WO2013040826A1 - 一种单极天线、无线接入装置及无线路由器 - Google Patents

一种单极天线、无线接入装置及无线路由器 Download PDF

Info

Publication number
WO2013040826A1
WO2013040826A1 PCT/CN2011/081901 CN2011081901W WO2013040826A1 WO 2013040826 A1 WO2013040826 A1 WO 2013040826A1 CN 2011081901 W CN2011081901 W CN 2011081901W WO 2013040826 A1 WO2013040826 A1 WO 2013040826A1
Authority
WO
WIPO (PCT)
Prior art keywords
monopole antenna
antenna
metal structure
topology
unit
Prior art date
Application number
PCT/CN2011/081901
Other languages
English (en)
French (fr)
Inventor
刘若鹏
徐冠雄
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011102864531A external-priority patent/CN103022653A/zh
Priority claimed from CN2011102864870A external-priority patent/CN103022655A/zh
Priority claimed from CN2011102864993A external-priority patent/CN103022656A/zh
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Priority to EP11854531.8A priority Critical patent/EP2760078B1/en
Priority to US13/521,744 priority patent/US9160066B2/en
Publication of WO2013040826A1 publication Critical patent/WO2013040826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a monopole antenna, a wireless access device, and a wireless router.
  • wireless communication equipment has higher and higher requirements
  • the antenna for receiving and transmitting electromagnetic waves has various structures to meet the requirements of communication equipment, and the performance or structure of the antenna is higher. The challenge.
  • the antenna acts as the radiating element and receiving device of the final RF signal, and its operating characteristics will directly affect the performance of the entire electronic system.
  • important dimensions such as antenna size, bandwidth, and gain are limited by basic physical principles (gain limit, bandwidth limit, etc. at fixed size).
  • the basic principle of the limits of these indicators makes the antenna miniaturization technology far more difficult than other devices, and due to the complexity of the electromagnetic field analysis of RF devices, approaching these limits has become a huge technical challenge.
  • the radiated operating frequency of a conventional antenna is directly related to the size of the antenna, and the bandwidth is positively correlated with the area of the antenna, so that the design of the antenna usually requires a physical length of half a wavelength.
  • an additional impedance matching network design is required before feeding the antenna.
  • the impedance matching network additionally increases the feeder design of the electronic system, increases the area of the RF system, and introduces a lot of energy loss in the matching network, which is difficult to meet the system design requirements of low power consumption.
  • Due to its own functional limitations existing antennas are mostly externally placed and occupy a large space. Therefore, the function and size of the antenna become a technical bottleneck for further reducing the size of the device using the antenna. Therefore, the new antenna technology with small size and good performance has become an important technical barrier for contemporary electronic integrated systems.
  • the technical problem mainly solved by the present invention is to provide A monopole antenna, a wireless access device and a wireless router, the monopole antenna, the wireless access device and the wireless router of the invention design the antenna structure by applying the metamaterial technology, and can realize the antenna under the premise of satisfying the performance requirement of the communication device Miniaturized, so you can freely choose whether the antenna is built-in or external.
  • a monopole antenna includes a dielectric substrate, a feed point disposed on a surface of the dielectric substrate, a feed line connected to the feed point, and a metal structure; the feed line and the metal structure are coupled to each other.
  • the metal structure is formed by the metal sheet being etched out of the trench topology.
  • the slot width in the slot topology is equal to the spacing of adjacent slots in the slot topology.
  • the groove width in the groove topology is 0.15mm.
  • the monopole antenna further includes a grounding unit, and the grounding unit is provided with a plurality of metalized through holes.
  • the grounding unit symmetrically distributes both sides of the feeding point.
  • the dielectric substrate is made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material or a ferromagnetic material.
  • the monopole antenna resonates at least one type of electromagnetic wave.
  • the frequency band of the electromagnetic wave resonance band includes at least 2.4 GHz - 2.49 GHz and 5.72 GHz - 5.85 GHz .
  • the surface of the monopole antenna is provided with a non-metallic anti-oxidation film.
  • a wireless access device including: a central processing unit, a data storage unit, and a radio frequency unit, a data storage unit, and a radio frequency unit and a central unit.
  • the processing unit is connected, and the radio frequency unit comprises an antenna, the antenna comprises a dielectric substrate, a feeding point disposed on a surface of the dielectric substrate, a feeding line connected to the feeding point, and a metal structure; the feeding line and the metal structure are coupled to each other.
  • the metal structure is formed by the metal sheet being etched out of the trench topology.
  • the slot width in the slot topology is equal to the spacing of adjacent slots in the slot topology.
  • the antenna further includes a grounding unit, and the grounding unit is provided with a plurality of metalized through holes.
  • the grounding unit symmetrically distributes both sides of the feeding point.
  • a wireless router including: a data processing module, a data storage module, an Ethernet interface, a wireless communication module, and data transmission with the wireless communication module.
  • the antenna, the data storage unit, the Ethernet interface, and the wireless communication module are connected to the data processing module, and the antenna comprises: a dielectric substrate; a feeding point disposed on a surface of the dielectric substrate; and a feeding line connected to the feeding point; a metal structure; the feed line and the metal structure are coupled to each other.
  • the metal structure is formed by the metal sheet being etched out of the trench topology.
  • the slot width in the slot topology is equal to the spacing of adjacent slots in the slot topology.
  • the antenna further includes a grounding unit, and the grounding unit is provided with a plurality of metalized through holes.
  • the grounding unit symmetrically distributes both sides of the feeding point.
