 illustre une pile à combustible complète selon un mode de réalisation,
la figure 8 illustre une variante de réalisation d'un collecteur de courant applicable aux figures 4 et 6.
Description de modes préférentiels de réalisation
La présente pile à combustible diffère de l'art antérieur notamment en ce qu'elle permet de doubler le nombre d'assemblage membrane-électrodes pour une même plaque de distribution d'un fluide (typiquement l'hydrogène) en utilisant une cavité fluidique commune à deux éléments.
Le terme « assemblage membrane-électrodes » sera désigné par la suite par l'acronyme AME. Classiquement, chaque AME comporte une membrane associée à une première électrode et à une seconde électrode. La membrane d'un AME peut être essentiellement constituée d'un matériau de type perfluoropolymère ou polyimide ou polyéther, tel que le matériau commercialisé par la société DuPont sous la marque Nafion®. Les première et seconde électrodes sont destinées à former la cathode et l'anode de ΑΜΕ.
Dans l'exemple particulier décrit ci-après, la cavité fluidique est en fait une cavité anodique et cette cavité permet de fournir en hydrogène des anodes. Sur la figure 2, la pile à combustible comprend un premier élément 3 incorporant au moins deux AME 1a, 1b dont les anodes 4a, 4b sont disposées au niveau d'une même face dudit premier élément 3. Elle comporte en outre un second élément 5 incorporant au moins deux AME 1c, 1d dont les anodes 4c, 4d sont disposées au niveau d'une même face dudit second élément 5. Une plaque de distribution d'hydrogène 2 est interposée entre le premier élément 3 et le second élément 5, ladite plaque de distribution 2 délimitant avec le premier élément 3 et le second élément 5 une cavité anodique C commune aux anodes 4a, 4b, 4c, 4d desdits premier et second éléments 3 et 5, la cavité anodique C servant à alimenter les anodes des premier et second éléments 3, 5 en hydrogène. Autrement dit, les anodes des premier et second éléments 3, 5 se font face.
En fait, ceci permet de doubler le nombre d'AME au sein d'une même pile à combustible unitaire tout en conservant sa finesse. La finesse d'une pile à combustible peut être un point important en fonction des applications. En effet, si une pile à combustible est destinée à être embarquée dans un dispositif portatif, du type ordinateur portable, cette dernière devra être la plus fine possible sans que cela génère une perte de capacité de la pile à combustible.
La plaque de distribution 2 d'hydrogène permet en fait d'apporter l'hydrogène aux anodes des différents AME afin de réaliser la réaction permettant aux assemblages de générer du courant en présence concomitante d'oxygène au niveau des cathodes 6a, 6b, 6c, 6d des différents AME.
Sur la figure 3, la plaque de distribution 2 comporte avantageusement une ouverture débouchante 7 reliant deux faces opposées de ladite plaque de distribution 2. Ces faces opposées sont sensiblement parallèles au plan de la plaque de distribution 2. Sur l'exemple non limitatif de la figure 3, l'ouverture 7 comporte plusieurs tronçons débouchant et traversant le plan de la plaque. Le premier tronçon T1 a la forme générale d'un trou circulaire relié par un segment à un second tronçon T2 de plus grande importance agencé de sorte à ce que l'hydrogène, injecté par le trou du premier tronçon T1 , parcoure le second tronçon T2 de sorte à venir « lécher » les anodes des AME des premier et second éléments. Ainsi, le second tronçon T2 est destiné à former, avec les premier et second éléments 3, 5 de la figure 2, la cavité anodique C de la pile à combustible. L'ouverture 7 de la plaque de distribution 2 peut, de manière non obligatoire, comporter un troisième tronçon T3 comprenant un segment reliant le second tronçon T2 à un trou circulaire destiné à la purge de la cavité anodique. La purge de la cavité anodique peut être intéressante pour adapter la pression de l'hydrogène dans la cavité ou encore évacuer de l'eau, qui pourrait se trouver dans la cavité anodique suite à une rétrodiffusion de l'eau formée par la réaction au niveau de la cathode des AME.
