WO2013040003A2 - Active waveshaper for deep penetrating oil-field charges - Google Patents

Active waveshaper for deep penetrating oil-field charges Download PDF

Info

Publication number
WO2013040003A2
WO2013040003A2 PCT/US2012/054810 US2012054810W WO2013040003A2 WO 2013040003 A2 WO2013040003 A2 WO 2013040003A2 US 2012054810 W US2012054810 W US 2012054810W WO 2013040003 A2 WO2013040003 A2 WO 2013040003A2
Authority
WO
WIPO (PCT)
Prior art keywords
shaped charge
shaping element
wave
detonation
high explosive
Prior art date
Application number
PCT/US2012/054810
Other languages
French (fr)
Other versions
WO2013040003A3 (en
Inventor
David Betancourt
William B. Harvey
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Priority to DE112012003804.5T priority Critical patent/DE112012003804T5/en
Priority to GB1401545.7A priority patent/GB2510714A/en
Publication of WO2013040003A2 publication Critical patent/WO2013040003A2/en
Publication of WO2013040003A3 publication Critical patent/WO2013040003A3/en
Priority to NO20140136A priority patent/NO20140136A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/117Shaped-charge perforators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B1/00Explosive charges characterised by form or shape but not dependent on shape of container
    • F42B1/02Shaped or hollow charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/08Blasting cartridges, i.e. case and explosive with cavities in the charge, e.g. hollow-charge blasting cartridges