  • the beneficial effects of the present invention are: different from the prior art, the monopole antenna, the wireless access device and the wireless router of the present invention can simultaneously receive or transmit two or more electromagnetic waves of different wavelength bands, which can satisfy the single Mode requirements for multiple working frequency bands and different working frequency bands for simultaneous operation at multiple frequencies,
  • the antenna can be miniaturized while meeting the performance requirements of the communication device.
  • FIG. 1 is a schematic structural view of a monopole antenna according to a first preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a monopole antenna according to a second preferred embodiment of the present invention.
  • FIG. 3 is an enlarged schematic view showing a metal structure in a monopole antenna according to a second preferred embodiment of the present invention.
  • FIG. 4 is a S-parameter simulation diagram of a monopole antenna according to a second preferred embodiment of the present invention.
  • Figure 5 is a diagram showing the operation of the monopole antenna of the second preferred embodiment of the present invention at 2.4, 2.44, 2.48 GHz.
  • Figure 6 is a diagram showing the operation of the monopole antenna of the second preferred embodiment of the present invention at 2.4, 2.44, 2.48 GHz.
  • Figure 7 is a diagram showing the operation of the monopole antenna of the second preferred embodiment of the present invention at 5.725, 5.8, 5.85 GHz.
  • Figure 8 is a diagram showing the operation of the monopole antenna of the second preferred embodiment of the present invention at 5.725, 5.8, 5.85 GHz.
  • FIG. 9 is a schematic structural diagram of a wireless access device according to a third preferred embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a wireless router according to a fourth preferred embodiment of the present invention.
  • the so-called monopole antenna is an antenna with only one arm seen from the input.
  • the monopole antenna is designed based on artificial electromagnetic material technology, and the artificial electromagnetic material refers to a topological metal structure in which a metal piece is etched into a specific shape, and the topological metal structure of the specific shape is set to a certain dielectric constant and The equivalent special electromagnetic material processed on a magnetic permeability substrate, whose performance parameters are mainly determined by the topological metal structure of a specific shape of its sub-wavelength.
  • artificial electromagnetic materials usually exhibit a high degree of dispersion characteristics.
  • the impedance, capacitance, equivalent dielectric constant, and magnetic permeability of the antenna vary drastically with frequency. Therefore, the basic characteristics of the above antenna can be modified by artificial electromagnetic material technology, so that the metal structure and its attached dielectric substrate equivalently constitute a highly dispersive special electromagnetic material, thereby realizing a novel antenna with rich radiation characteristics.
  • FIG. 1 is a schematic structural view of a monopole antenna according to a first preferred embodiment of the present invention.
  • the monopole antenna 10 in this embodiment includes a dielectric substrate 7 and a feeding point 5 provided on the dielectric substrate 7, a feeding line 4 connected to the feeding point 5, and a flat plate-shaped metal structure 6 .
  • the feed line 4 and the metal structure 6 are coupled to each other;
  • the metal structure 6 is the metal piece is carved out of the slot topology 61, and the groove topology is removed when engraving 61 corresponding material, the remaining metal piece is the metal structure 6 , the groove topology is engraved 61
  • the metal traces 62 are included in the metal structure 6;
  • the pitch of the adjacent trenches in the trench topology 61 is the width of the metal trace 62, and the trench width and metal trace of the trench topology 61
  • the width of 62 is equal to 0.15 mm;
  • the dielectric substrate 7 may be made of a ceramic material, a polymer material, a ferroelectric material, a ferrite material or a ferromagnetic material, preferably made of a polymer material, specifically Polymer materials such as FR-4 and F4B.
  • the metal structure 6 is an axisymmetric planar plate.
  • metal structure 6 Made of copper or silver material. It is preferably copper, which is inexpensive and has good electrical conductivity. In order to achieve better impedance matching, the metal structure 6 can also be a combination of copper and silver.
  • FIG 2 A schematic diagram of a structure of a monopole antenna according to a second preferred embodiment of the present invention and an enlarged schematic view of the metal structure in the embodiment are shown.
  • the monopole antenna 10 in the second preferred embodiment includes a dielectric substrate 7 and is disposed on the dielectric substrate 7
  • the upper feeding point 5, the feeding line 4 connected to the feeding point 5, and the planar plate-shaped metal structure 6 are the same as those described in the first preferred embodiment, except that the grounding unit 8 and the grounding unit 8 are further included.
  • a plurality of metallized through holes 81 are disposed thereon; the grounding unit 8 symmetrically distributes both sides of the feeding point 5, and the selection of the dielectric substrate 7 is the same as that of the first preferred embodiment.
  • the feed line 4 is directly connected to the metal structure 6 Connected; and the position of the connection point of the feed line 4 and the metal structure 6 may be located at any position on the metal structure 6.
  • the feeder 4 is disposed on the periphery of the metal structure 6 in a surrounding manner and the feeder 4 The end is placed anywhere on the periphery of the metal structure 6.
  • the characteristics of the artificial electromagnetic material are used, and the metal structure is etched into a metal structure, so that the metal structure and the dielectric substrate to which the metal structure is attached form an equivalent dielectric constant according to the Lorentz material resonance model dispersion. Electromagnetic material to design an antenna with multiple resonant bands.
  • the monopole antenna shown in Figure 2 resonates electromagnetic waves in the two frequency bands 2.4GHz-2.49GHz and 5.72GHz-5.85GHz, metal structure 6
  • the length and width of the communication device can be arbitrarily adjusted according to the layout of the communication device, but the structural shape of the metal structure 6 can be kept consistent with this embodiment, and the monopole antenna can be used for single frequency 2.4 GHz - 2.49 GHz or Communication equipment in the 5.72GHz-5.85GHz band can also be used for communication equipment in the dual-band 2.4GHz-2.49GHz and 5.72GHz-5.85GHz bands.