Sur la figure 3, le second tronçon T2 a une forme préférentielle de serpentin comprenant des premiers segments 8 parallèles et disposés à espaces réguliers échelonnés perpendiculairement à un axe A1. Ces premiers segments 8 sont reliés en série par des seconds segments 9 alternativement de part et d'autre de l'axe A1. Les seconds segments 9 sont respectivement formés le long d'axes A2 et A3 disposés de part et d'autre de l'axe A1. Ces seconds segments 9 sont sur la figure 3 perpendiculaires aux premiers segments 8. Dans cet exemple particulier, la plaque de distribution 2 comporte 6 premiers segments 8, chaque premier segment sera associé à deux AME disposés de part et d'autre de la plaque de distribution 2. Cette forme particulière donne une meilleure tenue mécanique lors de l'assemblage. Cependant toute autre forme peut aussi convenir. Il est par exemple possible d'avoir une cavité rectangulaire. Pour faciliter la purge de la cavité anodique C, le serpentin a deux extrémités distales l'une de l'autre selon sa longueur. Une première extrémité est reliée au premier tronçon T1 et une deuxième extrémité est reliée au second tronçon T2.
Selon une mise en œuvre particulière, les premier et second éléments 3, 5 comportent chacun un empilement successif d'une première plaque de délimitation des AME munie d'une ouverture au niveau de chaque AME, d'AME associés comprenant une membrane préférentiellement commune, et d'une seconde plaque de délimitation des AME munie d'une ouverture au niveau de chaque AME. Les premières plaques de délimitation des premier et second éléments 3, 5 sont montées de part et d'autre de la plaque de distribution 2 de sorte à la prendre en sandwich. Bien entendu, les anodes de chaque AME ont au moins une portion dans la cavité qui pourra être atteinte par l'hydrogène.
La figure 4 illustre une première plaque de délimitation 20 des AME qui peut être utilisée dans les premier et second éléments 3, 5. La première plaque de délimitation 20 comporte autant d'ouvertures traversantes 10 que d'AME que l'on souhaite réaliser. Ces ouvertures traversantes 10 rejoignent des première 11 et seconde 12 faces de ladite plaque de délimitation 20. Ces première et secondes faces 11 , 12 sont préférentiellement parallèles au plan de la première plaque de délimitation 20. Sur la figure 4, la première face 1 1 est cachée. Les premières faces 11 des deux premières plaques de limitation 20 des premier et second élément 3, 5 sont respectivement destinées à être reportées sur les deux faces opposées de la plaque de distribution 2 reliées par l'ouverture 7 (figure 3) pour y être montées. Les ouvertures traversantes 10 des premières plaques de délimitation 12 débouchent alors chacune dans l'ouverture 7 de la plaque de distribution 2, préférentiellement au niveau d'un segment 8 associé de son second tronçon T2 (Figure 3). Les secondes faces 12 des plaques de délimitation 20 des premier et second éléments 3, 5 comportent chacune des collecteurs de courant 13. La seconde face 12 est la face destinée à être orientée vers la membrane commune associée. Ces collecteurs de courant 13 sont, de préférence, distincts les uns des autres et entourent chacun au moins partiellement le pourtour d'une ouverture associée sur la seconde face 12 de sorte à être placé en contact électrique avec une anode d'un AME correspondant. Autrement dit, la face d'une première plaque orientée vers la membrane commune associée comporte des collecteurs de courant 13 formés sur le pourtour des ouvertures 10, chaque collecteur de courant étant en contact électrique avec une anode associée d'un AME. Pour chaque collecteur de courant 13, une piste de connexion 13a (électriquement conductrice) peut être formée, par exemple sur la première plaque de délimitation 20 associée, de sorte à déporter des zones de reprise distinctes de contact des