Definitions

  • the present invention relates to ballistics devices used in oil and gas production. More specifically, the present invention relates to a shaped charge having a wave shaping element having an energetic material.
  • Hydrocarbon producing wellbores typically intersect multiple zones within subterranean formations. Perforating systems are often used for perforating hydraulic passages through walls of the wellbores into one or more of the zones thereby hydraulically communicating the perforated zones to the wellbore.
  • Wellbores are usually completed by coaxially inserting a pipe or casing into the wellbore where it is then cemented in place by pumping cement into the annular space between the wellbore and the casing, The cement forms a flow barrier hydraulically isolating the zones from one another in the annular space.
  • the perforating systems typically include a gun body that houses a number of shaped charges.
  • Figure 3 illustrates a prior art example of a shaped charge 30.
  • Each shaped charge 10 generally include a housing 12, a liner 14, and high explosive 16.
  • Traditionally some of the high explosives that have been used are HMX, RJDX, PBX types, and PETN.
  • the housing 12 usually has an open end and a cylindrically shaped open space or cavity 17
  • Liners 14 are typically metal particles that are molded into thin walled, hollow, and conically shaped members having a rounded apex and open at the base.
  • the liner 14 is disposed into the open space 17 of the housing 12, apex side first, with the high explosive 16 between the liner 14 and housing 12.
  • Detonating the high explosive 16 forms detonation waves 18 that transmit through the high explosive 16 and collapse and invert the liner 14, converting the liner 14 into an elongated metal jet that is ejected from the shaped charge housing 12. The jet exits the gun body and penetrates the well casing and the surrounding geologic formations.
  • the jet properties depend on the shape of the charge case 12 and liner 14, released energy, as well as the mass and composition of the liner 14.
  • the high explosive 16 is detonated by exploding a booster charge 20 shown adjacent the high explosive 16, where the booster charge explosion is initiated by an associated detonation cord 22.
  • a shaped charge that includes a high explosive having a speed of detonation and a liner adjacent the high explosive.
  • a wave shaping element is included with the shaped charge that is made of an energetic material, where the energetic material has a speed of reaciion less than the speed of detonation of the high explosive.
  • the wave shaping element is disposed in a path of a detonation wave, which is between a location of initiation of the detonation wave and the liner.
  • the detonation wave is shaped by the wave shaping element.
  • the detonation wave upstream of the wave shaping element is more divergent than when the detonation wave is downstream of the wave shaping element.
  • the wave shaping element is made up of HMX, RDX, PBX types, PETN, HNS, TATB, or combinations thereof.
  • a shaped charge case may be included with the shaped, charge, where the shaped charge case has a cavity formed through one of its ends for placing the high explosive and liner.
  • a booster charge may optionally be disposed in an end of the shaped charge case opposite the end having the cavity.
  • the liner has a generally conical shape with a rounded apex facing the booster charge, and wherein the wave shaping element is disposed i a space between the apex and the booster charge.
  • the wave shaping element may have a lenticular cross section and can be generally coaxial with an axis of the shaped, charge.
  • the high explosive may be made up of a material such as HMX, RDX, PBX types, PETN, HNS, TATB, or combinations thereof.
  • the method involves providing a shaped charge having a shaped charge liner and. with high explosive adjacent the shaped charge liner.
  • the method also includes providing a wave shaping element in the high explosive.
  • the wave shaping element of this example is made up of an energetic material whose rate of reaction differs from the rate the high explosive reacts.
  • the shaped charge is then disposed in a wellbore and is initiated to form a detonation wave for collapsing the shaped charge liner.
  • the wave shaping element diverges less downstream than when upstream of the wave shaping element.
  • initiating detonation of the high explosive can include generating a detonation wave in a detonating cord and transferring the detonation wave from the detonating cord to the high explosive.
  • the method can further optionally include disposing the high explosive, shaped charge liner, and wave shaping element in a shaped charge case to define a shaped charge.
  • the steps of providing can be repeated, multiple times to obtain multiple shaped charges that can be disposed into a perforating gun having a detonation cord.
  • a perforating system is also described herein that includes a cylindrical perforating gun body having shaped charges.
  • the shaped charges include a shaped charge case having a cavity with walls and a bottom, a shaped charge liner in the cavity, high explosive between the shaped charge liner and. the walls and bottom of the cavity, and a wave shaping element in the cavity between an apex of the shaped charge liner and bottom of the cavity.
  • the wave shaping element includes a material that reacts at a rate different from that at which the high explosive reacts.
  • the material of the wave shaping element includes HMX, R.DX, PBX types, PETN, HNS, TATB, or combinations thereof, Further optionally included is a detonating cord extending lengthwise through the gun body and disposed adjacent an end of the shaped charge case having a booster charge.
  • the wave shaping element is coated with a fmorocarbon based polymer. The apex may optionally extend into the wave shaping element. Alternatively, the wave shaping element is spaced apart from the apex.
  • FIG. 1 is a side sectional view of a prior art example of a shaped charge.
  • FIG. 2 is a side sectional view of an example embodiment of a shaped, charge in accordance with the present invention.
  • FIG. 3 is a partial side sectional view of an example embodiment of perforating a wellbore using the shaped charge of FIG. 2 in accordance with the present invention.
  • FIGS. 4A and 4B are side sectional views of example embodiments of the shaped charge of FIG. 2 in accordance with the present invention.
  • FIG. 2 An example embodiment of a shaped charge 30 is shown in a side sectional view in Figure 2 that is made up of a shaped charge case 32 having a cavity 33 formed through one end of the shaped charge case 32.
  • a conicaHy-shaped liner 34 is shown inserted within the cavity 33 that has a rounded ape directed towards a base or bottom of the cavity 33, In the example of Figure 2, the liner 34 is substantially coaxial with an axis ⁇ of the shaped charge 30.
  • High explosive 36 is shown disposed between the liner 34 and wails and base of the cavity 33.