  • FIG. 4 is a schematic diagram of an S-parameter of a monopole antenna according to a second preferred embodiment of the present invention, which shows a monopole antenna of the second preferred embodiment.
  • 10 has losses of -15.426 dB and -19.184 dB at 2.4 GHz and 5.8018 GHz, respectively, 2.4 GHz - 2.49 GHz required by the present invention. And the loss of -10dB or less in the 5.72GHz-5.85GHz frequency band, indicating that the monopole antenna 10 of the present invention can be alone at 2.4GHz-2.49GHz or Operating in the 5.72GHz-5.85GHz frequency range, it can also be used at 2.4GHz-2.49GHz and 5.72GHz-5.85GHz simultaneously. Works in the frequency range and meets the antenna requirements in wireless communication equipment.
  • FIG. 6, FIG. 7, and FIG. 8 respectively illustrate a monopole antenna operating in 2.4 according to a second preferred embodiment of the present invention.
  • E-Plane vertical plane
  • H-Plane horizontal plane
  • the direction far field simulation result graph in which it can be observed that the polarization effect of the monopole antenna of the present invention is no less than that of the existing antenna and conforms to the application standard.
  • the manufacturing process can be carried out in various manufacturing methods as long as the design principle of the present invention is satisfied.
  • the most common method is to use a variety of printed circuit board (PCB) manufacturing methods, such as copper-clad PCB Manufacturing can meet the processing requirements of the present invention.
  • PCB printed circuit board
  • other processing means can be introduced according to actual needs, such as conductive silver paste ink processing method, flexible PCB of various deformable devices. Machining, processing of iron antennas, and processing of iron and PCB combinations.
  • the combination of iron and PCB processing means using PCB Precision machining to complete the processing of the trench topology, using iron sheets to complete other auxiliary parts.
  • the metal structure 6 Since the metal structure 6 is formed using a low-cost copper material, it is easily oxidized in exposed air to cause the monopole antenna 10 The resonance frequency shifts or the performance drops sharply, so a non-metallic anti-oxidation film is disposed on the surface of the monopole antenna. Since the main performance of the present invention is concentrated on the design of the metal structure 6-slot topology 61, the feed line 4 The leads have a relatively small effect on the radiation frequency of the monopole antenna 10. Based on this feature, the monopole antenna can be flexibly placed anywhere in the system, simplifying the complexity of the installation test.
  • the above-mentioned monopole antenna 10 can directly apply wireless communication devices including 2.4 GHz and 5.8 GHz, especially APs. And in the wireless router, the monopole antenna 10 can be directly disposed on the PCB of the wireless communication device, so that the monopole antenna 10 is built in the device to which the antenna is applied, or the interface can be used to make the monopole antenna 10 The interface of the wireless communication device is connected through an interface such that the monopole antenna 10 is external to the device to which the antenna is applied.
  • the wireless access device includes a central processing unit, a data storage unit, a radio frequency unit, a power supply unit, and an auxiliary unit.
  • the power unit provides the power required for the central processing unit to operate.
  • the central processing unit can be a microcontroller or SOC or RISC Microprocessor chip.
  • the data storage unit stores communication protocols such as WIFI and WLAN.
  • the data storage unit can be further divided into a read only memory and a random access memory.
  • the antenna of the present invention is included in the radio frequency unit. For the technical features of the antenna, refer to the description of the first and second preferred embodiments of the present invention, and details are not described herein again.
  • the auxiliary unit may be one or more of a human interface, a display, a power indicator, or a status indicator.
  • the central processing unit is connected to the radio frequency module and the data storage module, and the central processing module exchanges and processes data through the antenna in the radio frequency module, and the central processing unit can retrieve the communication protocol in the data storage unit, and store or cache the data.
  • the auxiliary unit enables the in-vehicle wireless access device to have some auxiliary functions, such as an indicator light indicating the connection status or a power indicator indicating the power supply condition.
  • FIG. 10 is a schematic structural diagram of a wireless router according to a fourth preferred embodiment of the present invention.
  • the wireless router includes: a data processing module, a data storage module, an Ethernet interface, a wireless communication module, a power module, and an antenna.
  • the data processing module is connected to the data storage module, the Ethernet interface, and the wireless communication module.
  • the antenna is connected to the wireless communication module for data transmission.
  • the power module provides the power required to operate the central processing unit.
  • Data processing module can be used ARM processor.
  • the data storage module stores communication protocols such as WIFI, WLAN, IEEE802.11b/g/n In the communication protocol, the data storage module includes a read only memory, a random access memory, and an erasable memory.
  • the wireless router may further include some auxiliary modules (not shown) such as a power indicator or a status indicator.
  • the monopole antenna, the wireless access device and the wireless router of the present invention can resonate electromagnetic waves of one band, two or more different bands, thereby receiving or transmitting electromagnetic waves of different wavelength bands, or simultaneously Accepting or transmitting two or more electromagnetic waves of different wavelength bands, and using one antenna of the present invention, a mode requirement of multiple working frequency bands at multiple frequencies and different working frequency bands at multiple frequencies can be realized at the same time, and
  • the physical size of the antenna metal structure size is not limited by the physical length of the half-wavelength. Therefore, the corresponding antenna can be designed according to the size of the wireless communication device, thereby satisfying the requirements of the wireless access device, the miniaturization of the wireless router, and the built-in antenna.