collecteurs de courant 13 sur un bord de la première plaque de délimitation. Ces pistes 13a relient donc chacune un collecteur de courant 13 à une zone de reprise de contact et peuvent être isolées électriquement les unes des autres. Les collecteurs de courant 13 peuvent aussi être interconnectés par les pistes 13a de sorte à former un circuit électrique souhaité par l'homme du métier. Les collecteurs de courant 13 peuvent être formés sur tout le pourtour des ouvertures 10 associées comme à la figure 4, ou sur une partie du pourtour des ouvertures 10 comme sur la figure 8. Sur la figure 8, une patte 13b peut avantageusement être déportée sur le centre géométrique de l'ouverture 10 pour optimiser la collecte des charges en diminuant leur parcours jusqu'au contact formé par l'extrémité libre de la patte 13b
Chaque seconde face 12 des premières plaques de délimitation 20 est en contact avec les AME formés au niveau de chaque ouverture 10. De préférence les AME partagent une membrane commune. Cette unique membrane comporte localement des anodes et des cathodes destinées à former les AME. L'utilisation d'une membrane unique permet de fournir un procédé de fabrication simplifié et moins coûteux. Par ailleurs, cela offre l'avantage de s'affranchir des problèmes d'étanchéité entre les différentes piles puisqu'il n'y a, avantageusement, pas besoin de joints.
La figure 5 illustre une membrane 14. Sur la face visible de la membrane 14, on distingue six rectangles. Ces rectangles sont en fait les anodes 4 des différents AME. Sur la face de la membrane 14 qui est opposée à la face visible portant les anodes 4 sont disposées des cathodes. Il faut donc imaginer la présence de six cathodes disposées sur ladite face cachée de manière symétrique par rapport au plan défini par la membrane 14. Ceci permet de réaliser six AME. Les premier et second éléments peuvent donc comporter chacun une membrane du type de la figure 5. Comme indiqué précédemment, cette membrane peut être de type Nafion®. Par ailleurs, la membrane est préférentiellement solide. Les anodes 4 et les cathodes (non visibles) de la figure 5 peuvent être réalisées sur la membrane 14, quant elle est solide, par dépôt ou impression. Par exemple chaque électrode (anode et/ou cathode) peut comporter une couche catalytique pour favoriser la réaction chimique de la pile à combustible et une couche métallique. Les couches catalytiques et métalliques seront poreuses pour laisser passer respectivement l'hydrogène (à l'anode) et l'oxygène (à la cathode).
Typiquement la couche métallique peut être de l'or. L'épaisseur de la couche métallique est, préférentiellement inférieure à 1 μιτι et, encore plus préférentiellement, de l'ordre de 0,5 pm.
La couche catalytique peut être constituée de carbone-platine. Selon un mode de réalisation, la couche catalytique est en carbone-platine et comporte des nanoparticules d'or. La présence de telles particules permet, avantageusement, de faciliter la conduction électronique et peut aussi permettre d'atteindre la conductivité d'une couche métallique en or. Préférentiellement l'épaisseur de la couche catalytique est de l'ordre de 10 pm.
Avantageusement, la couche catalytique est en carbone-platine et elle est recouverte par une couche métallique poreuse en or.
Selon un autre mode de réalisation, les électrodes ne comportent pas de couches métalliques : elles comportent uniquement la couche catalytique.
Lors du report des membranes communes sur les premières plaques de délimitation 20 associées de chaque élément 3, 5, chaque membrane pourra être collée à la première plaque de délimitation 20 qui lui est associée. Pour assurer le contact entre les anodes et leurs collecteurs de courant 13 associés, de la colle électriquement conductrice sera disposée sur les collecteurs de courant 13 avant collage. Ceci implique que les dimensions des rectangles formant les anodes sont supérieures aux dimensions des ouvertures 10 de la première plaque de délimitation associée. De plus, pour améliorer le maintien mécanique, un bandeau de colle non conductrice électriquement sera disposé sur chaque première plaque de délimitation de sorte à coopérer avec toute la bordure de la face de la membrane 14 associée comportant les anodes. Ce bandeau permettra entre autre d'assurer l'étanchéité de l'assemblage.