  • a binder 37 that in one example embodiment can be used for shaping the high explosive 36 within the shaped charge case 32.
  • the binder 37 may be a wax-based material or may be a polychlorotrifluoroethylene, as well as other fluorocarbon-based polymers.
  • the wave shaping element 38 of Figure 2 has a generally lenticular cross section having a major axis and a minor axis; wherein the minor axis is generally coaxial with the axis ⁇ .
  • the wave shaping element 38 includes a coating .39 on its outer surface that in an example embodiment includes a fluorocarbon-based polymer.
  • the material making up the wave shaping element 38 is energetic and having a rate of reaction that differs from a rate of reaction of the high explosive 36,
  • Example materials for the wave shaping element 38 include HMX, RDX, PBX types, PETN, HNS, I ' M B. and combinations thereof.
  • the shaped charge 30 of Figure 2 further includes a booster charge 40 shown provided in the bottom end of the shaped, charge case 32 and opposite the opening to the cavity 33.
  • the booster charge 40 includes a material that reacts more readily than the high explosive 36.
  • the booster charge 40 is made up of a primary explosive and.
  • the high explosive 36 is made up of a secondary explosive; wherein the primary explosive detonates in response to a stimulus that would generally not initiate detonation within the high explosive 36. Detonation of the booster charge 40 though is capable of detonating the high explosive 36,
  • a detonating cord 42 is shown set adjacent an end of the booster charge 40 opposite the high explosive 36 and is provided for initiating explosion or detonation within the booster charge 40.
  • An example detonation wave 44 is illustrated within Figure 2. that in an example depict how detonation of the high explosive 36 can initiate from the booster charge 40, propagate along a path running substantially parallel with the axis ⁇ , and ultimately exit the shaped charge 30.
  • the presence of the wave shaping element 38 alters the shape of the detonation wave 44 to a less diverging configuration.
  • the detonation wave 44 upstream of the wave shaping element 38 is shown having a radius thai is less than a radius of the detonation wave 44 downstream of the wave shaping element 38,
  • the material of the wave shaping element 38 as disclosed herein is energetic and explodes and/or detonates in response to detonation of the high explosive 36. Detonation or explosion of the wave shaping element 38 may be caused directly by the detonation wave 44.
  • An advantage of a wave shaping element 38 that is active, rather than passive is that attenuation of the detonation wave 44 through the active wave shaping element 38 is less than attenuation through wave shaping elements formed from a nonreactive material.
  • the wave shaping element 38 provides a lensing effect of reshaping the configuration of the detonation wave 44.
  • the detonation wave 44 propagating downstream of the wave shaping element 38 is shown as having a non-linear wave front, the wave front may optionally be substantially linear and oriented generally perpendicular with the direction of the axis ⁇ .
  • Other configurations exist wherein the detonation wave 44 has a wave front inverted from that of Figure 2; that is having a radius with an origin on a side of the detonation wave 44 opposite that of the booster charge 40.
  • a faster collapsing liner 34 and thus deeper penetration is one advantage of shaping the wave front of the detonation wave 44.
  • An advantage of combining the binder 37 with the high explosive 36 is that the high explosive 36 may be conformed into a desired shape, and having a precise contour and dimensions.
  • the binder 37 also increases repeatability of forming high explosive 36 into a desired shape with precise dimensions and contour. Increased precision allows for more symmetrically shaped high explosives that in turn form more coherent and straighter jets that those generated by less symmetrically formed high explosives.
  • embodiments combining the wave shaping element 38 with precisely configured high explosive 36 substantially symmetric about the axis A x provides for the higher velocity detonation wave 44 and jet formed by the inverting liner 34 that is on and not offset from the axis ⁇ .
  • FIG. 3 an example embodiment of a perforating system 45 is shown in a partial sectional view and disposed within a borehole 46.
  • the shaped charge 30 of Figure 2 is provided with an elongated and substantially cylindrical perforating gun 48 that is attached to other perforating guns to define a perforating string.
  • Shaped charges 30 are provided in the perforating guns 48.
  • An example of the step of perforating is shown in Figure 3 wherein jets 49 are shown being discharged, from the shaped charges 30 within the perforating guns 48 and that form perforations 50 into a formation 52 that surrounds the borehole 46.
  • wave shaping element 38 An example advantage of using the wave shaping element 38 is that the perforations 50 may penetrate deeper and straighter within the formation 52 than shaped charges not having a wave shaping element. Moreover, the wave shaping element 38 as disclosed herein may form perforations 50 that are deeper than those formed by other shaped charges having a passive wave shaping element.
  • a wireline 54 is included that can be used, for deploying the string of perforating guns 48 within the borehole 46.
  • the wireline 54 may also be used, for directing a signal to the perforating guns 48 that causes detonation of the shaped charges 30.
  • the wireline 54 is shown passing through a wellhead assembly 56 that is mounted on an upper end of the bore hole 46. Control of the wireline 54, and optionally the signals through the wire line 54, is maintained via a surface truck 58 shown set on the surface and above the bore hole opening.
  • an initiator 60 is shown on an upper end that couples with the detonating cord 42, that as discussed above, initiates explosion or detonation within the booster charge 40 ( Figure 2).
  • Figures 4A and 4B provide alternate embodiments of the shaped charge 30 of Figure 2.
  • a shaped charge 30A is provided wherein the wave shaping element 38 is not intersected by the apex of the liner 34, instead the wave shaping element 38 is positioned to be in contact with and adjacent the apex of the liner 34.
  • a shaped charge 30B is shown in sectional view in Figure 4B wherein the wave shaping element 38 is spaced ream'ard of the apex of the liner 34, thereby leaving a space between the wave shaping element 38 and apex of the liner 34.
  • the resulting detonation waves 44 take on a less diverging configuration downstream of the wave shaping element 38 than upstream so that the collapsing of the liner 34 occurs at a rate that is faster than that would occur without the strategically located, wave shaping element 38.
  • higher energy jets may be produced for providing deeper penetrations within hydrocarbon-producing formations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