Abstract

本发明公开了一种单极天线(10)、无线接入装置及无线路由器。本发明单极天线包括一介质基板(7)和设置于介质基板一表面的一馈电点(5)、与馈电点相连接的馈线(4)及一金属结构(6);馈线与金属结构相互耦合。本发明的单极天线、无线接入装置及无线路由器可以同时接收或者发送两个或者两个以上的不同的波段的电磁波,可以满足单频时具有多个工作频段、多频时不同工作频段同时工作的模式需求,能在满足通讯设备性能要求的前提下实现天线的小型化。

Description

一种单极天线、无线接入装置及无线路由器
【技术领域】
本发明涉及无线通信领域,特别涉及一种单极天线、无线接入装置及无线路由器。
【背景技术】
随着无线通讯技术的发展,无线通讯设备有了越来越高的要求,而作为电磁波接收与发送的天线也有了多种结构以适应通讯设备的要求,就天线的性能或者结构有了更高的挑战。
天线作为最终射频信号的辐射单元和接收器件,其工作特性将直接影响整个电子系统的工作性能。然而天线的尺寸、带宽、增益等重要指标却受到了基本物理原理的限制(固定尺寸下的增益极限、带宽极限等)。这些指标极限的基本原理使得天线的小型化技术难度远远超过了其它器件,而由于射频器件的电磁场分析的复杂性,逼近这些极限值都成为了巨大的技术挑战。
传统天线的辐射工作频率直接和天线的尺寸正相关,带宽和天线的面积正相关,使得天线的设计通常需要半波长的物理长度。在一些更为复杂的电子系统中,需要在馈入天线前额外的阻抗匹配网络设计。但阻抗匹配网络额外的增加了电子系统的馈线设计、增大了射频系统的面积同时匹配网络还引入了不少的能量损耗,很难满足低功耗的系统设计要求。现有天线由于其自身的功能限制,大多是外置于设备,会占用较大的空间,因而,天线的功能、大小成为应用天线的设备进一步缩小体积的技术瓶颈。因此,小型化、性能好的新型天线技术成为了当代电子集成系统的一个重要技术屏障。
另外,各种无线通讯设备的天线内置需求越来越强烈,例如现在各种无线接入装置、无线路由器等电子设备基本上采用外置天线,极大限制产品的工业设计和机构设计发挥的余力,而且外置天线还需要设计适应的阻抗匹配连接器及机构模组,这些连接器及机构模组几乎占了整个天线百分之九十以上的成本,所以整个天线成本上升促使整个无线接入装置、无线路由器等电子设备成本上升,而天线内置方式将极大地省掉了连接器及机构模组成本。
【发明内容】
本发明主要解决的技术问题是提供 一种单极天线、无线接入装置及无线路由器,本发明的单极天线、无线接入装置及无线路由器通过应用超材料技术设计天线结构,能在满足通讯设备性能要求的前提下实现天线的小型化,从而可自由选择天线内置或外置。
为解决上述技术问题,本发明采用的一个技术方案是: 提供 一种单极天线,该单极天线包括一介质基板和设置于介质基板一表面的一馈电点、与馈电点相连接的馈线及一金属结构;馈线与金属结构相互耦合。
其中,金属结构是金属片经镂刻出槽拓扑结构而成。
其中,槽拓扑结构中槽宽与槽拓扑结构中相邻槽的间距相等。
其中,槽拓扑结构中槽宽为 0.15mm 。
其中,单极天线还包括接地单元,接地单元上设置有若干个金属化的通孔。
其中,接地单元对称地分布馈电点两侧。
其中,介质基板由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料制成。
其中,单极天线至少使一种波段的电磁波谐振。
其中,电磁波谐振波段的频率段至少包括 2.4GHz-2.49GHz 和 5.72GHz-5.85GHz 。
其中,单极天线表面上设置有非金属的防氧化薄膜。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种无线接入装置,该无线接入装置包括:中央处理单元、数据存储单元和射频单元,数据存储单元和射频单元与中央处理单元相连接,射频单元包括一天线,该天线包括一介质基板和设置于介质基板一表面的一馈电点、与馈电点相连接的馈线及一金属结构;馈线与金属结构相互耦合。
其中,金属结构是金属片经镂刻出槽拓扑结构而成。
其中,槽拓扑结构中槽宽与槽拓扑结构中相邻槽的间距相等。
其中,天线还包括接地单元,接地单元上设置有若干个金属化的通孔。
其中,接地单元对称地分布馈电点两侧。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种无线路由器,该无线路由器包括:数据处理模块、数据存储模块、以太网接口、无线通信模块和与无线通信模块进行数据传输的天线,数据存储单元、以太网接口和无线通讯模块与数据处理模块相连接,该天线包括:一介质基板和设置于介质基板一表面的一馈电点、与馈电点相连接的馈线及一金属结构;馈线与金属结构相互耦合。
其中,金属结构是金属片经镂刻出槽拓扑结构而成。