La figure 6 illustre une seconde plaque de délimitation 15 qui sera utilisée dans chacun des éléments 3 et 5. Cette seconde plaque de délimitation 15 est sensiblement similaire à la première plaque de délimitation de la figure 4. Elle comporte donc des ouvertures 16 reliant une première face 17 à une seconde face 18. Les première et seconde faces 17, 18 sont sensiblement parallèles au plan de la seconde plaque de délimitation 15. Sur la figure 6, la seconde face 18 est cachée.
Les premières faces 17 des secondes plaques de délimitation 15 des premier et second éléments 3, 5 comportent chacune des collecteurs de courant 19. Pour chaque seconde plaque de délimitation 15, ces collecteurs de courant 19 sont distincts les uns des autres et entourent chacun au moins partiellement le pourtour d'une ouverture 16 de la seconde plaque de délimitation associée sur la première face 17 de sorte à être placés en contact électrique avec une cathode d'un AME associé lors de l'assemblage de l'élément 3, 5 concerné. Autrement dit, chaque seconde plaque de délimitation comporte sur sa face orientée vers la membrane commune 14 associée des collecteurs de courant 19 formés sur le pourtour des ouvertures 16, chaque collecteur de courant 19 étant en contact électrique avec une cathode associée d'un AME. Pour chaque collecteur de courant 19, une piste de connexion 19a (électriquement conductrice) peut être formée sur la seconde plaque de délimitation associée de sorte à déporter des zones de reprise distinctes de contact des collecteurs de courant 19 sur un bord de la seconde plaque de délimitation 15. Ces pistes 19a relient donc chacune un collecteur de courant 19 à une zone de reprise de contact, et peuvent être isolées électriquement les unes des autres. Les collecteurs de courant 19 peuvent aussi être interconnectés par les pistes de sorte à former un schéma électrique souhaité par l'homme du métier. Les collecteurs de courant 19 peuvent être formés sur tout le pourtour des ouvertures 16 associées comme à la figure 6 ou sur une partie du pourtour des ouvertures 16 par analogie de la figure 8 associée aux collecteurs de courant 13. La patte 13b de la figure 8 peut aussi s'appliquer au niveau du collecteur de courant 19.
Lors du report des secondes plaques de délimitation 15 sur les membranes communes 14, chaque membrane 14 pourra être collée à la seconde plaque de délimitation 15 qui lui est associée. Pour assurer le contact entre les cathodes et leurs collecteurs de courant 19 associés, de la colle électriquement conductrice sera disposée sur les collecteurs de courant 19 avant collage. Ceci implique que les dimensions des rectangles formant les cathodes sont supérieures aux dimensions des ouvertures 16 de la plaque de délimitation 15 associée. De plus, pour améliorer le maintien mécanique et l'étanchéité aux gaz, un bandeau de colle non conductrice électriquement sera disposé de sorte à coller toute la bordure de la face de la membrane commune 14 comportant les cathodes à la seconde plaque de délimitation 15 associée.
La figure 7 illustre la pile à combustible une fois assemblée. On retrouve donc successivement en partant du bas vers le haut la seconde plaque de délimitation 15a du second élément 5, la membrane commune 14a du second élément 5 équipée de ses électrodes, la première plaque de délimitation 20a du second élément 5, la plaque de distribution 2, la première plaque de délimitation 20b du premier élément 3, la membrane commune 14b du premier élément 3 équipée de ses électrodes, et enfin la seconde plaque de délimitation 15b du premier élément 3.