A shaped charge having a liner, a shaped charge case, high explosive between the ilner and the case, and an active wave shaping element that is made of an energetic material that reacts at a rate different from the high explosive. The wave shaping element is disposed in the high explosive between an apex of the liner and base of the shaped charge case. Example materials of the wave shaping element include HMX, RDX, PBX types, PETN, HNS, TATB, and combinations thereof.

Description

[0001] The present invention relates to ballistics devices used in oil and gas production. More specifically, the present invention relates to a shaped charge having a wave shaping element having an energetic material.
[0002] Hydrocarbon producing wellbores typically intersect multiple zones within subterranean formations. Perforating systems are often used for perforating hydraulic passages through walls of the wellbores into one or more of the zones thereby hydraulically communicating the perforated zones to the weilbore. Wellbores are usually completed by coaxially inserting a pipe or casing into the weilbore where it is then cemented in place by pumping cement into the annular space between the weilbore and the casing, The cement forms a flow barrier hydraulically isolating the zones from one another in the annular space.
[0003] The perforating systems typically include a gun body that houses a number of shaped charges. Figure 3 illustrates a prior art example of a shaped charge 30. Each shaped charge 10 generally include a housing 12, a liner 14, and high explosive 16. Traditionally some of the high explosives that have been used are HMX, RJDX, PBX types, and PETN. The housing 12 usually has an open end and a cylindrically shaped open space or cavity 17
.. i . therein in which the explosive 16 and liner 14 are provided. Liners 14 are typically metal particles that are molded into thin walled, hollow, and conically shaped members having a rounded apex and open at the base. The liner 14 is disposed into the open space 17 of the housing 12, apex side first, with the high explosive 16 between the liner 14 and housing 12. Detonating the high explosive 16 forms detonation waves 18 that transmit through the high explosive 16 and collapse and invert the liner 14, converting the liner 14 into an elongated metal jet that is ejected from the shaped charge housing 12. The jet exits the gun body and penetrates the well casing and the surrounding geologic formations. The jet properties depend on the shape of the charge case 12 and liner 14, released energy, as well as the mass and composition of the liner 14. Generally the high explosive 16 is detonated by exploding a booster charge 20 shown adjacent the high explosive 16, where the booster charge explosion is initiated by an associated detonation cord 22.
[0004] Various efforts have been made to modify the performance of shaped charges. Barriers and voids have been placed within the explosive material to modify the detonation wave shape collapsing the liner. Wave shaping techniques have involved positioning the high explosive between the detonator cord and She liner. For example, a spoiler was positioned within the li er cavity to modify the perforating jet shape. Other efforts have been made to modify perforating jet performance by changing the liner shape, thickness, or configuration.
- SUMMARY OF THE INVENTION
[0005] The present disclosure describes examples of a shaped charge and methods of perforating a wellbore. In one example embodiment, disclosed herein is a shaped charge that includes a high explosive having a speed of detonation and a liner adjacent the high explosive. A wave shaping element is included with the shaped charge that is made of an energetic material, where the energetic material has a speed of reaciion less than the speed of detonation of the high explosive. The wave shaping element is disposed in a path of a detonation wave, which is between a location of initiation of the detonation wave and the liner. Thus when the detonation wave is generated by detonation of the high explosive and propagates through the wave shaping element, the detonation wave is shaped by the wave shaping element. In one example embodiment, the detonation wave upstream of the wave shaping element is more divergent than when the detonation wave is downstream of the wave shaping element. Optionally, the wave shaping element is made up of HMX, RDX, PBX types, PETN, HNS, TATB, or combinations thereof. A shaped charge case may be included with the shaped, charge, where the shaped charge case has a cavity formed through one of its ends for placing the high explosive and liner. Also, a booster charge may optionally be disposed in an end of the shaped charge case opposite the end having the cavity. In an example, the liner has a generally conical shape with a rounded apex facing the booster charge, and wherein the wave shaping element is disposed i a space between the apex and the booster charge. The wave shaping element may have a lenticular cross section and can be generally coaxial with an axis of the shaped, charge. The high explosive may be made up of a material such as HMX, RDX, PBX types, PETN, HNS, TATB, or combinations thereof.