其中,槽拓扑结构中槽宽与槽拓扑结构中相邻槽的间距相等。
其中,天线还包括接地单元,接地单元上设置有若干个金属化的通孔。
其中,接地单元对称地分布馈电点两侧。
本发明的有益效果是:区别于现有技术的情况,本发明的单极天线、无线接入装置及无线路由器可以同时接受或者发送两个或者两个以上的不同的波段的电磁波,可以满足单频时具有多个工作频段、多频时不同工作频段同时工作的模式需求, 能在满足通讯设备性能要求的前提下实现天线的小型化。
【附图说明】
图 1 是本发明第一较佳实施例的单极天线的结构示意图;
图 2 是本发明第二较佳实施例的单极天线的结构示意图;
图 3 是本发明第二较佳实施例的单极天线中金属结构的放大示意图;
图 4 是本发明第二较佳实施例的单极天线的 S 参数仿真图;
图 5 是本发明第二较佳实施例的单极天线操作于 2.4 、 2.44 、 2.48GHz 时 E 方向远场仿真结果图;
图 6 是本发明第二较佳实施例的单极天线操作于 2.4 、 2.44 、 2.48GHz 时 H 方向远场仿真结果图;
图 7 是本发明第二较佳实施例的单极天线操作于 5.725 、 5.8 、 5.85GHz 时 E 方向远场仿真结果图;
图 8 是本发明第二较佳实施例的单极天线操作于 5.725 、 5.8 、 5.85GHz 时 H 方向远场仿真结果图;
图 9 是本发明第三较佳实施例的无线接入装置的结构示意图;
图 10 是本发明第四较佳实施例的无线路由器的结构示意图。
【具体实施方式】
下面结合附图和具体实施例对本发明单极天线 、无线接入装置及无线路由器做一步说明。
所谓单极天线就是从输入端看去只有一个臂的天线。本发明中单极天线是基于人工电磁材料技术设计而成,人工电磁材料是指将金属片镂刻成特定形状的拓扑金属结构,并将所述特定形状的拓扑金属结构设置于一定介电常数和磁导率基材上而加工制造的等效特种电磁材料,其性能参数主要取决于其亚波长的特定形状的拓扑金属结构。在谐振频段,人工电磁材料通常体现出高度的色散特性,换言之,天线的阻抗、容感性、等效的介电常数和磁导率随着频率会发生剧烈的变化。因而可采用人工电磁材料技术对上述天线的基本特性进行改造,使得金属结构与其依附的介质基板等效地组成了一个高度色散的特种电磁材料,从而实现辐射特性丰富的新型天线。
如图 1 所示,为本发明第一较佳实施例的单极天线的结构示意图。本实施例中的单极天线 10 包括介质基板 7 以及设置在介质基板 7 上的馈电点 5 、与该馈电点 5 相连接的馈线 4 、平面板状的金属结构 6 。其中,馈线 4 与金属结构 6 相互耦合;金属结构 6 是金属片经镂刻出槽拓扑结构 61 而成,镂刻时去除槽拓扑结构 61 对应的材料,剩余的金属片即为金属结构 6 ,在镂刻出槽拓扑结构 61 后,金属片上呈现出包括在金属结构 6 内的金属走线 62 ;槽拓扑结构 61 中相邻槽的间距即为金属走线 62 的宽度,槽拓扑结构 61 的槽宽与金属走线 62 的宽度相等,且均为 0.15mm ;介质基板 7 可由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料制成,优选地,由高分子材料制成,具体地可以是 FR-4 、 F4B 等高分子材料。
在本实施例中,金属结构 6 为轴对称的平面板状。其中金属结构 6 为铜或银材料制成。优选为铜,价格低廉,导电性能好。为了实现更好阻抗匹配,金属结构 6 也可为铜和银组合。
如图 2 、图 3 所示为本发明第二较佳实施例的单极天线结构示意图及该实施例中的金属结构的放大示意图。本第二较佳实施例中的单极天线 10 包括介质基板 7 以及设置在介质基板 7 上的馈电点 5 、与该馈电点 5 相连接的馈线 4 、平面板状的金属结构 6 与第一较佳实施例中所述均相同,区别在于还包括接地单元 8 ,接地单元 8 上设置有若干金属化的通孔 81 ;接地单元 8 对称地分布所述馈电点 5 两侧,介质基板 7 的选择与第一较佳实施例相同。
馈线 4 与金属结构 6 之间信号馈入方式可以有多种。所述馈线 4 直接与所述金属结构 6 相连;且所述馈线 4 与金属结构 6 的相连接点位置可以位于金属结构 6 上的任意位置。馈线 4 采用包围方式设置于所述金属结构 6 外围且馈线 4 的末端设置于金属结构 6 外围任意位置。
本实施例利用人工电磁材料的特性,采用在金属片上镂刻成金属结构的方式,使得金属结构及与金属结构所依附的介质基板共同组成一个等效介电常数按照洛仑兹材料谐振模型色散的电磁材料,从而设计出多谐振频段的天线。在本实施方式中,如图 2 所示的单极天线使 2.4GHz-2.49GHz 和 5.72GHz-5.85GHz 两个频段电磁波谐振,金属结构 6 的长和宽都可以根据通讯设备机构布局做任意调整,但是金属结构 6 结构形状保持与本实施例中一致即可,该单极天线可以用于单频 2.4GHz-2.49GHz 或 5.72GHz-5.85GHz 频段的通讯设备,也可以用于双频 2.4GHz-2.49GHz 和 5.72GHz-5.85GHz 频段的通讯设备。