Comme évoqué précédemment, avantageusement, les plaques formant les éléments prenant en sandwich les assemblages membranes électrodes permettent de réaliser des pistes électriquement conductrices pour chaque collecteurs de courant des assemblages et de déporter des zones de reprise de contact de ces pistes sur un même bord de la pile à combustible. Ainsi, les collecteurs de courant 13, 19 peuvent être reliés à des zones de reprise de contact distinctes par des pistes électriquement conductrices isolées électriquement les unes des autres. Ces zones de reprise de contact peuvent alors être connectées électriquement à un bandeau de gestion 21 apte à connecter les AME selon différents schémas électriques.
Typiquement le bandeau de gestion 21 peut connecter toutes les zones de reprise de contact et les interconnecter à souhait par exemple grâce à des interrupteurs formés dans le bandeau.
Ces interrupteurs, ou tout autre élément d'interconnexion pouvant être mis en œuvre par l'homme du métier, pourront être commandés par un système de gestion destiné à gérer les différents schémas électriques en fonction des besoins. Ainsi, la pile à combustible pourra, le cas échéant, adapter son fonctionnement en terme d'ampérage, de tension ou autre paramètre souhaité. Les AME pourront être reliés en série et/ou en parallèle.
En outre la pile à combustible peut intégrer des capteurs de température et/ou d'humidité qui pourront préférentiellement être utilisés par le système de gestion pour adapter la pile à combustible à son environnement de fonctionnement.
Avantageusement, le système de gestion du bandeau pourra réaliser des tests électriques des AME, par exemple en mesurant un courant ou une tension dans les AME. Dans ce cas si, un ou plusieurs des AME présente une différence de tension ou de courant importante par rapport aux autres (par exemple de l'ordre de 20%), ΑΜΕ sera considéré comme défectueux. Le système de gestion pourra supprimer ΓΑΜΕ défectueux pour éviter que son mauvais fonctionnement ne dégrade tout le circuit.
Sur la figure 7, le bandeau 21 intègre en outre à ses deux extrémités des valves 22a, 22b respectivement d'injection d'hydrogène dans la cavité anodique et de purge de la cavité anodique (comme indiqué précédemment, la valve de purge n'est pas nécessaire). Autrement dit, la pile à combustible comporte une arrivée d'hydrogène dans la cavité anodique C et une sortie de purge de la cavité anodique C. Ces valves 22a, 22b sont préférentiellement respectivement montées au niveau de trous 23a, 23b formés dans une seule des premières plaques de délimitation (voir figure 4), l'autre première plaque n'étant pas trouée pour des raisons d'étanchéité. Ces trous communiquent avec la cavité anodique, préférentiellement au niveau des trous des premier et second tronçons de la plaque de distribution définis précédemment. Sur la figure 7, le bandeau 21 est monté directement sur les premières plaques de distribution des premier et second éléments, pour cela, les secondes plaques de délimitation ont une dimension transversale selon l'axe A4 inférieure à la dimension transversale des premières plaques de distribution. La dimension longitudinale selon A5 des premières et secondes plaques de délimitation est sensiblement identique. Lorsque les valves sont en position fermée l'assemblage des premières plaques de délimitation des deux ensembles 3, 5, de la plaque de distribution 2 et des membranes communes est telle que la cavité anodique est étanche. Cette étanchéité permet d'assurer le maintien de la pression de l'hydrogène dans la cavité anodique. L'étanchéité peut être réalisée grâce à une colle utilisée pour fixer deux organes adjacents de la pile à combustible. Par organe, on entend que les secondes plaques de délimitation sont collées à la membrane communes au niveau du pourtour de la membrane, que les premières plaques de délimitation sont collées sur le pourtour des membranes communes associées et sur la plaque de distribution.