[0006] Also included herein is a method of perforating a wellbore. In one example the method involves providing a shaped charge having a shaped charge liner and. with high explosive adjacent the shaped charge liner. The method also includes providing a wave shaping element in the high explosive. The wave shaping element of this example is made up of an energetic material whose rate of reaction differs from the rate the high explosive reacts. The shaped charge is then disposed in a wellbore and is initiated to form a detonation wave for collapsing the shaped charge liner. Optionally, the wave shaping element diverges less downstream than when upstream of the wave shaping element. Alternatively, initiating detonation of the high explosive can include generating a detonation wave in a detonating cord and transferring the detonation wave from the detonating cord to the high explosive. The method can further optionally include disposing the high explosive, shaped charge liner, and wave shaping element in a shaped charge case to define a shaped charge. The steps of providing can be repeated, multiple times to obtain multiple shaped charges that can be disposed into a perforating gun having a detonation cord.
[0007J A perforating system is also described herein that includes a cylindrical perforating gun body having shaped charges. The shaped charges include a shaped charge case having a cavity with walls and a bottom, a shaped charge liner in the cavity, high explosive between the shaped charge liner and. the walls and bottom of the cavity, and a wave shaping element in the cavity between an apex of the shaped charge liner and bottom of the cavity. The wave shaping element includes a material that reacts at a rate different from that at which the high explosive reacts. In one optional embodiment, the material of the wave shaping element includes HMX, R.DX, PBX types, PETN, HNS, TATB, or combinations thereof, Further optionally included is a detonating cord extending lengthwise through the gun body and disposed adjacent an end of the shaped charge case having a booster charge. In one example, the wave shaping element is coated with a fmorocarbon based polymer. The apex may optionally extend into the wave shaping element. Alternatively, the wave shaping element is spaced apart from the apex. BRIEF DESCRIPTION OF DRAWINGS
[0008] Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
[0009] FIG. 1 is a side sectional view of a prior art example of a shaped charge.
[0010] FIG. 2 is a side sectional view of an example embodiment of a shaped, charge in accordance with the present invention.
[001 i] FIG. 3 is a partial side sectional view of an example embodiment of perforating a wellbore using the shaped charge of FIG. 2 in accordance with the present invention.
[0012] FIGS. 4A and 4B are side sectional views of example embodiments of the shaped charge of FIG. 2 in accordance with the present invention,
[0013] While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
DETAILED DESCRIPTION OF INVENTION
[0014] The method and system of the present disclosure will now be described more folly hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed, as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
[0015] It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed iliiisirative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the improvements herein described are therefore to be limited only by the scope of the appended claims.
[0016] An example embodiment of a shaped charge 30 is shown in a side sectional view in Figure 2 that is made up of a shaped charge case 32 having a cavity 33 formed through one end of the shaped charge case 32. A conicaHy-shaped liner 34 is shown inserted within the cavity 33 that has a rounded ape directed towards a base or bottom of the cavity 33, In the example of Figure 2, the liner 34 is substantially coaxial with an axis Αχ of the shaped charge 30. High explosive 36 is shown disposed between the liner 34 and wails and base of the cavity 33. Optionally included, with the high explosive 36 is a binder 37 that in one example embodiment can be used for shaping the high explosive 36 within the shaped charge case 32. The binder 37 may be a wax-based material or may be a polychlorotrifluoroethylene, as well as other fluorocarbon-based polymers.
[0017] Provided in the space between the apex of the liner 34 and base of the cavity 33 is a wave shaping element 38. The wave shaping element 38 of Figure 2 has a generally lenticular cross section having a major axis and a minor axis; wherein the minor axis is generally coaxial with the axis Αχ. In the example embodiment of Figure 2, the wave shaping element 38 includes a coating .39 on its outer surface that in an example embodiment includes a fluorocarbon-based polymer. The material making up the wave shaping element 38 is energetic and having a rate of reaction that differs from a rate of reaction of the high explosive 36, Example materials for the wave shaping element 38 include HMX, RDX, PBX types, PETN, HNS, I'M B. and combinations thereof.
[0018] The shaped charge 30 of Figure 2 further includes a booster charge 40 shown provided in the bottom end of the shaped, charge case 32 and opposite the opening to the cavity 33. The booster charge 40 includes a material that reacts more readily than the high explosive 36. In one example embodiment the booster charge 40 is made up of a primary explosive and. the high explosive 36 is made up of a secondary explosive; wherein the primary explosive detonates in response to a stimulus that would generally not initiate detonation within the high explosive 36. Detonation of the booster charge 40 though is capable of detonating the high explosive 36,
