WO2013040921A1 - 一种7g载波聚合系统及其跨系统测量的方法 - Google Patents

一种7g载波聚合系统及其跨系统测量的方法 Download PDF

Info

Publication number
WO2013040921A1
WO2013040921A1 PCT/CN2012/077267 CN2012077267W WO2013040921A1 WO 2013040921 A1 WO2013040921 A1 WO 2013040921A1 CN 2012077267 W CN2012077267 W CN 2012077267W WO 2013040921 A1 WO2013040921 A1 WO 2013040921A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
terminal
enb
capability
uncompressed mode
Prior art date
Application number
PCT/CN2012/077267
Other languages
English (en)
French (fr)
Inventor
杨立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013040921A1 publication Critical patent/WO2013040921A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to digital mobile communication technologies, and more particularly to a 7G carrier aggregation system and a method for measuring the same across systems. Background technique
  • a Universal Terrestrial Radio Access Network includes a Radio Network Controller (RNC) and a Base Station (NB).
  • NodeB Two basic network elements, commonly known as 3G networks.
  • an LTE (Long Time Evolution) network an evolved universal terrestrial radio access network (E-UTRAN, Enhanced UTRAN) includes an evolved base station (eNB, eNodeB), which is a basic network element, commonly known as a 4G network.
  • High-speed downlink receive link packet access HSDPA, High Speed Downlink Packet Access
  • high-speed uplink link packet access HSUPA, High Speed Uplink Packet Access
  • dual-carrier high-speed downlink packet access Dual-band high-speed downlink packet access (DB-DC-HSDPA), dual-carrier high-speed downlink packet access (DB-DC-HSDPA)
  • DC-HSUPA Dual Carrier-high speed uplink packet access
  • 4C-HSDPA four carrier-high speed downlink packet access
  • 8C-HSDPA Eight carrier-high speed downlink packet access
  • the multi-carrier aggregation technology in these 3G systems is introduced one after another, so that the uplink and downlink data transmission rate of the UE is continuously doubled.
  • the UE must be equipped with multiple 3G-related receiving data processing chains (3G- Receiver Chain ) can simultaneously receive and process 3G data blocks sent from the same base station, the same sector, and several carriers.
  • 3G- Receiver Chain The WCDMA system that has evolved to today is also called: HSPA + System (High Speed Packet Access+), which is collectively referred to as 3G HSPA + below.
  • CA Carrier Aggregation
  • 3G-capable terminals can only work on F1
  • 4G-capable terminals can only work on F2
  • 3G and 4G-capable terminals dual-mode terminals with 3G and 4G networks
  • the service cell data transmission and signal measurement capability can only work on F1 or F2 at the same time, and cannot work on F1 and F2 at the same time.
  • 7G carrier aggregation technology (3G+4G), also known as cross-HSPA + LTE system carrier aggregation technology, was born.
  • FIG. 1 is a schematic diagram of the architecture of the 7G technology in the prior art.
  • X2 is a logical physical interface connecting the eNB in the 4G system
  • lub is a connection between the RNC and the NB in the 3G system.
  • Logical physical interface, and X2 and lub alike are new logical physical interfaces that serve the 7G carrier aggregation system to connect eNB and NB;
  • LTE base station eNB acts as the primary control anchor and data offload control point of the terminal unique RRC connection, in the downlink direction Base
  • the station is connected to the UE, and the UE controls the physical downlink shared channel (PDSCH) under the control of the scheduling command (such as resource allocation and HARQ operation related information) in the Physical Downlink Control Channel (PDCCH) on the working carrier of the eNB.
  • the scheduling command such as resource allocation and HARQ operation related information
  • PDCCH Physical Downlink Control Channel
  • a part of the user data is received on the Physical Downlink Shared Channel).
  • the UE is controlled by the scheduling command of the HS-SCCH (High Speed Shared Control Channel) on a working carrier of the base station (NB, Node B), and the high speed downlink shared channel (HS-DSCH, High Speed- Another part of the user data is received on the Downlink Shared Channel).
  • the anchor eNB is responsible for allocating the upper layer protocol packets generated by itself, and in a certain way, determining which part is sent from the air interface of LTE, and which part is sent from the air interface of HSPA+.
  • the protocol packet assigned to the NodeB needs to be transmitted through a new interface between the eNB and the NB, and is transmitted by the NB according to its own protocol characteristics and HSPA + air interface. If the eNB and the NB are intra-site, the above new interface can be simplified to an internal interface.
  • the UE In the uplink direction (UE to the base station), the UE needs to configure a physical uplink control channel (PUCCH, Physical Uplink Control Channel) on the uplink frequency point paired with the eNB working downlink frequency point, and send control information on the PUCCH, including HARQ operation related (correctly receiving acknowledgment ACK/NACK), scheduling request, receiving channel quality indication, etc., to feed back necessary information related to LTE downlink high speed data transmission.
  • PUCCH Physical Uplink Control Channel
  • HARQ operation related correctedly receiving acknowledgment ACK/NACK
  • scheduling request scheduling request
  • receiving channel quality indication etc.
  • the UE in order to reduce the uplink transmit power of the UE and reduce the uplink interference and the internal signal interference of the UE, the UE tends to perform single-system uplink physical feedback only on the LTE air interface instead of simultaneously uplink physical feedback in the two systems.
  • the 7G multi-carrier aggregation technology does not conflict with the independent carrier aggregation technologies in the 3G HSPA+ or 4G LTE systems. That is to say: the UE may receive data at HSPA + M carrier frequencies, and at the same time, it can also be used in LTE. Data reception is performed on N carrier frequencies.
  • the terminal configures two downlink carriers on the 4G frequency points F1 and F2, where F1 is the downlink primary carrier, corresponding to the primary serving cell Pcell, and F2 is the downlink secondary carrier, corresponding to the secondary serving cell Scdl; Two downlink carriers are configured on the 3G frequency points F3 and F4.
  • the network may have some other available frequency resources available for configuration, depending on the quality of the wireless signal and the load on these frequencies.
  • the 4G LTE is the main control system, and one 4G downlink primary carrier and several 4G downlink secondary carriers are maintained.
  • the 3G HSPA+ system accepts the control of the eNB, and the 3G HSPA+ is called The secondary control system maintains several 3G downlink carriers, which are still downlink secondary carriers for the entire 7G carrier group.
  • the eNB and the NB provide the most for each 7G capable terminal according to the radio and resource conditions of all available 4G and 3G downlink carrier frequencies, such as downlink radio link signal quality and downlink carrier load. Good 7G carrier combination configuration.
  • the eNB In order to make such a carrier group optimization configuration quickly and in real time, the eNB must rely on the terminal to measure the wireless environment in which it is located, and report the wireless measurement result to the eNB. Based on the information, the eNB performs the decision according to the internal algorithm. And reconfigure.
  • a terminal in an RRC connected state when a terminal in an RRC connected state (RRC_CONNECTED) performs radio measurement on a target cell on an out-of-band or 4G system out-of-carrier plane, it usually uses a discontinuous reception (DRX) technique or an upper layer packet scheduling.
  • DRX discontinuous reception
  • Some downlink idle periods (DL, Idle Periods) generated by packet scheduling are implemented.
  • a terminal in the RRC proprietary state (Cdl_DCH) when a terminal in the RRC proprietary state (Cdl_DCH) performs radio measurement on a target cell on the out-of-band or off-carrier side of the 3G system, it usually adopts a compressed mode (CM, Compressed Mode) or an upper layer packet.
  • CM Compressed Mode
  • the simulation shows that the downlink capacity and the user's service experience have adverse effects on the downlink scheduling mode and the compression mode. Therefore, it is necessary to open it more cautiously.
  • the terminal needs to perform more frequent frequency measurement tasks.
  • the measurement capability may include that the UE measures the downlink neighboring secondary carrier without the compressed mode.
  • Class 4 the Rel9 DB-HSDPA multi-carrier capable UE, whose measurement capability may include the inter-band frequency measurements without compressed mode of the UE for a downlink same-system inter-subcarrier auxiliary carrier.
  • the RellO 4C-HSDPA multi-carrier capable UE has a measurement capability including an enhanced inter-frequency measurements without compressed mode for two downlink co-band adjacent sub-carriers.