Avantageusement, les différentes plaques (de distribution/premières et secondes plaques) constituant la pile à combustible et les assemblages membrane-électrodes sont souples de sorte à permettre de courber la pile à combustible pour l'adapter aux lignes d'un support non plat. Typiquement, hors du bandeau, une pile à combustible telle qu'illustrée à la figure 2 ou 7 aura une épaisseur inférieure à 5mm et avantageusement comprise entre 100 pm et 2,5mm.
La pile à combustible décrite ci-dessus permet de répartir de manière homogène l'hydrogène au niveau de tous les AME la constituant. L'utilisation des deux côtés de la plaque de distribution permet d'augmenter la densité d'AME au sein d'une même pile à combustible élémentaire.
Les premier et second éléments possèdent préférentiellement le même nombre d'AME.
Les différentes plaques visées ci-dessus pourront être réalisées dans un substrat plastique de type epoxy, FR4 ou Kapton®. Ces plastiques permettent de donner auxdites plaques une certaine flexibilité lorsque l'épaisseur ne dépasse pas les 100 pm.
Comme indiqué ci-dessus, l'exemple particulier illustré en détail est à base de cavité anodique et d'utilisation d'hydrogène. L'homme du métier sera à même de modifier l'invention décrite. Ainsi, de manière générale la cavité anodique peut être remplacée par une cavité cathodique. Autrement dit, la pile à combustible comprend un premier élément 3 incorporant au moins deux AME 1 a, 1b dont des électrodes d'un même type 4a, 4b sont disposées au niveau d'une même face dudit premier élément 3 ; une cavité fluidique C pour fournir les électrodes du même type 4a, 4b du premier élément 3 en fluide ; un second élément 5 incorporant au moins deux AME 1c, 1d dont des électrodes d'un même type 4c, 4d sont disposées au niveau d'une même face dudit second élément 5 ; et une plaque de distribution 2 de fluide interposée entre le premier élément 3 et le second élément 5, ladite plaque de distribution 2 délimitant avec le premier élément 3 et le second élément 5 la cavité fluidique C commune aux électrodes du même type 4a, 4b, 4c, 4d desdits premier et second éléments 3, 5. Bien entendu, toutes les électrodes associées à la cavité commune sont d'un même type (anode ou cathode).
Lorsque la cavité est de type anodique, les électrodes du même type sont des anodes et le fluide est un combustible. Le combustible peut être choisi parmi l'hydrogène, le méthanol, le glucose, le butane, etc. Un tel combustible peut être injecté dans la cavité anodique. D'autres combustibles utilisés dans les piles à combustible peuvent aussi être utilisés par l'homme du métier. Dans cet exemple, les cathodes de la pile peuvent être en contact avec de l'air qui forme alors le combustible. La pile peut alors baigner dans l'air.
Lorsque la cavité est de type cathodique, les électrodes du même type sont des cathodes et le fluide est un comburant, en général de l'air, pouvant être injecté dans la cavité cathodique. Dans cet exemple, la pile peut être enfermée de sorte que les anodes soient en contact avec le combustible, par exemple la pile peut baigner dans du glucose.
Tous les exemples décrits ci-avant peuvent être modifiés en fonction de la position des anodes ou des cathodes des AME vis-à-vis de la cavité fluidique.
De manière générale, la pile peut comporter une arrivée de fluide dans la cavité fluidique C, et avantageusement une sortie de purge de la cavité fluidique C.
Selon une mise en œuvre, l'arrivée de fluide et/ou la sortie de purge sont des trous agencés dans l'une des plaques de délimitation 15, 20.
Comme indiqué précédemment, la pile pourra comporter au moins un capteur de température et/ou un capteur d'humidité connecté(s) électriquement à l'une des plaques de délimitation 15, 20. La pile à combustible ainsi obtenue comporte moins de composants, et notamment de moins grandes quantités de catalyseur par rapport aux piles obtenues selon l'art antérieur. Elle est, de plus, plus légère, présente un encombrement réduit et est flexible.