[0019] A detonating cord 42 is shown set adjacent an end of the booster charge 40 opposite the high explosive 36 and is provided for initiating explosion or detonation within the booster charge 40. An example detonation wave 44 is illustrated within Figure 2. that in an example depict how detonation of the high explosive 36 can initiate from the booster charge 40, propagate along a path running substantially parallel with the axis Αχ, and ultimately exit the shaped charge 30. n [0020] in an example embodiment, the presence of the wave shaping element 38, as illustrated, alters the shape of the detonation wave 44 to a less diverging configuration. For example, the detonation wave 44 upstream of the wave shaping element 38 is shown having a radius thai is less than a radius of the detonation wave 44 downstream of the wave shaping element 38, As discussed above, the material of the wave shaping element 38 as disclosed herein is energetic and explodes and/or detonates in response to detonation of the high explosive 36. Detonation or explosion of the wave shaping element 38 may be caused directly by the detonation wave 44. An advantage of a wave shaping element 38 that is active, rather than passive is that attenuation of the detonation wave 44 through the active wave shaping element 38 is less than attenuation through wave shaping elements formed from a nonreactive material.
[0021] In an example embodiment, the wave shaping element 38 provides a lensing effect of reshaping the configuration of the detonation wave 44. Although the detonation wave 44 propagating downstream of the wave shaping element 38 is shown as having a non-linear wave front, the wave front may optionally be substantially linear and oriented generally perpendicular with the direction of the axis Αχ. Other configurations exist wherein the detonation wave 44 has a wave front inverted from that of Figure 2; that is having a radius with an origin on a side of the detonation wave 44 opposite that of the booster charge 40.
[0022] A faster collapsing liner 34 and thus deeper penetration is one advantage of shaping the wave front of the detonation wave 44. An advantage of combining the binder 37 with the high explosive 36 is that the high explosive 36 may be conformed into a desired shape, and having a precise contour and dimensions. The binder 37 also increases repeatability of forming high explosive 36 into a desired shape with precise dimensions and contour. Increased precision allows for more symmetrically shaped high explosives that in turn form more coherent and straighter jets that those generated by less symmetrically formed high explosives. Because incoherency of jet formation is exacerbated with increasing jet velocity, embodiments combining the wave shaping element 38 with precisely configured high explosive 36 substantially symmetric about the axis Ax, provides for the higher velocity detonation wave 44 and jet formed by the inverting liner 34 that is on and not offset from the axis Αχ.
[0023] Referring now to Figure 3, an example embodiment of a perforating system 45 is shown in a partial sectional view and disposed within a borehole 46. In the example of Figure 3, the shaped charge 30 of Figure 2 is provided with an elongated and substantially cylindrical perforating gun 48 that is attached to other perforating guns to define a perforating string. Shaped charges 30 are provided in the perforating guns 48. An example of the step of perforating is shown in Figure 3 wherein jets 49 are shown being discharged, from the shaped charges 30 within the perforating guns 48 and that form perforations 50 into a formation 52 that surrounds the borehole 46. An example advantage of using the wave shaping element 38 is that the perforations 50 may penetrate deeper and straighter within the formation 52 than shaped charges not having a wave shaping element. Moreover, the wave shaping element 38 as disclosed herein may form perforations 50 that are deeper than those formed by other shaped charges having a passive wave shaping element.
[0024] Further in the example of Figure 3, a wireline 54 is included that can be used, for deploying the string of perforating guns 48 within the borehole 46. The wireline 54 may also be used, for directing a signal to the perforating guns 48 that causes detonation of the shaped charges 30. The wireline 54 is shown passing through a wellhead assembly 56 that is mounted on an upper end of the bore hole 46. Control of the wireline 54, and optionally the signals through the wire line 54, is maintained via a surface truck 58 shown set on the surface and above the bore hole opening. In the perforating system 45, an initiator 60 is shown on an upper end that couples with the detonating cord 42, that as discussed above, initiates explosion or detonation within the booster charge 40 (Figure 2).
[002S] Figures 4A and 4B provide alternate embodiments of the shaped charge 30 of Figure 2. Specifically as illustrated in Figure 4A, a shaped charge 30A is provided wherein the wave shaping element 38 is not intersected by the apex of the liner 34, instead the wave shaping element 38 is positioned to be in contact with and adjacent the apex of the liner 34. In another optional embodiment, a shaped charge 30B is shown in sectional view in Figure 4B wherein the wave shaping element 38 is spaced ream'ard of the apex of the liner 34, thereby leaving a space between the wave shaping element 38 and apex of the liner 34. In both embodiments of Figures 4A and 4B, the resulting detonation waves 44 take on a less diverging configuration downstream of the wave shaping element 38 than upstream so that the collapsing of the liner 34 occurs at a rate that is faster than that would occur without the strategically located, wave shaping element 38. As such, higher energy jets may be produced for providing deeper penetrations within hydrocarbon-producing formations.
[0026] The present invention described herein, therefore, is well adapted, to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. For example, coiled tubing may be used in place of the wireline. These and other similar modifications will readily suggest themselves to those skilled, in the art. and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.