  • the terminal When the terminal is in the 3G carrier aggregation operation state, the terminal can use the non-compressed mode measurement capability in the 3G system to perform the same-band or different-band frequency measurement on the 3G target frequency point cell according to the method that has been standardized by the 3GPP, thereby maintaining Optimize carrier groups within 3G systems to achieve high quality data transmission over premium wireless links.
  • the terminal When the terminal is the main control anchor of the 4G eNB and is in the 7G carrier aggregation operation state, the current protocol specification or the disclosed technology cannot effectively utilize the non-compressed mode measurement capability of the terminal in the above 3G system, so that the eNB has only passed the 4G Some downlink idle periods generated by the DRX technology or the upper layer packet scheduling technology measure the target frequency point cell on the 3G system side, so the adverse impact on the downlink capacity of the system and the user service experience is inevitable.
  • the existing measurement reporting related mechanisms in the 4G LTE system mainly include: first, the eNB queries the terminal's various capabilities through the UE capability enquiry, including the radio access capability of the terminal 4G system and the 3G system (radio access)
  • the capability of the UE capability request message in the terminal capability query message includes the values EUTRA and UTRA; the terminal reports its capability to the eNB through the terminal capability information message (UE capability information), where the terminal Terminal capability radio access technology container (UE capability RAT-Container) in the capability information message includes terminal EUTRA capability (UE UETRA access capabilities for UTRA;
  • the eNB passes the RRC layer signaling downlink message, such as the RRC Connection Reconfiguration message (RRC Connection Reconfiguration).
  • MeasureConfig some measurement control configuration parameters (MeasConfig) to the terminal in the RRC connection state (RRC_CONNECTED), such as the measurement target (the 4G target frequency cell to be tested, the 3G target frequency cell to be tested, etc.), the reporting mode, and the measurement Physical quantity, measurement scheduling idle configuration (external to 4G system and/or 4G system), etc.; based on the above received measurement configuration parameters, the terminal uses the measurement idle to perform wireless measurement on the target frequency point cell in the 4G system, and evaluate 4G measurement.
  • MeasureConfig some measurement control configuration parameters
  • the eNB is sent to the eNB; the network performs reconfiguration of the primary serving cell (Pcdl) on the downlink primary carrier frequency in the 4G system and the secondary serving cell (Scdl) on the downlink secondary carrier frequency;
  • the measured configuration parameters are obtained, and the additional measurement idle is used to perform cross-system wireless measurement on the target frequency point cell in the 3G system;
  • the wireless measurement of the target frequency point cell and the cross-system wireless measurement of the target frequency point cell in the 3G system cannot be performed simultaneously, and the time scheduling is separate; after the 3G measurement result is evaluated and reported to the eNB, the network performs 3G. Reconfiguration of the secondary serving cell (SCl1) within the system.
  • the present invention provides a method for measuring a cross-system of a 7G carrier aggregation system, including:
  • the terminal reports the non-compressed mode measurement capability to the evolved base station eNB according to the indication; the eNB sends the measurement control configuration parameter to the terminal in the RRC connected state according to the uncompressed mode measurement capability;
  • the terminal performs the target frequency point cell in the 4G system according to the received measurement control configuration parameter.
  • Line measurement and using its own uncompressed mode measurement capability, performs cross-system wireless measurement on the 3G target frequency point cell, and reports the measurement result to the eNB.
  • the method before the terminal reports the non-compressed mode measurement capability to the eNB according to the indication, the method further includes: the eNB instructing the terminal to report the uncompressed mode measurement capability.
  • the method further includes: according to the measurement result reported by the terminal, the eNB performs reconfiguration of the primary serving cell on the downlink primary carrier frequency point and the secondary serving cell on the downlink secondary carrier frequency point in the 7G carrier aggregation system.
  • the eNB instructs the terminal to report the uncompressed mode measurement capability: the eNB indicates, by using a UE Capability Request (UE) message in the UE Capability Enquiry, Compressed mode measurement capability.
  • UE UE Capability Request
  • the terminal reports its own non-compressed mode measurement capability to the eNB according to the indication:
  • the terminal After receiving the indication from the eNB, the terminal reports the UTRA-related uncompressed mode measurement capability to the eNB through the UE Capability Information message, where the terminal capability radio access technology in the terminal capability information message is received.
  • the UTRA-related uncompressed mode measurement capability is included in the UE radio access capabilities (UETRA) carried in the UE (Capability RAT Container) cell.
  • UETRA UE radio access capabilities
  • the eNB sends the measurement control configuration parameter to the terminal in the RRC connected state according to the uncompressed mode measurement capability:
  • the eNB After the eNB and the terminal's capability information are synchronized, the eNB provides the measurement control configuration parameter to the terminal in the RRC connected state through the RRC layer signaling downlink message; and the measurement control configuration for the 3G system according to the uncompressed mode measurement capability reported by the terminal.
  • the parameters include the measurement target, the reporting mode, and the measured physical quantity, and do not include the measurement scheduling idle.
  • the measurement control configuration parameters include the measurement target, the reporting mode, the measured physical quantity, and the measurement scheduling idle.
  • the target frequency point cell in the 4G system is wirelessly measured, and the non-compressed mode measurement capability is used to perform the cross-system wireless measurement on the 3G target frequency point cell, and the measurement result is reported to the eNB as:
  • the terminal adopts the measurement idle, performs wireless measurement on the target frequency point cell in the 4G system, and evaluates the measurement result, and reports the obtained 4G measurement result to the eNB; the terminal uses its own uncompressed mode measurement capability, and is in the 3G system.
  • the target frequency point cell performs cross-system wireless measurement, and the measurement result is evaluated and processed, and the obtained 3G measurement result is reported to the eNB.
  • the present invention further provides a 7G carrier aggregation system, including: a terminal and an eNB; wherein, the terminal is configured to report its own uncompressed mode measurement capability to the eNB according to the indication;
  • An eNB configured to send, according to the uncompressed mode measurement capability, a measurement control configuration parameter to a terminal in an RRC connected state;
  • the terminal is further configured to perform wireless measurement on a target frequency point cell in the 4G system according to the received measurement control configuration parameter, and perform a cross-system wireless measurement on the 3G target frequency point cell by using the uncompressed mode measurement capability of the 4G system.
  • the measurement result is reported to the eNB.
  • the eNB is further configured to: instruct the terminal to report the uncompressed mode measurement capability.
  • the eNB is further configured to: perform reconfiguration of the primary serving cell on the downlink primary carrier frequency and the secondary serving cell on the downlink secondary carrier frequency in the 7G carrier aggregation system according to the measurement result reported by the terminal.
  • the terminal reports its own uncompressed mode measurement capability to the eNB according to the indication; the eNB sends the measurement control configuration parameter to the RRC according to the uncompressed mode measurement capability.
  • the terminal performs wireless measurement on the target frequency point cell in the 4G system according to the received measurement control configuration parameters, and uses its own uncompressed mode measurement capability to perform cross-system wireless measurement on the 3G target frequency point cell, Measurement The result is reported to the eNB.
  • the non-compressed mode measurement mode is implemented in the 7G carrier aggregation system; the terminal that fully utilizes the 7G carrier aggregation operation state is in the 3G system.
  • the non-compressed mode measurement capability is used to optimize the carrier group in the 3G system without negatively affecting the downlink capacity of the system and the user service experience.
  • FIG. 1 is a schematic structural diagram of a 7G technology in the prior art
  • FIG. 2 is a schematic structural diagram of a 7G multi-carrier aggregation technology in the prior art
  • FIG. 3 is a schematic flow chart of a method for implementing cross-system measurement of a 7G carrier aggregation system according to the present invention
  • FIG. 4 is a schematic structural diagram of a 7G carrier aggregation system according to the present invention.
  • the basic idea of the present invention is: the terminal reports its own uncompressed mode measurement capability to the eNB according to the indication; the eNB sends the measurement control configuration parameter to the terminal in the RRC connected state according to the uncompressed mode measurement capability; Measurement control configuration parameters, wireless measurement of the target frequency point cell in the 4G system, and using its own non-compressed mode measurement capability,
  • the 3G target frequency point cell performs cross-system wireless measurement, and reports the measurement result to the eNB.
  • FIG. 3 is a schematic flowchart of a method for implementing cross-system measurement of a 7G carrier aggregation system according to the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The eNB instructs the terminal to report the uncompressed mode measurement capability.
  • the eNB queries the non-compressed mode measurement capability of the terminal 3G system class by using a UE Capability Enquiry message, where the terminal capability query message is used.