Claims

Revendications
1. Pile à combustible comprenant :
un premier élément (3) incorporant au moins deux assemblages membrane-électrodes (1a, 1 b) dont des électrodes d'un même type (4a, 4b) sont disposées au niveau d'une même face dudit premier élément (3), les assemblages membrane-électrodes (1a, 1 b) partageant une première membrane commune,
une cavité fluidique (C) pour fournir les électrodes du même type (4a, 4b) du premier élément (3) en fluide,
caractérisée en ce qu'elle comporte un second élément (5) incorporant au moins deux assemblages membrane-électrodes (1c, 1d) dont des électrodes d'un même type (4c, 4d) sont disposées au niveau d'une même face dudit second élément (5), les assemblages (1c, 1d) partageant une deuxième membrane commune,
et en ce qu'elle comporte une plaque de distribution (2) de fluide interposée entre le premier élément (3) et le second élément (5), ladite plaque de distribution (2) délimitant avec le premier élément (3) et le second élément (5) la cavité fluidique (C) commune aux électrodes du même type (4a, 4b, 4c, 4d) desdits premier et second éléments (3, 5)
et caractérisée en ce chaque membrane comporte localement des anodes et des cathodes destinées à former les assemblages membrane-électrodes ( a, 1 b, 1c, id). »
2. Pile à combustible selon la revendication 1 , caractérisée en ce que les électrodes du même type des premier et second éléments sont des anodes, la cavité fluidique étant une cavité anodique apte à recevoir un fluide combustible.
3. Pile à combustible selon la revendication 1 , caractérisée en ce que les électrodes du même type des premier et second éléments sont des cathodes, la cavité fluidique étant une cavité cathodique apte à recevoir un fluide comburant.
4. Pile à combustible selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les premier et second éléments (3, 5) comportent chacun un empilement successif :
d'une première plaque de délimitation (20) des assemblages membrane- électrodes munie d'une ouverture (10) au niveau de chaque assemblage membrane-électrodes,
- d'assemblages membrane-électrodes associés comprenant une membrane commune,
d'une seconde plaque de délimitation (15) des assemblages membrane- électrodes munie d'une ouverture (16) au niveau de chaque assemblage membrane-électrodes,
et en ce que les premières plaques de délimitation (20) des premier et second éléments (3, 5) sont montées de part et d'autre de la plaque de distribution (2) de sorte à la prendre en sandwich.
5. Pile à combustible selon la revendication 4, caractérisée en ce que les premières et secondes plaques de délimitation (20, 15) des premier et second éléments (3, 5) comportent sur leurs faces orientées vers la membrane commune (14) des collecteurs de courant (13, 19) formés sur tout ou partie du pourtour des ouvertures (10, 16), chaque collecteur de courant (13, 19) étant en contact électrique avec une anode ou une cathode associée d'un assemblage membrane-électrodes.
6. Pile à combustible selon la revendication 5, caractérisée en ce que les collecteurs de courant (13, 19) sont reliés à des zones de reprise de contact distinctes par des pistes électriquement conductrices isolées électriquement les unes des autres, ces zones de reprise de contact étant connectées électriquement à un bandeau de gestion (21 ) destiné à connecter les assemblages membrane-électrodes selon différents schémas électriques.
7. Pile à combustible selon l'une des revendications 1 à 6 caractérisée en ce que les différentes plaques (2, 15, 20) la constituant et les assemblages membrane-électrodes sont souples de sorte à permettre de courber la pile à combustible pour l'adapter aux lignes d'un support non plat.
8. Pile à combustible selon l'une quelconque des revendications précédentes caractérisée en ce qu'elle comporte une arrivée de fluide dans la cavité fluidique (C).
9. Pile selon l'une quelconque des revendications précédentes caractérisée en ce qu'elle comporte une sortie de purge de la cavité fluidique (C).
10. Pile selon les revendications 8 et 9, caractérisée en ce que l'arrivée de fluide et/ou la sortie de purge sont des trous agencés dans l'une des plaques de délimitation (15, 20).
11. Pile selon l'une quelconque des revendications précédentes caractérisée en ce qu'elle comporte au moins un capteur de température et/ou un capteur d'humidité connecté(s) électriquement à l'une des plaques de délimitation (15,
PCT/FR2012/000366 2011-09-22 2012-09-14 Pile à combustible à haute densité d'assemblages membrane-électrodes partageant une cavité fluidique commune WO2013041781A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102881A FR2980644B1 (fr) 2011-09-22 2011-09-22 Pile a combustible a haute densite d'assemblages membrane electrodes partageant une cavite fluidique commune
FR1102881 2011-09-22

Publications (2)

Publication Number Publication Date
WO2013041781A1 true WO2013041781A1 (fr) 2013-03-28
WO2013041781A8 WO2013041781A8 (fr) 2013-06-13

Family

ID=47071315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000366 WO2013041781A1 (fr) 2011-09-22 2012-09-14 Pile à combustible à haute densité d'assemblages membrane-électrodes partageant une cavité fluidique commune

Country Status (2)

Country Link
FR (1) FR2980644B1 (fr)
WO (1) WO2013041781A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309461B6 (cs) * 2020-10-16 2023-02-01 Ústav Termomechaniky Av Čr, V. V. I. Rozvodná deska palivového článku

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040170A1 (en) * 2004-08-18 2006-02-23 Liu Yung-Yi Flat panel direct methanol fuel cell and method for making the same
US20060269821A1 (en) 2005-05-13 2006-11-30 Hitachi Cable, Ltd. Fuel cell
WO2009053398A1 (fr) 2007-10-24 2009-04-30 Commissariat A L'energie Atomique Architecture de pile a combustible integre sans joint.
EP2333889A1 (fr) 2009-12-07 2011-06-15 Industrial Technology Research Institute Dispositifs de pile à combustible ayant des collecteurs de courant de rappel
EP2337132A1 (fr) 2009-12-07 2011-06-22 Industrial Technology Research Institute Dispositifs de pile à combustible modularisés et ensembles formant plaque d'écoulement de fluide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040170A1 (en) * 2004-08-18 2006-02-23 Liu Yung-Yi Flat panel direct methanol fuel cell and method for making the same
US20060269821A1 (en) 2005-05-13 2006-11-30 Hitachi Cable, Ltd. Fuel cell
WO2009053398A1 (fr) 2007-10-24 2009-04-30 Commissariat A L'energie Atomique Architecture de pile a combustible integre sans joint.
EP2333889A1 (fr) 2009-12-07 2011-06-15 Industrial Technology Research Institute Dispositifs de pile à combustible ayant des collecteurs de courant de rappel
EP2337132A1 (fr) 2009-12-07 2011-06-22 Industrial Technology Research Institute Dispositifs de pile à combustible modularisés et ensembles formant plaque d'écoulement de fluide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309461B6 (cs) * 2020-10-16 2023-02-01 Ústav Termomechaniky Av Čr, V. V. I. Rozvodná deska palivového článku

Also Published As

Publication number Publication date
FR2980644A1 (fr) 2013-03-29
FR2980644B1 (fr) 2015-04-10
WO2013041781A8 (fr) 2013-06-13

Similar Documents

Publication Publication Date Title
EP2061114B1 (fr) Pile à combustible comportant une pluralité de cellules élémentaires connectées en série par les collecteurs de courant
FR2553582A1 (fr) Pile a combustible a oxyde solide comportant un noyau a ecoulement transversal et un systeme de distribution
EP1846976B1 (fr) Convertisseur electrochimique compact
EP1604420A1 (fr) Pile a combustible planaire et procede de fabrication d une telle pile
EP1456902B1 (fr) Pile a combustible et procede de fabrication d'une telle pile a surface active importante et a volume reduit
EP1528614B1 (fr) Structure pour pile à combustible
CA2560761C (fr) Pile a combustible a electrolyte solide a structure etanche
EP3429007B1 (fr) Dispositif electrochimique comportant un capteur d'hydrogene
EP3429006A1 (fr) Plaque de maintien de cellule electrochimique a etancheite amelioree
FR2819108A1 (fr) Element de base composite et son joint pour pile a combustible et procede de fabrication de l'ensemble
WO2013041781A1 (fr) Pile à combustible à haute densité d'assemblages membrane-électrodes partageant une cavité fluidique commune
FR2857162A1 (fr) Pile a combustible comportant des collecteurs de courant integres a l'empilement electrode-membrane-electrode.
EP1997178A2 (fr) Pile a combustible comportant un ensemble capable de gerer l'eau produite par ladite pile
EP1826851A1 (fr) Elément de centrage pour un empilement de cellules électrochimiques
EP1950825B1 (fr) Plaque de distribution métal-graphite souple pour une pile à combustible
FR3037444A1 (fr) Assemblage membrane/electrodes pour un reacteur electrochimique
FR2958798A1 (fr) Pile a combustible comportant une membrane a conduction ionique localisee et procede de fabrication.
EP3813168B1 (fr) Pile a combustible adaptee a caracteriser au moins un polluant present dans un gaz reactif
FR3000615A1 (fr) Connecteur pour cellules de pile a combustible et procede de mise en oeuvre
JP2007328935A (ja) 燃料電池に用いられる膜電極接合体、燃料電池、および、膜電極接合体の製造方法
EP3084868B1 (fr) Structure de convertisseur electrochimique enroule perfectionne
FR3077934A1 (fr) Pile a court-circuitage par changement de forme
WO2023062304A1 (fr) Module pour dispositif electrochimique a duree de vie augmentee
FR2814857A1 (fr) Micropiles a combustible notamment utilisees dans les dispositifs electroniques portables, dans les equipements automobiles et dans les dispositifs de telecommunication
FR2932612A1 (fr) Plaque separatrice a double gorge pour pile a combustible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775728

Country of ref document: EP

Kind code of ref document: A1