Claims

CLAIMS What is claimed is.
1. A shaped charge comprising: a high explosive having a speed of detonation; a liner adjacent the high explosive; a wave shaping element comprising an energetic material having a speed of reaction less than the speed of detonation and disposed in a path of a detonation wave thai is between a location of initiation of the detonation wave and the liner, so that when the detonation wave is generated by detonation of the high explosive, the detonation wave is shaped by the wave shaping element,
2. The shaped charge of claim i , wherein the detonation wave upstream of the wave shaping element is more divergent than when the detonaiion wave is downstream of the wave shaping element.
3. The shaped charge of claim 1. wherein the wave shaping element comprises a material selected from the list consisting of HMX, RDX, PBX types, PETN, HNS, TATB, and combinations thereof.
4. The shaped charge of claim 1, further comprising a shaped charge case having a cavity formed through an end of the shaped charge case, wherein the high explosive and liner is disposed in the cavity.
5. The shaped charge of claim 4, farther comprising a booster charge in an end of the shaped charge case opposite the end having the cavity, wherein the liner has a generally conical shape with a rounded apex facing the booster charge, and wherein the wave shaping element is disposed in a space between the apex and the booster charge.
6. The shaped charge of claim 1, wherein the wave shaping element has a lenticular cross section and is generally coaxial with an axis of the shaped charge.
7. The shaped charge of claim 1, wherein the high explosive comprises a material selected from the list consisting of I ! MX. DX, PBX types, PET , HNS, TATB, and combinations thereof.
8. A method of perforating a wellbore comprising: a. providing a shaped charge having a shaped charge liner, high explosive adjacent the shaped charge liner, and. a wave shaping element in the high explosive that comprises an energetic material that has a rate of reaction that differs from a rate of reaction of the high explosive; b. disposing the shaped charge in a wellbore; and c. initiating detonation of the high explosive to form a detonation wave for collapsing the shaped charge liner.
9. The method of claim 8, wherein the detonation wave downstream of the wave shaping element diverges less than when upstream of the wave shaping element.
10. The method of claim 8, wherein the step of initiating detonation of the high explosive comprises generating a detonation wave in a detonating cord, and transferring the detonation wave from the detonating cord to the high explosive.
11. The method of claim 8, further comprising disposing the high explosive, shaped charge liner, and wave shaping element in a shaped charge case to define a shaped charge.
12. The method of claim 8, further comprising repeating step (a) multiple times to provide multiple shaped charges, disposing the multiple shaped charges into a perforating gun having a detonation cord.
13. A perforating system comprising: a cylindrical perforating gun body; shaped charges in the gun body comprising a shaped charge case having a cavity with walls and. a bottom, a shaped charge liner in the cavity, high explosive between the shaped charge liner and the walls and bottom of the cavity, and a wave shaping element in the cavity between an apex of the shaped charge liner and bottom of the cavity and that comprises a material that reacts at a rate different from that at which the high explosive reacts.
14. The perforating system of claim 13, wherein the material of the wave shaping element comprises HMX, RDX, PBX types, PETN, HNS, TATB, and combinations thereof,
15. The perforating system of claim 13, further comprising a detonating cord extending lengthwise through the gun body and disposed adjacent an end of the shaped charge case having a booster charge.
16. The perforating system, of claim 13, wherein the wave shaping element is coated with a fluorocarbon based polymer.
17. The perforating system of claim 13, wherein the apex extends into the wave shaping element.
18. The perforating system of claim 13, wherein the wave shaping element is spaced apart from the apex.
PCT/US2012/054810 2011-09-13 2012-09-12 Active waveshaper for deep penetrating oil-field charges WO2013040003A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012003804.5T DE112012003804T5 (en) 2011-09-13 2012-09-12 Active wave shaping element for deep penetration of oil field charges
GB1401545.7A GB2510714A (en) 2011-09-13 2012-09-12 Active waveshaper for deep penetrating oil-field charges
NO20140136A NO20140136A1 (en) 2011-09-13 2014-02-05 Active waveforms for deep penetrating oil field explosive charges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/231,494 2011-09-13
US13/231,494 US20130061771A1 (en) 2011-09-13 2011-09-13 Active waveshaper for deep penetrating oil-field charges

Publications (2)

Publication Number Publication Date
WO2013040003A2 true WO2013040003A2 (en) 2013-03-21
WO2013040003A3 WO2013040003A3 (en) 2013-05-02

Family

ID=47828658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/054810 WO2013040003A2 (en) 2011-09-13 2012-09-12 Active waveshaper for deep penetrating oil-field charges

Country Status (5)