  • the UE Capability Request cell indicates that the terminal needs to report UTRA-related uncompressed mode measurement. UTRA Related measurement capability without CM.
  • Step 302 The terminal reports the non-compressed mode measurement capability to the eNB according to the indication. Specifically, after receiving the indication of the eNB, the terminal passes the terminal capability information message (UE Capability).
  • UE Capability terminal capability information message
  • the UTRA-related uncompressed mode measurement capability is reported to the eNB.
  • the UE radio access capabilities for UTRA carried in the UE Capability RAT Container cell in the terminal capability information message includes UTRA-related uncompressed mode measurement. ability.
  • Step 303 The eNB sends the measurement control configuration parameter to the terminal in the RRC connected state according to the uncompressed mode measurement capability of the terminal.
  • the eNB After receiving the uncompressed mode measurement capability of the terminal, the capability information synchronization between the eNB and the terminal is implemented; the eNB passes the RRC layer signaling downlink message, such as an RRC connection reconfiguration message (RRC).
  • RRC RRC connection reconfiguration message
  • the measurement control configuration parameters include the measurement target, the reporting mode, the measured physical quantity, etc., and the measurement is not configured. Scheduling idle; for 4G systems, the measurement control configuration parameters include measurement target, upper/lower mode, measured physical quantity, measurement scheduling idleness, etc.;
  • the eNB does not configure the measurement scheduling idle for the 3G system according to the uncompressed mode measurement capability reported by the terminal, and only configures the measurement scheduling idle for the 4G system, and can fully utilize the terminal's uncompressed mode measurement capability.
  • Step 304 The terminal performs radio measurement on the target frequency point cell in the 4G system according to the received measurement control configuration parameter, and uses the uncompressed mode measurement capability of the terminal to perform cross-system wireless measurement on the 3G target frequency point cell, and the measurement result is obtained. Reported to the eNB;
  • the terminal after receiving the measurement control configuration parameter, the terminal performs wireless measurement on the target frequency point cell in the 4G system according to the measurement configuration parameter, and performs threshold estimation and calculation on the measurement result, and finally analyzes The obtained 4G measurement result is given to the eNB;
  • the terminal uses its own uncompressed mode measurement capability to perform cross-system wireless measurement on the target frequency point cell in the 3G system, and performs threshold estimation and calculation on the measurement result, and finally reports the analyzed 3G measurement result to the eNB;
  • the wireless measurement of the target frequency point cell in the 4G system and the cross-system wireless measurement of the target frequency point cell in the 3G system can be performed simultaneously, and no time scheduling is required. .
  • Step 305 According to the measurement result reported by the terminal, the eNB performs reconfiguration of the primary serving cell (Pcdl) on the downlink primary carrier frequency and the secondary serving cell (Scell) on the downlink secondary carrier frequency in the 7G carrier aggregation system.
  • Pcdl primary serving cell
  • Scell secondary serving cell
  • the UE is already in the 7G operating state, and the primary serving cell (Pcdl) on the 1G carrier frequency of the 4G LTE system performs data reception, and at the same time, on one carrier frequency point F1 of the 3G HSPA+ system side.
  • the secondary serving cell (Scell) performs data reception; according to the 7G aggregation capability of the UE, the number of the supported primary 3D HSPA + system side maximum secondary downlink carrier frequency secondary serving cell (Scell) is 1, and the 3G HSPA + system side has a total
  • the 3G target cells on the two possible frequency points F1 and F2 may become the secondary serving cell (Scell), where the frequency points F1 and F2 of the current secondary serving cell (Scell) are adjacent to the same frequency band.
  • Embodiment 1 of the method for implementing cross-system measurement of a 7G carrier aggregation system according to the present invention includes the following steps:
  • Step 1 The eNB queries the terminal's 3G system type of non-compressed mode measurement capability by using a UE Capability Enquiry.
  • the UE Capability Request cell in the terminal capability query message indicates that the terminal needs to report the UTRA-related non- UTRA Related measurement capability without CM.
  • Step 2 After receiving the indication from the eNB, the terminal reports the UTRA-related uncompressed mode measurement capability to the eNB through the UE Capability Information message.
  • the UE radio access capabilities for UTRA carried in the UE Capability RAT Container cell in the terminal capability information message includes UTRA-related uncompressed mode measurement capability, that is, the adjacent secondary carrier measurement does not enable the compression mode capability (Adjacent Frequency measurements without Compressed mode ).
  • Step 3 After receiving the uncompressed mode measurement capability of the terminal, the capability information synchronization between the eNB and the terminal is implemented; the eNB passes the RRC layer signaling downlink message, such as an RRC Connection Reconfiguration message, to the The RRC connection state (RRC-CONNECTED) terminal provides a measurement control configuration parameter (MeasConfig); here, the eNB knows that the terminal has the uncompressed mode measurement capability of the adjacent frequency band in the same frequency band according to the uncompressed mode measurement capability reported by the terminal, Configure the measurement schedule idle for the 3G system.
  • RRC connection state (RRC-CONNECTED) terminal provides a measurement control configuration parameter (MeasConfig); here, the eNB knows that the terminal has the uncompressed mode measurement capability of the adjacent frequency band in the same frequency band according to the uncompressed mode measurement capability reported by the terminal, Configure the measurement schedule idle for the 3G system.
  • MeasConfig measurement control configuration parameter
  • Step 4 After receiving the measurement control configuration parameter, the terminal performs wireless measurement on the target frequency point cell in the 4G system according to the measurement configuration parameter, and performs threshold estimation and calculation on the measurement result, and finally analyzes The obtained 4G measurement result is sent to the eNB; the terminal uses its uncompressed mode measurement capability to perform cross-system wireless measurement of the interrupt data transmission on the cell at the target frequency point F2 in the 3G system, and performs threshold determination on the measurement result, The evaluation process is performed, and finally the analyzed 3G measurement result is reported to the eNB.
  • Step 5 According to the measurement result reported by the terminal, the eNB performs reconfiguration of the primary serving cell (Pcdl) on the downlink primary carrier frequency in the 7G carrier aggregation system and the secondary serving cell (Sdl1) on the downlink secondary carrier frequency.
  • Pcdl primary serving cell
  • Sdl1 secondary serving cell
  • the UE is already in the 7G operating state, and has received data in the primary serving cell (Pcdl) on the 2 carrier frequency points of the 4G LTE system, and simultaneously on the 2 carrier frequency points F1 on the 3G HSPA + system side.
  • Pcdl primary serving cell
  • the secondary serving cell (Scdl) performs data reception; according to the 7G aggregation capability of the UE, the number of ScDs of the maximum auxiliary downlink carrier frequency supported by the 3G HSPA + system side is 2; 3G HSPA + system side has 4 possible frequency points Fl 3G targets on F2, F3, F4
  • the cell may become a secondary serving cell (Scell), where the frequency points F1 and F2 of the current secondary serving cell (Scell) are in the same frequency band I and adjacent, and the frequency points F3 and F4 are in the same frequency band VIII and adjacent.
  • Embodiment 2 of the method for implementing cross-system measurement of a 7G carrier aggregation system according to the present invention includes the following steps:
  • Step 1 The eNB queries the terminal's 3G system type of non-compressed mode measurement capability by using a UE Capability Enquiry.
  • the UE Capability Request cell in the terminal capability query message indicates that the terminal needs to report the UTRA-related non- UTRA Related measurement capability without CM.
  • Step 2 After receiving the indication from the eNB, the terminal reports the UTRA-related uncompressed mode measurement capability to the eNB through the UE Capability Information message.
  • the UE Capability RAT Container letter in the terminal capability information message is sent to the eNB.
  • the UE radio access capabilities for UTRA carried in the element include UTRA-related uncompressed mode measurement capability, that is, Adjacent Frequency measurements without compressed mode and inter-subcarrier measurement without compression mode. Inter-band Frequency measurements without compressed mode 0
  • Step 3 After receiving the uncompressed mode measurement capability of the terminal, the capability information synchronization between the eNB and the terminal is implemented; the eNB passes the RRC layer signaling downlink message, such as RRC.
  • a connection reconfiguration message (RRC Connection Reconfiguration) is provided to provide a measurement control configuration parameter (MeasConfig) to a terminal in an RRC connection state (RRC-CONNECTED).
  • MeasConfig a measurement control configuration parameter
  • RRC-CONNECTED RRC connection state
  • the eNB knows that the terminal has the same frequency band according to the uncompressed mode measurement capability reported by the terminal. Uncompressed adjacent frequency Measurement capability, not arranged for measuring idle scheduling 3G system.
  • Step 4 After receiving the measurement control configuration parameter, the terminal performs wireless measurement on the target frequency point cell in the 4G system according to the measurement configuration parameter, and performs threshold estimation and calculation on the measurement result, and finally analyzes The obtained 4G measurement result is reported to the eNB; the terminal utilizes its own uncompressed mode measurement capability to the cell on the target frequency points F3 and F4 in the 3G system. Perform cross-system wireless measurement of interrupt data transmission, and perform threshold estimation and calculation evaluation on the measurement result, and finally analyze the obtained 3G measurement result on eNBa
  • Step 5 According to the measurement result reported by the terminal, the eNB performs reconfiguration of the primary serving cell (Pcdl) on the downlink primary carrier frequency and the secondary serving cell (Scell) on the downlink secondary carrier frequency in the 7G carrier aggregation system.
  • Pcdl primary serving cell
  • Scell secondary serving cell
  • FIG. 4 is a schematic structural diagram of a 7G carrier aggregation system according to the present invention.
  • the 7G carrier aggregation system includes: a terminal 41 and an eNB 42;
  • the terminal 41 is configured to report the uncompressed mode measurement capability to the eNB 42 according to the indication; the eNB 42 is configured to send the measurement control configuration parameter to the terminal 41 in the RRC connected state according to the uncompressed mode measurement capability;
  • the terminal 41 is further configured to: perform radio measurement on the target frequency point cell in the 4G system according to the received measurement control configuration parameter, and perform cross-system wireless measurement on the 3G target frequency point cell by using the uncompressed mode measurement capability of the 4G system.
  • the measurement result is reported to the eNB 42.
  • the eNB 42 is further configured to instruct the terminal 41 to report the uncompressed mode measurement capability.
  • the eNB 42 is further configured to perform reconfiguration of the primary serving cell on the downlink primary carrier frequency and the secondary serving cell on the downlink secondary carrier frequency in the 7G carrier aggregation system according to the measurement result reported by the terminal 41.
  • the eNB 42 instructs the terminal 41 to report the uncompressed mode measurement capability as follows: The eNB instructs the terminal to report the UTRA-related uncompressed mode measurement capability by using the UE Capability Request cell in the UE Capability Enquiry.
  • the terminal 41 reports its own uncompressed mode measurement capability to the eNB 42 according to the indication: after receiving the indication of the eNB, the terminal uses its UE Capability Information to measure its own UTRA-related uncompressed mode measurement capability. And reporting to the eNB; where the UE Capability RAT Container cell in the terminal capability information message is carried in The UTRA-related uncompressed mode measurement capability is included in the UE radio access capabilities for UTRA.
  • the eNB 42 sends the measurement control configuration parameter to the terminal 41 in the RRC connected state according to the uncompressed mode measurement capability. After the eNB and the terminal's capability information are synchronized, the eNB passes the RRC layer signaling downlink message to the RRC.
  • the connection state terminal provides the measurement control configuration parameter; according to the non-compression mode measurement capability reported by the terminal, for the 3G system, the measurement control configuration parameter includes the measurement target, the reporting mode, the measured physical quantity, and does not include the measurement scheduling idle;
  • the measurement control configuration parameter includes a measurement target, a reporting manner, a measured physical quantity, and a measurement scheduling idle.
  • the wireless measurement is performed on the target frequency point cell in the 4G system, and the non-compressed mode measurement capability is used to perform cross-system wireless measurement on the 3G target frequency point cell, and the measurement result is sent to the eNB as: Idle, wirelessly measure the target frequency point cell in the 4G system, and evaluate the measurement result, and report the obtained 4G measurement result to the eNB; the terminal uses its own uncompressed mode measurement capability to target the target frequency point cell in the 3G system.
  • the inter-system wireless measurement is performed, and the measurement result is evaluated and processed, and the obtained 3G measurement result is reported to the eNB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种7G载波聚合系统及其跨系统测量的方法,该方法包括:终端根据指示将自身的非压缩模式测量能力上报给eNB;eNB根据所述非压缩模式测量能力,将测量控制配置参数发送给处于RRC连接态的终端;终端根据收到的测量控制配置参数,对4G系统内目标频点小区进行无线测量,并利用自身的非压缩模式测量能力,对3G目标频点小区进行跨系统无线测量,将测量结果上报给eNB。根据本发明的技术方案,能够实现在7G载波聚合系统中使用跨系统的非压缩模式测量。

Description

一种 7G载波聚合系统及其跨系统测量的方法 技术领域
本发明涉及数字移动通信技术,尤其涉及一种 7G载波聚合系统及其跨 系统测量的方法。 背景技术
在宽带码分多址 ( WCDMA, Wideband Code Division Multiple Access ) 网络中, 通用陆地无线接入网 (UTRAN, Universal Terrestrial Radio Access Network ) 包括无线网络控制器(RNC, Radio Network Controller )和基站 ( NB , NodeB )两种基本网元,俗称 3G网络。在长期演进( LTE, Long Time Evolution ) 网络中, 演进型的通用陆地无线接入网 (E-UTRAN, Enhanced UTRAN ) 包括演进型基站(eNB , eNodeB )一种基本网元, 俗称 4G网络。
随着 WCDMA网络的发展,高速下行接收链路分组接入( HSDPA, High Speed Downlink Packet Access ),高速上行发送链路分组接入( HSUPA, High Speed Uplink Packet Access ), 双载波高速下行分组接入( DC-HSDPA, Dual Carrier-High speed downlink packet access),双频段双载波高速下行分组接入 ( DB-DC-HSDPA , Dual band-Dual carrier-high speed downlink packet access ), 双载波高速上行分组接入 ( DC-HSUPA, Dual Carrier-high speed uplink packet access )、 四载波高速下行分组接入 ( 4C-HSDPA , Four carrier-high speed downlink packet access )、 八载波高速下行分组接入 ( 8C-HSDPA, Eight carrier-high speed downlink packet access ), 这些 3G系 统内的多载波聚合技术陆续地被引入,使得 UE的上下行数据传输率不断得 到倍增提高。 对于上述不同维数的多载波聚合技术, 以下行方向为例, 一 个重要的基本特征是: UE必须配备有多条 3G相关的接收数据处理链( 3G- Receiver Chain ) , 可以同时接收处理来自同一基站、 同一扇区( sector )、 若 干个载波上下行发送来的 3G数据块。演进到今天的 WCDMA系统又称为: HSPA +系统( High Speed Packet Access+ ), 下面统一称为 3G HSPA + 。
随着 LTE网络的发展, 类似 3G HSPA +多载波聚合概念的技术( CA, Carrier Aggregation )也逐渐诞生和实现, 以下行方向为例, 截至目前, LTE 系统内最大可以对 5个下行带宽为 20MHz的载波进行聚合操作, 其一个重 要的基本特征是: UE 必须配备有多条 4G相关的接收数据处理链( AG- Receiver Chain ) , 可以同时接收处理来自同一基站、 同一扇区(sector ), 若 干个载波上下行发送来的 4G数据块。
在运营商将部署的 3G HSPA+网络向 4G LTE网络演进的长期过程中, 必然需要很长一段时间, 两种系统同时存在且协同工作, 共同承担着来自 或面向核心网侧的下行和上行数据传输的任务, 如: 某运营商有两个载波 频点资源 F1和 F2, 将 F1分配给 3G HSPA +网络运营使用, 将 F2分配给 4G LTE网络运营使用。对于其网路中, 只有 3G功能的终端只能在 F1上工 作运行, 只有 4G功能的终端只能在 F2上工作运行, 同时具备 3G和 4G功 能的终端(双模终端, 具备 3G和 4G网络服务小区数据传输和信号测量能 力), 在同一个时间, 只能在 F1或 F2上工作运行, 不能同时在 F1和 F2上 工作运行。 为了充分利用这一类双模 UE的接收能力,提高频点资源利用率 和终端下行峰值速率, 7G载波聚合技术(3G+4G ) 又称跨 HSPA + LTE系 统载波聚合技术诞生了。
目前 7G技术的雏形架构已经公开, 图 1是现有技术中 7G技术的架构 示意图, 如图 1所示, X2是 4G系统内连接 eNB的逻辑物理接口, lub是 3G系统内连接 RNC和 NB的的逻辑物理接口, 而 X2 and lub alike是服务 于 7G载波聚合系统连接 eNB和 NB的新逻辑物理接口; LTE的基站 eNB 作为终端唯一 RRC连接的主控制锚点和数据分流控制点, 在下行方向 (基 站到 UE ), UE在 eNB某工作载波上的物理下行控制信道( PDCCH, Physical Downlink Control Channel )里面的调度命令(如资源分配、 HARQ操作相 关信息)控制下, 从物理下行共享信道(PDSCH, Physical Downlink Shared Channel )上接收一部分用户数据。 同时, UE在基站(NB, Node B ) 某工 作载波上的高速共享控制信道 (HS-SCCH , High Speed Shared Control Channel ) 的调度命令控制下, 从高速下行共享信道 ( HS-DSCH , High Speed-Downlink Shared Channel )上接收另一部分用户数据。锚点 eNB负责 对自身生成的上层协议数据包进行分配, 按照一定的方式, 决定哪部分从 LTE的空中接口发送,哪部分从 HSPA +的空中接口发送。被分配到 NodeB 的协议数据包, 需要通过 eNB和 NB之间一个新接口传输, 由 NB根据自 己协议特点和 HSPA +空中接口的方式进行发送。 如果 eNB和 NB是同站 址( intra-site ) , 上述新接口可以简化成内部接口。
在上行方向 (UE到基站), UE至少要在和 eNB工作下行频点配对的 上行频点上配置物理上行控制信道 ( PUCCH , Physical Uplink Control Channel ) , 并在 PUCCH上发送控制信息,其中包含如 HARQ操作相关(正 确接收确认 ACK/NACK ), 调度请求、 接收信道质量指示等内容, 以反馈 LTE下行高速数据传输相关的必要信息。 UE是否要在 NodeB工作下行频 点配对的上行频点上发送高速专用物理控制信道 (HS-DPCCH , High Speed-Dedicated Physical Control Channel ), 以反馈 HSPA +下行高速数据传 输相关的必要信息, 目前正在研究中。 通常为了减少 UE的上行发射功率, 以及减少上行干扰和 UE内部信号干扰, 倾向于 UE只在 LTE空口进行单 系统上行物理反馈, 而非在两个系统同时上行物理反馈。
7G多载波聚合技术与 3G HSPA +或 4G LTE系统内各自独立的载波聚 合技术不发生沖突, 也就是说: UE有可能在 HSPA + M个载波频点上进行 数据接收, 又同时可以在 LTE 的 N个载波频点上进行数据接收。 如图 2所 示, 网络为终端在 4G频点 Fl和 F2上配置了两个下行载波, 其中 F1为下 行主载波,对应主服务小区 Pcell, F2为下行辅载波,对应辅服务小区 Scdl; 同时网络味终端在 3G频点 F3和 F4上配置了两个下行载波。此外, 网络可 能还有一些其他可用的频点资源可供配置, 取决这些频点上的无线信号质 量和负载大小。
由于 eNB是唯一与 RRC连接的主控制锚点, 称 4G LTE为主控系统, 维护一个 4G下行主载波和若干个 4G下行辅载波; 而 3G HSPA +系统接受 eNB的控制, 称 3G HSPA +为辅控制系统, 维护的若干个 3G下行载波对 于整个 7G载波组而言仍然是下行辅载波。 理想状态下, eNB、 NB根据自 身所有可使用的 4G和 3G下行载波频点的无线和资源状况, 如下行无线链 路信号质量、 下行载波负载, 针对每一个有 7G 能力的终端, 给出最佳的 7G载波组合配置。 eNB要想迅速且实时地做出这样的载波组优化配置, 必 须依靠终端对其所处的无线环境进行测量, 并且将无线测量结果上报给 eNB, 从而基于这些信息, eNB按照内部算法, 进行判决和重新配置。
在 4G LTE系统内, 处于 RRC连接态( RRC_CONNECTED )的终端对 频外或 4G系统外载波面上的目标小区进行无线测量时,通常要利用不连续 接收(DRX, Discontinuous Reception )技术或上层分组调度技术(packet scheduling )产生的一些下行空闲时段( DL, Idle Periods )来实现。在 3G HSPA +系统内, 处于 RRC专有态( Cdl_DCH )的终端对频外或 3G系统外载波 面上的目标小区进行无线测量时, 通常要通过利用压缩模式 ( CM , Compressed Mode )或上层分组调度技术产生的一些下行空闲时段来实现。 仿真表明: 无论通过上层分组调度形式还是压缩模式形式, 对系统的下行 容量和用户的业务体验都有不良的影响, 因此需要较为慎重的开启使用。 以 3G HSPA +载波聚合为例, 为了维护优化比较好的配置载波组, 终端需 要执行较频繁的频外测量任务。 为了克服以压缩模式为代表这类技术的缺 陷, Rel8 DC-HSDPA 多载波能力的 UE , 其测量能力 ( Measurement Capability )可能包含 UE对一个下行相邻辅载波的测量可以不开启压缩模 式^; * 力 ( adjacent frequency measurements without compressed mode )。类 4以 地, Rel9 DB-HSDPA多载波能力的 UE, 其测量能力可能包含 UE对一个下 行同系统异频带辅载波的测量可以不开启压缩模式的能力 (inter-band frequency measurements without compressed mode )。 类似地 , RellO 4C-HSDPA多载波能力的 UE, 其测量能力包含对两个下行同频段相邻辅载 波的测量可以不开启压缩模式的能力 ( enhanced inter-frequency measurements without compressed mode )。
当终端处于 3G载波聚合操作状态时, 终端可以利用上述 3G系统内非 压缩模式测量能力, 按照 3GPP已经规范的方式方法, 对 3G目标频点小区 进行同频段或异频段频外的测量,从而维护优化好 3G系统内的载波组, 以 实现在优质无线链路上的高质量的数据传输。而当终端以 4G eNB为主控制 锚点且处于 7G载波聚合操作状态的时候, 目前的协议规范或公开技术并不 能有效地利用终端上述 3G系统内非压缩模式测量能力, 从而 eNB只有通 过 4G已有的 DRX技术或上层分组调度技术产生的一些下行空闲时段来测 量 3G系统侧的目标频点小区,所以必然带来对系统的下行容量和用户业务 体验方面不良的影响。
4G LTE系统内已有的测量上报相关的机制主要包括:首先 eNB通过终 端能力询问消息( UE capability enquiry )询问终端的各种能力, 其中包括终 端 4G系统和 3G系统的无线接入能力( radio access capabilities ), 其中, 终 端能力询问消息中的终端能力请求(UE capability request )信元中包含值 EUTRA和 UTRA;终端通过终端能力信息消息( UE capability information ), 将自身的能力上报给 eNB , 其中终端能力信息消息中的终端能力无线接入 技术容器( UE capability RAT-Container )信元中包含终端 EUTRA能力( UE EUTRA capability )和终端 UTRA无线接入能力( UE radio access capabilities for UTRA ); 在 eNB和终端同步了能力信息后, eNB通过 RRC层信令下行 消息, 如 RRC连接重配消息(RRC Connection Reconfiguration ), 向处于 RRC 连接态 ( RRC_CONNECTED ) 的终端, 提供一些测量控制配置参数 ( MeasConfig ), 如测量目标(待测的 4G目标频点小区、待测的 3G目标频 点小区等)、 上报方式、 测量的物理量、 测量调度空闲配置 (为 4G系统频 外和 /或 4G 系统外)等; 终端基于上述收到的测量配置参数, 利用测量空 闲, 对 4G系统内目标频点小区进行无线测量, 评估 4G测量结果后上 4艮给 eNB; 网络进行 4G系统内下行主载波频点上的主服务小区 (Pcdl )和下行 辅载波频点上的辅服务小区 (Scdl ) 的重配; 另外终端还基于上述收到的 测量配置参数, 利用额外的测量空闲, 对 3G系统内目标频点小区进行跨系 统无线测量; 这里, 4G系统内目标频点小区的无线测量与 3G系统内目标 频点小区的跨系统无线测量是不能同时进行的, 时间调度是分开的; 评估 3G测量结果后上报给 eNB后, 网络进行 3G系统内辅服务小区 ( Scdl )的 重配。 发明内容
有鉴于此,本发明的主要目的在于提供一种 7G载波聚合系统及其跨系 统测量的方法,能够实现在 7G载波聚合系统中使用跨系统的非压缩模式测 量。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供一种 7G载波聚合系统跨系统测量的方法, 包括:
终端根据指示将自身的非压缩模式测量能力上报给演进型基站 eNB; eNB 根据所述非压缩模式测量能力, 将测量控制配置参数发送给处于 RRC连接态的终端;
终端根据收到的测量控制配置参数,对 4G系统内目标频点小区进行无 线测量, 并利用自身的非压缩模式测量能力, 对 3G目标频点小区进行跨系 统无线测量, 将测量结果上报给 eNB。
上述方法中, 所述终端根据指示将自身的非压缩模式测量能力上报给 eNB之前, 该方法还包括: eNB指示终端上报非压缩模式测量能力。
上述方法中, 该方法还包括: 根据终端上报的测量结果, eNB进行 7G 载波聚合系统内下行主载波频点上的主服务小区和下行辅载波频点上的辅 服务小区的重配。
上述方法中, 所述 eNB指示终端上报非压缩模式测量能力为: eNB通过终端能力询问消息( UE Capability Enquiry ) 中的终端能力请 求( UE Capability Request )信元, 指示终端上 4艮 UTRA相关的非压缩模式 测量能力。
上述方法中, 所述终端根据指示将自身的非压缩模式测量能力上报给 eNB为:
收到 eNB 的指示后, 终端通过终端能力信息消息 (UE Capability Information ), 将自身的 UTRA相关的非压缩模式测量能力上报给 eNB; 其 中, 所述终端能力信息消息中的终端能力无线接入技术容器(UE Capability RAT Container )信元中携带的终端 UTRA无线接入能力 ( UE radio access capabilities for UTRA ) 中, 包含所述 UTRA相关的非压缩模式测量能力。
上述方法中, 所述 eNB根据所述非压缩模式测量能力, 将测量控制配 置参数发送给处于 RRC连接态的终端为:
eNB和终端的能力信息同步后, eNB通过 RRC层信令下行消息, 向处 于 RRC连接态的终端提供测量控制配置参数; 根据终端上报的非压缩模式 测量能力,针对 3G系统,所述测量控制配置参数包括测量目标、上报方式、 测量的物理量, 不包括测量调度空闲; 针对 4G系统, 所述测量控制配置参 数包括测量目标、 上报方式、 测量的物理量、 测量调度空闲。 上述方法中, 所述对 4G系统内目标频点小区进行无线测量, 并利用自 身的非压缩模式测量能力, 对 3G目标频点小区进行跨系统无线测量, 将测 量结果上报给 eNB为:
终端收利用测量空闲,对 4G系统内目标频点小区进行无线测量, 并对 测量结果进行评估处理,将得到的 4G测量结果上报给 eNB; 终端利用自身 的非压缩模式测量能力, 对 3G系统内目标频点小区进行跨系统无线测量, 并对测量结果进行评估处理, 将得到的 3G测量结果上报给 eNB。
本发明还提供一种 7G载波聚合系统, 包括: 终端和 eNB; 其中, 终端, 用于根据指示将自身的非压缩模式测量能力上报给 eNB;
eNB, 用于根据所述非压缩模式测量能力,将测量控制配置参数发送给 处于 RRC连接态的终端;
所述终端还用于,根据收到的测量控制配置参数, 对 4G系统内目标频 点小区进行无线测量, 并利用自身的非压缩模式测量能力, 对 3G目标频点 小区进行跨系统无线测量, 将测量结果上报给 eNB。
上述系统中,
所述 eNB还用于, 指示终端上报非压缩模式测量能力。
上述系统中,
所述 eNB还用于, 根据终端上报的测量结果, 进行 7G载波聚合系统 内下行主载波频点上的主服务小区和下行辅载波频点上的辅服务小区的重 配。
本发明提供的 7G载波聚合系统及其跨系统测量的方法,终端根据指示 将自身的非压缩模式测量能力上报给 eNB; eNB根据所述非压缩模式测量 能力, 将测量控制配置参数发送给处于 RRC连接态的终端; 终端根据收到 的测量控制配置参数, 对 4G系统内目标频点小区进行无线测量, 并利用自 身的非压缩模式测量能力, 对 3G目标频点小区进行跨系统无线测量, 将测 量结果上报给 eNB, 如此, 基于 3G WCDMA和 4G LTE两种移动系统, 在 7G载波聚合系统中实现跨系统的非压缩模式测量方式的使用;充分利用 7G 载波聚合操作状态的终端在 3G系统内的非压缩模式测量能力, 以实现 3G 系统内载波组的优化, 且不对系统的下行容量和用户业务体验带来负面影 响。 附图说明
图 1是现有技术中 7G技术的架构示意图;
图 2是现有技术中 7G多载波聚合技术的架构示意图;
图 3是本发明实现 7G载波聚合系统跨系统测量的方法的流程示意图; 图 4是本发明 7G载波聚合系统的结构示意图。 具体实施方式
本发明的基本思想是: 终端根据指示将自身的非压缩模式测量能力上 报给 eNB; eNB根据所述非压缩模式测量能力, 将测量控制配置参数发送 给处于 RRC连接态的终端; 终端根据收到的测量控制配置参数, 对 4G系 统内目标频点小区进行无线测量, 并利用自身的非压缩模式测量能力, 对
3G目标频点小区进行跨系统无线测量, 将测量结果上报给 eNB。
下面通过附图及具体实施例对本发明再做进一步的详细说明。
本发明提供一种 7G载波聚合系统跨系统测量的方法,图 3是本发明实 现 7G载波聚合系统跨系统测量的方法的流程示意图, 如图 3所示, 该方法 包括以下步驟:
步驟 301, eNB指示终端上报非压缩模式测量能力;
具体的, eNB通过终端能力询问消息( UE Capability Enquiry ), 询问终 端的 3G系统类的非压缩模式测量能力; 其中, 通过终端能力询问消息中的
UE Capability Request信元指示终端需要上报 UTRA相关的非压缩模式测量 能力 ( UTRA Related measurement capability without CM )。
步驟 302, 终端根据指示将自身的非压缩模式测量能力上报给 eNB; 具体的,收到 eNB的指示后,终端通过终端能力信息消息( UE Capability
Information ), 将自身的 UTRA相关的非压缩模式测量能力上报给 eNB; 其 中, 终端能力信息消息中的 UE Capability RAT Container信元中携带的 UE radio access capabilities for UTRA中包含 UTRA相关的非压缩模式测量能 力。
步驟 303 , eNB根据终端的非压缩模式测量能力,将测量控制配置参数 发送给处于 RRC连接态的终端;
具体的, 收到终端上 ·^艮的非压缩模式测量能力后, 实现 eNB和终端的 能力信息同步; eNB通过 RRC层信令下行消息,如 RRC连接重配消息( RRC
Connection Reconfiguration ), 向处于 RRC连接态 ( RRC—CONNECTED ) 的终端, 提供测量控制配置参数 ( MeasConfig ); 针对 3G系统, 该测量控 制配置参数包括测量目标、 上报方式、 测量的物理量等, 不配置测量调度 空闲; 针对 4G系统, 该测量控制配置参数包括测量目标、 上 ·^艮方式、 测量 的物理量、 测量调度空闲等;
这里, eNB根据终端上报的非压缩模式测量能力, 不配置针对 3G系统 的测量调度空闲, 仅配置针对 4G系统的测量调度空闲, 能够充分利用终端 的非压缩模式测量能力。
步驟 304, 终端根据收到的测量控制配置参数, 对 4G系统内目标频点 小区进行无线测量, 并利用自身的非压缩模式测量能力, 对 3G目标频点小 区进行跨系统无线测量, 将测量结果上报给 eNB;
具体的, 终端收到测量控制配置参数后, 根据该测量配置参数, 利用 测量空闲, 对 4G系统内目标频点小区进行无线测量, 并对测量结果进行门 限判断、运算等评估处理, 最后将分析得到的 4G测量结果上 ^艮给 eNB; 终 端利用自身的非压缩模式测量能力,对 3G系统内目标频点小区进行跨系统 无线测量, 并对测量结果进行门限判断、 运算等评估处理, 最后将分析得 到的 3G测量结果上报给 eNB;
由于 eNB没有配置针对 3G系统的测量调度空闲配置, 因此本发明中, 4G系统内目标频点小区进行无线测量与 3G系统内目标频点小区进行跨系 统无线测量可以同时进行, 不需要进行时间调度。
步驟 305 , 根据终端上报的测量结果, eNB进行 7G载波聚合系统内下 行主载波频点上的主服务小区 (Pcdl )和下行辅载波频点上的辅服务小区 ( Scell ) 的重配。
实施例一
本实施例中, UE已经处于 7G操作状态, 已经在 4G LTE系统 1个载 波频点上的主服务小区 (Pcdl )进行数据接收, 且同时在 3G HSPA +系统 侧的 1个载波频点 F1上的辅服务小区 ( Scell )进行数据接收; 根据 UE的 7G聚合能力,其支持的 3G HSPA +系统侧最大辅下行载波频点辅服务小区 ( Scell ) 的个数为 1 , 3G HSPA +系统侧共有 2个可能频点 F1和 F2上的 3G 目标小区可能成为辅服务小区 ( Scell ), 其中当前辅服务小区 ( Scell ) 所在频点 F1和 F2是同频段相邻的。
本发明实现 7G载波聚合系统跨系统测量的方法的实施例一包括以下 步驟:
步驟 1 , eNB通过终端能力询问消息(UE Capability Enquiry ), 询问终 端的 3G系统类的非压缩模式测量能力; 其中, 通过终端能力询问消息中的 UE Capability Request信元指示终端需要上报 UTRA相关的非压缩模式测量 能力 ( UTRA Related measurement capability without CM )。
步驟 2,收到 eNB的指示后,终端通过终端能力信息消息( UE Capability Information ), 将自身的 UTRA相关的非压缩模式测量能力上报给 eNB; 其 中, 终端能力信息消息中的 UE Capability RAT Container信元中携带的 UE radio access capabilities for UTRA中包含 UTRA相关的非压缩模式测量能 力, 即相邻辅载波测量不开启压缩模式能力 ( Adjacent Frequency measurements without compressed mode )。
步驟 3, 收到终端上 ·^艮的非压缩模式测量能力后, 实现 eNB和终端的 能力信息同步; eNB通过 RRC层信令下行消息,如 RRC连接重配消息( RRC Connection Reconfiguration ), 向处于 RRC连接态 ( RRC—CONNECTED ) 的终端, 提供测量控制配置参数(MeasConfig ); 这里, eNB根据终端上报 的非压缩模式测量能力, 知道终端具备同频段相邻频点的非压缩模式测量 能力, 不配置针对 3G系统的测量调度空闲。
步驟 4, 终端收到测量控制配置参数后, 根据该测量配置参数, 利用测 量空闲,对 4G系统内目标频点小区进行无线测量, 并对测量结果进行门限 判断、运算等评估处理, 最后将分析得到的 4G测量结果上 ^艮给 eNB; 终端 利用自身的非压缩模式测量能力, 对 3G系统内目标频点 F2上的小区进行 中断数据传输的跨系统无线测量, 并对测量结果进行门限判断、 运算等评 估处理, 最后将分析得到的 3G测量结果上报给 eNB。
步驟 5, 根据终端上报的测量结果, eNB进行 7G载波聚合系统内下行 主载波频点上的主服务小区 (Pcdl ) 和下行辅载波频点上的辅服务小区 ( Scdl ) 的重配。
实施例二
本实施例中, UE已经处于 7G操作状态, 已经在 4G LTE系统 2个载 波频点上的主服务小区 (Pcdl )进行数据接收, 且同时在 3G HSPA +系统 侧的 2个载波频点 F1上的辅服务小区 (Scdl )进行数据接收; 根据 UE的 7G聚合能力, 其支持的 3G HSPA +系统侧最大辅下行载波频点 Scdl个数 为 2; 3G HSPA +系统侧共有 4个可能频点 Fl、 F2、 F3、 F4上的 3G目标 小区可能成为辅服务小区 ( Scell ), 其中当前辅服务小区 ( Scell )所在频点 F1和 F2是同频段 I且相邻的, 而频点 F3和 F4是同频段 VIII且相邻的。
本发明实现 7G载波聚合系统跨系统测量的方法的实施例二包括以下 步驟:
步驟 1 , eNB通过终端能力询问消息(UE Capability Enquiry ), 询问终 端的 3G系统类的非压缩模式测量能力; 其中, 通过终端能力询问消息中的 UE Capability Request信元指示终端需要上报 UTRA相关的非压缩模式测量 能力 ( UTRA Related measurement capability without CM )。
步驟 2,收到 eNB的指示后,终端通过终端能力信息消息( UE Capability Information ), 将自身的 UTRA相关的非压缩模式测量能力上报给 eNB; 其 中, 终端能力信息消息中的 UE Capability RAT Container信元中携带的 UE radio access capabilities for UTRA中包含 UTRA相关的非压缩模式测量能 力, 即相邻辅载波测量不开启压缩模式能力 ( Adjacent Frequency measurements without compressed mode )和异频带辅载波测量不开启压缩模 式能力 ( Inter-band Frequency measurements without compressed mode )0 步驟 3 , 收到终端上 ·^艮的非压缩模式测量能力后, 实现 eNB和终端的 能力信息同步; eNB通过 RRC层信令下行消息,如 RRC连接重配消息( RRC Connection Reconfiguration ), 向处于 RRC连接态 ( RRC—CONNECTED ) 的终端, 提供测量控制配置参数(MeasConfig ); 这里, eNB根据终端上报 的非压缩模式测量能力, 知道终端具备同频段相邻频点的非压缩模式测量 能力, 不配置针对 3G系统的测量调度空闲。
步驟 4, 终端收到测量控制配置参数后, 根据该测量配置参数, 利用测 量空闲,对 4G系统内目标频点小区进行无线测量, 并对测量结果进行门限 判断、运算等评估处理, 最后将分析得到的 4G测量结果上报给 eNB; 终端 利用自身的非压缩模式测量能力,对 3G系统内目标频点 F3和 F4上的小区 进行中断数据传输的跨系统无线测量, 并对测量结果进行门限判断、 运算 等评估处理, 最后将分析得到的 3G测量结果上 ^ eNBa
步驟 5, 根据终端上报的测量结果, eNB进行 7G载波聚合系统内下行 主载波频点上的主服务小区 (Pcdl ) 和下行辅载波频点上的辅服务小区 ( Scell ) 的重配。
为实现上述方法, 本发明还提供一种 7G载波聚合系统, 图 4是本发明 7G载波聚合系统的结构示意图, 如图 4所示, 该 7G载波聚合系统包括: 终端 41和 eNB 42; 其中,
终端 41 , 用于根据指示将自身的非压缩模式测量能力上报给 eNB 42; eNB 42, 用于根据所述非压缩模式测量能力, 将测量控制配置参数发 送给处于 RRC连接态的终端 41;
所述终端 41还用于, 根据收到的测量控制配置参数, 对 4G系统内目 标频点小区进行无线测量, 并利用自身的非压缩模式测量能力, 对 3G目标 频点小区进行跨系统无线测量, 将测量结果上报给 eNB 42。
所述 eNB 42还用于, 指示终端 41上报非压缩模式测量能力。
所述 eNB 42还用于,根据终端 41上报的测量结果,进行 7G载波聚合 系统内下行主载波频点上的主服务小区和下行辅载波频点上的辅服务小区 的重配。
所述 eNB 42指示终端 41上报非压缩模式测量能力为: eNB通过终端 能力询问消息 ( UE Capability Enquiry ) 中的 UE Capability Request信元, 指示终端上报 UTRA相关的非压缩模式测量能力。
所述终端 41根据指示将自身的非压缩模式测量能力上报给 eNB 42为: 收到 eNB 的指示后, 终端通过终端能力信息消息 ( UE Capability Information ), 将自身的 UTRA相关的非压缩模式测量能力上报给 eNB; 其 中, 所述终端能力信息消息中的 UE Capability RAT Container信元中携带的 UE radio access capabilities for UTRA中包含所述 UTRA相关的非压缩模式 测量能力。
所述 eNB 42根据所述非压缩模式测量能力,将测量控制配置参数发送 给处于 RRC连接态的终端 41为: eNB和终端的能力信息同步后, eNB通 过 RRC层信令下行消息, 向处于 RRC连接态的终端提供测量控制配置参 数; 根据终端上报的非压缩模式测量能力, 针对 3G系统, 所述测量控制配 置参数包括测量目标、 上报方式、 测量的物理量, 不包括测量调度空闲; 针对 4G系统, 所述测量控制配置参数包括测量目标、 上报方式、 测量的物 理量、 测量调度空闲。
所述对 4G系统内目标频点小区进行无线测量,并利用自身的非压缩模 式测量能力, 对 3G目标频点小区进行跨系统无线测量, 将测量结果上 4艮给 eNB为: 端收利用测量空闲, 对 4G系统内目标频点小区进行无线测量, 并 对测量结果进行评估处理,将得到的 4G测量结果上报给 eNB; 终端利用自 身的非压缩模式测量能力, 对 3G 系统内目标频点小区进行跨系统无线测 量, 并对测量结果进行评估处理, 将得到的 3G测量结果上报给 eNB。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种 7G载波聚合系统跨系统测量的方法, 其特征在于, 该方法包 括:
终端根据指示将自身的非压缩模式测量能力上报给演进型基站 eNB; eNB 根据所述非压缩模式测量能力, 将测量控制配置参数发送给处于
RRC连接态的终端;
终端根据收到的测量控制配置参数,对 4G系统内目标频点小区进行无 线测量, 并利用自身的非压缩模式测量能力, 对 3G目标频点小区进行跨系 统无线测量, 将测量结果上报给 eNB。
2、 根据权利要求 1所述的方法, 其特征在于, 所述终端根据指示将自 身的非压缩模式测量能力上报给 eNB之前, 该方法还包括: eNB指示终端 上报非压缩模式测量能力。
3、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 根据终 端上报的测量结果, eNB进行 7G载波聚合系统内下行主载波频点上的主服 务小区和下行辅载波频点上的辅服务小区的重配。
4、根据权利要求 2所述的方法, 其特征在于, 所述 eNB指示终端上报 非压缩模式测量能力为:
eNB通过终端能力询问消息( UE Capability Enquiry ) 中的终端能力请 求( UE Capability Request )信元, 指示终端上报 UTRA相关的非压缩模式 测量能力。
5、 根据权利要求 1所述的方法, 其特征在于, 所述终端根据指示将自 身的非压缩模式测量能力上报给 eNB为:
收到 eNB 的指示后, 终端通过终端能力信息消息 (UE Capability Information ), 将自身的 UTRA相关的非压缩模式测量能力上报给 eNB; 其 中, 所述终端能力信息消息中的终端能力无线接入技术容器(UE Capability RAT Container )信元中携带的终端 UTRA无线接入能力 ( UE radio access capabilities for UTRA ) 中, 包含所述 UTRA相关的非压缩模式测量能力。
6、根据权利要求 1所述的方法, 其特征在于, 所述 eNB根据所述非压 缩模式测量能力, 将测量控制配置参数发送给处于 RRC连接态的终端为: eNB和终端的能力信息同步后, eNB通过 RRC层信令下行消息, 向处 于 RRC连接态的终端提供测量控制配置参数; 根据终端上报的非压缩模式 测量能力,针对 3G系统,所述测量控制配置参数包括测量目标、上报方式、 测量的物理量, 不包括测量调度空闲; 针对 4G系统, 所述测量控制配置参 数包括测量目标、 上报方式、 测量的物理量、 测量调度空闲。
7、 根据权利要求 1所述的方法, 其特征在于, 所述对 4G系统内目标 频点小区进行无线测量, 并利用自身的非压缩模式测量能力, 对 3G目标频 点小区进行跨系统无线测量, 将测量结果上报给 eNB为:
终端收利用测量空闲,对 4G系统内目标频点小区进行无线测量, 并对 测量结果进行评估处理,将得到的 4G测量结果上报给 eNB; 终端利用自身 的非压缩模式测量能力, 对 3G系统内目标频点小区进行跨系统无线测量, 并对测量结果进行评估处理, 将得到的 3G测量结果上报给 eNB。
8、 一种 7G载波聚合系统, 其特征在于, 该系统包括: 终端和 eNB; 其中,
终端, 用于根据指示将自身的非压缩模式测量能力上报给 eNB;
eNB, 用于根据所述非压缩模式测量能力,将测量控制配置参数发送给 处于 RRC连接态的终端;
所述终端还用于,根据收到的测量控制配置参数, 对 4G系统内目标频 点小区进行无线测量, 并利用自身的非压缩模式测量能力, 对 3G目标频点 小区进行跨系统无线测量, 将测量结果上报给 eNB。
9、 根据权利要求 8所述的 7G载波聚合系统, 其特征在于, 所述 eNB还用于, 指示终端上报非压缩模式测量能力。
10、 根据权利要求 8或 9所述的 7G载波聚合系统, 其特征在于, 所述 eNB还用于, 根据终端上报的测量结果, 进行 7G载波聚合系统 内下行主载波频点上的主服务小区和下行辅载波频点上的辅服务小区的重 配。
PCT/CN2012/077267 2011-09-22 2012-06-20 一种7g载波聚合系统及其跨系统测量的方法 WO2013040921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110283416.5A CN103024803B (zh) 2011-09-22 2011-09-22 一种7g载波聚合系统及其跨系统测量的方法
CN201110283416.5 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013040921A1 true WO2013040921A1 (zh) 2013-03-28

Family

ID=47913840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077267 WO2013040921A1 (zh) 2011-09-22 2012-06-20 一种7g载波聚合系统及其跨系统测量的方法

Country Status (2)

Country Link
CN (1) CN103024803B (zh)
WO (1) WO2013040921A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564856B2 (ja) * 2015-05-22 2019-08-21 株式会社Nttドコモ ユーザ装置
CN110710315B (zh) * 2017-11-16 2021-03-02 Oppo广东移动通信有限公司 终端上报能力的方法及相关产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064899A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 一种测量邻小区的方法和用户终端
CN101355801A (zh) * 2008-09-12 2009-01-28 信息产业部电信传输研究所 支持多模终端跨系统驻留和切换的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433895C (zh) * 2004-10-22 2008-11-12 华为技术有限公司 一种异频和异系统切换并行控制方法
CN101360308A (zh) * 2007-07-31 2009-02-04 中兴通讯股份有限公司 一种wcdma系统到gsm系统的测量切换方法
CN102118783B (zh) * 2010-01-05 2014-01-08 华为技术有限公司 一种载波测量方法和装置
CN102026264B (zh) * 2010-12-17 2013-10-16 大唐移动通信设备有限公司 一种终端测量上报和系统间互操作方法及设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064899A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 一种测量邻小区的方法和用户终端
CN101355801A (zh) * 2008-09-12 2009-01-28 信息产业部电信传输研究所 支持多模终端跨系统驻留和切换的方法

Also Published As

Publication number Publication date
CN103024803B (zh) 2018-02-09
CN103024803A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
US11388583B2 (en) Method for reporting capability information and dual mode user equipment adapted thereto
US10412642B2 (en) Method and apparatus for performing radio measurements in autonomous gaps in multi-connectivity scenarios
JP6081531B2 (ja) ユーザ端末、無線基地局及び無線通信方法
CN112260725B (zh) 承载配置信令
EP2850762B1 (en) Methods of sending feedback signaling under carrier specific measurement gaps in multi-carrier
KR102394926B1 (ko) 이동 통신 시스템에서 단말 성능 정보의 송수신 방법 및 장치
KR20160093569A (ko) 셀 집적 시스템에서 하향 제어 채널 정보 송신 방법 및 장치
US11937109B2 (en) Gap sharing under coverage enhancement
US20200314725A1 (en) Method and apparatus for carrier aggregation communication in wireless communication system
KR20120007410A (ko) 다중 요소 반송파 시스템에서 핸드오버의 수행장치 및 방법
WO2011053218A1 (en) Methods and arrangements for providing proper system information at carrier aggregation in a wireless communication system
KR20120010645A (ko) 다중 요소 반송파 시스템에서 핸드오버의 수행장치 및 방법
JPWO2016182047A1 (ja) ユーザ端末、無線基地局及び無線通信方法
KR20110122454A (ko) 이동통신시스템에서 복수 개의 캐리어들이 집적된 단말기의 캐리어들에 대한 효율적인 메저먼트 방법
WO2013040921A1 (zh) 一种7g载波聚合系统及其跨系统测量的方法
EP4170930B1 (en) Method and apparatus for carrier aggregation communication in wireless communication system
WO2013044651A1 (zh) 7g载波聚合系统中3g载波组的维护方法、系统及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834146

Country of ref document: EP

Kind code of ref document: A1