如图 4 所示为本发明第二较佳实施例的单极天线的 S 参数仿真图,该图示出了第二较佳实施例的单极天线 10 在 2.4GHz 和 5.8018GHz 分别具有 -15.426dB 和 -19.184dB 的损耗,在本发明所要求的 2.4GHz-2.49GHz 和 5.72GHz-5.85GHz 频率段内均具有 -10dB 以下的损耗,表明本发明单极天线 10 能够单独在 2.4GHz-2.49GHz 或 5.72GHz-5.85GHz 频率段内工作,也可以同时在 2.4GHz-2.49GHz 和 5.72GHz-5.85GHz 频率段内工作,并且满足无线通讯设备中对天线的要求。
图 5 、图 6 、图 7 及图 8 分别示出了本发明第二较佳实施例的单极天线操作于 2.4 、 2.44 、 2.48GHz 和 5.725 、 5.8 、 5.85GHz 时分别在垂直平面( E-Plane )和水平平面( H-Plane )方向远场仿真结果图,在此结果中能够观察到本发明的单极天线的极化效果不亚于现有天线并符合应用标准。
本发明中,关于单极天线 10 的加工制造,只要满足本发明的设计原理,可以采用各种制造方式。最普通的方法是使用各类印刷电路板( PCB )的制造方法,如覆铜的 PCB 制造均可满足本发明的加工要求。除此加工方式,还可以根据实际的需要引入其它加工手段,如导电银浆油墨加工方式、各类可形变器件的柔性 PCB 加工、铁片天线的加工方式以及铁片与 PCB 组合的加工方式。其中,铁片与 PCB 组合加工方式是指利用 PCB 的精确加工来完成槽拓扑结构的加工,用铁片来完成其它辅助部分。由于采用低成本的铜材料形成所述金属结构 6 ,因此暴露空气中容易被氧化而使单极天线 10 谐振频率偏移或者性能急剧下降,因此单极天线表面上设置有非金属的防氧化薄膜。由于本发明的主要性能都集中在金属结构 6 槽拓扑结构 61 的设计,因此,馈线 4 的引线对单极天线 10 的辐射频率影响相对较小。基于这个特点,单极天线可以被灵活的摆放在系统的任何位置,简化的安装测试的复杂度。
上述单极天线 10 直接可应用包含 2.4GHz 和 5.8GHz 的无线通讯装置特别是 AP 和无线路由器中,该单极天线 10 可以直接设置于无线通讯装置的 PCB 板上,使单极天线 10 内置于应用该天线的设备中,也可以采用接口使单极天线 10 通过一接口与无线通讯装置的 PCB 板相连接,使单极天线 10 相对于应用该天线的设备外置。
图 9 是本发明第三较佳实施例的无线接入装置的结构示意图,如图 9 所示,该无线接入装置包括中央处理单元、数据存储单元、射频单元、电源单元和辅助单元。
其中,电源单元提供中央处理单元工作所需的电能。中央处理单元可以是微控制器或 SOC ,也可以是 RISC 微处理芯片。数据存储单元中存储有通讯协议,比如 WIFI 、 WLAN 等通讯协议,数据存储单元可以进一步划分为只读存储器和随机存取存储器。射频单元中包括本发明的天线,该天线的技术特征请参考本发明的第一及第二较佳实施例的描述,此处不再赘述。辅助单元可以是人机接口、显示器、电源指示灯或者状态指示灯中的一个或者多个。
中央处理单元与射频模块和数据存储模块相连接,中央处理模块通过射频模块中的天线与外部做数据交换与处理,中央处理单元可以调取数据存储单元中通讯协议,并进行数据的存储或者缓存,辅助单元使得车载无线接入装置具有一些辅助性的功能,例如显示连接状态的指示灯或者显示供电情况的电源指示灯等。
图 10 是本发明第四较佳实施例的无线路由器的结构示意图。如图 10 所示,该无线路由器包括:数据处理模块、数据存储模块、以太网接口、无线通信模块、电源模块和天线。
其中,数据处理模块与数据存储模块、以太网接口、无线通信模块连接。天线与无线通信模块相连接以进行数据传输,该天线的技术特征请参考本发明的第一及第二较佳实施例的描述,此处不再赘述。电源模块提供中央处理单元工作所需的电能。数据处理模块可以采用 ARM 处理器。数据存储模块中存储有通讯协议,比如 WIFI 、 WLAN 、 IEEE802.11b/g/n 等通讯协议,数据存储模块中包括只读存储器、随机存取存储器和可擦除存储器。该无线路由器还可以进一步包括一些辅助的模块(图中未示出),例如电源指示灯或者状态指示灯等。