Country Link
US (1) US20130061771A1 (en)
DE (1) DE112012003804T5 (en)
GB (1) GB2510714A (en)
NO (1) NO20140136A1 (en)
WO (1) WO2013040003A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9822617B2 (en) * 2012-09-19 2017-11-21 Halliburton Energy Services, Inc. Extended jet perforating device
RU2525330C1 (en) * 2013-04-09 2014-08-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for generating compact element
US20150096434A1 (en) * 2013-10-03 2015-04-09 Baker Hughes Incorporated Sub-caliber shaped charge perforator
US10126103B2 (en) * 2014-09-03 2018-11-13 Halliburton Energy Services, Inc. Perforating systems with insensitive high explosive
GB2544665B (en) 2014-09-03 2019-04-10 Halliburton Energy Services Inc Perforating systems with insensitive high explosive
RU2596168C1 (en) * 2015-08-28 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Combined cumulative lining for high-speed compact elements formation
DE112018006779T5 (en) 2018-01-05 2020-12-03 Halliburton Energy Services, Inc. ADDITIVE MANUFACTURING OF ENERGETIC MATERIALS IN OIL SOURCE HOLLOW CHARGES
US10690459B1 (en) * 2018-03-23 2020-06-23 The United States Of America As Represented By The Secretary Of The Navy Detonation-wave-shaping fuze booster
CN109141151B (en) * 2018-07-09 2024-01-05 中国人民解放军陆军工程大学 Energy-accumulating jet flow secondary collision profile symmetrical cutter and manufacturing and cutting method thereof
WO2020149841A1 (en) * 2019-01-16 2020-07-23 Halliburton Energy Services, Inc. Shaped charge utilzing polymer coated petn
RU198944U1 (en) * 2019-07-25 2020-08-04 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Shaped charge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565644A (en) * 1995-07-27 1996-10-15 Western Atlas International, Inc. Shaped charge with wave shaping lens
US5847312A (en) * 1997-06-20 1998-12-08 The United States Of America As Represented By The Secretary Of The Army Shaped charge devices with multiple confinements
US7752972B1 (en) * 2005-08-23 2010-07-13 The United States Of America As Represented By The Secretary Of The Army Low reaction rate, high blast shaped charge waveshaper
US20110056362A1 (en) * 2009-09-10 2011-03-10 Schlumberger Technology Corporation Energetic material applications in shaped charges for perforation operations

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB785155A (en) * 1959-01-14 1957-10-23 Borg Warner Improvements in or relating to explosive charges
US3948181A (en) * 1973-05-14 1976-04-06 Chamberlain Manufacturing Corporation Shaped charge
FR2365774A1 (en) * 1976-09-27 1978-04-21 Serat IMPROVEMENTS IN PROJECTILE LOADS
DE3341052C1 (en) * 1983-11-12 1992-03-26 Rheinmetall Gmbh Hollow charge with detonation wave guide
FR2569473B1 (en) * 1984-08-21 1987-10-23 Realisa Applic Techni Et IMPROVEMENTS TO HOLLOW CHARGES
US4627353A (en) * 1985-10-25 1986-12-09 Dresser Industries, Inc. Shaped charge perforating apparatus
US4896609A (en) * 1989-05-01 1990-01-30 United States Of America As Represented By The Secretary Of The Army Planar shock wave generator and enhancer device
US5271332A (en) * 1992-10-02 1993-12-21 The United States Of America As Represented By The Secretary Of The Navy Modified channel effect for solid explosive detonation waves
US6983698B1 (en) * 2003-04-24 2006-01-10 The United States Of America As Represented By The Secretary Of The Army Shaped charge explosive device and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565644A (en) * 1995-07-27 1996-10-15 Western Atlas International, Inc. Shaped charge with wave shaping lens
US5847312A (en) * 1997-06-20 1998-12-08 The United States Of America As Represented By The Secretary Of The Army Shaped charge devices with multiple confinements
US7752972B1 (en) * 2005-08-23 2010-07-13 The United States Of America As Represented By The Secretary Of The Army Low reaction rate, high blast shaped charge waveshaper
US20110056362A1 (en) * 2009-09-10 2011-03-10 Schlumberger Technology Corporation Energetic material applications in shaped charges for perforation operations

Also Published As

Publication number Publication date
US20130061771A1 (en) 2013-03-14
DE112012003804T5 (en) 2014-07-10
GB2510714A (en) 2014-08-13
GB201401545D0 (en) 2014-03-19
NO20140136A1 (en) 2014-02-11
WO2013040003A3 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
US20130061771A1 (en) Active waveshaper for deep penetrating oil-field charges
US9062534B2 (en) Perforating system comprising an energetic material
EP2265890B1 (en) Devices and methods for perforating a wellbore
EP3397835B1 (en) System and method for perforating a wellbore
US7104326B2 (en) Apparatus and method for severing pipe utilizing a multi-point initiation explosive device
US5619008A (en) High density perforating system
US20070095572A1 (en) Ballistic systems having an impedance barrier
US20120298363A1 (en) Perforating string with magnetohydrodynamic initiation transfer
US9085969B2 (en) Bi-directional shaped charges for perforating a wellbore
EP4248062B1 (en) Sympathetically detonated self-centering explosive device
US20130292174A1 (en) Composite liners for perforators
US5633475A (en) Circulation shaped charge
CN113950607A (en) Triangular shaped charge liner with jet former
US9068441B2 (en) Perforating stimulating bullet
WO2015050765A1 (en) Sub-caliber shaped charge perforator
CN112105793A (en) Multi-stage single-point short gun perforating device for oil field application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831022

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 1401545

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120912

WWE Wipo information: entry into national phase

Ref document number: 1401545.7

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120120038045

Country of ref document: DE

Ref document number: 112012003804

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831022

Country of ref document: EP

Kind code of ref document: A2