综上所述,本发明的单极天线、无线接入装置和无线路由器能使一个波段、两个或者更多不同波段的电磁波谐振,从而能接收或者发送一个不同的波段的电磁波,也可以同时接受或者发送两个或者两个以上的不同的波段的电磁波,使用本发明的一根天线即可实现单频时具有多个工作频段、多频时不同工作频段同时工作的模式需求,且由于本发明天线金属结构尺寸的物理尺寸不受半波长的物理长度限制,因此可根据无线通讯设备尺寸设计出相应的天线,从而满足了无线接入装置、无线路由器小型化、天线内置的需求。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种单极天线,其特征在于,所述单极天线包括一介质基板和设置于所述介质基板一表面的一馈电点、与所述馈电点相连接的馈线及一金属结构;所述馈线与所述金属结构相互耦合。
  2. 根据权利要求 1 所述的单极天线,其特征在于,所述金属结构是金属片经镂刻出槽拓扑结构而成。
  3. 根据权利要求 2 所述的单极天线,其特征在于,所述槽拓扑结构中槽宽与槽拓扑结构中相邻槽的间距相等。
  4. 根据权利要求 3 所述的单极天线,其特征在于,所述槽拓扑结构中槽宽为 0.15mm 。
  5. 根据权利要求 1 所述的单极天线,其特征在于,所述单极天线还包括接地单元,所述接地单元上设置有若干个金属化的通孔。
  6. 根据权利要求 5 所述的单极天线,其特征在于,所述接地单元对称地分布所述馈电点两侧。
  7. 根据权利要求 1 所述的单极天线,其特征在于,所述介质基板由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料制成。
  8. 根据权利要求 1 所述的单极天线,其特征在于,所述单极天线至少使一种波段的电磁波谐振。
  9. 根据权利要求 8 所述的单极天线,其特征在于,所述电磁波谐振波段的频率段至少包括 2.4GHz-2.49GHz 和 5.72GHz-5.85GHz 。
  10. 根据权利要求 1 所述的单极天线,其特征在于,所述单极天线表面上设置有非金属的防氧化薄膜。
  11. 一种无线接入装置,其特征在于,所述无线接入装置包括:中央处理单元、数据存储单元和射频单元,所述数据存储单元和所述射频单元与所述中央处理单元相连接,所述射频单元包括一天线,所述天线包括一介质基板和设置于所述介质基板一表面的一馈电点、与所述馈电点相连接的馈线及一金属结构;所述馈线与所述金属结构相互耦合。
  12. 根据权利要求 11 所述的无线接入装置,其特征在于,所述金属结构是金属片经镂刻出槽拓扑结构而成。
  13. 根据权利要求 12 所述的无线接入装置,其特征在于,所述槽拓扑结构中槽宽与槽拓扑结构中相邻槽的间距相等。
  14. 根据权利要求 11 所述的无线接入装置,其特征在于,所述天线还包括接地单元,所述接地单元上设置有若干个金属化的通孔。
  15. 根据权利要求 14 所述的无线接入装置,其特征在于,所述接地单元对称地分布所述馈电点两侧。
  16. 一种无线路由器,其特征在于,所述无线路由器包括:数据处理模块、数据存储模块、以太网接口、无线通信模块和与所述无线通信模块进行数据传输的天线,所述数据存储单元、所述以太网接口和所述无线通讯模块与所述数据处理模块相连接,所述天线包括:一介质基板和设置于所述介质基板一表面的一馈电点、与所述馈电点相连接的馈线及一金属结构;所述馈线与所述金属结构相互耦合。
  17. 根据权利要求 16 所述的无线路由器,其特征在于,所述金属结构是金属片经镂刻出槽拓扑结构而成。
  18. 根据权利要求 17 所述的无线路由器,其特征在于,所述槽拓扑结构中槽宽与槽拓扑结构中相邻槽的间距相等。
  19. 根据权利要求 16 所述的无线路由器,其特征在于,所述天线还包括接地单元,所述接地单元上设置有若干个金属化的通孔。
  20. 根据权利要求 19 所述的无线路由器,其特征在于,所述接地单元对称地分布所述馈电点两侧。
PCT/CN2011/081901 2011-09-23 2011-11-08 一种单极天线、无线接入装置及无线路由器 WO2013040826A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11854531.8A EP2760078B1 (en) 2011-09-23 2011-11-08 Monopole antenna, wireless access device, and wireless router
US13/521,744 US9160066B2 (en) 2011-09-23 2011-11-08 Unipolar antenna, wireless access apparatus and wireless router

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110286499.3 2011-09-23
CN2011102864531A CN103022653A (zh) 2011-09-23 2011-09-23 一种单极天线
CN2011102864870A CN103022655A (zh) 2011-09-23 2011-09-23 一种无线接入装置
CN201110286453.1 2011-09-23
CN2011102864993A CN103022656A (zh) 2011-09-23 2011-09-23 一种无线路由器
CN201110286487.0 2011-09-23

Publications (1)

Publication Number Publication Date
WO2013040826A1 true WO2013040826A1 (zh) 2013-03-28

Family

ID=47913796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081901 WO2013040826A1 (zh) 2011-09-23 2011-11-08 一种单极天线、无线接入装置及无线路由器

Country Status (2)

Country Link
EP (1) EP2760078B1 (zh)
WO (1) WO2013040826A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175014A (zh) * 2006-11-03 2008-05-07 上海科泰信息技术有限公司 具有虚拟专用网络功能的通用无线分组业务无线路由器
CN101192702A (zh) * 2006-11-24 2008-06-04 鸿富锦精密工业(深圳)有限公司 双频天线
CN101667680A (zh) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 一种单级射频天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE302473T1 (de) * 2000-01-19 2005-09-15 Fractus Sa Raumfüllende miniaturantenne
EP2264829A1 (en) * 2001-10-16 2010-12-22 Fractus, S.A. Loaded antenna
US7417588B2 (en) * 2004-01-30 2008-08-26 Fractus, S.A. Multi-band monopole antennas for mobile network communications devices
US20080024366A1 (en) * 2006-07-25 2008-01-31 Arcadyan Technology Corporation Dual band flat antenna
KR100814441B1 (ko) * 2006-08-18 2008-03-17 삼성전자주식회사 매칭기능을 갖는 모노폴 안테나
CN101165966B (zh) * 2006-10-18 2011-07-27 鸿富锦精密工业(深圳)有限公司 耦合式馈入天线
US8451183B2 (en) * 2008-09-05 2013-05-28 Tyco Electronics Services Gmbh Frequency-tunable metamaterial antenna apparatus
CN201490337U (zh) * 2009-08-31 2010-05-26 深圳市启汉科技有限公司 一种单级射频天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175014A (zh) * 2006-11-03 2008-05-07 上海科泰信息技术有限公司 具有虚拟专用网络功能的通用无线分组业务无线路由器
CN101192702A (zh) * 2006-11-24 2008-06-04 鸿富锦精密工业(深圳)有限公司 双频天线
CN101667680A (zh) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 一种单级射频天线

Also Published As

Publication number Publication date
EP2760078A1 (en) 2014-07-30
EP2760078A4 (en) 2015-05-20
EP2760078B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
CN108429001A (zh) 一种多极化可重构天线
Consul Triple band gap coupled microstrip U-slotted patch antenna using L-slot DGS for wireless applications
EP2763238B1 (en) Printed antenna and mobile communication device
CN202217784U (zh) 双频天线
JP2005286854A (ja) 偏波切換え機能を有するアンテナ
CN110783701B (zh) 一种集成可调移相功分器的圆极化可重构天线
WO2013040826A1 (zh) 一种单极天线、无线接入装置及无线路由器
CN209804897U (zh) 多输入多输出天线及终端设备
TWI487199B (zh) 雙頻天線、mimo天線裝置及雙頻無線通訊裝置
Hettak et al. Flexible plastic-based inkjet printed CPW fed dipole antenna for 60 GHz ISM applications
Chen et al. Double‐layered coplanar patch antenna on CaLa4Ti5O17 high‐permittivity substrate with coplanar waveguide feed line
TWI517492B (zh) 天線及無線通訊裝置
KR101101856B1 (ko) 접지면 공진을 이용한 안테나
CN219371378U (zh) 一种pifa天线及手持设备
US9160066B2 (en) Unipolar antenna, wireless access apparatus and wireless router
Huang et al. H-Plane Horn Antenna with Slow-Wave Substrate Integrated Waveguide
CN213753073U (zh) 一种加载FSS的双频可控Fabry-Perot谐振腔天线
Du et al. A board omnidirectional coplanar waveguide antenna with choke sleeve
Jian et al. A wideband SISL U-Slot antenna array
Parvez et al. Copper Coin loaded Miniaturized Slot Antenna
CN102931477B (zh) 双频天线
Sokolov et al. Printed Dual-Band Dipole Antenna
Liang et al. APolarization-Pattern Reconfigurable Antenna Based on Leakage Current Regulation
KR100340313B1 (ko) 원편파 마이크로스트립 슬롯 안테나
Bai et al. Dual-Band Dipole Antenna with Band Rejection for Base Stations

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011854531

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13521744

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE